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Abstract This paper investigates the effect of model
uncertainty on the nonlinear dynamics of a generic
aeroelastic system. Among the most dangerous phe-
nomena to which these systems are prone, Limit Cycle
Oscillations are periodic isolated responses triggered
by the nonlinear interactions among elastic deforma-
tions, inertial forces, and aerodynamic actions. In a
dynamical systems setting, these responses typically
emanate from Hopf bifurcation points, and thus a
recently proposed framework, which address the prob-
lem of robustness from a nonlinear dynamics view-
point, is employed. Briefly, the notion of robust bifurca-
tionmargin extends the concept ofμ analysis technique
from the robust control theory. The main contribution
of this article is a systematic investigation of the numer-
ous scenarios arising in the study of nonlinear flutter
when uncertainties in the model are accounted for in
the analyses. The advantages of adopting this frame-
work include the possibility to: quantify relevant infor-
mation for the determination of the nonlinear stability
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envelope; gain a more in-depth understanding of the
physical mechanisms triggering subcritical and super-
critical Hopf bifurcations; and reveal properties of the
nominal system by identifying isolated branches not
straightforward to detect with conventional numerical
approaches.

Keywords Bifurcations · Robustness · Aeroelasticity

1 Introduction

Aeroelasticity studies fluid-structure interaction prob-
lems governed by the coupling among inertial, elastic,
and aerodynamic forces. These problems are particu-
larly relevant for flexible aerodynamic bodies, where
these interactions result in different stress levels and
aerodynamic performance compared to those com-
puted considering a purely structural dynamics and
aerodynamic problem, respectively. Another possible
effect of this coupling is the onset of a dynamic insta-
bility characterized by self-sustained oscillations of the
structure, known as flutter [6]. Due to potentially criti-
cal failures associated with this phenomenon, its study
is ofwell acknowledged interest for aircraft design, thus
motivating a large body of research on flutter predic-
tionmethods [36]. The standard approach in the case of
nominal (i.e., when an accurate model describing the
physical problem is available) and linear dynamics is
to look for the smallest flight speed V such that the sys-
tem’s spectrum has a pair of complex eigenvalues on
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the imaginary axis. The distance of these eigenvalues
from the origin provides information on the frequency
of the oscillations, and the predicted speed, termed flut-
ter speed V f , is such that for V < V f the (unique)
equilibrium is globally asymptotically stable.

State-of-the art computational techniques for flut-
ter predictions are considered, however, only partially
reliable. For this reason, on the one hand conservative
safety margins on the flutter occurrence are required
by design, and on the other expensive flights test cam-
paignsmust be carried out before certifying the aircraft.
One of the main sources of inaccuracy is the sensitivity
to uncertainty of the conditions at which flutter occurs.
Uncertainty is caused for example by variations in sys-
tem parameters or incorrect modeling hypotheses [35].
To address this problem, robust flutter analysis algo-
rithms were proposed originally in [7,28], aimed at
quantifying the mismatch between nominal (i.e., based
on a fixedmodel assumed as exact) andworst-case (i.e.,
considering a family of models associated with a given
uncertainty set) stability analysis tests. They build on
the robust control concepts of Linear Fractional Trans-
formation (LFT) and μ (or structured singular value)
analysis [43] and are applicable to linear time-invariant
systems only.

Another critical aspect is that the currently observed
increase in flexibility of aircraft structures (primarily
driven by the need to reduce fuel consumption) and
the concurrent demand for a more realistic description
of the system compel the consideration of cases where
the linear hypothesis no longer holds [14]. The pres-
ence of nonlinearities not only can invalidate the results
obtained with a linear approach (e.g., the value of the
flutter speed), but can also trigger inherently nonlin-
ear phenomena which are not captured by linear anal-
ysis [9]. For example, nonlinear aeroelastic systems
typically exhibit loss of stability of the equilibrium in
the form of Limit Cycle Oscillations (LCO), which are
isolated periodic orbits occurring in unforced systems
[12,25]. Investigations of these phenomena are of well-
ascertained interest as they are necessary in order to
accomplish a satisfactory aircraft design [3]. Specif-
ically, studying the dependence on V of the features
of the LCO (e.g., amplitude) is paramount, and in this
regard bifurcation theory [25] offers an effective tool.
In fact, the onset of LCOs corresponds to anHopf bifur-
cation point in the system, where the stable branch of
equilibria (corresponding to the stable configuration of
the system at low speeds) loses stability and meets a

branch of periodic solutions. By applying numerical
continuation [10] to the emanating branch of periodic
orbits, information is obtained about period, amplitude
and stability of the LCO as the speed is varied.

The simultaneous effect of uncertainties and non-
linearities on flutter has not received much attention.
Most of the related prior work has built on the uncer-
tainty quantification (UQ) framework, see the recent
survey [5]. In UQ, a stochastic approach for modeling
uncertainty is taken, and the analysis tools generally
consist of Monte Carlo methods and spectral methods,
such as polynomial chaos expansions. The aims in UQ
works devoted to aeroelastic problems are typically to
investigate the effect of uncertainty on: the change of
linear (or linearized) flutter speed [37]; features of the
post-critical behavior (e.g., amplitude or frequencies of
the LCO) [4,16]. Aimed at the latter goal, but building
on different tools, namely robust control techniques,
in [22] a method was developed to allow the degrada-
tion of the LCO properties in the worst-case scenario to
be analyzed. Specifically, integral quadratic constraints
were used to compute theworst-caseLCOcurve,which
quantifies the increase in the amplitude of oscillations
in the face of uncertainties.

In contrast with the previously discussed works, the
goal of this paper is to study the effect of the uncer-
tainty from a bifurcation viewpoint, i.e., the problem
of robustness to qualitative changes in the steady-state
solutions is considered. To this aim, wemake use of the
concept of robust bifurcation margin km [19], recently
introduced as a framework to compute the distance,
in the uncertainty parameter space, from a given nomi-
nally stable equilibrium to the closest Hopf bifurcation.
The approach in [19], applicable to generic polynomial
vector fields, builds on robust control concepts, the key
idea being to describe the uncertain nonlinear system in
a Linear Fractional Transformation fashion. The singu-
larity of the LFT is then associated with the occurrence
of a Hopf bifurcation, and in that regard the bifurcation
margin km (technically, its reciprocal) can be regarded
as an extension of the structured singular value μ for
studying robust stability of nonlinear dynamics.

The determination of the margins is posed as an
optimization problem (aided by a continuation-based
multi-start strategy),which also allows the type ofHopf
bifurcation (subcritical or supercritical) to be specified
by constraining the sign of the first Lyapunov coeffi-
cient [25].
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Hopf bifurcations in uncertain aeroelastic systems 1455

While in [19], the theoretical and computational
aspects were addressed, this article presents as a case
study a thorough investigation of the rich nonlinear
dynamics arising in the robust flutter problem bymeans
of the robust bifurcation margin approach.

This effort represents a new contribution in the study
of nonlinear aeroelastic systems subject to paramet-
ric uncertainty for two main reasons: uncertainties are
analyzed from a deterministic worst-case viewpoint as
classically done, but for linear systems only, in robust
control [43]; the objective is to shed light and provide
insights on the effect of uncertainties on theHopf bifur-
cation landscapes of these complex coupled systems.
It is noted that unique features of the robust bifurca-
tion margin method, such as the possibility to focus
the analyses on bifurcations with specified criticality
(sub- or supercritical) and associated with frequencies
only in pre-defined ranges, allow non-intuitive findings
to be revealed. Examples include the onset of super-
critical Neimark–Sacker bifurcations and, even for the
system without uncertainty, the existence of multiple
stable and unstable steady-states solutions for speeds
much smaller than the Hopf bifurcation speed.

The analyzed aeroelastic system is an airfoil model
(also known as typical section) equipped with a control
surface and capturing unsteady aerodynamics effects.
The typical section model has been widely used in the
literature for studying the complex dynamic responses
of nonlinear aeroelastic systems, both numerically
[29,31,38] and experimentally [13]. Indeed, while its
modeling complexity is low compared to high-fidelity
fluid-structure interaction solvers, it captures essential
physical aspects of the problem (e.g., unsteady aerody-
namics, frequency separation among structuralmodes),
which will be leveraged in the work. This has the
important benefit of enhancing interpretability of the
results and allowing full understanding of the analy-
sis framework’s capabilities. Moreover, we consider a
benchmark model from the literature [24] for which
results of nominal robust analyses are available [21].
After having introduced the essential background in
Section 2, Section 3 will discuss the application of two
advanced flutter analysis methods, namely theμ-based
(linear) robust analysis [28] and the continuation-based
(nominal) bifurcation analysis [12]. This is prepara-
tory for the analysis methodology applied in Sect. 4,
which represents a reconciliation of the previous ones
and, as supported by the results, combines some of
their advantages. A thorough discussion of the find-

Fig. 1 Uncertain feedback representation of an LFT

ings, together with a broad overview of the insights
that can be gained and their critical interpretation, is
also provided in order to clearly present the potential
benefits of this novel analysis approach. Preliminary
results of this work were presented in [18].

2 Background

Abrief overviewof themathematical tools employed in
the paper is given in this section. Section 2.1 outlines
the basic features of LFT and μ from robust control
[43], whereas Sect. 2.2 gives a cursory summary of
bifurcation theory [25]. Finally, Sect. 2.3 reviews the
recently proposed concept of robust bifurcation mar-
gins [19]. As for the notation, standard convention is
used. Note also that bold is used for vectors and matri-
ces.

2.1 Linear fractional transformation and μ

The LFT paradigm [30,43] is an established modeling
framework in robust control for analysis and design of
uncertain systems, building on the idea of representing
them as a feedback interconnection between a known
part M and an unknown part �, see Fig. 1.

The former is typically partitioned as
M = [M11 M12; M21 M22]. A common example of
the unknown part is the structured uncertainty set �u:

�u = diag(δi Idi , δ j Idj , �Dk ),

i = 1, . . . , nR, j = 1, . . . , nC , k = 1, . . . , nD,
(1)

which gathers the uncertainties associated with nR real
parameters δi , nC complex scalars δ j , and nD full com-
plex blocks (or dynamic uncertainties) �Dk , and Id

denotes the identity matrix of size equal to the num-
ber of repetitions d.
The upper LFT with respect to the uncertainty � is:

Fu(M,�) = M22 + M21�(I − M11�)−1M12. (2)
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1456 A. Iannelli et al.

and can be interpreted as a generalized transfer function
from the input to the output of a linear time-invariant
system M22 when this is subject to uncertainties. It is
worth observing that this mapping is well posed if and
only if the inverse of (I − M11�) exists. Otherwise,
Fu(M,�) is said to be singular.

The structured singular value, or μ, analysis tech-
nique investigates robustness of uncertain linear time-
invariant systems to structured uncertainties (1) by
leveraging the aforementioned observation on the sin-
gularity of the LFT. The definition of μ is:

μ =
(
min
�

(κ : det(I − κM11�) = 0; σ̄ (�) ≤ 1)

)−1

, (3)

where κ is a real positive scalar. Note that, without
loss of generality, the maximum singular value σ̄ (·) of
the matrices in the set � is bounded in the optimiza-
tion problem. By virtue of this, the robust stability test
in (3) can be interpreted as follows: if μ ≤ 1, then
there is no perturbation matrix inside the allowed set�
that makes Fu(M,�) ill posed and thus the associated
plant is robustly stable within the range of uncertainty
affecting the system. Conversely, if μ > 1, there exists
a perturbation matrix that violates the well-posedness
of the LFT and thus for an adverse combination of the
uncertainty the system can lose stability.

Problem (3) is for generic uncertainty sets an NP-
hard problem; therefore,μ is approximated by its upper
μUB and lower μLB bounds [8,33]. The lower bound
algorithms also provide a matrix 1

μLB
�cr which veri-

fies the singularity of the LFT, i.e., such that det(I −
1

μLB
M11�

cr) = 0.

2.2 Bifurcation theory and numerical continuation

The objective of bifurcation analysis is to predict qual-
itative changes in the steady-states of a nonlinear sys-
tem as a result of the variation of parameters which
influence the dynamics. A general expression for an
autonomous nonlinear system is:

ẋ = f(x, p),

J ≡ ∇x f(x, p),
(4)

where: x ∈ R
nx and p ∈ R are, respectively, the vector

of states and the bifurcation parameter; f : Rnx ×R →
R
nx is the vector field; and J : Rnx ×R → R

nx×nx is the
Jacobian matrix. The vector x0 is called an equilibrium
of (4) corresponding to p0 if f(x0, p0) = 0.

Bifurcations of fixed points are concerned with the
change of stability or number of solutions as p is var-
ied. Hopf bifurcations are characterized by the coales-
cence of branches of fixed points and periodic solu-
tions. The Hopf bifurcation theorem [25] prescribes
for its occurrence that (4) has an equilibrium (xH, pH )

at which the following two conditions must hold:
J(xH, pH ) has a simple pair of purely imaginary eigen-
values ν(pH ) = ±iω0; and the transversality condition
d
dp (Re ν(p))|p=pH �= 0 is fulfilled, that is the eigen-
values are not stationary with respect to p at the bifur-
cation. These conditions ensure the existence of a sur-
face tangent to the eigenspace of ν(pH )where periodic
solutions exist. If the Lyapunov coefficient l1 (associ-
ated with the central manifold reduction at p = pH ) is
negative, then the periodic orbits are stable, whereas if
l1 is positive, the periodic solutions are repelling. The
sign of l1 thus determines whether the Hopf bifurcation
is supercritical (l1 < 0) or subcritical (l1 > 0).

The computational tool of bifurcation analysis is
numerical continuation [15], which provides path-
following algorithms to efficiently compute families of
steady-state solutions and assess their stability, as p is
varied. Examples of numerical techniques areNewton–
Raphson, arclength, and pseudo-arclength continua-
tion, all of which are efficiently implemented in freely
available software. An example is COCO [10], which
will be used for the continuation analyses performed in
this work.

2.3 Robust bifurcation margins

A framework was recently proposed [19] which allows
the robustness of stable equilibria to the onset of Hopf
bifurcations in the presence of real parametric uncer-
tainties to be studied. This is briefly reviewed in this
section.

To model the presence of uncertainties, the uncer-
tainty vector δ of nδ real scalar parameters is first intro-
duced:

δ = [δ1; . . . ; δi ; . . . δnδ ], δ ∈ R
nδ . (5)

Then, the uncertain vector field f̃ and the associated
Jacobian J̃, both depending on δ, x, and p, are defined:

ẋ = f̃(x, p, δ),

J̃ ≡ ∇x f̃(x, p, δ).
(6)

Consider the case where the nominal system f under-
goes a Hopf bifurcation at (xH, pH ), while for another
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Hopf bifurcations in uncertain aeroelastic systems 1457

value of the bifurcation parameter, denoted by p̄0, the
system has a stable fixed point x̄0. The objective of the
robust bifurcationmargin is to determine theworst-case
perturbation δ̂ ∈ δ such that f̃ undergoes a Hopf bifur-
cation at p̄0. By doing so, it characterizes robustness of
the system at that value of the bifurcation parameter.

Following a robust control theory approach, the
meaning of worst-case perturbation shall be interpreted
here as smallest among the critical ones. That is, δ̂ is the
smallest perturbation among those determining a Hopf
bifurcation at p̄0. The scalar metric used to express
the magnitude of the perturbation is the largest of the
absolute values of the elements in δ, i.e., σ̄ (diag(δ)).

To achieve this, an LFT model of the Jacobian J̃ is
considered, and an optimization problem that computes
the worst-case perturbation matrix for which the LFT
becomes singular is formulated. A value for the contin-
uationparameter p̄0 forwhich f has a stable equilibrium
x̄0 is selected by the analyst, and the uncertainty in the
system is described by means of the vector δ (5). This
allows the LFT Fu(MJ̃,�) to be constructed, where
� = diag(diag(δ);�x;ωInx).

It is noted that�x = diag(x1Ix1 , . . . , x j Ixj, . . . , xnx
Ixnx

) reflects the dependence of the Jacobian on the
equilibrium (unknown due to the uncertainties), and it
does not feature in the LFTs employed for μ analysis
(1). It is also worth remarking that the (unknown) fre-
quency ω at which the closest Hopf bifurcation occurs
features explicitly in the LFT representation.

The robust bifurcation margin km is defined as the
solution of the following optimization problem with
linear objective function (7a), linear inequality con-
straints (7d), and nonlinear equality constraints (7b)–
(7c).

min
X=[x;δ;ω]

km, (7a)

f̃(x, p̄0, δ) = 0, (7b)

det(I − MJ̃ 11�) = 0, (7c)

− km ≤ δi ≤ km, i = 1, . . . , nδ. (7d)

where X is the vector of optimization variables includ-
ing: the state equilibrium x; the uncertainty vector δ;
and the frequency ω. The symbol hat will be used to
denote a solution of the optimization (e.g., δ̂ is the
worst-case perturbation). Observing more closely the
problem, it is noted that Eq. (7b) guarantees that the
solution (x̂, p̄0, δ̂) corresponds to an equilibrium point

for the system. Eq. (7c) ensures that J̃ has a pair of
complex eigenvalues ν = ±ω̂ by enforcing the deter-
minant condition. The latter is indeed a necessary and
sufficient condition for well posedness of the associ-
ated LFT, and it is also used in the μ test (3). Finally,
Eq. (7d) bounds the size of the perturbation. Notably,
ω is a variable of the optimization problem and thus
the margin km is sought over all possible Hopf bifur-
cations having different frequencies. This results in the
advantage of not having to fix a priori a grid for the
frequency (as in standard μ analysis [8]) and in more
flexibility when performing the analyses [19].

Note that this approach is qualitatively similar to the
problem solved in μ analysis (3). In fact, by thinking
of the Jacobian J̃ as the uncertain state-matrix of the
linear case, the robust bifurcation margin km can be
seen as an extension of the structured singular value μ

to the case of polynomial vector field. More precisely,
it follows from (7) that km = σ̄ (diag(δ)), and thus it
is equivalent to the reciprocal of μ (in the linear case,
where μ is defined).

An important feature of this nonlinear robustness
formulation is that it allows one to specify whether
the analyzed closest bifurcation is supercritical or sub-
critical by adding a constraint on the sign of l1. The
Lyapunov coefficient l1 depends on the eigenvectors
of J̃ associated with ν and the second- and third-order
tensors of J̃ [25], thus, it can be written as a function of
the optimization variables X, and a constraint sll1 > 0
(sl = 1 for subcritical and sl = −1 for supercritical)
can be appended to (7).

Finally, it is important to stress that, since the calcu-
lation of km is based on a non-convex program, global
minima might be missed and thus, there could be an
uncertainty vector featuring a smaller norm than δ̂ caus-
ing a Hopf bifurcation. In other words, the solution of
(7) gives upper bounds on km (analogous to the lower
bounds forμ). Various strategieswere discussed in [19]
and are employed in this work, to mitigate this issue,
including the possibility to: solve the optimization in
Eq. (7) at fixed frequency; performamulti-start strategy
basedon the concept of extended continuation [10] (and
consisting of constructing a manifold of Hopf points
connected to a given solution X̂). The interested reader
is referred to [19] for more details on the theoretical
and algorithmic formulation of km .
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3 Advanced methods for flutter analysis

In this section, the application of two well-known
advanced flutter analysis methods to a benchmark case
study, presented in Sect. 3.1, is discussed. The first
method is theμ-based linear robust analysis (Sect. 3.2),
while the second (Sect. 3.3) is the continuation-based
nonlinear bifurcation analysis.

3.1 Typical section model and preliminary analyses

The system sketched in Fig. 2 is commonly referred to
as the typical section. It has been introduced in the early
stages of aeroelasticity to investigate dynamic instabil-
ities such as flutter [6], and it has been since thenwidely
used for analysis of linear and nonlinear aeroelastic sys-
tems [12,29,31,38]. It consists of a rigid airfoil with
lumped springs simulating the 3 structural degrees of
freedom (DOFs): plunge h, pitch α, and control surface
(or flap) rotation β (Fig. 2).

The parameters in the model are: Kh , Kα , and Kβ—
respectively, the plunge, pitch, and control surface stiff-
ness; half chord distance b; dimensionless distances a,
c (from the mid-chord to, respectively, the elastic axis
and the hinge location), and xα and xβ (fromelastic axis
to airfoil center of gravity and from hinge location to
control surface center of gravity); wing mass per unit
span ms ; moment of inertia of the section about the
elastic axis Iα; and the moment of inertia of the control
surface about the hinge Iβ . Based on these parameters,
the structural mass Ms and stiffness Ks matrices are
defined as:

Ms = msb
2

⎡
⎣ 1 xα xβ

xα r2α r2β + xβ(c − a)

xβ r2β + xβ(c − a) r2β

⎤
⎦ ,

Ks =
⎡
⎣ Kh 0 0

0 Kα 0
0 0 Kβ

⎤
⎦ ,

(8)

where rα =
√

Iα
msb2

and rβ =
√

Iβ
msb2

are, respectively,

the dimensionless radius of gyration of the section and
of the control surface. Theodorsen’s unsteady formula-
tion is employed to model the aerodynamics [24]. This
provides the aerodynamic operator as a transfer matrix
Q giving the relationship between the elastic degrees
of freedom and the aerodynamic load components. The
matrixQ has a non-rational dependence on the Laplace
variable s; thus, a rational approximation is computed
here via the Minimum State method [24]:

Fig. 2 Typical section sketch

Q ≈ A2 s̄
2 + A1s̄ + A0 + D̄

⎡
⎢⎢⎣

1
s̄+γ1

. . . 0
...

. . .
...

0 . . . 1
s̄+γna

⎤
⎥⎥⎦ Ēs̄, (9)

where s̄ = sb
V and: A2, A1, and A0 are real coefficient

matrices modeling the quasi-steady contribution to the
aerodynamic loads; while D̄ and Ē are real coefficient
matrices capturing, together with the lag roots γi , the
memory effect of thewake. The rational approximation
entails the addition of the aerodynamic states xa, equal
in number to the number of lag roots na . By defining the
vector of structural states xs = [ hb ;α;β], the system
can be finally described in matrix form as:

ẋ = Ax,⎡
⎣ẋs

ẍs

ẍa

⎤
⎦ =

⎡
⎣ 0 I 0

−M−1K −M−1B q∞M−1D̄
0 Ē − V

b R

⎤
⎦ ,

(10)

where q∞ = 1
2ρ∞V 2, ρ∞ is the air density, R is a

diagonal matrix with the lag roots γi in the nonzero
terms, and:

Ma = Ms − 1

2
ρ∞b2A2,

Ba = −1

2
ρ∞bVA1,

Ka = Ks − 1

2
ρ∞V 2A0.

(11)

The matrices Ma, Ba and Ka are, respectively, the
aeroelastic inertial, damping, and stiffness matrices.
They include the structural terms (note that structural
damping is null for this case study) plus the aerody-
namic quasi-steady matrices. The parameters defin-
ing the model are taken from [24] and are reported
in Appendix. The total size nx is 9 (6 structural and 3
aerodynamic states).
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Hopf bifurcations in uncertain aeroelastic systems 1459

Nonlinearities in the stiffness will be considered
in this work. Specifically, hardening cubic terms for
the plunge and pitch DOFs are assumed, and thus, the
matrix Ks is rewritten as:

Ks = Ks
L + Ks

NL ,

=
⎡
⎣ K L

h 0 0
0 K L

α 0
0 0 Kβ

⎤
⎦ +

⎡
⎣ K NL

h K L
h

( h
b

)2 0 0
0 K NL

α K L
α α2 0

0 0 0

⎤
⎦ ,

(12)

where the linear Ks
L and nonlinear Ks

NL structural
stiffness matrices have been introduced. As common
practice [12], the coefficients of the nonlinear terms
are assumed proportional to the corresponding linear
ones through the coefficients K NL

h and K NL
α .

Given the dependence of the state-matrix A (10) on
the parametric uncertainties, standard LFT modeling
steps provide an uncertainty description in the form of
Eq. (2) and Fig. 1. One possible way to achieve this
consists of writing the uncertain parameters in sym-
bolic form and then using the LFR toolbox [30] to
directly obtain the partitioned matrix M. This matrix
will comprise the transfer matrix of the known (nomi-
nal) part of the aeroelastic system (M22) and matrices
M11, M12 and M21, which depend on the considered
uncertain parameters and describe how the uncertainty
in � affects the nominal system. In [19], a detailed
derivation of LFT models for state-space representa-
tions was carried out. Details on the construction of
LFTmodels specifically tailored to aeroelastic systems
of increasing complexity have been addressed in pre-
vious works (see [21] for the typical section and [20]
for high-fidelity systems generated by finite element
methods). It is important to emphasize that, in the non-
linear case, the matrix A (or system’s Jacobian) will
also depend in general on the states, which will also
appear in the definition of the LFT. That is, as also dis-
cussed in Sect. 2.3, � will now include the block �x

gathering the states featuring in the Jacobian. Once the
matrix MJ̃ is obtained, and bounds for the parametric
uncertainties are established, the optimization problem
in Eq. (7) can be solved.

3.1.1 Comments on the modeling rationale

The typical section model (Fig. 2) is a popular case
study in aeroelasticity and, despite its modeling sim-
plicity, is a valid schematization for studying the
dynamics of an unswept and untapered wing when the

geometrical and structural properties are taken at a sta-
tion 70–75% from the centerline [6]. The inertial and
stiffness matrices (8) can indeed be determined from
the Lagrange’s equations for a rectangular cantilevered
continuous wingmodel with linear and quadratic mode
shapes [42, Chapters 10]. In this context, the degrees of
freedom h, α, and β can be interpreted as the general-
ized coordinates associated with the bending, torsion,
and control surface rotation modes of the wing. Note
that, in the case of unswept and untapered geometry, the
coupling among the degrees of freedom of the wing’s
equation of motions is only due to inertial and aero-
dynamic forces, while the elastic forces are uncoupled.
This is reflected in thematrices defining the typical sec-
tion model, where the stiffness matrix Ks is diagonal
and Ms and Q are full. This fact motivates the selec-
tion of a diagonal nonlinear stiffness matrix Ks

NL , a
choice also made in other works that investigated non-
linear aeroelastic phenomena within the typical section
framework [12,29].

The hardening effect modeled in (12) takes into
account the fact that the stiffness properties change
when the system undergoes large deformations (as is
the case for very flexible aircraft), and typically an
increase in the stiffness is observed. Softening effects
can also be exhibited in systems subject, for example,
to compressive loads or heating at high Mach numbers
[41], but since these instances are less relevant to the
study of flutter they will not be considered here.

Another important aspect is the choice made here
to neglect aerodynamic nonlinearities. This is pri-
marily motivated by the fact that in the literature
it has often been reported that structural nonlinear-
ities are the main drivers for the onset of bifurca-
tions and LCOs [9,27,40]. In fact, prior works that
used the typical section to explore nonlinear aeroelas-
tic behaviors generally considered structural nonlinear-
ities only [29,31,38]. Nonetheless, capturing aerody-
namic effects might also have an important impact on
the results depending on the considered system and
could therefore also be investigated. For low-speed
conditions, nonlinearities typically arise in the case of
boundary layer separation, for example in the case of
bluff bodies or high angle of attack configurations. In
high-speed regimes, compressibility and shock waves
can also determine important nonlinear effects. While
the use of high-fidelity solvers is often required to accu-
rately capture these phenomena, in [12, Chapters 8,9]
modeling approaches to incorporate some of these
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Fig. 3 Linear nominal flutter analysis

effects in the typical section model are considered. The
systematic investigation carried out in this paper could
be seamlessly applied if this type of nonlinear aerody-
namics effects was incorporated in the model.

3.1.2 Classic flutter analysis

Linear (i.e., K NL
h = K NL

α = 0) flutter of this case
study, originally studied in [24], is shown in Fig. 3. The
variationwith speed of the eigenvalues of the three elas-
tic modes is displayed in Fig. 3a. The system exhibits a
binary flutter, featured by a merging of the plunge and
pitch frequencies just before the instability occurs at the
flutter speed V f = 302.7 m

s with a flutter frequency
ω f = 70.7 rad

s . The coalescence is clearly visible in
Fig. 3b, where the natural frequencies of the plunge
(ωh) and pitch (ωα) modes are plotted. The poles at
the stable speed V = 270 m

s are highlighted with an
asterisk.

3.2 Robust linear analysis with μ

The μ-based robust linear flutter analysis of this case
study was performed in [21], where the effect of dif-
ferent combinations of uncertaintieswas investigated at
the nominally stable speed V = 270 m

s < V f . The part
of the analyses which took into account perturbations
in the coefficients of the structural matrices is briefly
discussed here. The uncertainty definition consists of a
range of variation of 10% from the nominal value for
the coefficients Ms,11, Ms,22, K L

h and of 5% for Ms,12

and K L
α , where the subscripts of the mass parameters

denote the coefficients of the relative matrix ( , Ms,11

is the coefficient 11 of Ms). By recalling the definition
of the mass matrix Ms in (8), it can be noted that the
described uncertainty on the mass takes into account
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Fig. 4 Robust linear analysis withμ for uncertainties in Ms and
Ks

possible inaccuracies in the knowledge of: the total sec-
tion mass (Ms11 ), the moment of inertia of the section
about the elastic axis (Ms22 ); the offset of elastic axis
and the center of gravity (Ms12 ). The corresponding
structured uncertainty set, with dimension 5, is:

�u = diag(δMs,11; δMs,12; δMs,22; δK L
h
; δK L

α
). (13)

In Fig. 4 (taken from [21] and reproduced here for com-
parison with the other methods), the upper μUB (UB)
and lower μLB (LB) bounds of the structured singu-
lar value μ computed with the default algorithms from
the Robust Control Toolbox in MATLAB R2015b [2]
are shown. Note that the bounds are very close, thus
the actual value of μ is well predicted. In particular, it
can be concluded from this plot that the system is not
robustly stable within the allowed uncertainty range
because the peak value is μ ∼= 1.38. Therefore, the
system is flutter free only for structural uncertainties
up to approximately 73% (≈ 1

1.38 ) of the assumed size.
Due to the accurate estimation of the lower bound,

it is also possible to extract the smallest perturbation
matrix �cr

u capable of causing instability, which corre-
sponds to the peak in Fig. 4

�cr
u = diag(−0.7245; 0.7245I2; 0.711; 0.6460;−0.7213). (14)

It is also interesting to observe that the peak of the
curves take place at about 72.2 rad

s , which is close to
the nominal flutter frequency ω f = 70.7 rad

s shown in
Fig. 3a.

3.3 Bifurcation analysis of the nominal nonlinear
system

When the nonlinear stiffness effects are non-negligible,
the matrixKs is given by Eq. (12) and, if it is assumed a
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Table 1 Hopf bifurcations of the nominal system for different combinations of nonlinearities and trim states

s K NL
h K NL

α xt VH ωH Type

1 100 0 0 302.7 m
s 70 rad

s Sub

2 0 100 0 302.7 m
s 70 rad

s Super

3 100 100 0 302.7 m
s 70 rad

s Super

4 100 0 αt = 1◦ 288.2 m
s 75 rad

s Sub

5 0 100 αt = 1◦ 303.7 m
s 70 rad

s Super

6 100 100 αt = 1◦ 289 m
s 75 rad

s Super

nominal vector field, the problem can be studied in the
setting of bifurcation analysis. Consider the dynamics:

ẋ = f(x, V ) = AL(V )x + fNL(x, V ),

J(x, V ) = AL(V ) + ∇x fNL(x, V ),
(15)

where AL : R → R
nx×nx is obtained from the defi-

nition of A in Eq. (10) by setting the nonlinear terms
to zero, and fNL : Rnx × R → R

nx is the nonlinear
part of the vector field. The bifurcation parameter p is
typically the speed V in the context of flutter analysis,
but other options could be considered. Note that, for
the particular nonlinearities assumed here, f N L (and
thus also ∇x f N L ) does not depend on the speed.

Numerical continuation can be applied to Eq. (15).
First, the value of the trim state xt has to be specified
since this has an influence on nonlinear flutter anal-
ysis [34]. Two trim conditions will be considered to
exemplify its effect. The first corresponds to a zero trim
state, i.e., xt = 0, whereas the second has a nonzero
value for some of the entries of xt. This could be phys-
ically motivated by the need to generate positive lift to
counterbalance gravitational forces (i.e., αt �= 0) or to
provide static equilibrium about the aircraft’s center of
gravity (i.e., βt �= 0). More refined descriptions for xt

could consider a dependence on speed or the presence
of a pre-deformed shape (with nonzero values for ht
and βt ). In here, the case αt = 1◦, which is sufficient to
illustrate the role played by a nonzero xt, is considered.

In order to present an overview of the possible non-
linear responses of the system, 6 scenarios are defined.
These arise from considering, for each trim state, the
cases of: plunge nonlinear stiffness only (K NL

α = 0),
pitch nonlinear stiffness only (K NL

h = 0), and both
nonlinear stiffnesses present (with K NL

α = K NL
h =

100). The results are presented in Table 1, where, for
each scenario (s#, with # = 1, . . . , 6), the speed VH

at which the Hopf bifurcation occurs, the frequency

240 260 280 300 320
V [m/s]

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 [r
ad

]

s1
s2
s3

(a) xt = 0.

240 260 280 300 320
V [m/s]

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 [r
ad

]

s4
s5
s6

(b) αt = 1◦.

Fig. 5 Bifurcation diagram of the nominal system for differ-
ent combinations of nonlinearities and trim states (solid and
dashed lines denote, respectively, stable and unstable steady-
states) obtained with COCO

of the associated imaginary eigenvalues ωH , and the
type of bifurcation (sub for subcritical and super for
supercritical) are reported.

Figure 5 shows the corresponding bifurcation dia-
grams with V on the x-axis and the pitch DOF on the
y-axis (in case of branches of LCO, this indicates the
maximum value over a period). Specifically, Fig. 5a
shows the cases featuring xt = 0, while Fig. 5b shows
the cases with αt = 1◦. The convention of representing
stable steady-states (equilibria and LCOs) with solid
lines and unstable ones with dashed lines is adopted,
and different line colors are used for the 6 different
scenarios (s#).

The first important observation from Fig. 5a is that
when xt = 0 the branch of equilibria is x0 = 0 regard-
less ofV . This implies that J = AL , thus the occurrence
of the Hopf bifurcation is independent of the nonlinear
terms. This is seen in Table 1, where for s1, s2, and s3
the results of the linear case (Fig. 3a) are retrieved (i.e.,
VH = V f and ωH = ω f ). Nonlinear terms, however,
do have an effect on the type of bifurcation (subcritical
for s1 and supercritical for s2 and s3).

When αt = 1◦, it can be seen from Fig. 5b that the
branch of equilibria has a nonzero (speed dependent)
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value—it is noted that the cases s4 and s6 overlap in
the figure. Moreover, different values of VH (this is
the speed, different for each case, at which a branch
of LCO emanates from the branch of equilibria) are
obtained depending on the nonlinearities affecting the
system. This is due to the fact that the linearization
of the Jacobian, since x0 �= 0, is now affected by the
nonlinear term of the vector field fNL .

Another important trend observed in the figures,
irrespective of the value of xt, is that a subcritical
bifurcation only occurs for the cases of nonlinearity
in plunge (i.e., s1 and s4, for which the folding point
of the limit cycle branch takes place at high amplitudes
and is thus out of the plot). Conversely, when there are
nonlinearities in the pitch degree of freedom (s2, s3,
s5, and s6), the bifurcation is always supercritical. This
scenario was confirmed by performing extensive time
marching simulations with random initial conditions.

The influence of the type of nonlinearity on the
nature of the Hopf bifurcation is in agreement with
the interpretation given in [12], where the concept of
intermittent flutter, based on the instantaneous natural
frequencies of the underlying linear system, is used to
qualitatively explain the mechanisms activating differ-
ent LCOs. This is briefly discussed here with regard to
s1 and s2 (similar arguments could be used for s4 and
s5). As a preamble, recall the trend of the plunge and
pitch natural frequencies emphasized in Fig. 3b (where
V f = VH for these cases as stressed above). Consider
a speed V ε

H slightly larger than VH . Since the equilib-
rium is unstable, the system will start oscillating and
the nonlinear terms will become important. In s2, the
pitch frequency ωα will increase and, as the oscilla-
tions become larger, the plunge frequency ωh (which
remains constant) will be far from ωα and thus, the
binary flutter mechanism triggering the instability will
cease to exist.As a result, the oscillationswill decay and
reach a level which is compatible with the existence of
a flutter mechanism. Since ωα > ωh at V ε

H , the growth
in amplitude must be gradual and thus a supercritical
LCO emanates from the Hopf point. The situation is
different for s1. Indeed, the hardening plunge stiffness
now promotes an instantaneous higher value of ωh as
the system starts oscillating, and this, in addition to the
fact that ωα > ωh , will make possible the existence at
V ε
H of a flutter mechanism featuring large amplitudes.

Moreover, if V is decreased below VH , an LCOcan still
exist because oscillations in the system are compatible
with coalescence of the natural frequencies.

In the case of s3, where both nonlinear terms are
present, a supercritical bifurcation occurs here. This is
ascribed to the particular choice of K NL

h and K NL
α in

Table 1, which makes a mechanism qualitatively simi-
lar to that of s2 prevail on the other. By increasing the
coefficient K NL

h , it is noted that a subcritical bifurca-
tion would occur.

4 Robustness of the Hopf bifurcation in the face of
modeling uncertainty

The advanced methods applied in the previous section
are able to cope with the two acknowledged issues in
flutter analysis: uncertainties (through μ analysis) and
nonlinearities (through bifurcation). However, these
approaches fail individually to give an answer to the
question of robustness if both uncertainties and non-
linearities must be taken into account. For this reason,
the concept of robust bifurcation margins (reviewed in
Sect. 2.3) is applied here to study the effect ofmodeling
uncertainties on nonlinear aeroelastic instabilities.

Including uncertainties in the nominal vector field
(15) yields the following expression:

ẋ = f̃(x, V, δ) = ÃL(V, δ)x + f̃NL(x, V, δ) (16a)

J̃(x, V, δ) = ÃL(V, δ) + ∇x f̃NL(x, V, δ) (16b)

Given a speed V̄0 for which there exists a stable equi-
librium and the definition of a vector δ of uncertain
parameters, the distance in the parameter space from
the closest Hopf bifurcation is computed by means of
the robust bifurcation margin km .

In the analyses presented in this section, the uncer-
tainty set δ is incrementally augmented in order to
investigate in depth the rich nonlinear dynamics trig-
gered by modeling uncertainties. In order to empha-
size the benefits of the newly proposed framework
and the relationship with the standard robust analysis
approach, Sect. 4.1 will investigate the case where the
same uncertainty description considered in theμ analy-
ses of Sect. 3.2 holds, i.e., only structural uncertainties.
Then, Sect. 4.2 will consider the case including also
aerodynamic parameters, while Sect. 4.3 will augment
the analysis to include the effect of perturbation in the
nonlinear coefficients. The influence of uncertain con-
trol surface stiffness is investigated in Sect. 4.4, where
interesting connectionswithfindings from the literature
concerned with freeplay-induced subcritical LCOs are
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Table 2 Robust bifurcation margins at V̄0 = 270 m
s

s k̂m ω̂ Type

1 0.73 71.5 rad
s Sub

2 0.73 71.5 rad
s Super

3 0.73 71.5 rad
s Super

4 0.47 75 rad
s Sub

5 0.73 71.6 rad
s Super

6 0.49 75.1 rad
s Super

addressed. Finally, Sect. 4.5 shows that the robust bifur-
cation analyses can also aid in better understanding the
properties of the nominal system by detecting isolated
branches in the landscape of steady-state solutions of
the system, typically difficult to do by only relying on
numerical continuation.

The speed V̄0 = 270 m
s , smaller than all the

speeds VH found by the nominal bifurcation analyses
(Table 1), will be considered throughout the section.

4.1 Structural uncertainties

The parameters in δ are the same as those in the set
(13), i.e., δ = [δMs,11; δMs,12; δMs,22; δK L

h
; δK L

α
]. Note

that, consistentlywith the analyses in Sect. 3.2, only the
linear coefficients of the stiffness matrix are assumed
uncertain here. All the six (nominal) cases considered
in Table 1 are analyzed, and the results are reported in
Table 2 in terms of robust bifurcation margin km , fre-
quency ω̂ of the imaginary eigenvalues at V̄0, and type
of Hopf bifurcation (this was inferred a posteriori by
performing continuation analysis of the perturbed sys-
tem). Indeed, in these analyses the criticality of the pre-
dicted Hopf bifurcation is not specified in the optimiza-
tion (i.e., no constraint on the sign of l1 is enforced).

The results relative to s1–s2–s3 (corresponding to
the trim state xt = 0) present the same robust mar-
gins and frequencies. Recall from the nominal analyses
(Fig. 5) that the branch of equilibria x0 = 0 was found
for all these cases and observe that f̃NL(0, ·, ·) = 0, i.e.,
x0 = 0 are also equilibria of the uncertain vector field.
Therefore, ∇x f̃NL = 0 and thus the determination of
km , since it does not depend on the nonlinear terms,
is equivalent to the problem solved by μ in the linear
case. That is, both aim at finding the smallest perturba-
tion matrix such that ÃL is neutrally stable. This result
complements the discussion in Sect. 3.3 concerning the

effect of xt on nonlinear flutter. While the role played
by the trim state xt on (nominal) nonlinear flutter is
better understood [34], that on robustness to uncertain
parameters is relatively unexplored and should be con-
sidered when making the simplifying assumption of
zero trim states [39].

For the reason above, one would also expect that
nonlinear and linear robust analyses should provide the
same outcome for the tests s1–s2–s3. Indeed, the mar-
gin km computed for the first three cases is within less
than 1% from the maximum singular value of the per-
turbation matrix (14) found by μ in Sect. 3.2. Because
μLB and μUB are close around the peak of Fig. 4, this
also indicates that results in Table 2 are actual worst-
case predictions (i.e., the globalmaximumof problem7
has been found). Both these observations are important
confirmation of the soundness of the analyses.

The uncertainty vector found by the optimizer is:

δ̂ =
[
δMs,11; δMs,12; δMs,22; δK L

h
; δK L

α

]
,

= [−0.7328; 0.5027; 0.7328; 0.7328;−0.7328] .
(17)

Examining the signs and values of the above worst-
combination, it is noted that these are very close to those
predicted by μ in Eq. (14). Moreover, it is interesting
to observe that the structural parameters have oppo-
site perturbations if grouped according to the affected
degrees of freedom (i.e., plunge and pitch). Specifi-
cally, the plunge equilibrium sees a reduction in Ms,11

and an increase in K L
h , while the pitch equilibrium sees

an increase in Ms,22 and a reduction in K L
α . This cor-

responds to getting the plunge and pitch natural fre-
quencies closer, which is known to be detrimental in
systems prone to binary flutter.

Attention is turned now to the instance when xt �= 0
(cases s1–s2–s3). Since km is smaller than 1, then it
is again concluded from Table 2 that the Hopf bifur-
cation can be shifted to V = 270 m

s for perturbations
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Table 3 Worst-case perturbations and margins to the onset of supercritical and subcritical Hopf bifurcations for structural and aerody-
namic uncertainties

l1 < 0 l1 > 0

s5 s6 s5 s6

K L
α −0.4062 (−4%) −0.2493 (−2.5%) −3.4169 (−34.2%) −3.1358 (−31.3%)

K L
h 0.4062 (+2%) 0.2493 (+1.25%) 3.6470 (+17.1%) 3.1358 (+15.7%)

Ms,11 −0.4062 (−4%) −0.2493 (−2.5%) −3.41690 (−34.2%) −3.1358 (−31.3%)

Ms,12 0.4062 (+2%) −0.2493 (−1.25%) −3.4169 (−17.1%) −3.1358 (−15.7%)

Ms,22 0.4062 (+4%) 0.2493 (+2.5%) 3.4169 (+34.2%) 3.1358 (+31.3%)

A0,22 0.4062 (+8%) 0.2493 (+5%) 3.4169 (+68.3%) 3.1358 (+62.7%)

A0,12 −0.4062(−8%) −0.2493 (−5 %) 1.9348 (+38.7%) 1.83 (+36.5%)

km 0.4062 0.25 3.4169 3.13

ω̂ 72 rad
s 76 rad

s 64 rad
s 67 rad

s

within the allowed uncertainty range. Moreover, the
values of km are consistent with the nominal analy-
ses, for which s4 and s6 presented a smaller VH than
s5. Thus, it is expected that they will present smaller
margins since their corresponding nominal bifurcation
speeds (see Table 1) are closer to the analyzed speed
V̄0 = 270 m

s .
Another insight available from Table 2 is that the

closest Hopf bifurcations are of the same nature as the
corresponding ones in nominal conditions. Based on
the greater attention devoted to subcritical LCOs in
view of the associated risks [12,38], the rest of the anal-
yses will try to understand whether perturbations in the
parameters can drive the Hopf bifurcation from super-
critical to subcritical. Prompted by this, and because of
the greater interest in the case when xt �= 0 owing to
the previously described effect, only the two cases s5
and s6 are studied thereafter.

4.2 Structural and aerodynamic uncertainties

Uncertainties in twoaerodynamic parameters are added
to the set of structural parameters studied in the previ-
ous section in order to assess potential effects when
their knowledge is only approximate. Specifically, the
terms A0,12 and A0,22 of the steady aerodynamicmatrix
A0 (9) are allowed to vary within 20% from their nomi-
nal values. These coefficients correspond, respectively,
to the static lift and moment coefficients of the airfoil.

An additional reason to account for these perturba-
tions is that the case of static stall, a typeof aerodynamic
nonlinearity arising due to boundary layer separation,

can be approximately modeled as the variation of these
aerodynamic coefficients with respect to the linear con-
ditions. Therefore, this type of analysis can be used as
a first exploratory study into the effect of some aerody-
namic nonlinearities on the typical section system.

Table 3 shows the resultswhen the type of the closest
Hopf bifurcation is specifiedbynowadding a constraint
on the sign of l1. In the first and second columns, the
normalized perturbations leading to supercritical bifur-
cations are listed (in the brackets the percent variation
from the nominal value), whereas the third and fourth
columns report the subcritical cases. The margin km
and the frequency are also indicated.

The supercritical cases (l1 < 0) are coherent with
the results fromSect. 4.1. Themargins approximatively
halve in both cases in comparison with those of Table 2
as a result of additional uncertainty in the system, with
the frequencies keeping similar values. By looking at
the predicted variations in the parameters, it is noted
that the structural ones have the same pattern with
regard to the predictions evaluated earlier (17). Indeed,
Ms,12 is the only one to change sign, and this can be
explainedwith the small sensitivity of km to this param-
eter. The predicted worst-case perturbations for A0,22

and A0,12 have also a physical interpretation. Due to
the sign conventions (Fig. 2), a simultaneous increase
in A0,22 and decrease in A0,12 means that a positive
pitch rotation determines a larger clockwise pitching
moment and upwards vertical force, respectively, thus
making the system less stiff. This reconciles with the
fact that an increased flexibility under the action of the
aerodynamic forces will amplify the coupling between
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elastic and aerodynamic terms, leading to earlier onset
of instability.

Consider now the subcritical cases (l1 > 0), which
occur for higher perturbations in the system (km > 3).
While all parameters show the same trend as in the
supercritical cases, this does not hold for A0,12, which
has an opposite perturbation and, in absolute value, it
is smaller than the others. This is an interesting aspect,
because according to the previous discussion a nega-
tive perturbation for A0,12 would have been expected.
The interpretation for this is that, in order for the sub-
critical Hopf bifurcation to take place, the natural fre-
quencies of the system must substantially change (this
aspect will be further investigated next) and for this to
happen, it is necessary to have the large perturbations
observed in Table 3 for the structural parameters. These
have the same sign as for the supercritical cases, but are
about one order of magnitude larger, thus they would
cause the system instability at much smaller speeds
than the pre-fixed one, i.e., V̄0 = 270 m

s . Therefore,
sign and norm of the perturbation of A0,12 are such
that this perturbation has a stabilizing effect and thus,
the bifurcation point occurs at V̄0. This result is distinc-
tive of the nonlinear uncertain problem, where differ-
ent (possibly conflicting) constraints define the worst-
case conditions. While robustness in the linear context
focuses on the loss of stability, from a dynamical sys-
tems perspective this becomes a multi-faceted concept
characterized by concurrent conditions (for example
here criticality and onset of the bifurcation).

With the aim to further understand the role of the
uncertainties, additional investigations are carried out
by focusing on the worst-case perturbations predicted
for s5. Fig. 6a shows bifurcation diagrams obtained
from numerical continuation considering the perturbed
parameters in the first and third column of Table 3. As
expected, they give rise to, respectively, a supercritical
and subcritical Hopf bifurcation at V = V̄0 = 270 m

s .
Figure 6b reports plunge (ωh) and pitch (ωα) nat-

ural frequencies linearized around the branch of equi-
libria as the speed is increased. Two apparent differ-
ences between the supercritical and subcritical cases
can be appreciated. The first concerns the coalescence
between the natural frequencies. This takes place after
the bifurcation for the supercritical case, and before
for the subcritical one. This is in agreement with the
intermittent flutter interpretation of the LCO described
for the nominal case in Sect. 3.3. Indeed, the pattern for
Column 3 is such thatωα < ωh at the bifurcation speed,

262 264 266 268 270 272 274
V [m/s]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Column 1
Column 3

(a) Bifurcation diagram of
the perturbed system s5:
supercritical and subcritical
LCOs.

150 200 250 270 300
V [m/s]

50

60

70

80

90

100

n [r
ad

/s
]

(b) Linearized pitch (ωα -solid
line) and plunge (ωh -dashed
line) natural frequencies.

Fig. 6 System s5 perturbed with structural and aerodynamic
uncertainties

unlike in the nominal (Fig. 3b) and Column 1 cases
where the opposite holds. As a result, even with a hard-
ening pitch stiffness, large oscillations are compatible
with the establishment of a flutter mechanism and thus
a subcritical Hopf takes place. Secondly, Fig. 6b shows
that the gap between the natural frequencies across all
the speeds is markedly narrower in the subcritical case.
This is a result of the large perturbations associated
with the margin km = 3.4, which have the effect of
amplifying the coupling between the modes, and hence
bringing the frequencies closer across all speeds. This
aspect is connected with the interpretation of the per-
turbation of the parameter A0,12 discussed above.

4.3 Effect of uncertainties in the nonlinear terms

Up until now, only uncertainties in the linear plunge
and pitch stiffness coefficients K L

h and K L
α have been

considered. Recalling that the plunge and pitch nonlin-
ear stiffness coefficients are given, respectively, by the
products K NL

h K L
h and K NL

α K L
α (12), it is clear that this

uncertainty had also an effect on the nonlinear struc-
tural stiffness matrix Ks

NL . However, the proportional
coefficients K NL

h and K NL
α have been assumed fixed

and equal to 100 (see Table 1). Since their accurate
determination is far from being a consolidated prac-
tice, it is reasonable to account for a dispersion in their
values. Specifically, K NL

h and K NL
α will be allowed to

vary within 20% from their nominal values and, as a
result, each entry ofKs

NL is given by themultiplication
of two independent uncertain parameters.

Table 4 gathers the worst-case perturbations and
bifurcationmargins obtained for the newaugmented set
of uncertainties. The supercritical cases barely change
with respect to the analyses in Table 3, and this is due
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Table 4 Robustness to uncertainty also in the proportional coefficients of the nonlinear stiffness terms

l1 < 0 l1 > 0

s5 l1 < 0 s5 l1 > 0 s6 l1 < 0 s6 l1 > 0

K L
α −0.4054 (−4%) −0.2432 (−2.5%) −3.3595 (−33.6%) −2.9641 (−31.3%)

K L
h 0.4054 (+2%) 0.2432 (+1.25%) 3.3595 (+16.8%) 2.9641 (+15.7%)

Ms,11 −0.4054 (−4%) −0.2432 (−2.5%) −3.3595 (−33.6%) −2.9641 (−31.3%)

Ms,12 0.4054 (+2%) −0.2432 (−1.25%) −3.3595 (−16.8%) −2.9641 (−15.7%)

Ms,22 0.4054 (+4%) 0.2432 (+2.5%) 3.3595 (+33.6%) 2.9641 (+31.3%)

A0,22 0.4054 (+8%) 0.2432 (+5%) 3.3595 (+67.2%) 2.9641 (+62.7%)

A0,12 −0.4054(−8%) −0.2432 (−5 %) 1.9486 (+38.97%) 1.77 (+36.5%)

K NL
h – 0.2432 (+5 %) – 2.9641 (+36.5%)

K NL
α −0.4054(−8%) −0.2432 (−5 %) −3.3595 (−67.2%) 2.65 (+36.5%)

k̂m 0.4054 0.24 3.3595 2.9641

ω̂ 72 rad
s 76 rad

s 63.5 rad
s 69 rad

s

to the fact that the predicted perturbations for K NL
h

and K NL
α are identical to the ones for the linear coef-

ficients K L
h and K L

α . Thus, the extra degree of free-
dom of perturbing individually the two terms defining
the nonlinear stiffness coefficients worsens the mar-
gins only slightly. This reasoning also applies to the
subcritical case but only for the pitch nonlinearity case
(s5 l1 > 0), which also features a slightly smaller km
than the corresponding case analyzed in Table 3. The
only detectable change concerns the last column (s6
l1 > 0), where interestingly a positive perturbation for
K NL

α is predicted by the optimization, opposite to the
one for the linear term K L

α . The perturbation to Kα

is thus now decoupled in the linear K L
α and nonlinear

K NL
α part, resulting in a lower bifurcation margin km .

Another way to think of it is that the uncertainty has
here more degrees of freedom than when uncertainty
in Kα is only given by one parameter.

Figure 7 shows, for the two s6 cases, the reciprocal
of the robust bifurcation margin as a function of the
frequency. This representation is adopted in view of
the close connection, discussed in Sect. 2.3, between
the reciprocal of km and the structured singular valueμ.
In fact, Fig. 7 resembles Fig. 4, and in general the plots
employed in linear robust analysis [7,28,43], which
feature peaks for frequencies associated with potential
instabilities. The plots are obtained by computing km
on a grid of frequenciesω and presents the supercritical
and subcritical Hopf in Fig. 7a and b, respectively.

According to the definition of the margin (Eq. 7),
when 1

km
≥ 1 a perturbation in the allowed range of
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(a) Supercritical Hopf.
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(b) Subcritical Hopf.

Fig. 7 Frequency representation of the reciprocal of the robust
bifurcation margin

uncertainties exist such that a Hopf bifurcation is expe-
rienced by the system when perturbed. Figure 7a fea-
tures indeed a pronounced peak of approximately 4,
corresponding to a margin of 0.25. This margin equals
the result in the second column of Table 4 which was
obtainedwithout frequency gridding. The analyses thus
confirm that the closest supercritical and subcritical
Hopf bifurcations take place in the range of frequen-
cies where the pitch and plunge modes coalesce, which
is the binary flutter mechanism already ascertained in
nominal conditions.

Based on all the analyses so far, it can be established
that the presence of the uncertainties is able to trigger
the onset of theHopf bifurcation at lower speeds aswell
as to change its nature (from supercritical to subcriti-
cal), but the underlying physical mechanism is unal-
tered. The next section shows that the proposed anal-
ysis framework can also anticipate new mechanisms
not observed in nominal conditions which, depending
on the perturbations of the parameters, could become
critical.
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4.4 Effect of control surface stiffness uncertainty

The destabilizing mechanism analyzed so far is the
result of a coupling between the two elastic states
plunge (h) and pitch (α), which is not affected by the
third state representing the control surface rotation (β).
This observation, supported by a wide frequency sep-
aration between the dynamics of β and the other two
states, is sometimes leveraged to reduce the size of the
problem by neglecting the flap motion [17]. However,
this hypothesismight be invalidated by a decrease in the
stiffness of the control surface Kβ . A possible cause for
this, in addition to the lack of confidence on its exact
value, could be the presence of nonlinear behaviors
which typically affect control surfaces. For example,
freeplay is known to significantly influence the flut-
ter results and to be an important driving force behind
the onset of subcritical LCOs [26]. The computation
of km is currently only possible for polynomial vector
fields, thus freeplay cannot be exactly modeled, but its
effect can be approximated as a reduction in the value
of Kβ . This is the rationale, for example, behind the
application of the Describing Function method, which
provides a relationship between the reduction in stiff-
ness and the amplitude of the LCO [11]. Specifically, a
standard procedure consists in discretizing the control
surface stiffness in the interval [0, Kβ ] and perform-
ing for each value a linear flutter analysis, which then
allows a diagram V f -LCO amplitude to be derived. An
alternative formulation whereby gridding is avoided
by making use of integral quadratic constraints lead
in [22] to the proposal of the worst-case LCO curve
for the cases where the system is also subject to para-
metric uncertainties. Previous studies thus confirm that
freeplay has an uncertain softening effect on the asso-
ciated stiffness, and thus, the addition of Kβ to the
set of uncertainties is physically justified. This will be
investigated in this section by augmenting the previous
section’s uncertainty set with an uncertainty ranging
40% from nominal for Kβ .

Figure 8 presents a comparison between the cases
with (curve B1) and without (curve B2, i.e., the same
curve from Fig. 7b) uncertainty in Kβ by showing the
reciprocal of km as a function of the frequency for sys-
tem s6 (case of subcritical Hopf bifurcation).

The analyses reveal that including uncertainty in Kβ

has a strong impact on the potential onset of a subcrit-
ical LCO in the system. Note indeed that, even though
km > 1 (equivalently, 1

km
< 1 from the plot) and thus,
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 [rad/s]
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Fig. 8 Comparison of the reciprocal of km for the cases with and
without uncertainty in Kβ (subcritical Hopf bifurcation)

the predicted perturbation provoking the bifurcation
lies outside the allowed set, the value of km has dras-
tically decreased compared to the previous analyses.
Moreover, the peak of the plot is in a different frequency
interval, specifically around 100 rad

s , which suggests
a different physical mechanism prompting the Hopf
bifurcation. The worst-case perturbations associated
with the peak of curve B1 are then inspected in Table 5.

The predicted variations for the structural parame-
ters are markedly different from those encountered in
all the previous analyses. The linear stiffness and mass
parameters, for example, have opposite signs when
compared to the results in Tables 3 and 4, and Ms,11

is almost unperturbed. In fact, the perturbations do not
bring the plunge and pitch modes closer in this case,
but determine an increase in ωα and a decrease in the
flap frequencyωβ (while not affecting the plunge prop-
erties).

Figure 9 attempts to interpret this result by look-
ing at indicators commonly used in flutter analyses.
Specifically, the Modal Assurance Criterion (MAC)
[1] enables the mode tracking problem to be addressed
by quantifying the linearity between two mode shapes.
Given two vectors (typically a reference and a tested
eigenmode), MAC is a scalar number between 0 and 1,
with the former corresponding to two orthogonalmodal
vectors and the latter to two identical ones (for values in
between there is a certain degree of similarity between
the reference and the tested modes).

In Fig. 9a, the natural frequencies of the three struc-
tural modes (obtained linearizing the Jacobian
around the branch of equilibria) are reported, whereas
Fig. 9b shows the MAC among the three structural
modes in order to monitor how their coupling vary
with speed. The labels MAC(α, β) and MAC(α, h)
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Table 5 Worst-case perturbations for the onset of a subcritical Hopf bifurcation when including uncertainty in Kβ

K L
α 1.6587 (+16.59%) A0,22 −1.6587(−33.17%)

K L
h −1.6587(−8.29%) A0,12 −1.6587(−32.97%)

Ms,11 0.2420 (+2.42%) K NL
h −1.6587 (−33.17%)

Ms,12 1.2101 (+6.05%) K NL
α 1.6587(+33.17%)

Ms,22 −1.6587 (−16.59%) Kβ −1.6587(−66.35%)
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Fig. 9 Linearized frequencies and MAC around the branch of
equilibria for nominal (red) and perturbed (black) case s6. (Color
figure online)

in Fig. 9b indicate the MAC between the pitch and flap
modes, and the pitch and plungemodes, respectively. In
both figures, the system Pert with perturbations from
Table 5 is compared with Nom (i.e., the nominal s6
from Table 1).

The perturbed system presents in Fig. 9a a signifi-
cant reduction in ωβ together with an increase in ωα

compared to the nominal system, as expected from
Table 5.However, there is still a considerable frequency
gap between the pitch and flap modes, thus based on
this plot there seems to be no strong coupling between
them. A different perspective is given by Fig. 9b, where
a marked increase in the coupling between the α and
β modes is apparent for the perturbed system (i.e., a
higher MAC value throughout speed for the solid black
line with respect to the nominal solid red line), and a
decrease in that between α and h (dashed black and
red lines). In particular, MAC(α, β) and MAC(α, h)

are comparable in magnitude for the perturbed system
around V̄0 = 270 m

s , but the slope of the curve is oppo-
site. This might suggest that at subcritical speeds there
is opportunity for stable oscillations in the system as
indicated by the coupling between α and β becom-
ing stronger (and amplified as the speed decreases). In
order to further support these claims, the Jacobian is
linearized around the stable LCO occurring at V̄0 (this
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Fig. 10 Periodic behavior of the perturbed system s6 at V̄0 =
270 m

s

is provided by the solver COCO as an outcome of the
continuation analysis and is depicted in Fig. 10a). This
allows MAC to be computed at each time and its vari-
ation over a period to be plotted (Fig. 10b). The hori-
zontal lines correspond to theMAC associated with the
equilibrium point at the Hopf bifurcation speed V̄0.

Figure 10b shows that oscillations in the system
allow for a strong coupling between the β and α modes
to take place. Their MAC indeed has a value just below
0.9 for large parts of the period, which is much larger
than the one corresponding to the equilibrium (the hor-
izontal solid line). It is thus confirmed that the system
has a stable (high amplitude) LCO at V̄0 due to the
detrimental interaction between these two modes.

The analyses are concluded by showing in Fig. 11
the bifurcation diagram of the perturbed system s6 rel-
ative to the pitch state α (equilibria are plotted in red
and LCOs in black). Analogous trends are observed for
h and β.

The plot features a branch of equilibria which loses
stability at V̄0 where the subcritical Hopf bifurcation
occurs (circle marker), and an unstable LCO branch
emanating from it. Note that this branch does not fold
into a stable LCOas typically happens (recall for exam-
ple the curves in Fig. 6a). The stableLCObranch is con-
structed by initializing the continuation solver with the
periodic response obtained with time-marching simu-
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Fig. 11 Bifurcation diagram of the perturbed system s6 (stable
and unstable steady-states in solid and dashed line, respectively)

lations at V̄0. As the speed is decreased, this branch
undergoes a supercritical Neimark–Sacker (NS), or
torus, bifurcation [25] (square marker at V ∼= 40 m

s ),
with quasi-periodic solutions present in the system at
smaller speeds. The occurrence of this type of bifurca-
tion in aeroelastic systems has already been ascertained
in the literature [29], and here, its possible appear-
ance as a result of uncertainty in the system has been
revealed.

These results show that the perturbations in Table 5
are able to drive the system into a global complex sce-
nario featuring bi-stability for very low values of V .
This implies, for example, that the equilibrium branch
is only locally stable for 0 < V < V̄0 and thus region
of attraction analyses [23,32] are required to guarantee
a safe operation of the system. Moreover, for speeds
greater than V̄0 the system will jump onto a stable
LCO featuring very high amplitudes. The amplitude
is indeed much higher than the one seen for α on the
branch emanating from the subcritical Hopf in Fig. 6a
(in that case only uncertainty on linear stiffness and
aerodynamics were considered). This feature is even
more critical considering that the margin km associated
with the scenario in Fig. 11 is the smallest among all
the subcritical cases detected in the analyses.

4.5 Insights into the bifurcation diagram of the
nominal system

The robust bifurcation margin addresses robustness of
local bifurcation [25] (i.e., the Hopf one), and thus in
principle only provides a local information. It is then of
interest to investigate whether the global scenario com-
mented with respect to Fig. 11 (involving, for example,
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Fig. 12 Tests on the branches of the LCO detected in the per-
turbed system

bi-stability at lows speeds) is determined by the partic-
ular worst-case combination of the uncertainties or if it
reflects features already existing in the nominal system.

To this end, a series of ad hoc continuation analy-
ses are performed. Let us introduce first a scalar k and
consider the uncertain vector field:

ẋ = f̃(x, V, kδ̂), (18)

where δ̂ is fixed to the perturbation in Table 5 (leading
to the results in Fig. 11). Therefore, k can be used as
a bifurcation parameter contracting and expanding the
perturbations along the direction given by δ̂ (where k =
0 corresponds to the nominal condition and k = 1 to
the perturbation in Table 5).

In Fig. 12a, the continuation of the Neimark–Sacker
point is shown. Since this bifurcation has codimen-
sion 2, it is computed by allowing k and V to vary
simultaneously (starting from the square marker). Fig-
ure 12b instead continues the stable and unstable LCO
branches at V = 100 m

s (visible in Fig. 11) in the inter-
val k ∈ [0, 1], starting from k = 1.

While from Fig. 12a, it can be inferred that the
Neimark–Sacker bifurcation does not exist when the
perturbations are contracted below a factor of 0.85,
Fig. 12b reveals that the stable and unstable branches
of the LCOs observed in Fig. 11 exist at V = 100 m

s
for every value of k in the interval [0, 1]. In fact, these
LCOs exist also in the nominal system (k = 0) and
the dependence of this family of periodic orbits on the
speed can be tracked with numerical continuation by
starting from the LCO point of the nominal system at
V = 100 m

s . This solution is available from the con-
tinuation analysis performed in Fig. 12b, specifically it
is the point with k = 0. The results of this analysis are
reported in Fig. 15a, where a bifurcation diagram for
the nominal system with all the detected branches of
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Fig. 13 Bifurcation diagram of the nominal system s6 (stable
and unstable steady-states in solid and dashed line, respectively)
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Fig. 14 Time-marching simulation of the nominal system s6 at
V = 54 m

s

steady-states (equilibria in red and LCOs in black) are
shown.

The stable and unstable branches of LCO addressed
above are indeed shown to exist within the considered
speed range, featuring a markedly higher amplitude
when compared to the supercritical LCO emanating
from the Hopf bifurcation. Recall that the latter was
the only LCO detected in the initial analyses of Fig. 5b
(curve s6). Time-marching simulations are hence car-
ried out to verify the predicted scenario and further
assess the dependence of the response of the system
on the initial conditions (IC). The two speeds marked
by a vertical line in Fig. 15a, namely V = 54 m

s and
V = 300 m

s , are considered since they clearly belong
to distinct regions of the bifurcation diagram. Then, an
extensive simulation campaign is carried out consisting
of: randomly sampling hundreds of initial conditions;
simulating the nonlinear vector field; grouping the IC
according to the observed steady state. For both speeds,
two different steady states are detected, and the asso-
ciated initial conditions is denoted by IC1 and IC2.
The analyses are reported in Fig. 14 (V = 54 m

s ) and
Fig. 15 (V = 300 m

s ).
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Fig. 15 Time-marching simulation of the nominal system s6 at
V = 300 m

s

Figure 14a shows that, in agreement with the previ-
ously described bifurcation analysis, the nominal sys-
tem at V = 54 m

s can experience self-sustained peri-
odic oscillations (IC1) or converge to the equilibrium
(IC2) depending on the initial conditions. Frequency
and amplitude of the LCO can be better inspected in
Fig. 14b, where a match with the amplitude of the sta-
ble branch of (high amplitude) LCO in Fig. 15a can
also be observed.

FromFig. 15a, it is confirmed that, for speeds greater
than VH = 270 m

s , all the responses converge to an
LCO, either the one emanating from the Hopf bifur-
cation (IC1) or the high amplitude LCO (IC2). The
different properties of the periodic orbits in terms of
frequency and amplitude are apparent in Fig. 15b.

The scenario emerging from Figs. 13, 14, 15 could
have not been predicted based on the standard bifur-
cation analyses performed in Sect. 3.3, where a super-
critical Hopf bifurcation at VH = 289 m

s was detected,
and the only predicted steady-state solutions for speeds
V < VH were stable equilibria (curve s6 in Fig. 5b).
In fact, other solutions can exist since the results
obtained with numerical continuation depend on the
initial guesses. Even though by continuing along a
parameter hidden solutions might be identified, it is
rather difficult to detect isolated branches of periodic
orbits not emanating from aHopf bifurcation. The anal-
yses here point out that the robust bifurcation margins
framework can thus represent also an auxiliary tool to
tackle these known problematic issues.

5 Conclusion

The paper applies a novel framework for robust analy-
sis of nonlinear systems to study the effect of model-
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Table 6 Parameters for the typical section case study

Name Value Name Value

b 1 m rα 0.497

a −0.4 c 0.6

K L
h 3.85 × 105 N K L

α 3.85 × 105 N

K NL
h 100 K NL

α 100

xα 0.2 Kβ 8.66 × 104 N

ms 153.94 kg
m ch 0 N s

rβ 0.0791 cα 0 N s

S 2 × b2 cβ 0 N s

xβ −0.025 ρ 1.225 kg
m3

ing uncertainties on the onset of Hopf bifurcations in
aeroelastic systems. The case study is a typical section
featuring hardening stiffness coefficients and unsteady
aerodynamics. A first important outcome is that, for
an analysis case where a comparison with μ is pos-
sible, the results match with those obtained from the
structured singular value technique, ofwhich the robust
bifurcation margin concept is a nonlinear extension.
The uncertainty set is then augmented in order to assess
the effect of different types of perturbations on the non-
linear behavior. The capability offered by the frame-
work to specify the type of the closest Hopf bifurca-
tion (subcritical or supercritical) is exploited to ascer-
tain whether the uncertainties are able to change the
criticality with respect to what is observed in the nomi-
nal system. One of the main findings is that uncertainty
in the control surface stiffness can drastically lower the
margin to the onset of subcritical Hopf bifurcation even
when the control surface dynamics do not participate
in nominal conditions in the destabilizing mechanism.
Complex dynamics such as quasi-periodicity and bi-
stability at low speeds are also revealed suggesting the
need to carefully consider the effect of uncertainties
in bifurcation analysis. Moreover, it is shown how this
analysis approach can aid in investigating the behavior
of the nominal system by detecting isolated branches
difficult to identifywith conventional (initial condition-
dependent) strategies.

Funding OpenAccess funding provided by Swiss Federal Insti-
tute of Technology Zurich This work has received funding from
the Horizon 2020 research and innovation programme under
grant agreement No. 636307, project FLEXOP.

Code availability Not currently, possibly upon request.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

Availability of data and material Not currently, possibly upon
request.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in anymedium
or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or
other third partymaterial in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit
line to thematerial. If material is not included in the article’s Cre-
ative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Appendix: Case study parameters

The nominal values of the parameters defining the typi-
cal section are reported in Table 6. They are taken from
[24] where this case study was originally studied.

As for the aerodynamic model, the matrices provid-
ing a rational approximation of the Theodorsen opera-
tor Q with theMinimum State method (9) are tabulated
next.

A0 =
⎡
⎣0 −12.5664 −6.9092
0 1.2566 −1.8691
0 −0.0799 −0.1477

⎤
⎦

A1 =
⎡
⎣−6.3575 −12.5431 −2.0987

0.5992 −4.9772 −1.3092
−0.0419 −0.5428 −0.1375

⎤
⎦

A2 =
⎡
⎣−6.2462 −2.4150 −0.1238

−2.5148 −1.8662 −0.1583
−0.1456 −0.1225 −0.0157

⎤
⎦

D̄ =
⎡
⎣ 3.3222 3.3842 3.4547

−0.3441 −0.4108 −0.4886
0.0211 0.0189 0.0152

⎤
⎦
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Ē =
⎡
⎣−0.2062 2.8065 1.5861

−0.0901 −3.8931 −1.9994
−0.1171 2.7814 1.4709

⎤
⎦

R =
⎡
⎣0.2 0 0

0 0.4 0
0 0 0.6

⎤
⎦
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