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Noise reduction capabilities of slat cusp serration were experimentally assessed and demon-

strated for a 30P30N three-element high-lift airfoil fitted with two different types of serrated

slat cusp. Aerodynamic characteristics were evaluated with the aid of surface pressure dis-

tribution and insignificant differences were found amongst all the tested configurations. The

unsteady flow characteristics of the slat serrations were examined using near- and far-field

measurements to gain a deeper understanding of the noise generation mechanism. Although

increased surface pressure fluctuations were demonstrated by the slat serrations, a substan-

tial reduction in the far-field noise was observed. The increase in the near-field energy levels

was attributed to the non-propagating hydrodynamic energy field within the slat cove and

the main-element, whereas the far-field noise reduction was attributed to the elimination

of vortex shedding by the slat serration. Further reaffirmation of the observations and

hypothesis were provided with higher-order spectral analysis and wavelet analysis.
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I. INTRODUCTION

Over the past decade, the boost in commercial air travel has stipulated the aircraft industry

to produce efficient and quieter aircraft than the ones already in use. With the advent and use of

high bypass engines for aircrafts, the noise generated by the engine has significantly been lowered,

however, the airframe noise remains unaltered. During landing, the airframe noise is extensively

dominated by high-lift devices and landing gears. In particular, High-lift devices like the slats are5

significant contributors to airframe noise and the resulting noise is both broadband and narrowband

in nature. Considering overall airframe noise, various passive and active flow control methods are

being explored to reduce noise, including methods like morphing structures1–7, porous materials8–11,

surface treatments12, serrations13–15 and transverse jets16,17. Nonetheless, the noise generated by

conventional slat and wing configurations continue to remain unresolved. It should be noted that the10

slat noise majorly comprises of broadband (Sts = 0.5−1), and tonal noise components (Sts = 1−5)

and in addition to this, studies have also shown several discrete tones at mid-frequency range

(Sts = 1− 5)18–30.

The aeroacoustic characteristics of slat noise are yet to be fully understood and are still of

much interest to researchers. Slat noise reduction mechanisms31 that have proven successful are15

slat cove cover32, slat hook extensions33, slat cove filler34–36, slat gap filler37, slat acoustic liners38,

slat hook tripping39, slat hook serrations40, and slat trailing with porous or brush extensions41,42.

One of the most definite ways proven to reduce the broadband noise generated from the slat is

by filling the recirculation area within the slat cove34–36,43–51. It is well established that the tonal

peaks generated by the slat are a result of self-sustained acoustic feedback loop generated by the20

interaction between the unsteady shear layer from the slat cusp and its impingement on the lower

surface of the slat36. Filling the slat cavity has shown to have eliminated this tonal noise and also

the broadband noise from the shear layer impingement. At first, in an attempt to eliminate the

unsteady recirculation region within the slat cove, Horne et al.34 from NASA tested a solid slat cove

filler (SCF) on a Boeing 777-200 semi span model in the NASA Ames 40 by 80 foot Wind Tunnel25

and to maintain attached flow on the slat lower surface, the slat cove filler profiles were derived

from CFD analysis. The results proved that slat cove filler was effective in reducing broadband

slat noise up to 4-5 dB (measured using a microphone phased array). However, no aerodynamic

measurements were presented in the above study.
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Streett et al.43 investigated the noise and basic aerodynamics of the SCF setup using a trape-30

zoidal wing swept model and demonstrated the noise reduction to be sensitive to the angle of attack

and SCF modification, with a reduction of 3-5 dB over a wide bandwidth. In addition, compara-

tively better aerodynamic performance over angles of attack less than 20◦ with an earlier stall of

2 degrees was observed for the SCF. Imamura et al.46 and Ura et al.47 highlighted that the lift

characteristics of the high-lift airfoil was sensitive to the SCF profile despite its noise reduction35

capabilities. The study involved two SCF profiles with a design point based on angle of attack,

while the results confirmed a noise reduction of up to 5 dB for both profiles, the lift characteristics

remained the same. Furthermore, Tao and Sun51 successfully optimized SCF profiles to generate

maximum lift at a fixed angle of attack whilst reducing noise. Moreover, a recent study by Kam-

liya et al.36 reported detailed aerodynamic and aeroacoustic characteristics of slat cove fillers. The40

results indicated that the slat cove fillers do not adversely affect the aerodynamic performance of

the wing. It was also highlighted that the characteristic vortex shedding peak in the slat noise

was eliminated with the use of slat cove fillers along with a noise reduction of up to 10 dB in the

narrowband region and up to 3 dB in the broadband region.

When considering slat serration there is a substantial lack in the available literature. However,45

a parametric study using seven different slat serrations with increasing serration wavelength was

performed by Kopiev et al.40. Serration with smaller wavelengths was shown to be sufficient enough

for noise reduction of up to 8 dB for the narrow-band peak. Aerodynamic performance remained

unaffected by the serrated slat hook with a smaller wavelength. Moreover, the characteristic nar-

rowband peaks were eliminated by the use of slat serrations. Additionally, the parametric study50

also showed that serration with larger wavelength increased broadband noise and slightly degraded

aerodynamic performance.

Considering the substantial lack of studies in the literature, the current experimental study

aims to present the basic aerodynamic performance and detailed aeroacoustic characteristics of

the serrated slat. High-quality aeroacoustic measurements were acquired from the state of the55

art aeroacoustic facility at the University of Bristol. The results are presented in terms of static

surface pressure measurement, lift characteristics, unsteady surface pressure measurements, and

far-field noise measurements. A comprehensive analysis using correlation studies, higher spectral

order analysis and wavelet transforms along with stochastic analysis was performed to understand

the noise reduction mechanism of the serrated slat cusps.60
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II. EXPERIMENTAL SETUP

A. Airfoil and Wind Tunnel Setup

A 30P30N three-element high-lift airfoil was manufactured using a computer-aided numerically

controlled machine with a retracted chord length of c = 0.35 m and a span length of l = 0.53 m.

The geometrical parameters of the airfoil are detailed in Table I. The high-lift airfoil was designed65

with no brackets within the span of the test section to maintain two-dimensionality of the flow

inside the slat cove and flap cove regions. A rigid purpose-built steel clamp was used to hold

the three-elements together from the sides of the airfoil outside the test section. The slat was

built with a spanwise slot to facilitate interchangeable slat leading-edge devices. The Cartesian

coordinates x−, y−, and z − axis corresponds to streamwise, crosswise and spanwise directions70

respectively. To induce turbulence in the slat shear layer, a zig-zag turbulator tape with a thickness

of ht = 0.5 mm and a width of wt = 3 mm, with a turbulator angle of 70◦ was used at location

x/c = −0.055 on the pressure side of the slat surface upstream from the slat cusp20. The airfoil was

also equipped with 103 static pressure taps, placed along the mid-span of the airfoil for aerodynamic

measurements. The tests were carried out for two different types of interchangeable serrated slat75

cusp configurations, detailed in Table II and shown in Fig. 2.

Aerodynamic measurements were performed in the low turbulence closed-circuit wind tunnel

facility at the University of Bristol. It has an octagonal working area of 0.8 m × 0.6 m × 1 m and

a contraction ratio of 12:1, with the capability of velocities up to 100 m/s and typical turbulence

intensity levels as low as 0.05%. Furthermore, aeroacoustic measurements were carried out at the80

University of Bristol Aeroacoustic Facility (see Fig. 1). It is a closed-circuit open-jet anechoic wind

tunnel with a nozzle exit of 0.5 m × 0.775 m and a contraction ratio of 8.4:1. The wind tunnel is

capable of velocities up to 40 m/s with turbulence levels as low as 0.25%52.

1. Unsteady Pressure Measurements Setup

The unsteady surface pressure within the slat cove region was measured using the FG-23329-85

P07 pressure transducers or remote sensors where pressure transducers could not be used due to

space constraints. Five FG-23329-P07 pressure transducers with a diameter of 2.5 mm, a height of

2.5 mm and a sensing area of 0.8 mm were installed on the main-element of the wing (see Fig. 3a

4
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TABLE I: Schematic and geometrical parameters of the 30P30N three-element high-lift airfoil in

percentage of stowed airfoil chord, c = 0.35 m.

(a) Slat

Slat chord cs 0.15c

Main-element chord cme 0.83c

Flap chord cf 0.3c

Slat deflection angle δs 30◦

Flap deflection angle δf 30◦

Slat gap gs 2.95%

Flap gap gf 1.27%

Slat overhang os −2.5%

Flap overhang of 0.25%
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FIG. 1: Schematic of the 30P30N three-element high-lift airfoil set-up in the aeroacoustic wind

tunnel.

and Table III). In order to reduce the measurement errors that arise due to the spatial integration
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(a) Baseline (b) Serration-1

(c) Serration-2 (d) No-cusp

FIG. 2: Schematic of the different slat configurations tested in the present study: (a) Baseline,

(b) Serration-1, (c) Serration-2, and (d) No-cusp.

TABLE II: Schematic of the slat cusp serration and its geometrical parameters tested in the

present study.

2h

Root

Serration angle
( s)

Wavelength (      )Tip Configuration 2h λ λ/h αs

(mm) (mm) - (deg.)

Serration-1 3.8 3.12 1.64 67.7

Serration-2 6.4 3.12 0.975 76.3

of the signal, a surface fairing with a reduced sensing area of 0.4 mm was used (see Fig. 3b). The90

FG-23329-P07 is an electret condenser omnidirectional microphone with a flat frequency response

between 100Hz-10kHz. It has a manufacture provided sensitivity of 22.4 mV/Pa in the flat region

of the transducer response. For the current setup, in situ calibration was performed for the FG-

transducers with a G.R.A.S 40PL piezoelectric microphone with a known manufacturer sensitivity

and a flat frequency response up to 10 kHz with uncertainty level of ± 1 dB. It was found that95

the sensitivity for the FG-233329-P07 varied between 20.2 mV/Pa and 23.5 mV/Pa. In addition,

four remote sensors made of Panasonic WM-61A miniature microphone were installed on the main-

element and one on the slat of the wing, see Table III. As shown in Fig. 4, the remote sensors

comprised of a brass pipe fitted in a designated slot on the surface of a metal base. The Panasonic

WM-61A miniature microphone is placed in between a metal section and the metal base. Another100

drilled pinhole connecting to the surface of the brass pipe was aligned with the center of the

microphone’s pinhole. Furthermore, in order to eliminate the effect of standing waves, a flexible

6
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tube extension of 2 m is connected to the other end of the brass pipe for anechoic termination. An

in situ calibration was also performed for the remote sensor with the G.R.A.S 40PL piezoelectric

microphone that produced the transfer functions required to compensate for the high-frequency105

dissipation within the small tubes and the lag produced by the remote sensors extensions. For

the current remote sensor setup, flat frequency response was found up to 6 kHz (Sts = 10). The

unsteady surface pressure measurements using the FG-transducers and remote sensors were carried

out for 120 seconds at a sampling frequency of f = 215 Hz.

2.
5 

m
m

2.5 mm
0.8 mm

SECTI

3

A

B

C

D

A

0.
5 

m
m

0.8 mm

0.4 mm 2.5 mm

2.8 mm

1 m
m

Microphone

Wires

Sensing area

(a) (b)

Surface fairing

FIG. 3: (a) Schematic of the FG-23329-P07 pressure transducer and (b) schematic of the

sectional view of the surface fairing for the pressure transducers.

0.4 mm pin hole

Acoustic termination tube (2 m)Pressure ports on the airfoil

Panasonic WM-61A
microphone

1.6 mm brass tube
Polyurethane tube

15 mm 19 mm

10 mm

(a) (b)

15 mm 19 mm

10 mmTo pressure ports
on the high lift airfoil

Panasonic WM-61A
microphone

1.6 mm brass tube

Acoustic termination tube (2 m)

Polyurethane tubeFIG. 4: (a) Schematic of the remote sensor configuration and (b) schematic of the sectional view

of the remote sensor with description used in the present study.
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FIG. 5: Location of the remote unsteady pressure measurement sensors (red) and flush mounted

surface pressure transducers (blue) on the slat and main-element of the 30P30N three-element

high-lift airfoil.

TABLE III: Streamwise (x− axis) and spanwise (z − axis) unsteady pressure measurement

locations on the slat and main-element for the 30P30N three-element high-lift airfoil.

No. Type∗ x (mm) y (mm) z (mm)
S1 RS -6.918 -11.622 265
M1 RS 17.347 -10.019 265
M2 RS 15.126 -5.839 265
M3 RS 17.622 0 265
M4 RS 23.520 5.485 265
FG1 PT 22.414 -11.356 277
FG2 PT 22.414 -11.356 280.6
FG3 PT 22.414 -11.356 288.4
FG4 PT 22.414 -11.356 301.4
FG5 PT 22.414 -11.356 319.6
∗RS - Remote sensor, PT - Pressure transducer

2. Acoustic measurements and instrumentation110

The experimental setup of the 30P30N three-element high-lift airfoil installed in the aeroacoustic

facility is shown in Fig. 1. The far-field noise measurements were carried out using a Panasonic

WM-61A electret microphone placed at a distance of 1 m and 90◦ away from the slat trailing edge.

The far-field microphone has a flat frequency response at frequencies from 50 Hz to 10 kHz, with

a dynamic range of more than 62 dB. The diameter of the exposed microphone diaphragm of the115

WM-61A microphones is 2 mm. The far-field noise data were captured for t = 120 s at a sampling

frequency of f = 215 Hz. The acoustic data were recorded at a flow velocity of 30 m/s corresponding

to a chord-based Reynolds number of Rec = 7.0× 105. The power spectrum results were obtained

using the power spectral density (PSD) of the pressure signals with Hanning window and the

8
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acquired data were averaged for 220 times to yield a frequency resolution of ∆f = 2 Hz. The sound120

pressure level (SPL) spectrum can then be calculated from SPL = 20 · log10 (prms/pref ), where

prms is the root-mean-square of the acoustic pressure and pref = 20 µPa is the reference pressure.

The sound pressure level of the acoustic pressure signal is corrected to a reference distance of 1 m.

III. RESULTS AND DISCUSSIONS

A. Test Conditions125

It is of fundamental importance to assess and understand the aerodynamic behavior of high-lift

devices for any modifications made to the slat. A quantitative comparison of the pressure coefficient

for the Baseline, Serration-1, and Serration-2 configurations with existing data are presented in

Fig. 6. The pressure coefficient distribution over the 30P30N three-element high-lift airfoil with

and without the slat cusp serrations at a chord-based Reynolds number of Rec = 1.2× 106 at the130

angle of attack α = 10◦ are compared for validation purpose with published results available from

Li et al.27 at a chord-based Reynolds number of Rec = 1.71 × 106 at the angle of attack α = 8◦.

The surface pressure measurement for the high-lift configuration is highly dependent on the type

of wind tunnel and the angle of attack36,53. Li et al.27 demonstrated that the pressure coefficient

distribution and the flow-field of a 30P30N three-element high-lift airfoil tested in a closed hard-wall135

wind tunnel were similar to the ideal free flight conditions unlike the results obtained from an open

test section wind tunnel. The surface pressure coefficient results (Cp) of the Baseline, Serration-

1, and Serration-2 configurations shown in Fig. 6 validate well with the open test section wind

tunnel results from Li et al.27. This shows the validity of the airfoil used in the study and that the

aerodynamic results presented in this study shall not be compared to that of the ideal free-flight140

conditions, due to the significant effects of the flow deflection and the sidewall interference36.

B. Aerodynamic characteristics

The close-up view of the pressure coefficient distributions Cp around the slat and flap region of

the 30P30N three-element high-lift airfoil for the Baseline, Serration-1, and Serration-2 cases at a

chord-based Reynolds number of Rec = 1.2 × 106 at the angle of attack α = 10◦ are presented in145

Fig. 7. Slat serrations generates insignificant changes in the pressure coefficient distribution over the

9
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FIG. 6: Pressure coefficient distribution and validation over the 30P30N three-element high-lift

airfoil with and without slat serrations for a free-stream velocity of U∞ = 50 m/s, Rec = 1.2× 106

at angle of attack α = 10◦.

slat and flap region for the tested Reynolds number compared to the Baseline case. Additionally,

the Cp remains almost unchanged amongst all the three configurations over the main-element, as

seen in Fig. 6. The lift coefficient (CL) was calculated by applying the trapezoidal integration

rule to the pressure data obtained from 103 pressure taps distributed over the three element of150

the 30P30N high-lift airfoil. Figure 8 shows the CL − α curve for the Baseline, Serration-1 and

Serration-2 configurations at a chord-based Reynolds number of Rec = 1.2 × 106. Measurements

were performed for angles of attack ranging from α = 1◦ to 15◦ with an increment of 1◦. The lift

coefficient (CL) shows negligible difference amongst the cases for all the presented angles, of attack

besides a negligible variation at angles of attack α = 1◦, 4◦ and 5◦.155

As shown in previous studies27,36,53, it is a common practice to compare aerodynamic character-

istics between two experimental or computational setup to establish the flow condition for high-lift

devices. Figure 9 shows the pressure coefficient distribution over the slat region of the 30P30N

Baseline configuration at the geometrical angle of attack α = 14◦ in the open-jet aeroacoustic

wind tunnel from the present study compared to the aerodynamic angle of attack α = 5.5◦ from160

Murayama et al.22 in a closed test section wind tunnel. The Cp results around the slat region

at α = 14◦ were observed to correspond well with those of the α = 5.5◦ at free flight conditions

reported by Murayama et al.22. It should be noted that all the following aeroacoustic results are

10
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FIG. 7: Pressure coefficient distribution over 30P30N three-element high-lift airfoil around the

(a) slat, and (b) flap region for a free-stream velocity of U∞ = 50 m/s, Rec = 1.2× 106 at angle of

attack α = 10◦.

0 2 4 6 8 10 12 14 16

0.6

1

1.4

1.8

2.2

2.6

3

Baseline

Serration-1

Serration-2

FIG. 8: Lift coefficient calculated using trapezoidal integration of the Cp distribution for the

30P30N three-element high-lift airfoil with serrations at a chord-based Reynolds number

Rec = 1.2× 106 (U∞ = 50 m/s).

presented for the geometric angles of attack α = 14◦ and 18◦ in the open-jet aeroacoustic wind

tunnel.165

C. Far-field spectral levels

Far-field noise measurements were carried for the Baseline, Serration-1, and Serration-2 config-

urations. For the sake of comparison, results are also provided for a configuration without the slat

cusp (No-Cusp). Figure 10 shows the sound pressure level measured from a far-field microphone at

11
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FIG. 9: Pressure distribution around the slat for the tested 30P30N Baseline configuration at

geometrical angle of attack α = 14◦ in open jet configuration compared to the aerodynamic angle

of attack α = 5.5◦ from Murayama et al.22 in a closed test section.

90◦ and 1 m away from the slat trailing edge at angles of attack α = 14◦ and 18◦, for a free-stream170

velocity of U∞ = 30 m/s, corresponding to a chord-based Reynolds number of Rec = 7.0×105. The

sound pressure levels (SPL) are presented in terms of slat based Strouhal number (Sts = f×cs/U∞).

The SPL for the Baseline and Serration-1 configuration exhibits characteristic discrete narrowband

peaks particularly at Sts ≈ 1.6, typically found in high-lift devices. Interestingly, the far-field SPL

of the Serration-2 and No-Cusp configurations do not demonstrate this tonal behavior at angle175

of attack α = 14◦. However, at α = 18◦, the No-Cusp configuration shows a narrowband peak

with reduced energy at Sts = 1.32. Furthermore, at the angle of attack α = 14◦, the Serration-1

configuration clearly shows a reduction in noise levels at Sts ≈ 1.6 but an increase at the angle of

attack α = 18◦ at Sts ≈ 1.6. Evidently, a slight shift in the peak Strouhal number to Sts = 1.5

(i.e. shift to a lower Sts number) is observed in the case of the Serration-1 compared to that of the180

narrowband peak seen at Sts = 1.6 for the Baseline configuration. Particularly, for Serration-2 at

angles of attack α = 14◦ and 18◦, significant noise reduction at the fundamental peak (Sts = 1.6)

compared to that of the Baseline and Serration-1 cases are observed. Moreover, the SPL increases at

low to mid-frequency range (Sts < 2) for the Serration-1, Serration-2, and No-Cusp configurations,

and remain the same at high frequencies (Sts > 2) for both the angles of attack, α = 14◦ and 18◦.185

However, at the spectral hump Sts = 0.88, all the slat modifications show noise reduction, with

Serration-1 showing a reduction of up to 3 dB, and Serration-2 as well as No-Cusp configurations

showing a reduction of up to 5 dB.

12
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FIG. 10: Far-field noise spectra for microphone at 90◦ and 1 m away from the slat trailing edge:

(a) α = 14◦ and (b) α = 18◦.

TABLE IV: Overall sound pressure level calculated from the far-field microphones at 90◦ and

1 m away from the slat trailing edge.

OASPL [dB]

Cases α = 14◦ α = 18◦

Baseline 94.95 101.49

Serration-1 91.95 102.97

Serration-2 90.59 93.72

No-Cusp 90.63 95.53

To further improve our understanding of the differences in noise levels between the slat config-

urations, an estimation of the overall sound pressure level (OASPL) for the far-field microphone190

90◦ and 1 m away from the slat trailing edge is presented in Table IV. The overall sound pressure

level was calculated by performing an integration of the far-field SPL over a frequency range of

Sts = 0.2 − 18. In general, Serration-2 configuration shows noise reduction compared to all the

other configurations for both the presented angles of attack. At angle of attack α = 14◦, the No-

Cusp also possesses similar OASPL values to Serration-2. Moreover, the reduction in OASPL for195

Serration-2 is only about 2-4 dB compared to the Baseline and Serration-1 configurations. At angle

of attack α = 18◦, the Serration-2 exhibits substantial OASPL reduction of up to 10 dB compared

13
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to the Baseline and Serration-1, whereas the No-Cusp shows a decrease in OASPL of up to 6 dB.

The generation of the tonal peaks and noise reduction mechanisms of the serration configurations

will be discussed in detail in the following sections.200

D. Near-field spectral levels

The near-field unsteady pressure measurements were performed to gain further insight into the

noise generation mechanism of the slat and slat cusp modifications. The unsteady surface pressure

data were collected at various streamwise and spanwise locations on the surface of the slat (S1)

and the main-element (FG1-FG5, M1-M4) of the high-lift airfoil using unsteady surface pressure205

transducers. The detailed locations of the transducers are presented in Table III. Simultaneous

measurements of the near-field unsteady surface pressure fluctuations and far-field noise were carried

out at angles of attack α = 14◦ and 18◦, for a free-stream velocity of U∞ = 30 m/s, corresponding

to a chord-based Reynolds number of Rec = 7.0× 105.

Figure 11 shows the results for the unsteady surface pressure measurements from the transducer210

FG1 at the leading-edge of the main-element. In general, the near-field noise spectra for the

Baseline case exhibits multiple distinct narrowband peaks for all the tested angles of attack with

varying intensities, signifying the presence of cavity oscillation36. As expected, for the Baseline, the

near-field spectra evidently shows the tonal peaks previously reported in Fig. 10, particularly two

dominant peaks at Sts = 1.6 and 3.2 for both the angles of attack. A similar trend is also found in215

the case of Serration-1, with a slight reduction in the surface pressure level at the vortex shedding

peak (Sts = 1.5) for the angle of attack α = 14◦ and increased levels for the same peak at the angle

of attack α = 18◦. As seen in the far-field results, Serration-2 and No-Cusp configurations do not

produce any narrowband peaks in the near-field spectra at angle of attack α = 14◦, however, a peak

with low energy is observed at Sts = 2 for α = 18◦ for the No-Cusp configuration. Moreover, the220

wall pressure spectra at the angle of attack α = 14◦, for the Serration-2 and No-Cusp, demonstrates

increased SPL over the entire frequency range and specifically, in the low-mid frequency range

(Sts < 3) at the angle of attack α = 18◦. The increased spectral levels in the near-field surface

pressure measurements for the Serration-2 and No-Cusp configurations relative to the Baseline are

not observed in the far-field measurements in Fig.10, implying that the increased spectra in the225

near-field resulted from the non-propagating hydrodynamic energy field within the slat cove and
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the main-element. Overall, it should be noted that the characteristic narrowband peak from the

slat noise is completely eliminated for both the angles of attack in the case of Serration-2.
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FIG. 11: Near-field point spectra for the FG1 transducer on the main-element as shown in Fig. 5

and detailed in Table III: (a) α = 14◦ and (b) α = 18◦.

The unsteady surface pressure measurements acquired from the remote sensors at the slat (S1)

and the leading-edge of the main-element (M1-M4) are presented in Fig. 12. Considering the230

narrowband accuracy of the remote sensor, the results are presented only up to Sts = 5.5. Moreover,

the far-field and unsteady surface pressure measurements from the Panasonic microphone and FG

transducer in Figs. 10 and 11, respectively, show that the characteristic behavior of the slat tones lay

within Sts < 5.5 and beyond Sts > 5.5, and the spectral results amongst all the tested cases follow

a similar trend. The wall pressure fluctuation spectra exhibits multiple distinct narrowband peaks235

with varying intensities at the slat and the leading edge of the main-element for all the tested angles,

similar to the results in Figs. 10 and 11. The wall pressure spectra trend between the two angles of

attacks are similar, however, at angle of attack α = 18◦, the narrowband peaks are dominant and

evident. Remote sensor S1, located at the slat region, exhibits the lowest energy level compared to

the other sensors (M1-M4) at the leading-edge of the main-element for all the tested configurations.240

The application of Serration-1 on the slat results in a similar trend of the wall pressure fluctuations

spectra compared to that of the Baseline, with marginally increased levels at the primary peak

(Sts ≈ 1.6) for the angle of attack α = 18◦, as seen earlier. No peaks are observed for the No-Cusp

configuration at the angle of attack α = 14◦, however, at the angle of attack α = 18◦, peaks are

generated at Sts = 1.32 for all the presented sensor locations, as mentioned above. The results245
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also show that Serration-2 can eliminate the vortex shedding peak at Sts = 1.6 for the angles of

attack α = 14◦ and 18◦ for all the presented sensor locations. Another important feature observed

in Fig. 12 is the emergence of the spectral hump (Sts = 0.6 − 1) in the case of the Baseline and

Serration-1 at angles of attack α = 14◦ and 18◦. Interestingly, the spectral hump is completely

eliminated for the No-Cusp and Serration-2, particularly at the angle of attack α = 14◦. However,250

at the angle of attack α = 18◦, a mild spectral hump (Sts = 0.6) similar to the Baseline is observed

for both the No-Cusp and Serration-2 configurations only at locations S1 and M1. The presence

of spectral hump is observed to be more dominant in the near-field surface pressure measurements

and weak in the far-field measurements in Fig. 10, implying that the increased spectra in the

near-field emerges as a result of the non-propagating hydrodynamic energy field within the slat and255

main-element. Also, it is hypothesized that the broadband hump (Sts = 0.5 − 0.9) in this region,

seen in the Baseline case, might be different in nature compared to the dominant even-numbered

modes shown by kamliya et al.36.
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FIG. 12: Near-field point spectra for the remote sensor measurements shown in Fig. 5 and detailed

in Table III: (a) S1, α = 14◦, (b) S1, α = 18◦, (c) M1, α = 14◦, (d) M1, α = 18◦, (e) M2, α = 14◦,

(f) M2, α = 18◦, (g) M3, α = 14◦, (h) M3, α = 18◦, (i) M4, α = 14◦, and (j) M4, α = 18◦.
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FIG. 13: Overall sound pressure level calculated from the near-field remote sensors on the slat

and main-element: (a) α = 14◦ and (b) α = 18◦.

To provide a general quantitative estimation of the unsteady loading and to better understand

the slat modifications, the overall sound pressure level (OASPL) of the near-field surface pressure260

fluctuations on the slat and main-element are calculated and presented in Figs. 13a and 13b for

angles of attack α = 14◦ and 18◦, respectively. For the sensors, the overall sound pressure level

was integrated for a frequency range of Sts = 0.2 − 5.5. For angle of attack α = 14◦, the results

exhibit increased overall energy content for Serration-2 and No-Cusp compared to the Baseline

and Serration-1, whereas, the Serration-1 case shows the lowest overall energy content compared265

to all the cases. For angle of attack α = 14◦, at S1, the Baseline experiences the highest overall

energy level, whereas all the other configurations show a lower similar values. Furthermore, at

the sensor locations M1, M2, and M4, the No-Cusp configuration demonstrates the highest overall

energy content followed by Serration-2, Baseline, and Serration-1, respectively. Interestingly, only

at location M3, Serration-2 exhibits marginally higher overall energy level followed by No-Cusp,270

Baseline, and Serration-1. Although the results for Serration-2 show higher overall energy content

for the surface pressure fluctuations, the far-field overall energy content shows noise reduction for

Serration-2 compared to the Baseline and Serration-1 configurations.

At angle of attack α = 18◦, Serration-2 is seen to cause a reduction in the overall energy level

compared to all the other slat configurations. At the slat sensor location S1, the lowest overall275

energy level is found for Serration-2 followed by No-Cusp, although the Baseline and Serration-1
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cases exhibit similar values. At S1, the Serration-2 configuration shows a reduction of up to 5 dB

in overall energy level compared to the Baseline and Serration-1 configurations. Furthermore, at

sensor location M2, M3, and M4, Serration-2 shows a reduction of up to 1-2 dB in the overall

energy level compared to the other configurations with similar values. Interestingly, at location280

M1, the Baseline and Serration-1 reports lower overall energy content compared to the Serration-2

and No-Cusp configurations. Overall, the near-field overall energy content shows increased values

for the Serration-2 configuration at angle of attack α = 14◦, whereas at angle of attack α = 18◦,

Serration-2 exhibits reduced overall energy level compared to all the other configurations. It should

be noted that the far-field OASPL indicated noise reduction for Serration-2, therefore, the increase285

in overall energy level in the near-field could be attributed to the non-propagating hydrodynamics

of the flow-field.

1. Auto-correlation

The dominant time scales in the flow can be determined by performing an auto-correlation

analysis on the unsteady surface pressure fluctuations within the slat cove region. The auto-290

correlation were calculated using the unsteady surface pressure from,

Rpipi(τ) =
pi(t+ τ)pi(t)

p2iRMS

, (1)

where pi is the surface pressure, piRMS is the surface pressure root-mean-squared, τ is the time

delay and the time average is represented by the overbar.

The auto-correlation of the surface pressure at the remote sensor location S1 (slat) and M1

(main-element) for the Baseline, Serration-1, Serration-2, and No-Cusp configurations at the angle295

of attack α = 14◦ and 18◦ are presented in Fig. 14. The auto-correlation Rpipj (τ) results are

presented as a function of the normalized time delay τU∞/cs. In the case of the sensor on the slat

(S1), the Rpipj (τ) results for the Baseline and Serration-1 cases exhibits a slow decaying periodic

behavior with a Gaussian shape at both the angles of attack (14◦ and 18◦), indicating the emergence

of a strong vortex shedding36. The Rpipi(τ) results of the Serration-2 and No-Cusp cases shows300

a very weak periodic shape that exhibits a fast decaying periodic behavior, signifying the absence

of a strong vortex shedding for the angle of attack α = 14◦, in accordance with the results in

Figs. 11 and 12. Conversely, in the case of the No-Cusp configuration, at angle of attack α = 18◦,

the Rpipi(τ) shows a stronger periodic behavior, signifying the presence of vortex shedding. The
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Rpipi(τ) for the Serration-2 configuration exhibits a weaker periodic behavior compared to all the305

tested cases at the angle of attack 18◦.

It is well established that the distance between the two peaks in the Rpipi(τ) for the Baseline case

shown in Fig. 14(b) corresponds to the vortex shedding frequency (τ∗vs = τU∞/cs). Furthermore,

the time delay found in the Baseline case is τ∗vs ≈ 0.625, corresponding to Sts = 1.6, associated with

the fundamental vortex shedding peak observed in Figs. 11 and 12. At the leading edge of the main-310

element (M1), the Rpipj (τ) results for the Baseline and Serration-1 cases exhibit a slow decaying

periodic behavior with a low decay rate at both the angles of attack, similar to the slat location S1.

For the Serration-2 and No-Cusp configurations, at the angle of attack α = 14◦, the Rpipj (τ) results

shows a very weak periodic shape that decays instantaneously, indicating the absence of a strong

vortex shedding. At the angle of attack α = 18◦, the Rpipj (τ) for all the tested cases (i.e. Baseline,315

Serration-1, Serration-2 and No-Cusp) reveal a fast decaying periodic behavior. The amplitude

of the Rpipj (τ) results for the angle of attack α = 18◦ is much smaller compared to α = 14◦,

signifying the emanation of lower energy of the vortex shedding in the vicinity of the main-element

leading edge. Overall, the suppressed Rpipi(τ) periodic behavior for the Serration-2 configuration

indicates the suppression of the vortex shedding. Moreover, the strong Rpipi(τ) periodic behavior320

observed for No-Cusp configuration also further signifies the role of the Serration-2 at the slat cusp

to eliminate the vortex shedding and thus, the feedback mechanism.

E. Coherence studies

1. Streamwise coherence

In order to better understand the dynamics of the flow structures within the slat and near the325

leading-edge of the main-element, near-field coherence studies were carried out. The coherence of

the signals was determined by the phase correlation between two different remote sensors in the

streamwise locations, averaged over time, and can be found from;

γ2pipj (f) =
| Φpipj (f) |2

Φpipi(f)Φpjpj (f)
for pi = M1 and pj = M2, M3, M4, (2)

where M1 is the reference sensor, while M2-M4 are the downstream sensors mounted on the leading-

edge of the main-element. The locations of the remote sensors are provided in Table III.330
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FIG. 14: Auto-correlation of the remote sensors at the slat location S1 and main-element location

M1: (a) S1-S1, α = 14◦, (b) S1-S1, α = 18◦, (c) M1-M1, α = 14◦, and (d) M1-M1, α = 18◦.

Figure 15 shows the coherence (γ2pipj ) between the reference sensor M1 and the other sensors

M2-M4 on the streamwise direction for the four tested configurations (i.e. Baseline, Serration-1,

Serration-2, and No-Cusp) at the angles of attack α = 14◦ and 18◦. In general, the results show high

coherence between the sensors M1-M2 for all the tested configurations at both the angles of attack

over most of the frequency range, except over frequencies Sts > 3. The broadband coherence spectra335

at Sts > 3 for the Serration-1, Serration-2 and No-Cusp configurations are much higher than that of

the Baseline case at α = 14◦. For M1-M3, the highest coherence levels are observed for the Baseline

and Serration-1 over the entire frequency range at the angle of attack α = 14◦, however, at the

angle of attack α = 18◦, a fairly similar coherence is observed amongst all the cases. In particular,

high coherence levels are found at the tonal peaks, specifically at the primary peak (Sts = 1.6).340

Additionally, the coherence between M1-M3 also reveals the suppression of the fundamental peaks

along with its harmonic by the Serration-2 configuration especially at α = 14◦. For M1-M4, in the
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case of Serration-2 and No-Cusp, coherence levels were found to be almost zero. However, at the

angle of attack α = 18◦, the coherence levels (M1-M4) reveal similar coherence over the broadband

range of the spectra amongst the three configurations excluding the tonal peaks, indicating that they345

all have similar three-dimensional flow structures. A notable reduction in coherence levels is found

for the Serration-2 configuration compared to other cases, in accordance with the results observed

in the surface pressure spectra (see Fig. 11(b)). Moreover, for all the streamwise coherence locations

in Fig. 15, high coherence levels are found at Sts = 0.6, indicating the emergence of spectral humps

for all the presented configurations and angles of attack. Interestingly, a significant reduction350

in the coherence levels for the broadband spectral hump at low frequencies and the tonal peaks

can be observed for the Serration-2 and No-Cusp configurations, especially at the angle of attack

α = 14◦. Overall, the streamwise coherence results show a reduction in flow energy at consecutive

streamwise locations for Serration-2 and No-Cusp with reduced coherence levels compared to the

highly energetic Baseline and Serration-1.355

2. Spanwise correlation length scale

The spanwise correlation length of wall pressure fluctuations was studied to determine the noise

generated through the interaction of pressure signals in the spanwise direction in the slat vicinity.

The spanwise correlation length scale (Λγ) of the spanwise flow structures was calculated using

the spanwise coherence (γ) results between the surface pressure transducers (FG1-FG5) at various360

lateral spacing (∆z) and can be found from,

Λγ(f) =

∫ ∞
0

γpipj (f,∆z) d∆z. (3)

Figure 16 shows the correlation length scale (Λγ) as a function of frequency (Sts) for the Baseline,

Serration-1, Serration-2 and No-Cusp configurations at the angles of attack α = 14◦ and 18◦. For

the angle of attack α = 14◦, the Baseline and Serration-1 follow a similar trend over the same

length scales with an exception of tonal peaks at high frequencies (Sts > 3) for Serration-1, where365

the tones were suppressed. The highest length scale was found at the primary tonal peak at

about Λγ/cs =0.082. Furthermore, the results report that the spanwise length scales could be

significantly reduced by Serration-2 and No-Cusp configurations at the spectral hump and multiple

peaks, with an average correlation length scale of about Λγ/cs ≈ 0.02. Additionally, the application

of Serration-2 notably reduced the length scale at the primary tonal peak (Sts = 1.6) with a slight370
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FIG. 15: Streamwise coherence between the sensors located at the leading-edge of the

main-element: (a) M1-M2, α = 14◦, (b) M1-M2, α = 18◦, (c) M1-M3, α = 14◦, (d) M1-M3,

α = 18◦, (e) M1-M4, α = 14◦, and (f) M1-M4, α = 18◦.

shift to the lower frequency range. For all the tested configurations, at angle of attack α = 18◦,

the correlation length scales over the whole frequency range are much larger than that of those

found at the angle of attack α = 14◦. Moreover, at α = 18◦, the length scales demonstrate two

distinct peaks at the spectral hump for the Baseline and No-Cusp configurations. Furthermore,

23



Serrated Slat Cusp for High-lift Device Noise Reduction

at the mid to high-frequencies (Sts > 2), the Baseline, Serration-1, and No-Cusp configurations375

also demonstrate a similar broadband trend. However, in the case of Serration-2, the spanwise

correlation length remains almost the same between Sts = 2 and Sts = 4 but reduced at higher

frequencies Sts > 4. Overall, the spanwise correlation length for the Serration-2 case reaffirms the

elimination of the tonal behavior generated due to the acoustic feedback mechanism within the

cavity.380

3. Near- to the far-field coherence

In order to distinguish the non-propagating hydrodynamic field and the noise radiated to the

far-field, the coherence between the near-field surface pressure sensors on the high-lift device and

the far-field microphone above the slat trailing-edge were carried out. The near- to the far-field

coherence was calculated using the following equation,385

γ2pipj (f) =
| Φpipj (f) |2

Φpipi(f)Φpjpj (f)
for pi = S1, M1 and pj = FF90◦ , (4)

where | · | is the absolute value, S1 and M1 are the reference sensors on the slat and the leading-edge

of the main-element, respectively, and FF90◦ is the far-field microphone at a distance of 1 m and 90◦

away from the slat trailing edge. The Φpjpj is the cross-spectral density between the two pressure

signals pi and pj .

The coherence γ2pip90◦ between the near-field remote sensors on the slat and the main-element390

of the high-lift airfoil (S1, M1) and the far-field microphone (FF90◦) for the Baseline, Serration-1,

Serration-2 and No-Cusp configurations at the angles of attack α = 14◦ and 18◦ are presented in

Fig. 17. In general, high coherence levels are observed at all tonal peaks that appear as a result of the

cavity oscillations, in line with a previous study by Kamliya et al.36. For the angle of attack α = 14◦,

marginally increased coherence levels are observed in the case of S1-FF90◦ over the entire frequency395

range compared to the M1-FF90◦ for all the tested configurations. Evidently, the coherence levels

observed in the Baseline and Serration-1 at the broadband hump (Sts = 0.5 − 0.9), the vortex

shedding peak (Sts ≈ 1.6), and the other distinct narrowband peaks are eliminated for the No-Cusp

configuration with coherence values below γ2pip90◦ < 0.1. Furthermore, both the broadband hump,

with high coherence levels at about 0.5 < Sts < 0.9 and the vortex shedding peak at Sts ≈ 1.6400

are significantly reduced with the application of Serration-2. At the angle of attack α = 18◦, for
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both the near-field pressure sensor on the slat (S1) and the main-element (M1), high coherence

levels were found over the entire frequency range. Contrary to the coherence levels observed at the

angle of attack α = 14◦, the No-Cusp configuration exhibits high coherence levels, particularly at

the fundamental tonal peak (Sts = 1.6) with a slight shift to a lower frequency value. Overall, the405

results in Figs. 17(b) and (d) show that the near-to-far-field coherence (γ2pip90◦ ) at the broadband

hump, the vortex shedding peak, and the other distinct narrowband peaks could be significantly

reduced by the application of the Serration-2 when compared to that of the Baseline, Serration-1,

and No-Cusp configurations. Finally, this section confirms that the increased noise observed for the

Serration-2 and No-Cusp configurations in the near-field measurements, seen earlier in Fig.12, is410

solely due to the near-field non-propagating hydrodynamic field since the overall coherence of these

configurations remain low over a wide range of frequencies.
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FIG. 16: Spanwise coherence length scales based on the unsteady surface pressure transducers

measurements (FG1-FG5): (a) α = 14◦, and (b) α = 18◦.
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FIG. 17: Coherence between the near-field sensors at the slat location S1 and main-element

location M1 with the far-field microphone at 90◦ placed 1 m away from the slat trailing edge: (a)

S1-FF90◦ , α = 14◦, (b) S1-FF90◦ , α = 18◦, (c) M1-FF90◦ , α = 14◦, and (d) M1-FF90◦ , α = 18◦.

F. Statistical Analysis

In order to characterize the turbulent motions of flow within the slat cavity with and without

the serrated slat cusp, statistical moments of the turbulence distribution are studied using the415

probability density function (PDF), skewness and kurtosis. Figure 18 shows the probability den-

sity function (PDF) of the surface pressure fluctuations at the slat (S1) and the leading edge of the

main-element (M1-M4) at the angle of attack α = 18◦. The surface pressure fluctuation values were

normalized by the standard deviation at each pressure level. In principle, PDF with a Gaussian

distribution is assumed for velocity fluctuations dominated by homogeneous turbulence. Similarly,420

the univariate statistical analysis of unsteady pressure fluctuations could also be used to determine
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the relative flow conditions. Therefore, a normalized Gaussian distribution is included in the fig-

ure for comparison. It was found that, at the slat region (S1), the PDFs of the surface pressure

fluctuations gradually skew toward the negative side, with an increase of wall-normal distance for

Baseline, Serration-1, and No-Cusp configurations whereas the PDF of the Serration-1 move closer425

to Gaussian distribution. As for the sensor at the leading edge of the main-element M1, the PDF

curves show a quasi-Gaussian distribution for all the cases, whereas Serration-2 exhibits a Gaussian

distribution. For the sensor M2, the PDFs are dominated by positive pressure events, whereas

for M3, they are dominated by negative pressure events for all the configurations. Furthermore,

the PDF results, for the remote sensor M4, for all the tested cases, also reveals the distribution430

dominated by negative pressure events. Interestingly, significant deviation with a well-distributed

positive tail is also observed, with Serration-2 having the highest deviation followed by No-Cusp,

Serration-1, and Baseline. Moreover, the larger number of points past the six standard deviations

from the mean indicates a much higher probability for values in this region than a normal distri-

bution could predict. Furthermore, when the distribution of pressure fluctuations deviates from435

Gaussian, it denotes that the pressure events are dominated by flow characteristic features such

as vortex shedding and when the distribution is Gaussian, the flow is turbulent. Considering this,

the PDF observations could be better interpreted using third and fourth-order moments such as

skewness and kurtosis. For a stochastic signal x, skewness (s) and kurtosis (k) can be defined as,

s =
EV (x− µ)3

σ3
, (5)

k =
EV (x− µ)4

σ4
, (6)

where µ and σ are the mean and standard deviation of the pressure signal, respectively and EV[·]440

is the expected value.

Figure 19 shows the results of skewness and kurtosis for all the configurations at the angle of

attack 18◦. Skewness measures the asymmetry of the data signal distribution around the sample

mean. Predominantly, the data exhibits a Gaussian distribution when the skewness value is close to

zero. For the presented results, the positive and negative skewness values indicate the events dom-445

inated by positive and negative pressure, respectively. In general, the skewness exhibits significant

differences at various sensor locations for all the configurations. The skewness values, for Serration-

2, are evidently close to zero at all the sensor locations compared to the other configurations, except
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at M2. A similar trend is observed for the No-Cusp configurations. Kurtosis, on the other hand,

measures whether the data are peaked or flat relative to the normal distribution. In the case of450

kurtosis, the data exhibits a Gaussian distribution when the kurtosis of the normal distribution is

3. The results reveal that all the cases had a kurtosis value below 3 for the pressure transducers

M1, M2, and M3, signifying the occurrence of platykurtic distribution with fewer values in the

tails and close to the mean. The platykurtic distribution trend can also be seen in Figs. 18(c) and

(d), where the PDFs of all the tested configurations exhibit fewer values in the tails and are much455

closer to the mean compared to the other slat and main-element region. The results obtained here

could also be possibly related to the presence of persistence turbulence associated with the peak on

the near field spectral analysis observed in Fig. 12. Additionally, remote sensor M4 exhibits high

kurtosis values including a distinct peak near the mean with heavy tails. Overall, also in the case

of kurtosis, Serration-2 shows values closer to or at 3 for all the remote sensor locations, compared460

to all the cases except at location M4. Ultimately, this analysis shows that persistent flow charac-

teristics such a vortex shedding, well known to exist in normal slat configuration, are eliminated

by the use of Serration-2. Moreover, the stochastic characteristics of the pressure events appear to

be comparatively different for the Serration-2 at location M4 past the slat trailing edge post slat

impingement, reaffirming the substantial change in the flow characteristics caused by Serration-2465

configuration.
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FIG. 18: Probability density functions of the surface pressure fluctuation at the slat location (a)

S1, and the leading edge of the main-element (b) M1, (c) M2, (d) M3, and (e) M4 for angle of

attack α = 18◦.
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FIG. 19: (a) Skewness and (b) Kurtosis at angle of attack α = 18◦ for the remote sensor

measurements on the slat (S1) and main-element (M1-M4) show in Fig. 5.

G. Higher order spectral analysis

1. Auto-bicoherence spectrum

In order to resolve the quadratic and phase coupling of the pressure signals with itself, the

non-linear energy transfer between the frequencies can be calculated using the auto-bispectrum470

(Bppp). The auto-bispectrum can be found from, Bppp(fi, fj) = limT→∞
1

T
EV [P (fi)P (fj)P

∗(fi +

fj)], where P (f) is the Fourier Transform of p(t), T is the time length, EV [·] is the expected

value and ∗ denotes the complex conjugate. The results here will be presented by normalizing the

auto-bispectrum by its corresponding power spectrum elements, known as the auto-bicoherence,

calculated as follows,475

b2ppp(fi, fj) =
| Bppp(fi, fj) |2

Φpp(fi + fj)Φpp(fi)Φpp(fj)
. (7)

The frequency components of the wave (fi, fj and fi + fj) are statistically independent if the

auto-bicoherence b2ppp = 0. The auto-bicoherence is below 1 (i.e. 0 < b2ppp < 1) if the frequency

component at fi + fj demonstrate any phase relationship with fi and fj , while a perfect quadratic

coupled waves is found when b2ppp = 1.

Figure 20 shows the auto-bicoherence contours for the surface pressure transducer FG1 on the480
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leading edge of the main-element at the angle of attack α = 18◦ for the Baseline, Serration-1,

Serration-2, and No-Cusp configurations. It should be noted that the figures are marked with

the mode numbers (St1−8) corresponding to the peaks observed in the near-field measurements in

Fig. 11. The results for the Baseline show that the multiple peaks observed in Fig. 11(b) have

quadratic coupled modes caused by self-interaction of the modes in the slat cavity, i.e., the primary485

peak Sts = 1.6 (St(2−2)), and at the corresponding harmonics (St(4−4), St(6−6), St(8−8)). For modes

with St6 and St8, the bicoherence value is about b2ppp > 0.8, implying the formation of these

harmonics St6 = 3St2 and St8 = 4St2 through quadratic coupling36. Moreover, for the even modes

at St2,4,6, the results show the possibility of phase coupling with all the other modes excluding odd

modes, St3, St5, and St7. Interestingly, self-interaction is absent in the case of the spectral hump at490

St1 (Sts = 0.6) observed in Fig. 11(b), implying that the broadband hump is independent and is not

quadratically coupled. The bicoherence contours, for the Serration-1 configuration, exhibit similar

behavior to that of the Baseline case but with a few weak quadratic coupled modes, particularly at

the primary modes (St2) with the other odd and even modes (i.e. St4 and St6), respectively. In

the case of the No-Cusp configuration (Fig. 20(d)), strong self-interaction quadratic coupled modes495

are observed at St(2−2)) and (St(3−3)). Moreover, the No-Cusp configuration indicates a slight

shift to the higher Sts compared to those of the Baseline case, consistent with the peaks observed

in Fig. 11(b). Finally, Serration-2 shows no tonal interaction even for small peaks observed in

Fig. 11(b). Moreover, they exhibit self-interaction with low bicoherence levels for the broadband

hump observed in the near-field surface pressure results in Fig. 11(b). Subsequently, a weaker self-500

interaction emerges at St2, further reaffirming that the application of Serration-2 can significantly

eliminate the fundamental peak and weaken the constructive self-interaction of the modes compared

to that of the Baseline configuration.

2. Persistence spectrum

The nature of the multiple distinct narrowband peaks observed in Fig. 11 was further analyzed505

using the persistence spectrum to visualize the energy distribution of the signals over time along

with phase coupling of the signal. In principle, the persistence spectrum reveals the energy density in

time as a percentage for a given signal in the frequency spectrum. For this purpose, the persistence

spectrum was calculated and presented for the surface pressure signals obtained by the transducer
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FIG. 20: The auto-bicoherence contours for the surface pressure transducer FG1 on the

main-element at angle of attack α = 18◦ for (a) Baseline, (b) Serration-1, (c) Serration-2, and (d)

No-Cusp configurations.

FG1. The measurements were performed for 120 s, with a time and frequency resolution of 0.04 s510

and Sts = 0.45, respectively. The contour plots of the spectrum were obtained using the multiple

Short-Time Fourier Transform (STFF) presented over each other. Figure 21 shows the persistence

spectrum for all the tested configurations (i.e. Baseline, Serration-1, Serration-2 and No-Cusp)

at the angle of attack of α = 18◦. For the Baseline and Serration-1, the results demonstrate the

presence of primary acoustic energy with the highest energy content persistent over time at the515

vortex shedding frequency (Sts ≈ 1.6) and the harmonics of the fundamental peak. Moreover, the

peaks with the highest energy content are densely distributed in time as seen from the contours,
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where the tonal frequency (i.e. Sts ≈ 1.6) persists in a signal for the longest period. In line

with the auto-bicoherence results in Fig. 20, significantly lesser energy levels are observed in the

peak distributed over time at the odd Sts modes, implying that these modes do not have any520

phase relation with the even modes. The results for the No-Cusp case, on the other hand, exhibit

maximum energy content at Sts = 1.9, as seen in Fig. 11(b). In the case of Serration-2 configuration,

the spectrum shows that the pressure signal is of a broadband nature over the entire period. It can

be observed that the emergence of the broadband spectral hump in Fig. 11(b) at Sts = 0.6−1 for all

the cases is not persistent but well distributed in time. Ultimately, the results from the persistence525

spectrum further clarify that the characteristic slat flow features such as the vortex shedding and

the broadband hump at Sts = 0.6−1 are eliminated by the application of Serration-2, furthermore,

the results point out the flow to be broadband and well distributed in time.

3. Wavelet spectrum

In order to better understand the temporal characteristics of the pressure signals and their530

associated frequency, the continuous wavelet transform (CWT) method has been employed in the

present study. In recent studies28,29,36, continuous wavelet transforms have been used to analyze the

amplitude modulation mechanics associated with the multiple narrowband peaks generated by the

high-lift airfoils. Furthermore, Farge54 has shown that the turbulence characteristics of a flow field

can be classified using wavelet analysis. The continuous wavelet transform (CWT) is calculated535

from,

Wx(a, τ) =
1√
Cψ

∫ +∞

−∞
x(t)ψ∗a,τ

( t− τ
a

)
dt, (8)

where Wx(a, τ) is the continuous wavelet transform of function x(t), a > 0 is the scale variable,

τ is the time delay, a is the scale dilation parameter, ψa,τ (t) is the wavelet function, 1/
√
Cψ is a

constant that takes the mean value of ψ(t) into account and ψ∗
(
t−τ
a

)
is the complex conjugate of

the dilated and translated mother wavelet ψ(t). Based on previous studies36,55,56 Morlet kernel was540

chosen as the mother wavelet. The measurements of the CWT in the present study were performed

for 120 s and the results are presented for 0.6 s for better visualization.

Figure 22 shows the contour plots of the wavelet coefficient modulus of the unsteady surface

pressure signals at the sensor M3 on the leading edge of the main-element for the Baseline, Serration-
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FIG. 21: The persistence spectrum contour for the surface pressure transducer FG1 on the

main-element at angle of attack α = 18◦ for (a) Baseline, (b) Serration-1, (c) Serration-2, and (d)

No-Cusp configurations.

1, and Serration-2 configurations at the angle of attack α = 18◦. Although the wavelet analysis545

was carried out for all the remote sensor locations, the spectrogram is presented only for pressure

sensor M3 for brevity, since it demonstrated high levels of unsteady pressure loading in Fig. 13. For

the Baseline case, the results show that the temporal characteristics of the signal exhibit amplitude

modulation in time for the first three peaks seen in Fig. 11(b), signifying that the modes are

amplitudes modulated over time. Additionally, the highest level of energy in the time-frequency550

domain is dominated by the peak at Sts = 1.6, corresponding to the vortex shedding frequency.

Following that, Serration-1 portrays a similar trend, with a slight shift of the fundamental vortex

shedding peak to a lower frequency region to Sts = 1.5, as seen earlier. As anticipated, in the case
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of Serration-2 configuration, the wavelet coefficient modulus is well distributed over the frequency

range with the absence of a peak or amplitude modulation. Furthermore, a fundamental peak555

with a much lower level of energy emerges in the contour for Serration-2 without the presence of

other harmonic modes compared to the Baseline case. Contrary to the results seen in the case of

Serration-1, the primary peak observed for the Serration-2 case occurs with a slight shift toward the

higher frequency (Sts = 2), consistent with the results in Fig. 11(b). Additionally, the broadband

hump demonstrates lower levels of energy with much lesser occurrences compared to the tones.560

To further investigate the effect of amplitude modulation mechanics on the multiple tones gen-

erated by the high-lift device, the power spectral density (PSD) of the time signal and the wavelet

coefficient modulus at selected frequencies are studied. The selected frequencies are the specific

narrowband peaks (modes) observed in each configuration as shown in Figs. 11(b) and 20. The

modes selected for the Baseline, Serration-1 and Serration-2 cases were St1−6, St1−5 and St1−3,565

respectively. Figure 23 shows the PSD of the wavelet coefficient magnitude (E(Sts)) in terms of slat

chord-based Strouhal number (Sts) for the Baseline, Serration-1, and Serration-2 configurations at

different selected frequencies. For remote sensor M3, the E(Sts) for the Baseline case shows that

for modes 4, 5, and 6, the amplitude is modulated by a frequency ∆St4,5,6 ≈ 1.61, i.e., the primary

vortex shedding frequency. For mode 6, in addition to the modulation by the fundamental peak570

frequency, the amplitude is also moderately modulated by frequencies ∆St6 ≈ 3.2 and 4.8. Inter-

estingly, mode 3 is modulated by the the broadband spectral hump observed in Fig. 11(b) with a

frequency ∆St3 ≈ 0.6 − 1. For Serration-1, at modes 3, 4, and 5, the amplitude is modulated by

a frequency ∆St3,4,5 ≈ 1.61, similar to the Baseline configuration. In the case of Serration-2, the

results for all the modes (1-3) demonstrate that the amplitude of the wavelet coefficient magnitude575

is not modulated by any frequencies, consistent with the results observed in Figs. 20 and 21.

The stochastic analysis of the fluctuating characteristics of the surface pressure for various

frequencies of interest was further analyzed using the arithmetic mean, standard deviation, and

coefficient of variation of the wavelet coefficient modulus, i.e., µ(|Wx|), σ(|Wx|), and CV(|Wx|),

respectively57. Stochastic analysis of the wavelet coefficient modulus at sensor location M3 for the580

Baseline, Serration-1, and Serration-2 configurations at angles of attack α = 18◦ is presented in

Fig. 24. The µ(|Wx|) for the Baseline and Serration-1 show increased fluctuations with similar

values and trends at the vortex shedding frequency (Sts = 1.6), whereas, in the case of Serration-2,

a significant reduction in µ(|Wx|) is observed. The σ(|Wx|) indicates the level of distribution of
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FIG. 22: Wavelet scalogram (|Wx|) for a segment of a pressure signal obtained at sensor location

M3 at angle of attack α = 18◦ for (a) Baseline, (b) Serration-1, and (c) Serration-2 configurations.
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FIG. 24: Stochastic analysis of the wavelet coefficient modulus at location M3 for angle of attack

α = 18◦: (a) arithmetic mean, (b) standard deviation and (c) coefficient of variation.

the pressure events from the mean at a given frequency. For Baseline and Serration-1, two notable585

peaks are observed in σ(|Wx|) at Sts = 0.8 and Sts = 1.6, associated with the broadband hump
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spectra and the fundamental vortex shedding frequency, respectively. Interestingly, for Serration-2,

the σ(|Wx|) exhibits a single wide hump with higher values than the Baseline and Serration-1,

reaffirming the turbulent nature of the flow. The coefficient of variation CV(|Wx|) is the ratio of

the standard deviation to the mean which essentially shows the fluctuation intensity of the pressure590

signals at a given frequency in terms of percentage58. The higher the CV(|Wx|), the greater the

level of dispersion around the mean. The Baseline and Serration-1 exhibit the lowest CV(|Wx|)

at the vortex shedding frequency (Sts = 1.6) with just 17%, indicating the occurrence of a lower

level of dispersion around the mean, i.e., lesser fluctuation intensity. Conversely, at Sts = 0.8, the

CV(|Wx|) for the Baseline and Serration-1 configuration indicate high values of about 64%, signify-595

ing the existence of a greater level of dispersion around the mean with higher fluctuation intensity.

Interestingly, for Serration-2, the CV(|Wx|) indicates marginal changes through the entire frequency

range corresponding to the broadband nature of the flow. Furthermore, at the fundamental shed-

ding frequency, the CV(|Wx|) for the Serration-2 is considerably higher than that of the Baseline

and Serration-1 cases, emphasizing the absence of characteristic slat flow features.600

IV. CONCLUSION

This paper demonstrates the aerodynamic and aeroacoustic characteristics of a 30P30N three-

element high-lift airfoil with and without the serrated slat cusp at angles of attack α = 14◦ and 18◦.

Results were also provided for the No-Cusp configuration for the sake of comparison. The high-

lift airfoil was highly equipped with static pressure taps and several surfaces mounted unsteady605

surface pressure measurement probes around the slat and the leading edge of the main-element

region. Aerodynamic characteristics of the high-lift airfoil deduced from the distribution of the

pressure coefficient remained unchanged with the application of the slat serrations. The near-

and the far-field surface pressure measurements showed that the characteristic narrowband peaks

from the slat noise could be eliminated with the application of Serration-2 for both the angles610

of attack compared to the Baseline and Serration-1. Moreover, the broadband hump observed in

the Baseline was eliminated for the Serration-2 configuration. The auto-correlation results of the

Serration-2 showed a very weak periodic shape with fast decaying periodic behavior compared to

that of the Baseline case, implying that the application of Serration-2 could significantly suppress

the development of vortex shedding. Additionally, the length-scale results for the Serration-2 case615
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show that the fundamental tonal peak could be noticeably reduced, although there is a slight shift

in the spectral peak to the lower frequency range. The near-to the far-field coherence results showed

a significant reduction of the broadband hump, the vortex shedding peak, and the other distinct

narrowband peaks for the Serration-2 compared to the other tested configurations. The wavelet

coefficient results demonstrated the spectral peaks for the Baseline case along with the amplitudes620

modulated in time, conversely, these peaks were absent in the case of Serration-2 configuration. The

results also showed that the peaks observed in the Baseline case exhibit quadratic self-interaction in

the slat cavity, whereas the constructive self-interaction of the modes could be weakened with the

application Serration-2. Finally, this paper explicitly demonstrates that the application of Serration-

2 significantly reduces the tonal peaks, and thus the noise generated by the slat cavity, altering the625

flow structures within the slat without adversely affecting the aerodynamic efficiency. This study

has also shown that the use of serrations as a possibility for breaking the feedback mechanism that

drives cavity based oscillations. However, further studies at higher Reynolds numbers are required

to establish the noise reduction capabilities of serrated slat cusp for actual flight conditions.
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