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Abstract—Activity recognition relates to the automatic visual 

detection and interpretation of human behaviour and is emerging 

as an active domain of computer vision.  It has important 

applications such as identifying individuals who are at risk of 

suicide in public locations such as bridges or railway stations. 

These individuals are known to exhibit easily observable activities 

and behaviours such as pacing, looking up and down the railway 

tracks, and leaving objects on the platform. In order to detect these 

behaviours, an approach to individual person activity recognition 

is needed which can run in real time and monitor multiple 

individuals in parallel. We present a method for human activity 

recognition using skeletal keypoints and investigate how using 

varying sample rates and sequence lengths impacts accuracy. The 

results show that for any given sequence length, optimising the 

sample rate can result in an overall increase in classification 

accuracy and improvement in run-time. Results demonstrate that 

finding the optimal time period over which to sample frames is 

more important than simply decreasing the number of frames 

sampled. Further, we show that keypoint based activity 

recognition approaches outperform other state of the art 

approaches. Finally, we show that this approach is fast enough for 

real time activity recognition when up to 14 people are present in 

the image whilst maintaining a high degree of accuracy.  

Keywords—Activity recognition, Video processing, Real time, 

Keypoints  

I. INTRODUCTION  

   Human activity recognition has become increasingly popular 

due to an interest in the detection of social signals.  Social signal 

processing (SSP) covers a large number of complex computing 

challenges, such as the development of reliable lie detectors, 

clinical diagnostic tools and more [1].  An interesting problem 

within SSP is that of detecting suicidal individuals in the 

context of bridges and railway platforms; this is directly 

relatable to standard computer vision activity recognition tasks. 

A number of studies have shown that individuals who are at risk 

of jumping exhibit easily observable behaviours beforehand 

[2]–[5], such as pacing and leaving objects on the platform. A 

method for real-time detection of these activities could permit 

intervention and save lives [5]. 
   Human activity recognition has been an open problem in 

computer vision for over two decades. Most attempts to detect 

human behaviours using computer vision are either optical flow 

based [6]–[9] or deep learning based [10]–[13]. While these 

approaches may be quite accurate, they have a number of 

drawbacks, in particular they are computationally expensive.  

Thus, it may be difficult or even impossible for these algorithms 

to be implemented in real-time dynamic environments with a 

large number of people, such as the example given in Figure 1.  

   The use of interest points to represent activities from 

sequences of images is one approach which can maintain high 

accuracy whilst providing a significant reduction in 

computational cost [14]. These methods work by first extracting 

a number of fixed interest points on the human body and then 

tracking the locations of these points over a number of video 

frames. Early methods for achieving this were based on the use 

of general feature detectors such as SIFT or SURF.  However, 

the use of these methods faced a number of drawbacks as there 

was no agreed standard for human representation [15]. To 

mitigate these problems there has been significant research 

within computer vision for more specialised “skeletal keypoint” 

detectors. Rather than returning a large set of key-points within 

an image, these methods return sets of key-points that directly 

relate to the specific body parts for each individual within an 

image. Two of the most successful skeletal key-point 

approaches are AlphaPose [16] and OpenPose [17] which are 

based on the use of deep learning neural networks to extract the 

skeletal keypoints.  
   The question of determining how many image samples 

(frames) should be used to accurately classify their activity in 

an image sequence has previously been explored in the context 

of optical flow [18]. It was found that calculating optical flow 

over two consecutive frames was often enough to achieve 

accuracy of approximately 88% using the KTH dataset. When 

optical flow was computed over 7 frames, accuracy of 90.9% 

was achieved.  Similarly, the problem of optimal sample rate 

 
Figure 1 Train platforms can be quite crowded, therefore a fast 

approach is needed to monitor the activities of all individuals 

simultaneously 
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was explored in [19] where they used four state of the art 

methods for activity recognition and reduced the number of 

frames sampled over a fixed period of time. Reducing the 

sample rate in this way corresponded to a reduction in overall 

classification accuracy, which seems intuitive as having more 

data on the individual’s movement over a fixed time period 

should increase prediction accuracy. However, using a reduced 

sample rate provides benefits such as reducing the 

computational cost.  

   In this paper we investigate the effect of reducing the sample 

rate and the number of frames in the sequence length. In this 

way we can determine whether it is possible to achieve an 

increase in classification accuracy, while maintaining or even 

reducing the amount of data needed to perform classification. 

To do this we present a general-purpose method for activity 

recognition using skeletal keypoints, generated with OpenPose 

[17]. Classification of these keypoint features is performed 

using a XGBoost classifier [20] which is based on the concept 

of tree boosting and used extensively in real world applications 

[20]. The remainder of this paper is organized as follows: 

Section 2 outlines the methodology used. Section 3 presents 

experimental results and provides a comparison with other 

state-of-art methods. In Section 4 we evaluate the speed of this 

approach on a multi-person dataset and Section 5 concludes the 

paper.  

II. METHODOLOGY 

   The OpenPose library [17] is used for skeletal keypoint 

extraction as it has a high level of accuracy and low 

computational cost. However, it should be noted that the 

contributions of this paper are not dependent on any specific 

skeletal keypoint estimation approach and can be implemented 

with any other skeletal keypoint extraction method such as 

AlphaPose [16], or Megvii [21].  Furthermore, as skeletal 

keypoint estimation is an open problem in computer vision and 

faster and more accurate keypoint estimation approaches 

emerge, the accuracy and speed of these approaches will also 

improve. However, the issue of frame-rate optimisation still 

remains in order to optimise classification speed [22]. 

Regardless of the method used for feature extraction, each 

individual keypoint may be defined as:  

 

𝑘𝑖 = {𝑥𝑖 , 𝑦𝑖}  (1)  
 

where 𝑥𝑖 and 𝑦𝑖  are the image coordinates of the extracted 

keypoint. For each frame of each video, the set of skeletal 

keypoints for each individual are extracted. For a given frame 

𝐼, the extracted set 𝐾𝐼  of 𝛾 skeletal keypoints per individual is 

defined as: 

𝐾𝐼 = {𝑘1, 𝑘2𝑘3 … 𝑘𝛾} (2)  

 

When using OpenPose 25 skeletal key points are extracted per 

individual as shown in Figure 2. 

    In order to investigate the influence of different sample rates 

and sequence length on the classification accuracy, we 

represent the temporal component of an activity by constructing  

an activity feature vector for the activity 𝜃 using a concatenated 

sequence of skeletal keypoints 𝐾𝐼 . This is defined as: 

 

𝜃 = {𝐾𝐼 , 𝐾𝐼−𝑚, 𝐾𝐼−2𝑚, … 𝐾𝐼−(𝑛−1)𝑚} (3)  

 

where n is the sequence length, m is the integer step size, 𝑚 ∝
𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 and can be calculated as: 

 

𝑚 =
𝑉𝑖𝑑𝑒𝑜 𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒

  𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 
 (4)  

 

By varying n and m, we are able to adjust both the length of the 

feature vector, and the time period over which skeletal 

keypoints are sampled. This allows us to determine the 

influence these changes have on the overall classification 

accuracy. Furthermore, this approach ensures that the 

computational cost may be kept as low as possible yet still 

consider overall accuracy in terms of the baseline approach 

using all the sequence frames. The values for sequence length 

(number of frames) and step size (sample rate) used in this 

investigation are detailed in Section 3. 

  The set of feature vectors 𝜃 was then used to train an XGBoost 

classifier [20], to classify which activity had occurred. We use 

XGBoost as it is a scalable learning algorithm which has been 

used to achieve state of the art accuracy for a large number of 

real-life data science challenges [20][23]. Based on tree 

boosting, for a given data set D of 𝑁 activity histories each with 

M features defined as: 

 

𝐷 = { 𝑥𝑖 , 𝑦𝑖} (𝑐𝑎𝑟𝑑(𝐷) = 𝑁, 𝑥𝑖 ∈ 𝑅𝑀 , 𝑦𝑖 ∈ 𝑅) (5)  
 

A tree ensemble method 𝜑 uses K additive functions to 

predict the output: 

𝑦𝑖̂ = 𝜑(𝑥𝑖) = ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

 (6)  

 

 
Figure 2 The 25 keypoints extracted by OpenPose 
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where F is the space of regression trees defined as: 

 

𝐹 = {𝑓(𝑥) = 𝑤𝑞(𝑥)}(𝑞: 𝑅𝑀 → 𝑇, 𝑤 ∈ 𝑅𝑇) (7)  

 

   Here 𝑞 represents the structure of each tree that maps an 

activity history to the corresponding leaf index and 𝑇 is the 

number of leaves in the tree. Each function 𝑓𝑘 corresponds to 

an independent tree structure 𝑞 and leaf weights 𝑤. Unlike with 

standard decision trees, which store a category or number on 

each leaf, regression trees contain a real score on each leaf. We 

use 𝑤𝑖  to represent the score on the 𝑖-th leaf. For a given activity 

history, the decision rules in the trees (given by 𝑞) are used to 

classify it into the leaves. The final prediction is then calculated 

by summing up the score in the corresponding leaves (given 

by 𝑤).  The XGBoost algorithm also incorporates a number of 

other techniques to further improve classification performance, 

such as using feature subsampling in order to prevent 

overfitting [20].  

III. EXPERIMENTAL RESULTS 

  
The proposed methodology was used to train and test an activity 

classifier using the KTH dataset [24] which contains short video 

clips of 6 distinct human activities: Walking, Jogging Running, 

Boxing, Hand waving and Hand Clapping. For each activity 

there are 25 sets of videos, each containing a different 

individual. Each video set contains four videos of each activity 

with a different background: outdoors, outdoors with different 

scale, outdoors with different clothes and indoors. This results 

in a total of 600 video clips with an average activity length of 4 

seconds each. Videos were recorded at 25 frames per second 

(fps) and a resolution of 160 x 120 pixels.  Figure 3 shows 

example frames from the dataset. 

   For each frame of each video in the dataset, we use OpenPose 

to extract a set of skeletal keypoints. These keypoints, from 

each frame, are then concatenated to construct an activity 

feature vector as outlined in Section 2. An XGBoost model is 

trained with the activity vector with the activity type used as the 

classification label. All presented results are validated using 

“leave-one-out” 25-fold cross validation [25]  where the 

complete set of activity vectors relating to the videos for one 

individual are kept for testing and the remaining activity vectors 

for the other individuals are used for system training. The task 

is therefore to identify the activity exhibited by an unknown 

individual, irrespective of the background.  

   We use the methodology outlined in Section II to investigate 

how changing the sample rate and number of frames used will 

impact classification accuracy. To do this we conduct the above 

experiments using a number of different values for the sample 

rate and sequence length. The set of sample rates investigated, 

measured in fps, was as follows:  

 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 = {25, 12.5, 8. 3̅, 5, 2.5, 1. 6̅}. 

 

As the original frame rate of the video was 25fps, the 

corresponding values used for 𝑚 in (3), calculated using (4), are 

as follows: 

 

𝑚 = {1, 2, 3, 5, 10, 15}. 
 

The sequence length refers to the total number of frames 

subsampled. We use different sequence lengths in order to 

determine the optimal values. The set of sequence lengths 

corresponds to the values used for 𝑛 in (3): 

 

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ = {3, 5, 10, 15}. 
 

Classification accuracy is determined by comparing the 

predicted activity against the actual activity and represented 

using a confusion matrix. The set of activity feature vectors for 

a given activity A is defined as:  

 

𝜇(𝐴) = {𝑥 ∈ Θ , 𝐿(𝑥) = 𝐴} (8)  

 

where Θ is the full set of  𝜃𝐼 feature vectors, and  𝐿(𝑥) is the 

true label for activity feature vector 𝑥. The percentage of 

activities predicted as activity B is computed as:  

 

𝛿(𝐴, 𝐵) =
𝑐𝑎𝑟𝑑({𝑥 ∈ 𝜇(𝐴), 𝑃(𝑥) = 𝐵}) 

𝑐𝑎𝑟𝑑(𝜇(𝐴))
(9)  

 

where 𝑃(𝑥) is the predicted label for activity feature vector 𝑥. 
We also evaluate the average accuracy over all classes for each 

frame rate and sample size using: 

 

𝐴𝑐𝑐 =
𝑐𝑎𝑟𝑑({𝑥 ∈ Θ, 𝑃(𝑥) = 𝐿(𝑥)})

|Θ|
(10)  

 

The activity time period for each set of results can be calculated 

using the equation: 

 

𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑖𝑜𝑑 =
(𝑛 − 1) × 𝑚 

25
 (11)  

 

   The confusion matrices are presented in Table 4 where results 

are arranged with the sequence length on the horizontal axis and 

   

Boxing 

 

Clapping Waving 

   

Walking Jogging Running 

   

Figure 3 Example frames of the six activities from the KTH dataset 
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the sample rate on the vertical axis. Within each matrix the 

predicted activity is listed on the horizontal axis, with the actual 

activity listed on the vertical axis. Accuracy is calculated using 

equation (9). 

   The highest accuracies were obtained across a range of 

sequence lengths per activity - there was no one definitive 

sequence length for all activities. For example, the optimal 

parameters for classification of the walking activity are 15 

frames with a sample rate of 1. 6̅fps. The optimal parameters 

for the classification of the jogging activity are 15 frames with 

a sample rate of 8. 3̅fps. Using Equation 11 we can see that these 

values correspond to an overall activity time period of 8.40 

seconds and 1.68 seconds respectively. Similarly, the optimal 

activity time period for classification of running is 0.56 

seconds, classification of boxing is 2.80 seconds, classification 

of clapping is 3.60 seconds and classification of waving is 1.80 

seconds.  

   There are two variables in this experiment, the sample rate 

and the sequence length. A decrease in only the sample rate 

variable will result in an increase in the time period as defined 

in (11). Given that the classification accuracy for each activity 

is highest when the sequence length is optimised, correctly 

selecting the corresponding sample rate can result in 

classification accuracy improvements. This can be seen clearly 

in Table 4 with the waving activity. When the sequence length 

was fixed at 3 frames, sampling at 25fps meant that the overall 

activity time period was short, at only 0.08 seconds. This 

resulted in a classification accuracy of 87.21%. When the 

sample rate was reduced to 1. 6̅fps, the overall activity time 

period increases to 1.2 seconds resulting in an accuracy of 

94.98%. Optimising the sample rate shows similar performance 

improvements for all other activities. 

  The results in Table 4 corroborate those found by [18] and [19] 

who also showed that reducing the number of frames sampled 

over a given time frame results in a reduction in classification 

accuracy, and clarifies that sampling over the optimal time 

frame maximizes classification accuracy for a given sequence 

length.  

 
Table 1 Average accuracy for each sequence length and sample 

rate as defined using (10) 

 

  Sequence Lengths / Frames 

  3 5 10 15 

Sample 

Rate/FPS 

25 83.10% 85.07% 87.15% 88.38% 

12.5 85.10% 86.85% 88.91% 89.73% 

8.3̅ 86.29% 87.88% 89.65% 90.19% 

5 87.38% 89.10% 89.97% 90.24% 

2.5 88.76% 89.60% 90.06% 90.14% 

1.6̅ 88.96% 89.40% 89.67% 89.88% 
 

 

   Table 1 shows the mean accuracies for all activities computed 

using leave-one-out cross validation using Equation (10), where 

it can be seen that the overall accuracy increases as the sample 

rate is decreased, up to an optimal value. The highest 

classification accuracy of 90.24% was obtained when the 

overall sequence length was 15 frames, with a sample rate of 5 

fps, corresponding to an overall activity time period of 2.8 

seconds. 

    By optimising the sample rate and the sequence length we 

also optimise the resulting feature vector. Table 1 shows that a 

sequence length of 15 frames, sampled at a rate of 25fps 

achieves an accuracy of 88.38% compared with a sequence 

length of 3 frames with a sample at rate of 1.6̅ fps which 

achieves an accuracy of 88.96%.  

     
Table 2 Comparison with other approaches 

 

Accuracy of the KTH dataset with a sample rate of 5fps and 

sequence length of 15 frames 

Simple keypoint method 91% 

Action Snippets [18] 81% 

Bag of Visual Words [26] 77% 

Dense Trajectories [27] 79% 

Motion Interchange pattern [28] 43% 

 

We also directly compare our approach with those presented in 

[19] using Dense trajectories [27], action snippets [18],  Bag of 

visual words [26] and Motion interchange pattern  [28]. 

In this experiment the frame rate was kept at a constant 5fps and 

the sequence length was 15 frames for all five approaches. All 

results use the same experimental setup where 16 subjects are 

used for training and 9 subjects are used testing (subjects: 2, 3, 

5, 6, 7, 8, 9 and 10). The results from this comparison are 

presented in Table 2 and demonstrate that our skeletal keypoint 

based approach performs significantly better in terms of 

classification accuracy using a reduced sample rate of 5fps 

when compared with the other methods. Even with a reduced 

amount of data, our approach results in a 10% improvement 

over other techniques and a total accuracy of 91%.  

IV. MULTI-PERSON RUNTIME EVALUATION 

In order to demonstrate the robustness of this approach, we 

investigate scalability when classifying the activities of a large 

number of individuals simultaneously. We present performance 

accuracy and runtime evaluations using both the KTH dataset, 

as described in Section 3, and the PNNL parking lot dataset [29] 

which consists of  individuals moving across an empty car park. 

The first video consists of 14 individuals and is 1000 frames 

long, and the second consists of 13 individuals and is 1,500 

frames long. Both videos have a resolution of 1920x1080, and 

a frame rate of 29 fps. 

    We evaluate the runtime and classification accuracy of our 

simple keypoint approach using a sequence length of 15 frames 

and a sample rate of 5 fps, as these parameters achieved the best 

accuracy on the KTH dataset as shown in Section 3. The 

classifier was first trained on the KTH dataset, and the unseen 

PNNL dataset was used for testing. If the classifier detected any 

of the three human locomotion classes (Walking, Jogging or 
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Running) then this was deemed to be a correct result. Runtimes 

were calculated on a PC running Ubuntu 18.04 an Intel 

XeonE5-1620, and Nvidia Titan XP with 16GB RAM. Table 3 

presents both the overall classification accuracies and the 

runtime results from these experiments. 

 
Table 3 Runtime Evaluation 

Classification Runtime Evaluation 

Video No People Runtime Accuracy 

KTH Dataset 1 24.69 fps 90.24% 

Car Park 1 14 7.31 fps 96.27% 

Car Park 2 13 8.27 fps 88.69% 

 

These results demonstrate that for single person activity 

recognition (KTH), this method runs at almost 25fps, which is 

sufficient for real time applications. The results also 

demonstrate that for multi-person activity recognition, this 

method runs at 7-8 fps, with a high degree of accuracy, for up 

to 14 individuals. Given the video sample rate used was 5fps, 

the classifier processing rate of over 7 fps demonstrates that the 

approach is fast enough for real-time multi-person activity 

recognition.  This is significant as, to the authors’ knowledge, 

this is the first approach to perform multi-person activity 

recognition with this many people in real time [30].  Therefore, 

for challenging social signal processing problems, such as those 

discussed in Section 1, these methods could be used to monitor 

the activities of numerous people in real time. 

V. CONCLUSION 

 We have investigated how changing sample rate and sample 

size affects the classification accuracy of a skeletal keypoint 

method for human activity recognition. Results have shown that 

reducing the sample rate so that samples are taken over the 

optimal time period results in improved performance over 

simply using all available data. Furthermore, we compared this 

keypoint based method with other state of the art activity 

recognition approaches at a reduced sample rate and 

demonstrated that the skeletal keypoint based method is more 

accurate at a lower frame rate than other existing approaches. 
 Finally, we evaluated the runtime of this approach on a multi-

person dataset and demonstrated that reducing the sample rate 

in this way enables real time activity recognition for up to 

fourteen people. This is especially important in contexts such 

as railway platforms, where there may be many individuals who 

need to be monitored simultaneously.   
   Future work will involve using these techniques to investigate 

SSP tasks such as suicide detection. Furthermore, we suggest 

investigating methods which build on skeletal keypoint features 

such as the Euclidean distance and direction of keypoint 

changes between frames, in order to generate a more accurate 

classification, especially for activities which appear similar 

such as walking and running. 
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