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Soliton gases represent large random soliton ensembles in physical systems that display integrable
dynamics at the leading order. Despite significant theoretical developments and observational evi-
dence of ubiquity of soliton gases in fluids and optical media their controlled experimental realization
has been missing. We report the controlled synthesis of a dense soliton gas in deep-water surface
gravity waves using the tools of nonlinear spectral theory (inverse scattering transform (IST)) for
the one-dimensional focusing nonlinear Schrödinger equation. The soliton gas is experimentally
generated in a one-dimensional water tank where we demonstrate that we can control and measure
the density of states, i. e. the probability density function parametrizing the soliton gas in the IST
spectral phase space. Nonlinear spectral analysis of the generated hydrodynamic soliton gas reveals
that the density of states slowly changes under the influence of perturbative higher-order effects
that break the integrability of the wave dynamics.

Solitons are localized nonlinear waves that have been
studied in many areas of science over last decades [1–3].
Solitons represent fundamental nonlinear modes of phys-
ical systems described by a special class of wave equa-
tions of an integrable nature [4–6]. These equations,
like the Korteweg-de Vries (KdV) equation or the one-
dimensional nonlinear Schrödinger equation (1D-NLSE),
are of significant physical importance since they describe
at the leading order the behavior of many systems in var-
ious fields of physics such as water waves, matter waves
or electromagnetic waves [1, 3, 6–8].

Nowadays the dynamics of soliton interaction is so well
mastered that ordered sets of optical solitons or their
periodic generalizations, the so-called finite-gap poten-
tials, are synthesized and manipulated to carry out the
transmission of information in fiber optics communica-
tion links [9–12]. On the other hand, the question of col-
lective dynamics of large random soliton ensembles repre-
sents a subject of active research in statistical mechanics
and in nonlinear physics, most notably in the contexts of
ocean wave dynamics and nonlinear optics, see e. g. ref.
[13–25].

The concept of soliton gas (SG) as a large ensem-
ble of solitons randomly distributed in space and elas-
tically interacting with each other originates from the
work of Zakharov [26], who introduced kinetic equation
for a non-equilibrium diluted gas of weakly interacting
solitons of the KdV equation. The Zakharov’s kinetic
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equation has been generalised to the case of a dense SG
in [27] (KdV) and in [28, 29] (focusing NLS). Each soli-
ton in a gas living on the infinite line x is characterised
by a discrete eigenvalue λi of the spectrum of the linear
operator associated with the integrable evolution equa-
tion within the inverse scattering transform (IST) formal-
ism. The fundamental property of integrable dynamics
is the preservation of the soliton spectrum under evolu-
tion. The central concept in SG theory is the density
of states (DOS) [30] which represents the distribution
u(λ, x, t) over the spectral eigenvalues, so that udλdx is
the number of soliton states found at time t in the ele-
ment of the phase space [λ, λ + dλ] × [x, x + dx]. The
isospectrality of integrable dynamics results in the conti-
nuity equation ut + (us)x = 0 for the DOS evolution in
a spatially nonhomogeneous (non-equilibrium) SG. The
transport velocity s(λ, x, t) in the DOS continuity equa-
tion is different from the free soliton velocity due to po-
sition/phase shifts in pairwise soliton collisions, resulting
in a non-local equation of state s = F [u], relating the
transport velocity with the DOS [28, 29]. Interestingly,
the SG kinetic equation has recently attracted much at-
tention in the context of generalized hydrodynamics for
quantum many-body integrable systems, see [31–33] and
references therein.

Despite various developments of SG theory (see e.g.
[34–41] ) and the existence of an unambiguous charac-
terization of SG through the concept of DOS, the ex-
perimental/observational results in this area are quite
limited. Costa et al have reported in 2014 the observa-
tion of random wavepackets in shallow water ocean waves
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FIG. 1. Ensemble of N = 16 solitons propagating in the 1D water tank. (a) Water elevation (red line) and modulus of the
wave envelope measured at Z1 = 6 m, close to the wavemaker. (b) Blue points represent the discrete IST spectrum of the
numerically-generated N-SS ψ16(x, t = 0) and red points represent the discrete IST spectrum measured at Z1 = 6 m by using
the signal plotted in (a). (c) Space evolution of the discrete IST spectra measured along the tank from Z1 = 6 m (light red)
to Z20 = 120 m (dark red). (d) Same as in (c) but obtained from numerical simulations of a modified (not integrable) 1D-
NLSE including higher-order effects, see Supplemental Material [52]. (e) Space-time evolution of modulus of the wave envelope
recorded by the 20 gauges regularly spaced along the tank. Physical parameters characterizing the experiment are f0 = 0.9 Hz,
k0 = 3.26 m−1, α = 0.895, LNL = 210 m (〈|A0(T )|2〉 = 1.53 × 10−4 m2).

that have been analyzed using numerical IST tools and
interpreted as randomly distributed solitons that might
be associated with KdV SG [42]. In 2015 large ensem-
bles of interacting and colliding solitons have been ob-
served in a levitating rectilinear water cylinder [43]. In
the recent experiments reported in ref. [44], Redor et al
have taken advantage of the process of fission of a sinu-
soidal wave train to generate an ensemble of bidirectional
shallow water solitons in a 34-m long flume. The inter-
play between multiple solitons and dispersive radiation
has been analyzed by Fourier tranform and the observed
random soliton ensemble has been interpreted as repre-
senting a SG. In optics, the SG terminology has been
used to describe experiments where light pulses were syn-
chronously injected in a passive optical fiber ring cavity
[45]. Another recent experimental observation of com-
plex nonlinear wave behavior attributed to SG dynamics
was reported in [46] where the formation of an incoher-
ent optical field has been observed in the long-time evo-
lution of a square pulse in a focusing medium [47]. To
our knowledge, there is no existing experiment where SG
have been unambiguously identified using IST and where
the measurement and control of the DOS of the SG have
been achieved.

In this Letter, we report experiments fully based on
the IST method where we generate and observe the evo-
lution of hydrodynamic deep-water dense soliton gases.
We take advantage of the recently developed methodol-

ogy for the effective numerical construction of the so-
called N -soliton solutions of the focusing 1D-NLSE with
N large (ref. [48]), to create an incoherent wavefield hav-
ing a dominant and controlled solitonic content charac-
terized by a measurable DOS. We show that the gener-
ated SG may undergo some complex space-time evolution
while the discrete IST spectrum is found to be nearly con-
served, albeit being perturbed by higher-order effects.

Our experiments were performed in a wave flume 148
m long, 5 m wide and 3 m deep. Unidirectional waves are
generated at one end with a computer assisted flap-type
wavemaker and the flume is equipped with an absorbing
device strongly reducing wave reflection at the opposite
end. As in the experiments reported in ref. [49], the
setup comprises 20 equally spaced resistive wave gauges
that are installed along the basin at distances Zj = j× 6
m, j = 1, 2, ...20 from the wavemaker located at Z = 0
m. This provides an effective measuring range of 114 m.

In our experiment, the water elevation at the wave-
maker reads η(Z = 0, T ) = Re

[
A0(T )eiω0T

]
, where

ω0 = 2πf0 is the angular frequency of the carrier wave.
A0(T ) represents the complex envelope of the initial con-
dition. Our experiments are performed in the deep-water
regime, and they are designed in such a way that the
observed dynamics is described at leading order by the
focusing 1D-NLSE

∂A

∂Z
+

1

Cg

∂A

∂T
= i

k0
ω2
0

∂2A

∂T 2
+ iαk30|A|2A, (1)
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FIG. 2. Gas of N = 128 solitons propagating in the 1D water tank. (a) Water elevation (red line) and modulus of the wave
envelope measured at Z1 = 6 m, close to the wavemaker. (b) Fourier power spectra of wave elevation at Z1 = 6 m (blue line)
and at Z20 = 120 m (red line). (c) Discrete IST spectrum measured at Z1 = 6 m. (d) Discrete IST spectrum measured at
Z20 = 120 m. (e) Space-time evolution of modulus of the wave envelope recorded by the 20 gauges regularly spaced along
the tank. Physical parameters characterizing the experiment are f0 = 1.15 Hz, k0 = 5.32 m−1, α = 0.936, LNL = 45 m
(〈|A0(T )|2〉 = 1.58 × 10−4 m2).

where A(Z, T ) represents the complex envelope of the
water wave that changes in space Z and in time T [50].
k0 represents the wavenumber of the propagating wave
(η(Z, T ) = Re

[
A(Z, T )ei(ω0T−k0Z)

]
), which is linked to

ω0 according to the deep water dispersion relation ω2
0 =

k0g, where g is the gravity acceleration. Cg = g/(2ω0)
represents the group velocity of the wavepackets and α
is a dimensionless term describing the small finite-depth
correction to the cubic nonlinearity [49].

The first important step of the experiment consists in
generating an initial condition A0(T ) in the form of a
random wavefield having a pure solitonic content. To
achieve this, we move to the “IST-friendly” canonical
dimensionless form of the 1D-NLSE

i
∂ψ

∂t
+

1

2

∂2ψ

∂x2
+ |ψ|2ψ = 0, (2)

where ψ(x, t) represents the normalized complex enve-
lope of the water wave. Connection between physical
variables of Eq. (1) and dimensionless variables in Eq.

(2) are given by t = Z/LNL, x = (T −Z/Cg)
√
g/(2LNL)

with the nonlinear length being defined as LNL =
1/(αk30〈|A0(T )|2〉), where the angle brackets denote av-
erage over time.

The nonlinear wavefield ψ(x, t) satisfying Eq. (2) can
be characterized by the so-called scattering data (the IST
spectrum). For localized, i.e. decaying to zero as |x| → ∞
wavefield the IST spectrum consists of a discrete part re-
lated to the soliton content and a continuous part related
to the dispersive radiation. A special class of solutions,

the N -soliton solutions (N-SS’s), exhibit only a discrete
spectrum consisting of N complex-valued eigenvalues λn,
n = 1, ..., N and N complex parameters Cn = |Cn|eiφn ,
called norming constants, defined for each λn. In all
the experiments described below, the phases φn of the
norming constants Cn characterizing the generated N-SS
are randomly and uniformly distributed over [0, 2π) while
their modulus |Cn| are chosen to be equal to unity. As
shown in ref. [48, 51], such N -soliton statistical ensemble
is a good model for a homogeneous dense SG.

In our first experimental run, we used numerical meth-
ods described in ref. [48] to generate a N-SS of Eq. (2),
hereafter denoted ψ16(x, t), with N = 16 eigenvalues cho-
sen arbitrarily within some domain of the complex spec-
tral plane, as shown with blue points in Fig. 1(b). A
relatively small number of solitons in this random soliton
ensemble prevents its proper macroscopic spectral char-
acterisation and the identification with SG. However, it
is important as a first step in our experiment to establish
a robust protocol for the generation of random soliton
ensembles in a spectrally controlled way.

After some appropriate scaling, the generated dimen-
sionless wavefield ψ16(x, t = 0) is converted into the phys-
ical complex envelope A16(Z = 0, T ) = A0(T ) of the ini-
tial condition which is generated by the wavemaker. Fig.
1(a) shows the water elevation measured at Z1 = 6 m
together with the modulus of the envelope |A16(Z1, t)|
computed using standard Hilbert transform techniques
[50]. The generated wavefield with pure solitonic con-
tent spreads over approximately 140 s and exhibits large
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FIG. 3. Statistical analysis of discrete IST spectra of the gas of 128 solitons showing the slow evolution of the DOS u(λ) (the
probability density function of the discrete IST eigenvalues in the complex plane) as a function of propagation distance in the
water tank: (a), (e) z1 = 6 m, (b), (f) z3 = 18 m, (c), (g) z10 = 60 m, (d), (h) z20 = 120 m. The upper row (a)-(d) represents
the DOS measured in the experiment while the lower row represents the DOS computed in numerical simulation of Euler’s
equations, see Supplemental Material for details [52].

amplitude fluctuations due to the random phase distri-
bution. Fig. 1(b) shows the discrete IST spectrum that
is computed from the signal recorded by the first gauge
and plotted in Fig. 1(a). The measured eigenvalues
plotted in red points in Fig. 1(b) are close to the dis-
crete eigenvalues (blue points) that we have selected to
build ψ16(x, t = 0), the N-SS under consideration. This
demonstrates that the process of generation of the N-SS
solution is well controlled in our experiments.

As shown in Fig. 1(e), the space-time evolution of
the generated wavepacket measured with 20 gauges dis-
tributed along the tank reveals complex dynamics with
multiple interacting coherent structures. Despite the ap-
parent complexity of the observed wave evolution, the
measured discrete IST spectra, compiled and superim-
posed in Fig. 1(c), are nearly conserved over the whole
propagation distance.

The fact that the isospectrality condition perfectly full-
filled in a numerical simulation of the 1D-NLSE (see
Supplemental Material [52]) is not exactly verified in
the experiment arises from perturbative higher-order ef-
fects that break the integrability of the wave dynamics
[49, 53, 54]. As shown in Fig. 1(d), numerical simula-
tions of a modified NLSE including higher-order effects
(see Supplemental Material [52]) reveals that each dis-
crete eigenvalue follows an individual trajectory in the
complex plane under the influence of higher-order effects.
In the experiment, these trajectories are not resolved be-
cause of measurement inaccurracies, compare Fig. 1(c)
and Fig. 1(d). Nevertheless, the results of nonlinear
spectral analysis reported in Fig. 1(c) show that the dy-
namical features observed for the wavefield composed of

16 solitons are nearly integrable.

We now take advantage of the above method of the
controlled generation of multiple-soliton, random phase
solutions of the 1D-NLSE, to generate a random N -
soliton ensemble that can be identified as SG. It is clear
that to achieve that, the number of solitons N should be
sufficiently large. Fig. 2 shows the dynamical and spec-
tral features characterizing the experimental evolution of
an ensemble of N = 128 solitons with random spectral
(IST) characteristics. The important difference with the
first example is that, due to a large number of solitons
generated, we are now able to characterize the soliton
ensemble by a DOS u(λ), see Fig. 3. Specifically, we
generate a SG with eigenvalues λi ∈ C distributed nearly
uniformly on a rectangle in the upper half-plane of the
complex IST spectral plane (and the c.c. rectangle in the
lower half plane) and the DOS u(λ) = u0 being nearly
constant within the rectangle, see Fig. 2(c).

Fig. 2(a) shows that the generated SG has the form of
a random wavefield spreading over ∆T = 1200 s which
corresponds to a range ∆x = 396 in the dimensionless
variables of Eq. (2). Clearly the generated SG does not
represent a diluted SG composed of isolated and weakly
interacting solitons but rather a dense SG which cannot
be represented as superposition of individual solitons.
Fig. 2(b) shows that the propagation of the generated
SG is not accompanied by any significant broadening of
Fourier power spectrum.

Fig. 2(c) shows the discrete IST spectrum of the wave-
field measured at Z1 = 6 m, close to the wavemaker. A
set of N = 128 eigenvalues is now measured within a
rectangle in the upper complex plane. Similarly to the
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features reported in Fig. 1, the perturbative higher-order
effects influence the observed dynamics and the discrete
spectrum measured at Z20 = 120 m is not identical to
the one measured at Z1, see Fig. 2(d). Even though
the isospectrality condition characterizing a purely inte-
grable dynamics is not exactly satisfied in our experi-
ment, the measured discrete spectrum remains confined
to a well-defined region of the complex plane. Moreover,
the large number of eigenvalues distributed with some
density within this limited region of the complex plane
justifies the introduction of a statistical description of the
spectral (IST) data, which represents the key point for
the analysis of the observed wavefield in the framework
of the SG theory.

In the context of the 1D-NLSE (2) the DOS u(λ),
where λ = β + iγ, represents the density of soliton
states in the phase space i.e. udβdγdx is the number
of solitons contained in a portion of SG with the com-
plex spectral parameter λ ∈ [β, β + dβ]× [γ, γ + dγ] over
the space interval [x, x + dx] at time t (corresponding
to the position Z in the tank). Considering that the
generated SG is homogeneous in space, the DOS rep-
resents the probability density function of the complex-
valued discrete eigenvalues normalised in such a way that∫ +∞
−∞ dβ

∫ +∞
0

dγ u(λ) = N/∆x, where N represents the
number of eigenvalues found in the upper complex plane
and ∆x represents the spatial extent of the gas. Fig.
3 (upper row) displays the normalized DOS experimen-
tally measured at different propagation distances in the
water tank while Fig. 3 (lower row) displays the normal-
ized DOS computed in a numerical simulation of Euler’s
equations, see Supplemental material for details [52]. The
experiments and numerical simulations reveal a slow evo-
lution of the DOS along the tank occurring over a char-
acteristic length scale determined by LNL. This slow
evolution is not due to gas’ nonhomegeneity but mainly
originates from the presence of perturbative higher-order

effects. Results reported in Fig. 3 suggest that the in-
corporation of higher-order perturbative physical effects
in the theory of SG represents a theoretical question of
significant interest.

In this Letter, we have reported hydrodynamic exper-
iments demonstrating that a controlled synthesis of a
dense SG can be achieved in deep-water surface grav-
ity waves. We show that the generated SG is character-
ized by a measurable spectral DOS, which provides an
essential first step towards experimental verification of
the kinetic theory of SGs. We hope that our work will
stimulate new experimental and theoretical research in
the fields of statistical mechanics and nonlinear random
waves.
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