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Abstract 

The configurational entropy of mixing (Smix) has a profound influence on the stability of 

various phases in different materials at intermediate and high temperatures. Recently, it has 

been observed that Smix can be used as an important tool to design novel multicomponent 

materials with fascinating properties. Smix affects Gmix and tends to stabilize the 

FCC/BCC/HCP multicomponent solid solutions over brittle phases including compounds. 

This opens up vistas to design novel solid solution based materials with improved 

mechanical, functional properties. Accordingly, multicomponent and multiprinciple alloys 

were developed in 2004, and subsequently, novel ceramics and polymers have been designed. 

The present paper is intended to provide an insight into the role of Smix to design novel 

metallic, ceramic as well as polymeric materials. 
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1. Introduction  

The majority of the materials we use in our day-to-day life is in the alloyed form(Davis & 

Committee, 1990). Alloying, the greatest gift to humankind, is defined as chemically mixing 

two or more components (metals, ceramics or even polymers) to obtain an atomically mixed 

arrangement of atoms in the crystal lattice for improvement of properties; physical, chemical, 

functional, mechanical, etc.(Brandes & Brook, 1998).Therefore, the alloying has extensively 

been used for a long time (even during Indus Valley Civilization) to design and develop 

novel materials for various engineering applications (Cantor, 2014; Mohanty et al., 2015; 

Murty, Yeh, & Ranganathan, 2014; Sharma, Yadav, Biswas, & Basu, 2018; Tazuddin, 

Biswas, & Gurao, 2016; Tazuddin, Gurao, & Biswas, 2017; Yeh et al., 2004). The classical 

examples include steels, superalloys, brass, bronzes, mullite, silicates, etc. Alloys, in general, 

can be made in two basic forms, solid solutions and compounds. Solid solutions are like a 

liquid solution in solid state consisting of various species atomically mixed to form a crystal. 

On the other hand, compounds are stoichiometric compounds with small solubility range. As 

compared to compounds, solid solutions with simple crystal structure provide the right 

combination of mechanical and physical properties required to be useful in the application. 

Compounds, on the other hand, are strong but brittle and hence mainly find functional 

applications. Therefore, solid solutions having a simple crystal structure, including Face 

Centre Cubic (FCC), Body Centre Cubic (BCC) are considered the best materials for 

structural applications. The widely utilized solid solutions consisting of two or three 

components with one of the components as major components. These phases are stabilized by 

interplay between enthalpy and entropy of mixing. 

2. Configurational entropy of mixing (Smix)  



The entropy of mixing plays its role vital the free energy of mixing of a system. It is well 

known that free energy of mixing Gmix = Hmix - TSmix at any temperature T; where Hmix 

is the enthalpy of mixing. Hmix depends primarily on bond energies of the elements. In 

general, for elements with a strong propensity to form strong bonds, Hmix is considered to be 

negative. For elements with low or zero solubility or unlikeness to form bonds, Hmix is 

positive. However, Smix primarily depends on the arrangement of atoms in the crystalline 

lattice. For solid solutions, it is given by Boltzmann hypothesis(Gaskell, 2008), 

;                     (1) 

k is Boltzmann constant =R/NA (R = Universal gas constant, NA is Avogadro’s number) and 

XA and XBmole fractions of A and B atomic species respectively. 

Hence, 

                 (2) 

For multicomponent system, i.e., N≥5, 

            (3) 

Where, XA , XB , XC, XD, and XEhave usual meaning, as defined earlier. 

Hence, for equimolar systems XA = XB = XC = XD = XE 

                          (4) 

                                     (5) 

Hence, in general, Smix= RlnN for a system having N components in equimolar proportions. 

Thus, it is possible to estimate Smix as a function of N. Figure 1 shows such behavior. It is 



evident thatSmix increases sharply for small values of N and subsequently, it remains almost 

constant for N= 13 or more. This provides us avenues for stabilizing solid solution by 

increasing number of components (N) even though Hmix is strongly negative for elements 

having strong likeness to form bonds, as in case of compound formation. Therefore, it is 

possible to stabilize solid solution based phase having a simple crystal structure, as compared 

to compounds by using a large number of elements (at least 5 or more). This has important 

consequence and has recently been realized for use in design of novel materials, which is as 

discussed next. This also allows us to explore central part of the phase diagram, i.e., expand 

the compositional space by using larger number of component and create infinitely large 

number of alloy compositions, combining large number of elements in the periodic table 

(Inset of Fig. 1a). By adopting large number of components, unique atomic structure can be 

created (Fig.1b). In this figure each coloured ball denotes one atomic species and hence, 

atomic environment can be varied locally as compared to alloys consisting of two or three 

components alloys such as steels, brass, bronzes etc. Hence, this allows tuning materials 

property locally. The local variation of properties is effective in certain applications, 

especially in catalysis where catalytic activity of any atomic species can be altered locally by 

changing the potential of the atom. In addition, solid solution can be strengthened extensively 

by adopting such atomic arrangement. The solid solution hardening is primarily due to atomic 

size difference, creating strain field around the atom and causing motion of defects 

(dislocations, twins) difficult. For multi-component systems having atoms of different sizes, 

the barrier to the motion of the defect can be made to vary locally and hence, solid solution 

can extensively strengthened (Mohanty et al., 2015; Tazuddin et al., 2017). Therefore, Smix 

allows us to divide the alloys into three categories Figure 2 shows there three regions. The 

conventional alloys (steels, brass, bronze, super alloy), which are based on the one or two 

principal elements are considered to be low entropy alloys. Since Smix  0.693R (Rln2). On 



the other hand, alloys with N=5, Smix ≥1.61R and hence they are termed as high entropy 

alloys. The intermediate alloys having 2 to 4 principal elements are considered as medium 

entropy alloys. It is evident that the medium entropy alloys do not possess sufficient Smix to 

stabilize solid solutions phase, leading to formation of complex and brittle intermetallic 

phases. From application view point, the suppression of formation of intermetallic 

compounds is required in order to have sufficient ductility and toughness. Hence, high Smix 

significantly lower the free energy of the solid solution phase, leading to stabilization of these 

alloy phases. 

The stabilization of solid solution based phases over compounds makes the multicomponent 

alloys a reality in the potentials application. The solid solution based phases with FCC/BCC 

structure can exhibit the best consideration of strength and ductility; much needed by the 

structural engineer to design various compounds for structural, machinery, automobile, etc. 

Achieving the right combination of strength, ductility and toughness are considered the holy-

grail in materials science and engineering. The presence of a large number of elements can 

provide extensive hardening due to solid solutions; which can even be tuned by proper choice 

of elements and composition. Secondly, it opens up a large number of choices of possible to 

achieve using an infinitely large combination of elements to explore the compositional space. 

Normally, the alloys are single or two elemental bonds and other elements have been added 

for the betterment of properties. Therefore, it allows the materials scientist to explore the vast 

composition space to design and develop different materials for various applications. The 

third aspect of the novel design concept involves.  

Design of novel alloy (type, chemistry, specific properties start using thermodynamics is 

done primarily due to the fact the phase and microstructure. These play a significant role in 

the properties. Design is carried out by the estimation and comparing of the free energy 



change as the formation of temperature and composition. This is normally carried out using a 

technique is known as CALPHAD (calculation of phase diagram). This methodology has 

gained wider applicability due to sufficient computational power available recently. This is 

scientifically more sound and robust and it is able to predict phase formation for the mul ti-

component systems. However, such calculation for multicomponent (n ≥ 5) systems requires 

assumption to be made.  CALPHAD predicts the phase based on the extrapolation and 

minimization (Figure 3a)(Kattner, 1997). At a given condition, the stability of phases is 

decided by Gibbs free energy minimization. For given conditions the stability of phases is 

decided by minimization of total Gibbs free energy. 

Figure 3b shows the results of one such five component alloy system (CoCuFeMnNi). The 

formation of different phases as function of temperature is shown by plotting mole fraction of 

phases with respect of temperature. It is evident that single phase solid solution having FCC 

(fcc#1) is stable in the large temperature domain (Tazuddin et al., 2017). Only at lower 

temperatures (<800K), some other solid solution phases (fcc#2 and bcc) can form. Therefore, 

CALPHAD allows us to design various alloy systems with single phase FCC/BCC structures 

(Tazuddin et al., 2017). 

3. Case of multicomponent ceramics 

Recently, multicomponent entropy stabilized oxides and borides have been been reported 

(Rost et al., 2015). In case of the ceramics, the configurational entropy can be used to 

engineer novel materials by using multicomponent metallic species in the basic frames work 

of oxygen or boron. The metallic cations are incorporated in the octahedral voids in a novel 

way to increase the entropy of mixing (Smix) to obtain single phase entropy –stabilized 

oxides or borides. These works categorically indicate that entropy of mixing in particular, 

predominately dictate the energy landscape, stabilizing the solid solutions. It is evident that 



the effect of entropy seems to be lower as compared to metallic sublattice (Figure 4a). The 

oxygen sublattice predominately order, baring same point defects. On the other hand, cationic 

sub lattice consisting of metallic elements provides the configurational entropy of mixing. As 

compared to single component oxides or borides, multicomponent based are lead to 

substantial increases in Smix, providing stabilization of the solid solution borides or oxides. In 

the following, the basic aspect of calculation of Smix for oxide is described. For metallic 

systems with random solutions consisting of two elements A-B, the materials interaction 

energy in given by ɛA-B = ɛA-A + ɛB-B, since these is an equal probability of bond formation. 

Thus, all lattice sites have an equal probability of occupation and entropy is considered to be 

maximized. This is an ideal situation in which all interaction energies, ɛA-B, ɛA-A, ɛB-B are 

equal. Any variation from the random mixture between A-B may likely to have different 

values of interactions energies. ɛA-B,  ɛA-A and ɛB-B and hence, such formalism may not work. 

This situation is different in case of oxides or borides in which the metallic ions sit on the 

cations sublattices (Figure 4b). Here, an anion sit oxygen or boron ions at the intermediate 

space and hence, every cation lattices can be considered. The second nearest neighbour, the 

site-specific difference can also be evident. Therefore, the number of possible configuration 

can be maximized if each of the cationic site is considered identical as well as energetically 

similar. However, such consideration is not a perfect approximation as the second and higher 

interactions will definitely influence the possible configurations. Nevertheless, this will 

increase Smix and hence, likely to stabilize the solid solution and lower of temperature at 

which entropy induced the formation of such a solid solution. It is to be noted here that, the 

effects of entropy on oxides system is already been investigated, i.e. cation occupancy in 

spinal(Navrotsky & Kleppa, 1967), order-disorder transformation is feldspar (Megaw, 1973). 

However, the technique of engineering Smix to stabilized multicomponent oxides in a single 

cation sublattice could only be achieved using the principles of high entropy alloys. Any such 



efforts of exploring the vast compositional space for compound forming systems is definitely 

challenging, requiring both computational and experimental approaches. 

 Using a similar approach Gild et al. has reported the formation of entropy stabilized borides 

(Gild et al., 2016). These unique borides containing high melting metals [Ht,Ta,W, etc] 

which effectively improve the high-temperature capability of the existing materials utilized in 

space applications (Laura & Diletta, 2011). Conventionally TaB2, HfB2 arc used for 

components in Space vehicles due to their unique properties including, high melting 

temperature low thermal conductivity low diffusivity and reactively. These properties can 

further be improved by engineering novel mixed borides carbides, oxides, etc (Gild et al., 

2016). 

4. Case of polymers  

Polymers are anther class of materials which find extensive usage in day-to-day life. 

Although, there is no report of high entropy polymer till date, there has been discussion on 

the existence of natural polymers stabilized by entropy of mixing, akin to the metallic alloys 

or multicomponent ceramics. Many natural proteins are stabilized by using the strategy of 

maximizing the entropy of mixing. It involves allowing the change in entropy via 

folding/unfolding of different chain of the proteins. Such difference in the entropy between 

the folded and unfolded states can lead to improved thermodynamical stability of the 

proteins. This has intelligently been achieved by substantial increase in the configurational 

entropy of the folded state. Figure 5 shows model of a protein, known as hmAcP of horse 

muscle and a corresponding residue. The protein can contain various loop variants, altering 

the different states. It has been shown that entropy of mixing is given by equation(6)(Dagan 

et al., 2013). 



)
ln(

ref
mix n

ncRS =                                            (6) 

Here, n refers to number of residues in a particular loop whereas nref is known as the number 

of residues in the loop of any reference mutant, c is the correlation factor, connected to the 

persistence distance, R the universal gas constant.  Therefore, by making n>>nref, it is 

possible to make Smix extremely high and stabilize the protein structure. Similar approach 

can be extended to synthetic polymers and soon high entropy polymer can be synthesized in 

the lab. 

 

Conclusions  

Therefore, it has categorically been shown that the Configurational entropy of mixing (Smix) 

has significant effect on thermodynamical stability of various phases in metallic, ceramic and 

polymeric systems. In fact, Smix can be effectively used as a tool to design multicomponent 

alloys, ceramics as well as polymers with distinct and improved properties, which would 

allow them to be exploited technologically. The future will unfold many interesting cases of 

materials development.  
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Figure 1: (a) Entropy change of mixing (Smix) as a function of number of elements (N) (b) 

HEA alloys lattice consisting more elements (N>5) atom. 

 

 

 

 

Figure 2: Alloy world as function of configurational entropy 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 (a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3: (a) CALPHAD methodology. The Gibbs energies of the constituent sub-systems 

for extrapolation to higher element alloys system (Kattner, 1997) (b) Phase fraction as 

function of Temperature.(Tazuddin et al., 2017)(permission from elsevier). 
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(b) 

Figure 4: (a) Binary metallic compared with a ternary oxide. A schematic shows of 
two lattices describing how the first-near-neighbour environments between species 
having different electronegativity (the darker the more negative charge localized) 
for (i) a random binary metal alloy and (ii) random pseudo-binary mixed oxide 
(Rost et al., 2015).  (b) Schematic of the atomic arrangement (layered hexagonal crystal 

structure) of the high-entropy metal diborides. (M1, M2, M3, M4, and M5 represent five 



different transition metals high-entropy materials), with mixed ionic and covalent (M-B) 

bonds between the metals and boron (Gild et al., 2016). 

 

Figure 5: Model of hmAcP, constructed based on the solution structure of horse muscle AcP 

(Protein Data Bank ID code 1APS). (Dagan et al., 2013)(Permission from PNAS). 

 

 

 

 

 

 

 

 

 

 

 



 


