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Summary. We consider the problem of ascertaining daily patterns using passive sen-
sors to establish a baseline for elderly people living alone. The data are whether or
not some movement, or human related activity, has occurred in the previous 15 min-
utes. We seek to segment the broad patterns within a day, e.g, awake/sleep times or
potentially more activity around meal-times. To address this problem we use change-
point detection which can segment the day into more/less active times. Traditional
changepoint detection methods are inappropriate for this data as they fail to utilize
the periodic nature of the data. The traditional assumption of conditional indepen-
dence of the segments also hampers estimation of the within segment parameters. A
new within-period changepoint detection scheme is proposed that instead assumes a
circular perspective of the time axis. This permits the pooling of evidence of change-
point events from across multiple days. Inference is performed within the Bayesian
framework by utilising the reversible jump Markov chain Monte Carlo sampler to ex-
plore the variable dimension parameter space. Simulations demonstrate that the
sampler achieves high accuracy in approximating the posterior whilst being able to
detect small segments. Application to four individuals from our industrial collaborator
provides insights to their daily patterns.

Keywords: Changepoint analysis; Periodic time; Reversible jump Markov chain
Monte Carlo; Home activity sensors;

1. Introduction

We live in a world where older generations are often living further away from their
children and where over 4m people over 65 in the UK are living alone (ONS, 2019).
In light of this reality, families are seeking a peace of mind that their elderly relatives
are living well and maintaining an active lifestyle. This paper proposes a method to
ascertain broad patterns of awake/sleep times and other strong within-day routines
e.g., more activity around meal-times. This problem is motivated from an inves-
tigation with our industrial collaborator, Intelestent Ltd., into assessing the daily
activity patterns from passive sensors within the home.
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When people think about activity detection it is common to think of a wearable
device that samples at 100-500 observations per second, but this relies upon the
users wearing such devices 24-7. In contrast, our data arise from static infra-red
sensors more commonly used in home security systems. The average daily activ-
ity, over 56 days, of the motion/non-motion measurements, in 15 minute bins, for
four individuals are presented in Figure 1. These demonstrate a pattern of abrupt
changes that can be attributed to certain regular activities such as sleep, morning
routine, mealtime etc. Identification of the times of day where abrupt changes occur
between different types of activity can be investigated using changepoints.

Changepoint analysis involves the detection and estimation of the time(s) within
a non-stationary signal where the underlying data generation process experiences
some abrupt shift. Typically, time is interpreted in a linear sense whereby the data
generating process before and after each changepoint event are considered to be
independent. This is the natural assumption for many changepoint methods that
have been applied to a large number of fields (Truong et al., 2018). Contrary to
existing methods, this paper proposes a method to investigate the within-period
changepoint structure of periodic time series - where time is not linear.

Traditional methods to investigate the changepoint structure within a binary
time series (see Chen and Gupta (2000)) assume that time is linear and so the
estimated changepoint events are unlikely to align across days or may fail to be
identified due to limited evidence. One method to ensure alignment of events could
be to partition the time series into separate periods (days) and perform a multi-
variate analysis (Zhang et al., 2010). The main issue with this approach is that
the arbitrary selection of a point within the period to partition the data, such as
midnight, in effect artificially defines a changepoint event which may impede the
estimation of nearby true events, such as when they go to sleep.

The limiting factor for the application of traditional changepoint methods is the
underlying assumption that time is linear. This paper instead considers a circu-
lar perspective of the time axis to achieve the required conditional independence
between segments whilst pooling evidence from multiple periods. The circular per-
spective also avoids the necessity to define a changepoint event at the start of each
period as the axis wraps around on itself. It is worth emphasising that this paper
applies the circular perspective to the time axis across a period rather than the
response variable. This is distinctively different to Jammalamadaka and Sengupta
(2001) and Price-Williams et al. (2017) where their objective was to estimate the
mean shift in directional response data within the traditional linear time perspec-
tive. It is also distinctive from circular binary segmentation (Venkatraman and
Olshen, 2007), which assumes that the start of the end of the time series have sim-
ilar behaviour in order to estimate an anomalous segment (two changepoints), i.e.
observing only a single cycle.

Methods to perform multiple changepoint inference have been developed for
both Classical and Bayesian approaches. Notable algorithms within the Classical
framework are binary segmentation (BS) (Scott and Knott, 1974) and the pruned
exact linear time (PELT) method (Killick et al., 2012). Both methods utilise the
conditional independence structure of the linear time perspective by either branch-
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ing or sequentially trimming the time series into independent segments. In the
Bayesian framework, filtering (Fearnhead, 2006) provides a similar mechanism for
inference as BS and PELT that requires independence of parameters across consec-
utive changepoint events. Alternatively, hidden Markov models (HMM) (Rabiner,
1989) approach changepoint analysis under the assumption that there exists some
unobserved process that switched between different states according to some un-
known transition matrix. This structure permits re-occurrence of certain states and
Pierson et al. (2018) propose the cyclic hidden Markov model (CyHMM) where the
transition matrix is highly structured to provide a periodic mechanism. The two
main disadvantages of this technique is that the number of hidden states must be
known, although assessment via cross-validation can be performed, and the overall
period length is stochastic. This is not the case for the home sensor time series as
it presents a strong daily periodic pattern.

A further technique in approaching changepoint analysis within a Bayesian frame-
work is the reversible jump Markov chain Monte Carlo (RJMCMC) (Green, 1995)
sampler. Although not exclusively designed for changepoint analysis, the RJMCMC
sampler is highly useful in this field. It is a generic method that permits inference
across multi-dimensional spaces in which more/fewer parameters are required when
considering the need for more/fewer segments to explain the available data.

The outline of this paper is as follows. Section 2 presents the within-period
changepoint methodology by first setting out notation, terminology and the sta-
tistical model. The prior distribution for the unknown segment and changepoint
parameters are subsequently specified along with derivation of their posterior distri-
bution. The inference mechanism via the RJMCMC sampler is designed in Section 3,
presenting the approach to navigate the variable dimension parameter space and
derivation of the proposal distribution. The performance of the developed sampler
is examined using simulations in Section 4. The case study in Section 5 examines
home activity time series and discusses the potential insight into the daily patterns
of four individuals. Section 6 concludes the paper with a discussion of the perfor-
mance of the method in assessing within-period changepoint structure as well as
potential future directions for research.

2. Methodology

This section lays the foundations of the changepoint model and details the inference
mechanism within the Bayesian framework.

2.1. Periodic binary changepoint model
Let {Xt}t=1,...,T be a sequence of binary random variables where each are indepen-
dently Bernoulli distributed conditional on some unknown probability. We assume
that this probability, p(t), is a periodic piecewise constant function of time with
a specified fixed period length of N (e.g., daily). In a single reference period the
function consists of m segments taking the values φ0, . . . , φm−1 ending at the cor-
responding changepoint event (0 <)τ0 < . . . < τm−1(≤ N). Periodicity is achieved
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Fig. 1. Activity data from four individuals measured at 15 minute intervals over 56 days (8
weeks). Black: overall sample sample proportions, grey: sample proportions evaluated for
each week.
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Fig. 2. Illustration of function p(t) for m = 3 segments on the linear time axis (left) and the
circular time axis (right).

by specifying that the function takes the value φ0 after the τm−1 event to match
the beginning of the reference period. The changepoint events in other periods are
notated according to the relationship τi+jm = τi + jN for all j ∈ Z. This means
that the event τm describes the first changepoint in the next period whilst τ−1 rep-
resents the last event in the previous period, which are equivalent to τ0 + N and
τm−1−N on the linear time axis or τ0 and τm−1 within the circular reference period
respectively. Therefore, we define the part intervals at the beginning and end of the
period, namely (0, τ0] and (τm−1, N ], to represent the same within period segment.

It follows that the probability function is given by:

p(t) =

m−1∑
i=0

φiχ(τi−1,τi](tmodN), (1)

where the indicator function χA(x) returns 1 if x ∈ A or 0 otherwise, and the
modulus operator amodN returns the remainder of a after division by N . Figure
2 illustrates the structure of p(t) in both the linear and circular time axes.

An additional constraint is applied to the changepoint events such that the dura-
tion between any consecutive pair is greater than some minimum, τi−τi−1 ≥ l. The
value for l ≥ 1 is specified based on the context of the application. For example, in
Section 5 it is assumed that individuals undertake a particular level of activity for
at least an hour and so l is specified appropriately given data frequency.

p(t) =

m−1∑
i=0

φiχ(τi−1,τi](t mod N), (2)

In summary, the sequence of binary observations is assumed to be partitioned
into m groups based on the relative temporal position within the period. On any
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given segment, say (τi−1, τi], the observations are independent and identically dis-
tributed Bernoulli random variables with probability φi irrespective of whether they
occur in the same or different periods e.g., days. The target for inference are the
number of segments that partition the period interval, m, the changepoint events,
τm = (τ0, . . . , τm−1), and the segment probabilities, φm = (φ0, . . . , φm−1). It fol-
lows that the likelihood function based on an observed sequence x = (x1, . . . , xT ),
for some T ≥ N , is given by:

f(x|φm, τm,m) =

m−1∏
i=0

φsii (1− φi)ni−si , (3)

where ni =
∑

t χ(τi−1,τi](t mod N) and si =
∑

t xtχ(τi−1,τi](t mod N) respectively
denote the number and sum of observations on the ith segment.

Note that if there is only one segment, m = 1, then the probability function is
constant: p(t) = φ0 for all t. Consequently there are no changepoint events and so
we denote τ 1 = ∅. Conversely, the most number of segments that can be fit into the
period whilst respecting the minimum segment length constraint is mmax = bN/lc,
where byc denotes the integer part of y.

2.2. Prior distributions
The unknown number of segments m that span the period dictates the dimension
of the model being defined. For parsimonious reasons it is desirable to place a
higher preference on a simple model specification whenever the evidence from the
data equally support two plausible cases. As such, the number of segments in the
model is assigned a Poisson(1) prior distribution that is truncated to the interval
m = 1, . . . ,mmax.

Conditional on the total number of segments, the prior distribution for the
changepoint positions is expressed with respect to the transformation δi = τi −
τi−1 − l representing the excess segment length after considering the minimum
length constraint. The vector δm = (δ0, . . . , δm−1) therefore describes how the re-
maining ∆m = N − lm time points within the period can be randomly partitioned
into them segments. A natural prior distribution for δm is the Dirichlet-multinomial
distribution with probability distribution function:

π(δm|m) =
∆m! Γ(mγ)

Γ(∆m +mγ) Γ(γ)m

m−1∏
i=0

Γ(δi + γ)

δi!
. (4)

The shape parameter γ describes the prior preference as to how the changepoint
events are to be spread throughout the period interval. If γ < 1 then there is
a prior preference to cluster the changepoint events, whereas γ > 1 expresses a
preference for the changepoint to be more evenly spread. In balance, a specification
of γ = 1 represents a uniform distribution. Note that (4) is a special case of the
Dirichlet-multinomial distribution where a common shape parameter is specified
for each element of δm. It is not possible to be more a priori specific about the
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clustering/repelling of particular groups of changepoint events when the overall
number of changepoints is unknown.

The prior distribution for the changepoint positions themselves is complete by
specifying a discrete uniform distribution for an anchoring event, π(τA) = 1

N . This
anchoring point allows all other changepoint events to be determined according to
τ∗i = τA+

∑i
j=0(δj + l). The marginal prior π(τi|m) for each segment i is uniformly

distributed and so there is a potential identifiability issue. This is addressed by
permuting the vector of changepoints such that τ0 corresponds to that which has
the smallest reminder after division of the period length N . The Jacobian associated
to the transformation (δm, τA)→ τm is equal to one.

The above prior specification for the changepoint vector τm is only applicable
when m > 1. In the unique case of a single segment model, m = 1, the probability
function (1) is constant and no changepoint events exist. For completeness, a point-
mass prior distribution on the empty set is applied: π(τm|m = 1) = χ∅(τm).

Conditional on the number of changepoint events, the prior distribution for the
segment probabilities are independent uniform distributions on the unit interval:
π(φi|τm,m) = χ[0,1](φi) for i = 0, . . . ,m− 1.

As we have now described the building blocks; the likelihood and the prior, the
following section elicits the posterior distribution.

2.3. Posterior distribution
The aim for inference is to estimate the posterior distribution for the number and
position of changepoint events and the segment probabilities:

π(φm, τm,m|x) ∝ f(x|φm, τm,m)π(φm|m)π(τm|m)π(m) (5)

By factorising the posterior as π(φm, τm,m|x) = π(φm|x, τm,m)π(τm,m|x) it
is clear from the likelihood function (3) and uniform prior that the conditional
posterior for each of the segment probabilities follows the beta distribution:

φm|x, τm,m ∼ Beta(1 + si, 1 + ni − si). (6)

The marginal posterior for the number and position of changepoint events therefore
follows from marginalising φm, and is concisely expressed as:

π(τm,m|x) ∝


B

(
1 +

T∑
t=0

xt, 1 + T −
T∑
t=0

xt

)
if m = 1,

m−1∏
i=0

[
B(1 + si, 1 + ni − si)
(γ + δi) B(γ, δi + 1)

]
(mγ+∆m) B(mγ,∆m+1)

m! N otherwise,

(7)

where B(a, b) denotes the beta function.
Although evaluation of (7) is trivial to compute for a specific changepoint vector,

τm, the challenge to inference occurs because the size of the support for the posterior
is potentially very large. The total number of possible changepoint vectors for a
given period length, N , and minimum segment length l, is bounded from above by
the higher-ordered Lucas number lLN (Randic et al., 2008). For example, the size of
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the posterior support for problems examined in Section 5, where N = 96 and l = 4,
contains 27.34 × 1012 possible cases for τm. Thus the following section proposes
an efficient way to explore the parameter space of the posterior (7) from which
inference on the number and positions of changepoint events, and subsequently
segment probabilities, can be evaluated.

3. Reversible-jump Markov chain Monte Carlo sampler

The goal of the sampler is to approximate the posterior mass function (7) for the
changepoint positions within N -periodic binary data where the segments are subject
to a minimum length constraint. Direct evaluation of the posterior is not practically
feasible because of the size of the sample space. In addition, the dimension of each
sample, namely the number of segments to partition the period, is variable. Due
to this, a reversible jump Markov chain Monte Carlo (RJMCMC) (Green, 1995) is
developed in order to explore the parameter space.

3.1. Proposal distribution
Given the current sample of the changepoint vector τm, a proposal vector τ ′m′ for
which to consider transitioning to is generated according to the proposal distribution
q(τ ′m′ |τm). There are many different ways that this proposal distribution could be
constructed. The basic properties required are that i) the number of changepoints
should be able to vary, and ii) changepoint locations can be added, deleted and
moved. We choose to create a proposal distribution that satisfies these by acting
on a single segment, i as follows.

q(τ ′m′ |τm) =

m−1∑
i=0

q1(i|τm)q2(τ ′m′ |τm, i) (8)

Here q1(i|τm) generates a segment index based on the current partitioning of the
period, and q2(τ ′m′ |τm, i) describes the range of possible perturbations to make to
the current changepoint vector with respect to the aforementioned sampled segment
(add, delete, move).

The proposal segment index is uniformly sampled from the segment indices of
the current sample, q1(i|τm) = 1/m for i = 0, . . . ,m− 1.

Before defining the proposal q2(τ ′m′ |τm, i) it is necessary to first examine the
method for augmenting the current changepoint vector in defining the support for
the proposal distribution by restricting the search space to the current, one more or
one fewer number of changepoints. Let the set P(τm, i) denote the support for q2

that is based upon the current changepoint vector and the sampled segment accord-
ing to q1. As we are modelling circular time series, we must consider transitioning
from m = 1 and m > 1 separately.

When the current sample defines the single segment model, m = 1, there are
no changepoint events defined, τ 1 = ∅. It is clear that it is not possible to further
remove changepoints and also that the current changepoint event is the possibility
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for the single segment model. So, τ ′m′=1 = ∅ must be within the proposal set
P(τ 1, 0). To propose a move to the two-segment model, m′ = 2, requires the
introduction of two changepoint events. As there is currently no existing knowledge
about the position of either changepoint event, the proposal set must contain all
possible pairs of the positions that spans the m = 2 model. Hence, P(τ 1, 0) =
{τ ′m′ |m′ ≤ 2}.

For the general m > 1 case, augmentation of the current changepoint vector can
be viewed through the typical change or birth-death updating procedure (Green,
1995). In summary, the possibilities for proposing τ ′m′ from τm would be to either
move the changepoint event, τi, that corresponds to the sampled ith segment to
a new position, combine the ith segment with the (i + 1)th segment by removing
the event τi, or introduce a new changepoint event that partitions the sampled
segment into two. This method would be applicable if there were no minimum
segment length constraint, l = 1, but navigation of the parameter space using these
update steps can be impeded when l > 1. For example, consider the case when
N = 10 and the changepoint vectors (2, 4, 9) and (3, 9) are highly probable events.
The transition between these two events must take at least two iterations under
the aforementioned scheme. The number of shortest paths is four when l = 1 (via
(2, 9), (4, 9), (3, 4, 9) or (2, 3, 9)), which is reduced to two paths when l = 2 (via
(2, 9),(4, 9)). If the transition probability to these intermediary events are low then
there is a risk that the chain could get stuck at one of the highly probable events
or that the most efficient path between the events involves more iterations and so
the chain becomes highly autocorrelated.

These issues arise because of the pruning effect the minimum segment length
condition has on the number of potential paths the RJMCMC could take. To
increase the set of potential paths we consider an additional movement to the next
changepoint event τi+1 in the birth/death moves up to l timepoints. To elaborate
further, consider the transition from τm to τ ′m′ where m′ = m+k for k ∈ {−1, 0, 1}.
We select ith segment according to q1 in (8) as usual. Then the proposal τ ′m′ is
drawn from the set P(τm, i) which is formed according to:

Death (k = −1): If m = 2, then τ ′m′ = ∅, otherwise τ ′m′ = (. . . , τi−1, τi+1 − u, . . .)
for u = 0, . . . , l − 1.

Move (k = 0): τ ′m′ = (. . . , τi−1, v, τi+1, . . .) for v = τi−1 + l, . . . , τi+1 − l.

Birth (k = 1): If τi − τi−1 > l and τi+1 − τi−1 ≥ 3l then τ ′m′ = (. . . , τi−1, w1, τi +
w2, τi+1, . . .) for w1 = τi−1 + l, . . . , τi + w2 − l and w2 = max(0, τi−1 − τi +
2l), . . . ,min(l − 1, τi+1 − τi − l). Partition the sampled segment into two by
introducing a new changepoint event whilst also considering movement of the
sampled event, provided that the minimum length constraint is satisfied.

Figure 3 depicts the sample space for the proposal changepoints τ ′i and τ ′i+1 in the
birth step in relation to the current changepoint vector and the minimum segment
length constraint. Note that when the minimum segment length condition is re-
moved in the above scheme, i.e. setting l = 1, results in a set representing the
standard birth-move-death proposals without perturbation.
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Fig. 3. Depictions of the sample space for the proposed changepoints τ ′i and τ ′i+1 under
the birth case, showing the dependence on the separation of the current changepoint
values τi−1, τi and τi+1 and a specified minimum segment length l. (A) τi+1 + 2l ≤ τi ≤
τi+1−2l. (B) τi < τi−1+2l. (C) τi > τi+1−2l+1. (D) τi < τi−1+2l and τi > τi+1−2l+1. The
dashed regions represent the space corresponding to case (A) but which must be truncated
due to the respective conditions such that the proposal changepoint vector satisfies the
minimum length condition. Note that there are no possible proposal birth events when
τi = τi−1 + l or τi+1 < τi−1 + 3l.
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The size of the proposal set P(τm, i) according to the above rules is less than (l+

1)N for m > 1 or is less than (N−l+1)2

2 when m = 1. The set size for the case studies
in Section 5 is sufficiently small such that evaluations of the proportional posterior
surface (7) for every τ ′m′ ∈ P(τm, i) is not a costly computational operation. As
such, the proposal distribution q2 is defined to be proportional to the target posterior
as follows:

q2(τ ′m′ |τm, i) =
π(τ ′m′ |x)χP(τm,i)(τ

′
m′)

Z(τm, i)
(9)

with normalising constant Z(τm, i) =
∑

k π(k|x)χP(τm,i)(k). The following section
considers the acceptance probability of our sampler.

3.2. Acceptance probability

The acceptance probability for transitioning to the proposal, τ ′m′ , from the current
sample, τm, based on the proposal distribution given in Section 3.1 is α(τ ′m′ , τm) =
min[1, A(τ ′m′ , τm)] where:

A(τ ′m′ , τm) =

[
1

m′

m′−1∑
i′=0

χP(τ ′
m′ ,i

′)(τm)

Z(τ ′m′ , i
′)

]/[
1

m

m−1∑
i=0

χP(τm,i)(τ
′
m′)

Z(τm, i)

]
. (10)

Since the segment parameters have been marginalised and the changepoint event
space is discrete, the determinant of the Jacobian matrix associated with the trans-
dimensional proposals of the RJMCMC algorithm is one.

In the construction of the proposal set we note two properties for m > 1 and
m′ > 1: the set intersection across all segments contains only the current sample,
∩m−1
i=0 P(τm, i) = {τm}; and for all other events there exists a unique segment, i′,

such that τm ∈ P(τ ′m′ , i
′). The first property ensures that the current sample is

always a possibility irrespective of which segment was sampled under q1, and so it is
clear that the acceptance ratio for the no-change proposal is 1. The second property
arises due to the fact that the perturbation applied to the changepoint events in the
birth and death proposals occur in opposite directions. This ensures that for each
birth (death) proposal there exists a unique returning path to the original sample
via a corresponding death (birth) case. As a consequence, the acceptance ratio in
(10) simplifies because the indicator functions are all zero except for when segments
i and i′ correspond to the unique path between the events.

To complete, we consider the special case of m = 1 or m′ = 1, i.e. transitioning
into or out of the single segment model. Recall that both changepoints have to
be discarded when transitioning to the single segment model, or two changepoints
need to be sampled at any valid position when performing the reverse step. It is
clear that both of the proposal set properties stated above are violated and the
acceptance ratio must be evaluated in full.
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Overall, the acceptance ratio (10) is as follows:

A(τ ′m′ , τm) =


1 if τ ′m′ = τm;
Z(∅,0)[Z(τ 2,0)+Z(τ 2,1)]

2Z(τ 2,0)Z(τ 2,1) if m = 1 & m′ = 2;
2Z(τ 2,0)Z(τ 2,1)

Z(∅,0)[Z(τ 2,0)+Z(τ 2,1)] if m = 2 & m′ = 1;
mZ(τm,i)
m′Z(τ ′

m′ ,i
′) otherwise,

(11)

for some unique i′ such that τm ∈ P(τ ′m′ , i
′).

The following section examines the performance of this sampler in simulations
before considering an application to daily movements.

4. Simulation Study

This section examines the performance of the proposed sampler in approximat-
ing the posterior distribution for the within-period changepoint events in binary
data. Section 4.1 assesses the Monte Carlo accuracy in estimating the posterior
changepoint vector distribution for a data set generated from a simple model with a
relatively small sample space where the true posterior can be analytically evaluated
in full. The extent to which a changepoint event is detectable in terms of segment
length and magnitude change in segment probabilities is investigated in Section 4.2.
The third simulation study in Section 4.3 investigates the precision of the posterior
when we vary the sample size across period length and number of observed periods.

4.1. Monte Carlo error
We evaluated the sampler’s accuracy in approximating the posterior distribution in
a simple scenario with N = 24 and l = 4 where the sample space consists of 2263
unique changepoint vectors. This example is small enough in size for the direct
evaluation of the posterior in full. The data was generated from a three segment
model with evenly spaced events at time points τ = (8, 16, 24) with segment prob-
abilities φ = (0.25, 0.5, 0.6). Measurements from 30 complete cycles were generated
giving a total of 720 observations.

The Monte Carlo uncertainty in approximating the posterior was evaluated from
1000 replications of the sampler based on a uniform spread hyperparameter γ = 1.
Two independent chains were performed that were initiated at opposite ends of the

sample space; namely the single segment model, τ
(1)
1 = ∅, and a case where the

changepoints are maximally dense e.g., τ
(2)
6 = (4, 8, 12, 16, 20, 24). The chains were

iterated in batches of 104 until there was evidence of similarity in their frequency
distributions. A convergence test was performed using the Weiß procedure (De-
onovic and Smith, 2017) for discrete variable chains. This applies a conservative
asymptotic Pearson chi-squared test which is adjusted for autocorrelation.

Bias and root mean square error (RMSE) estimates in Table 1 demonstrate
that the sampler performs well in approximating the posterior probability for each
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Table 1. Monte Carlo accuracy estimates in approximating the posterior proba-
bilities from 1000 replications. Events for the top 80% are presented.

Event Positions True Probability Bias (×10−3) RMSE (×10−3)
8, 16, 24 0.561 0.016 8.261
16, 24 0.087 -0.189 4.528
7, 16, 24 0.078 0.094 4.144
1, 8, 16 0.047 0.009 2.978
8, 16, 20, 24 0.031 -0.094 2.745

changepoint vector. Furthermore, the overall performance of the sampler in approx-
imating the whole posterior is also good with low expected bias, −0.329×10−6, and
expected RMSE, 5.878× 10−3 with respect to the true posterior distribution.

4.2. Estimation accuracy
The performance of the sampler in terms of estimation accuracy is assessed for a vari-
ety of two segment models, emulating wake/sleep. We set the period length N = 96,
emulating 15 minute observations per day, and minimum segment length l = 4, sus-
tained increased/decreased activity for an hour. Without loss of generality, the po-
sition of the first changepoint takes each of the time points τ0 ∈ {4, 8, 16, 24, 32, 48}
and the other is set at τ1 = 96. The first case, τ0 = 4, represents the shortest
permitted under the minimum length constraint, whereas the last case, τ0 = 48,
is positioned such that the lengths of the two segments are equal. The segment
parameters were specified as φ = ((1 + d)/2, (1− d)/2) which are centred about 0.5
but are separated by some distance d ∈ {0.0, 0.1, 0.2, 0.3, 0.4}. The first distance,
d = 0.0, represents the single segment case irrespective of the position of τ0.

We generated 1000 data sets consisting of 35 complete cycles, 2880 observations.
The spread of changepoint events around the period was again specified as uniform
with hyperparameter γ = 1. Note that for the later values of τ0, γ > 1 is more
appropriate and for the earlier values, γ < 1. Two chains were evaluated and tested
for convergence using the same procedure described in Section 4.1. Table 2 sum-
marises the posterior draws across the data sets for each model by three statistics:
the average posterior probability for the true changepoint vector; the proportion of
data sets where the posterior mode correctly identify the true changepoint positions;
and the average size of the 95% highest posterior credible set (HPCS). This HPCS
describes the smallest number of unique changepoint vectors that contain at least
95% of the posterior samples. The sampler performs extremely well in estimating
the single segment model, d = 0; the truth is correctly identified as the mode in
almost all cases and with high estimated posterior probability.

Turning to the changepoint results, as expected, when the change in segment
probabilities is small there is little evidence for the change. The associated large
coverage of the HPCS when d = 0.1 occurs due to high uncertainty in the loca-
tion for both changepoint events, or in fact whether there are any changepoints.
As expected, the ability to detect the truth improves with large changes in seg-
ment probabilities, d. Similarly, identifying the true changepoint events improves
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Table 2. Estimation accuracy as measured by: π̂(τ ∗), average poste-
rior probability estimate of the true changepoint vector τ ∗; %{τ̂ = τ ∗},
proportion of cases where the posterior mode, τ̂ , identifies the true
changepoint vector and; average coverage as defined by the size of
the 95% highest posterior credible set from 1000 independently gener-
ated two segment data sets for various second changepoint positions
τ0 and difference d is segment probability parameters.
τ0 4 8 16 24 32 48
d = 0.0 π̂(τ ∗) 0.827 0.815 0.815 0.822 0.806 0.812

%{τ̂ = τ ∗} 1.000 0.999 1.000 1.000 1.000 1.000
Coverage 41 42 42 35 43 39

d = 0.1 π̂(τ ∗) 0.002 0.008 0.033 0.058 0.056 0.058
%{τ̂ = τ ∗} 0.000 0.010 0.065 0.145 0.130 0.149
Coverage 40 63 183 280 327 344

d = 0.2 π̂(τ ∗) 0.262 0.344 0.358 0.350 0.341 0.355
%{τ̂ = τ ∗} 0.331 0.522 0.548 0.533 0.516 0.558
Coverage 44 73 77 81 85 87

d = 0.3 π̂(τ ∗) 0.751 0.700 0.685 0.704 0.713 0.712
%{τ̂ = τ ∗} 0.896 0.836 0.833 0.861 0.879 0.872
Coverage 20 22 27 25 28 29

d = 0.4 π̂(τ ∗) 0.878 0.866 0.859 0.851 0.850 0.852
%{τ̂ = τ ∗} 0.974 0.969 0.964 0.967 0.967 0.968
Coverage 11 11 14 16 17 18

as the distance between the events increases too. The uncertainty in the posterior
is broadly constant across well separated changepoints for large d, but there is a
notable reduction in HPCS coverage when the changepoint events are close due to
a small curtailing effect resulting from the minimum segment length condition. The
broad constant feature, however, is most likely attributable to the assessment of two
segment models where all observations fall on the current or following segment and
therefore each providing information about both changepoint events irrespective of
position.

To assess the sensitivity of the posterior estimates to the spread parameter we
repeated the above study for γ ∈ {0.5, 1, 2}. These represent the prior preferences
that the changepoint events are clustered, uniformly at random and more evenly
spread around the period respectively. No sensitivity was identified with respect to
the change in segment probabilities, but Figure 4 presents a subtle dependence of
the posterior estimates when regarding changepoint positions. As may be expected,
early positions, τ0 = 4, favour the prior spread of γ = 0.5 which results in subtly
higher rates of identifying the truth and a smaller HPCS coverage. Conversely, the
HPCS coverage when the changepoint events are as far apart as possible, τ0 = 48,
is more likely on average to be smaller for γ = 2. This observed relationship is as
expected due to the effect of γ on the prior as discussed in Section 2.2.
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Fig. 4. Sensitivity of the prior hyperparameter, γ, on the average posterior probability for
the true changepoint vector (left) and HPCS coverage (right) for various positions of the
first changepoint, τ0. The difference in segment parameter is d = 0.3 for all cases.

4.3. Period and sample sizes

Thus far we have considered a single N = 96 and 30 cycles of data. In this section we
vary this to assess the effect on estimation accuracy. Motivated by our application,
the increase in period length shall relate to a lower sampling frequency such as once,
N = 24, or twice, N = 48, per hour. For each comparison we then vary the number
of cycles to represent the same overall time frame. For consistency, the minimum
segment constraint is appropriately scaled to l = N/24 i.e., sustained activity over
an hour.

The data is sampled from a two segment model with evenly spaced changepoint
events τ = (N/2, N) and segment probabilities φ = (0.3, 0.7). As with Section 4.2,
1000 data sets were generated independently for each scenario. The RJMCMC
sampler was performed on each data set with a uniform prior spread γ = 1 and
were iterated until convergence was satisfied.

Uncertainty in the posterior estimate over the different period lengths was as-
sessed by evaluating the marginal distribution of the position of any changepoint
event within the period. Table 3 presents the average 95% HPCS coverage of this
distribution as a proportion of period length. It is clear that the uncertainty in the
marginal posterior decreases with respect to both increases in period length and the
observed number of cycles. Interestingly, across cases that have the same overall
number of observations there is a slight reduction in the coverage proportions when
the measurement frequency is high, i.e. for larger N .
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Table 3. Coverage proportions of the marginal changepoint position distribution for
various period lengths, N , and number of cycles. Values in parentheses denote the
size of the data set for ease of comparison.

Number of cycles
N 7 14 21 28 35
24 61.5% (168) 46.3% (336) 37.2% (504) 30.5% (672) 25.9% (840)
48 46.0% (336) 28.8% (672) 19.1% (1008) 13.6% (1344) 10.6% (1680)
96 28.0% (672) 13.1% (1344) 7.4% (2016) 5.2% (2688) 4.3% (3360)

5. Case Study: Home Activity

The passive home sensor system developed by Intelesant Ltd. consists of a suite
of sensors that monitor the activity within the home for the purpose of identifying
abnormal patterns of behaviour. These abnormal patterns could indicate a decline in
health or well-being in an older person. This section applies the periodic changepoint
analysis developed in this paper to gain insight into baseline behaviour of individuals
in determining their normal daily patterns of activity.

The data for this study was collected from four individuals over 56 days (summer
2018). Each data point indicates whether or not any of the sensors measured some
sort of activity within a sequence of 15 minute intervals. Figure 1 summarises
the data by averaging the activity over the 56 days. What is immediate is that
the activity during the early hours is very low, indicative of sleeping, whereas the
activity during daylight hours is more varied over time and individuals. When
considering human activity, the requirement of consistent daily activity over the
8 week period can be seen as a strong assumption. Permutation tests presented
in Appendix A based on the weekly estimated sample proportions, illustrated in
Figure 1, all but person 3 present consistent long term behaviour. Closer inspection
of person 3 identifies that there was only one week that exhibited a different pattern.

The period length for the analysis is specified at N = 96; 15 minute intervals
and we are interested in daily patterns. It is assumed that any change in activity
level must be sustained for at least one hour, hence we set l = 4. The Dirichlet
hyperparameter is set at γ = 1 for all individuals to demonstrate no prior clustering
preference of the changepoint events. Other choices for prior preference on clustering
were investigated, but the posterior inference was robust to this decision. As in the
simulations, two chains were initiated and tested for convergence. Estimates of the
segment probability parameters were subsequently evaluated from the conditional
beta posterior in (6).

The periodic changepoint method identifies two events for each individual rep-
resenting a reduction in activity in the late evening and corresponding increase in
activity in the morning that is indicative of the individual’s sleep pattern.

The daytime behaviour for individual 1 is broadly low at a probability of 21%, but
there is some evidence of a slight rise in activity to 30% around midday potentially
attributable to preparing and eating lunch. Interestingly, a pair of changepoint
events for individual 1 identify a short interval around 03:00 where the individual
may occasionally get up in the night, representing a slight raise in the probability
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Fig. 5. Posterior activity estimates for four individuals. Points: averaged activity data over
56 days at 15 minute intervals. Radial barchart: estimated probability that a changepoint
event occurs at that time point. Lines: pointwise median (solid) and 95% credible interval
(dashed) of the segment probability parameter.
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of sensor-detectable activity from 2% to 11%.
In contrast individual 2 is very active during daylight hours with the probability

function varying between 61–88% at four distinct times. Similarly, individual 3 has
a high daytime activity that increases from 44% to 82% at two events around 12:30
and 16:45. Individual 4 is the most varied in their daily activity in that the most
probable number of changepoint events was identified to be 11 with a posterior
probability of 49%. This is likely to be an overestimation for the number of within
period changepoint events as some may be related slight variation in the probability
function between weekdays (see Appendix A).

6. Discussion

This paper presents a novel approach for identifying within-period changepoint
events for binary data. Unlike traditional changepoint methods, the proposed model
permits the pooling of evidence across multiple periods by applying a circular rather
than linear perspective of time. We developed a reversible jump Markov chain
Monte Carlo sampler to traverse the complex sample space, where care is taken
in defining the proposal distribution to account for the restriction imposed by the
minimum segment length. Simulations demonstrate that the sampler performs well
in approximating the posterior distribution, at least for problems with moderate
sized support.

The inference capabilities of the proposed method were investigated via simula-
tions with respect to the change in segment probabilities, segment duration, period
length and overall number of observations. Posterior estimates correctly identified
the truth across the vast majority of cases. However, potential inaccuracies to in-
ference occurred principally for the anticipated scenarios where the change in the
probability function across segments is small, and when segment durations are short
or at the minimum segment length requirement. We also noted that the length of
the data set has a significant impact on estimation accuracy as more days are pooled
together to increase estimation accuracy. Similarly we noted a small improvement
on inference accuracy occurs for longer period lengths in contrast to observing a
larger number of periods.

The approach presented was motivated by an investigation of home activity data.
We presented interesting insights into the regular periodic patterns of four individ-
uals. The regular night-time period was easily identified for each individual as well
as their broad daily patterns of activity that varied substantially across individuals.
The resulting estimates provide a useful baseline as part of a longitudinal inves-
tigation where assessments of future periods provide insight into an individual’s
maintained or deteriorating daily behaviour.

In conclusion, the presented novel methodology for detecting periodic change-
point events provides a framework from which further extensions are possible. One
such extension is to investigate non-binary data, which is achievable if the seg-
ment parameters can be marginalised from the joint posterior. Thus the presented
methodology for approximating the posterior for the number of changepoints and
their positions could be applied under the appropriately defined marginalised pos-
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terior. Another possible extension would be to consider covariates such as the day
of the week to allow individuals to have different probability patterns on different
days.
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A. Assessment of consistent daily pattern assumption

The requirement that the daily pattern of the probability function over a 2 month
period is a strong assumption when regarding human activity. The degree of long
term consistency for the individuals in this case study is illustrated in Figure 1
which presents the weekly estimated sample proportions calculated by p̂w(t) =
1
7

∑6
d=0 xN(d+7w)+t for w = 0, . . . , 7. The weekly patterns visually seems consistent

with the sample proportions evaluated from all 56 days.

A more formal investigation was performed by considering the null hypothesis
that the function pw(t) are identical for every week, against the alternative that there
exists at least one week that is different. To assess the hypothesis the test statistic of
the total elementwise absolute differences between the sample proportions between
all unique week pairings as calculated: W =

∑N
t=1

∑
w<w′ |p̂w(t)− p̂w′(t)|. The

value of this test statistic is small under the null hypothesis, otherwise W would be
large. A permutation test was performed to evaluate the distribution of W under
the null by resampling the binary observations across the days whilst maintaining
the time-of-day to preserve any within period structure. From 104 samples, the
one-tailed p-value for person 1–4 are 0.5651, 0.0793, 0.0282 and 0.7371 respectively.
Only person 3 presents evidence of a varying week-by-week pattern, however re-
evaluations of the permutation test where each week was excluded from the analysis
in turn showed that only the 6th week was different (p-value: 0.2119 from excluding
week 6, excluding any other week resulted in a value less than 5%). We found
that the results from applying the proposed within period changepoint detection
algorithm for person 3 excluding week 6 are very similar to those based on the full
56 days presented in Section 5, suggest that the difference does not affect the overall
estimation.

A similar investigation was performed using weekday estimated sample pro-
portions: p̂d(t) = 1

8

∑7
w=0 xN(d+7w)+t for d = 0, . . . , 6 with test statistic D =∑N

t=1

∑
d<d′ |p̂d(t)− p̂d′(t)|. The one-tailed p-values from the permutation test for

person 1–4 are 0.0428, 0.0587, 0.0094 and 0.0001 respectively. Although the null
cannot be rejected for person 2 at the 5% level, it is clear that there is evidence for
a weekday effect for the other individuals. The consequence of this on the analysis
is discussed in Sections 5 and 6.
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