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8 Abstract

9 Optical measuring technologies coupled with machine learning algorithms can be used to build a home-made 

10 sensor system. We built such a sensor system using a smartphone and a diffraction grating sheet. Diffraction 

11 images were captured under white light illumination and converted into a data matrix for data analysis. In 

12 this paper we present a systematic evaluation of this sensor system on the task of differentiating organic 

13 apples from conventional ones. We used the sensor system to measure 150 organic and conventional apples 

14 as rainbow images. We processed the rainbow images using computer vision techniques, built machine 

15 learning and chemometrics models, and used the resultant models to classify testing samples. Moreover, a 

16 comparative study was conducted where the same set of apples were scanned by a commercial spectrometer 

17 resulting in spectral data of the apple samples and classification was undertaken using partial least squares 

18 discriminant analysis (PLS-DA). Experimental results show that state of the art machine learning algorithms 

19 such as support vector machine (SVM) and locally weighted partial least squares classifier (LW-PLSC) are 

20 effective in handling low-quality image data with classification accuracies of 93−100%. These results suggest 

21 that the sensor system is convenient and low-cost, and provides a fast, effective, non-destructive and viable 

22 solution for in-line food authentication. 
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24 1. Introduction

25 Apple, which plays an important role in healthy diet, is one of the most cultivated and consumed fruits in 

26 the world. According to FAOSTAT, the total apple production reached 83.1 million tons worldwide in 2017 

27 (http://www.fao.org/faostat). Meanwhile, apple quality is gaining increasing attention due to the rising 

28 concerns about food safety and quality. Some issues related to the external and internal quality of apple, such 

29 as bruise degree, diseases, pesticide residue contamination and organic fraud, pose a serious threat to 

30 consumer health and damage the fair trade-off between quality and price. Traditional testing techniques based 

31 on sensory and chemical analysis are laborious and time-consuming, so they do not meet the growing demand 

32 for large-scale and real-time apple quality testing in industrial process and consumer market.

33 Optical sensors coupled with chemometrics have become an effective approach to predict the quantitative 

34 and qualitative attributes of apple (Ignat et al., 2014; Moscetti et al., 2018). They are also effective for rapid 

35 and non-invasive food evaluation which requires minimal sample preparations. For quantitative research, 

36 many studies investigate the internal contents of apples by using near-infrared (NIR) spectroscopy and NIR 

37 hyperspectral imaging techniques. These studies predict the internal contents, including sweetness (soluble 

38 solids content, SSC) (Ma et al., 2018; Tang et al., 2018; Yuan et al., 2016), sourness (acidity or pH value) 

39 (Ignat et al., 2014; Jha and Ruchi, 2010), firmness (Ignat et al., 2014) and moisture (Dong and Guo, 2015), 

40 which directly influence flavours and textures of apples. Other studies are related to food safety and health 

41 issues, i.e., the pesticide contamination of apples. It has been reported that surface-enhanced Raman 

42 spectroscopy (SERS), Fourier transform infrared (FTIR) spectroscopy and laser-induced breakdown 

43 spectroscopy (LIBS) techniques can effectively measure the level of pesticide residuals on apple surface, 

44 such as chlorpyrifos (Dhakal et al., 2014; Ma and Dong, 2014; Xiao et al., 2015), carbaryl (Fan et al., 2015), 

45 phosmet and thiabendazole (Luo et al., 2016). Spectroscopy and hyperspectral imaging are also two state of 

46 the art techniques for determining apple qualities, for example, identifying varieties, grades, geographical 

47 origins (Luo et al., 2011), detecting apple diseases (Jarolmasjed et al., 2017) and bruising degree (Tan et al., 

48 2018; Vetrekar et al., 2015). Furthermore, computer vision system (CVS) is recently used for the evaluation 

49 of ripening stages (Cárdenas-Pérez et al., 2017), surface gloss (Sun et al., 2017), diseases (Dubey and Jalal, 

50 2016) and defectiveness (Zhang et al., 2015). 

http://www.fao.org/faostat
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51 The use of portable spectrometer for real-time apple quality assessment is in a strong uptrend which has 

52 met the requirement for practical use (Gao et al., 2016; Yuan et al., 2016). Our previous studies have 

53 demonstrated that the use of portable NIR spectrometer coupled with chemometrics provides a feasible 

54 approach for authenticating organic apples with an accuracy of over 90% (Song et al., 2018a, 2016). This 

55 approach is simple, quick and non-destructive compared to conventional analytical techniques for 

56 authenticating organic foods such as compound-specific isotope analysis (CSIA), inductively coupled 

57 plasma-mass spectrometry (ICP-MS), isotope ratio mass spectrometry (IRMS) (de Lima and Barbosa, 2019). 

58 However, the miniaturisation and field portability of spectrometers will normally degrade the fingerprint data 

59 quality due to the variable sampling conditions, posing challenges to linear chemometric algorithms (Liu et 

60 al., 2018; Song et al., 2018a). One of the most standard chemometric method for data classification is partial 

61 least squares discriminant analysis (PLS-DA), which effectively handles high dimensionality, high 

62 collinearity and small sample size problems. However, it sometimes yields unsatisfied performance due to 

63 the high degree of nonlinearity (Song et al., 2018b; Zou et al., 2010). To tackle this issue, many machine 

64 learning algorithms have been investigated and become an indispensable part in chemometrics field. For 

65 example, nonlinear classifiers such as support vector machine (SVM) and random forest (RF) are often well-

66 performing in classifying spectral data due to the good generalization performance (Devos et al., 2009; Zhang 

67 et al., 2016). Artificial neural networks (ANN) and extreme learning machine (ELM) can also efficiently 

68 capture the nonlinear relationship between observations and classes, gaining an advantage over PLS-DA in 

69 classification accuracy and robustness (Moncayo et al., 2015; Zheng et al., 2014). 

70 Despite the fact that nonlinear algorithms can improve the classification capability of low-quality spectral 

71 data to some extent, the price of portable spectrometer far exceeds expectation in consumer market. Recent 

72 studies attempt to use CVS for food quality evaluation based on mobile devices such as smartphone and 

73 tablet (Cruz-Fernández et al., 2017; Cubero et al., 2018), which demonstrate potential in on-line application. 

74 CVS simulates human visual system using artificial sensor and automatically gains high-level understanding 

75 from digital images via image acquisition, processing and data analysis. Our recent study proposes a low-

76 cost CVS based on diffraction grating and demonstrates its feasibility in organic apple identification (Jiang 

77 et al., 2018). This study uses locally weighted partial least squares classifier (LW-PLSC) to handle nonlinear 
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78 food data which significantly improves the classification performance compared to PLS-DA. Nevertheless, 

79 an up-to-date comparative study is essential for three reasons: first, LW-PLSC requires to be evaluated by 

80 comparing its capability with baseline classifiers; second, the empirical reference in selecting the most 

81 appropriate classifiers for the new type of image data has yet been studied; third, the performance comparison 

82 between the new sensor system and the other optical sensors such as spectrometer remains to be investigated.

83 Organic apples are generally more expensive than conventional ones. This, coupled with the fact that 

84 visual differentiation between organic and conventional apples is often not possible, has led to organic food 

85 fraud involving apples. In this study, we aim to distinguish organic and conventional labelled apples using a 

86 combination of low-cost sensor system and supervised machine learning methods. We evaluate the 

87 classification performance of ten methods on rainbow image data, including PLS-DA, kernel PLS-DA 

88 (KPLS-DA), LW-PLSC, soft independent modelling of class analogies (SIMCA), k-nearest neighbours (k-

89 NN), logistic regression (LR), SVM, least squares SVM (LS-SVM), decision tree (C4.5) and RF, and choose 

90 the best-performing ones under different sample distributions. Then a benchmark instrument, a commercial 

91 high-resolution spectrometer, is used to measure the same samples and compared with the sensor system in 

92 identifying organic and conventional apples. This study reveals that the low-quality image data obtained from 

93 low-cost measurement is effective for apple fruit authentication with the aid of high performance machine 

94 learning methods.

95 2. Materials and methods

96 2.1. Sample preparation

97 A total of 150 apples were collected from local super markets in Fuzhou during a week. There were three 

98 apple varieties (50 Braeburn, 50 Gala and 50 Pink lady, respectively) and each variety contained two classes 

99 (25 organic and 25 conventional, respectively). All apples were defect-free, similar in size and maturity, and 

100 no surface preparation was carried out prior to data collection. We conducted the imaging and spectral 

101 measurements at room temperature (22 ± 2 °C). 
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102 2.2. Imaging system based on diffraction grating

103 A recently proposed sensor system is used to obtain image data from apple samples, which includes 

104 diffraction image acquisition, rainbow image extraction and feature vector representation (Jiang et al., 2018). 

105 2.2.1. Diffraction image acquisition

106 An apple sample was placed 20 cm in front of a flashlight, two diffraction grating sheet (60 × 40 nm) was 

107 set on both sides of the apple and a smartphone camera was fixed by 1 cm above the flashlight. We use the 

108 flashlight to illuminate the apple surface, so reflected polychromatic light can pass through a diffraction 

109 grating and then disperse into several beams travelling in different directions. Each beam has a single rainbow 

110 of colours under white light illumination. Then the rainbows are photographed by smartphone with 1080 × 

111 720 pixels spatial resolution and stored in JPG format with file size of approximately 1.14MB. To eliminate 

112 the influence of ambient light and generate comparably high-quality data, the image acquisition was 

113 conducted in a dark environment. Fig. 1a shows a central part of the diffraction image with rainbow colour 

114 spectra.

115
116 Fig. 1. (a) The original diffraction image of rainbow colour spectra; (b) grayscale processed image; (c) mathematical morphology 
117 processed image; (d) the extracted rainbows in image.
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118 2.2.2. Rainbow image extraction

119 We use a combination of image processing techniques to extract a single rainbow from the obtained 

120 diffraction image, including pre-processing, denoising and segmentation. Grayscale processing firstly coverts 

121 colour pixels into grey ones (see Fig. 1b) which only carry intensity information. This step enables 

122 mathematical morphology to capture the most essential shape features of target rainbows, as shown in Fig. 

123 1c. Then denoising adopts median filter to replace the value of a point in the digital image with the median 

124 of neighbouring points. Finally, the OSTU method (Otsu, 1979) calculates the foreground and background 

125 class probability, so a single rainbow image can be derived from the raw diffraction image (see Fig. 1d). A 

126 resized rainbow image (50 × 100 pixels) to be converted into numerical values is shown Fig. 2.

127
128 Fig. 2. The resized rainbow image (50 × 100 pixels) of an apple sample.

129 2.2.3. Feature vector representation

130 We map the rainbow image into 3-dimentional Cartesian coordinate system of red (R), green (G) and 

131 blue (B) colour. Each colour channel has 256 colour levels varying from 0 to 255. It is noted that the row 

132 pixels usually contain more hues than the column pixels, so we calculate the mean of each column and use 

133 the obtained feature vector to represent the spectral line of sample. The raw image data is shown in Fig. 3. 
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134
135 Fig. 3. The raw image data of Braeburn (B), Gala (G) and Pink lady (P) apples. Data in cyan and magenta colour represents 
136 conventional (C) and organic (O) samples, respectively. Variables 1-100, 101-200 and 201-300 belongs to red, green and blue 
137 channels, respectively.

138 2.3. Spectroscopy

139 Apples spectral reflectance data were collected with a high-resolution spectrometer (USB4000-FL 

140 spectrometer, Ocean Optics, Inc., USA) equipped with an optical fiber probe and having a wavelength range 

141 of 200-1100 nm with an interval of 0.9879 nm. The experiments were conducted under ambient light 

142 conditions in a colour assessment cabinet which can provide a standard visible light source. Apple spectra of 

143 three varieties were collected with the Ocean-View software containing 912 variables, as shown in Fig. 4.
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144
145 Fig. 4. Conventional and organic apple spectra (148 samples and 912 variables) of three varieties (Braeburn, Gala and Pink lady). Two 
146 outliners in Gala and Pink lady varieties have been removed for better visualization. 

147 2.4. Data analysis

148 2.4.1. Sample division and pre-processing

149 As the investigated apples contain six groups, namely, conventional Braeburn (CB), organic Braeburn 

150 (OB), conventional Gala (CG), organic Gala (OG), conventional Pink lady (CP) and organic Pink lady (OP), 

151 we use DUPLEX algorithm (Snee, 1977) to partition apples belonging to the same group into training and 

152 testing samples according to the ratio of 2:1. To explore the differentiation between conventional and organic 

153 apples within each variety, training samples belongs to CB and OB groups are merged as a whole training 

154 set for Braeburn variety meanwhile the corresponding testing samples are combined as a testing set. The 

155 same procedure is also applied on Gala and Pink lady varieties. We also attempt to build models based on 

156 the overall varieties and classify testing samples of different varieties. Therefore, we integrate the three 

157 training sets and mix the corresponding testing sets. Such way of sample division maintains the same diversity 

158 in both sets and keeps the balance between two classes. 

159 We only apply Savitzky-Golay smoothing (fitted by a polynomial of degree two and a 33-point moving 

160 window) to pre-process raw image data, because our previous study reports such pre-processing can 

161 effectively reduce the noise and improves the modelling performance (Jiang et al., 2018). For data obtained 

162 from spectroscopy, we use raw spectra without pre-processing due to its high quality and the high 

163 performance of PLS-DA. This will be demonstrated in Section 3.
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164 2.4.2. Classification methods

165 This work implements ten commonly used algorithms in chemometrics and machine learning fields to 

166 classify apple image data. PLS-DA relies on the assumption that the investigated system or process is driven 

167 by a set of latent variables (LVs) in low dimensional space. It transforms the categorical vector into numerical 

168 responses and searches for latent variables with maximum covariance with the responses (Barker and Rayens, 

169 2003). KPLS-DA maps the original data into Hilbert feature space via kernel function and then constructs a 

170 PLS-DA model for classification. The nonlinear relationship among variables in the original sample space 

171 becomes linear after mapping, so data nonlinearity can be effectively captured. LW-PLSC is an extension of 

172 LW-PLS (Kim et al., 2011), which uses weighting schemes for queries which respectively enlarges and 

173 lessens the influence of neighbouring and remote samples towards a PLS-DA model. Thus, the degree of 

174 global nonlinearity is reduced by using local linear models. SIMCA performs PCA on each class and 

175 constructs principal component models with the optimal numbers of PCs identified by cross-validation. A 

176 query is then attributed to the class which yields the least residue during prediction. 

177 The k-NN predicts a query according to the k closest samples of the query and assign it to the class which 

178 has the largest category probability. The Euclidean distance is the most commonly used distance function in 

179 k-NN, however, it can barely provide sufficient distinctions between different samples in high-dimensional 

180 case (Aggarwal et al., 2001). The LR is a widely used statistical model which aims to solve binary 

181 classification problems. It extends ordinary least squares to model the logistic relationship between the 

182 probability of class membership and the input variables. The SVM classification searches for a hyperplane 

183 to correctly separate samples of different classes meanwhile maximizing the shortest distances from the 

184 hyperplane to the nearest samples for each class. It can be extended to non-linear classification by projecting 

185 data from low dimensional input space to high dimensional feature space via kernel functions. The LS-SVM 

186 is an advanced version of SVM for binary classification which applies the linear least squares criteria to the 

187 loss function instead of inequality constraints (Suykens and Vandewalle, 1999). Decision tree uses a 

188 flowchart-like structure to present the various outcomes from a series of decisions. It mainly consists of a 

189 root node, branches and leaf nodes. The root node represents a query to be assigned, the branch represents 

190 the flow from question to answer and the leaf node represents a class label. The RF is an ensemble method 
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191 which generates multiple decision trees and predict a query based on a simple majority voting of the single 

192 classification tree. 

193 In our experiments, the decision tree classifier (C4.5) was from the WEKA learning environment using 

194 J48 function while other classifiers were from MATLAB (Mathworks, 2011a). Some baseline classifiers 

195 were from MATLAB external toolboxes, including LIBSVM toolbox (SVM) (Chang and Lin, 2011), 

196 Classification toolbox (SIMCA) (Ballabio and Consonni, 2013) and LS-SVM toolbox (LS-SVM) (De 

197 Brabanter et al., 2011). 

198 2.4.3. Parameter setting

199 We use leave-one-out cross validation on training set to optimize the parameters of different algorithms. 

200 The range of LVs in PLS-DA, KPLS-DA and LW-PLSC is set from 1 and 10 to prevent overfitting. The 

201 number of components for each class model in SIMCA is no more than 10. The number of nearest neighbours 

202 in k-NN is selected from 1 to 15. The regularization parameter λ in LR is varied from 10−7 to 103 on a 

203 logarithmic scale. This work adopts radial basis function for three kernel methods and implements a grid 

204 search approach for kernel methods and LW-PLSC. The width of the RBF σ in KPLS-DA are 1, 5, 10, 50, 

205 100, 500 and 1000. The regularization parameter C (C = 1, 10, 100, 1000) and RBF kernel parameter γ (γ = 

206 10-5, 5×10-5, 10-4, 5×10-4, 10-3, 5×10-3, 10-2) totally construct 28 SVM models, while the parameters of LS-

207 SVM build 20 models (C = 1, 10, 100, 1000 and σ = 1, 10, 100, 1000, 10000). The localization parameter φ 

208 in LW-PLSC is adjusted to the values of 0.1, 0.5, 1, 5, 10, 15 and 20. The depth of tree in C4.5 are 2, 4, 6, 8, 

209 10, 12 and 14. We use the default setting of RF parameters (ntree = 500, mtry =  and nodesize = 1, where 𝑝

210 p is the number of variables) for validation and classification, which has been reported well-performing in 

211 most cases (Strobl et al., 2009). 

212 3. Results and discussion

213 3.1. PCA of image and spectral data

214 The data of each apple variety plotted according to the PCA scores is shown in Fig. 5. Training and testing 

215 data are represented as empty and filled points, respectively. The first two principal components (PCs) 
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216 accumulate over 93% of the total variance in each variety. Samples of Braeburn variety have a good 

217 separation between organic and conventional classes, while samples of Gala or Pink lady varieties present an 

218 overlap between two classes. Reasonable classification models may exist in Gala and Pink lady varieties 

219 despite the visualized two dimensions does not display a clear separation. 

220 The PCA charts of the overall samples obtained from imaging and spectroscopy are shown in Fig. 6a and 

221 b, respectively. The distinction of samples based on apple varieties is quite clear compared to that of samples 

222 based on classes. Data obtained from low-cost imaging technique fails to provide a linear separation between 

223 organic and conventional classes by using two PCs, while data collected by high-resolution spectroscopy 

224 presents a good class separation. Typically, spectral data of individual variety are linearly separable based on 

225 organic and conventional classes. Two outliers from CG and CP groups can be identified from the PCA 

226 scatter plot of spectral data, which may be induced by mislabelling or measuring distortion.

227
228 Fig. 5. PCA scatter plot of rainbow image data: Braeburn (a), Gala (b) and Pink lady (c) apples. Training and testing data are 
229 represented as empty and filled points, respectively.
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230
231 Fig. 6. PCA scatter plots of the apple data from imaging (a) and spectroscopy (b). CB: conventional Braeburn; OB: organic Braeburn; 
232 CG: conventional Gala; OG: organic Gala; CP: conventional Pink lady; OP: organic Pink lady. Two outliers from CG and CP group 
233 are marked as black in spectral data.

234 3.2. Classification of image and spectral data

235 The classification of apple image datasets, including each variety and the overall varieties, are presented 

236 in Table 1 and 

237 Table 2. For Braeburn variety, despite several algorithms (LR, k-NN, C4.5 and RF) misclassify one 

238 sample in training phase, all algorithms can successfully identify testing samples. For Gala variety, both 

239 KPLS-DA and SVM reach the highest results of 94.1% and 100%, respectively in training and testing phase. 

240 Moreover, LW-PLSC and LS-SVM have the same results of 100% in classification. While other classifiers 

241 yield lower validation and classification results ranging from 76.5% (SIMCA and k-NN) to 91.2% (LS-SVM) 

242 and 75% (SIMCA) to 93.8% (PLS-DA, LR and k-NN), respectively. The number of wrongly classified 

243 organic apples does not exceed 1 for most of the algorithms. For Pink lady variety, the highest validation 

244 accuracy is 91.2% obtained by KPLS-DA, while that of classification is 100% achieved by both KPLS-DA 

245 and k-NN. Other classifiers yield lower validation and classification results which are respectively below 

246 90% and 95%. The conventional samples are easily identified by all algorithms, while the organic ones can 

247 only be correctly recognised by KPLS-DA and k-NN. The highest accuracy of the overall dataset is lower 

248 than that of each dataset. LW-PLSC and RF models attain the highest validation results of 90.2% while LW-

249 PLSC and k-NN give the best performance in classification with 97.9% accuracy. Classifiers such as KPLS-
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250 DA, SVM and LS-SVM provide comparable results in both phases. The highest accuracy of organic class 

251 (95.8%) is obtained by LW-PLSC, SIMCA and k-NN, of which 23 out of 24 samples are correctly identified.

252 Table 1

253 The accuracy (%) of different algorithms for the classification of organic and conventional apples (Braeburn and Gala varieties) based 
254 on data obtained from diffraction images. 

Braeburn Training Testing Organic Conventional Gala Training Testing Organic Conventional

PLS-DA 100 100 100 100 PLS-DA 85.3 93.8 87.5 100

KPLS-DA 100 100 100 100 KPLS-DA 94.1 100 100 100

LW-PLSC 100 100 100 100 LW-PLSC 88.2 100 100 100

SVM 100 100 100 100 SVM 94.1 100 100 100

LS-SVM 100 100 100 100 LS-SVM 91.2 100 100 100

SIMCA 100 100 100 100 SIMCA 76.5 75 100 50

LR 97.1 100 100 100 LR 82.4 93.8 87.5 100

k-NN 97.1 100 100 100 k-NN 76.5 93.8 87.5 100

C4.5 97.1 100 100 100 C4.5 85.3 87.5 87.5 87.5

RF 97.1 100 100 100 RF 85.3 81.3 75 87.5

255
256 Table 2

257 The accuracy (%) of different algorithms for the classification of organic and conventional apples (Pink lady and the overall varieties) 
258 based on data obtained from diffraction images.

Pink lady Training Testing Organic Conventional Overall Training Testing Organic Conventional

PLS-DA 85.3 93.8 87.5 100 PLS-DA 55.9 58.3 58.3 58.3

KPLS-DA 91.2 100 100 100 KPLS-DA 89.2 95.8 91.7 100

LW-PLSC 88.2 93.8 87.5 100 LW-PLSC 90.2 97.9 95.8 100

SVM 88.2 93.8 87.5 100 SVM 88.2 95.8 91.7 100

LS-SVM 88.2 93.8 87.5 100 LS-SVM 89.2 95.8 91.7 100

SIMCA 85.3 87.5 75 100 SIMCA 70.6 79.2 95.8 62.5

LR 85.3 93.8 87.5 100 LR 58.8 60.4 54.2 66.7

k-NN 85.3 100 100 100 k-NN 86.3 97.9 95.8 100

C4.5 76.5 93.8 87.5 100 C4.5 84.3 87.5 75 100

RF 82.4 93.8 87.5 100 RF 90.2 93.8 91.7 95.8

259 Among the ten algorithms, KPLS-DA achieves the top validation and classification results on the first 

260 three datasets. SVM based algorithms also present good classification performance on four datasets. 

261 Nevertheless, kernel method is more prone to overfitting than its non-kernel counterpart if data has a limited 

262 number of samples (Despagne et al., 2000). By adjusting the contribution of training samples in a local model 

263 for a query, LW-PLS classification improves the performance of PLS-DA on the classification of nonlinear 

264 data. Linear classifiers i.e., PLS-DA and LR, provide acceptable results for differentiating organic apples 
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265 from conventional ones within each variety. However, such results will drastically degrade by over 30% 

266 when classifying testing samples from the overall varieties. The k-NN provides the highest classification 

267 accuracies in three datasets by selecting one nearest neighbour. However, the validation results of k-NN are 

268 usually lower than that of kernel algorithms. 

269 We also provide the validation and classification results of PLS-DA on apple spectral datasets, as in 

270 Error! Not a valid bookmark self-reference.. PLS-DA model can effectively identify organic samples in 

271 Braeburn, Gala and Pink lady varieties with validation results of 100%, 97.1% and 97.1%, respectively. Two 

272 outliers from CG and CP groups are the only misclassified samples. However, the outlier from CG group can 

273 be correctly attributed to the conventional class as it is close to CB samples in PCA scatter plot (see Fig. 6b), 

274 yielding an overall accuracy of 99% in validation. PLS-DA selects additional numbers of LVs across the 

275 overall dataset, showing an increased degree of nonlinearity. Nevertheless, the optimal number of LVs 

276 identified by leave-one-out cross validation does not exceed 3 for each dataset. The corresponding PLS-DA 

277 model has low simplicity but still correctly distinguish organic apples from conventional ones on the four 

278 datasets due to the high quality of spectral data. 

279 Table 3

280 The accuracy (%) of PLS-DA for the classification of organic and conventional apples (Braeburn, Gala, Pink lady and the overall 
281 varieties) based on data obtained from spectroscopy.

Datasets Training LVs Testing Organic Conventional

Braeburn 100 1 100 100 100

Gala 97.1 2 100 100 100

Pink lady 97.1 2 100 100 100

Overall 99 3 100 100 100

282 By comparing the above results, many classifiers on image data achieves the same level of accuracies 

283 compared to PLS-DA on spectral data when classifying apples from Braeburn and Gala variety. If we merge 

284 the apples of different varieties, the best classification result of image data will be lower than that of spectral 

285 data by 6.7%. Such degradation in performance indicates that the image data has lower quality compared to 

286 the spectral one. However, the sensor system is still feasible for organic apple authentication (≥ 90% accuracy) 

287 with the aid of state of the art machine learning methods.
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288 4. Conclusion

289 A prototype sensor system and ten classification methods were evaluated as a solution for fast and non-

290 destructive detection of apple quality, more specifically, to determine if an apple is organic or conventional. 

291 The rainbow image data obtained from the sensor system was lower in resolution and higher in degree of 

292 nonlinearity compared to the spectral data generated by a commercial spectrometer. It was found that the 

293 classification results of image data were comparable to that of spectral data when equipped with the of state 

294 of the art classifiers, such as SVM and LW-PLSC. Such results demonstrate the effectiveness and significance 

295 of the sensor system for differentiating organic apples from conventional ones based on the colour level. 

296 Moreover, the sensor system has extremely lower price in hardware compared to commercial spectrometer, 

297 which is practically suitable for low-cost food quality detection. However, due to the instrumental restrictions 

298 (size of diffraction grating sheet, dispersion of flashlight and resolution of smartphone camera), the food 

299 produce used for experiments currently requires having a proper size and shape to ensure that a complete 

300 rainbow image is clearly presented and effectively captured. Our future work will optimize the experimental 

301 settings and improve the detection performance by selecting variables of class distinction. 
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HIGHLIGHTS

• A low-cost sensor system was used to differentiate organic apples from conventional ones.

• Ten machine learning algorithms were evaluated using rainbow image data from the sensor system.

• The classification results of rainbow image data were comparable to that of spectral data.




