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ABSTRACT 

Transforming growth factor-β-induced protein (TGFBIp), an extracellular matrix protein, is the second most 

abundant protein in the corneal stroma. In this review, we summarize the current knowledge concerning the 

expression, molecular structure, binding partners, and functions of human TGFBIp. To date, 74 mutations in the 

transforming growth factor-β-induced gene (TGFBI) are associated with amyloid and amorphous protein deposition 

in TGFBI-linked corneal dystrophies. We discuss the current understanding of the biochemical mechanisms of 

TGFBI-linked corneal dystrophies and propose that mutations leading to granular corneal dystrophy (GCD) decrease 

the solubility of TGFBIp and affect the interactions between TGFBIp and components of the corneal stroma, 

whereas mutations associated with lattice corneal dystrophy (LCD) lead to a destabilization of the protein that 

disrupts proteolytic turnover, especially by the serine protease HtrA1. Future research should focus on TGFBIp 

function in the cornea, confirmation of the biochemical mechanisms in vivo, and the development of disease 

models. Future therapies for TGFBI-linked corneal dystrophies might include topical agents that regulate protein 

aggregation or gene therapy that targets the mutant allele by CRISPR/Cas9 technology. 
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1. TGFBIp 

1.1. Expression of TGFBIp 

1.1.1. TGFBIp is widely expressed in human tissues 

The transforming growth factor-β-induced gene (TGFBI), originally named big-h3, is a 34,924-nucleotide 

transcript containing 17 exons that, after processing, becomes a 2,052-nucleotide protein-coding sequence. The 

gene was discovered by Skonier et al. in a human lung adenocarcinoma cell line following addition of the pleiotropic 

cytokine TGF-β1 (Skonier et al., 1992). The gene was designated big-h3 (TGF-b1-induced-gene-human, clone 3) 

(GenBank accession number M77349), and its mRNA was increased up to 20-fold in this cell line after two days of 

treatment with TGF-b1. TGFBI mRNA encodes the highly conserved transforming growth factor-β-induced protein 

TGFBIp. In subsequent studies, TGFBIp was also named MP78/70 (Gibson et al., 1997), collagen fiber-associated 

protein (RGD-CAP) (Hashimoto et al., 1997), and kerato-epithelin (Munier et al., 1997). TGFBI is widely expressed 

in various organs and tissues throughout the body, such as the heart, breast, testes, prostate, intestines, skin, ovary, 

liver, pancreas, lung, leukocytes, placenta, and kidney (Ivanov et al., 2008; Skonier et al., 1992). In 1994, it was 

shown that TGFBIp is a major protein in the human cornea (Klintworth et al., 1994). 

 

1.1.2. Corneal TGFBIp expression 

TGFBIp is the second most abundant protein in the human corneal stroma and is present in all of the corneal 

layers (Dyrlund et al., 2012). The expression of TGFBIp increases by 30% during the first to second decade of life 

(Karring et al., 2010). It is a common perception that the majority of corneal TGFBIp is expressed in the epithelium 

(Escribano et al., 1994). Recently, this perception was supported by in situ hybridization analysis in mice, 

demonstrating that TGFBI mRNA was restricted to the corneal epithelium (Poulsen et al., 2018). However, in 

humans, TGFBIp is also expressed by keratocytes, particularly in the peripheral corneal stroma (Liu et al., 2017). We 

estimated the concentration of TGFBIp in the human cornea using a quantitative western blotting protocol 

(unpublished data). Human postmortem corneas from three individuals (two females and one male at the age of 

81-91 years) were acquired, and well-defined plugs with a diameter of 2 mm were generated from the central 

cornea. Assuming a thickness of 0.5 mm, the volume of the corneal plugs was 1.73 µl. The plugs were boiled in 

denaturing buffer under reducing conditions, and the extracted protein was separated by polyacrylamide gel 

electrophoresis along with a known concentration of recombinant TGFBIp. The proteins were transferred to a 

membrane followed by immunoblotting with an anti-TGFBIp antibody. A titration curve of recombinant TGFBIp was 

used to calculate the amount of TGFBIp in the corneal plug from each of the three individuals. The average 

concentration of human TGFBIp in the central cornea was estimated to be 26.4 µM (±4.6). The high concentration 

of TGFBIp in the cornea collaborates with our previous study on the human corneal proteome in which TGFBIp 
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appeared as the second most and most abundant protein in the stroma and endothelium (Dyrlund et al., 2012). 

Disregarding collagen type 1 in the stroma, the relative molar fraction of TGFBIp was at least three and six times 

higher than other corneal proteins in the stroma and endothelium, respectively. 

 

1.2. Structural organization of TGFBIp 

1.2.1. Primary sequence of TGFBIp 

TGFBIp is composed of 683 residues, including an N-terminal secretory signal peptide of 23 residues. The protein 

consists of an N-terminal cysteine-rich domain of periostin and TGFBIp (CROPT) domain followed by four fasciclin 1 

(FAS1) domains (FAS1-1, FAS1-2, FAS1-3, and FAS1-4) (Fig. 1A). The CROPT domain contains six of the 11 cysteine 

residues in TGFBIp and has previously been described as an EMI domain due to sequence similarities (Doliana et 

al., 2000). However, multiple sequence alignment revealed a 29-residue-long deletion, misalignment of two 

conserved cysteine residues, and a four-residue insertion into the EMI consensus motif (Lukassen et al., 2016). 

These observations alongside structural features, which will be discussed in sections 1.2.2 and 1.2.4, caused us to 

rename the N-terminal EMI domain to CROPT (García-Castellanos et al., 2017). The FAS1 domains are followed by 

a C-terminal region (residues 633-683) that contains an RGD integrin-binding motif. Most of the human corneal 

TGFBIp is truncated at A657, just three residues downstream of the RGD motif. It is currently unknown whether 

this proteolytic event occurs before or after secretion, but its proximity to the RGD motif indicates that it 

participates in regulating the cell binding properties of TGFBIp (Andersen et al., 2004). Analysis of corneal extracts 

by two-dimensional gel electrophoresis followed by immunoblotting revealed several TGFBIp isoforms with a 

molecular weight in the 30-60 kDa range and an isoelectric point between 5.5 and 6.2, forming a “zigzag” pattern 

(Karring et al., 2010). Mass spectrometry analysis revealed that all the isoforms were N-terminal truncated versions 

of the mature protein lacking 210-375 residues corresponding to the CROPT, FAS1-1, and FAS1-2 domains. The 

proteolytic processing of TGFBIp will be described in detail in section 3.2. 

TGFBIp purified from corneal extracts did not show any evidence for posttranslational modifications (PTMs) 

(Andersen et al., 2004), but other studies have identified phosphorylation at S37 (Bian et al., 2014; Srivastava and 

Srivastava, 1999). Gamma-carboxylation has also been suggested as a PTM, but this observation is controversial 

and has been disputed by others (Annis et al., 2015; Coutu et al., 2008). Five disulfide bridges in TGFBIp have been 

identified, of which three are intradomain bridges located in the CROPT domain (C49-C85 and C84-C97) and the 

FAS1-3 domain (C473-C478) (Lukassen et al., 2016) (Fig. 1A). The remaining disulfide bridges connect the CROPT 

domain to the FAS1-2 domain (C74-C339) and the FAS1-1 domain to the FAS1-2 domain (C214-C317). The last 

cysteine residue located in the CROPT domain (C65) was modified by cysteinylation. 

 

1.2.2. Secondary and tertiary structure of TGFBIp 
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The crystal structure of human TGFBIp truncated after A657 was recently published (García-Castellanos et al., 

2017). The overall structure is an elongated banana shape spanning approximately 120 Å with the FAS1 domains 

arranged like pearls on a string (Fig. 1B). The N- and C-terminal residues are not observed in the structure due to 

the flexibility of these regions. The CROPT domain consists of a central three-stranded β-sheet and presents a novel 

fold (García-Castellanos et al., 2017). C65 is located on the surface in a flexible loop. The FAS1 domains are a mix of 

α-helices and β-sheets, and the general architecture is α1-α3+β1+α4-α6+β2-β8. The structure can be divided into 

a left moiety encompassing the CROPT, FAS1-1, and FAS1-2 domains and a right moiety composed of the FAS1-3 

and FAS1-4 domains. The left moiety is held together by interdomain disulfide bridges and is very compact 

compared to the right moiety. Superposition of the left moieties of the two molecules in the asymmetric unit 

revealed a distance between the rightmost tips of approximately 14 Å (García-Castellanos et al., 2017). This suggests 

that the linker between the FAS1-2 and FAS1-3 domain can work as a flexible hinge. Several studies have used single 

domains of TGFBIp to map functionalities and binding sites (Kim et al., 2009b; Kim et al., 2000b). We suggest that 

the pairwise arrangement of the FAS1 domains and the interdomain disulfide bonds are functional features. This 

must be taken into consideration as the domains might have altered behavior when removed from their structural 

context. 

 

1.2.3. Quaternary structure of TGFBIp 

Multimerization of TGFBIp into dimers, trimers, and tetramers has been observed in several studies (Basaiawmoit 

et al., 2011; Kim et al., 2002b; Ohno et al., 2002). One study suggested that disulfide bonds covalently linked the 

TGFBIp multimer, but this could be caused by disulfide exchange in denatured TGFBIp (Andersen et al., 2004; Ohno 

et al., 2002). A study of the TGFBIp structure by small-angle X-ray scattering found that TGFBIp is a monomer at low 

concentrations but is prone to forming dimers and trimers at higher concentrations (11 µM) (Basaiawmoit et al., 

2011). TGFBIp purified from human and porcine corneas was shown to be monomeric (Andersen et al., 2004). 

Nevertheless, considering the high concentration of TGFBIp in the cornea, it cannot be ruled out that dimers and/or 

trimers of TGFBIp are physiologically relevant. 

 

1.2.4. What can be learned from the structure of periostin? 

Periostin is a paralog of TGFBIp with 48% sequence identity and the same domain organization. The main 

difference between the two proteins is in the C-terminal region, which lacks the RGD motif and undergoes 

alternative splicing in periostin (Horiuchi et al., 1999). The structure of periostin was recently published, and the 

protein is similar to TGFBIp folded into a banana shape with the FAS1 domains arranged like beads on a string (Liu 

et al., 2018). The CROPT domain is connected to the FAS1-2 domain through a disulfide bridge, with the free C60 of 

periostin exposed on the surface. The free cysteine residue (C65) was found to be cysteinylated in both recombinant 
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TGFBIp and endogenous TGFBIp from the cornea (Lukassen et al., 2016). However, the electron density map of 

TGFBIp did not indicate a modification, while the corresponding residue (C60) in the periostin structure was 

cysteinylated (García-Castellanos et al., 2017; Liu et al., 2018). Furthermore, the FAS1-3 and FAS1-4 domains were 

rotated 15° between the TGFBIp and periostin structure (Liu et al., 2018). However, the two TGFBIp structures in 

the asymmetric unit revealed high flexibility in the hinge region between FAS1-2 and FAS1-3, which could explain 

that rotation. The slight differences in the structures of the two proteins indicate that even though they have a high 

sequence identity, the physiological functions are different. 

Periostin forms a boat-like dimer in solution with a major interaction site between the CROPT domain of one 

molecule and the FAS1-4 domain of the other molecule (Liu et al., 2018). The most important amino acid for 

periostin dimerization (R463) is conserved in TGFBIp. The small-angle X-ray scattering structures of the TGFBIp 

dimer and trimer were elongated and not boat-like, as observed for periostin (Basaiawmoit et al., 2011). It is not 

known if the dimerization of periostin is concentration-dependent, as observed for TGFBIp. A study found that 

TGFBIp and periostin interact with each other through the CROPT domain (Kim et al., 2009a), suggesting that the 

interactions between the two proteins are different from those observed for the periostin dimer. Further 

investigation of the multimeric propensities of TGFBIp and periostin might provide more insight into the function, 

similarities, and differences of these two molecules. 

 

1.3. Protein interactions of TGFBIp 

1.3.1. Integrins 

TGFBIp is known to bind to cell surfaces through several types of integrins present on fibroblasts, keratinocytes, 

endothelial cells, and epithelial cells (Table 1). The binding motif for integrin α3β1 has been mapped to highly 

conserved isoleucine and aspartate residues in the FAS1-2 and FAS1-4 domains (Kim et al., 2000b). The sequences 

NKDIL (residues 354-358) of the FAS1-2 domain and EPDIM (residues 614-619) of the FAS1-4 domain were identified 

as binding motifs (Bae et al., 2002; Kim et al., 2000b). These sequences are based on the three-dimensional 

structure located on the surface in a groove between the first two FAS1 domains and between the last two FAS1 

domains. They are both part of a β-sheet structure and not a β-turn, as previously suggested (Park et al., 2004). 

Two of the most studied integrins in relation to TGFBIp binding are αVβ3 and αVβ5 of which only αVβ5 is found 

in the cornea (Table 1) (Rayner et al., 1998). The binding motifs for these integrins have been identified as YH motifs, 

which correspond to residues 548-614 and contain conserved tyrosine, histidine, and flanking leucine/isoleucine 

residues (Kim et al., 2002a; Lee et al., 2006; Nam et al., 2006; Nam et al., 2003; Son et al., 2013; Thapa et al., 2005). 

The interaction between TGFBIp and integrin αVβ3 is, in several cases, also dependent on the RGD motif (Choi et 

al., 2015; Nam et al., 2006; Nam et al., 2003; Son et al., 2013). The RGD motif is a well-known integrin-binding motif, 
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but as observed for integrins α1β1 and αMβ2, it is not always required for TGFBIp interaction because the repeated 

FAS1 domains also have binding affinity (Kim and Kim, 2008; Ohno et al., 1999). 

 

 

 

1.3.2. Extracellular matrix proteins 

As mentioned in section 1.2.4, TGFBIp is reported to interact with its paralog periostin through its CROPT domains 

(Kim et al., 2009a). TGFBIp also binds other extracellular matrix (ECM) components, such as the glycoproteins 

fibronectin and laminin and the small leucine-rich proteoglycans biglycan and decorin (Billings et al., 2002; Kim et 

al., 2002b; Reinboth et al., 2006). The interaction between TGFBIp and fibronectin occurs through the 

collagen/gelatin binding domain of fibronectin (Billings et al., 2002). Decorin and biglycan bind TGFBIp via their core 

proteins and either share or have binding sites in close proximity on TGFBIp. Furthermore, TGFBIp forms ternary 

complexes with collagen type VI and small leucine-rich proteoglycans (Reinboth et al., 2006). 

 

1.3.3. Collagens 

Collagens are a major constituent of the corneal ECM and have been identified as TGFBIp interaction partners in 

several cases. Collagen types I, II, and IV are reported as noncovalent interaction partners (Billings et al., 2002; 

Hashimoto et al., 1997; Kim et al., 2002b), whereas collagen type VI has been found to form both noncovalent and 

covalent interactions with TGFBIp (Hanssen et al., 2003; Kim et al., 2002b; Rawe et al., 1997; Reinboth et al., 2006). 

TGFBIp and collagen type VI were copurified from rabbit corneas but required reduction to enter the SDS-PAGE gel 

(Rawe et al., 1997), suggesting that TGFBIp was linked to itself or other proteins, possibly collagen type VI, by 

disulfide bonds. The interaction between the two proteins was further characterized and showed that in vitro 

binding of TGFBIp to collagen type VI microfibrils occurred in a noncovalent manner (Hanssen et al., 2003). 

However, collagen type VI microfibrils purified from nuchal ligament tissue were covalently bound to TGFBIp 

through a reducible bond. The binding site was suggested to be in the N-terminal region of the microfibrils (Hanssen 

et al., 2003; Reinboth et al., 2006). We found that more than half of the TGFBIp in the human cornea was bound to 

the insoluble ECM fraction by a reducible bond (Andersen et al., 2004). The covalent interaction partner in the 

cornea was shown to be collagen type XII, and the binding site is most likely in the NC3 domain (Runager et al., 

2013). As mentioned in section 1.2.1, TGFBIp only has one free cysteine residue that is not involved in 

intramolecular disulfide bridges (Lukassen et al., 2016). We suggest that C65 in the CROPT domain is responsible 

for the reducible bond to collagen types VI and XII. It is not known how the amount of bound TGFBIp is regulated 

or when and how it is coupled to the collagens. 
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1.4. Physiological function of TGFBIp 

Several studies have suggested potential roles of TGFBIp. The ability of TGFBIp to bind both integrins and ECM 

molecules indicates a role in cell adhesion, and some consider it a matricellular protein (Billings et al., 2002; Kim et 

al., 2000a; Mosher et al., 2015; Ohno et al., 1999; Runager et al., 2013). The definition of matricellular proteins is 

vague, but generally, (i) they do not contribute to the structural integrity of the ECM, (ii) they are only transient 

constituents of the ECM, and (iii) they modulate cell function by interacting with cell-surface receptors in the ECM 

(Murphy-Ullrich and Sage, 2014). TGFBIp has been shown to play a role in the morphogenesis of tissues such as 

lung, bone, cartilage, diaphragm, heart, and cornea during vertebral embryonic development (Lindsley et al., 2005; 

Lu et al., 2004; Norris et al., 2005; Rawe et al., 1997; Schorderet et al., 2000). Other studies have shown involvement 

in processes such as angiogenesis, osteogenesis, platelet activation, wound healing, and inflammation (Kim et al., 

2009b; Kim et al., 2000a; Nam et al., 2006; Nam et al., 2003; Rawe et al., 1997; Son et al., 2013; Yun et al., 2002). 

Much still needs to be learned about the function of TGFBIp, and it is particularly interesting to understand in 

the context of the cornea due to the high abundance of TGFBIp in this tissue. 

 

1.5. TGFBIp in diseases 

1.5.1. Roles in cancer 

TGFBIp plays a dual role in cancer as both a tumor suppressor and promoter (Ween et al., 2012). Several studies 

have reported TGFBIp as a tumor suppressor in different types of cancer, such as lung, breast, bone, ovarian, and 

prostate (Shao et al., 2006; Ween et al., 2011; Ween et al., 2012; Wen et al., 2011; Zamilpa et al., 2009). Strong 

support of the role of TGFBIp as a tumor suppressor came from the spontaneous tumor development in TGFBI−/− 

mice (Zhang et al., 2009b). This is further supported by the downregulation of TGFBIp expression in many tumor 

types and by suppression of tumorigenicity when TGFBIp is overexpressed (Shao et al., 2006; Skonier et al., 1994; 

Zhao et al., 2002). A study also showed that TGFBIp expression reduced the mobility and invasive ability of tumor 

cells, thus reducing the metastatic potential of the cells (Ween et al., 2012; Wen et al., 2011). On the other hand, 

several studies have found that TGFBIp mediates cancer cell invasion and metastasis (Guo et al., 2011; Kim et al., 

2003; Ma et al., 2008; Tang et al., 2007). Elevated TGFBIp expression has been linked to aggressive tumors in many 

cancer types (Ma et al., 2008; Sasaki et al., 2002; Zajchowski et al., 2001). These findings support the role of TGFBIp 

as a tumor promoter, which has been observed in cancer types such as lung (Sasaki et al., 2002), pancreatic 

(Schneider et al., 2002), brain (Ma et al., 2012), colon (Buckhaults et al., 2001), and ovarian (Ween et al., 2011; 

Ween et al., 2012). 

 

1.5.2. Diseases of the cornea 
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TGFBIp is best known for its role in the TGFBI-linked corneal dystrophies described in detail in the following 

sections. However, TGFBIp is also associated with another more prevalent type of bilateral corneal disorder called 

Fuchs endothelial corneal dystrophy (FECD). FECD is divided into a rare early-onset and a common late-onset that 

affect both the innermost layer of the cornea, resulting in thickening of Descemet’s membrane, the formation of 

corneal guttae, and abnormal cell death of the nonregenerative endothelium, ultimately leading to corneal edema. 

The early-onset variant has been genetically linked with mutations in collagen type VIII (Jun et al., 2012), whereas 

growing evidence suggests that the late-onset variant is linked to a trinucleotide repeat expansion located in the 

TCF4 gene (Wieben et al., 2012). Even though much effort has been put into unraveling the pathology of FECD at 

the molecular level, it remains unanswered. There is no genetic link between TGFBIp and FECD. However, our 

proteomic study on FECD tissue found significantly elevated levels of TGFBIp in patient tissue when compared to 

controls (Poulsen et al., 2014a). This supports previous findings by Jurkunas et al., who found TGFBIp and clusterin 

accumulation associated with corneal guttae formation in FECD (Jurkunas et al., 2009). Thus, even though it is most 

likely not the primary reason for causing FECD, the accumulation of TGFBIp in guttae may reflect downstream 

effects of the disease. Understanding the downstream effects of TGFBIp aggregation at the molecular level in FECD 

may be essential for restraining disease progression. 

 

2. TGFBI-linked corneal dystrophies 

2.1. Definition and classification 

Corneal dystrophies are a group of inherited disorders that commonly affect eye transparency or shape. In 2008, 

the International Committee for Classification of Corneal Dystrophies (IC3D) created a new classification system to 

group several types of corneal dystrophies by genetic mutation (Lisch and Weiss, 2019; Weiss et al., 2015; Weiss et 

al., 2008). Their inheritance patterns include autosomal dominant, autosomal recessive, and X-linked modes 

causing amyloid and non-amyloid forms of corneal dystrophies (Korvatska et al., 2000). In many cases, a specific 

gene or a combination of gene mutations has been linked to specific corneal dystrophies, such as the TGFBI gene 

in TGFBI-linked corneal dystrophies (Chao-Shern et al., 2019). 

To date, 74 mutations in TGFBI have been reported to cause various epithelial-stromal corneal dystrophies, 

including Reis-Bücklers corneal dystrophy (RBCD), Thiel-Behnke corneal dystrophy (TBCD), lattice corneal dystrophy 

type 1 (LCD1) and variants, and granular corneal dystrophy type 1 and type 2 (GCD1 and GCD2) (Table 2). This group 

of diseases is bilateral and inherited as an autosomal dominant trait. Studies have shown that particular TGFBI 

mutations cause specific corneal dystrophies. Accordingly, a genotype-phenotype correlation at two mutational 

hotspots, R124 and R555, has been demonstrated (Evans et al., 2016). GCD1 is one of the phenotypes that displays 

deposits that often have a snowflake-like appearance with well-defined granules (Copeland and Afshari, 2013) (Fig. 
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2A). The genetic mutation for GCD1 is R555W. GCD2 is characterized by the progression of subtle superficial stromal 

whitish dots to ring/snowflake shaped gray-white granular deposits in the anterior stroma, as well as amyloid 

deposition (Copeland and Afshari, 2013). The mutation found is R124H. LCD1 exhibits thin branching refractile lines 

(Fig. 2B) and is associated with the R124C mutation (Copeland and Afshari, 2013). RBCD displays a cloud of 

superficial gray-white opacities, and molecular genetic studies usually reveal the R124L mutation (Copeland and 

Afshari, 2013). TBCD manifests as a single large honeycomb-like opacity that is associated with the R555Q mutation 

(Copeland and Afshari, 2013). 

GCD1, LCD1, RBCD, and TBCD usually have early childhood or adolescent onsets (Table 2), while GCD2 has a 

different presentation. The initial age of onset is dependent on whether the patient is heterozygous or homozygous 

for the mutation (Copeland and Afshari, 2013). Homozygous patients are very rare and diagnosed as early as 3 

years, while heterozygous patients have a delayed presentation. 

 

2.2. Socioeconomic burden and quality of life 

2.2.1. Symptoms 

Blurred or cloudy vision is the most common symptom of TGFBI-linked corneal dystrophies, in addition to watery 

or dry eyes, light sensitivity, glare, pain, and irritation (Klintworth, 2009). In some severe cases, corneal erosion may 

occur where the front layer of the cornea detaches and causes mild to severe pain (Cho et al., 2012). Lesions in 

GCD1 carriers usually appear within the first decade with early symptoms, including glare and photophobia. Visual 

acuity decreases as opacity progresses with age, and recurrent white, discrete, irregularly shaped, and sharply 

demarcated erosions are frequently observed in these patients (Cho et al., 2012). GCD2 symptoms also appear 

within the first decade with painful sensation accompanying corneal erosions (Cho et al., 2012), while visual acuity 

usually remains good until later in life. The corneal opacities are initially small superficial white spots and 

subsequently become ring- or stellate-shaped stromal deposits (Weiss et al., 2008). Symptoms may present slowly 

in heterozygous carriers and gradually become worse. LCD1 symptoms usually develop towards the end of the first 

decade, while some symptoms appear during middle age. It is a slowly progressing disease that can lead to 

substantial discomfort and visual impairment. Corneal sensations are often lost in these patients, and the opaque 

filaments in the cornea resemble the network of a nervous system (Nema and Nema, 2018). The linear and other 

shaped opacities accumulate in the central corneal stroma, and the peripheral cornea remains relatively 

transparent. Symmetrical reticular opacities appear in the superficial central cornea in the first decade of life of 

RBCD patients. The opacities spread in a geographic-like pattern. These patients remain asymptomatic until 

epithelial erosions cause acute episodes of ocular hyperemia, pain, and photophobia (Klintworth, 2009). Visual 

acuity progressively reduces during the second and third decades of life. The superficial corneal subepithelial 

opacities of TBCD develop during the first and second decade of life with epithelial basal lamina and Bowman’s 
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layer displaying degenerative changes. TBCD is clinically similar to RBCD with a less severe course. Histological 

examination and molecular genetic analysis are used to differentiate the two. 

Clinical aspects of TGFBI-linked corneal dystrophies are described in detail in other reviews (Klintworth, 2009; 

Lakshminarayanan et al., 2014; Lisch and Weiss, 2019). 

 

2.2.2. Epidemiology 

Klintworth reported in 2009 that TBCD was found in Germany, the USA, and other countries, while GCD was 

reported in India, Tunisia, Vietnam, Turkey, and the USA. Since then, more studies have been conducted on TGFBI-

linked corneal dystrophies, and in 2016, Han et al. reported that GCD2 is detected more frequently in the Asian 

population (Han et al., 2016). The most frequently observed dystrophies in China were LCD1 and GCD2. In Western 

countries, LCD1 was the most commonly reported dystrophy (Han et al., 2016). However, according to Chao-Shern 

et al., the TGFBI mutations are distributed with no significant differences in specific population or geographical 

regions (Fig. 3) (Chao-Shern et al., 2019). The most reported corneal dystrophy is LCD1, followed by GCD1 and GCD2 

as the second and third most reported TGFBI-linked corneal dystrophies, respectively. Late-onset LCD1/3A induced 

by H626R is the fourth highest reported TGFBI-linked corneal dystrophy (Chao-Shern et al., 2019). 

The estimated corneal dystrophy prevalence for different populations is listed below: 

• GCD2 in the South Korean population: 1 in 870 (Lee et al., 2010) 

• Five most common TGFBI-linked corneal dystrophies in the Chinese population: 1 in 476 (Song et al., 2017) 

• Overall corneal dystrophies in the US population according to insurance claims data: 1 in 1115 (Musch et 

al., 2011) 

 

2.2.3. Genetic testing before vision correction 

Today, laser-assisted in situ keratomileusis (LASIK) is the most popular method of vision correction and accounts 

for approximately 78% of refractive surgical procedures. It is a surgical procedure that provides vision correction 

for myopia, hyperopia, and astigmatism. A thin flap in the corneal epithelium and anterior stroma is cut and folded, 

and the exposed stromal layer is reshaped by laser to change its corneal focusing power. One of the most attractive 

aspects of the procedure is that patients have improved vision instantly after the surgery. Asia has a high myopia 

rate, and a study conducted by Holden et al. predicted that by 2050, the Asian-Pacific population would have the 

highest myopia prevalence rate among all populations at 66.4% compared to the global prevalence of 49.8% 

(Holden et al., 2016). With the high prevalence of myopia in these Asian populations, the use of LASIK vision 

correction surgery is consistently increasing and is predicted to continue to rise. In addition, given the delay in 
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presentation of TGFBI heterozygote carriers, some of these patients have undergone LASIK. Many reports have 

unfortunately demonstrated the exacerbation of GCD2 after treatment with LASIK (Fig. 2C) (Banning et al., 2006; 

Chao-Shern et al., 2019; Chao-Shern et al., 2018; Chiu et al., 2007; Jun et al., 2004; Poulsen et al., 2016; Zeng et al., 

2017). Therefore, genetic screening for the late onset of heterozygous mutations is recommended before laser 

refractive procedures, especially in patients with a family history of TGFBI-linked corneal dystrophy (Aldave et al., 

2007; Chao-Shern et al., 2019; Chao-Shern et al., 2018; Copeland and Afshari, 2013). 

 

 

 

 

2.3. The R124 and R555 hotspots are highly mutable 

Protein interaction networks and signaling pathways are reused for different purposes at an evolutionary scale 

and in different cell types of the same organism (Schaefer et al., 2014). The reuse of networks with high connectivity 

requires high degrees of conservation at all levels: sequence, structure, and interactions. Modularity can then be 

achieved through additional layers of regulation, such as concerted regulation of gene expression networks. TGFBIp 

may control a variety of functions in different tissues and cell types and has a wide range of interaction partners, 

as described in sections 1.3 and 1.4. TGFBIp protein sequences are highly conserved across vertebrates (Song et al., 

2014). The high degree of conservation of TGFBIp is a result of purifying selection on mutations, as most mutations 

in TGFBIp will have pleiotropic and detrimental effects. 

As described above, a genotype-phenotype association between TGFBI mutations and cornea-specific 

pathologies has been established (Evans et al., 2016), revealing mutational hotspots resulting in missense changes 

of R124 and R555. To distinguish whether these hotspot mutations arise de novo in affected pedigrees or are passed 

on through shared ancestral haplotypes in the population, Korvatska et al. studied ten independently ascertained 

families with mutations in these hotspots (Korvatska et al., 1998). This study demonstrated that mutations occurred 

independently in each family in several ethnic groups and could not be explained by putative founder effects or 

ancestral haplotypes. Apart from the hotspot mutations and a few other pathogenic mutations in other locations, 

variants are evenly distributed across TGFBI exons, with 374 nonsynonymous and 166 synonymous mutations 

reported in dbSNP (v150). The population allele frequencies of some of the nonsynonymous mutations have been 

estimated, and they are all below 0.25%. 

The observed mutational hotspots at R124 and R555 are likely a product of survivorship bias: few other 

nonsynonymous TGFBI mutations are mild enough to “survive” germ cell differentiation, maturation, fertilization, 

and embryogenesis, processes in which TGFBIp is likely involved. In addition to survivorship bias, the 

overrepresentation of these two positions may be a reflection of the mutability of the underlying cytosine-guanine 
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CpG dinucleotides of arginine codons. CpG dinucleotides are well-known hotspots for mutations in vertebrate 

genomes. This hypermutability is related to cytosine methylation followed by spontaneous deamination of 5-

methylcytosine to yield thymine, which, if it occurs in germlines, introduces heterozygous mutant alleles in 

offspring. To estimate the frequency by which this mechanism induces human disease, 54,625 missense and 

nonsense mutations from 2,113 genes causing inherited disease were retrieved from the Human Gene Mutation 

Database (HGMD) (Cooper et al., 2010). The authors found that 18% of these pathological mutations were C → T 

and G → A transitions located in CpG dinucleotides, compatible with the methylation-deamination model of 

mutagenesis. This is ten-fold higher than expected by chance alone. 

 

3. Biochemical mechanisms of TGFBI-linked corneal dystrophies 

3.1. Proteomic profiling of deposits 

Aggregation of proteins into insoluble structures is a well-known hallmark of many diseases. Generally, two 

different aggregation pathways lead to either amorphous aggregates or highly ordered amyloid structures. Larger 

proteins destined for aggregation tend to follow the amorphous pathway, in which the whole protein is involved in 

aggregate formation. The amyloidogenic pathway often involves smaller proteins or short peptides generated by 

aberrant proteolytic processing of parent proteins. Studies of in vivo protein aggregates from patients with TGFBI-

linked corneal dystrophy (Table 3) have shown that the dual protein aggregation propensity of TGFBIp, leading to 

several phenotypic outcomes, follows these general rules. While GCD, characterized by amorphous aggregates, 

consists of largely intact TGFBIp deposits, TGFBIp appears highly processed in the amyloidogenic phenotype LCD. 

Given the rarity of TGFBI-linked corneal dystrophies, there is limited access to specimen samples. Of the 74 disease-

causing mutations reported for TGFBIp, seven cases were subjected to proteomic profiling of isolated protein 

aggregates (Table 3). Nevertheless, these analyses have shown a clear tendency to differentiate GCD and LCD at 

the molecular level. 

 

3.1.1. Protein profiles of GCD deposits 

The first article characterizing protein deposits of TGFBI-linked corneal dystrophy tissue was published in 2012 

(Karring et al., 2012). The deposits were isolated from corneal formalin-fixed paraffin-embedded tissue sections 

using laser capture microdissection, and the protein composition was determined with tandem mass spectrometry 

analysis. The protein composition of the aggregates was compared with healthy control tissue to identify the 

accumulating proteins. This approach has been applied in subsequent studies by ourselves and others that 

determined the protein aggregate compositions related to TGFBI-linked corneal dystrophies (Courtney et al., 2015; 

Karring et al., 2013; Poulsen et al., 2016; Poulsen et al., 2014b; Venkatraman et al., 2017). 
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To date, two studies have been published characterizing the protein profiles of GCD1 (R555W mutation) and 

GCD2 cases (R124H mutation). The first study (Karring et al., 2012) showed amorphous aggregates of intact or near-

intact TGFBIp accumulated in GCD2. This finding correlates well with work by Klintworth et al., 1998, who looked 

at whole corneal GCD2 tissue not subjected to microdissection (Klintworth et al., 1998). Later, Courtney et al., 2015 

showed the same tendency of intact TGFBIp aggregation in GCD1 caused by the R555W mutation in the FAS1-4 

domain (Courtney et al., 2015). Thus, despite the considerable distance in the primary sequence, GCD caused by a 

mutation either in the FAS1-1 or FAS1-4 domain resulted in corneal aggregates of intact TGFBIp and with similar 

phenotypic outcomes. In addition to elevated TGFBIp levels in GCD deposits, the protein profile of the cases 

resembles healthy corneal stroma to a high degree. Courtney et al., 2015 only found three unique proteins 

associated with GCD1 deposits not present in control tissue, including hemoglobin subunit beta, actin cytoplasmic 

1, and desmoplakin. In the study of GCD2 deposits, serum amyloid P (SAP), type III collagen, clusterin, and histone 

H3-like protein were enriched in GCD2 aggregates (Karring et al., 2012). 

Interestingly, in addition to multiple other binding partners (Poulsen et al., 2017), SAP usually associates with 

amyloid deposits of various misfolding diseases (Pepys et al., 1979). However, SAP was not identified either in the 

GCD1 deposits or in the control tissue, which was also the case for GCD2 deposits, where protein aggregation had 

been unintentionally triggered by LASIK surgery (Poulsen et al., 2016). As SAP is a generic biomarker for amyloid 

depositions, the presence of SAP in naturally progressed GCD2 aggregates may be indicative of an amyloid 

undergrowth masked by the amorphous aggregates. Eventually, amyloid appearances are observed in the later 

stage of some GCD2 patients, thereby giving rise to its characteristic mixed phenotype. This observation also 

suggests that naturally progressing amorphous aggregates in GCD2 follow a different molecular pathway than 

LASIK-induced GCD2 aggregates. 

 

3.1.2. Protein profiles of LCD deposits 

The protein profiles of the LCD deposits are different from the GCD cases and control tissue. The only common 

denominators linking LCD and GCD deposits appear to be the accumulation of TGFBIp as well as the chaperone 

protein clusterin. The protein profiles of amyloid LCD deposits from patients carrying R124C, A546D, A546D/P551Q, 

V624M, or H626R TGFBIp mutations show the accumulation of other amyloidogenic proteins in addition to TGFBIp, 

as well as nonfibrillar amyloid-associated proteins. The amyloidogenic proteins include apolipoprotein A-I, 

apolipoprotein A-IV, lysozyme C, protein S100-A8, protein S100-A9, and lactotransferrin (Courtney et al., 2015; 

Karring et al., 2013; Karring et al., 2012; Poulsen et al., 2014b; Venkatraman et al., 2017). Whether the 

amyloidogenic proteins are directly involved in the progression of amyloid deposits or merely innocent 

coaggregating bystanders is not known. The nonfibrillar amyloid-associated proteins involve SAP, clusterin, 

apolipoprotein E, apolipoprotein D, prostaglandin-H2 D-isomerase, complement component C9, decorin, and 
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cystatin-A. Finally, the protein profiles of amyloid deposits identified several proteins involved in proteolysis. The 

serine protease high-temperature requirement A1 (HtrA1) was associated with all LCD cases, whereas kallikrein-14 

was only identified in the A546D deposits (Karring et al., 2012). Carboxypeptidase B2 (also known as TAFI), caspase-

14, cathepsin D, cathepsin L2, and plasminogen were identified solely in deposits of A546D/P551Q patients (Poulsen 

et al., 2014b). Moreover, the protease inhibitor cystatin-A was identified in amyloid deposits of A546D, 

A546D/P551Q, and R124C cases. Glia-derived nexin, a serpin inhibitor, was only identified in A546D deposits, while 

metalloprotease inhibitors 1 and 3 and serpin B12 were only identified in A546D/P551Q amyloid deposits. Although 

all proteases and inhibitors are constituents of the healthy corneal proteome (Semba et al., 2013), their association 

with the amyloid deposits suggests extensive proteolytic activity in LCD. In contrast, no proteins involved in 

proteolysis were detected in GCD deposits. 

Analysis of TGFBIp in amyloid deposits with a mutation in the FAS1-4 domain showed extended accumulation of 

various ragged isoforms of two polypeptide regions in FAS1-4 (Karring et al., 2013; Karring et al., 2012; Poulsen et 

al., 2014b; Venkatraman et al., 2017). For simplicity, these two polypeptide regions have been designated as the 

F515-R533 and Y571-R588 peptides in the literature, referring to the first (e.g., 515) and last (e.g., 533) amino acid 

number in the protein sequence of TGFBIp. The two peptides are obtained after the enzymatic cleavage of TGFBIp 

by trypsin (also referred to as tryptic peptides) generally used in sample preparation for mass spectrometry 

analyses. Both peptides are prone to in vitro amyloid fibrillation. Interestingly, amyloid fibrils composed of synthetic 

F515-R533 and/or Y571-R588 peptides were able to seed amyloid fibrillation of the FAS1-4 domain carrying the 

LCD-linked A546T mutation. Furthermore, non-amyloid coprecipitation of TGFBIp isolated from corneal extract was 

achieved using these synthetic fibrils (Sørensen et al., 2015), suggesting that once formed, amyloid aggregates may 

accelerate the formation of deposits by initiating additional aggregation events in the cornea. 

Endogenous cleavage sites observed for TGFBIp in amyloid deposits show enzymatic preferences for cleavage 

after the aromatic and hydrophobic amino acid residues (A, F, H, I, L, M, V, W, and Y), as well as the hydrophilic 

amino acids T, N, Q, D, and E (Courtney et al., 2015; Karring et al., 2013; Karring et al., 2012; Poulsen et al., 2014b; 

Venkatraman et al., 2017). Interestingly, the specificity of the serine protease HtrA1 is directed towards 

hydrophobic amino acid residues (Truebestein et al., 2011), supporting the involvement of HtrA1 in the in vivo 

processing of TGFBIp as these cleavage sites are highly represented in in vivo amyloid deposits. 

 

3.2. Proteolytic processing 

3.2.1. Tissue-specific processing of TGFBIp 

The use of in vitro TGFBIp observations to understand the physiological behavior of TGFBIp in the cornea is 

complicated by several aspects. Authentic corneal TGFBIp appears to be heterogeneously modified or interact with 

other corneal components, as demonstrated by immunoblotting of corneal tissue separated by two-dimensional 
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gel electrophoresis (Fig. 4), resulting in aberrant behavior during two-dimensional gel electrophoresis producing a 

TGFBIp band across the gel. In addition to the full-length TGFBIp band, a characteristic zigzag pattern is observed 

for corneal TGFBIp. This zigzag pattern is a result of posttranslational N-terminal trimming of TGFBIp, of which the 

smallest degradation products span the FAS1-4 region of TGFBIp (Karring et al., 2010). Therefore, the full-length 

protein and the FAS1-4 domain appear to be good model systems for studying TGFBI-linked corneal dystrophies, as 

they are the major start and end products in the cornea. The complexity is further increased by the appearance of 

two TGFBIp fractions in humans, an insoluble fraction and a soluble fraction. The insoluble fraction constitutes 

approximately 60% (Andersen et al., 2004) and is covalently bound to the corneal ECM (Runager et al., 2013) via a 

reducible bond to C65 of TGFBIp (Lukassen et al., 2016). As protein aggregation in TGFBI-linked corneal dystrophies 

is most likely concentration-dependent, it would be interesting to investigate whether the bound to free ratio of 

TGFBIp differs in TGFBI-linked corneal dystrophy patients compared to healthy individuals. A shift in the ratio 

towards an increase in soluble TGFBIp protein is expected to fuel aggregation. 

Intriguingly, the deposition of TGFBIp appears to be specific to the cornea even though TGFBIp is widely 

expressed in many tissues (Runager et al., 2008). This finding argues for a unique extracellular environment in the 

cornea necessary for nurturing the disease progression of TGFBI-linked corneal dystrophies. Support for this theory 

is shown by comparing the in vivo degradation pattern of TGFBIp originating from healthy cornea, skin, plasma, and 

platelets (unpublished observation) (Fig. 4). Though extensively processed, skin TGFBIp is confined to a smaller 

isoelectric point range and differs in its degradation pattern. Plasma and platelet TGFBIp show only a few 

degradation products compared to the cornea. 

 

3.2.2. HtrA1 proteolysis in LCD 

The human serine protease HtrA1 is a homotrimeric nonglycosylated serine protease. The 51 kDa monomeric 

subunit is composed of four domains: the N-terminally IGFBP-like and Kazal-like domains, a central catalytic 

domain, and lastly, a C-terminal PDZ domain. While the PDZ domain has been associated with substrate recognition 

(Runyon et al., 2007) and facilitates binding to amyloid fibrils (Poepsel et al., 2015), the role of the two N-terminal 

domains remains unknown. We have shown that HtrA1 undergoes in vitro redox-mediated autolysis by the protein 

thioredoxin (Risør et al., 2014), which we found associated with two LCD cases (Karring et al., 2013; Poulsen et al., 

2014b). However, HtrA1 autolysis does not appear to affect its specificity or its activity (Poulsen et al., 2019) and 

therefore remains an enigma. The promiscuous specificity of HtrA1 for hydrophobic sequences might support a role 

for HtrA1 in protein quality control, as observed for its bacterial homologs (Runyon et al., 2007). In addition to LCD, 

HtrA1 has been associated with several pathological disorders. These include various types of cancer (Zurawa-

Janicka et al., 2010), age-related macular degeneration (Vierkotten et al., 2011), Alzheimer’s disease (Grau et al., 

2005), and immunoglobulin light chain amyloidosis (Nielsen et al., 2014). The presence of HtrA1 across all cases of 
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LCD amyloid deposits suggests a role either in disease progression or in removing protein aggregates. HtrA1 has 

been found throughout the healthy corneal stroma (Poulsen et al., 2019) and is a relatively abundant protein in 

Descemet’s membrane and the endothelial layer of the cornea (Dyrlund et al., 2012). Furthermore, peri-amyloid 

tissue (stromal tissue from LCD patients without apparent protein deposits) was enriched in HtrA1 compared to 

control tissue in the studies of A546D and H626R deposits (Karring et al., 2013; Venkatraman et al., 2017). This 

implies that HtrA1 is involved in corneal proteostasis and that its presence in LCD most likely reflects an attempt to 

remove misfolded TGFBIp protein in the prefibrillar stage. HtrA1 has been ascribed a role in disintegrating the 

amyloid structure in vitro (Poepsel et al., 2015). The disintegrating capacity of HtrA1 in LCD seems to be minor as 

the severity of the disease increases with age. 

To validate TGFBIp or some of its degradation products as HtrA1 substrates, the in vitro proteolysis of wild-type 

and mutant TGFBIp and FAS1-4 proteins was analyzed (Poulsen et al., 2019). HtrA1 showed the highest preferences 

for mutant TGFBIp associated with the LCD phenotype, especially when using the FAS1-4 domain as a substrate 

(consistent with the increased protease sensitivity of these mutants (Stenvang et al., 2018)). Furthermore, 

degraded FAS1-4 formed amyloid fibrils consisting mainly of peptides overlapping with the Y571-R588 region highly 

represented in in vivo LCD deposits. Examining the degradation pattern of LCD tissue from A546D and V624M clearly 

showed a reduction in TGFBIp degradation products (Poulsen et al., 2019), but this is not the case in GCD2 

(unpublished data). This suggests that HtrA1 removes TGFBIp degradation products in LCD tissue and, because of 

this process, liberates peptides prone to amyloid fibrillation, which – together with the inherent tendency of the 

unfolded state of TGFBIp to aggregate (see below) – may be a driving force in disease progression. 

 

3.3. The FAS1-4 domain mimics many properties of full-length TGFBIp, making it an excellent model system 

Corneal dystrophy-causing mutations are most frequently observed in the C-terminal FAS1-4 domain (Table 2). 

This distribution of the disease-promoting amino acid substitutions indicates that the FAS1-4 domain is important 

for the stability of the intact protein. Indeed, three FAS1-4 amino acid substitutions, including A546T associated 

with LCD (generates an unstable FAS1-4 domain) and R555W causing GCD1, or R555Q leading to TBCD, (both 

generate FAS1-4 domains comparable to wild type), affected the stability of the isolated FAS1-4 domain and the 

full-length protein in a similar way (Runager et al., 2011). For FAS1-4, the same stability ranking was obtained using 

both urea and thermal denaturation, emphasizing the robustness of the conclusions. In addition, deamidation rates 

as a measure of structural integrity were similar for corresponding FAS1-4 and TGFBIp mutants (Nielsen et al., 2017). 

In line with these results, FAS1-4 was more sensitive to trypsin cleavage than the other three FAS1 domains, 

indicating that it is the most conformationally unstable domain in TGFBIp (Runager et al., 2011). The correlation 

between FAS1-4 and full-length TGFBIp was further supported by the similar behavior of the FAS1-4 domain in vitro 

and the TGFBIp aggregates observed in vivo. The unstable FAS1-4 LCD mutant A546T formed amyloid deposits in 
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vitro within a few days, whereas the more stable R555W and R555Q (which led to amorphous aggregates in vivo) 

did not form visible aggregates even after 1 week of incubation, which implies that the aggregation in GCD and 

TBCD follows another aggregation pathway that is either slower than the amyloid-forming pathway or requires 

biological factors absent in our in vitro experiments (Runager et al., 2011). The structure of TGFBIp provides some 

clues about the critical importance of the C-terminal FAS1-4 domain for the overall stability of TGFBIp (García-

Castellanos et al., 2017). Several interdomain contacts between CROPT and the first two FAS1 domains are 

apparent; furthermore, the two interdomain disulfide bonds, as well as two of the three intradomain disulfide 

bonds in TGFBIp, are found within these three domains (Lukassen et al., 2016) (the remaining intradomain disulfide 

bond is in FAS1-3). In contrast to these intermolecular interactions, only a small interface between FAS1-4 and 

FAS1-3 is evident, making FAS1-4 a “hanger-on” domain where the destabilizing effects of mutations in the core of 

the protein cannot be offset by stabilizing interdomain contacts. The properties of the FAS1-4 domain make it a 

convenient model for studies aimed at understanding the propensity of TGFBIp to aggregate or for amyloid fibrils. 

 

3.4. A comprehensive mutagenic and bioinformatics study highlights fundamental differences between LCD and GCD 

mutants 

Building on the connection between FAS1-4 stability and phenotype (Runager et al., 2011), we systematically 

probed the link between the clinical manifestations of TGFBI-linked corneal dystrophy mutations and their 

underlying molecular impact on protein folding and stability. Our study encompassed 30 FAS1-4 mutants, spanning 

both LCD as well as GCD1, variant GCD2, and TBCD (Stenvang et al., 2018). Recombinantly expressed mutants 

(which included a tryptophan residue introduced to aid spectroscopic measurements) were analyzed in terms of 

their tendency to oligomerize in solution, stability against urea and thermal denaturation, tendency to expose 

hydrophobic surface area, sensitivity to protease digestion, protein folding/unfolding dynamics, and tendency to 

form amyloid in the presence of the glycosaminoglycan (GAG) heparin. The outcome confirmed and extended our 

previous conclusions. Thus, all LCD mutations were destabilizing; in fact, 14 of the 15 FAS1-4 mutants that we failed 

to purify all belonged to this class, illustrating their debilitating effects on FAS1-4 stability. Of the 15 that were 

expressed sufficiently well enough to be purified, eight spontaneously formed soluble oligomers and, in some cases, 

underwent a noncooperative unfolding when exposed to chemical denaturants. In addition to wild type, this only 

left six mutants sufficiently “well-behaved” to form a folded monomeric state. Of these, both LCD mutants and the 

variant GCD2 mutant were destabilizing; these mutants also exposed more hydrophobic surface area (i.e., were 

“sticky”) and readily succumbed to trypsin degradation. Remarkably, despite a similar lack of stability, the LCD 

mutants formed amyloid significantly better than their GCD2 counterpart, and the aggregates formed by the variant 

GCD2 mutant (like the GCD1 mutant R555W) were non-amyloid (Stenvang et al., 2018). 
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Based on this overall confirmation of the destabilizing properties of LCD mutants, we carried out a 

comprehensive computational analysis of the known and predicted properties of all known FAS1-4 mutations 

associated with TGFBI-linked corneal dystrophies and reached some striking conclusions (Stenvang et al., 2018). 

When grouped on the FAS1-4 structure, all 29 LCD mutations and both variant GCD2 mutations occur in buried 

positions, while GCD1 and TBCD mutations are found at relatively exposed sites. Furthermore, all but one of the 

known LCD mutants are predicted to be destabilizing; conversely, most positions in the FAS1-4 sequence that are 

sensitive to mutation (i.e., which are expected to be destabilized if mutated from the wild-type residue) are 

associated with an LCD mutation. Nevertheless, the LCD mutations are not predicted to increase the aggregation 

propensity of FAS1-4 (Stenvang et al., 2018). This highlights a very important point: LCD mutations induce 

aggregation because they increase the population of unfolded FAS1-4, not because the unfolded state becomes 

more aggregation-prone due to the mutation. The more buried the mutation site is, the more destabilizing the 

mutation and the more difficult it was to purify the mutant, and the higher the tendency of the mutant to 

oligomerize and aggregate even if it could be expressed. This means that studies that attempt to recapitulate TGFBI-

linked corneal dystrophies by studying the impact of mutations on small (and largely unfolded) peptide fragments 

of FAS1-4, though well-intentioned, are misleading because they fail to capture the true effect of the mutation, 

which is to increase the proportion of unfolded protein. Correspondingly, they fail to link the clinical phenotypes 

with peptide aggregation properties (Lakshminarayanan et al., 2011; Yuan et al., 2007). This is borne out by the 

properties of the peptide corresponding to the sequence Y571-R588 that has been identified as the core of TGFBIp 

fibril deposits (Sørensen et al., 2015). There are very few TGFBI-linked corneal dystrophy-causing mutations in this 

part of the TGFBIp sequence; in contrast, many different types of LCD mutations lead to the same fibril deposit. 

Most likely, the aggregation propensity of this peptide sequence (which is already highly amyloidogenic) cannot be 

improved by mutagenesis, and the main impact of mutations is to increase the propensity to expose the peptide to 

solvent so it can aggregate through interactions with other copies of the same protein. 

It seems counterintuitive that aggregation of TGFBIp is promoted by the near-wild-type stability of R555Q (TBCD), 

let alone by a stabilizing mutation such as R555W (GCD1), which also increases its resistance to proteolytic 

degradation (Underhaug et al., 2013). However, our bioinformatics analysis also shed intriguing light on the effects 

of these mutations, namely, reduced solubility of the folded monomeric state (Stenvang et al., 2018). The charged 

side-chain R555 is highly exposed, and replacement with a large aromatic side-chain tryptophan (or less 

dramatically with a polar residue glutamine) is predicted to increase the protein’s tendency to precipitate according 

to the CamSol method (Stenvang et al., 2018). In contrast, variant GCD2 mutations decrease stability rather than 

solubility, but the nature of the mutation (M619K and L550P) may be incompatible with amyloid formation and 

lead to a faster non-amyloid aggregation pathway. Thus, GCD mutations can influence the nature of the ensuing 

aggregate much more decisively than LCD mutants that simply increase the tendency to unfold. 
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Interdomain mutations, i.e., mutations at the interface between domains, will have effects that go beyond the 

individual domain and should therefore properly be studied using multiple domain constructs. However, the fact 

that we can account for the great majority of predicted and measured LCD and GCD mutant properties from 

physical-chemical considerations based on the structure of the isolated FAS1-4 domain strongly suggests that the 

great majority of TGFBI-linked corneal dystrophy mutations are linked to intradomain effects. 

 

 

 

3.5. Impact of glycosaminoglycans on fibrillation mechanisms 

The key event in TGFBI-linked corneal dystrophies is the aggregation of intact or fragmented TGFBIp to insoluble 

deposits, which cloud the cornea and impair vision. Consequently, the mechanisms of aggregation are of great 

interest, not least in the context of the corneal environment. Aggregation of FAS1-4 variants such as the LCD mutant 

A546T is multifactorial and influenced by multiple features, including the concentration of protein and salt, which 

can affect both the rapidity of the aggregation process, the species that accumulate along the way and the nature 

of the final aggregate (Andreasen et al., 2012). 

A central feature is the involvement of sulfated GAGs such as heparin. This highly anionic biomacromolecule is 

known to stimulate the aggregation of many different proteins and peptides in vitro and in vivo (Malmos and Otzen, 

2014). It may do so by templating proteins into a conformation conducive for amyloid formation (Christensen et 

al., 2016; Malmos et al., 2017a) or by increasing the local concentration of the protein (Nielsen et al., 2012) while 

at the same time neutralizing positive charges that could otherwise impede the initiation of fibrillation. In the case 

of FAS1-4, aggregation of wild type and the GCD mutants (which in any case occurs with very low efficiency) is not 

affected by heparin. In contrast, heparin significantly promotes aggregation of destabilized LCD mutants 

(Andreasen et al., 2012; Stenvang et al., 2018), reducing or even eliminating the lag time before the onset of 

fibrillation as well as increasing the overall yield of amyloid. Amyloid formation is preceded by the formation of 

heparin-stabilized oligomers (Malmos et al., 2017b); for both amyloid and oligomers, heparin appears to work 

catalytically since no stable complexes between protein and heparin can be detected. GAGs vary in the extent of 

their sulfation, with heparin being the most highly sulfated and hyaluronic acid not sulfated at all. Both oligomer 

yields and the rapidity of fibrillation increase with the extent of sulfation and glycan length (Malmos et al., 2017b). 

This observation is all the more remarkable, given that the proportion of highly sulfated GAGs increases 

dramatically with age in the cornea (Pacella et al., 2015), possibly to maintain a high level of hydration in the stromal 

layer of the cornea (Massoudi et al., 2016). LCD mutations in many cases lead to corneal dystrophy symptoms after 

20-30 years (Table 2), which corresponds to the period in which GAG sulfation starts to increase. This suggests that 

increased GAG sulfation may drive LCD. 
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3.6. Proposed mechanisms of action in TGFBI-linked corneal dystrophies 

It is evident from the in vitro and in vivo results presented in the previous sections that several biochemical 

mechanisms are involved during TGFBIp aggregation in TGFBI-linked corneal dystrophies. A summary of the 

proposed mechanisms involving disease-causing mutations in the FAS1-4 domain is shown in Fig. 5. Even though 

they are less understood at the molecular level, attempts to describe the aggregation mechanisms for mutations in 

the FAS1-1 domain will be touched upon briefly. Disease-causing mutations in the FAS1-1 domain associated with 

GCD2 (R124H) and RBCD (R124L) preserve the thermodynamic stability of full-length TGFBIp compared to wild type 

(Runager et al., 2011). In addition, X-ray crystallography did not reveal structural perturbation of TGFBIp upon the 

introduction of the R124H mutation (unpublished observation). This makes sense, as R124 is surface exposed in the 

structure of wild-type TGFBIp and, therefore, as proposed for GCD- and TBCD-linked mutations in the FAS1-4 

domain, might lead to a decrease in solubility of TGFBIp. Even though the structural fold of TGFBIp was not 

compromised, these FAS1-1 mutations may still disturb the normal turnover and/or affect the interplay between 

TGFBIp and the extracellular milieu (Fig. 5B). 

In contrast to LCD-associated mutations in the FAS1-4 domain, the LCD1-linked mutation R124C in the FAS1-1 

domain does not affect the stability of full-length TGFBIp (Runager et al., 2011). In addition, the accumulation of 

the Y571-R588 region appears less important for amyloid formation (Courtney et al., 2015). Instead, data have 

shown that a 22 amino acid region spanning residue R124 in FAS1-1 is capable of forming amyloid material in vitro 

upon the introduction of the R124C mutation, whereas native peptide showed minor potential to form amyloid 

fibrils (Schmitt-Bernard et al., 2000a). Thus, introducing the R124C mutation may turn the FAS1-1 domain 

amyloidogenic, which is supported by the finding of N-terminal accumulations of TGFBIp in R124C corneas 

(Korvatska et al., 2000). In contrast, the amyloidogenic nature of FAS1-4 is suppressed in wild-type TGFBIp and is 

released only upon mutation-induced structural destabilization. 

We cannot rule out the possibility that other mechanisms might contribute to the accumulation of TGFBIp. In the 

case of GCD2, extensive studies of the molecular pathogenesis have been carried out focusing on pathological 

differences between normal and GCD2 corneal fibroblasts, which have been well described by Han and colleagues 

(Han et al., 2016). 

 

4. Treatment strategies 

4.1. Current treatment options 



24 
 

Patients with TGFBI-linked corneal dystrophy typically present with two types of symptoms: 1) Foreign body 

sensation or even pain due to deposits protruding into and through the corneal epithelium, and 2) blurred vision 

and light sensitivity due to deposits in the epithelium and corneal stroma, which causes light scatter. 

Therefore, treatments aim to smooth the corneal stromal surface and remove deposits from the corneal stroma 

in the form of keratectomy or corneal transplantation. The depth of the opacities has traditionally been evaluated 

by slit-lamp biomicroscopy, but today anterior segment optical coherence tomography is commonly used as more 

detailed information is provided (Hong et al., 2011; Siebelmann et al., 2018). 

 

 

4.1.1. Keratectomy 

Before the implementation of excimer lasers in corneal surgery, simple scraping and removal of the corneal 

epithelium and sometimes the superficial stroma using a surgical crescent knife was the initial treatment. 

At the beginning of the 1990s, excimer laser ablation of corneal tissue was used and is today almost exclusively 

used for removal of deposits in TGFBI-linked corneal dystrophies (Fagerholm, 2003; Fagerholm et al., 1993). The 

procedure is known as phototherapeutic keratectomy (PTK). Excimer lasers used in ophthalmology are based on 

ArF, which, under appropriate electrical stimulation, are excited and then give rise to 193-nm laser light. The laser 

pulses have sufficient energy to disrupt the molecular bonds of the corneal surface tissue, which disintegrates into 

the air through ablation rather than burning. 

The extent of PTK treatment of TGFBI-linked corneal dystrophy depends on the localization of deposits. In the 

past, the epithelium was typically removed first by alcohol-assisted debridement, which required the use of a 

masking agent filling the space between epithelial protrusions. Today, the epithelium itself is typically used as a 

masking agent, and PTK is performed directly on the undisturbed surface. The epithelium and epithelial deposits 

are always ablated, while the extent of stromal ablation is individualized (Seitz and Lisch, 2011). In superficial TGFBI-

linked corneal dystrophy such as TBCD, all deposits may be removed. In other dystrophies with a deeper location, 

such as GCD1 and LCD, deposits left as ablations deeper than 100 µm of the corneal stroma may cause significant 

side effects. 

After PTK treatment, epithelial healing takes place over a few days, and vision typically recovers and becomes 

stable during the following weeks. As excimer laser treatment profiles used for PTK typically ablates more tissue in 

the center of the cornea, the corneal surface becomes flatter, which results in a hyperopic shift. Performing an 

excimer laser treatment for hyperopia in combination with the PTK treatment may reduce this refractive side effect 

(Amano et al., 2016). Deep ablations are associated with the development of haze in the corneal stroma. The haze 

typically peaks 3 months after treatment and can cause visual side effects. Peroperative application of mitomycin-
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C on the ablated stroma seems to reduce the development of haze (Ayres et al., 2006) but is inefficient in patients 

with GCD2 (Ha et al., 2010) and is not recommended (Han et al., 2016). 

As TGFBI-linked corneal dystrophies are epithelial in origin, recurrence of deposits will occur over the years after 

PTK treatment. The duration before clinically significant deposits recur depends on the specific type of dystrophy 

(Han et al., 2016), but there are considerable individual variations even between family members. 

 

4.1.2. Corneal transplantation 

Corneal transplantation has been used for more than 50 years to treat patients with significantly decreased vision 

due to TGFBI-linked corneal dystrophy. Corneal transplantation can be performed as penetrating keratoplasty (PK) 

in which the full thickness of the cornea in a 7.5- or 8.0-mm diameter is replaced with a clear corneal donor graft. 

The graft is fixed with Nylon sutures, which must remain for 12 to 18 months.  

As the corneal endothelium is normal in patients with TGFBI-linked corneal dystrophy, anterior lamellar corneal 

transplantation is often preferred. The lamellar transplantations are typically performed as a deep anterior lamellar 

keratoplasty (DALK) although superficial anterior lamellar keratoplasty (SALK) may become an alternative when 

safety and efficacy issues are further studied. For the past 20 years, the DALK procedures have been further 

developed to preserve only Descemet’s membrane with endothelium in the recipient using the so-called big-bubble 

technique (Anwar and Teichmann, 2002). The visual outcome of this procedure is comparable to the PK procedure 

but preserves the endothelium of the recipient. Visual recovery is often slow after the PK and DALK procedures and 

takes up to two years. Even then, many patients end up with considerable corneal astigmatism, which necessitates 

spectacle wear or use of rigid gas-permeable contact lenses. In addition, the grafted eye will be more vulnerable to 

blunt trauma with the risk of wound rupture and associated significant complications for the rest of the patient’s 

life. As recipient corneal epithelium will exchange the donor epithelium over weeks or months, TGFBI-linked corneal 

dystrophy will also inevitably recur in the donor graft after PK and DALK over the years after surgery (Ellies et al., 

2002; Fagerholm, 2016; Kawashima et al., 2006). However, recurrence is slower than that observed after PTK (Lewis 

et al., 2017). 

In SALK, typically only the anterior half of the corneal stroma is excised and exchanged with human donor corneal 

tissue. Various surgical techniques have been used, but today, either a microkeratome (Fogla and Knyazer, 2014) 

or a femtosecond laser (Lee et al., 2018; Yoo et al., 2008) is used for the mid-stromal slicing of the corneal lamellae. 

If great care is taken concerning correct diameter sizing of the donor graft, the graft will attach passively in the 

recipient cornea without sutures. A bandage contact lens is typically used the first weeks until epithelialization of 

the graft surface has taken place. The advantage of the SALK procedure is fast visual rehabilitation and a more 

robust eye globe, although the final visual acuity may be inferior to DALK due to scattered rays arising from the 

stromal interface. As TGFBI-linked corneal dystrophy will recur in the graft over time, an additional advantage is the 
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possibility of a relatively easy re-transplantation after SALK, as the original donor graft can be bluntly loosened from 

the recipient bed. On the other hand, severe worsening of GCD2 has been observed after LASIK performed for 

refractive errors (Jun et al., 2004; Poulsen et al., 2016). As the SALK procedure also involves intrastromal cutting of 

the anterior stroma, this procedure should not be considered a standard and safe procedure in TGFBI-linked corneal 

dystrophies until further safety and efficacy studies are performed.         

In addition to the recurrence of the original disease after keratoplasty, grafted patients may experience the same 

complications as other patients undergoing corneal transplantation, which may all result in graft failure: rejection 

episodes and suture-related complications (suture breaks, wound leakage, keratitis, etc.). Clinically significant 

rejection episodes are most often directed towards the corneal endothelium, which is an important incentive to 

perform anterior lamellar grafts (Borderie et al., 2012) rather than penetrating grafts in patients with TGFBI-linked 

corneal dystrophy. 

 

 

4.1.3. Staged treatment of TGFBI-linked corneal dystrophies 

TGFBI-linked corneal dystrophies cannot be cured by surgery or any other treatments. The goal is to preserve 

lifelong useful vision and minimally disturbed eye comfort. The initial surgical treatment is PTK, which often can be 

repeated two to three times when the dystrophy recurs. PTK treatments are performed as shallowly as possible to 

preserve as much corneal stroma as possible for repeated treatments, although this must be balanced towards the 

visual benefit for the patient. If PTK cannot be repeated any longer due to thinning of the corneal stroma or in cases 

where the deposits are prominent deeper in the corneal stroma, anterior lamellar transplant procedures in the 

form of SALK or DALK can be utilized. 

 

4.2. Animal models 

Animal models are crucial for determining the physiological function of different proteins and for understanding 

the pathophysiology of various diseases. They are also an important tool in the development and testing of novel 

treatment strategies. When choosing an animal model, you aim for high resemblance of anatomy and molecular 

composition to the human tissue, in this case the human cornea. However, the animals with the highest 

resemblance, such as pigs, sheep, and dogs, are costly and take a long time to develop. The choice often falls on 

smaller animals such as rabbit, rat, mouse, and zebrafish, with mouse being the most popular, as is the case for 

animal models related to TGFBIp and TGFBI-linked corneal dystrophy. 

 

4.2.1. Current TGFBI mouse models 
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Mouse models have been used to investigate the physiologic and pathologic roles of TGFBIp by either knockout 

or overexpression (Table 4). Due to the role of TGFBIp in TGFBI-linked corneal dystrophy, there has been a focus on 

the morphology and transparency of the cornea, and a few transgenic mouse models expressing mutant TGFBIp 

have been developed (Table 4). 

 

4.2.1.1. Knockout mouse models 

The first TGFBI-null mouse model was used to investigate the role of TGFBIp as a tumor suppressor (Zhang et al., 

2009b). This study showed that TGFBI-deficient mice were predisposed to spontaneous tumor development. The 

body weight of the mice was decreased, which was caused by reduced bone size and bone mass (Yu et al., 2012). 

Histological examinations of organs such as the liver, lung, kidney, stomach, intestine, and testis did not reveal any 

abnormalities. Additionally, the eyes of these mice did not show any phenotype. Recently, we performed a 

thorough examination of the corneal structure of another TGFBI-null mouse model (Poulsen et al., 2018). In 

agreement with the previous study, we did not detect any effect of TGFBI deficiency on the gross corneal structure. 

However, this mouse model showed abnormal lung morphology and function in another study (Ahlfeld et al., 2016). 

Other studies have examined the consequences of knocking out TGFBI in organs other than the cornea (Table 4). 

 

4.2.1.2. Overexpression mouse models 

The effect of elevated levels of circulating TGFBIp on eye development was investigated in a mouse model with 

liver-specific overexpression of human TGFBIp (Kim et al., 2007). The size and organs of the transgenic mice were 

normal, but some mice showed corneal phenotypes. These included corneal opacity, which was caused by corneal 

endothelial disruption and not by the accumulation of TGFBIp. Other anterior defects included disorganized corneal 

collagen structure, cataract, and corneolenticular adhesion. Thus, the study concludes that TGFBIp might be 

involved in anterior segment morphogenesis and eye development (Kim et al., 2007). Another mouse model 

overexpressing human TGFBIp under the control of the phosphoglycerate kinase promoter showed similar corneal 

opacities when eyelids opened at approximately two weeks after birth (Liao et al., 2013). This study did not perform 

any histological examination of the anterior segment of the transgenic mice, and we cannot conclude if the opacities 

are caused by TGFBIp accumulation or disrupted corneal endothelium. The early onset and appearance of the 

opacities point towards anterior segment dysgenesis (Kim et al., 2007). 

 

4.2.1.3. TGFBI mutant mouse models 

Two of the most common mutations in TGFBI are R555W associated with GCD1 and R124H related to GCD2. 

These mutations have been the target of studies attempting to create TGFBI-linked corneal dystrophy mouse 

models. A transgenic mouse model overexpressing TGFBI containing the R555W mutation, unfortunately, did not 
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express the transgene in the cornea. Hence, no corneal phenotype was observed (Bustamante et al., 2008). Instead, 

age-dependent retinal degeneration and possible accelerated aging were detected. In another study, a GCD2 

mouse model was generated by inserting the human cDNA containing the R124H mutation into the first intron of 

the mouse TGFBI gene (Yamazoe et al., 2015). Heterozygous and homozygous mice of this model developed 

granular deposits with or without amyloid deposits. The incidence of corneal opacity was increased in aged mice of 

60-79 weeks with incidences of 67% in homozygotes and 29% in heterozygotes (Yamazoe et al., 2015). The 

phenotype resembled human cases but differed in severity and amount of amyloid deposits, suggesting a difference 

compared with human disease. During a recent study of the corneal proteome of this mouse model, we failed to 

detect any deposits (unpublished results). We found that the amount of mutated TGFBIp was 41% compared to the 

wild-type protein, which indicated a reduction in transgene expression. This could be caused by a lack of introns in 

the transgene, which can cause lower expression in mice (Choi et al., 1991). Another cause could be methylation of 

the promoter. We suggest that the lack of corneal deposits in this case was caused by the low amount of mutated 

TGFBIp. Furthermore, the protein profiles of the corneas were not affected by transgene expression or lowered 

amounts of TGFBIp (unpublished results). 

 

4.2.2. Future directions for TGFBI animal model generation 

The TGFBI knockout mouse models did not show any corneal phenotype, which is surprising since TGFBIp has 

been hypothesized to play a role in the corneal ECM. Lack of phenotype development in knockout mouse models 

is a common phenomenon (Barbaric et al., 2007). The lack of phenotype can be due to genetic robustness caused 

by alternative pathways or proteins with redundant functions. In addition, we found that the TGFBIp amount in the 

mouse cornea was 10-fold lower than in human corneas (Poulsen et al., 2018). Hence, the effect of TGFBI knockout 

in the mouse cornea might not have as severe consequences as in the human cornea. Thus, overexpression of TGFBI 

in mouse models will resemble the human case to a higher degree. The ontogenetic effects caused by TGFBI 

overexpression, such as anterior segment dysgenesis, could potentially be avoided by inducible expression and 

could be combined with a tissue-specific promoter, such as the corneal epithelium K12 promoter. Animal models 

other than mice with more TGFBIp in the cornea could also be considered. We suggest that future development of 

TGFBI-linked corneal dystrophy animal models should consider these factors. 

 

4.3. Future treatment options 

4.3.1. The use of CRISPR/Cas9 for the treatment of inherited disease 

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) 

system has shown great promise for applications in gene correction therapy. A CRISPR gene editing technique has 

been approved by the National Institutes of Health in the USA to help extend cancer therapies that rely on enlisting 
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a patient’s T cells. Early in 2018, doctors at the University of Pennsylvania were in the final steps of preparing for a 

clinical trial, and in 2019, two cancer patients who were enrolled in this study were treated. This trial is small and 

designed to investigate whether CRISPR is safe for use in people. It is one study among many that is being 

undertaken in a clinical setting. 

Inherited diseases where a causative genetic mutation has been established are well suited for gene editing 

therapies such as CRISPR/Cas9. One such disease, hemophilia B, caused by an X-linked mutation, has been studied 

extensively in this regard. The results from two CRISPR/Cas9-mediated gene correction therapy approaches, in vivo 

in a hemophilia B mouse model engineered to imitate human disease and ex vivo in germline cells, supported 

CRISPR/Cas9-mediated genome editing as a feasible method for gene therapy of genetic disorders (Huai et al., 

2017). The use of CRISPR is also under development for treating inherited ocular diseases (Burnight et al., 2018; Lee 

et al., 2019). Editas Medicine and Allergan Pharmaceuticals International Limited plan to initiate patient screening 

for clinical trials to test the efficacy of EDIT-101, a CRISPR genome-editing drug for the treatment of the retinal 

disease Leber congenital amaurosis 10. Utilizing an AAV5 viral vector that encodes the Staphylococcus aureus Cas9 

along with two different guide RNAs targeted to either side of the IVS26 mutation between exon 26 and exon 27, 

EDIT-101 plans to delete or invert the mutation such that functional CEP290 expression is restored. Recently, 

published results detail the development of EDIT-101 and summarize in vitro experiments in human cells and retinal 

explants (Maeder et al., 2019). 

 

4.3.2. CRISPR/Cas9 gene editing for TGFBI-linked corneal dystrophies 

4.3.2.1. Corneal autosomal dominant genetic eye disease – allele specificity 

TGFBI-linked corneal dystrophies are the result of autosomal dominant inheritance patterns (Klintworth, 2009). 

They are predominantly monogenic and highly penetrant, making them ideal for applying the concepts of 

personalized medicine in genome-editing therapies (Moore et al., 2018). Subsequently, research into the use of 

CRISPR/Cas9 for the treatment of rare inherited corneal disease has rapidly progressed over the past few years. We 

were the first to demonstrate an allele-specific CRISPR/Cas9 approach, cleaving the mutant DNA at a single 

nucleotide polymorphism (SNP)-derived protospacer adjacent motif (PAM) in the Krt12 gene within the mouse 

cornea (Courtney et al., 2016). For this approach, we took advantage of the discriminating nature of the PAM, which 

acts as a recognition site for the Cas enzyme, requiring a precise sequence composition. The base composition of 

the PAM site is crucial for double-stranded breaks to occur. When a DNA mutation or SNP known to cause disease 

also creates a PAM where none existed before, this mutation can be exploited to precisely target the mutant allele 

with the CRISPR/Cas system. In this study, a disease-causing missense mutation generating a novel PAM site was 

found to exist for Meesmann's epithelial corneal dystrophy within the KRT12 gene (Courtney et al., 2016). 

Meesmann's epithelial corneal dystrophy most commonly occurs as an autosomal dominant genetic disease, and 
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we were able to knock down the mutant allele via nonhomologous end joining while leaving the wild-type allele 

intact. This approach of allele-specific gene editing is an option to treat TGFBI-linked corneal dystrophy caused by 

dominant negative missense mutations that generate novel PAMs. 

As shown in Table 2, 63 known missense mutations located in the coding region of the TGFBI gene can lead to 

various forms of TGFBI-linked corneal dystrophies. However, the vast majority of cases are due to 5 prevalent 

mutations found either in codon 124 on exon 4 or codon 555 on exon 12 (Poulaki and Colby, 2008). Since at least 

44 of the known mutations in TGFBI occur adjacent to a naturally occurring PAM, stringent fidelity is required to 

achieve complete allele specificity and avoid the off-target site that exists in the form of the wild-type allele for 

these mutations (Christie et al., 2017). Studies have demonstrated that truncating the single guide RNA leads to 

increased target specificity and reduced target activity (Fu et al., 2014a; Fu et al., 2014b; Pattanayak et al., 2013). 

However, it has been shown by us that a range of truncated guide lengths or addition of 5’-GG to the 20 nucleotide 

guide sequence did not provide a marked improvement of specificity for a subgroup of the TGFBI mutations 

(Christie et al., 2017). 

4.3.2.2. Mutant allele targeting, a dual cut approach 

Given that over 30% of the known mutations in the TGFBI gene that cause corneal dystrophy are not located in 

the vicinity of a naturally occurring PAM, it is not possible to design allele-specific single guide RNAs targeted to 

these mutations. We have therefore conceived of a dual cut approach that, in theory, would achieve knockdown 

for all TGFBI missense mutations applicable to heterozygous genotypes (unpublished results). With a dual cut 

approach, the treatment of autosomal dominant disease such as TGFBI-linked corneal dystrophy is not constrained 

by the specific mutation responsible for any given phenotype. Our approach utilizes naturally occurring variants in 

the target region characterized by SNP-derived PAMs, which allow for the design of allele-specific SNP-derived PAM 

single guide RNAs. Utilizing natural variants in the target region that harbor a PAM that lies in cis with the causative 

mutation allows this method to discriminate between the wild-type and mutant alleles. Premature termination of 

translation via nonhomologous end joining brings about a permanent disruption of the target gene. A dual guide 

approach to CRISPR/Cas9 editing was shown to be a promising therapeutic approach for the treatment of patients 

with Leber congenital amaurosis 10 bearing the CEP290 splice mutation (Ruan et al., 2017), and in a human cell 

line, it was demonstrated that DNA deletions up to 10 kb coupled to precise nonhomologous end joining effectively 

knocked down a mutant allele (Zheng et al., 2014). To generate a therapeutic outcome for the TGFBI mutation 

targeted in our work, an in cis dual guide approach was required (unpublished results). 

While our study focused on the issue of on-target allele specificity in relation to TGFBI-linked corneal dystrophies 

(unpublished results), for translation to the clinic, a number of key hurdles will need to be overcome, including 

genome-wide specificity and efficiency of delivery to the correct cells in the cornea. Potent targeting of the correct 

cell population must be achieved. In corneal tissue, the majority of TGFBIp is produced in the epithelium, and the 



31 
 

epithelium is continually turned over and repopulated by limbal epithelial stem cells. Thus, to permanently correct 

the TGFBI-linked corneal dystrophies, efficient delivery to the limbal epithelial stem cells must be achieved. As we 

enter into the era of personalized genome editing for meaningful therapeutic outcomes to be achieved, we are 

ever mindful of hurdles such as efficiency and drug delivery. 

 

4.3.3. Anti-fibrillating agents 

Provided the significant advances in our understanding of the mechanisms leading to fibrillation of TGFBIp and 

FAS1-4, multiple pharmaceutical strategies to prevent this process present themselves as complements to the far 

more invasive and temporary strategy of corneal transplantation. Given that LCD mutants attain their phenotype 

by increasing the population of the unfolded state, a possible approach is to stabilize the native state, in particular, 

the FAS1-4 domain. Thus, any ligand that preferentially binds to the native state will inherently stabilize this species 

at the expense of the unfolded state for simple mass-action reasons. The attractive feature of any such intervention 

is the accessibility of the cornea, making regular applications in the form of eye drops straightforward and 

uncomplicated. The challenge is to develop or identify such ligands. The structure of FAS1-4 does not present any 

apparent clefts or other surface irregularities, which could serve as a starting point for drug design, but fortunately, 

several approaches are available that do not rely on these preconditions. One option is fragment-based design 

based on screening of binding a representative number of small molecule binders to, e.g., immobilized FAS1-4 using 

surface plasmon resonance. Alternatively, phage display could lead to the identification of promising peptide leads. 

Such binding sites have to be preferably directed at the mutation-free sites on FAS1-4 to ensure that all LCD sites 

are targeted; this problem will be relatively insignificant since most LCD mutations are buried. In contrast, ligands 

for GCD mutations have to target the offending (and exposed) mutation site to prevent the decrease in solubility 

that leads to aggregation of these mutants. An alternative approach is to disrupt the aggregation mechanism using 

“universal” aggregation inhibitors such as the plant polyphenol epigallocatechin. Epigallocatechin has been shown 

to generate small oligomers of the LCD mutant A546T (Stenvang et al., 2016) and to remodel existing A546T amyloid 

deposits into protease-sensitive amorphous aggregates that presumably could be cleared by the cornea’s own 

protein quality machinery. While the efficiency of epigallocatechin diffusion into the eye is unknown, 

epigallocatechin is nontoxic to rat primary epithelial cells (Cia et al., 2014), making it a promising candidate, though 

additional in vivo experiments are required to establish the validity of this approach. 

 

5. Future directions and conclusions 

TGFBIp is a versatile ECM protein expressed throughout the human body, with a particularly high abundance in 

the cornea. Much still remains to be discovered about the functions of TGFBIp, and although many ECM 

components interact with TGFBIp, the precise roles of these interactions need to be elucidated. Interestingly, 60% 
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of TGFBIp is bound to collagen XII in the human cornea through a disulfide bridge. However, the formation, 

regulation, and function of this crosslink is not well understood. In addition, it is unknown why TGFBIp is extensively 

processed in the cornea and which proteases are responsible for the processing. 

To date, 74 mutations in TGFBI have been associated with TGFBI-linked corneal dystrophies. Remarkably, these 

different mutations in TGFBIp can lead to a range of distinct clinical outcomes with a high genotype-phenotype 

correlation. Several studies have investigated the biochemical mechanisms that lead to protein aggregation. In the 

case of GCD, TBCD, and RBCD, we propose that the solubility of TGFBIp is reduced and/or the interplay between 

TGFBIp and the extracellular milieu is disturbed, while LCD is most likely linked to a change in the proteolytic 

processing of TGFBIp possibly by the serine protease HtrA1. These mechanisms must be investigated more 

extensively in vivo. The key to test this and future therapeutics is a good model system; hence, significant efforts 

have to be put into development of animal models with high resemblance to the disease manifestation in humans. 

The widened understanding of the biochemical mechanisms of TGFBIp aggregation might facilitate the 

development of topical agents capable of dissolving and/or inhibiting the formation of mutant TGFBIp aggregates 

in the cornea. These might include small molecule binders or peptides that stabilize LCD mutants or prevent the 

decrease in solubility of GCD mutants. Alternatively, “universal” aggregation inhibitors such as plant polyphenol 

epigallocatechin is a promising candidate. However, the efficiency, safety, and delivery of these agents need to be 

tested in in vivo. 

In addition, as personalized genome editing becomes more routinely used, the CRISPR/Cas9 technique will be an 

obvious choice for the treatment of TGFBI-linked corneal dystrophies. The dual cut approach would be a 

promising strategy for the treatment of a range of heterozygous genotypes. However, this approach leads to a 

disruption of the target gene, and any effects of a lower level of TGFBIp expression should be considered. In 

addition, genome-wide specificity and efficient delivery to the cornea needs to be obtained for translation to the 

clinic. 
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Table 1.  

TGFBIp interaction partners.  

Protein Cell/tissue type Reference 

Integrins   

 α1β1 Chondrocytes, fibroblasts (Ohno et al., 1999) 

 αIIbβ3 Platelets (Kim et al., 2009b) 

 α3β1 Human corneal epithelial cells (Kim et al., 2000b) 

  Keratinocytes (Bae et al., 2002) 

 α5β1 Platelets (Kim et al., 2009b) 

 αVβ3 Endothelial cells (Nam et al., 2003; Son et al., 2013) 

  Osteoblasts (Thapa et al., 2005) 

  Synoviocytes (Nam et al., 2006) 

  Scleral fibroblasts (Shelton and Rada, 2009) 

  Corneal fibroblasts (Choi et al., 2015) 

 αVβ5 Lung fibroblasts (Kim et al., 2002a) 

  Osteoblasts (Thapa et al., 2005) 

  Vascular smooth muscle cells (Lee et al., 2006) 

  Scleral fibroblasts (Shelton and Rada, 2009) 

 α6β4 Astrocytoma cells (Kim et al., 2003) 

 α7β1 Skeletal muscle cells (Ferguson et al., 2003) 

 αMβ2 Monocytes (Kim and Kim, 2008) 

ECM molecules   

 Fibronectin In vitro (Billings et al., 2002; Kim et al., 2002b) 

 Laminin In vitro (Kim et al., 2002b) 

 Decorin In vitro (Reinboth et al., 2006) 

 Biglycan In vitro (Reinboth et al., 2006) 

 Periostin Human corneal fibroblasts (Kim et al., 2009a) 

 Collagen type I Porcine cartilage (Hashimoto et al., 1997) 

  In vitro (Billings et al., 2002; Kim et al., 2002b) 

 Collagen type II Porcine cartilage (Hashimoto et al., 1997) 

  In vitro (Kim et al., 2002b) 

 Collagen type IV Porcine cartilage (Hashimoto et al., 1997) 

 Collagen type VI Rabbit cornea (Rawe et al., 1997) 
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  Bovine ligament (Hanssen et al., 2003) 

  In vitro (Kim et al., 2002b; Reinboth et al., 2006) 

 Collagen type XII Porcine and human cornea (Runager et al., 2013) 
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Table 2 

Reported TGFBI mutations associated with TGFBI-linked corneal dystrophies. 

Mutations  Protein domain1 Phenotype2 Age of onset 

(decade) 

Reference 

V113I FAS1-1 GCD1 Third  (Zenteno et al., 2006) 
V113I/L558P FAS1-1/FAS1-4 Variant LCD Fourth - Fifth (Ann et al., 2017) 

D123H FAS1-1 Atypical GCD Fifth  (Ha et al., 2003) 

R124C FAS1-1 LCD1 First - Second (Munier et al., 1997) 
R124C/G470Ter FAS1-1/FAS1-3 LCD1 Eighth  (Sakimoto et al., 2003) 

R124C/A546D FAS1-1/FAS1-4 Variant LCD Second - Third  (Cao et al., 2017) 

R124H FAS1-1 GCD2 First - Fourth  (Munier et al., 1997) 

R124H/P130Ter FAS1-1 GCD2 Third  (Yam et al., 2012) 
R124H/R179Ter FAS1-1 GCD2 Fourth  (Song et al., 2015) 

R124H/N544S FAS1-1/FAS1-4 GCD2-LCD Seventh  (Yamada et al., 2009) 

R124L FAS1-1 RBCD First - Second (Okada et al., 1998) 
R124L/T125-

E126del  

FAS1-1 Atypical GCD First  (Dighiero et al., 2000a) 

R124S FAS1-1 GCD1 Fifth  (Stewart et al., 1999b) 

E131D FAS1-1 Unknown Third  (Foja et al., 2016) 

R496W FAS1-3 LCD4 Ninth (Kawasaki et al., 2011) 
P501T Linker region 

FAS1-3/FAS1-4 

LCD3a                              Eighth - Ninth (Yamamoto et al., 1998) 

M502V FAS1-4 Unknown Fourth (Zenteno et al., 2009) 
M502V/R555Q FAS1-4 Atypical TBCD First  (Niel-Butschi et al., 2011) 

V505D FAS1-4 LCD1 Third (Tian et al., 2005) 

L509P FAS1-4 GCD2 / LCD1 Third  (Gruenauer-Kloevekorn et al., 2009) 

L509R FAS1-4 Atypical LCD Third - Fourth (Niel-Butschi et al., 2011) 

R514P/F515L FAS1-4 LCD1 Second  (Zhong et al., 2010) 
S516R FAS1-4 Atypical GCD1 Second  (Paliwal et al., 2010) 

L518P FAS1-4 LCD1 Second  (Endo et al., 1999) 

L518R FAS1-4 LCD1/3a Fifth  (Munier et al., 2002) 

 V519delinsGG FAS1-4 RBCD First - Second  (Kheir et al., 2019) 
I522N FAS1-4 LCD1 Second  (Zhang et al., 2009a) 

L527R FAS1-4 LCD4 Sixth - Seventh  (Fujiki et al., 1998) 

T538P FAS1-4 LCD1 Third  (Yu et al., 2006) 
T538R FAS1-4 LCD1/3a Second (Munier et al., 2002) 

V539D FAS1-4 LCD1 Unknown (Chakravarthi et al., 2005) 

F540S FAS1-4 LCD3a Fifth  (Stix et al., 2005) 
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F540del FAS1-4 RBCD / LCD1/3a Unknown (Rozzo et al., 1998) 

P542R FAS1-4 Variant LCD Sixth  (Cho et al., 2012) 

N544S FAS1-4 Variant LCD Seventh  (Mashima et al., 2000) 
A546D FAS1-4 Atypical LCD Third - Fourth  (Eifrig et al., 2004) 

A546D/P551Q FAS1-4 LCD1 Fourth  (Klintworth et al., 2004) 

A546T FAS1-4 LCD3a Fourth  (Dighiero et al., 2000b) 

F547C FAS1-4 GCD Seventh  (Foja et al., 2016) 
F547S FAS1-4 Variant LCD Fifth  (Takacs et al., 2007) 

R548P FAS1-4 Variant LCD Seventh  (Chae et al., 2016) 

A549T/R555W FAS1-4 GCD1 First (Frising et al., 2006) 
L550P FAS1-4 GCD2 Unknown (Zenteno et al., 2009) 

L550P/H626R FAS1-4 Atypical GCD Unknown  (Zenteno et al., 2009) 

R555Q FAS1-4 TBCD First - Second  (Munier et al., 1997) 

R555W FAS1-4 GCD1 First - Second (Munier et al., 1997) 
L558P FAS1-4 Atypical LCD Fifth - Sixth  (Pampukha et al., 2009) 

L558R FAS1-4 Variant LCD Sixth  (Dudakova et al., 2016) 

L559V FAS1-4 Atypical GCD Fifth  (Paliwal et al., 2010) 
L565H FAS1-4 Variant LCD Unknown (Zhang et al., 2019) 

L565P FAS1-4 Variant LCD Sixth   (Oldak et al., 2014) 

L569Q FAS1-4 Variant LCD Sixth  (Song et al., 2015) 

L569R FAS1-4 LCD1 First  (Warren et al., 2003) 
H572R FAS1-4 LCD1 Fourth  (Atchaneeyasakul et al., 2006) 
H572del FAS1-4 Variant LCD Seventh  (Aldave et al., 2006) 

G594V FAS1-4 LCD4 Sixth - Seventh  (Chakravarthi et al., 2005) 

V613G FAS1-4 Variant LCD Seventh  (Niel-Butschi et al., 2011) 
V613-P616del FAS1-4 Variant LCD Unknown (Yang et al., 2010) 

M619K FAS1-4 Variant GCD2 Fifth - Sixth  (Aldave et al., 2008) 

A620D FAS1-4 LCD1/3a Fourth  (Lakshminarayanan et al., 2011) 

A620P FAS1-4 LCD3a Fourth - Sixth (Jung et al., 2014) 

T621P FAS1-4 LCD3a Fifth  (Song et al., 2015) 

N622H FAS1-4 LCD1/3a Fifth  (Stewart et al., 1999a) 
N622K FAS1-4 LCD3a Fourth - Fifth (Munier et al., 2002) 

G623D FAS1-4 RBCD / LCD Sixth - Seventh (Afshari et al., 2001) 

G623R FAS1-4 Variant LCD Third - Fifth  (Gruenauer-Kloevekorn et al., 2009) 

V624M FAS1-4 Atypical LCD Fifth  (Afshari et al., 2008)  

V624-V625del FAS1-4 Atypical LCD Third (Chakravarthi et al., 2005) 

V625D FAS1-4 LCD1 Second  (Tian et al., 2007) 

H626P FAS1-4 RBCD-TBCD / 

LCD 

First - Second  (Munier et al., 2002) 
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H626R FAS1-4 LCD1/3a Third - Fifth  (Stewart et al., 1999a) 

V627Sfs*44 FAS1-4 LCD3a Fourth - Fifth (Munier et al., 2002) 

T629insNVP FAS1-4 LCD1/3a Second (Schmitt-Bernard et al., 2000b) 

V631D FAS1-4 Variant LCD Fifth  (Munier et al., 2002) 
1TGFBIp domains from UniProt, accession no. Q15582: CROPT (45-99), FAS1-1 (103-236), FAS1-2 (240-371), FAS1-3 

(375-498), FAS1-4 (502-632). 2GCD, granular corneal dystrophy; LCD, lattice corneal dystrophy variants; RBCD, Reis-

Bücklers corneal dystrophy; and TBCD, Thiel-Behnke corneal dystrophy. 
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Table 3. 

Patient cases subjected to protein profiling of deposited material. 

 

  

Mutation Protein domain Phenotype Reference 

R124C  FAS1-1 LCD1 (Courtney et al., 2015; Venkatraman et al., 2017) 

R124H  FAS1-1 GCD2 (Karring et al., 2012; Poulsen et al., 2016) 

A546D  FAS1-4 Atypical LCD (Karring et al., 2013) 

A546D/P551Q  FAS1-4 LCD1 (Poulsen et al., 2014b) 

R555W  FAS1-4 GCD1 (Courtney et al., 2015) 

V624M  FAS1-4 Atypical LCD (Karring et al., 2012) 

H626R  FAS1-4 LCD1/3a (Venkatraman et al., 2017) 
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Table 4. 

TGFBI mouse models. 

 

  

Type Phenotype Reference 

Knockout Spontaneous tumor development 

Reduced bone size 

(Zhang et al., 2009b) 

(Yu et al., 2012) 

Knockout Abnormal lung morphology  

Normal corneal structure 

(Ahlfeld et al., 2016) 

(Poulsen et al., 2018) 

Knockout Vascular inflammatory response 

Reduced skeletal size 

(Bae et al., 2014) 

(Lee et al., 2015) 

Knockout Increased diabetes risk (Han et al., 2014) 

Overexpression (liver) Anterior segment dysgenesis (Kim et al., 2007) 

Overexpression Corneal opacities (Liao et al., 2013) 

R555W mutant (overexpressed) Retinal degeneration (Bustamante et al., 2008) 

R124H mutant Corneal opacities (Yamazoe et al., 2015) 
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Fig. 1. Schematic representation and three-dimensional structure of TGFBIp. A, The secreted form of TGFBIp 

(residues 24-683) constitutes an N-terminal CROPT domain followed by four FAS1 domains. TGFBIp has three 

intradomain disulfide bridges between C49 and C85 (CROPT), C84 and C97 (CROPT), and C473 and C478 (FAS1-3). 

Two interdomain disulfide bridges are located between C74 (CROPT) and C339 (FAS1-2) and C214 (FAS1-1) and 

C317 (FAS1-2). C65 is not engaged in any intramolecular disulfide bridge. The C-terminus contains an RGD binding 

motif and a truncation site at residue A657. B, Ribbon plot of TGFBIp (residues 43-637) with CROPT in magenta, 

FAS1-1 in cyan, FAS1-2 in blue, FAS1-3 in green, and FAS1-4 in orange. The disulfide bridges and the unbound C65 

are depicted as yellow sticks. Due to the high flexibility of the N-terminus and C-terminus of TGFBIp, the structure 

of these regions could not be determined. 

 

Fig. 2. A, Slit-lamp photograph of a 45-year-old male GCD1 patient. B, A 48-year-old female LCD patient. C, GCD2 

cornea from a 32-year-old male patient 8 years after LASIK treatment. A genetic test revealed a heterozygous TGFBI 

R124H mutation. 

 

 Fig. 3. World map of reported cases with various TGFBI mutations. Each bubble placed over a region or country 

contains the reported case information, such as ethnicities, mutations, and case numbers. The map illustrates that 

TGFBI mutation cases are reported all over the world, except in regions with limited research capacity or language 

difficulties for publication. Very few cases were reported from South America, and no case reports were identified 

from Africa or Russia (Chao-Shern et al., 2019). 

 

Fig. 4. Tissue-specific processing of human TGFBIp in cornea, skin, plasma, and platelets. Human specimen samples 

were subjected to two-dimensional gel electrophoresis, followed by immunoblotting against TGFBIp. Differential 

processing was observed across the different tissue samples supportive of tissue-specific processing. Upper and 

lower blots are biological duplicates. Tissues were handled and analyzed as described in (Poulsen et al., 2019). 

 

Fig. 5. Schematic representation of possible aggregation mechanisms involved in TGFBI-linked corneal dystrophies 

associated with mutations in the FAS1-4 domain (red X). A, TGFBIp undergoes extensive N-terminal processing by 

the proteolytic machinery in the cornea, leading to FAS1-4-containing products, which are subsequently cleared. B, 

Several mechanisms might lead to GCD and TBCD where intact or near-intact TGFBIp accumulates. Bioinformatics 

analysis has shown reduced solubility of the folded monomeric state of the FAS1-4 domain for some of the mutants. 

Destabilization can lead to aggregates through hydrophobic collapse. Abnormal turnover due to resistance to 

proteolytic degradation and/or changes in the interactions with the ECM or integrins might result in a higher 
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concentration of soluble TGFBIp leading to increased aggregation. C, In LCD, fragments of TGFBIp seem to 

accumulate. Mutations in FAS1-4 destabilize the structure of TGFBIp, which might cause the FAS1-4 domain to 

fibrillate directly and/or lead to a change in its proteolytic turnover by the serine protease HtrA1, which liberates 

amyloidogenic regions of the FAS1-4 domain. Sulfated GAGs might promote the fibrillation of LCD mutants. 
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Figure 3 
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Figure 4 
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Figure 5 

 


