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1. Introduction

We consider an L-function given by the Euler product

(1.1) Lpsq “
ź

p

p1 ´ λppqp´s ` κppqp´2sq´1

with |λppq| ď 2 and |κppq| ď 1, so the product converges absolutely in the
half-plane Re s ą 1. Hence Lpsq has the absolutely converging Dirichlet
series expansion

(1.2) Lpsq “
ÿ

n

λpnqn´s if Re s ą 1,

with multiplicative coefficients λpnq which are bounded by the divisor func-
tion τpnq. Moreover, we assume that Lpsq admits analytic continuation to
the whole complex s-plane and it is holomorphic, expect possibly for a sim-
ple pole at s “ 1. Furthermore, Lpsq satisfies a standard functional equation
which we write in the following form

(1.3) Lpsq “ XpsqLp1 ´ sq
where Lpsq stands for the L-function with Dirichlet series coefficients com-
plex conjugated and Xpsq is called the root factor. Note that |Xpsq| “ 1 if
Re s “ 1{2. One may consider the equation (1.3) as a definition of Xpsq.
Typically Xpsq turns out to be an exponential function times the ratio of
one or two gamma functions. We do not need to specify the root factor.
For our purpose it suffices to assume that Xpsq is holomorphic in the strip
0 ď Re s ă 1 and it satisfies

(1.4) Xps ` zq “ XpsqpQ|s|q´2z
 
1 `O

`
|z|p|s| ` |z|q´1

˘(

if Re s “ 1{2 and ´1{4 ď Re z ď 0, where the implied constant depends
only on the parameters (shifts) in the involved gamma functions. In specific
cases (1.4) follows by Stirling’s formula.

We say that Lpsq is “lacunary” if its coefficients vanish or are quite small
frequently. We measure this phenomenon by postulating the following esti-
mate

(1.5)
ÿ

Q4ănďQ4A

|λpnq|n´1 ď εA

to hold with some ε “ εpQq ą 0 for all A ě 1. Here we think of ε “
εpQq being arbitrarily small as Q gets large (Q2 is closely related to the
conductor of Lpsq). However, even a fixed ε ą 0 but sufficiently small would
suffice for nice applications. If (1.5) holds, then we say that the Lpsq is
“ε-lacunary”.

Remarks. The lacunarity condition with ε relatively small reveals that the
coefficients λpnq of Lpsq appear less often than the primes numbers in the
segments rQ4, Q4As. When it comes to perform some mollification, this
property means that one applies sieve of small dimension. But it is hard to
believe that such L-functions do exist in reality, therefore our undertaking
here is mainly for learning the phenomena and exercising delicate techniques.
For instance we estimate the lacunary bilinear form (22.4) without losing
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vital savings from sifting effects along the lines (22.6)–(22.10). We are mostly
interested in special L-functions, nevertheless we set the above introduction
in some generality, because it exposes the “exceptional characters” at work
more clearly than the roundabout argument with “exceptional zeros”.

Our primary source of lacunary L-functions is the quadratic field K “
Qp

?
Dq of discriminant D. Let ψ : ClpKq Ñ C be a character of the ideal

class group of K. There are hpDq “ |ClpKq| such characters. For each of
these we have the L-function

Lps, ψq “
ÿ

a

ψpaqpNaq´s “
ź

p

p1 ´ ψppqpNpq´sq´1

which satisfies our conditions with

(1.6) λpnq “
ÿ

Na“n

ψpaq

and

(1.7) Q “
a

|D|{2π.
In this case, the root number (the sign of the functional equation) is 1
and the root factor Xpsq is equal to Q1´2sΓp1 ´ sq{Γpsq if D ă 0 and
Q1´2sΓ2p1´s

2
q{Γ2p s

2
q if D ą 0.

The coefficients of Lps, ψq are bounded by the coefficients of Lps, ψ0q for
the trivial character ψ0 “ 1. By the factorization Lps, ψ0q “ ζpsqLps, χq,
where χ pmod |D|q is the Dirichlet real character (given by the Kronecker

symbol associated with the field K “ Qp
?
Dq) one sees that the coefficients

of Lps, ψ0q are

(1.8) λ0pnq “ p1 ‹ χqpnq “
ÿ

d|n
χpdq.

Clearly, |λpnq| ď λ0pnq ď τpnq. Moreover, we have (cf. (22.109) of [IK04])
ÿ

nďN

λ0pnqn´1 “ Lp1, χqplogN ` γq ` L1p1, χq `O
´

|D|1{4N´1{2 log 2N
¯

which formula implies the following bound

(1.9)
ÿ

Q4ănďN

λ0pnqn´1 ď Lp1, χq logN

provided |D| “ p2πQq2 is sufficiently large.

Definition 1.1. We say that the character χ pmod |D|q is “ε-exceptional”
if

(1.10) Lp1, χq log |D| ď ε.

Then, the corresponding discriminant D of the field K “ Qp
?
Dq is called

“ε-exceptional”.

By (1.9) and (1.10) one infers (1.5). Therefore, if the discriminant D is
“ε-exceptional”, then every Lps, ψq is ε-lacunary.
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We recall some worthy shortcut notations which are used in analytic
number theory. First, if f, g are complex-valued functions, then the relation
f ! g means that |f | ď cg holds for all the relevant arguments with certain
(implied) constant c ą 0. Next, the relation f — g means that f ! g and
g ! f hold. Then Opgq stands for a function (or a quantity) which is ! g.
Note that the above relations can hold only if g ě 0. For example the
statement sinx ! sinx is false. If t, T are real numbers, then the notation
t „ T stands for the inequality T ă t ď 2T . Occasionally, we shall use
the same symbol to denote different things, but the reader should not be
confused, because the proper meaning will be clear from the context.

2. Statement of Results

Let NpT q denote the number of zeros ρ “ β ` iγ of Lpsq (counted with
multiplicity) in the rectangle 0 ă β ă 1, γ „ T . By contour integration
using the functional equation one derives the formula

(2.1) NpT q “ T

π
logQT `OpT q

for any T ě Q. Here the dominant term emerges from variation of the
argument of the root factor and the implied constant depends only on the
gamma parameters.

Let N0pT q denote the number of zeros ρ “ 1{2 ` iγ of Lpsq (counted
with multiplicity) in the segment γ „ T . Any natural L-function should
satisfy the Riemann Hypothesis so N0pT q should be equal to NpT q. For
L-functions of degree 1 or 2 it is known that a positive proportion of zeros
are on the critical line Re s “ 1{2, that is N0pT q — NpT q for all T with
log T sufficiently larger than logQ. It seems possible to show that if Lpsq is
ε-lacunary (see the condition (1.5)), then

N0pT q “ t1 `Opε1{2quNpT q `OpT q
for all T with Q1{?

ε ď T ď Q1{ε.

For transparency we work out only the case of functions Lpsq “ Lps, ψq
which are attached to the characters ψ on ideal classes of the quadratic field
K “ Qp

?
Dq. In greater generality as described in Section 1 the arguments

should be very similar. Our main result is the following

Theorem 2.1. Let N00pT q denote the number of simple zeros ρ “ 1{2 ` iγ

of Lps, ψq with γ „ T and NpT q the number of all zeros ρ “ β`iγ of Lps, ψq
with 0 ă β ă 1, γ „ T counted with multiplicity. We have

(2.2) N00pT q “ NpT q `O
´
T log |D| ` pLp1, χq log T q1{4T log T

¯

where the implied constant is absolute. Putting ε “ εpDq “ Lp1, χq log |D|
we get

(2.3) N00pT q “ t1 `OpδquNpT q
with any δ ě ε1{5 and every T with |D|1{δ ď T ď |D|δ4{ε, where the implied
constant is absolute.
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Remarks. First of all, the approximate formulas (2.2) and (2.3) are uncon-
ditional, but of course, (2.3) is meaningful only if ε “ εpDq is sufficiently
small. This does not hold in reality since the Riemann Hypothesis implies
the lower bound Lp1, χq " 1{ log log |D|. But so far the best known bound
is Lp1, χq " |D|´θ with any θ ą 0, the result due to C.L. Siegel which is
not effective (the implied constant depends on θ and it cannot be computed
numerically if θ ă 1{2). Therefore, it is still interesting to speculate on
the effect of the assumption that εpDq Ñ 0 as D varies over some infinite
sequence of discriminants no matter how sparse it is.

Definition 2.2. An infinite sequence of discriminants D is called “excep-
tional” if

(2.4) εpDq “ Lp1, χq log |D| Ñ 0.

Corollary 2.3. As ε “ εpDq Ñ 0 over an exceptional sequence, then for

every ψ P pClpKq the critical simple zeros of Lps, ψq of height „ T comprise

a 100% of all the zeros of height „ T for any T with |D|´ log ε ď T ď
|D|´1{ε log ε.

This result sounds more impressive when applied for the trivial ideal class
group character. In this case Lps, ψ0q factors into the Riemann zeta function
ζpsq and the Dirichlet L-function Lps, χq. For each factor separately we know
the true values (asymptotically correct estimates) for the full numbers of
zeros (counted with multiplicity) in the rectangle s “ σ` it with 0 ă σ ă 1,
t „ T ; these are

T

2π
log T `OpT q, T

2π
log |D|T `OpT q

respectively. The sum of these values agrees with NpT q (see (2.1)), conse-
quently Theorem 2.1 implies

Corollary 2.4. Let D run over an exceptional sequence of discriminants
so ε “ εpDq “ Lp1, χq log |D| Ñ 0. Choose any T with |D|´ log ε ď T ď
|D|´1{ε log ε. Then the number of critical zeros of ζpsq of height „ T which
are simple and different from these of Lps, χq approaches asymptotically the
number of all zeros of ζpsq of height „ T .

If Lpsq is a lacunary L-function of degree two, then the twisted L-
function

Lps;λχ1q “
8ÿ

n“1

λpnqχ1pnqn´s

by any fixed Dirichlet character χ1 is also lacunary of degree two. The
arguments presented in this paper for χ1 “ 1 and λ “ 1 ‹ χ, where χ is
the real character to exceptional conductor |D|, extend easily to Lps;λχ1q “
Lps, χ1qLps, χχ1q. In particular Corollary 2.4 generalizes to any Dirichlet
L-function Lps, χ1q in place of ζpsq.

If one is willing to assume that

Lp1, χq ! plog |D|q´2015
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for an infinite sequence of discriminants D, then the same results would
be achieved much faster by substantially simpler arguments (ignoring the
sifting effects of the mollifier in various places). However the arguments are
not powerful enough to cover the L-functions of degree larger than two, even
if the lacunarity condition is assumed to be extremely strong.

3. Levinson’s Method

There are two well established methods for counting zeros of L-functions
on the critical line – the Selberg method [Sel42] and the Levinson method
[Lev74]. They are diametrically opposite to each other. Selberg’s method
relays on observing the sign changes of a suitably normalized and mollified
L-function as its argument runs over a segment of the critical line. There is
no risk of getting negative bound for the counting number, but the method
is not perfect for intrinsic reasons; for one that the zeros are not supposed to
be almost evenly spaced. Therefore, it needs a sensitive design for counting
the zeros adequately (asymptotically precise) when passing through the seg-
ments. Yet, it may be the case that under the lacunarity condition the zeros
do pretend to be more or less evenly spaced, contrary to the Pair Correlation
Conjecture of Montgomery. This question was addressed by R. Heath-Brown
during the AIM conference in Seattle of August 1996 (unpublished).

The method of Levinson is risky, because it may produce a negative
bound for the counting number of critical zeros if the relevant estimates are
crude. On the other hand it opens a possibility for accounting a 100% of the
critical zeros if the mollification is nearly perfect. This is indeed the scenario
for lacunary L-functions. A far reaching version of Levinson’s method has
been developed in [Con89], see also the Appendix in [CIS13]. In this section
we are going to adopt Proposition A of [CIS13] to our particular context.
We shall also borrow numerous arguments developed in [CI02] for handling
the off-diagonal terms in Sections 13-17.

Thanks to the lacunarity of Lpsq we do not care about delicate choices
of the parameters involved in Levinson’s original setup. We shall also take
numerous advantages of the lacunarity for technical simplifications. In par-
ticular the root factor does not play a role (no hassling with cross-terms).
Although, the off-diagonal terms do appear, their contribution is nominal,
because the lacunarity strikes twice independently. However, by no means
one can neglect the off-diagonal terms quickly. For simplicity we shall sacri-
fice some surplus of the gain, but of course, not everything (see, for example,
how we derived the bound (22.9) from the expression (22.6)).

We start with the linear combination of Lpsq and its derivative:

(3.1) Gpsq “ Lpsq ` L1psq{ logN
with N ě 2 (the level) to be chosen later, see (4.14). To Gpsq we attach a
mollifier which is given by a Dirichlet polynomial

(3.2) Mpsq “
ÿ

mďM

vpmqm´s
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with coefficients vpmq to be determined later subject to vp1q “ 1, |vpmq| ď
τpmq. For now we assume that the mollifier Mpsq has length M ď T 1{2, but
we shall see that shorter mollifiers do their designated job (to produce sifting
effects) pretty well, again due to the lacunarity properties. Putting

(3.3) F psq “ GpsqMpsq ´ 1

we have Levinson’s inequality (see Proposition A of [CIS13])

N00pT q ě NpT q ´ 1

πa

ż 2T

T

log

ˇ̌
ˇ̌1 ` F

ˆ
1

2
´ a ` it

˙ˇ̌
ˇ̌dt`OpT q(3.4)

ě NpT q ´ 1

πa
IapT q `OpT q

where

IapT q “
ż 2T

T

ˇ̌
ˇ̌F

ˆ
1

2
´ a` it

˙ˇ̌
ˇ̌ dt.

This holds for any a ą 0 and T ą Q4 with absolute implied constant. Since
we do not care loosing an absolute constant factor it is possible to replace
IapT q by

(3.5) IpT q “
ż 2T

T

ˇ̌
ˇ̌F

ˆ
1

2
` it

˙ˇ̌
ˇ̌ dt.

Lemma 3.1. Let T ě M2 ě Q8. For 0 ă a ď 1{2 we have

(3.6) IapT q ď T 4apIpT q `OpT 7{8qq
where the implied constant is absolute.

Proof. Put

Hpzq “ 2ap4 ´ a2q
pz2 ´ a2qpz4 ´ 4qT

4z.

It is clear that

1

2π

ż 8

´8
|Hpivq|dv “ a

π

ż 8

´8

4 ´ a2

4 ` v2
dv

a2 ` v2
ă 1,

1

2π

ż 8

´8
|Hpivq|pv2 ` 1qdv ă 4,

ż 8

´8
|Hp´1 ` ivq|pv2 ` 1qdv ! T´4.

Since Hpzq has simple pole at z “ ´a with residue T´4a we get

T´4aF ps´ aq “ 1

2πi

ż

p0q
F ps` zqHpzqdz ´ 1

2πi

ż

p´1q
F ps ` zqHpzqdz

if Re s “ 1{2. Hence T´4aIapT q ď V ´W , say, where

V “ 1

2π

ż 8

´8
|Hpivq|

ż 2T

T

ˇ̌
ˇ̌F

ˆ
1

2
` it` iv

˙ˇ̌
ˇ̌ dtdv,

W “ 1

2π

ż 8

´8
|Hp´1 ` ivq|

ż 2T

T

ˇ̌
ˇ̌F

ˆ
´1

2
` it` iv

˙ˇ̌
ˇ̌ dtdv.
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By the convexity bound for Lpsq we derive

F psq ! pMQ|s|q1{2plogMQ|s|q2, if Re s “ 1{2.
Hence ż T`v

T

ˇ̌
ˇ̌F

ˆ
1

2
` it

˙ˇ̌
ˇ̌ dt ! pv2 ` 1qpMQT q1{2plog T q2.

The same bound holds with T replaced by 2T . Hence we get

V ď
ż 2T

T

ˇ̌
ˇ̌F

ˆ
1

2
` it

˙ˇ̌
ˇ̌ dt `OpT 7{8q.

Next, by the functional equation for Lpsq and the trivial estimation on the
line Re s “ 3{2 we derive

F psq ! pMQ|s|q2, if Re s “ ´1{2.
Hence

W ! pMQT q2
ż

|Hp´1 ` ivq|pv2 ` 1qdv ! 1.

This completes the proof of (3.6). �

After inserting (3.6) into (3.4) it is clear that the best choice of the shift
is a “ 1{4 log T giving

Lemma 3.2. Let T ě M2 ě Q8. Then

(3.7) N00pT q ą NpT q ´ 4IpT q log T `OpT q
where IpT q is given by (3.5) with F psq “ GpsqMpsq ´ 1 and the implied
constant is absolute.

We are going to show that IpT q{T is small, provided the mollifying factor
Mpsq is chosen properly. Naturally this suggests that Mpsq should pretend
to be the inverse of Lpsq, or slightly better of Gpsq, but due to the lacunarity
it does not matter which one is on the target. Writing

(3.8) Lpsq´1 “
ź

p

p1 ´ λppqp´s ` χppqp´2sq “
ÿ

m

ρpmqm´s,

we get the multiplicative function ρpmq with

(3.9) ρppq “ ´λppq, ρpp2q “ χppq, ρppαq “ 0 if α ą 2.

We take

(3.10) Mpsq “
ÿ

mďM

ρpmqgpmqm´s

where gpmq is a nice cropping function. For instance

(3.11) gpmq “
ˆ
1 ´ logm

logM

˙r

with r a sufficiently large integer will do the job (r “ 32 is fine). The large
degree of vanishing at the end point m “ M is necessary for our technique
of producing some sifting effects.
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Note that ρpmq is supported on cubefree numbers,

|ρpmq| ď λ0pmq for all m(3.12)

ρpmq “ µpmqλpmq if m is squarefree.(3.13)

Remarks. Certain parts of the forthcoming sums are supported on the molli-
fier terms m ” 0 pmod |D|q, specifically the off-diagonal constituents (16.9).
We could easily eliminate these parts right now by restricting (3.10) tom ı 0
pmod |D|q. This incomplete mollifier does the job as good as the full one,

because it is easy to estimate the missing terms by |D|´1{2T plog T q2015 di-
rectly using Cauchy-Schwarz inequality and the mean value estimates for
|Gpsq|2 and |Mpsq|2 (giving up the lacunarity features and the sifting ef-
fects). This alteration can be implemented any time so we postpone the
issue to the comments in the last section.

4. A Partition of Gpsq

To apply the mollifierMpsq to Gpsq and observe its sifting effects we need
to expand Gpsq into Dirichlet polynomials. To this end we fix two smooth
functions apxq, bpxq on R with

(4.1) apxq ` bpxq “ 1 ´ x,

apxq supported on x ď α and bpxq supported on x ě β, where 0 ă β ă α ă 1
are fixed numbers (see Figure 1). In applications we shall choose α, β greater
but close to 1

2
.

apxq

bpxq

0 1αβ

Figure 1.

Given N ě 2 consider the function

(4.2) fpzq “ z2
ż 8

0

a

ˆ
log y

logN

˙
yz´1dy.

The integral converges absolutely in Re z ą 0. Integrating by parts we
get

(4.3) fpzq logN “
ż α

β

a2puqNuzdu.

This expression shows that fpzq is an entire function and its power series
expansion begins with

(4.4) fpzq “ plogNq´1 ` z ` . . .
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By Mellin inversion, (4.2) yields

(4.5) a

ˆ
log y

logN

˙
“ 1

2πi

ż

p1q
fpzqy´zz´2dz, if y ą 0.

Moving to the line Re z “ ´1 we get by (4.4) and (4.1)

(4.6) b

ˆ
log y

logN

˙
“ ´1

2πi

ż

p´1q
fpzqy´zz´2dz, if y ą 0.

Now consider the Dirichlet polynomial

(4.7) Apsq “
ÿ

n

a

ˆ
log n

logN

˙
λpnqn´s

which has length Nα. Let s be in the critical strip 0 ă Re s ă 1. By (4.5)
we derive

Apsq “ 1

2πi

ż

p1q
Lps` zqfpzqz´2dz

“ 1

2πi

ż

p´1q
Lps` zqfpzqz´2dz `Gpsq `Rfp1 ´ sqp1 ´ sq´2

where the second term Gpsq “ Lpsq ` L1psq{ logN comes from the double
pole at z “ 0 and the third term comes from a possible simple pole at
z “ 1 ´ s. In the integral over the line Re z “ ´1 we apply the functional
equation Lps` zq “ Xps` zqLp1 ´ s´ zq with

(4.8) Xps ` zq “ XpsqpQ|s|q´2zt1 ` z2ηps, zqu,
say, see (1.3) and (1.4). This integral splits accordingly

1

2πi

ż

p´1q
Lps` zqfpzqz´2dz “ ´XpsqBpsq ´XpsqRpsq

where

(4.9) Bpsq “ ´1

2πi

ż

p´1q
Lp1 ´ s´ zqpQ|s|q´2zfpzqz´2dz

and

(4.10) Rpsq “ 1

2πi

ż

p´εq
Lp1 ´ s´ zqpQ|s|q´2zfpzqηps, zqdz.

Note that in Rpsq we moved back the integration to the line Re z “ ´ε with
ε “ 1{ logQ|s| without passing poles, because ηps, zq is holomorphic in z

(not in s). Now, by (4.6), the integral (4.9) expands into the series

(4.11) Bpsq “
ÿ

n

b

ˆ
logQ2|s|2{n

logN

˙
λpnqns´1.

We have proved the following formula

Proposition 4.1. For s in the critical strip 0 ă Re s ă 1 we have

(4.12) Gpsq “ Apsq `XpsqBpsq `XpsqRpsq `Rfp1 ´ sqp1 ´ sq´2

where Apsq, Bpsq are given by (4.7), (4.11), respectively, Rpsq is the integral
(4.10) and R denotes the residue of the L-function; R “ Lp1, χq if ψ is
trivial and R “ 0 otherwise.
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If Re s “ 1{2, then Rpsq can be easily estimated by

(4.13) Rpsq ! Q1{2|s|´ 1

12 .

This follows by Lp1´s´zq ! p|s`z|Qq1{2 (the convexity bound), fpzq logN !
1 (see (4.3)) and ηps, zq ! |z|´1p|s| ` |z|q´1 (see (1.4)).

Assume T ě Q8 and choose the level of Levinson’s form (3.1)

(4.14) N “ Q2T 2.

From now on we let s be in the segment

(4.15) s “ 1

2
` it, T ď t ď 2T.

Then the root factor satisfies |Xpsq| “ 1 and for the polar term we derive
by (4.3)

fp1 ´ sqp1 ´ sq´2 ! Nα{2T´2 ď N1{2T´2 “ QT´1.

The residue of Lpsq is R ! logQ. Therefore, Proposition 4.1 yields

Corollary 4.2. For s in the segment (4.15) we have

(4.16) Gpsq “ Apsq `XpsqBpsq `OpT´1{48q
where the implied constant is absolute.

Next we look into coefficients of Bpsq, they depend on |s| mildly if s is
in the segment (4.15). Precisely we have

b

ˆ
logQ2|s|2{n

logN

˙
“ b

ˆ
1 ´ log n

logN
` δ

˙

where

(4.17) δ “ δpsq “ 2 log |s|{T
logN

, 0 ď δ ď log 4

logN
.

The small shift in the function bp1 ´ x ` δq is dispensable, it can be
isolated by Taylor’s expansion

bp1 ´ x` δq “ bp1 ´ xq ` δb1p1 ´ xq ` 1

2
δ2b2p1 ´ xq ` ∆ps, xq,

say, with the last term ∆ps, xq being sufficiently small for easy direct han-
dling (the sifting effect can be ignored). Nevertheless we opt working with
one function bp1´x`δq contaminated by the shift δ rather than with several
derivatives without the shift.

For s on the line Re s “ 1{2 we can write the complex conjugate of Bpsq,
see (4.11), in the following fashion

(4.18) Bpsq “
ÿ

n

b˚
ˆ

log n

logN

˙
λpnqn´s

where

(4.19) b˚pxq “ bp1 ´ x` δq.
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Note that b˚pxq is supported on x ď 1 ´ β ` δ so Bpsq runs over 1 ď n ď
4N1´β . We have

(4.20) b˚pxq “ x´ δ, if x ď 1 ´ α ` δ,

so the sum (4.18) begins with

(4.21)
ÿ

nďN1´α

ˆ
log n

logN
´ δ

˙
λpnqn´s.

On the other hand the sum (4.7) begins with

(4.22)
ÿ

nďNβ

ˆ
1 ´ log n

logN

˙
λpnqn´s.

5. Estimating Ipsq

Multiplying (4.16) by the mollifier (3.10) we obtain the inequality

(5.1) |F psq| ď |Cpsq| ` |C˚psq| `Op|Mpsq|T´1{48q

with Cpsq “ ApsqMpsq ´ 1 and C˚psq “ BpsqMpsq for s in the segment
(4.15). The Dirichlet polynomials

Cpsq “
ÿ

1ăℓăMNα

cpℓqℓ´s, C˚psq “
ÿ

1ďℓă4MN1´β

c˚pℓqℓ´s

have coefficients given by convolutions; specifically

cpℓq “
ÿ

mn“ℓ

ρpmqλpnqgpmqhpnq, hpnq “ a

ˆ
log n

logN

˙
,(5.2)

c˚pℓq “
ÿ

mn“ℓ

ρpmqλpnqgpmqh˚pnq, h˚pnq “ b˚
ˆ

log n

logN

˙
,(5.3)

and gpmq is the cropping function which we have chosen in (3.11). Inserting
the inequality (5.1) into the integral (3.5) we obtain

(5.4) IpT q ď JpT q ` J˚pT q `OpT 47{48plog T q2q

where

JpT q “
ż 2T

T

ˇ̌
ˇ̌C

ˆ
1

2
` it

˙ˇ̌
ˇ̌ dt, J˚pT q “

ż 2T

T

ˇ̌
ˇ̌C˚

ˆ
1

2
` it

˙ˇ̌
ˇ̌ dt

and the error term comes from the classical mean-value theorem for Dirichlet
polynomials.

Next we apply the Cauchy-Schwarz inequality and we expand the range
of integration getting JpT q2 ď TKpT q where

(5.5) KpT q “
ż
Φ

ˆ
t

T

˙ ˇ̌
ˇ̌C

ˆ
1

2
` it

˙ˇ̌
ˇ̌
2

dt
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and Φpuq is any non-negative smooth function, compactly supported on R`

with Φpuq ě 1 in the interval 1 ď u ď 2. Similarly J˚pT q2 ď TK˚pT q
where

(5.6) K˚pT q “
ż 2T

T

ˇ̌
ˇ̌C˚

ˆ
1

2
` it

˙ˇ̌
ˇ̌
2

dt,

but without smoothing, because it would give no advantage. Therefore we
have shown the following inequality

(5.7) IpT q ď pTKpT qq 1

2 ` pTK˚pT qq 1

2 `OpT 47{48plog T q2q.

6. The Diagonals

We take β somewhat larger than 1
2
to make sure that the sum C˚psq is

shorter than T . Specifically C˚psq has length ď 4MN1´β so it is enough to
assume that

(6.1) MN1´β ď T plog T q´11.

Then the classical mean-value theorem for Dirichlet polynomials shows that
K˚pT q is equal to the contribution of the diagonal terms up to a small error
term. This claim requires some explanation, because the coefficients of C˚psq
depend on |s|. We have

K˚pT q “
ÿ

ℓ1

ÿ

ℓ2

pℓ1ℓ2q´ 1

2

ż 2T

T

c˚pℓ1qc˚pℓ2qpℓ1{ℓ2qitdt

and c˚pℓ1qc˚pℓ2q is equal to

ÿÿ

m1n1“ℓ1
m2n2“ℓ2

ρpm1qρpm2qλpn1qλpn2qgpm1qgpm2qb
ˆ
s;

log n1
logN

,
log n2
logN

˙

with bps;x1, x2q “ bpδpsq ` 1 ´ x1qbpδpsq ` 1 ´ x2q and δpsq given by (4.17).
The diagonal terms ℓ1 “ ℓ2 contribute T pK˚

0 ` c˚p1q2q, where
(6.2) K˚

0 “
ÿ

1ăℓă4MN1´β

c˚pℓq2ℓ´1

and c˚pℓq are taken with the δ “ δpsq at some fixed point s in the segment
(4.15) by the mean-value theorem. Note we have extracted the first term
c˚p1q “ h˚p1q “ b˚p0q “ ´δ ! 1{ logN .

If ℓ1 “ ℓ2 we integrate by parts. Since

B
Bt bps;x1, x2q ! B

Btδpsq — t{pt2 ` 1q logN — 1{T logN,

we estimate the contribution of the off-diagonal terms by
ÿÿ

ℓ1 “ℓ2ă4MN1´β

τ2pℓ1qτ2pℓ2qpℓ1ℓ2q´ 1

2 | log ℓ1{ℓ2|´1 ! MN1´βplogMNq10

(the small shift δpsq does not influence the bound). By our assumption (6.1)
we conclude that

(6.3) K˚pT q “ TK˚
0 `OpT { log T q.
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In case of KpT q there is no perturbation by the shift δpsq so the diagonal

contribution is exactly Φ̂p0qTK0, where

(6.4) K0 “
ÿ

1ăℓăMNα

cpℓq2ℓ´1.

Note there is no term with l “ 1. However the polynomial Cpsq has length

MNα ą MNβ ą MN1{2 “ MQT ą T so there is a significant contribution
of the off-diagonal terms, say TK‰pT q, where

(6.5) K‰pT q “
ÿÿ

1ăℓ1‰ℓ2ăMNα

ΨpT log ℓ1{ℓ2qcpℓ1qcpℓ2qpℓ1ℓ2q´ 1

2

and Ψp2πvq stands for the Fourier transform of Φpuq. We have

(6.6) KpT q “ Ψp0qTK0 ` TK‰pT q.

Our goal is to show that the diagonal sums K0 and K˚
0 are small. The

partial sums

(6.7) SpX,Y q “
ÿ

XăℓďY

cpℓq2ℓ´1

with 1 ď X ă Y need different handling in various ranges. The correspond-
ing partial sums

(6.8) S˚pX,Y q “
ÿ

XăℓďY

c˚pℓq2ℓ´1

are similar to SpX,Y q so we shall treat SpX,Y q in details and only occa-
sionally we shall make comments to illuminate small differences. The final
estimates for SpX,Y q and S˚pX,Y q will be the same.

The off-diagonal sum K‰pT q requires a lot more sophisticated analysis
which we postpone to the last ten sections.

7. Estimation of the First Diagonal Terms

The lacunarity of λpℓq with small ℓ is not frequent and the best available
bound is the trivial one |λpℓq| ď τpnq. However every convolution coefficient
cpℓq, ℓ “ 0, is small by the sifting effect. We shall see that in the range
ℓ ď M the coefficients cpℓq are supported on almost primes (cpℓq vanishes if
ℓ has many distinct prime divisors).

In this section only we introduce the von Mangoldt functions Λjpnq of
degree j “ 0, 1, 2, . . . , r, which are derived from the Euler product (1.1) and
scaled down by factors plogMq´j. Sorry we use the same notation as for
the classical von Mangoldt functions derived from ζpsq, hopefully without
confusion.

If ℓ ď M , then (5.2) becomes

(7.1) cpℓq “
ÿ

mn“ℓ

ρpmqλpnq
ˆ
1 ´ logm

logM

˙r ˆ
1 ´ log n

logN

˙
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because the restrictions m ď M , n ď N are redundant. Moreover (5.3)
becomes

(7.2) c˚pℓq “
ÿ

mn“ℓ

ρpmqλpnq
ˆ
1 ´ logm

logM

˙r ˆ log n

logN
´ δ

˙
.

Clearly (7.1) and (7.2) are very similar. The generating Dirichlet series for
the unrestricted convolution coefficients (7.1) is equal to

Zrpsq “
˜
ÿ

n

λpnq
ˆ
1 ´ log n

logN

˙
n´s

¸˜
ÿ

m

ρpmq
ˆ
1 ´ logm

logM

˙r

m´s

¸

“
ˆ
Lpsq ` L1psq

logN

˙ˆ
M s

Lpsq

˙prq
M´splogMq´r

and that for (7.2) is equal to

Z˚
r psq “ ´

ˆ
δLpsq ` L1psq

logN

˙ˆ
M s

Lpsq

˙prq
M´splogMq´r.

For example, for r “ 0 we get

Z0psq “ 1 ` L1psq
Lpsq logN “ 1 ´ γ

ÿ

ℓ

Λ1pℓqℓ´s

with γ “ logM{ logN (scaling adjustment factor). Therefore c1pℓq “ γΛ1pℓq
is supported on prime powers.

For any r ě 0 we have the formula
ˆ
M s

Lpsq

˙prq
“ M splogMqr

ÿ

0ďjďr

ˆ
r

j

˙
plogMq´j

ˆ
1

Lpsq

˙pjq

and p1{Lpsqqpjq is equal to

j!

Lpsq
ÿ

a1`2a2`¨¨¨“j

pa1 ` a2 ` . . . q!
a1!a2! . . .

ˆ´L1psq
1!Lpsq

˙a1
ˆ´L2psq

2!Lpsq

˙a2

¨ ¨ ¨

Write
`
r
j

˘
“ r!{j!b! with b “ r ´ j and log “ logM . These formulas

yield

Zrpsq “
ˆ
1 ` γL1

L log

˙ ÿ

b`a1`2a2`¨¨¨“r

r!pa1 ` a2 ` . . . q!
b!a1!a2! . . .

ˆ ´L1

1!L log

˙a1
ˆ ´L2

2!L log

˙a2

¨ ¨ ¨

Comparing the coefficients in Dirichlet series expansions on both sides we
conclude

Lemma 7.1. If 1 ď ℓ ď M , then cpℓq can be written as the sum
ÿ

a1`2a2`¨¨¨ďr

φpa1, a2, . . . qpΛ0 ´ γΛ1q ‹ pΛ1 ‹ ¨ ¨ ¨ ‹ Λ1loooooomoooooon
a1 times

q ‹ pΛ2 ‹ ¨ ¨ ¨ ‹ Λ2loooooomoooooon
a2 times

q ‹ . . .

with suitable coefficients φpa1, a2, . . . q, φp0, 0, . . . q “ 1.
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Using the obvious estimate

ÿ

ℓďY

|Λ1pℓq|2ℓ´1 !
ˆ
log Y

logM

˙2

and recurrence formulas for Λk we get

VkpY q “
ÿ

ℓďY

|Λkpℓq|2ℓ´1 !
ˆ
log Y

logM

˙2k

.

Hence, putting Λpkq “ Λk1 ‹ ¨ ¨ ¨ ‹ Λkn for pkq “ pk1, . . . , knq we derive

ÿ

ℓďY

|Λpkqpℓq|2ℓ´1 ď Vk1pY q . . . VknpY q !
ˆ
log Y

logM

˙2pk1`¨¨¨`knq

where the implied constant depends only on pkq.
Since cpℓq for 1 ă ℓ ď M is a linear combination of Λkpℓq with pkq “

p0, 0, . . . q by Lemma 7.1 we derive by the above estimates

Lemma 7.2. If 2 ď Y ď M , then

(7.3) Sp1, Y q ! plog Y { logMq2

where the implied constant depends only on r.

By the above arguments it is clear that the same bound (7.3) holds for
S˚p1, Y q.

The bound (7.3) is valid for Y ď M , but it is good only if Y is relatively
smaller. Suppose Q8 ď X ă Y ď M . Now the lacunarity of λpℓq kicks in
and we are going to exploit it on top of the mollifier sifting effects. Lemma
7.1 shows that cpℓq vanishes if ℓ has more than r distinct prime divisors.
Writing uniquely ℓ “ dk, where pd, kq “ 1, k squarefree, d powerful, we
get cpℓq ! λ0pkq ! 1 (recall that ρpmq is supported on cubefree numbers).
Hence,

SpX,Y q !
ÿ

XădkďY

λ0pkqpdkq´1

!
ÿ

d

d´1
ÿ

?
XăkďY

λ0pkqk´1 `
ÿ

dě
?
X

d´1
ÿ

kďY

λ0pkqk´1

!
ÿ

?
XăkďY

λ0pkqk´1 `X´ 1

4 log Y.

Applying (1.9) we derive the following estimate

Lemma 7.3. If Q8 ď X ă Y ď M , then

(7.4) SpX,Y q ! Lp1, χq log Y
where the implied constant depends only on r.

The same bound (7.4) holds for S˚pX,Y q.
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8. Reducing to the Squarefree Diagonal Terms

If ℓ ą M , then the convolution coefficients

(8.1) cpℓq “
ÿ

mn“ℓ

ρpmqλpnqgpmqhpnq

may not be supported on almost primes, because gpmq, hpnq are no longer
polynomials in logm{ logM and log n{ logN , respectively. Therefore the
previous arguments fail. We shall estimate SpX,Y q with X ě M in different
ways. But first we reduce the sum SpX,Y q to

(8.2) S5pX,Y q “
ÿ

XăℓďY
pℓ,qq“1

µpℓq2cpℓq2ℓ´1

where q is a fixed squarefree number to be chosen later.

Throughout d runs over numbers such that p | d ñ p2 | dq2. Writing
uniquely ℓ “ dk with k squarefree, pk, dqq “ 1 we get

cpℓq “
ÿ

uv“d

ρpuqλpvqcuvpkq

where

(8.3) cuvpkq “
ÿ

mn“k

ρpmqλpnqgpumqhpvnq.

Hence

cpℓq2 ď τpdq6
ÿ

uv“d

cuvpkq2

and

SpX,Y q ď
ÿ

d

τpdq6
d

ÿ

uv“d

S5
uv

ˆ
X

d
,
Y

d

˙

where S5
uvpX,Y q stands for the sum (8.2) with cpℓq replaced by cuvpℓq. The

contribution of large d, say d ą U “ plog Y q50, is negligible. Precisely, by
trivial estimations, we derive the following:

|cpℓq| ! τ4pℓq,

S5
uv

ˆ
X

d
,
Y

d

˙
! plog Y q16,

ÿ

dąU

τpdq6
d

ÿ

uv“d

S5
uv

ˆ
X

d
,
Y

d

˙
! U´1plog Y q48.

Hence

(8.4) SpX,Y q ď
ÿ

dďU

τpdq6
d

ÿ

uv“d

S5
uv

ˆ
X

d
,
Y

d

˙
`Opplog Y q´2q.

The coefficients cuvpℓq in S5
uvpX{d, Y {dq have slightly shifted crop func-

tions;

gpumq “
ˆ
1 ´ log um

logM

˙r

“
ˆ
1 ´ log u

logM

˙r ˆ
1 ´ logm

logM{u

˙r
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if 1 ď um ď M , and

hpvnq “ a

ˆ
log vn

logN

˙
“ a

ˆ
δ ` log n

logN

˙
with δ “ log v

logN
.

In the next two sections we shall get estimates for S5pX,Y q which apply to

every S5
uvpX{d, Y {dq with uv “ d ď U “ plog Y q50. The small change of the

crop functions (g by rescalingM Ñ M{u and h by the shift apxq Ñ apδ`xq)
does not require any significant changes in the used arguments.

9. Estimating S5pX,Y q

For ℓ “ mn squarefree we have ρpmqλpnq “ µpmqλpℓq and cpℓq “ λpℓqθpℓq
where θ “ µg ‹ h is a kind of a sieve weight,

(9.1) θpℓq “
ÿ

m|ℓ
µpmqgpmqhpℓ{mq.

This factorization separates the lacunarity feature of λpℓq from the sifting

feature of θpℓq. We have cpℓq2 ď |λpℓq| 12 |θpℓq|τpℓq2 and by Cauchy’s inequal-
ity

(9.2) S5pX,Y q ď
˜

ÿ

XăℓďY

|λpℓq|ℓ´1

¸ 1

2

˜
ÿ

XăℓďY

τpℓq4µpqℓq2θpℓq2ℓ´1

¸ 1

2

.

The first sum is bounded by Lp1, χq log Y if Y ą X ě Q4, see (1.9). The
second sum is bounded by

(9.3) T pX,Y q “
ÿ

XăℓďY

φpℓqθpℓq2

where φpℓq is the completely multiplicative function such that

(9.4) φppq “ 0 if p | q, φppq “ r{p if p ∤ q,

with r “ 16. We shall estimate T pX,Y q for any r ě 1 which agrees with
the exponent in the crop function (3.11) of the mollifier (3.10). Our goal is
the following estimate (we assume q is divisible by every p ď r2 so φppq ă
1{?

p).

Lemma 9.1. If Q4 ď M ď X ă Y ď N , then

(9.5) T pX,Y q ! plog Y { logMqr

where the implied constant depends on r.

By (9.5) and (9.2) we get

Corollary 9.2. If Q4 ď M ď X ă Y ď N , then

(9.6) S5pX,Y q ! pLp1, χq log Y q 1

2 plog Y { logMq16.
Remarks. If we assumed the stronger lacunarity property that Lp1, χq !
plog |D|q´r´6, then the trivial bound T pX,Y q ! plog Y qr`4 would have suf-
ficed. However, we are willing to assume only that εpDq “ Lp1, χq log |D| Ñ
0, so our job is much harder.
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The same arguments work for S5
uvpX{d, Y {dq with uv “ d ď U “

plog Y q50 giving the same bound (9.5). Hence (8.4) yields.

Corollary 9.3. If Q4 ď M ď X ă Y ď N , then

(9.7) SpX,Y q ! pLp1, χq log Y q 1

2 plog Y { logMq16 ` plog Y q´2.

10. Sums of the Möbius function

Typically for estimating sums involving the Möbius function one applies
analytic methods by contour integration in the zero-free region of ζpsq. We
opt more elementary path which goes through the Prime Number Theorem
in the following form

(10.1)
ÿ

měX

µpmqm´1 ! expp´c
a

log xq

where c is a positive constant. In the sequel c stands for a positive constant
different every time. By (10.1) one derives

(10.2)
ÿ

měX
pm,kq“1

µpmqm´1 ! σ´1pkq expp´c
a

log xq.

Then (10.2) yields the same bound for the sum twisted by the divisor func-
tions

(10.3)
ÿ

měX
pm,kq“1

µpmqτrpmqm´1 ! σ´1pkq expp´c
a

log xq.

Hence, if fpxq is a function on R` with |fpxq| ` x|f 1pxq| ! plog xqA then we
get (by partial summation)

(10.4)
ÿ

měX
pm,kq“1

µpmqτrpmqfpmqm´1 ! σ´1pkq expp´c
a

log xq

where the implied constant depends on A. In particular

(10.5)
ÿ

měX
pm,kq“1

µpmqτrpmqplogmqa ! σ´1pkq expp´c
a

log xq.

Moreover, for the complete sum we have

(10.6)
ÿ

pm,kq“1

µpmqτrpmqplogmqa “ 0 if 0 ď a ă r.

Indeed, the complete sum (10.6) is the a-th derivative (at s “ 1) of
ÿ

pm,kq“1

µpmqτrpmqm´s “
ź

p∤k

p1 ´ rp´sq “ ζpsq´rηrkpsq

say, where ηrkpsq is holomorphic in Re s ą 1{2. Since ζpsq´r has zero as
s “ 1 of order r the formula (10.6) follows.

We shall also need the following formula
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Lemma 10.1. Let φpℓq be the completely multiplicative function defined by
(9.4). Suppose every prime p ď r2 divides q. Then

(10.7)
ÿ

ℓďX

φpℓq “ Prplog xq `OpX´1{5rq

where PrpXq is a polynomial of degree r and the implied constant depends
on r.

Proof. The generating Dirichlet series of φpℓqℓ is given by

Zpsq “
ź

p∤q

ˆ
1 ´ r

ps

˙´1

“ ζpsqr
ź

p|q

ˆ
1 ´ 1

ps

˙r ź

p∤q

ˆ
1 ´ 1

ps

˙r ˆ
1 ´ r

ps

˙´1

.

Here the last infinite product over p ∤ q converges absolutely in Re s ą
1{2. Hence (10.7) follows by standard contour integration and the convexity

bound ζpsq ! |s| 18 log 4|s| on the line Re s “ 3{4. Specifically, the main term
Prplog xq in (10.7) is the residue of Zps` 1qs´1xs at s “ 0. �

11. Estimation of T pX,Y q

Squaring out (9.1) we get

θpℓq2 “
ÿÿ

rm1,m2s|ℓ
µpm1qµpm2qgpm1qgpm2qh

ˆ
ℓ

m1

˙
h

ˆ
ℓ

m2

˙

“
ÿÿÿ

dm1m2|ℓ
µpdqµpdm1m2qgpdm1qgpdm2qh

ˆ
ℓ

dm1

˙
h

ˆ
ℓ

dm2

˙
.

Note that dm1 ă M and dm2 ă M by the support of the mollifier. Intro-
ducing this into (9.3) we get

T pX,Y q “
ÿÿÿÿ

Xădm1m2ℓďY

µpdqµpdm1m2qgpdm1qgpdm2q
hpℓm1qhpℓm2qφpdm1m2qφpℓq.

Note that φpdm1m2q “ τrpdqτrpm1qτrpm2q{dm1m2 if pdm1m2, qq “ 1 and it
vanishes otherwise.

If d is close to M , say M∆´3 ă d ă M , then m ă ∆3 and gpdmq ă
p3 log∆{ logMqr for m “ m1m2. Hence the contribution of these “bound-
ary” terms to T pX,Y q is bounded trivially by

ÿ

M∆´3ădăM

τrpdq
d

ˆ
3 log∆

logM

˙2r
˜

ÿ

mă∆3

τrpmq
m

¸2 ÿ

ℓďY

φpℓq

! plogMqr´1plog∆q
ˆ
log∆

logM

˙2r

plog∆q2rplog Y qr “
ˆ
log Y

logM

˙r

if we choose ∆ such that plog ∆q4r`1 “ logM . This bound meets the goal
(9.5). The above lines show how important it is to have the crop function
gpmq vanishing at the end point M of degree as large as the degree of the
divisor function τrpdq.



22 J.B. CONREY AND H. IWANIEC

Now, when d ď M∆´3 with plog ∆q4r`1 “ logM , there is enough room
for the Möbius function in T pX,Y q to produce significant cancellation. First,
if m1 ą ∆ or m2 ą ∆, then (10.4) shows that the contribution of such terms
to T pX,Y q is estimated by

expp´c
a

log ∆q
˜

ÿ

dăM

τrpdqd´1

¸2˜ÿ

ℓăY

τrpdq
¸

!
ˆ
log Y

logM

˙r

.

This bound meets the goal (9.5).

It remains to estimate the partial sum of T pX,Y q over the segment X ă
dm1m2ℓ ď Y restricted by the following conditions

(11.1) m1 ď ∆, m2 ď ∆, d ď M∆´3.

We assume M ď X ă Y ď N . Then (11.1) implies ℓ ą ∆ so we have
enough space to execute the summation over ℓ. By Lemma 10.1 using partial
summation we get

ÿ

Xădm1m2ℓďY

φpℓqhpℓm1qhpℓm2q “
ż Y {d

X{d
h

ˆ
y

m1

˙
h

ˆ
y

m2

˙
dPr

ˆ
log

y

m1m2

˙

`Op∆´1{5rq.
The contribution of the error term to T pX,Y q is ! ∆´1{5rplogMqrplog ∆q2r
which is much smaller than required. Collecting the above results we get

(11.2) T pX,Y q “
ÿ

dăM∆´3

µpdqqτrpdq
d

ż Y {d

X{d
Tdpyqdy

y
`O

ˆˆ
log Y

logM

˙r˙

with

Tdpyq “
ÿÿ

m1m2ă∆

µpdqm1m2qτrpm1m2q
m1m2

gpdm1qgpdm2q

h

ˆ
y

m1

˙
h

ˆ
y

m2

˙
P 1
r

ˆ
log

y

m1m2

˙
.

Have in mind that the polynomial P 1
rpXq has degree r ´ 1,

P 1
rpXq “

ÿ

aăr

cpaqXa.

The crop function gpdmq of the mollifier in the above range is the polynomial
in logm{ logM ;

gpdmq “
ˆ
1 ´ log dm

logM

˙r

“
ÿ

0ďj1ďr

ˆ
r

j

˙ˆ
1 ´ log d

logM

˙r´j ˆ´ logm

logM

˙j

.

However

h
´ y
m

¯
“ a

ˆ
log y{m
logN

˙
“ a

ˆ
log y

logN
´ logm

logN

˙

is not, but it can be approximated by a polynomial using the Taylor expan-
sion

h
´ y
m

¯
“

ÿ

eăE

1

e!
apeq

ˆ
log y

logN

˙ˆ´ logm

logN

˙e

`O

˜ˆ
log∆

logN

˙E
¸
.
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Choosing E sufficiently large in terms of r the error term becomes negligible.
Finally we have

P 1
r

ˆ
log

y

m1m2

˙
“

ÿ

α`α1`α2ăr

cpα,α1, α2qplog yqαplogm1qα1plogm2qα2 ,

where cpα,α1, α2q “ p´1qα1`α2cpα ` α1 ` α2qpα ` α1 ` α2q!{α!α1!α2!. By
the above expansions we see that Tdpyq is (up to negligible error terms) a
linear combination of sums of type

ÿ

m1

ÿ

m2

µpdqm1m2qτrpm1m2q
m1m2

ˆ
logm1

logM

˙j1
ˆ
logm2

logM

˙j2

ˆ
logm1

logN

˙e1
ˆ
logm2

logN

˙e2

plog yqαplogm1qα1plogm2qα2

with j1, j2 ď r, e1, e2 ă E and α ` α1 ` α2 ď r ´ 1, where the summation
is restricted by m1 ď ∆, m2 ď ∆. These restrictions can be dropped
up to error term bounded by plog yqα expp´c

?
log ∆q, see (10.5), which is

negligible. The complete sum vanishes, see (10.6), unless j1 ` e1 ` α1 ě r

and j2 ` e2 ` α2 ě r, in which case it is bounded by

plog yqαplogMq´j1´j2plogNq´e1´e2

! plog yqαplogMqe1`e2`α1`α2´2rplogNq´e1´e2

! plog yqαplogMqα1`α2´2r

! plog yqαplogMq´α´r´1

! plog yqr´1plogMq´2r.

Inserting this bound into (11.2) we derive (9.5).

12. Conclusion

We have all parts (except for the off-diagonal terms) ready to conclude
the proof of the main Theorem 2.1. Take the mollifier (3.10) of length

M “ T 1{400 ě Q8. Choose the breaking points in the partition (4.1) at
α “ 1

2
` 1

100
, β “ 1

2
` 1

200
. Then the level of Levinson’s function (3.1)

satisfies T 2 ă N ă T 3, see (4.14). The diagonal sum (6.4) is estimated
by

K0 “ Sp1,MNαq ď Sp1, Nq “ Sp1, Q8q ` SpQ8,Mq ` SpM,Nq.
Applying (7.3), (7.4) and (9.7) we get

K0 !
ˆ
logQ

log T

˙2

` Lp1, χq log T ` pLp1, χq log T q 1

2 .

The same bound holds for the diagonal sum K˚
0 given by (6.2). Hence (5.7)

yields

IpT q ď T |K‰| 12 `O

ˆ
T
logQ

log T
` T pLp1, χq log T q 1

2 ` T pLp1, χq log T q 1

4

˙
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where the implied constant is absolute. Inserting this into (3.7) we get

N00pT q ą NpT q ´ 4|K‰| 12T log T(12.1)

`O
´
T logQ` T plog T qpLp1, χq log T q 1

4

¯
.

Note that the condition T ě Q3200 is no longer required, because the esti-
mate (12.1) holds trivially otherwise. It remains to estimate the contribution
K‰pT q of the off-diagonal terms, see (6.5).

13. An Introduction to the Off-diagonal Terms

Our goal is to show that the contribution of K‰pT q to KpT q is quite
small, comparable to K0, so that it can be omitted in (12.1). We shall only
consider the L-function for the trivial ideal class group character ψ “ ψ0, in
which case

(13.1) Lpsq “ ζpsqLps, χq “
ÿ

n

λpnqn´s

with λ “ 1 ‹ χ. The other cases are similar, in fact simpler, because the
main term of K‰pT q vanishes.

Before starting advanced arguments we recall the situation in fresh no-
tation to recycle a lot of alphabet which was used so far. We have

(13.2) K‰pT q “
ÿÿ

u,văM

ρpuqρpvq?
uv

gpuqgpvqI
´u
v

¯
`O

ˆ
1

T

˙

where

(13.3) I
´u
v

¯
“

ÿÿ

um‰vn

Ψ
´
T log

um

vn

¯ λpmqλpnq?
mn

hpmqhpnq

and Ψp2πzq denotes the Fourier transform of Φptq. The error term Op1{T q
in (13.2) is an easy estimate for the contribution of terms um “ 1 or vn “ 1
which are added in (13.3).

In (5.5) we said that Φptq was smooth and compactly supported on R`.
Clearly we can modify it here by requesting the symmetry Φptq “ Φp´tq.
Then we have Ψpzq “ Ψp´zq and Ipu{vq “ Ipv{uq. Note that

(13.4) Ψpzq “
ż 8

´8
Φptq cosptzqdt

has fast decaying derivatives, specifically we shall often use the bound

(13.5) Ψpjqpzq ! p1 ` |z|q´A, j “ 0, 1, 2,

for real z with any A ě 4 where the implied constant depends on A.

Pulling out the greatest common factor of u, v in (13.2) we write

(13.6) K‰pT q “
ÿ

eăM

ÿÿ

u,văM{e
pu,v“1q

ρpeuqρpevq
e
?
uv

gpeuqgpevqI
´u
v

¯
`O

ˆ
1

T

˙
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with Ipu{vq given by (13.3) without change. Given pu, vq “ 1 we split Ipu{vq
into

(13.7) I
´u
v

¯
“ 2

8ÿ

h“1

Ih

´u
v

¯

where

(13.8) Ih

´u
v

¯
“

ÿÿ

um´vn“h

Ψ
´
T log

um

vn

¯ λpmqλpnq?
mn

hpmqhpnq

are additive convolution type sums.

Remarks. Since Φpzq decays rapidly T log um
vn

“ T log
`
1 ` h

vn

˘
is essentially

bounded so vn " hT ě T , um " hT ě T and um, vn are close to each
other, um{vn “ 1 `Op1{T q.

The notation begins to be cumbersome so in the next three sections we
are going to present self-contained results about additive convolution sums
which will be applicable to (13.8).

14. General Convolution Sums

This is a stand-alone section. Here and in the next three sections our
notation is independent of that used in the previous ones. After proving
Lemma 17.1 we shall abandon this temporary notation.

Suppose we are given two sequences A “ pamq, A˚ “ pa˚
nq, which enjoy

some features of the Fourier coefficients of automorphic forms. Our goal is
to evaluate the sum

(14.1) Bphq “
ÿ

m´n“h

ama
˚
ngpmqg˚pnq

for h ě 1, where gpxq, g˚pxq are smooth functions, compactly supported
on R`. Sums of such type were treated in Section 4 of [CI02] in a great
generality using ideas of Kloosterman’s circle method. Now we need (14.1)
in a little bit more general setting, in which case the arguments in Section 4
of [CI02] still apply. Since the required modifications are essentially in the
notation we shall state the results without repeating proofs. If the sequences
A,A˚ consist of Hecke eigenvalues for a cusp form there are several results
in the literature which are useful for out applications. In particular the
formulas of [KMV02] in Appendices A,B come close to what we require
with respect to the parameters out of which to built the mollifier. However
the shifted convolution for λ “ 1 ‹χ is not covered in [KMV02]. This paper
[KMV02] contains numerous fundamental ideals and gives great details so
we recommend to the reader to glance it as a supplement to our arguments
below.

All we need about the sequence A (and A˚) is a kind of Voronoi formula
for twisted sums

(14.2) Spαq “
ÿ

m

amgpmqepαmq
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at rational points α “ a{c for every c ě 1 and pa, cq “ 1. Naturally, one
expects that Spa{cq are quite well approximated by

(14.3) ψpa, cq
ż
gpxqdx

where ψpa, cq is a nice function which depends on a pmod cq and it satis-
fies

(14.4) |ψpa, cq| ď A

c
.

Here the parameter A, and two other parameters B,C in forthcoming condi-
tions, will be specified in later applications subject to A ě 1, B ě 1, C ě 2.
Note that ψpa, cq does not depend on the test function gpxq, therefore the
approximation (14.3) to the sum Spa{cq is a functional.

Based on (14.3) one should predict that Bphq is quite well approximated
by

(14.5) Bphq “ Sphq
ż
gpx ` hqg˚pxqdx

where

(14.6) Sphq “
8ÿ

c“1

ÿ˚

a pmod cq
e

ˆ
ah

c

˙
ψp´a, cqψ˚pa, cq.

Indeed we shall see that under suitable conditions the prediction is pretty
accurate. We assume that the Fourier transform of gpxq satisfies

(14.7)

ż
|ĝpαq|dα ď B,

ż
|α||ĝpαq|2dα ď B2.

Moreover the same estimates hold for the Fourier transform of g˚pxq. We
write

(14.8) S
´a
c

¯
“ ψpa, cq

ż
gpxqdx ` T pa, cq,

where the error term T pa, cq does, of course, depend on gpxq as a functional.
It is not sufficient to assume a good upper bound for T pa, cq; one has to
control the variation of its argument and get a considerable cancellation
when summing over the classes a pmod cq, pa, cq “ 1 (this is the very essence
of Kloosterman’s circle method). We postulate that every T pa, cq has the
Fourier series expansion of the following type

(14.9) T pa, cq “
8ÿ

m“1

ψmpaqe
ˆ
a

c
ℓm

˙ż
gpxqkmpxqdx

where a denotes the multiplicative inverse of a modulo c, aa ” 1 pmod cq.
Here the frequencies ℓm are integers which are allowed to depend on c, but
not on a. Moreover the kernel functions kmpxq may depend on c, but not
on a. Finally, the coefficients ψmpaq are also allowed to depend on c in an
arbitrary fashion, but the dependence on a must be mild. Specifically, we
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assume that there is a fixed integer q ě 1 such that ψmpaq is periodic in a
modulo pc, qq, and

(14.10) |ψmpaq| ď A

c
τpmq.

We also assume that the Fourier transform of gmpxq “ gpxqkmpxq satis-
fies

(14.11) |ĝmpαq| ď cCBm´5{4

for every 1 ď c ď C and every α with |α|cC ď 1.

Now we are ready to state the following result (go through Section 4 of
[CI02] line by line for constructing a definite proof).

Proposition 14.1. Assume the conditions (14.4), (14.7), (14.10), (14.11)
for the sequence A “ pamq and the corresponding conditions for the sequence
A˚ “ pa˚

nq. Then for every h ě 1 we have

(14.12) Bphq “ Bphq `Rphq
where Bphq is the convolution sum (14.1), Bphq is the predicted main term
(14.5) and Rphq is an error term which satisfies

(14.13) Rphq ! τphqA2C´1

ż
|gpx ` hqg˚pxq|dx ` τphqqA2B2C

3

2 plogCq2

with the implied constant being absolute.

15. Special Convolution Sums

We are interested in the sequence λ “ 1‹χ as in (1.8) where χ is the real
primitive character of conductor |D|. By Proposition 3.3 of [CI02] we have
the following Voronoi type formula

(15.1)
8ÿ

m“1

λpmqe
´a
c
m
¯
gpmq “ ρpa, cqLp1, χq

ż
gpxqdx ` T pa, cq

for any c ě 1, pa, cq “ 1, where

T pa, cq “ 2πiχ1paqχ2pcq
a

pc,Dq
c
a

|D|

8ÿ

m“1

pχ1 ‹ χ2qpmqe
´
aD{pc,Dqm

c

¯

ż
gpxqJ0

´
4π

a
pc,Dqmx{c

a
|D|

¯
dx,

χ1 pmod pc,Dqq and χ2 pmod |D|{pc,Dqq are the real characters such that
χ1χ2 “ χ. In the main term we have

(15.2) ρpa, cq “
#
χpcq{c if D ∤ c,

χpaqτpχq{c if D | c

where τpχq denotes the Gauss sum. Actually Proposition 3.3 of [CI02] re-
quires D to be odd and negative, so

(15.3) D is squarefree , D ă 0, D ” 1 pmod 4q.
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Therefore, in the next three sections we shall be working under these con-
ditions. The other cases are very much similar and the final estimates are
the same so we skip them.

For every positive integer u we derive from (15.1) the following for-
mula

8ÿ

m“1

λpmqe
´a
c
um

¯
gpumq “ ρ

ˆ
au

pc, uq ,
c

pc, uq

˙
Lp1, χq
u

ż
gpxqdx

`T pau{pc, uq, c{pc, uqq.

(replace a, c, gpxq in (15.1) by au{pc, uq, c{pc, uq, gpuxq respectively).

Now we can apply Proposition 14.1 for the sequences A “ pamq, A˚ “
pa˚

nq with am “ λpm{uq, a˚
n “ λpn{vq, where u, v are given positive inte-

gers (subject to the popular convention that an arithmetic function is set
its value to zero at non-integers arguments). Suppose gpxq and g˚pxq are
smooth functions supported in a dyadic segment rX, 2Xs with X ě 2 whose
derivatives satisfy

(15.4) |xjgpjqpxq| ď 1, j “ 0, 1, 2.

Then one can show (see the arguments in Section 4 of [CI02]) that (14.7)

holds with B ! 1 and (14.11) holds for C “ 2pu ` vq
a

|D|X with B !
pu ` vq|D| 32 . Moreover (14.4) holds with A !

a
|D|Lp1, χq !

a
|D| log |D|

and (14.11) holds for q “ |D| with A ! u ` v. Therefore Proposition 14.1
yields

Proposition 15.1. Let gpxq, g˚pxq be smooth functions supported in rX, 2Xs
with X ě 2 whose derivatives satisfy (15.4). Then for positive integers u, v, h
we have

ÿ

um´vn“h

λpmqλpnqgpumqg˚pvnq “(15.5)

Sphqpuvq´1L2p1, χq
ż
gpx ` hqg˚pxqdx `O

´
τphqpuvDq6X 3

4 plogXq2
¯

where

(15.6) Sphq “
8ÿ

c“1

ÿ˚

a pmod cq
e

ˆ
ah

c

˙
ρ

ˆ ´au
pc, uq ,

c

pc, uq

˙
ρ

ˆ
av

pc, vq ,
c

pc, vq

˙

with ρpa, cq given by (15.2) and the implied constant being absolute.

Remarks. We have not assumed that u, v are co-prime. But, of course, if
pu, vq ∤ h, then the convolution sum on the left side of (15.5) is void so the
series Sphq on the right side of (15.5) must vanish as well. This could be
verified directly if you will, but not so easily. The result is a generalization
of a special case of Theorem 4.4 of [CI02]. Note that the exponent 3{4 in
the error term comes from an application of Weil’s bound for Kloosterman
sums. The exponent 7{8 resulting from a weaker elementary bound due to
Kloosterman would be also sufficient for our purpose.



CRITICAL ZEROS OF LACUNARY L-FUNCTIONS 29

For technical simplifications we can impose some local restrictions on the
variables u, v in the formula (13.2). These numbers will be in the support
of the coefficients ρpuq, ρpvq of the mollifier, see (3.8) and (3.9). Therefore
we can assume that u and v are cubefree with no multiple ramified prime
factors; this means p | D ñ p2 ∤ u and p2 ∤ v.

16. Computing the Series Sphq

To ease the computations we assume that u, v are coprime;

(16.1) pu, vq “ 1,

so

(16.2) pD2, uvq “ pD,uvq.
Let 1pxq denote the characteristic function of integers. Then (15.2) yields
ρpa, cqc “ χpcq ` χpaqτpχq1pc{Dq and (15.6) becomes

Sphq “
8ÿ

c“1

pc, uvq
c2

ÿ˚

a pmod cq
e

ˆ
ah

c

˙
t. . . ut. . . u

where

t. . . ut. . . u “
"
χ

ˆ
c

pc, uq

˙
´ χ

ˆ ´au
pc, uq

˙
τpχq1

ˆ
c

pc, uqD

˙*

"
χ

ˆ
c

pc, vq

˙
` χ

ˆ
av

pc, vq

˙
τpχq1

ˆ
c

pc, vqD

˙*

“ χ

ˆ
c2

pc, uvq

˙
´ χ

ˆ
a2uv

pc, uvq

˙
1

ˆ
c

pc, uvqD

˙
D

`
„
χ

ˆ
acv

pc, uvq

˙
1

ˆ
c

pc, vqD

˙
´ χ

ˆ
acu

pc, uvq

˙
1

ˆ
c

pc, uqD

˙
τpχq

because χp´1qq “ ´1, τpχq2 “ D and 1pc{pc, uqDq1pc{pc, vqDq “ 1pc{pc, uvqDq.
Note that except for the first term χpc2{pc, uvqq the other three terms vanish
unless D | c in which case χpa2q “ 1. By this observation we get

t. . . ut. . . u “ χ

ˆ
c2

pc, uvq

˙
´ χ

ˆ
uv

pc, uvq

˙
1

ˆ
c

pc, uvqD

˙
D

`pχpvq ´ χpuqqχ
ˆ

ac

pc, uvq

˙
1
´ c
D

¯
τpχq.

Next we introduce the Ramanujan sum

(16.3) rhpcq “
ÿ˚

a pmod cq
e

ˆ
ah

c

˙
“

ÿ

d|pc,hq
dµpc{dq

and if D | c we introduce the hybrid of Gauss-Ramanujan sum

(16.4) rhpc, χq “
ÿ˚

a pmod cq
χpaqe

ˆ
ah

c

˙
.

Put

(16.5) uv “ w, so w is cubefree.
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The symbols 1pc{pc, wqdq and 1pc{Dq above mean that pD,wqD | c (see the
condition (16.2)) and D | c, respectively. Therefore Sphq splits into three
parts

(16.6) Sphq “ S˚phq ´ S1phq ` pχpvq ´ χpuqqSph, χq
where

(16.7) S˚phq “
ÿ

pc,Dq“1

χppc, wqqrhpcqpc, wqc´2,

(16.8) S1phq “ D
ÿ

pD,wqD|c
χpw{pc, wqqrhpcqpc, wqc´2,

(16.9) Sph, χq “ τpχq
ÿ

D|c
χpc{pc, wqqrhpc, χqpc, wqc´2 .

Note that Sph, χq vanishes, unless D | w, and the third part of (16.6)
vanishes, unless D | u or D | v. These are pretty strong conditions on u, v
which we can easily go around in applications. Therefore, from now on we
assume that

(16.10) D ∤ u and D ∤ v

so the third part of (16.6) does not need to be considered (see Section 24).

By the formula (16.3) we can write the first and the second parts of (16.6)
as the convolutions 1 ‹ γ˚ and 1 ‹ γ1, say, with

(16.11) γ˚pdq “ 1

d

ÿ

pcd,Dq“1

χppcd,wqqpcd,wqµpcqc´2

and

(16.12) γ1pdq “ D

d

ÿ

pD,wqD|cd
χpw{pcd,wqqpcd,wqµpcqc´2 .

Finally, assuming the conditions (16.10) we conclude that

(16.13) Sphq “ S˚phq ´ S1phq “ p1 ‹ γ˚qphq ´ p1 ‹ γ1qphq.

Lemma 16.1. We have γ˚pdq “ 0 unless pd,Dq “ 1 in which case

(16.14) γ˚pdq “ pd,wq
ζp2qd χppd,wqqξpw{pd,wqq

where

(16.15) ξpnq “
ź

p|n

ˆ
1 ` χppq

p

˙´1

.

Proof. First note that the product (16.15) for n “ w{pd,wq runs over the
set P of primes p | w such that

(16.16) p ‖ w ñ p ∤ d and p2 | w ñ p2 ∤ d.
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Clearly the sum (16.11) is void if pd,Dq ‰ 1. If pd,Dq “ 1, then γ˚pdq “
χppd,wqqpd,wqd´1Σ, where

Σ “
ÿ

pc,Dq“1

χ

ˆpcd,wq
pd,wq

˙ pcd,wq
pd,wq

µpcq
c2

(16.17)

“
ź

pPP

ˆ
1 ´ χppq

p

˙ź

pRP

ˆ
1 ´ 1

p2

˙

“ ζp2q´1
ź

pPP

ˆ
1 ´ χppq

p

˙ˆ
1 ´ 1

p2

˙´1

.

This yields the formula (16.14). �

Note that (16.14) gives the upper bound (not to be used)

(16.18) |γ˚pdq| ď pd,wq
d

ź

p|w

ˆ
1 ` 1

p

˙
.

Lemma 16.2. We have γ1pdq “ 0, unless pD,wq | d in which case

(16.19) γ1pdq “ µpqq
ζqp2q

pd1, w1qpd1,Dq2
dD

χξ

ˆ
w1

pd1, w1q

˙

where w1 “ w{pD,wq, d1 “ d{pD,wq, q “ D{pD, d1q, ζqpsq denotes the
Riemann zeta function with missing local factors at p | q and ξpnq is given
by (16.15).

Proof. By (16.2) it follows that pD,w1q “ 1. Clearly the sum (16.12) is void
if pD,wq does not divide d, because c is squarefree. If d “ pD,wqd1, then
the formula becomes (16.12)

γ1pdq “ D

d

ÿ

D|cd1
χpw1{pcd1, w1qqpcd1, w1qµpcqc´2.

Here c “ c1D{pD, d1q and pcd1, w1q “ pcd1, w1q “ pd1, w1qpc1, w1{pd1, w1qq
giving

γ1pdq “ µ

ˆ
D

pD, d1q

˙ pD, d1q2
dD

pd1, w1qχ
ˆ

w1

pd1, w1q

˙
Σ

where

Σ “
ÿ

pc1,D{pD,d1qq“1

χ

ˆˆ
c1,

w1

pd1, w1q

˙˙
µpc1q
c21

“
ź

p∤ D
pD,d1q

w1

pd1,w1q

ˆ
1 ´ 1

p2

˙ ź

p| w1

pd1,w1q

ˆ
1 ´ χppq

p

˙

“
ź

p∤ D
pD,d1q

ˆ
1 ´ 1

p2

˙ ź

p| w1

pd1,w1q

ˆ
1 ` χppq

p

˙´1

.

Hence it is easy to check the formula (16.19). �
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Note that (16.19) gives the upper bound (not to be used)

(16.20) |γ1pdq| ď pd1, w1q
pD,wq

pD, d1q2
|D|d1

ź

p|w1

ˆ
1 ` 1

p

˙
.

Remarks. The formula (16.19) for γ1pdq is very similar to the formula (16.14)
for γ˚pdq, but it is a bit more involved with respect to the ramified prime
places. However, both expressions share the same essential features which
are relevant to the forthcoming analysis of the series S˚phq, S1phq and
kpyq “ k˚pyq ´ k1pyq, see (17.6). Therefore, we are going to work with
γ˚pdq,S˚phq, k˚pyq in considerable details and skip the analysis of γ1pdq,
S1phq, k1pyq assuming that the final estimates are the same in both cases.
Actually, the case of γ1pdq in some extreme situations can be treated some-
what faster, because a crude upper bound for γ1pdq is good enough. For
example, suppose d has no ramified prime factors, i.e.

(16.21) pd,Dq “ 1.

Then γ1pdq “ 0, unless pD,wq “ 1, in which case d “ d1, w “ w1, D
1 “ 1

and (16.19) becomes

(16.22) γ1pdq “ µpDq
ζDp2q

pd,wq
dD

χ

ˆ
w

pd,wq

˙
ξ

ˆ
w

pd,wq

˙
.

Here we gained the factor 1{|D| by comparison to (16.14) which is so small
that one can cover the range pd,Dq “ 1 exploiting neither the lacunarity of
Lpsq “ ζpsqLps, χq nor the sifting effects of the action of the mollifier Mpsq.

In other extreme example suppose that every ramified prime divides d
but not w, i.e.

(16.23) D | d, pD,wq “ 1.

Then (16.19) reduces to (16.14), precisely we have

(16.24) γ1pdq “ χpwqγ˚pd{|D|q.

17. Back to the Off-Diagonal Terms

We are now ready to evaluate the components Ipu{vq of the sum K‰pT q,
see (13.2) and (13.1). First by Proposition 15.1 we derive

Lemma 17.1. Let h, u, v be positive integers with pu, vq “ 1, u, v ă M .
Then
(17.1)

Ih

´u
v

¯
“ Sphq?

uv
L2p1, χq

ż 8

0

Ψ

ˆ
hT

x

˙
h
´x
u

¯
h
´x
v

¯ dx
x

`O
´
h2T´ 1

9

¯
.

Proof. The left side of (15.5) with

gpxq “ h
´x
u

¯´u
x

¯ 1

2

, g˚pyq “ Ψ

ˆ
T log

y ` h

y

˙
h
´y
v

¯ˆv
y

˙ 1

2
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becomes Ihpu{vq and the main term on the right side of (15.5) becomes

(17.2)
Sphq?
uv

L2p1, χq
ż 8

0

Ψ

ˆ
T log

x` h

x

˙
h

ˆ
x` h

u

˙
h
´x
v

¯ dxa
xpx ` hq

.

However, the conditions of Proposition 15.1 are not exactly satisfied by the
above choice of the test functions gpxq, g˚pyq. To meet the conditions (15.4)
we apply a smooth partition of the summation variables with constituents
supported in semi-dyadic segments rX,

?
2Xs, rY,

?
2Y s so that our partial

sums run over m,n with X ă um ă
?
2X, Y ă vn ă

?
2Y for some

1{2 ď X,Y ď MNα. If the segments are equal or are adjacent to each
other, then we are dealing with two test functions supported in the same

dyadic segment. Moreover the derivatives satisfy xjgpjqpxq ! pu{Xq 1

2 and

yjg˚pjqpyq ! pv{Y q 1

2 . Therefore (15.5) yields the main term (17.2) for such
partial sums with an error term bounded by

(17.3) τphqpuvDq6puvq 1

2X´ 1

4 plog 4Xq2.
We have chosen α slightly larger than 1{2, α “ 51{100, and M a relatively

small power of T , M “ T 1{400. Hence our segments end at 2X, 2Y ă
2MNα “ 2MpQT q2α ă |D|MT 2α ă T 45{44, provided |D| ă T 1{4000. We
have already said in the Remarks following (13.8) that Ψpzq decays rapidly,
see (13.5). Therefore, the contribution to Ihpu{vq of the partial sums over
the segments rX,

?
2Xs, rY,

?
2Y s is negligible, expect for

hT 43{44 ă X ď
?
2Y ď 2X ď T 45{44

in which cases (17.3) is much smaller than the error term in (17.1). Further-

more, since h is quite small, h ă T 1{22, we can clear the main term (17.2)
by means of the following approximations;

Ψ

ˆ
T log

x` h

x

˙
“ Ψ

ˆ
hT

x

˙
`OpTh2x´2q,

h

ˆ
x` h

u

˙
“ h

´x
u

¯
`Oph{xq,

px` hq´ 1

2 “ x´ 1

2 p1 `Oph{xqq.
The error terms in the above approximations are negligible. This completes
the proof of Lemma 17.1. �

Remarks. Having derived the formula (17.1) from the results in Sections 14,
15 we no longer need these sections, in particular the test functions g, g˚

used over there can be forgotten. From now g stands again for the crop
function in the mollifier (3.10).

Introducing (17.1) into (13.7) we obtain

(17.4) I
´u
v

¯
“ L2p1, χq?

uv

ż 8

0

k

ˆ
T

x

˙
h
´x
u

¯
h
´x
v

¯ dx
x

`OpT´ 1

9 q

where

(17.5) kpyq “ 2
ÿ

hą0

SphqΨphyq.



34 J.B. CONREY AND H. IWANIEC

Then, introducing S “ 1 ‹ γ with γpdq “ γ˚pdq ´ γ1pdq, see (16.13), we
get

(17.6) kpyq “
ÿ

d

γpdqφpdyq

where

(17.7) φpzq “
ÿ

k

Ψpkzq.

Do not forget that γpdq depends on w “ uv, see (16.14) and (16.19).

Finally we insert (17.4) into (13.6) to get a complete formula for the
off-diagonal contribution

Lemma 17.2. We have

K‰pT q “ L2p1, χq
ÿ

e

ÿÿ

pu,vq“1

ρpeuqρpevq
euv

gpeuqgpevqJpu, vq(17.8)

`OpT´ 1

9 plog T q6q
where

(17.9) Jpu, vq “
ż 8

0

k

ˆ
T

x

˙
h
´x
u

¯
h
´x
v

¯ dx
x
.

Remarks. We should have restricted u, v in (17.8) by the conditions (16.10)
which we ignored, because if D | u or D | v, then some trivial estimations
yield a small contribution. We shall address this issue in Section 24.

It is convenient to treat the two parts γ˚pdq, γ1pdq separately, so we write
(17.8) in the following fashion

(17.10) K‰pT q “ L2p1, χqpK˚pT q ´ K1pT qq `OpT´ 1

9 plog T q6q.
Here K˚ stands for this multiple sum

(17.11) K˚pT q “
ÿ

e

ÿÿ

pu,vq“1

ρpeuqρpevq
euv

gpeuqgpevqJ˚pu, vq

where J˚pu, vq is defined by the integral (17.9) with the kernel kpyq replaced
by

(17.12) k˚pyq “
ÿ

d

γ˚pdqφpdyq.

The second part K1pT q is defined in the same fashion but with γ1pdq in place
of γ˚pdq.

It is not surprising that the off-diagonal contribution K‰pT q gains the
factor L2p1, χq, because the lacunarity of Lpsq “ ζpsqLps, χq strikes inde-
pendently two times. However, it is not enough gain to treat K˚ and K1pT q
crudely. We need to exploit important features of the mollifier which creates
some sifting effects. The job would be quick if one used the Riemann hy-
pothesis for Lpsq, but of course, this is prohibited. We shall estimate K˚pT q
unconditionally by delicate elementary arguments.
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Remarks. The coefficients ρpmqgpmq of the mollifier (3.10) are supported on
cubefree numbers. Yet, it is technically messy to keep track of the square
factors in the off-diagonal part, they play no essential role because we do
not mind loosing absolute constants. One can pull out the square factors in
the same fashion as we have shown for the diagonal terms in Section 8. This
operation requires small changes in the range of variables of test functions,
nevertheless the notation suffers. We leave for the prudent reader to fill up
details while we are working on (from now on) under the assumption that
the sum (17.11) is restricted to eu and ev being squarefree. This convenient
assumption makes

(17.13) ρpeuq “ µpeuqλpeuq, ρpevq “ µpevqλpevq.

18. Computing the Series φpzq

We begin by providing crude estimates for φpzq. It is easy to see directly
from (17.7) and (13.5) that zφpzq ! 1. Moreover, by Poisson’s formula

(18.1) φpzq “ ´Ψp0q ` 1

z

ÿ

m

Φ
´m
z

¯
! 1

because Φ (the Fourier transform of Ψ) is compactly supported with Φp0q “
0. Together we conclude

(18.2) φpzq ! p1 ` zq´1, if z ą 0.

Hence the series (17.11) converges absolutely.

Remarks. Applying the Euler-McLaurin formula to (18.1) one obtains the
exact expression

(18.3) zφpzq “
ż 8

0

tξzuΦ1pξqdξ

which yields (18.2) at once by the inequality 0 ď txu ď minp1, xq. The
bound (18.2) cannot be improved if z is small, see the second term in (18.7).

Another way of computing φpzq goes by contour integration. By (17.7)
we get

(18.4) φpzq “ 1

2πi

ż

p2q
Ψ̃psqζpsqz´sds

where Ψ̃psq is the Mellin transform of Ψpyq, which in turn is the Fourier
transform of Φpxq, see (13.4). By Mellin’s inversion followed by partial
integration we get the formula

(18.5) sps` 1qΨ̃psq “
ż 8

0

Ψ2pzqzs`1dz.

This yields analytic continuation of sps`1qΨ̃psq to the half-plane Re s ą ´2.
For s “ ´1 we find that

ż 8

0

Ψ2pzqdz “ ´Ψ1p0q “ 0
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by (13.4), so Ψ̃psq has no pole at s “ ´1. For s “ 0 we find that
ż 8

0

Ψ2pzqzdz “ ´
ż 8

0

Ψ1pzqdz “ Ψp0q “
ż
Φpxqdx,

so Ψ̃psq has a simple pole at s “ 0 with residue Ψp0q. Note that

Ψ̃p1q “
ż 8

0

Ψpzqdz “ 2πΦp0q “ 0,

so the simple pole of ζpsq is cancelled by the zero of Ψ̃psq at s “ 1 in (18.4).
Hence we get

(18.6) φpzq “ 1

2πi

ż

pεq
Ψ̃psqζpsqz´sds

with any ε ą 0. It will be a more friendly expression for φpzq if the pole at
s “ 0 is removed. To this end we write (18.6) in the following form

(18.7) φpzq “ φ0pzq ´ 1

2
Ψp0qp1 ´ zq`

where

(18.8) φ0pzq “ 1

2πi

ż

pεq
θpsqz´sds

and

(18.9) θpsq “ Ψ̃psqζpsq ` Ψp0q{2sps ` 1q.

Note that θpsq is holomorphic in Re s ą ´1 and it satisfies

(18.10) ps` 1qθpsq ! p|s| ` 1q´1, if ´ 1 ă Re s ď A

because ζp0q “ ´1
2
and sps ` 1qΨ̃psq ! p|s| ` 1q´2 in vertical strips. By

(18.8) we derive

(18.11) φ0pzq ! zp1 ` zq´A, if z ą 0,

for any A ě 2, the implied constant depending on A.

19. Computing the Series k˚pyq

First we show a formula in a bit more general case. Recall that γ˚pdq
depends on w.

Lemma 19.1. If w is squarefree, then

(19.1)
ÿ

d

γ˚pdqfpdyq “ ξpwq
ζp2q

ÿ

c|w
χpcq

ÿ

pd,Dq“1

fpcdyqd´1

for any fpyq, provided the series
ř
fpdyqd´1 converges absolutely.
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Proof. The sequence γ˚pdq has been computed in Lemma 16.1. By (16.14)
we proceed as follows

ζpsq
ÿ

d

γ˚pdqfpdyq “
ÿ

pd,Dq“1

pd,wq
d

χppd,wqqξ
ˆ

w

pd,wq

˙
fpdyq

“
ÿ

a|w
χpaqξ

´w
a

¯ ÿ

pd,Dw{aq“1

fpadyqd´1

“ ξpwq
ÿ

ab|w
pab,Dq“1

χpaqµpbq
ξpaqb

ÿ

pd,Dq“1

fpabdyqd´1.

Given c | w with pc,Dq “ 1, the above sum over ab “ c is equal to

ź

p|c

ˆ
χppq
ξppq ´ 1

p

˙
“
ź

p|c
χppq “ χpcq.

This completes the proof of (19.1). �

Corollary 19.2. Suppose w “ uv is squarefree. For every y ą 0 we have

(19.2) k˚pyq “ ξpwq
ζp2q

ÿ

c|w
χpcq

ÿ

pd,Dq“1

φpcdyqd´1.

It is difficult to execute the summation over d in (19.2) if y — 1, so we
shall use the formula (19.2) as it is in its raw format. Nevertheless, regardless
applications, we continue developing this formula further since the reader
may like to see the shape of the function k˚pyq from various perspectives such
as (19.11). First, applying the partition (18.7) to (17.12) we derive

(19.3) k˚pyq “ 1

2πi

ż

pεq
θpsqz˚psqy´s ´ 1

2
Ψp0q

ÿ

dyă1

γ˚pdqp1 ´ dyq,

where z˚psq is the zeta function of the sequence γ˚pdq;

(19.4) z˚psq “
ÿ

d

γ˚pdqd´s.

Next, by Lemma 19.1, if w is squarefree, then

(19.5) z˚psq “ ζp2q´1ζDps` 1qξpwq
ź

p|w

ˆ
1 ` χppq

p2

˙
.

This expression shows that z˚psq is analytic in the whole s-plane and it has
only a simple pole at s “ 0 with the residue r “ λpwqξpwqϕpDq{ζp2qD.
Introducing (19.5) into (19.3) and moving the integration from Re s “ ε to
Re s “ ´1 we get

(19.6) k˚pyq “ rθp0q ´ Ψp0qξpwq
2ζp2q

ÿ

c|w
χpcq

ÿ

cdyă1
pd,Dq“1

p1´ cdyqd´1 `OpywτpDqq.
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Furthermore, for any X ą 0 we have

(19.7)
ÿ

dăX
pd,Dq“1

p1´d{Xqd´1 “ ϕpDq
D

plogX ` γ ´ 1 ´ αpDqq `OpτpDq{Xq,

where γ “ 0.57 . . . is the Euler constant and

(19.8) αpDq “
ÿ

p|D

log p

p´ 1
ď log |D|.

Hence, the double sum in (19.6) is equal to

(19.9)
ϕpDq
D

ÿ

c|w
χpcqp´ log cy ` γ ´ 1 ´ αpDqq `OpyτpDqS1pwqq.

If χpwq “ 1, which is our case by the mollifier support, then

(19.10)
ÿ

c|w
χpcq log

?
w{c “ 0.

To see this we switch c to its complementary divisor w{c. Hence the sum
over c{w in (19.9) becomes λpwqp´ log y

?
w ` γ ´ 1 ´ αpDqq. Combining

the above results we conclude the following approximate formula which is
useful only if yw is small.

Lemma 19.3. Suppose w “ uv is squarefree and χpwq “ 1. For every y ą 0
we have

(19.11) k˚pyq “ λpwqξpwq ϕpDq
2ζp2qD tΨp0q log y

?
w`αpDq`α0u`OpywτpDqq

where α0 and the implied constant depend only on the fixed test function Φ.

20. Evaluation of J˚pu, vq

Recall that J˚pu, vq is the integral

(20.1) J˚pu, vq “
ż 8

0

k˚
ˆ
T

x

˙
h
´x
u

¯
h
´x
v

¯ dx
x

with the kernel k˚pyq given by (17.12). Applying (19.2) we derive

(20.2) J˚pu, vq “ ξpwq
ζp2q

ÿ

c|w
χpcq

ÿ

pd,Dq“1

d´1

ż 8

0

φ

ˆ
dT

x

˙
h
´cx
u

¯
h
´cx
v

¯ dx
x
.

In the sequel we shall use the following abbreviations:

γ “ log c

logN
, γ1 “ log u

logN
, γ2 “ log r

logN
, ω1 “ log c{u

logN
, ω2 “ log c{v

logN
.

Therefore, γ “ γ1 ` ω1 “ γ2 ` ω2. Note that all these five numbers are
bounded in absolute value by

µ “ logM

logN
ă β ´ 1

2
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which is a small number. Moreover we shall be frequently changing the
variable x to t “ log x{ logN , so

x “ N t, x´1dx “ plogNqdt.

Now recall that in (5.2) we set hpxq “ aptq and in (4.1) we requested aptq to
be a smooth function on R with

aptq “ 1 ´ t, if t ď β,

0 ă aptq ă 1 ´ β, if β ă t ă α,

aptq “ 0, if t ě α,

where the transition points α ą β ą 1{2 are close to 1{2. Moreover, recall
that N “ Q2T 2 “ |D|pT {2πq2 and log |D|{ log T is very small so logN is
close to 2 log T .

We break the integration at x “ TM2 “ X, say, and write respec-
tively

(20.3) J˚pu, vq “ ξpwq
ζp2q pJ1pu, vq ` J2pu, vqq .

In the first part we have hpcx{uqhpcx{vq “ p1 ´ t ´ ω1qp1 ´ t ´ ω2q “
p1 ´ tq2 ´ pω1 ` ω2qp1 ´ tq ` ω1ω2. Note that
ÿ

c|w
χpcq “ λpwq,

ÿ

c|w
χpcqpω1 ` ω2q “ 0,

ÿ

c|w
χpcqω1ω2 “ λpu, vqplogNq´2

where

(20.4) λpu, vq “
ÿ

c|uv
χpcq log c

u
log

c

v
.

The vanishing of the middle sum above follows from (19.10). We shall
compute λpu, vq and other alike arithmetic functions in the next section.
Now we have

J1pu, vq “
ÿ

pd,Dq“1

d´1

ż X

0

φ

ˆ
dT

x

˙`
λpwqp1 ´ tq2 ` λpu, vqplogNq´2

˘ dx
x

“ λpwqA0plogNq2 ` λpu, vqA1,(20.5)

with A0 ! ϕpDq{|D| and A1 ! ϕpDq{|D| which are independent of u, v.

In the second part J2pu, vq the integration starts at x “ X so there is a
room for the variable d. We apply (18.7) and (19.7) getting

ÿ

pd,Dq“1

d´1φ

ˆ
dT

x

˙
“

ÿ

pd,Dq“1

d´1

˜
φ0

ˆ
dT

x

˙
´ 1

2
Ψp0q

ˆ
1 ´ dT

x

˙t
¸

“ ϕpDq
D

ż 8

0

φ0pzqdz
z

´ Ψp0qϕpDq
2D

´
log

x

T
` γ ´ 1 ` αpDq

¯

`OpτpDqT {xq
“ A logN ´B log x`OpτpDqT {xq,
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say, with

(20.6) A logN “ ϕpDq
D

ż 8

0

φ0pzqz´1dz ` Ψp0qϕpDq
2D

plog T ´ γ ` 1 ´αpDqq

and

(20.7) B “ Ψp0qϕpDq{2D.
We have bounds

(20.8) A ! ϕpDq{|D|, B ! ϕpDq{|D|
and we need nothing else to know about A,B. The error term OpτpDqT {xq
contributes to J8pu, vq at most

τpwqτpDqT
ż 8

X

x´2dx “ τpwqτpDqM´2 ă T´1{400.

By the above estimates we get J2pu, vq “ J20pu, vq`OpT´1{400q with J20pu, vq
equal to

ÿ

c|w
χpcq

ż 8

X

pA logN ´B log xqh
´cx
u

¯
h
´cx
v

¯ dx
x

“
ÿ

c|w
χpcq

ż 8

Xc{?
w

ˆ
A logN ´B log

x
?
w

c

˙
h
´
x
a
u{v

¯
h
´
x
a
v{u

¯ dx
x
.

If the integration starts fromX we get an elegant quantity (see (19.10))

(20.9) Kpu{vq “
ż 8

X

pA´B log x{ logNqhpx
a
u{vqhpx

a
v{uqx´1dx

and

(20.10) J20pu, vq “ λpwqKpu{vq logN.
Estimating trivially we get Kpu{vq ! logN . This bound has true order of
magnitude, but it is not useful, because we shall need a clear view on the
dependence on u{v. The remaining part is equal to

J22pu, vq “
ÿ

c|w
χpcq

ż X

Xc{?
w

ˆ
A logN ´B log

x
?
w

c

˙

«ˆ
1 ´ log x

logN

˙2

´
ˆ
log u{v
2 logN

˙2
ff
dx

x
.

Put

ν “ logX{ logN “ 2µ ` log T { logN “ 2µ` 1

2

ˆ
1 ` logQ

log T

˙´1

,

δ “ 1

2
pω1 ` ω2q “ 1

2
logpc{

?
wq{ logN.

In this notation we have

(20.11) J22pu, vq “ plogNq2
ÿ

c|w
χpcqP pδq
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where P pδq is the polynomial in δ of degree five given by

P pδq “
ż ν

ν`δ

pA ´Bt`Bδq
ˆ

p1 ´ tq2 ´ 1

4
pγ1 ´ γ2q2

˙

“ 3B

8
pγ1 ´ γ2q2δ2 ` 1 ´ ν

2
p2A ´ 3B `Bνqδ2 ´ B

12
δ4(20.12)

` odd degree monomials.

Since ÿ

c|w
χpcqδj “ 0, if 2 ∤ j,

we do not need the odd degree monomials. We get

(20.13) J22pu, vq “ λ2puvqA2 ` λ4puvqA4plogNq´2

where

(20.14) λjpwq “
ÿ

c|w
χpcqplog c{

?
wqj

and A2 ! ϕpDq{|D|, A4 ! ϕpDq{|D| do not depend on u, v. Gathering the
above results we arrive at the following representation of J˚pu, vq.

Lemma 20.1. Suppose w “ uv is squarefree and χpwq “ 1. Then

J˚pu, vqζp2q{ξpwq “ λpwqKpu{vq logN ` λpwqA0plogNq2

`λpu, vqA1 ` λ2pwqA2 ` λ4pwqA4plogNq´2(20.15)

`OpT´1{400q,
where Kpu{vq, λpu, vq, λ2pwq, λ4pwq are given by (20.9), (20.4), (20.14),
respectively. Moreover A0, A1, A2, A4 do not depend on u, v and they are
! ϕpDq{|D|.
Remarks. It is essential that Kpu{vq depends on the ratio u{v rather than on
u, v respectively. After computing λpu, vq, λ2pwq, λ4pwq in the next section
we shall see that all the terms in (20.15) look alike and each one has the
order of magnitude λpwqplogNq2 (except for the negligible error term). The
formula (20.15) displays the behaviour in terms of u, v as needed, but it is
long, so we wish to say that our arrangements could have been quicker if
we applied Taylor’s expansion of aptq. This would bring polynomials in δ of
arbitrary degree; consequently we would have struggled with the uniformity
in the resulting series coefficients, which is a formidable task. The fact that
we are dealing here with P pδq of degree five is due to the linearity of aptq in
the long segment t ď β with β slightly larger than 1{2.

21. Computing the λ-functions

Recall that λpu, vq and λjpwq are defined by convolutions of χ against
powers of logarithms. In this sections we arrange these as convolutions of 1
against the von Mangoldt functions

Λj “ µ ‹ plogqj .
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First writing plog c{uqplog c{vq “ plog c{?
wq2´plog

a
u{vq2 in (20.4) we find

that

(21.1) λpu, vq “ λ2pwq ´ λpwq
ˆ
1

2
log

u

v

˙2

.

Next, writing

λjpuvq “
ÿ

c|u

ÿ

d|v
χpcdq

ˆ
log

c?
u

` log
d?
v

˙j

we find that

(21.2) λjpuvq “
ÿ

a`b“j

ˆ
j

a

˙
λapuqλbpvq.

Observe that λapuq “ 0 if a is odd, so a, b run in (21.2) over even numbers.
For example we get

(21.3) λ2puvq “ λpvqλ2puq ` λpuqλ2pvq

(21.4) λ4puvq “ λpvqλ4puq ` 6λ2puqλ2pvq ` λpuqλ4pvq.

We shall attach the λ-functions to the mollifier factors ρpeuqρpevq which
vanish if λppq “ 0 for some p | euv, see (17.13). Therefore, for computing
λjpuq we can assume that λpuq “ 0, in which case

(21.5) λpqq “ τpq{pq,Dqq, if q | u.

We compute λjpuq as follows

2jλjpuq “
ÿ

c|u
χpcq

´
log c ´ log

u

c

¯j

“
ÿ

a`b“j

ˆ
j

a

˙
p´1qbpχ logaq ‹ plogbq.

Here we write pχ logaq ‹ plogbq “ χp1 ‹ Λaq ‹ p1 ‹ Λbq “ χ ‹ 1 ‹ χΛa ‹ Λb “
λ ‹ χΛa ‹ Λb, and then

ÿ

ℓmn“u

λpℓqχpmqΛapmqΛbpnq “ λpuq
ÿ

mn|u
χpmqτpn,Dq

τpmnq ΛapmqΛbpnq.

Adding the above expressions we obtain

Lemma 21.1. Suppose u is squarefree with λpuq “ 0. Then we have

(21.6) λjpuq “ λpuq
ÿ

q|u
Λ˚
j pqq

where

(21.7) Λ˚
j pqq “ τppq,Dqq

2jτpqq
ÿ

mn“q

χpmq
ÿ

a`b“j

ˆ
j

a

˙
p´1qbΛapmqΛbpnq.
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We do not need to know Λ˚
j pqq exactly, the following estimate is good

enough

(21.8) |Λ˚
j pqq| ď 2´jΛjpqq.

Hence Λ˚
j pqq is supported on numbers having at most j distinct prime divi-

sors. Moreover we get

(21.9)
ÿ

qďx

|Λ˚pqq|q´1 ! plog xqj .

Note that (21.6) holds for λ0puq “ λpuq with Λ˚
0pqq “ Λ0pqq.

Inserting (21.6) into (21.2) we obtain the following result

Lemma 21.2. Suppose w “ uv is squarefree with λpwq “ 0. Then we have

(21.10) λjpwq “ λpwq
ÿ

a`b“j

ˆ
j

a

˙ÿ

q|u

ÿ

r|v
Λ˚
apqqΛ˚

b prq.

The second part of (21.1) can be written in the same fashion, exactly we
have

(21.11)
´
log

u

v

¯2

“
ÿ

q|u
Λ2pqq ´ 2

ÿ

q|u

ÿ

r|v
ΛpqqΛprq `

ÿ

r|v
Λ2prq.

By (21.3) and (21.6) we get

(21.12) λ2pwq “ λpwq

¨
˝ÿ

q|u
Λ˚
2pqq `

ÿ

r|v
Λ˚
2prq

˛
‚

and

Lemma 21.3. Suppose w “ uv is squarefree with λpwq “ 0. Then we have

λpu, vq “ λpwq

$
&
%
ÿ

q|u

ˆ
Λ˚
2pqq ´ 1

4
Λ2pqq

˙
`

ÿ

r|v

ˆ
Λ˚
2prq ´ 1

4
Λ2prq

˙

` 1

2

ÿ

q|u

ÿ

r|v
ΛpqqΛprq

,
.
- .(21.13)

We conclude this section by combining the results into a compact implicit
form

Lemma 21.4. Suppose w “ uv is squarefree with λpwq “ 0. Then

J˚pu, vq “ λpwqξpwqplogNq2{ζp2q$
&
%
Kpu, vq
logN

`
ÿ

a`bď4

cpa, bqplogNq´a´b
ÿ

q|u

ÿ

r|v
Λ˚
apqqΛ˚

b prq

,
.
-(21.14)

where Kpu, vq is given by (20.9) and the coefficients cpa, bq do not depend
on u, v and they satisfy cpa, bq ! ϕpDq{|D|. Moreover Λ˚

apqq,Λ˚
b prq given by

(21.7) are supported on numbers having at most a, b prime factors, respec-
tively and they satisfy the bound (21.8), a fortiori (21.9).
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22. Estimating Eab

According to (21.14) the formula (17.11) splits into

K˚pT q “
#
F plogNq´1 `

ÿ

a`bď4

cpa, bqplogNq´a´bEab

+
plogNq2ζp2q´1

`OpT´1{401q(22.1)

where

(22.2) E “
ÿ

e

ÿÿ

pu,vq“1

ρpeuqρpevq
euv

gpeuqgpevqλpuvqξpuvqKpu{vq,

and

(22.3) Eab “
ÿ

e

ÿÿ

pu,vq“1

ρpeuqρpevq
euv

gpeuqgpevqλpuvqξpuvq
ÿ

q|u
Λ˚
apqq

ÿ

r|v
Λ˚
b prq.

Many arguments for estimating E and Eab are reminiscent of these applied
to the diagonal terms in early sections. All cases are similar, but E needs
extra attention.

First we do E00, because it is a notationally simpler model for every Eab.
In this case (22.3) reduces to

(22.4) E00 “
ÿ

e

ÿÿ

pu,vq“1

ρpeuqρpevq
euv

gpeuqgpevqλpuvqξpuvq.

Observe that the total contribution of E00 to the off-diagonal part K‰pT q
(see (17.10) and (17.11)) is equal to

(22.5) V00 “ cp0, 0qζp2q´1pLp1, χq logNq2E00.

If E00 is shown to be bounded (as expected due to the sifting effects) the
small factor Lp1, χq logN (due to the lacunarity effect) yields the vital saving
two times. However, it is hard to show that E00 ! 1, because twisting the
Möbius function with the character χ does not exactly work that way in
our exceptional scenario. An attempt to execute the summation in E00 by
routine arguments fails as one cannot keep track in the conductor aspect.
Therefore we take a roundabout path. We shall loose some portion of the
saving factor pLp1, χq logNq2, but fortunately not the whole saving.

We start by reconstructing E00 from the following expression

(22.6) W “
˜

ÿ

NăℓďN2

´
ÿ

N2ăℓďN3

¸
λ̃pℓq
ℓ

¨
˝ÿ

m|ℓ
µpmqgpmq

ξpmq

˛
‚
2

where λ̃pℓq is the completely multiplicative function with

(22.7) λ̃ppq “ pλppqξppqq2 “ p1 ` χppqq2p1 ` χppq{pq´2.

Opening the square we get

W “
ÿ

e

ÿÿ

pu,vq“1

µpeuqµpevq
euv

gpeuqgpevq
ξpevqξpevq λ̃peuvq

˜
ÿ

k

´
ÿ

k

¸
λ̃pkq
k
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where k runs over the segments N{euv ă k ď N2{euv and N2{euv ă
k ď N3{euv, respectively. Note that the above triple sum preceding the
sums over k matches that in (22.4) (check this using (17.13) and our choice
(22.7)).

The generating Dirichlet series of λ̃pkq is

L̃psq “
ÿ
λ̃pkqk´s “

ź

p

p1 ´ λ̃ppqp´sq´1 “ Lpsq2R̃psq

where the “correcting” factor R̃psq is given by the Euler product

R̃psq “
ź

p

p1 ´ λ̃ppqp´sq´1p1 ´ p´sq2p1 ´ χppqp´sq2

which converges absolutely in Re s ą 1
2
. For s “ 1 we have

R̃p1q “ 1

ζp2q
ź

p|D

ˆ
1 ` 1

p

˙
— ϕpDq

|D| .

Hence, by standard contour integration, we derive
˜
ÿ

k

´
ÿ

k

¸
λ̃pkq
k

“ ress“0L̃ps` 1qs´1pN2s ´N s ´N3s `N2sqpeuvq´s

`OpN´1{4q “ ´R̃p1qpLp1, χq logNq2 `OpN´1{4q.
Hence

(22.8) W “ ´R̃p1qpLp1, χq logNq2E00 `OpT´1{4q.
It looks like we have lost the entire saving factor pLp1, χq logNq2. Not true,
becauseW is small due to the lacunarity of λ̃pℓq. To estimate W we proceed
along the lines in Section 9 getting

W !
ÿ

NăℓďN3

λ̃pℓqℓ´1
`ÿ

m|ℓ

˘2 !
`ÿ

ℓ

λpℓqℓ´1
˘ 1

2

`ÿ

ℓ

τpℓq4ℓ´1
`ÿ

m|ℓ

˘2˘ 1

2 .

Hence, by the same arguments as in the proof of Corollary (9.2) we get

(22.9) W ! pLp1, χq logNq
1

2 .

The almost constant multiplicative function 1{ξpmq in (22.6) makes no dif-
ference to the arguments (1{ξppq “ 1 ` χppq{p). Combining (22.8) with
(22.9) we conclude that

(22.10) E00 ! |D|
ϕpDq pLp1, χq logNq´ 3

2 .

Finally, introducing (22.10) into (22.5) we get (recall cp0, 0q ! ϕpDq{|D|)

(22.11) V00 ! pLp1, χq logNq
1

2 .

The other sums Eab can be reduced to E00 by scaling the crop function
of the mollifier. Specifically we write

Eab “
ÿÿ

pq,rq“1
q,răM

Λ˚
apqqΛ˚

b prqρpqqρprq
qr

λpqrqξpqrqE00pq, rq
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where E00pq, rq stands for E00 with the crop functions gpeuq, gpevq replaced
by gpequq, gpervq and the summation variables are restricted by the co-
primality condition: peuv, qrq “ 1. This co-primality condition does not
really spoil the previous treatment of E00 and the fact that the scaled down
crop functions gqpmq “ gpqmq, grpnq “ gprnq are not equal does not mat-
ter neither (the subsequent application of Cauchy’s inequality resolves this
discrepancy). However we need to address the scaling effect. Writing

gqpmq “ gpqmq “
ˆ
logM{q
logM

˙r ˆ log` M{qm
logM{q

˙r

it boils down to changing the support range M into M{q and correcting
the relevant estimates by factor pplogM{qq{ logMqr. Well, not in full range,
because Lemma 9.1 used for estimatingW requiresQ4 ă M , which condition
translates into Q4 ă M{q. But in the rangeM{q ď Q4 we can apply Lemma
7.2 (precisely its relevant analogue). Adding the resulting estimates, we
derive the following bound

Wabpqq ! pLp1, χq logNq
1

2

ˆ
logM{q
logM

logN

logM{q

˙ r
2

! pLp1, χq logNq
1

2 .

The same bound holds for Wabprq (hereWabpqq and Wabprq denote the sums
of type W with the crop function g replaced by gq and gr, respectively).
Moreover we have˜

ÿ

qăM

Λ˚
apqqq´1

¸˜
ÿ

răM

Λ˚
b prqr´1

¸
! plogMqa`b.

Hence

(22.12) Eab ! |D|
ϕpDq plogMqa`b pLp1, χq logNq

3

2

and the total contribution of Eab to the off-diagonal part K‰pT q, say Vab,
(see (17.10), (17.11), (22.1)) satisfies

(22.13) Vab ! pLp1, χq logNq
1

2 .

23. Estimating E

The case of E can be regarded as a generalization of E00 in which the
extra kernel function Kpu{vq is introduced. We reconstruct E from the
following expression
(23.1)

W “
˜

ÿ

NăℓďN2

´
ÿ

N2ăℓďN3

¸
λ̃pℓq
ℓ

ÿ

m1|ℓ

ÿ

m2|ℓ
µpm1qµpm2qgpm1q

ξpm1q
gpm2q
ξpm2qK

ˆ
m1

m2

˙
.

The same arguments which produced (22.8) now yield

(23.2) W “ ´R̃p1q pLp1, χq logNq2E `OpT´1{4q.

Before estimatingW we need to separate m1,m2 in Kpm1{m2q. This can
be accomplished quickly by changing the variable of integration x in (20.9)
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into x{?
m1m2 giving

K

ˆ
m1

m2

˙
“
ż N

X
?
m1m2

ˆ
A´B

log x{?
m1m2

logN

˙
h

ˆ
x

m1

˙
h

ˆ
x

m2

˙
dx

x
.

Recall that N “ Q2T 2 and X “ M2T . Since hpxq “ aptq is linear in
t “ log x{ logN for t ă β we can write

K

ˆ
m1

m2

˙
“
ż N

X

ˆ
A´B

log x

logN
` B

2

logm1

logN
` B

2

logm2

logN

˙

h

ˆ
x

m1

˙
h

ˆ
x

m2

˙
dx

x
` P

ˆ
logm1

logN
,
logm2

logN

˙
logM(23.3)

where P px1, x2q is a polynomial of degree five with coefficients ! ϕpDq{|D|
(they are linear forms in A,B). From the above expressions the following
convolution sums emerge (a kind of sifting weights);

(23.4) θapℓq “
ÿ

m|ℓ
gpmqµpmq

ξpmq

ˆ
logm

logN

˙a

p0 ď a ď 5q,

(23.5) θapℓ;xq “
ÿ

m|ℓ
gpmqµpmq

ξpmq

ˆ
logm

logN

˙a

h
´ x
m

¯
p0 ď a ď 1q.

Hence the double sum over the divisors of ℓ in (23.1) splits into the inte-
gral

(23.6)

ż N

X

„ˆ
A´B

log x

logN

˙
θ0pℓ;xq `Bθ1pℓ;xq


θ0pℓ;xqdx

x

and 36 terms of type cpa, bqθapℓqθbpℓq logM for 0 ď a, b ď 5 with coefficients
cpa, bq ! ϕpDq{|D|. Hence (23.1) yields

W !
ÿ

NăℓăN3

λ̃pℓqℓ´1pθapℓq2 ` θbpℓ;xq2qϕpDq
|D| logN

for some 0 ď a ď 5, 0 ď b ď 1 and X ă x ă N . By the arguments in
Section 11 we show that (compare it with Lemma 9.1)

(23.7)
ÿ

NăℓăN3

τpℓq4ℓ´1
`
θapℓq2 ` θbpℓ;xq2

˘
! 1.

Hence we derive in the same way as (22.9) that

(23.8) W ! pLp1, χq logNq
1

2

ϕpDq
|D| logN.

On the other hand we have the formula (23.2), comparing these we get

(23.9) E ! pLp1, χq logNq´ 3

2 logN.

Finally it shows (see (17.10) and (22.1)) that the total contribution of E to
the off-diagonal K‰pT q, say V , satisfies

(23.10) V ! pLp1, χq logNq
1

2 .
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24. Comments about Completing the Proof

After having completed the treatment of the diagonal terms we wrapped
up the results in the lower bound (12.1) for N00pT q in which the off-diagonal
contribution K‰pT q is postponed for handling in the rest of the paper. We
are now ready to finish the job by compiling the relevant results.

According to the formula (16.6) we partitioned K‰pT q into two similar
parts L2p1, χqK˚pT q ´ L2p1, χqK1pT q, see (17.10) for exact formula. The
third part was eliminated earlier by making the assumption (16.10). This
means that the mollifier misses terms which are supported on multiples
of D. However the contribution of the missing terms can be treated by
undemanding arguments. For example one can show by straightforward
estimations that the missing part in the integral IpT q (see (3.5)) is bounded
by |D|´ 1

4T plog T q4 which is negligible.

Next K˚pT q was split further into a number of pieces of similar shape (see
(22.1)) and the contribution to K‰pT q of every piece separately was shown
to satisfy the same bound (22.11), (22.13), (23.10). This bound does not
exceed the existing error term in the lower bound (12.1). Finally it remains
to cover K1pT q. We have gone quite far towards K1pT q by computing its
constituents (see Lemma 16.2) until the case appeared merging the lines
of K˚pT q. Without repeating many of the same arguments we claim that
K1pT q contributes no more than K˚pT q.
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