E% University of
OPEN (2" ACCESS BRISTOL

Conrey, J. B., & Iwaniec, H. (2020). Critical zeros of lacunary L-
functions. Acta Arithmetica, 195(3), 217-268.
https://doi.org/10.4064/aa180813-11-11

Peer reviewed version

Link to published version (if available):
10.4064/22180813-11-11

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Instytut Matematyczny at https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/acta-
arithmetica/all/195/3/113634/critical-zeros-of-lacunary-I-functions . Please refer to any applicable terms of use of
the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the

published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/


https://doi.org/10.4064/aa180813-11-11
https://doi.org/10.4064/aa180813-11-11
https://research-information.bris.ac.uk/en/publications/24816531-4e78-444c-a0f4-9b90ac946a39
https://research-information.bris.ac.uk/en/publications/24816531-4e78-444c-a0f4-9b90ac946a39

arXiv:1607.03288v1 [math.NT] 12 Jul 2016

CRITICAL ZEROS OF LACUNARY L-FUNCTIONS

J.B. CONREY AND H. IWANIEC

Introduction

Statement of Results

Levinson’s Method

A Partition of G(s)

Estimating I(s)

The Diagonals

Estimation of the First Diagonal Terms
Reducing to the Squarefree Diagonal Terms
9. Estimating S’(X,Y)

10. Sums of the Md&bius function

11. Estimation of T'(X,Y)

12.  Conclusion

13.  An Introduction to the Off-diagonal Terms
14. General Convolution Sums

15. Special Convolution Sums

16. Computing the Series G(h)

17. Back to the Off-Diagonal Terms

18.  Computing the Series ¢(z)

19. Computing the Series k*(y)

20. Evaluation of J*(u,v)

21. Computing the A-functions

22. Estimating Eg

23. Estimating E

24. Comments about Completing the Proof
References

i A e

EEEEEERERREEREEEERREEE s



http://arxiv.org/abs/1607.03288v1

Acknowledgments. This project started years ago during numerous visits of
the second author to the American Institute of Mathematics and two visits
of the first author to Rutgers University. We thank both institutions for
these opportunities and their support. Then the work continued when the
second author enjoyed a Senior Fellow position at the Institute for Theo-
retical Studies — ETH Ziirich in August 2014 — July 2015. He is happy to
acknowledge the superb working conditions and generous support received
from ETH-ITS while the project was in progress and completed. We are also
grateful for support from the NSF grants DMS 1406981 and DMS 1101574.
We thank Corentin Perret for technical help.



CRITICAL ZEROS OF LACUNARY L-FUNCTIONS 3

1. INTRODUCTION

We consider an L-function given by the Euler product

(1.1) L(s) = [ [ = Xp)p~* + s(p)p~ )

with [A(p)| < 2 and |x(p)| < 1, so the product converges absolutely in the
half-plane Res > 1. Hence L(s) has the absolutely converging Dirichlet
series expansion

(1.2) L(s) = > An)n™* if Res > 1,

with multiplicative coefficients A(n) which are bounded by the divisor func-
tion 7(n). Moreover, we assume that L(s) admits analytic continuation to
the whole complex s-plane and it is holomorphic, expect possibly for a sim-
ple pole at s = 1. Furthermore, L(s) satisfies a standard functional equation
which we write in the following form

(1.3) L(s) = X(s)L(1 — s)

where L(s) stands for the L-function with Dirichlet series coefficients com-
plex conjugated and X (s) is called the root factor. Note that | X (s)| = 1 if
Res = 1/2. One may consider the equation (L3)) as a definition of X(s).
Typically X (s) turns out to be an exponential function times the ratio of
one or two gamma functions. We do not need to specify the root factor.
For our purpose it suffices to assume that X(s) is holomorphic in the strip
0 < Res < 1 and it satisfies

(1.4) X(s+2) = X(s)(@Qls) ™ {1+ O (I2l(Is] + [2) )}

if Res = 1/2 and —1/4 < Rez < 0, where the implied constant depends
only on the parameters (shifts) in the involved gamma functions. In specific
cases ([[L4) follows by Stirling’s formula.

We say that L(s) is “lacunary” if its coefficients vanish or are quite small
frequently. We measure this phenomenon by postulating the following esti-
mate

(1.5) DI M)t <eA
Q4<n<Q4A

to hold with some ¢ = £(Q) > 0 for all A > 1. Here we think of ¢ =
£(Q) being arbitrarily small as @ gets large (Q? is closely related to the
conductor of L(s)). However, even a fixed € > 0 but sufficiently small would
suffice for nice applications. If (LH) holds, then we say that the L(s) is
“e-lacunary”.

Remarks. The lacunarity condition with e relatively small reveals that the
coefficients A(n) of L(s) appear less often than the primes numbers in the
segments [Q*, Q*4]. When it comes to perform some mollification, this
property means that one applies sieve of small dimension. But it is hard to
believe that such L-functions do exist in reality, therefore our undertaking
here is mainly for learning the phenomena and exercising delicate techniques.
For instance we estimate the lacunary bilinear form ([22.4]) without losing
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vital savings from sifting effects along the lines (22.6)—(22.10). We are mostly
interested in special L-functions, nevertheless we set the above introduction
in some generality, because it exposes the “exceptional characters” at work
more clearly than the roundabout argument with “exceptional zeros”.

Our primary source of lacunary L-functions is the quadratic field K =
Q(v/D) of discriminant D. Let 1 : CI(K) — C be a character of the ideal
class group of K. There are h(D) = |CI(K)| such characters. For each of
these we have the L-function

¥) = > p(a)(Na)™ = [ [(1 — v (p)(Np) )"
a p
which satisfies our conditions with
(1.6) An) = > (a)
Na=n

and

(1.7) Q = +/|D|/2r.

In this case, the root number (the sign of the functional equation) is 1
and the root factor X(s) is equal to Q172T(1 — 5)/T'(s) if D < 0 and
QT2 (L2)/12%(%) if D > 0.

The coefficients of L(s,) are bounded by the coefficients of L(s, ) for
the trivial character ¢y = 1. By the factorization L(s,y) = ((s)L(s,x),
where y (mod |D|) is the Dirichlet real character (given by the Kronecker
symbol associated with the field K = Q(v/D)) one sees that the coefficients
of L(s,1g) are

(1.8) Mo(n) = (1xx)(n Zx

Clearly, |A(n)| < Ao(n) < 7(n). Moreover, we have (cf. (22.109) of [IK04])
D do(m)n™t = L(1,x)(log N + ) + L'(1,x) + O <|D|1/4N—1/2 log QN)

n<N
which formula implies the following bound
(1.9) Z Mo(n)n~t < L(1,x)log N

Q4<n<N

provided |D| = (27Q)? is sufficiently large.
Definition 1.1. We say that the character x (mod |D|) is “c-exceptional”
if
(1.10) L(1,x)log|D| <e

Then, the corresponding discriminant D of the field K = Q(+/D) is called
“e-exceptional”.

By (L9) and (LI0) one infers (LH). Therefore, if the discriminant D is

“e-exceptional”, then every L(s,)) is e-lacunary.
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We recall some worthy shortcut notations which are used in analytic
number theory. First, if f, g are complex-valued functions, then the relation
f « g means that |f| < cg holds for all the relevant arguments with certain
(implied) constant ¢ > 0. Next, the relation f = g means that f « g and
g < f hold. Then O(g) stands for a function (or a quantity) which is « g.
Note that the above relations can hold only if ¢ > 0. For example the
statement sinz « sinz is false. If ¢, T are real numbers, then the notation
t ~ T stands for the inequality 7' < t < 27T. Occasionally, we shall use
the same symbol to denote different things, but the reader should not be
confused, because the proper meaning will be clear from the context.

2. STATEMENT OF RESULTS

Let N(T') denote the number of zeros p = 8 + iy of L(s) (counted with
multiplicity) in the rectangle 0 < § < 1, v ~ T. By contour integration
using the functional equation one derives the formula

(2.1) N(T) = £1og QT + O(T)

for any T' > (). Here the dominant term emerges from variation of the
argument of the root factor and the implied constant depends only on the
gamma parameters.

Let No(T) denote the number of zeros p = 1/2 + iy of L(s) (counted
with multiplicity) in the segment v ~ 7. Any natural L-function should
satisfy the Riemann Hypothesis so Ny(T') should be equal to N(T). For
L-functions of degree 1 or 2 it is known that a positive proportion of zeros
are on the critical line Res = 1/2, that is No(T) = N(T) for all T with
log T sufficiently larger than log Q). It seems possible to show that if L(s) is
e-lacunary (see the condition (LH)), then

No(T) = {1+ O("*)}N(T) + O(T)
for all T with QYVe < T < QY.

For transparency we work out only the case of functions L(s) = L(s, )
which are attached to the characters ¢ on ideal classes of the quadratic field
K = Q(V/D). In greater generality as described in Section [l the arguments
should be very similar. Our main result is the following

Theorem 2.1. Let Noo(T) denote the number of simple zeros p = 1/2 + i~y
of L(s,¢) with vy ~ T and N(T) the number of all zeros p = B+1ivy of L(s, 1))
with 0 < B <1, v ~ T counted with multiplicity. We have

(22)  Ne(T) = N(T) + O (T log |D| + (L(1, x) log T) 4T log T)

where the implied constant is absolute. Putting ¢ = €(D) = L(1, x) log | D|
we get
(2:3) Noo(T) = {1+ O(0)}N(T)

with any § = /% and every T with |D|Y% < T < |D|%"/2, where the implied
constant is absolute.
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Remarks. First of all, the approximate formulas (2.2)) and (2.3]) are uncon-
ditional, but of course, (23] is meaningful only if ¢ = ¢(D) is sufficiently
small. This does not hold in reality since the Riemann Hypothesis implies
the lower bound L(1,x) » 1/loglog|D|. But so far the best known bound
is L(1,x) » |D|=? with any § > 0, the result due to C.L. Siegel which is
not effective (the implied constant depends on € and it cannot be computed
numerically if § < 1/2). Therefore, it is still interesting to speculate on
the effect of the assumption that e(D) — 0 as D varies over some infinite
sequence of discriminants no matter how sparse it is.

Definition 2.2. An infinite sequence of discriminants D is called “excep-
tional” if

(2.4) e(D) = L(1,x)log|D| — 0.

Corollary 2.3. As e = ¢(D) — 0 over an exceptional sequence, then for
every 1 € CI(K) the critical simple zeros of L(s,) of height ~ T comprise
a 100% of all the zeros of height ~ T for any T with |D|71°8 < T <
|D|—1/alog6.

This result sounds more impressive when applied for the trivial ideal class
group character. In this case L(s, ) factors into the Riemann zeta function
((s) and the Dirichlet L-function L(s, ). For each factor separately we know
the true values (asymptotically correct estimates) for the full numbers of
zeros (counted with multiplicity) in the rectangle s = o + it with 0 < o < 1,
t ~ T these are

T T
—logT +O(T), —log|D|T+ O(T)
2m 2m

respectively. The sum of these values agrees with N(T') (see (2.1I)), conse-
quently Theorem 2.1] implies

Corollary 2.4. Let D run over an exceptional sequence of discriminants
so e = e(D) = L(1,x)log|D| — 0. Choose any T with |D|~'°8¢ < T <
|D|~/2108¢ | Then the number of critical zeros of ((s) of height ~ T which
are simple and different from these of L(s,x) approaches asymptotically the
number of all zeros of ((s) of height ~ T.

If L(s) is a lacunary L-function of degree two, then the twisted L-
function

L(s;AX') = ), A/ (n)n ™
n=1

by any fixed Dirichlet character x’ is also lacunary of degree two. The
arguments presented in this paper for ¥’ = 1 and A = 1 * x, where y is
the real character to exceptional conductor |D|, extend easily to L(s; \x') =
L(s,x")L(s,xx"). In particular Corollary 4] generalizes to any Dirichlet
L-function L(s,x’) in place of {(s).

If one is willing to assume that

L(1,x) « (log [D[)7%°
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for an infinite sequence of discriminants D, then the same results would
be achieved much faster by substantially simpler arguments (ignoring the
sifting effects of the mollifier in various places). However the arguments are
not powerful enough to cover the L-functions of degree larger than two, even
if the lacunarity condition is assumed to be extremely strong.

3. LEVINSON’S METHOD

There are two well established methods for counting zeros of L-functions
on the critical line — the Selberg method [Sel42] and the Levinson method
[Lev74]. They are diametrically opposite to each other. Selberg’s method
relays on observing the sign changes of a suitably normalized and mollified
L-function as its argument runs over a segment of the critical line. There is
no risk of getting negative bound for the counting number, but the method
is not perfect for intrinsic reasons; for one that the zeros are not supposed to
be almost evenly spaced. Therefore, it needs a sensitive design for counting
the zeros adequately (asymptotically precise) when passing through the seg-
ments. Yet, it may be the case that under the lacunarity condition the zeros
do pretend to be more or less evenly spaced, contrary to the Pair Correlation
Conjecture of Montgomery. This question was addressed by R. Heath-Brown
during the AIM conference in Seattle of August 1996 (unpublished).

The method of Levinson is risky, because it may produce a negative
bound for the counting number of critical zeros if the relevant estimates are
crude. On the other hand it opens a possibility for accounting a 100% of the
critical zeros if the mollification is nearly perfect. This is indeed the scenario
for lacunary L-functions. A far reaching version of Levinson’s method has
been developed in [Con&9], see also the Appendix in [CIS13]. In this section
we are going to adopt Proposition A of [CIS13] to our particular context.
We shall also borrow numerous arguments developed in |[CI02] for handling
the off-diagonal terms in Sections [[3HI7l

Thanks to the lacunarity of L(s) we do not care about delicate choices
of the parameters involved in Levinson’s original setup. We shall also take
numerous advantages of the lacunarity for technical simplifications. In par-
ticular the root factor does not play a role (no hassling with cross-terms).
Although, the off-diagonal terms do appear, their contribution is nominal,
because the lacunarity strikes twice independently. However, by no means
one can neglect the off-diagonal terms quickly. For simplicity we shall sacri-
fice some surplus of the gain, but of course, not everything (see, for example,

how we derived the bound (22.9]) from the expression (22.6])).
We start with the linear combination of L(s) and its derivative:
(3.1) G(s) = L(s) + L'(s)/log N

with N = 2 (the level) to be chosen later, see (£.14]). To G(s) we attach a
mollifier which is given by a Dirichlet polynomial

(3.2) M(s) = Z v(m)m™?

m<M
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with coefficients v(m) to be determined later subject to v(1) = 1, |v(m)| <
7(m). For now we assume that the mollifier M (s) has length M < T2, but
we shall see that shorter mollifiers do their designated job (to produce sifting
effects) pretty well, again due to the lacunarity properties. Putting

(3.3) F(s)=G(s)M(s) — 1

we have Levinson’s inequality (see Proposition A of [CIS13])

2T
<uw%@>>Nmij1%

Ta Jr

1+F(la+zt)’dt+O(T)

> N(T) - 1,(T) + O(T)
ma
where
2T 1
L,(T) — f F <— _ a+z’t) dt.
T 2

This holds for any a > 0 and 7 > Q* with absolute implied constant. Since
we do not care loosing an absolute constant factor it is possible to replace

14(T) by
2T 1
(3.5) I(T) :J F (— +z‘t>‘dt.
T 2
Lemma 3.1. Let T > > Q8. For 0 <a<1/2 we have
(3.6) I(T) < T*(I(T) + O(T™®))

where the implied constant is absolute.

Proof. Put

2(1(4 B a2) T4z

SR Ep [y

It is clear that

1 0 0y 2 d
— |H(iv)|dv=gj e
21 J)_ o T)_pd+via®+v
1 0
o |H(iv)|(v* + D)dv < 4,
—Q0

o0
f H(—1+ )| + )dv « T

—0
Since H(z) has simple pole at z = —a with residue 7-%% we get
1 1
T~%F(s—a)=-—| F dz — — F H(z)d
(s —a) 271 ), (s + 2)H(z)d= o ) (s + z)H(z)dz
if Res = 1/2. Hence T—4%[,(T) <V — W, say, where
2T
V = — w\f ( —i—zt—f—zv)‘dtdv,
2m
1 = 1
W = |H( 1+w|j <—+zt+w)’dtdv
2 —» 2
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By the convexity bound for L(s) we derive
F(s) « (MQ|s|)"?(log MQ|s|)?,  if Res = 1/2.

JT-H)
T

The same bound holds with T replaced by 27T'. Hence we get

2T
-
T

Next, by the functional equation for L(s) and the trivial estimation on the
line Res = 3/2 we derive

F(s) « (MQ|s|)?, if Res=—1/2.

Hence

F (5 + it) ‘ dt « (v® + 1) (MQT)Y?(log T)2.

1
F (5 + it) ‘ dt + O(T™®).

Hence

W « (MQT)? f |H(—1 + iv)|(v® + 1)dv < 1.

This completes the proof of (B.6]). O

After inserting (3.6]) into (3.4]) it is clear that the best choice of the shift
is a =1/4log T giving

Lemma 3.2. Let T > M? > Q%. Then
(3.7) Noo(T) > N(T) —4I(T)log T + O(T)

where I(T) is given by B3) with F(s) = G(s)M(s) — 1 and the implied
constant is absolute.

We are going to show that I(7")/T is small, provided the mollifying factor
M (s) is chosen properly. Naturally this suggests that M(s) should pretend
to be the inverse of L(s), or slightly better of G(s), but due to the lacunarity
it does not matter which one is on the target. Writing

38) L)' =[] =P+ x()p™*) = Y, plm)m™*,

we get the multiplicative function p(m) with

(3.9) p(p) = =A(p), p(*) = x(p), p(p*) =0 if a > 2.
We take
(3.10) M(s) = 3 plmglmm=

m<M

where g(m) is a nice cropping function. For instance

(311) otm) = (1- 20 )

with r a sufficiently large integer will do the job (r = 32 is fine). The large
degree of vanishing at the end point m = M is necessary for our technique
of producing some sifting effects.
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Note that p(m) is supported on cubefree numbers,
(3.12) lp(m)| < Aog(m) for all m
(3.13) p(m) = pu(m)A(m) if m is squarefree.

Remarks. Certain parts of the forthcoming sums are supported on the molli-
fier terms m = 0 (mod |D]), specifically the off-diagonal constituents (I6.9]).
We could easily eliminate these parts right now by restricting (3.10]) to m # 0
(mod |D|). This incomplete mollifier does the job as good as the full one,
because it is easy to estimate the missing terms by |D|~'/2T(log T)?'> di-
rectly using Cauchy-Schwarz inequality and the mean value estimates for
|G(s)|* and |M(s)|? (giving up the lacunarity features and the sifting ef-
fects). This alteration can be implemented any time so we postpone the
issue to the comments in the last section.

4. A PARTITION OF G(s)

To apply the mollifier M (s) to G(s) and observe its sifting effects we need
to expand G(s) into Dirichlet polynomials. To this end we fix two smooth
functions a(z), b(x) on R with

(4.1) a(x) +b(z) =1—x,
a(x) supported on x < « and b(z) supported on x > 3, where 0 < f < a < 1

are fixed numbers (see Figure[I]). In applications we shall choose «, § greater
but close to %

FiGURE 1.

Given N > 2 consider the function

(4.2) flz) = Z2jo a (lfg%) y*ldy

The integral converges absolutely in Rez > 0. Integrating by parts we
get

(4.3) f(z)log N = La a” (u) N"*du.

This expression shows that f(z) is an entire function and its power series
expansion begins with

(4.4) f(z) =(ogN) ™t +2+...
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By Mellin inversion, ([4.2)) yields

logy 1 s 9 .

4. = — 274 f .
(45) o(122) - 5 S iy >0
Moving to the line Re z = —1 we get by (£4) and (4.1

logy -1 . o .

4. b| —= | = — 27z, if .
(46) (o) = 3 ), Fw=s2a ity >0
Now consider the Dirichlet polynomial

logn s

(4.7) A(s) = ;a <1OgN> A(n)n

which has length N®. Let s be in the critical strip 0 < Res < 1. By (Z5)
we derive

1
A(s) = 5 " L(s + 2)f(2)22dz
1
= 7= L(s+ 2)f(2)2 7 %dz + G(s) + Rf(1 — s)(1 — 5) 7>
27 (-1)
where the second term G(s) = L(s) + L'(s)/log N comes from the double
pole at z = 0 and the third term comes from a possible simple pole at
z =1 —s. In the integral over the line Rez = —1 we apply the functional
equation L(s + z) = X (s + 2)L(1 — s — z) with
(4.8) X(s+2) = X(s)(Qls]) {1 + (s, 2)},
say, see (L3)) and (I4]). This integral splits accordingly
1

— L(s + 2)f(2)z %dz = =X (s)B(s) — X(s)R(s)

211 (-1)
where

1 _
(4.9) B(s)=5— | L(l—s—2)(Qls])"*f(2)2%dz
211 (1)
and
1 T —2z
(4.10) R = o= [ T s 2(@QIs) > Fn(s. e
T J(—e)

Note that in R(s) we moved back the integration to the line Re z = —¢ with
e = 1/log Q|s| without passing poles, because 7(s, z) is holomorphic in z
(not in s). Now, by (44]), the integral (£.9]) expands into the series

log @[s|*/n\ < -1
4.11 B(s)=)» b| ————— T
(@1) )= S () Ko
We have proved the following formula
Proposition 4.1. For s in the critical strip 0 < Res < 1 we have

(4.12) G(s) = A(s) + X (s)B(s) + X (s)R(s) + Rf(1 — s)(1 — 5) 72

where A(s), B(s) are given by (A1), (£11), respectively, R(s) is the integral
(I0) and R denotes the residue of the L-function; R = L(1,x) if ¢ is

trivial and R = 0 otherwise.
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If Res = 1/2, then R(s) can be easily estimated by

1

(4.13) R(s) « QY?|s|"1=.
This follows by L(1—s—2) « (|s+2]|Q)"? (the convexity bound), f(z)log N «
1 (see ([@3)) and n(s,2) < |z|71(|s| + |2]) 7! (see (T4)).

Assume T > Q% and choose the level of Levinson’s form (B.1])
(4.14) N = Q*1.

From now on we let s be in the segment

1
(4.15) s=g+it, T<t<2T.

Then the root factor satisfies | X (s)| = 1 and for the polar term we derive
by (@.3)

fA—5)(1—s) "2« N2T72 < NY212 = QT L.
The residue of L(s) is R « log Q). Therefore, Proposition 1] yields
Corollary 4.2. For s in the segment (LI5]) we have
(4.16) G(s) = A(s) + X(s)B(s) + O(T~/4¥)
where the implied constant is absolute.

Next we look into coefficients of B(s), they depend on |s| mildly if s is
in the segment (4.I5]). Precisely we have

2|2
b log Q°|s]®/n _b 1_10gn+5
log N log N

2log |s|/T log 4
4.17 d=0(5) = ——7—, 0<d< ——.
(4.17) () logN '’ log N

where

The small shift in the function b(1 — x + J) is dispensable, it can be
isolated by Taylor’s expansion

b(l—z+0)=b(1—z)+d'(1—2z)+ %521/’(1 — )+ A(s, z),

say, with the last term A(s,z) being sufficiently small for easy direct han-
dling (the sifting effect can be ignored). Nevertheless we opt working with
one function b(1—x +¢) contaminated by the shift ¢ rather than with several
derivatives without the shift.

For s on the line Res = 1/2 we can write the complex conjugate of B(s),

see ([dI1)), in the following fashion

(4.18) B(s) = Zb* (ll(i)gg]?/) A(n)n™*
where

(4.19) b*(z) = b(1 — x + 0).
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Note that b*(z) is supported on z < 1 — 5+ 6 so B(s) runs over 1 < n <
4N'=8. We have

(4.20) b*(x) =2 —0, fx<1—a+},
so the sum (£I8) begins with
logn _
4.21 -0 5.
(1.21) S (- 0) Mo
n<N1_O‘
On the other hand the sum (7)) begins with
logn _
4.22 — 5
(4.22) > <1 logN) A(n)n
n<NB

5. ESTIMATING I(s)

Multiplying (4.16) by the mollifier (B.I0]) we obtain the inequality
(5.1) [F(s)| <|C(s)]| + |C* ()| + O(|M(s)| T~ /%)
with C(s) = A(s)M(s) — 1 and C*(s) = B(s)M(s) for s in the segment
(#I5). The Dirichlet polynomials
Cls)= >, o C*s)= > O
1<l/<M N« 1<l<4MN1-8
have coeflicients given by convolutions; specifically

62 )= X pmrmgmin).  ain) = a (125 ).

mn=~{

*(0) = m)A(n)g(m)h*(n *n:*logn
B9 0= 3 pmremi . 1 = (5T ),

and g(m) is the cropping function which we have chosen in (B.I1]). Inserting
the inequality (5.J]) into the integral (8.5]) we obtain

(5.4) I(T) < J(T) + J*(T) + O(T*"*¥(1og T')?)
where
s = [Te (el s = [Tlor (e a)|a

and the error term comes from the classical mean-value theorem for Dirichlet
polynomials.

Next we apply the Cauchy-Schwarz inequality and we expand the range
of integration getting J(T')? < TK(T) where
(5.5) ey = (o (L) le (2 i) a
. = T 5 i
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and ®(u) is any non-negative smooth function, compactly supported on R*
with ®(u) > 1 in the interval 1 < u < 2. Similarly J*(T)? < TK*(T)

where
1
c* (5 + it)

2T

(5.6) KC*(T) — f
T

but without smoothing, because it would give no advantage. Therefore we

have shown the following inequality

(5.7) I(T) < (TK(T))? + (TK*(T))z + O(TY/*(log T)?).

2
dt,

6. THE DIAGONALS

We take 3 somewhat larger than 1 to make sure that the sum C*(s) is
shorter than T'. Specifically C*(s) has length < 4M N'~5 so it is enough to
assume that
(6.1) MNP < T(logT) .

Then the classical mean-value theorem for Dirichlet polynomials shows that
K*(T) is equal to the contribution of the diagonal terms up to a small error
term. This claim requires some explanation, because the coefficients of C*(s)
depend on |s|. We have

L 2T ‘
K*(T) =Y (1tn) "2 L *(01)c* (L) (1 /02)  dt

{1 Lo
and c¢*(¢1)c*(¢2) is equal to

2.2, plma)p(ma)A(n1)A(n2)g(ma)g(ms)b (8; llzi—?\;’ 11(())31\?>

mini=~1
mong=~»o

with b(s;z1,x2) = b(0(s) +1 —21)b(6(s) + 1 — x2) and 0(s) given by ([AI7]).
The diagonal terms ¢; = £ contribute T(K§ + c*(1)?), where
(6.2) Ki= >, ¢!

1<€<4MN'-8

and c*(¢) are taken with the § = d(s) at some fixed point s in the segment
(#I5) by the mean-value theorem. Note we have extracted the first term
c*(1) = h*(1) =b*(0) = =5 « 1/log N.

If £1 = ¢5 we integrate by parts. Since

%b(s;xl,m) « %5(5) =t/(t* + 1)log N = 1/Tlog N,

we estimate the contribution of the off-diagonal terms by
NN )7 () (Crle)E | log 1/65) T « MNP (log MN)Y
01 =lo<dMN1—=5

(the small shift §(s) does not influence the bound). By our assumption (6.1)
we conclude that

(6.3) K*(T) = TKE + O(T/log T).
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In case of IC(T") there is no perturbation by the shift d(s) so the diagonal
contribution is exactly ®(0)TKy, where

(6.4) Ko= >, @
1<l<M N«

Note there is no term with [ = 1. However the polynomial C(s) has length
MN® > MNP > MNY2 = MQT > T so there is a significant contribution
of the off-diagonal terms, say TK”(T), where

(6.5) KAT) = D1 W(Tlogty/lo)c(tr)e(la)(f16z) 2
1<li#lo<M N>

and U(27v) stands for the Fourier transform of ®(u). We have

(6.6) K(T) = W(0)TKo + TK*(T).

Our goal is to show that the diagonal sums Ky and Kf are small. The
partial sums

(6.7) S(X,Y)= > 0!
X<U<Y

with 1 < X <Y need different handling in various ranges. The correspond-
ing partial sums

(6.8) SHX,Y) = D P!
X<ULY
are similar to S(X,Y’) so we shall treat S(X,Y) in details and only occa-

sionally we shall make comments to illuminate small differences. The final
estimates for S(X,Y) and S*(X,Y’) will be the same.

The off-diagonal sum K*(T') requires a lot more sophisticated analysis
which we postpone to the last ten sections.

7. ESTIMATION OF THE FIRST DIAGONAL TERMS

The lacunarity of A\(¢) with small ¢ is not frequent and the best available
bound is the trivial one |A(¢)| < 7(n). However every convolution coefficient
c(0),£ = 0, is small by the sifting effect. We shall see that in the range
¢ < M the coefficients ¢(¢) are supported on almost primes (¢(¢) vanishes if
¢ has many distinct prime divisors).

In this section only we introduce the von Mangoldt functions A;(n) of
degree j = 0,1,2,...,r, which are derived from the Euler product (LI]) and
scaled down by factors (log M)~J. Sorry we use the same notation as for
the classical von Mangoldt functions derived from ((s), hopefully without
confusion.

If ¢ < M, then (5.2)) becomes

(7.1) cl) = > p(m)A(n) (1 - llsgg]\n;y (1 - 12;;)

mn=~{
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because the restrictions m < M, n < N are redundant. Moreover (5.3
becomes

@2 0= % s (1- 20 ) (12 -).

mn=~{

Clearly (7.I) and (7.2) are very similar. The generating Dirichlet series for
the unrestricted convolution coefficients (T.I)) is equal to

(S0 (1= 255 ) (St (1 325 ) )

- s £3) (35 v

and that for (7.2) is equal to

Z(s) — — <5L(s) + f)g%) < 2(4:)>(T) M~*(log M)~

Zr(s)

For example, for r = 0 we get

Zo(s) =14+ —28) 4 S A(e)e
S) = _ = J—
0 L(s)log N 7 7 !
with v = log M /log N (scaling adjustment factor). Therefore ¢q(¢) = yA1(¢)
is supported on prime powers.

For any r > 0 we have the formula

(%;)(T)ZMS“‘%M)T % (;)toman <L<15>)m

oy<r

and (1/L(s))) is equal to
!

LL) 2 (M;!Z!f.l.”)! (I!g((ss)))al(g!LLll(ii)>a2"'

ar+2az+-=j

(s
Write (;) = rl/jb! with b = r — j and log = log M. These formulas
yield

Z.(s) = <1 + v L ) Z rl(a; +az +...)!

la+lao!
Llog I el blailas!. ..

*L, al *L” a2
(1!L10g) (2!L10g) o

Comparing the coefficients in Dirichlet series expansions on both sides we
conclude

Lemma 7.1. If 1 < ¢ < M, then c¢({) can be written as the sum

Z ¢(a1,a2,...)(A0—’yAl)*(Al*---*A;)*(AQ*---*AQ)*...

J
a1+2ag+--<r

g g
a1 times ag times

with suitable coefficients ¢(ay,az,...), ¢(0,0,...) = 1.
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Using the obvious estimate

_ logY \?
2)—1
E AL ()07 « (log >

LY

and recurrence formulas for Ay we get

2k
Vi) = Y AR < <1ogy> .

i< log M

Hence, putting Ay = Ag, * -+ x Ay, for (k) = (k1,...,k,) we derive

log Y 2(k14-+kn)
<logM )

DTAGOPE < Vi (V). Vi, (V) <
LY

where the implied constant depends only on (k).

Since ¢(¢) for 1 < £ < M is a linear combination of Ag(¢) with (k) =
(0,0,...) by Lemma [Tl we derive by the above estimates

Lemma 7.2. I[f2<Y < M, then
(7.3) S(1,Y) « (logY/log M)?

where the implied constant depends only on r.

By the above arguments it is clear that the same bound (7.3)) holds for
S*(1,Y).

The bound (73) is valid for Y < M, but it is good only if YV is relatively
smaller. Suppose Q® < X <Y < M. Now the lacunarity of \(¢) kicks in
and we are going to exploit it on top of the mollifier sifting effects. Lemma
[T1] shows that c¢(¢) vanishes if ¢ has more than r distinct prime divisors.
Writing uniquely ¢ = dk, where (d,k) = 1, k squarefree, d powerful, we
get c(f) « Ao(k) « 1 (recall that p(m) is supported on cubefree numbers).
Hence,

S(X,Y) « Z o(k) (k)™

X<dk<Y
« a7ty M®ETTE D d Y A(k)ET!
d VX <k<Y d=vX k<Y

« Y ARk + X1 logy.
VX <k<Y
Applying ([L9) we derive the following estimate
Lemma 7.3. IfQ®* < X <Y < M, then
(7.4) S(X,Y) « L(1,x)logY

where the implied constant depends only on r.

The same bound (74) holds for S*(X,Y).
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8. REDUCING TO THE SQUAREFREE DIAGONAL TERMS

If £ > M, then the convolution coefficients
(8.1) c(t) = D p(m)A(n)g(m)h(n)
mn=>~{

may not be supported on almost primes, because g(m), h(n) are no longer
polynomials in logm/log M and logn/log N, respectively. Therefore the
previous arguments fail. We shall estimate S(X,Y") with X > M in different
ways. But first we reduce the sum S(X,Y) to

(82) SXY)= > u0)?c0)’c!
X<i<Y
(6,9)=1

where ¢ is a fixed squarefree number to be chosen later.

Throughout d runs over numbers such that p | d = p? | dg®>. Writing
uniquely ¢ = dk with k squarefree, (k,dq) = 1 we get

e(0) = Y plwAw)ey, (k)

uv=d
where
(8.3) cun(k) = Y, p(m)A(n)g(um)h(vn).
mn=k
Hence
(0’ <7(d)° )] cun(k)?

uv=d

and
S(X,Y)
uv=d ( )

where S (X,Y) stands for the sum (82) with ¢(¢) replaced by ¢y, (£). The
contribution of large d, say d > U = (logY)®", is negligible. Precisely, by
trivial estimations, we derive the following:

|e(O)] « T4(0),

S (g )« (log Y)'°,

d
( E) « U (logY)*®
a>U uv= d

The coefficients ¢y, (¢) in wa(X /d,Y /d) have slightly shifted crop func-

tions;
(um) . logum\" 1 logu \" 1 logm \"
um) = (1- =(1- -
g log M log M log M Ju

Hence

(8.4)  S(X,Y)
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if 1 <um < M, and
log vn logn . log v
(vn) a(logN) a( +10gN> b log N
In the next two sections we shall get estimates for Sb(X ,Y') which apply to
every S’ (X /d,Y /d) with uv = d < U = (log Y)?". The small change of the

crop functions (g by rescaling M — M /u and h by the shift a(z) — a(d+z))
does not require any significant changes in the used arguments.

9. ESTIMATING S”(X,Y)

For ¢ = mn squarefree we have p(m)A(n) = pu(m)A(£) and c¢(£) = A(¢)6(¢)

where 6 = ug * h is a kind of a sieve weight,
(9.1) 0(0) = " p(m)g(m)h(e/m).

m|¢
This factorization separates the lacunarity feature of A(¢) from the sifting
feature of §(¢). We have c(£)? < |)\(€)|%|9(€)|T(f)2 and by Cauchy’s inequal-
ity

(9.2) sb<X,Y)<< > \)\(6)\£1>2< > T(e)m(qe)?a(e)%l)Q.

X<t<Y X<I<Y
The first sum is bounded by L(1,x)logY if Y > X > Q*, see (L9). The
second sum is bounded by
(9:3) T(X.Y)= ), 600}
X<ty

where ¢(¢) is the completely multiplicative function such that

(9.4) o(p) =0 ifplyq, o(p)=r/p ifpigq,

with 7 = 16. We shall estimate 7'(X,Y’) for any » > 1 which agrees with
the exponent in the crop function ([B.11)) of the mollifier (B.10). Our goal is
the following estimate (we assume ¢ is divisible by every p < r2 so ¢(p) <

1/y/P)-
Lemma 9.1. IfQ* < M < X <Y <N, then
(9.5) T(X,Y) « (logY/log M)"

where the implied constant depends on r.

By (@5) and ([@.2]) we get
Corollary 9.2. IfQ* <M < X <Y < N, then
(9.6) S*(X,Y) < (L(1,x)log V)2 (log Y/ log M)*S.

Remarks. If we assumed the stronger lacunarity property that L(1,y) «
(log |D|)~"5, then the trivial bound T(X,Y) « (logY)"** would have suf-
ficed. However, we are willing to assume only that (D) = L(1, x) log |D| —
0, so our job is much harder.
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The same arguments work for S? (X/d,Y/d) with wv = d < U =
(log Y)?° giving the same bound (@.5). Hence (84) yields.

Corollary 9.3. IfQ* <M < X <Y < N, then
9.7)  S(X,Y) « (L(1,x)log V)2 (log Y/log M)'® + (log V) 2.

10. SuMS OF THE MOBIUS FUNCTION

Typically for estimating sums involving the Mobius function one applies
analytic methods by contour integration in the zero-free region of ((s). We
opt more elementary path which goes through the Prime Number Theorem
in the following form

(10.1) Z p(m)m™! « exp(—cy/log x)
m=X

where c is a positive constant. In the sequel ¢ stands for a positive constant
different every time. By (I0.J]) one derives

(10.2) Z p(m)m™ « o_1 (k) exp(—cq/log z).

m=X
(m,k)=1

Then (I0:2) yields the same bound for the sum twisted by the divisor func-
tions

(10.3) Z pw(m)m.(m)m™' « o_1(k) exp(—cy/log x).
m=X
(m,i):l
Hence, if f(z) is a function on R* with |f(z)| + z|f'(z)| « (logz)” then we
get (by partial summation)

(10.4) > wm)m(m)f(m)ym™" « o_1(k) exp(—cy/log z)
(o1

where the implied constant depends on A. In particular

(10.5) 1 ulm)r(m)(logm)® « o1 (k) exp(—cy/log z).
(=1

Moreover, for the complete sum we have

(10.6) Z w(m)r.(m)(logm)* =0 if0<a<r.
(m,k)=1

Indeed, the complete sum (I0.6)) is the a-th derivative (at s = 1) of

o um)m(m)ym= =1 —=rp~*) = {(s) " ne(s)
(m,k)=1 plk

say, where 71,x(s) is holomorphic in Res > 1/2. Since ((s)™" has zero as
s = 1 of order r the formula (I0.6]) follows.

We shall also need the following formula
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Lemma 10.1. Let ¢(¢) be the completely multiplicative function defined by
@4). Suppose every prime p < r? divides q. Then

(10.7) 2, 9(6) = Pr(logz) + O(X /)
<X

where P.(X) is a polynomial of degree r and the implied constant depends
on .

Proof. The generating Dirichlet series of ¢(¢)¢ is given by

w0-110-5) = T3 T0-5) (-5)

plg

Here the last infinite product over p { ¢ converges absolutely in Res >
1/2. Hence (EHEZI) follows by standard contour integration and the convexity

bound ((s) « |s| s log4|s| on the line Re s = 3/4. Specifically, the main term
P, (log x) in (I0.7) is the residue of Z(s + 1)s~tz* at s = 0. O

11. EsTiMATION OF T(X,Y)

Squaring out ([Q.1)) we get

o - N u datmg(ma)t () o ()

[m1,m2]|¢
- %Zng“ iy ma)g(dma g (dma)h (%) h (%) |

Note that dmi; < M and dmo < M by the support of the mollifier. Intro-
ducing this into ([@.3]) we get

V)= Y33 uld)uldmimg)g(dmr)g(dmy)
X=dmam2 <Y b G Y h(Ems) d(dmyma) (£).

Note that ¢(dmims) = 7,.(d)7-(m1)7(m2)/dmims if (dmimg,q) =1 and it
vanishes otherwise.

If d is close to M, say MA™3 < d < M, then m < A3 and g(dm) <
(3log A/log M )" for m = myms. Hence the contribution of these “bound-
ary” terms to T'(X,Y’) is bounded trivially by

y (%)(Z ) 3 60

MA-3<d<M m<A3 LY

r—1 log A o 2r r log ¥’ '
< (log M) (log A) log M (log A)™ (log Y)" = log M

if we choose A such that (log A)*+! = log M. This bound meets the goal
[@3). The above lines show how important it is to have the crop function
g(m) vanishing at the end point M of degree as large as the degree of the
divisor function 7,(d).
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Now, when d < MA~3 with (log A)**! = log M, there is enough room
for the Mobius function in T'(X,Y') to produce significant cancellation. First,
if my > A or mg > A, then (I0.4]) shows that the contribution of such terms
to T(X,Y) is estimated by

2 T
exp(—cy/log A) (Z Tr(d)d1> (Z Tr(d)> & <11c(>)gg]\};> .

d<M <y
This bound meets the goal (Q.5]).

It remains to estimate the partial sum of T'(X,Y’) over the segment X <
dmimef <Y restricted by the following conditions

(11.1) my <A, mog <A, d< MA™3.

We assume M < X <Y < N. Then (ILI) implies £ > A so we have
enough space to execute the summation over £. By Lemma [I0.I using partial
summation we get

Z (O)h(fmy)h(bma) = Lj//jh (%1) h <mi2> apP, <10g mlme)

X<dmimol<Y
+O(ATY),

The contribution of the error term to T'(X,Y) is « A~Y5"(log M)" (log A)?"
which is much smaller than required. Collecting the above results we get

12 7xyv)= Y p(dq)%d)f//de(y)@ +0 <<11(())gg]\1;>>

d<MA-3 X/d Yy

with

T = DY wdgmums) I g g ama)

() () (s )
ma mo mimeg

Have in mind that the polynomial P/(X) has degree r — 1,

P/(X) =) c(a)X".

a<r

mimso <A

The crop function g(dm) of the mollifier in the above range is the polynomial
in log m/log M,

r r—j o 7
- (1 5 (1)1t (e
0g o<ii<r M 0g 0g
Yy logy/m logy logm
() o () o (B2
m log N logN log N
is not, but it can be approximated by a polynomial using the Taylor expan-

sion
e E
AN 1 (o (logy —logm log A
h<m) B Z e’ (10gN log N o log N ’

e<FE

However




CRITICAL ZEROS OF LACUNARY L-FUNCTIONS 23

Choosing FE sufficiently large in terms of r the error term becomes negligible.
Finally we have

P! (log

mima2

)= X claanan)os) ogm)* ogm)®

atoaltoae<r

where c¢(a,a1,a3) = (—1)T*2¢(a + a1 + a2)(a + a1 + ag)!/alaglas!. By
the above expansions we see that Ty(y) is (up to negligible error terms) a
linear combination of sums of type

ZZ (dmm)n(mlmg) log m4 g1 log ms J2
pragmams mims log M log M

m1 ma2

logmi \ ' [logms\
( log N > log N (10g y)a <10g ml)al <10g m2)a2

with j1,j2 < r, e1,e9 < F and a + a; + as < r — 1, where the summation

is restricted by m; < A, ms < A. These restrictions can be dropped

up to error term bounded by (logy)® exp(—cy/log A), see ([I0.5]), which is

negligible. The complete sum vanishes, see ([I0.6]), unless j; + e + a1 = r
and jo + e3 + a9 = 7, in which case it is bounded by
(log y)*(log M) 71772 (log N) 1~

<« (logy)*(log M)erteztortaz=2r(|gg N)=e17e2

<« (logy)*(log M)o1+e2=2r

«  (logy)*(log M)~@—"1

« (logy)"Y(log M)~

Inserting this bound into (IT.2)) we derive (Q.5)).

12. CONCLUSION

We have all parts (except for the off-diagonal terms) ready to conclude
the proof of the main Theorem 211 Take the mollifier (B.I0) of length
M = TY40 > 8 Choose the breaking points in the partition (A1) at
a =3+ ﬁ, B =3+ ﬁ. Then the level of Levinson’s function (3.1)
satisfies T2 < N < T3, see (@I4). The diagonal sum (6.4) is estimated

by
Ko =S(1,MN®) < S(1,N) :S(l,Q8)+S(Q8,M)+S(M’N)'

Applying (Z3), (Z4) and ([@.7) we get
Ko « (1089 2+L(1 Yog T + (L(1,x) log T)2
0 logT » X) 108 » X ) 108 :

The same bound holds for the diagonal sum K given by (6.2). Hence (5.7)
yields

log @
log T’

I(T) < TIK*|2 + O <T +T(L(1,x)log T)% + T(L(1, y) log T)i>
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where the implied constant is absolute. Inserting this into (3.7]) we get
(12.1)  Noo(T) > N(T)—4|K*|2TlogT

+0 (T10gQ + T(log T)(L(1,x) log T)* ) .
Note that the condition 7 > Q3?° is no longer required, because the esti-

mate (I2.1)) holds trivially otherwise. It remains to estimate the contribution
K#(T) of the off-diagonal terms, see (G.5]).

13. AN INTRODUCTION TO THE OFF-DIAGONAL TERMS

Our goal is to show that the contribution of K*(T') to K(T') is quite
small, comparable to Ky, so that it can be omitted in (I2Z.I]). We shall only
consider the L-function for the trivial ideal class group character ¥ = g, in
which case

(13.1) L(s) = ¢C(8)L(s,x) = Y. Ay~

with A = 1 x x. The other cases are similar, in fact simpler, because the
main term of KX#(T') vanishes.

Before starting advanced arguments we recall the situation in fresh no-
tation to recycle a lot of alphabet which was used so far. We have

(13.2) K*(T) = §§4 Mﬁgww)r (%) +0 (%)

where

(13.3) I <%> = ZZ v <Tlog %) %h(m)h(n)
um#on

and ¥ (27z) denotes the Fourier transform of ®(¢). The error term O(1/T)
in (I3.2)) is an easy estimate for the contribution of terms um =1 or vn =1
which are added in (I3.3).

In (53 we said that ®(¢) was smooth and compactly supported on R™.
Clearly we can modify it here by requesting the symmetry ®(t) = ®(—t).
Then we have ¥(z) = U(—z) and I(u/v) = I(v/u). Note that

(13.4) W(z) — f " (1) cos(tz)dt

—00

has fast decaying derivatives, specifically we shall often use the bound

(13.5) O (2) « (14 |2))74, §=0,1,2,

for real z with any A > 4 where the implied constant depends on A.
Pulling out the greatest common factor of u,v in (I3.2)) we write

o) K= % T A e (%) 4o (1)

e<M uv<M/e
(u,0=1)
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with I(u/v) given by (I3.3) without change. Given (u,v) = 1 we split I(u/v)
into

(137 HOESWAD

h=

—

where

(13.8) () 3 (Tlog—) AA®) L )

um—vn=h

are additive convolution type sums.

Remarks. Since ®(z) decays rapidly T'log “ = T'log (1 + %) is essentially
bounded so vn » AT = T, um » AT = T and um, vn are close to each
other, um/vn =1+ O(1/T).

The notation begins to be cumbersome so in the next three sections we
are going to present self-contained results about additive convolution sums

which will be applicable to (I3.8]).

14. GENERAL CONVOLUTION SUMS

This is a stand-alone section. Here and in the next three sections our
notation is independent of that used in the previous ones. After proving
Lemma [T7.1] we shall abandon this temporary notation.

Suppose we are given two sequences A = (a,), A* = (a}), which enjoy
some features of the Fourier coefficients of automorphic forms. Our goal is

to evaluate the sum

(14.1 By = Y. analglm)g”(n)
m—n=h

for h = 1, where g(z),g*(x) are smooth functions, compactly supported
on RT. Sums of such type were treated in Section 4 of [CI02] in a great
generality using ideas of Kloosterman’s circle method. Now we need (I4.1])
in a little bit more general setting, in which case the arguments in Section 4
of [CI02] still apply. Since the required modifications are essentially in the
notation we shall state the results without repeating proofs. If the sequences
A, A* consist of Hecke eigenvalues for a cusp form there are several results
in the literature which are useful for out applications. In particular the
formulas of [KMV02] in Appendices A, B come close to what we require
with respect to the parameters out of which to built the mollifier. However
the shifted convolution for A = 1 x is not covered in [KMV02]. This paper
IKMV02] contains numerous fundamental ideals and gives great details so
we recommend to the reader to glance it as a supplement to our arguments
below.

All we need about the sequence A (and A*) is a kind of Voronoi formula
for twisted sums

(14.2) S(a) =) amg(m)e(am)
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at rational points a = a/c for every ¢ > 1 and (a,c) = 1. Naturally, one
expects that S(a/c) are quite well approximated by

(14.3) Y(a,c) fg(x)dx

where 1 (a,¢) is a nice function which depends on a (mod ¢) and it satis-
fies

SES

(14.4) [Y(a,c)| <

Here the parameter A, and two other parameters B, C' in forthcoming condi-
tions, will be specified in later applications subject to A > 1, B> 1, C = 2.
Note that 1(a,c) does not depend on the test function g(z), therefore the
approximation (IZ3]) to the sum S(a/c) is a functional.

Based on (I4.3) one should predict that B(h) is quite well approximated
by

(14.5) B(h) = &(h) Jg(w + h)g*(z)dx

where

(14.6) sm= 3" e(%) W(—a, )" (a, ).
)

c=1 a (mod c

Indeed we shall see that under suitable conditions the prediction is pretty
accurate. We assume that the Fourier transform of g(z) satisfies

(14.7) J|g(a)|doz < B, j|a||§(a)|2doz < B2

Moreover the same estimates hold for the Fourier transform of ¢g*(z). We
write

(14.8) S (%) = ¢(a,c) f g(x)dz + T(a,c),

where the error term T'(a, ¢) does, of course, depend on g(z) as a functional.
It is not sufficient to assume a good upper bound for T'(a,c); one has to
control the variation of its argument and get a considerable cancellation
when summing over the classes a (mod ¢), (a,c) = 1 (this is the very essence
of Kloosterman’s circle method). We postulate that every T'(a,c) has the
Fourier series expansion of the following type

(14.9) T(a,c) = n;i_l Y (a)e @em) f 9(2) e () d2

where @ denotes the multiplicative inverse of a modulo ¢, aa = 1 (mod c¢).
Here the frequencies ¢,,, are integers which are allowed to depend on ¢, but
not on a. Moreover the kernel functions k;,(x) may depend on ¢, but not
on a. Finally, the coefficients 1, (a) are also allowed to depend on ¢ in an
arbitrary fashion, but the dependence on a must be mild. Specifically, we
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assume that there is a fixed integer ¢ > 1 such that vy, (a) is periodic in a
modulo (¢, q), and

(14.10) [Ym(@)] < Z7(m)

We also assume that the Fourier transform of g¢,,(z) = g(x)k,(z) satis-
fies

(14.11) |gm ()| < cCBm ™5/
for every 1 < ¢ < C and every a with |a|cC <1

Now we are ready to state the following result (go through Section 4 of
[CI02] line by line for constructing a definite proof).

Proposition 14.1. Assume the conditions (I4.4), (I47), (I410), (1411

for the sequence A = (a,,) and the corresponding conditions for the sequence
A* = (a). Then for every h = 1 we have

(14.12) B(h) = B(h) + R(h)

where B(h) is the convolution sum ([41]), B(h) is the predicted main term
(I435) and R(h) is an error term which satisfies

(14.13) R(h) « T(h)A*C™! f l9(z + h)g* (2)|dz + 7(h)qgA2 B2C2 (log C)>

with the implied constant being absolute.

15. SPECIAL CONVOLUTION SUMS

We are interested in the sequence A = 1x x as in (L8] where x is the real
primitive character of conductor |D|. By Proposition 3.3 of [CI02] we have
the following Voronoi type formula

o]

(15.1) A(m)e (%m) g(m) = p(a,c)L(1,x) jg(x)dx +T(a,c)

m=1

for any ¢ > 1, (a,c) = 1, where

T(a,¢) = 2m’xl<a>><2<c>c(c—w’§|) > (v xa)(m)e (aDf(e D)
=1

f o(2) o 4w\/m/c\/|f) da,

X1 (mod (¢, D)) and x2 (mod |D|/(c, D)) are the real characters such that
X1X2 = X- In the main term we have

P PG if Dte,
(15.2) pla;c) {X(Q)T(X)/C if D|ec

where 7(x) denotes the Gauss sum. Actually Proposition 3.3 of [CI02] re-
quires D to be odd and negative, so

(15.3) D is squarefree , D <0, D=1 (mod 4).
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Therefore, in the next three sections we shall be working under these con-
ditions. The other cases are very much similar and the final estimates are
the same so we skip them.

For every positive integer u we derive from (I5.0I]) the following for-
mula

3 ame (S} = (25 Y H [y

o) c,u) (e,u) u

+T(au/(c,u),c/(c,u)).

(replace a, ¢, g(z) in (I5J) by au/(c,u), ¢/(c,u), g(ux) respectively).
Now we can apply Proposition [[41] for the sequences A = (a,,), A* =

(a¥) with an,, = A(m/u), a = A(n/v), where u,v are given positive inte-
gers (subject to the popular convention that an arithmetic function is set
its value to zero at non-integers arguments). Suppose g(z) and ¢g*(z) are
smooth functions supported in a dyadic segment [X,2X]| with X > 2 whose

derivatives satisfy
(15.4) 27gW(z)| <1, j=0,1,2.

Then one can show (see the arguments in Section 4 of [CI02]) that (I4.7)
holds with B « 1 and (IZI1]) holds for C' = 2(u + v)4/|D|X with B «

(u+ v)|D|% Moreover (I44]) holds with A « 4/|D|L(1,x) < +/|D|log |D|
and (I4.I1) holds for ¢ = |D| with A < u + v. Therefore Proposition [[4.1]
yields

Proposition 15.1. Let g(x), g* (z) be smooth functions supported in [X,2X]
with X = 2 whose derivatives satisfy (I5.4)). Then for positive integers u,v, h
we have

(15.5) S AmAm)g(um)g* (vn)

um—uvn=h

S(h)(uwv) " TLA(1, x) jg(ﬂ: + h)g* (z)dx + O <T(h)(uvD)6X%(log X)2>

where

(15.6) 6<h>=§]1 (Z* e(?)ﬂ(@f)’<c,cu>)p<<§3>’<c,cv>>

a (mod c¢)

with p(a,c) given by (I5.2) and the implied constant being absolute.

Remarks. We have not assumed that u,v are co-prime. But, of course, if
(u,v) t h, then the convolution sum on the left side of (I5.5]) is void so the
series G(h) on the right side of (I5.5]) must vanish as well. This could be
verified directly if you will, but not so easily. The result is a generalization
of a special case of Theorem 4.4 of |CI02]. Note that the exponent 3/4 in
the error term comes from an application of Weil’s bound for Kloosterman
sums. The exponent 7/8 resulting from a weaker elementary bound due to
Kloosterman would be also sufficient for our purpose.
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For technical simplifications we can impose some local restrictions on the
variables u,v in the formula (I3.2]). These numbers will be in the support
of the coefficients p(u), p(v) of the mollifier, see (B.8) and ([3.9]). Therefore
we can assume that v and v are cubefree with no multiple ramified prime
factors; this means p | D = p? { u and p® { v.

16. COMPUTING THE SERIES G(h)

To ease the computations we assume that u,v are coprime;

(16.1) (u,v) =1,
(16.2) (D2, uv) = (D, ww).

Let 1(x) denote the characteristic function of integers. Then (I5.2]) yields
pla,c)c = x(c) + x(a)T(x)1(c/D) and (I5.6]) becomes

where

(@)
()~ (o) (m) 2
! [X ((Si})) ! <(c,1c))D> X ((Sii)) 1 ((c,Z)D)} 7(x)

because x(—1)) = —1, 7(x)? = D and 1(¢/(c,u)D)1(c/(c,v)D) = 1(c/(c,uv)D).
Note that except for the first term x(c?/(c, uv)) the other three terms vanish
unless D | ¢ in which case x(a?) = 1. By this observation we get

Lo = x ((C’sz)) - X ((55@) 1 ((C,qu)D) b

Hice) =t (s ) 1 () o

¢, uv)

Next we introduce the Ramanujan sum

* ah
(16.3) ra(c) = > e <7> = > dulc/d)

a (mod c) d|(c,h)
and if D | ¢ we introduce the hybrid of Gauss-Ramanujan sum
* ah
(16.9) me = 3 e (%),
a (mod c¢)

Put

(16.5) uwv =w,  sow is cubefree.
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The symbols 1(c¢/(c,w)d) and 1(¢/D) above mean that (D,w)D | ¢ (see the
condition ([I6.2])) and D | ¢, respectively. Therefore G(h) splits into three
parts

(16.6) &(h) = &*(h) — &'(h) + (x(v) — x())&(h, x)

where

(16.7) &*(h) = D, x((c;w)rn(e)(e,w)e?,

(e,D)=1

(16.8) =D Z x(w/ (e, w))ry(c)(e,w)e?,
(D,w)Dle

(16.9) &(h,x) = 7(x) D x(¢/(c,w))rn(c, x) (¢, w)e .

Dle

Note that &(h,x) vanishes, unless D | w, and the third part of (I6.6)
vanishes, unless D | uw or D | v. These are pretty strong conditions on u,v
which we can easily go around in applications. Therefore, from now on we
assume that

(16.10) Dtfwand Dtwv
so the third part of (I6.6]) does not need to be considered (see Section 24)).

By the formula (I6.3]) we can write the first and the second parts of (I6.6))
as the convolutions 1 x v* and 1 =/, say, with

(16.11) @ =5 S (e w))ed wip(e)e
(ed,D)=1
and
! D —2
(1612) A =2 D xlw/ledw)(ed wlne)e .
(D,w)Dl|ecd

Finally, assuming the conditions (I6.10) we conclude that

(16.13) &(h) = &*(h) = &'(h) = (1 y*)(h) = (1 x7')(h).
Lemma 16.1. We have v*(d) = 0 unless (d, D) = 1 in which case
(16.14) (@) = (e w)
where

T (1 XY
(16.15) &( )_¥<1+ . > .

Proof. First note that the product (I615]) for n = w/(d,w) runs over the
set P of primes p | w such that

(16.16) p||w:>p+dandp2|w:>p2fd.
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Clearly the sum (I6.I1]) is void if (d, D) # 1. If (d, D) = 1, then v*(d) =
x((d,w))(d, w)d='%, where

(16.17) DRSS X<(Cdaw))(cd7w)u(zc)

|
m
hv]
Nl
—t
|
5
N———
=
-
VN
—t
|
3| =
N———

I
b
[\)
S~—
L
m
bS]
N3
—_
>
S
N——
7 N
—_

\
2|
N———

L

This yields the formula (16.14]). O

Note that (I6.14]) gives the upper bound (not to be used)
(d,w) 1
16.1 “d) < LT (1+-).
(1613 el SO (142
plw

Lemma 16.2. We have v'(d) = 0, unless (D, w) | d in which case
) (dl,wl)(dl,D)2X£< wi )

Cq(Q) dD (dl,wl)
where wy = w/(D,w), di = d/(D,w), ¢ = D/(D,d1), (4(s) denotes the

Riemann zeta function with missing local factors at p | ¢ and £(n) is given

by (IG6I5).

Proof. By (16.2)) it follows that (D, w;) = 1. Clearly the sum (I6.12)) is void
if (D, w) does not divide d, because c is squarefree. If d = (D, w)d;, then
the formula becomes (I6.12])

() =2 S Xl (e, wn)) ey, w)()e
Dledy

(16.19) v (d)

Here ¢ = ¢;D/(D,dy) and (cdy,w1) = (cdi,wy) = (dy,wy)(c1,wi/(dr, wy))

giving

7@ =1 (o) e (e ) ®

o ()
le (1_1%> 1:[1 (1@%)

where

™
I

M(Deil) (dy,wy) Pl (d1,w1)
—1
1
NG ()
s P g b
(D,dy) (d1,wy)

Hence it is easy to check the formula (I6.19). O
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Note that (I6.19) gives the upper bound (not to be used)

) (di,w1) (D, d1)? 1
(16.20) 1Y (d)| < (D) DI, pl_[m(ug).

Remarks. The formula (I6.I9)) for v/(d) is very similar to the formula (I6.14])
for v*(d), but it is a bit more involved with respect to the ramified prime
places. However, both expressions share the same essential features which
are relevant to the forthcoming analysis of the series &*(h), &'(h) and
k(y) = k*(y) — k' (y), see (ITH). Therefore, we are going to work with
v*(d), &*(h), k*(y) in considerable details and skip the analysis of +/(d),
&'(h), K'(y) assuming that the final estimates are the same in both cases.
Actually, the case of 7/(d) in some extreme situations can be treated some-
what faster, because a crude upper bound for 7/(d) is good enough. For
example, suppose d has no ramified prime factors, i.e.

(16.21) (d,D) = 1.
Then +/(d) = 0, unless (D, w) = 1, in which case d = dy, w = wy, D' =1

and (I6.19]) becomes

(16.22) Y(d) = Zig)) (le’g)x ((dfuw)> . <JT)> '

Here we gained the factor 1/|D| by comparison to (I6.14]) which is so small
that one can cover the range (d, D) = 1 exploiting neither the lacunarity of
L(s) = ((s)L(s, x) nor the sifting effects of the action of the mollifier M (s).

In other extreme example suppose that every ramified prime divides d
but not w, i.e.

(16.23) D|d, (D,w)=1.
Then (I6.19) reduces to ([I6.14)), precisely we have
(16.24) 7'(d) = x(w)y* (d/|D]).

17. BACK TO THE OFF-DIAGONAL TERMS

We are now ready to evaluate the components I(u/v) of the sum K*(T'),
see (I3.:2) and (I3]). First by Proposition I5.1] we derive

Lemma 17.1. Let h,u,v be positive integers with (u,v) = 1, u,v < M.
Then
(17.1)

B (2) - S [ (")) % o er-).

Proof. The left side of (I5.5]) with

o0 =1 (2) (9" - (s 1Y (2) (2)
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becomes Ij(u/v) and the main term on the right side of (I5.5) becomes

e}

(17.2) @Lz(l,x)f v (Tlog vt h) h (ﬂ) n(2) S

Vuv 0 T u v/ \/x(x + h)
However, the conditions of Proposition [[5.1] are not exactly satisfied by the
above choice of the test functions g(z), g*(y). To meet the conditions (I5.4])
we apply a smooth partition of the summation variables with constituents
supported in semi-dyadic segments [X,1/2X], [Y,+/2Y] so that our partial
sums run over m,n with X < um < v2X, Y < vn < +/2Y for some
1/2 < X, Y < MN®. If the segments are equal or are adjacent to each
other, then we are dealing with two test functions supported in the same

dyadic segment. Moreover the derivatives satisfy z7¢0)(z) « (u/X )% and
ng*(j)(y) & (v/Y)% Therefore (I5.5) yields the main term (I7.2)) for such

partial sums with an error term bounded by
(17.3) 7(h) (wD)® (uv) 2 X1 (log 4X)2.

We have chosen « slightly larger than 1/2, a = 51/100, and M a relatively
small power of T, M = T'40  Hence our segments end at 2X,2Y <
2MN® = 2M(QT)** < |D|MT?* < T*/* provided |D| < TY400, We
have already said in the Remarks following (I3:8]) that ¥(z) decays rapidly,
see (I3.5). Therefore, the contribution to Ij(u/v) of the partial sums over
the segments [X,1/2X], [Y,v/2Y] is negligible, expect for

AT/ < X < V2Y < 2X < T¥/*4

in which cases (I7.3]) is much smaller than the error term in (I7.]). Further-

more, since h is quite small, h < T%?2 we can clear the main term [Iz2)
by means of the following approximations;

v (Tlog rr h) - v <h—T> O(Th%z™2),
X

h<xzh> = 1 (%) +om/),
(z+h)"2 = z72(1+O(h/2)).

The error terms in the above approximations are negligible. This completes
the proof of Lemma [I7.11 O

Remarks. Having derived the formula (I7.1]) from the results in Sections [14],
we no longer need these sections, in particular the test functions g, g*
used over there can be forgotten. From now g stands again for the crop

function in the mollifier (B.10).

Introducing (I7.1)) into (I3.7) we obtain
oy r(4) =B (D)) n(E) L oa

v Vuv o Jy x u v/ x
where
(17.5) k(y) =2 &(h)¥(hy).

h>0
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Then, introducing & = 1 » v with v(d) = v*(d) — 7/(d), see (I613)), we
get

(17.6) k(y) = Y. v(d)(dy)

d

where

(17.7) $(z) = > W(k2).
k

Do not forget that (d) depends on w = uv, see (I6.14) and (I6.19).

Finally we insert (I74) into (I3.6]) to get a complete formula for the
off-diagonal contribution

Lemma 17.2. We have
(17.8) K*(T) = L2(1,X)Z ZZ %g(emg(ev){](u,v)
e (u,)=1
+O(T 5 (log T)%)

where

(17.9) J(u,v) = fooo k (%) h <§) h (%) dg.

Remarks. We should have restricted u, v in (IZ.8]) by the conditions (I6.10])
which we ignored, because if D | u or D | v, then some trivial estimations
yield a small contribution. We shall address this issue in Section 241

It is convenient to treat the two parts v*(d),~'(d) separately, so we write
(I78) in the following fashion

(17.10) K*(T) = L2(1, x)(K*(T) — K'(T)) + O(T s (log T)°).

Here K* stands for this multiple sum

plew)p(ev)
17.11 K*(T) = —_ J*
(17.11) (T) Z (HZ); — ———g(eu)g(ev)J* (u,v)
where J*(u,v) is defined by the integral (I7.9]) with the kernel k(y) replaced
by

(17.12) K (y) = Y 7" (d)d(dy).
d

The second part K'(T') is defined in the same fashion but with 7/(d) in place
of v*(d).

It is not surprising that the off-diagonal contribution K#(T') gains the
factor L%(1,), because the lacunarity of L(s) = ((s)L(s,x) strikes inde-
pendently two times. However, it is not enough gain to treat £* and K'(T)
crudely. We need to exploit important features of the mollifier which creates
some sifting effects. The job would be quick if one used the Riemann hy-
pothesis for L(s), but of course, this is prohibited. We shall estimate K*(T")
unconditionally by delicate elementary arguments.
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Remarks. The coefficients p(m)g(m) of the mollifier (3.10) are supported on
cubefree numbers. Yet, it is technically messy to keep track of the square
factors in the off-diagonal part, they play no essential role because we do
not mind loosing absolute constants. One can pull out the square factors in
the same fashion as we have shown for the diagonal terms in Section 8 This
operation requires small changes in the range of variables of test functions,
nevertheless the notation suffers. We leave for the prudent reader to fill up
details while we are working on (from now on) under the assumption that
the sum (IZ.IT) is restricted to eu and ev being squarefree. This convenient
assumption makes

(17.13) pleu) = uleu)\(eu), p(ev) = u(ev)A(ev).

18. COMPUTING THE SERIES ¢(2)

We begin by providing crude estimates for ¢(z). It is easy to see directly
from (I7.7)) and (I3.5)) that z¢(z) « 1. Moreover, by Poisson’s formula

(18.1) é(2) = —T(0) + E;(I) (%) «1

because ® (the Fourier transform of ¥) is compactly supported with ®(0) =
0. Together we conclude

(18.2) o(z) « (1+2)71, if 2z >0.
Hence the series (I7.11]) converges absolutely.

Remarks. Applying the Euler-McLaurin formula to (I81]) one obtains the
exact expression

(18.3) 26(z) = fooo{fz}<1>’<£)d£

which yields (I82]) at once by the inequality 0 < {z} < min(1,z). The
bound (I82]) cannot be improved if z is small, see the second term in (I8.7]).

Another way of computing ¢(z) goes by contour integration. By (7.7
we get

1 ~
18.4 = — v —*d
(1.0 o) = 5z | FoIc(e)=
where U(s) is the Mellin transform of ¥(y), which in turn is the Fourier
transform of ®(z), see (I34]). By Mellin’s inversion followed by partial
integration we get the formula

(18.5) s(s +1)¥(s) = LOO U (2)25"dz.

This yields analytic continuation of s(s+1)¥(s) to the half-plane Re s > —2.
For s = —1 we find that

JOO U (2)dz = —¥'(0) =0
0



36 J.B. CONREY AND H. IWANIEC

by (I34), so ¥(s) has no pole at s = —1. For s = 0 we find that

fooo U (2)zdz = — fooo V(2)dz = U(0) = fq)(x)dx’

so U(s) has a simple pole at s = 0 with residue ¥(0). Note that

Q0
U(l) = f U(z)dz = 2mP(0) = 0,

0
so the simple pole of ((s) is cancelled by the zero of ¥(s) at s = 1 in (I84).
Hence we get

1 -

(18.6) o(2) = — U(s)((s)z"%ds

21 (e)
with any € > 0. It will be a more friendly expression for ¢(z) if the pole at
s = 0 is removed. To this end we write (I8.6]) in the following form

(18.7) B(2) = do(2) — 5 W(O)(1 — 2)*
where
(18.8) bo(2) = QL 0(s)>"ds
YixA (E)
and
(18.9) 0(s) = U(s)C(s) + V(0)/25(s + 1).

Note that 6(s) is holomorphic in Res > —1 and it satisfies

(18.10) (s+1)0(s) « (]s] +1)7%, if —1<Res< A

because ((0) = —1 and s(s + 1)W(s) « (]s| + 1)~2 in vertical strips. By
([I8.8]) we derive

(18.11) do(z) « 2(1+2)"4, if 2> 0,

for any A > 2, the implied constant depending on A.

19. COMPUTING THE SERIES k*(y)

First we show a formula in a bit more general case. Recall that v*(d)
depends on w.

Lemma 19.1. If w is squarefree, then

101 V@) = DS Y fledyya
d C( ) clw (d,D)=1

for any f(y), provided the series Y f(dy)d—! converges absolutely.
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Proof. The sequence v*(d) has been computed in Lemma [[6.Jl By (I6.14])

we proceed as follows

$) > 7*(d) f(dy
d

(d,w) w
S s () £

(d,D)=1

Y@ (5) Y fady)d™

alw w/a) 1

(d,
= e Y Mol s abdy)d

ablw ﬂa) (d,D)=
(ab,D)=1

Given ¢ | w with (¢, D) = 1, the above sum over ab = ¢ is equal to

) 1\ i - e
H(ﬁ(p) p> [ [xt) =xtor

ple
This completes the proof of (I9.1]). O

Corollary 19.2. Suppose w = uv is squarefree. For every y > 0 we have

(19.2) k*(y) = i( )Z > ¢ cdy)d™".

clw (d,D)=

It is difficult to execute the summation over d in (I9.2) if y = 1, so we
shall use the formula (19.2]) as it is in its raw format. Nevertheless, regardless
applications, we continue developing this formula further since the reader
may like to see the shape of the function k*(y) from various perspectives such
as (I9I1). First, applying the partition (I87) to (I7I2]) we derive

1

193) K0 =g [ o - 390) 3270 -y
€ dy<1

where 3*(s) is the zeta function of the sequence v*(d);

(19.4) 3(5) = Y (@)d
d
Next, by Lemma [I9.1] if w is squarefree, then
(19.5) 57(6) = ¢ aols + e [T (1+ 28,
plw

This expression shows that 3*(s) is analytic in the whole s-plane and it has
only a simple pole at s = 0 with the residue r = Aw)&(w)p(D)/{(2)D
Introducing (19.5) into (19.3) and moving the integration from Res = ¢ to
Res = —1 we get

(19.6) k*(y) = r0(0) 2 x(©) Y, (1—cdy)d ' +O(ywr(D)).
clw cdy<1
(d,D)=
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Furthermore, for any X > 0 we have

(19.7) Z (1—-d/X)d™ ' = @ (logX +y—1—«(D))+0(r(D)/X),
d<X
(d,D)=1

where v = 0.57... is the Euler constant and

log p
(19.8) a(D) = ZDP— - <log|D).
p

Hence, the double sum in (I9.6]) is equal to

(19.9) Z x(e)(=logey +~v—1—a(D)) + O(yr(D)S1(w)).

clw
If x(w) = 1, which is our case by the mollifier support, then
(19.10) Z x(¢)log v/w/c = 0.
clw

To see this we switch ¢ to its complementary divisor w/c. Hence the sum
over ¢/w in (I99) becomes A(w)(—logyy/w + v —1— a(D)). Combining
the above results we conclude the following approximate formula which is
useful only if yw is small.

Lemma 19.3. Suppose w = uv is squarefree and x(w) = 1. For everyy > 0

we have
. ¢(D)

where ag and the implied constant depend only on the fixed test function .

{¥(0) log yv/w+a(D)+ao} +O(ywr (D))

20. EVALUATION OF J*(u,v)

Recall that J*(u,v) is the integral

®© T d
(20.1) T* (u, ) :f k* <—> h(f)h(f) &
0 x U v/ x
with the kernel k*(y) given by (IT7.12). Applylng ([19:2]) we derive
§(w) T cx cxy\ dx
(20.2) J*(u,0) = 22 S x(e) ) a7 Sl P <—) h <—) iy
C( ) clw (d,D)=1 x u v x
In the sequel we shall use the following abbreviations:
log ¢ ~ logu _ logr _logc/u _logc/v
log N’ = log N’ i log N’ w1 log N’ w2 = log N *
Therefore, v = 71 + w; = 72 + w2. Note that all these five numbers are
bounded in absolute value by

’7/:

_log M 1

~ logN ﬁ_§
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which is a small number. Moreover we shall be frequently changing the
variable z to t = log x/log N, so

=N z7ldz = (log N)dt.
Now recall that in (5:2)) we set h(x) = a(t) and in [@I]) we requested a(t) to
be a smooth function on R with
a(t)y=1—t, ift<p,
O<a(t)<1-p8, ip<t<a,
a(t) =0, ift>a«
where the transition points o > 3 > 1/2 are close to 1/2. Moreover, recall

that N = Q*T? = |D|(T/2m)? and log |D|/log T is very small so log N is
close to 2log T

We break the integration at @ = TM? = X, say, and write respec-
tively

x _ §(w)
(20.3) J*(u,v) = RE) (J1(u,v) + Jo(u,v)) .
In the first part we have h(cz/u)h(cx/v) = (1 —t —w1)(1 —t — we) =
(1 —1)% — (w1 + w2)(1 — t) + wiws. Note that
Zx(c) = ANw), Zx(c)(wl +wsy) =0, Zx(c)wlwg = Au,v)(log N)~2
clw clw
where
(20.4) Mu,v) = Z x(c)log 5 log S
cluv

The vanishing of the middle sum above follows from ([[9.10). We shall
compute A(u,v) and other alike arithmetic functions in the next section.
Now we have

dr dx
Ji(u,v) = d~ — | (AMw)(1 —1t)* + AMu,v)(log N
o) = 5 6 () G - 07+ wiog 1))
(20.5) = Mw)Ag(log N)? + A(u,v)Aq,

with Ag « ¢p(D)/|D| and A1 < ¢(D)/|D| which are independent of u, v.

In the second part Jy(u,v) the integration starts at © = X so there is a
room for the variable d. We apply (I87)) and (I9.7) getting

3t ¢<dT> 2 (w(T) oo (-4
- ‘[¢ <>ﬁ§)@gT+w—1+MDD
O

+ D)T/x)
= AlogN—Blogx+O(( )T /x),
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say, with

(20.6) Alog N = %D) LOO do(2)z " 1dz + T(0) ('02(3) (logT —~v+1—a(D))

and

(20.7) B =9(0)p(D)/2D.

We have bounds

(20.8) A« p(D)/|D|, B <«<@(D)/|D|

and we need nothing else to know about A, B. The error term O(7(D)T/x)
contributes to J*(u,v) at most

7(w)T(D)T Ljo a7 2dx = T(w)T(D)M ™% < T~1/400,

By the above estimates we get Jo(u, v) = Jog (u, v)+O (T~ 400 with Jog(u, v)
equal to

S x(e f (Alog N — Blogx)h(cj)h(%)d%

clw

= Y x(e LC/I (A log N — Blog x*ﬁ) B (a/uv) b (ey/o/u) C;_“.

clw

If the integration starts from X we get an elegant quantity (see (I9.10]))

(20.9)  K(u/v) = LZO (A — Blogxz/log N) h(z+/u/v)h(z/v/u)z d
and
(20.10) Jao(u,v) = A(w)K (u/v) log N.

Estimating trivially we get K (u/v) « log N. This bound has true order of
magnitude, but it is not useful, because we shall need a clear view on the
dependence on u/v. The remaining part is equal to

Joo(u,v) Zxcf

e Ixevw

<AlogN — Blog xﬁ)
c
17loguv 27 log u/v 2 dz
log N 2log N x

log @ -1
logT ’

Put

1
v=Ilog X/log N =2u+logT/log N = 2u + = <1+

§ = %(wl + wy) = %log(c/\/ﬁ)/log N.

In this notation we have

(20.11) Jao(u,v) = (log N)ZZX(C)P(é)

clw
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where P(9) is the polynomial in § of degree five given by

Po) = [ a-Beess (a-0? - jon )

aw) 4
(20.12) = %(’Yl )+ LY (24 3B 4 Bu)s? - %54
+ odd degree monomials.
Since

D ix(e)d =0, if 24,

clw

we do not need the odd degree monomials. We get
(20.13) Jo9 (u, 1)) = )\Q(UU)AQ + )\4(UU)A4 (log N)_2
where

(20.14) A(w) = 3 x(e) (g e/ v/a)?
clw

and Ay < p(D)/|D|, Ay < ¢(D)/|D| do not depend on u,v. Gathering the
above results we arrive at the following representation of J*(u,v).

Lemma 20.1. Suppose w = wv is squarefree and x(w) = 1. Then
T*(u,0)¢(2)/€(w) = Mw)K (u/v)log N + A(w)Ag(log N)?
(20.15) —i—)\(u, U)Al + Ag (w)AQ + )\4(w)A4(1og N)_2
+O(T_1/400),

where K (u/v), A(u,v), Aa(w), As(w) are given by 20.9), (20.4), [20.14),
respectively. Moreover Ay, A1, A, Ay do not depend on u,v and they are
< @(D)/|D].

Remarks. It is essential that K (u/v) depends on the ratio u/v rather than on
u, v respectively. After computing A(u,v), A2(w), As(w) in the next section
we shall see that all the terms in (20.I5]) look alike and each one has the
order of magnitude A(w)(log N)? (except for the negligible error term). The
formula ([20.15)) displays the behaviour in terms of u,v as needed, but it is
long, so we wish to say that our arrangements could have been quicker if
we applied Taylor’s expansion of a(t). This would bring polynomials in ¢ of
arbitrary degree; consequently we would have struggled with the uniformity
in the resulting series coefficients, which is a formidable task. The fact that
we are dealing here with P(0) of degree five is due to the linearity of a(t) in
the long segment t < [ with g slightly larger than 1/2.

21. COMPUTING THE A-FUNCTIONS

Recall that A(u,v) and Aj(w) are defined by convolutions of x against
powers of logarithms. In this sections we arrange these as convolutions of 1
against the von Mangoldt functions
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First writing (log ¢/u)(log ¢/v) = (log ¢//w)?— (log 4/u/v)? in [20.4) we find

that

2
(21.1) AMu,v) = Ay (w) — Mw) (% log %) .
Next, writing
c d\’
Aj(uv) = ZZX(cd) log — + log —
23w (e 77 + o )
we find that
(21.2) Aj(uv) = Z (‘;) Aa(w)Ap (V).
a+b=j

Observe that A\,(u) = 0 if a is odd, so a,b run in ([Z1.2]) over even numbers.
For example we get

(21.3) A2 (uv) = A(v)Aa(u) + A(u)Aa(v)
(21.4) Ag(uv) = A(w)Aa(u) + 6X2(u) A2 (v) + A(w) A (v).

We shall attach the A-functions to the mollifier factors p(eu)p(ev) which
vanish if A\(p) = 0 for some p | euv, see (IZI3]). Therefore, for computing
Aj(u) we can assume that A(u) = 0, in which case

(21.5) Agq) = 7(q/(q, D)), if q | u.

We compute A;(u) as follows

2 )\j(u) = Zx(c) (logc—log%y

clu

> (‘7) (—1)"(x log®) * (log).

a
a+b=j

Here we write (ylog?®) x (log®) = x(1 x Ag) * (1% Ay) = x * 1 % xAgq x Ay =
Ax xAq * Ap, and then

Y. AOx(m)Aa(m)Ay(n) = A(u) Y x(m)

Imn=u mnlu

Ay(m)Ap(n).

Adding the above expressions we obtain
Lemma 21.1. Suppose u is squarefree with A\(u) = 0. Then we have
(21.6) Ai(w) = M) Y A%(q)
qlu
where

en x-S xm 3 (T)raamnm).

2JT<q) mn=q a+b=j
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We do not need to know A;‘(q) exactly, the following estimate is good
enough

(21.8) AT (@] < 277A4(9).

Hence A;'»‘(q) is supported on numbers having at most j distinct prime divi-
sors. Moreover we get

(21.9) S A*(@lg ™" « (log ).

qsw

Note that (2L6]) holds for Ag(u) = A(u) with A§(q) = Ao(q).
Inserting (21.6]) into (2I.2)) we obtain the following result
Lemma 21.2. Suppose w = uv is squarefree with A(w) = 0. Then we have

(21.10) Aj(w) = Aw) >’ <‘ZL> D) AR QAL ().

a+b=j qlu rlv

The second part of ([ZI.1]) can be written in the same fashion, exactly we
have

(21.11) (1o %)2 — Y ha(g) = 23 S A@AE) + 3 Ag(r).
qlu qlu rlv rlv
By @L3) and ([21.6) we get
(21.12) Aa(w) = Aw) | Y A3(a) + D A3 (r)
qlu rlv
and

Lemma 21.3. Suppose w = uv is squarefree with A(w) = 0. Then we have

A0 = 2w 5 (4300 - 3a@)) + (4300~ 3200

qlu rlv

(21.13) + %ZZA(Q)A(T)

qlurlv

We conclude this section by combining the results into a compact implicit
form

Lemma 21.4. Suppose w = uv is squarefree with A(w) = 0. Then

Fww) = Awpw)log N2/C()
(21.14) B b 3 elabiog V) T AT (1)
a+b<4 qlu rlv

where K (u,v) is given by 209) and the coefficients c(a,b) do not depend
on u,v and they satisfy c(a,b) < p(D)/|D|. Moreover A%(q), A} (r) given by
@RI1) are supported on numbers having at most a,b prime factors, respec-
tively and they satisfy the bound 218, a fortiori (21.9).
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22. ESTIMATING Fg

According to (2L.14)) the formula (IZ.IT]) splits into

o (T) = {zraogfv>1-+ 3 (xa,b>aogfv>abﬁab}»aogzv>2<<2>1
(22.1) +O(T /401y "
where

(22.2) E-= 2 ZZ PLWPLEV) ) g(en) Au)E (uv) K (u/v),
and "

(22.3) Eg —Zezz)zzlp ew)plev) g(eu)g(ev)\(uv)é(uv leA )ZA;"(T)

Many arguments for estimating £ and F,;, are reminiscent of these applied
to the diagonal terms in early sections. All cases are similar, but £ needs
extra attention.

First we do Fyg, because it is a notationally simpler model for every E,.
In this case (ZZ3)) reduces to

@24)  Eo=3 03 A o ug(enrtun)eun).

Observe that the total contribution of Eyy to the off-diagonal part K7 (T)

(see (ITI0) and (IT.II)) is equal to

(22.5) Voo = ¢(0,0)¢(2) ™ (L(1, x) log N)* Ego.

If Ey is shown to be bounded (as expected due to the sifting effects) the
small factor L(1, x)log N (due to the lacunarity effect) yields the vital saving
two times. However, it is hard to show that Fyy « 1, because twisting the
Moébius function with the character x does not exactly work that way in
our exceptional scenario. An attempt to execute the summation in FEyy by
routine arguments fails as one cannot keep track in the conductor aspect.
Therefore we take a roundabout path. We shall loose some portion of the
saving factor (L(1,x)log N)2, but fortunately not the whole saving.

We start by reconstructing Fgg from the following expression
2
\{
20 w= 2 - 3 J2O(yumem
N<f<N2  N2<{<N3 ¢ mle §(m)

where A(¢) is the completely multiplicative function with

(22.7) Ap) = A@EMD)? = (1 +x(@))*(1 + x(p)/p) .
Opening the square we get

W Zzzueu (ev) g(eu )(ev)j\(euv) Z_Z A(k)
E(ev)é(ev) i k

e (u,v)=1
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where k runs over the segments N/euv < k < N?/euv and N?/euv <
k < N3/euv, respectively. Note that the above triple sum preceding the
sums over k matches that in ([22:4]) (check this using (IZ.I3]) and our choice

@2.7)).

The generating Dirichlet series of (k) is

L(s) = Y ARk = [ [A = Ap)p~*) 7" = L(s)°R(s)

P
where the “correcting” factor R(s) is given by the Euler product
R(s) = [ [0 =A@p*) "1 —p*)*(1 — x(p)p~*)?

P

which converges absolutely in Res > % For s = 1 we have
~ 1 1 w(D)
= L] (1) =52

¢(2) plﬂD p D]

Hence, by standard contour integration, we derive
Ak -
(Z —Z) (T) = ress—oL(s + 1)s 1 (N? — N — N3 + N%)(euv)™*
k k

+O(NY%) = —R(1)(L(1, x) log N)? + O(N~Y4).
Hence
(22.8) W = —R(1)(L(1, x) log N)?Ego + O(T~*).

It looks like we have lost the entire saving factor (L(1, x)log N )2. Not true,
because W is small due to the lacunarity of A(¢). To estimate W we proceed
along the lines in Section [ getting

W 30 )« (S0 A0S )

N</{<N3 m|é I I m|l
Hence, by the same arguments as in the proof of Corollary ([@.2]) we get
(22.9) W « (L(1,x)log N)% _

The almost constant multiplicative function 1/£(m) in ([22.6]) makes no dif-
ference to the arguments (1/£(p) = 1 + x(p)/p). Combining ([22.8)) with
[22.9)) we conclude that

|D| _3
22.10 Eqy « L(1,x)]log N) 2.
Finally, introducing (22.10)) into ([22.5]) we get (recall ¢(0,0) « ¢(D)/|D|)
(22.11) Voo < (L(1,x)log N)2 .

The other sums E, can be reduced to Eyg by scaling the crop function
of the mollifier. Specifically we write

Eaw =), > Ai(@)A} (T)%/\(qu (¢r)Eoo(g,7)
(g,m)=1

q,r<M
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where Fyo(q,r) stands for Eyy with the crop functions g(eu), g(ev) replaced
by g(equ),g(erv) and the summation variables are restricted by the co-
primality condition: (euv,qr) = 1. This co-primality condition does not
really spoil the previous treatment of Fyy and the fact that the scaled down
crop functions gs(m) = g(gm), g-(n) = g(rn) are not equal does not mat-
ter neither (the subsequent application of Cauchy’s inequality resolves this
discrepancy). However we need to address the scaling effect. Writing

wio =som = (35) (M)

it boils down to changing the support range M into M /q and correcting
the relevant estimates by factor ((log M /q)/log M)". Well, not in full range,
because Lemmal[@. T used for estimating W requires @* < M, which condition
translates into Q* < M /q. But in the range M /q < Q* we can apply Lemma
(precisely its relevant analogue). Adding the resulting estimates, we
derive the following bound

1 (log M/q log N 3
g L(1, ) log N L(1,x)log N)? .
Wala) <« (L(1 0 Tog M)¥ (SELA BTN« (1(1,0)log V)

The same bound holds for Wy, (r) (here Wy, (¢) and Wy, (r) denote the sums
of type W with the crop function g replaced by g, and g,, respectively).
Moreover we have

(Z AZ(q)q1> (Z AZ‘(T)T1> « (log M)**°.

q<M r<M

=

Hence

(22.12) B < @'g) (log M)+ (L(1, y) log N)2

and the total contribution of Ey, to the off-diagonal part K#(T'), say Vg,

(see (IZI0), (IZII), P2T) satisfies
(22.13) Vo <« (L(1,x)log N)2 .

23. ESTIMATING FE

The case of F can be regarded as a generalization of Fyg in which the
extra kernel function K (u/v) is introduced. We reconstruct E from the
following expression
(23.1)

5\(5) g(m1) g(mo) <m1)
W = — —= m m K{—|.
( 2 2. ) ¢ 2, 2, i 2)§(m1) §(ma) — \my

N<{<N? N2<f{<N3 ml‘fmgw

The same arguments which produced ([22.8)) now yield
(23.2) W = —R(1) (L(1,x)log N)*> E + O(T~'%).

Before estimating W we need to separate mi, ms in K (mq/msz). This can
be accomplished quickly by changing the variable of integration z in (20.9])
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into /,/m1mgy giving
o) = () ) )
ma X s log N my me) T

Recall that N = Q?T? and X = M?T. Since h(x) = a(t) is linear in
t =logz/log N for t < 3 we can write

5 (M ZJN A_Blogx+§logm1+§10gm2
ma x logN 2 log N 2 log N

T x \ dx logm, logmeo
23.3 h{—]Jh|— | —+P log M
(233) (ml) (m2> z <logN " log N 8
where P(x1,22) is a polynomial of degree five with coefficients « ¢(D)/|D|

(they are linear forms in A, B). From the above expressions the following
convolution sums emerge (a kind of sifting weights);

_ - pu(m) (logm\* "
@ a0=Semgs () ©0<a<s)
L u(m) (logm\* /=
(23.5) 00 2) = n%g(m)m <1OgN> h <E) O<a<l).

Hence the double sum over the divisors of ¢ in ([23.1)) splits into the inte-
gral

(23.6) fN [<A _ ploer ) 0o(0; ) + B (¢ x)] 0o (t:2) 2%

e log N T
and 36 terms of type c(a, b)8,(¢)0,(¢)log M for 0 < a,b < 5 with coefficients
c(a,b) « ¢(D)/|D|. Hence (23.1)) yields
p(D)

W< > MO (a0 + eb(e;x)Z)T log N

N<{<N3 | |
for some 0 < a <5 0<b<1and X <z < N. By the arguments in
Section [I1] we show that (compare it with Lemma [0.1])
(23.7) D1 T (0207 + 04(652)%) « L.

N<{<N3
Hence we derive in the same way as (22.9]) that

D

(23.8) W « (L(1,x)log N)? %I) log N.
On the other hand we have the formula ([23.2]), comparing these we get
(23.9) E « (L(1,x)log N)"2 log N.

Finally it shows (see (I7ZI0) and ([221])) that the total contribution of E to
the off-diagonal K#(T), say V, satisfies

=

(23.10) V « (L(1,x)log N)= .



48 J.B. CONREY AND H. IWANIEC

24. COMMENTS ABOUT COMPLETING THE PROOF

After having completed the treatment of the diagonal terms we wrapped
up the results in the lower bound (I21]) for Ny (7') in which the off-diagonal
contribution X7 (T') is postponed for handling in the rest of the paper. We
are now ready to finish the job by compiling the relevant results.

According to the formula (I6.6) we partitioned X#(7T') into two similar
parts L2(1,x\)K*(T) — L?(1,x)K'(T), see (IZI0Q) for exact formula. The
third part was eliminated earlier by making the assumption (I6.10). This
means that the mollifier misses terms which are supported on multiples
of D. However the contribution of the missing terms can be treated by
undemanding arguments. For example one can show by straightforward
estimations that the missing part in the integral I(T") (see ([8.3])) is bounded

by \D|_%T(log T)* which is negligible.

Next K*(T') was split further into a number of pieces of similar shape (see
(2210)) and the contribution to K (T') of every piece separately was shown

to satisfy the same bound (22.11)), 2213)), (23.10). This bound does not

exceed the existing error term in the lower bound (IZ]). Finally it remains
to cover K'(T). We have gone quite far towards K'(T) by computing its
constituents (see Lemma [[6.2]) until the case appeared merging the lines
of K*(T). Without repeating many of the same arguments we claim that
K'(T) contributes no more than K*(T).
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