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Abstract 9 

This paper reports the development and application of a new practical photovoltaic (PV) cells 10 

based device to measure the solar radiation flux produced by non-imaging Compound 11 

Parabolic Concentrators (CPCs) on cylindrical absorbers. The flexible experimental device 12 

comprises 12 discrete miniature PV panels that measure solar radiation on the surface of a 13 

cylindrical absorber. The device has been used to evaluate the performance of an asymmetric 14 

CPC system and results validated with a computer-based Ray Tracing Model. The study 15 

attained significant agreement between outdoor results of the experimental device and results 16 

of the ray tracing simulation with a difference of <9 % in optical efficiencies. The non-imaging 17 

reflector illuminates a targeted section of the absorber of a horizontal east-west thermal diode 18 

Integrated Collector Storage Solar Water Heater. During outdoor testing, the experiments 19 

indicated a local concentration ratio reaching 1.4 suns on the targeted section of the absorber 20 

vessel surface for incidence angles −30° ≤ 𝜃𝑖 ≤ 30°, confirming technical suitability of the 21 

asymmetric CPC for deployment in locations at equatorial latitudes. 22 
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CR  Concentration Ratio 29 

c-Si  crystalline Silicon 30 

CST  Centre for Sustainable Technologies 31 

ICSSWH Integrated Collector Storage Solar Water Heater 32 

I-V  Current-Voltage 33 

RTM  Ray Tracing Model 34 

STC  Standard Testing Condition 35 

Aap  Aperture area of the prototype ( m2) 36 

Aabs  Surface area of the thermal diode ICSSWH receiver/absorber ( m2) 37 

𝜃𝑖  Angle of incidence on the aperture of the solar collector (degree) 38 

∅  Rotation angle defining the inverted involute profile (radians) 39 

𝑥  Abscissa (x-axis) coordinate of the inverted involute profile (mm) 40 

𝑦  Ordinate (y-axis) coordinate of the inverted involute profile (mm) 41 

𝑅1  Radius of the inner vessel (storage tank) of the thermal diode ICSSWH (mm) 42 

𝑅2  Radius of the outer vessel (absorber) of the thermal diode ICSSWH (mm) 43 

𝐶𝑅  Concentration Ratio (dimensionless) 44 

𝐺  Total solar radiation incident on any plane (W/m2) 45 

𝐺abs  Total solar radiation on the absorber (W/m2) 46 

𝐺ap  Total solar radiation on the collector aperture (W/m2) 47 

𝐺ref  Total solar radiation at a reference position (W/m2) 48 

𝐼SC  Short-circuit current (A) 49 

𝐼peak  Peak current (A) 50 

𝐼SC,abs  Short-circuit current measurement on the absorber (A) 51 

𝐼SC,ap  Short-circuit current measurement on the aperture (A) 52 

𝑘  Uncertainty coverage factor multiplier (dimensionless) 53 

𝜕𝐺  Sensitivity of the pyranometer (𝜇V/W m2) 54 

𝑉pyra Signal voltage of the pyranometer measured by a handheld digital multimeter 55 

(mV) 56 

1. Introduction 57 

The Asymmetric Formed Reflector with Integrated Collector and Storage (AFRICaS) system 58 

previously reported in Muhumuza et al. (2019a) is a novel combination of new and 59 

conventional solar technologies in a Solar Energy Cogeneration (SEC) concept capable of 60 



 

 

producing photovoltaic (PV) electricity and low temperature heat (up to 100 °C). The design 61 

employs readily available solar technology to provide affordable modern energy for low-62 

income off-grid households in developing countries and to increase solar energy collection 63 

potential per unit area relative to conventional solar collectors. It is a scalable modular unit, 64 

deployable as a ground or roof mounted installation. Fig. 1 shows the general framework of 65 

the AFRICaS SEC prototype. It combines a standard PV subsystem, a solar water heater 66 

subsystem and their related energy storage functions. The solar water heater subsystem is a 67 

horizontal thermal diode Integrated Collector Storage Solar Water Heater (ICSSWH) with 68 

cylindrical vessels (Muhumuza et al., 2019b; Pugsley et al., 2019) set within an East-West line-69 

axis asymmetric non-imaging involute reflector. The asymmetric involute reflector fits the 70 

description of Compound Parabolic Concentrators (CPCs), a collective definition of a variety 71 

of useful non-imaging reflectors with and without parabolic sections (Winston, 2016; Widyolar 72 

et al., 2017). Section 2.1 describes the rationale for the selection of the reflector profile in the 73 

current research. 74 

 75 

Fig. 1. System concept of the Asymmetric Formed Reflector with Integrated Collector and 76 

Storage (AFRICaS) Solar Energy Cogeneration (SEC) prototype (Muhumuza et al., 2019a) 77 

The design of non-imaging reflectors in line-axis solar thermal and PV collectors finds three 78 

important limitations (Tabor, 1984), namely: a) material cost due to excessive reflector size, b) 79 

hotspots on the absorber due to uneven solar radiation flux distribution, and c) stationary 80 

systems require high acceptance angles resulting in a low Concentration Ratio (CR). CR refers 81 

to the ratio of the aperture area to the absorber area and is an approximate factor by which the 82 



 

 

reflector increases the solar radiation flux incident on the absorber surface (Duffie and 83 

Beckman, 2013). A high geometrical CR in non-imaging reflectors narrows the acceptance 84 

angle (i.e., the system’s field of view of incident solar radiation), resulting in the need for 85 

periodic single and/or two-axis sun tracking (Horta et al., 2016; Kalogirou, 2016). While the 86 

reflector is often truncated to manage cost and the acceptance angle reduced to increase the 87 

CR, the problem of uneven solar radiation flux distribution is inherent in many practical designs 88 

of non-imaging reflectors, leading to a collective consequence of non-uniform illumination of 89 

the absorber.  90 

Non-uniform illumination is the unintended result of using non-imaging reflectors and creates 91 

high temperature zones on the absorber. While high thermal conductivity materials may 92 

overcome such hot zones on solar thermal absorbers, the resulting impact on efficiency in PV 93 

absorbers is problematic. Thus, the determination of solar radiation distribution on absorber 94 

surfaces is an essential component of realizing optimal non-imaging reflector designs in solar 95 

energy collectors. Literature reports many interesting non-imaging concentrator topics 96 

including:- a general comparison of solar concentrators (Rabl, 1976a), line-axis CPCs optical 97 

and thermal analysis (Norton et al., 1991), static designs for bifacial receivers (Benitez et al., 98 

1999), concepts in stationary and passive applications (Madala and Boehm, 2017); design 99 

principles and recent technology advances (Tian et al., 2018), and combined elements or optical 100 

surfaces (Ma et al., 2019). Non-imaging reflectors are devices which concentrate solar radiation 101 

onto a receiver without producing an image of the light source. Their design utilizes extreme 102 

angular rays (or edge-rays), so that rays near the axis are out-of-focus, but all are still collected  103 

(O’Gallagher, 2008) resulting in a wide angular field of view in symmetric and asymmetric 104 

stationary systems for a given geometric CR. This research employs computer simulation and 105 

detailed experimental techniques to determine the optical performance of the asymmetric CPC 106 

reflector in the AFRICaS prototype. 107 

Past studies developed theoretical and experimental methods to predict the distribution of solar 108 

radiation flux on receivers in concentrating systems with non-imaging reflectors. Theoretical 109 

literature exists employing various ray-tracing techniques including: graphical sketching and 110 

elaborate two dimensional (2D) and three dimensional (3D) ray-tracing simulations. 111 

Waghmare and Gulhane (2016) carried out a graphical ray tracing procedure, building on the 112 

work of Riveros and Oliva (1986), through a 2D Computer Aided Design approach to obtain 113 

the optimal placement of the absorber in a CPC structure. Guiqiang et al (2013) performed 114 



 

 

optical ray tracing analysis of a lens-walled CPC using optical software (LightTools) that 115 

imports the model of the CPC reflector profile designed using 3D Computer Aided Design 116 

software . Many other scholars (Zacharopoulos et al., 2000; Zacharopoulos, 2001; Sarmah et 117 

al., 2011; Yurchenko et al., 2015; Ustaoglu et al., 2016; Paul, 2019) employed elaborate 118 

simulations that consider Fresnel formulas, optical properties of air, transparent media, and 119 

specular properties of reflector surfaces. Others (Rabl, 1976b; Souliotis and 120 

Tripanagnostopoulos, 2008; Souliotis et al., 2019) performed detailed optical assessments of 121 

CPCs through a theoretical evaluation of Average Number of Reflections (ANR) as an 122 

alternative to the ray tracing approach. 123 

Zacharopoulos et al (1996) performed optical analysis of four different absorber-envelope 124 

configurations in a CPC using a ray tracing model (RTM). The RTM considered diffuse and 125 

beam solar radiation whereby diffuse solar radiation modelling evaluated the effect of three 126 

skyward angular distributions (Prapas et al., 1987), i.e., isotropic, cosine, and hybrid Gaussian. 127 

Regardless of the specific RTM, prudent research also conducts a practical validation of 128 

theoretically determined solar radiation flux maps through a suitable experimental procedure. 129 

Smyth et al (1999b) employed thermocouples to predict solar radiation flux mapping in CPC 130 

systems with flat and cylindrical thermal absorbers. Other experimental studies employed 131 

commercial variants of PV cells (photodetectors) to establish solar radiation flux distribution 132 

measurements on absorber surfaces such as the silicon PIN photodiode (Simon and Kalinka, 133 

2005) used by Adsten et al (2004) and Hatwaambo et al (2008). 134 

Standard PV cells can enable the design of custom devices to determine solar radiation flux 135 

distribution on absorber surfaces in the laboratory. Scholars (Zacharopoulos et al., 2012; Paul 136 

et al., 2013) employed isolated PV cells in a configured CPC prototype to determine the 137 

quantity and distribution of solar radiation intercepting the absorber by correlating the short 138 

circuit current measured at the aperture of the CPC and absorber. Bhowmik and Kandpal (1988) 139 

used PV cells to characterise solar radiation flux on a triangular absorber in a linear solar 140 

concentrator. Guiqiang et al (2013) used PV cells to determine solar radiation flux distribution 141 

on the absorber in CPC concepts with mirror and lens walled surfaces by observing variations 142 

in Fill Factor. However, the majority of past experimental work considered standard PV cells 143 

to determine solar radiation flux distribution on absorbers with planar surfaces.  144 

This article extends the use of standard PV cells to determine solar radiation flux distribution 145 

in cylindrical absorbers. Cylindrical absorbers are prominent in concentrating solar thermal 146 



 

 

collectors but cylindrical PV concepts (Hiraki et al., 2012) are also emerging. The present work 147 

develops a new experimental device to determine solar radiation flux distribution and CR. This 148 

device is new in a sense that it extends the PV cell method of past scholars who investigated 149 

flux distributions on flat absorbers  (Zacharopoulos et al., 2012; Paul et al., 2013) and applies 150 

it to a cylindrical absorber. The experimental method is similar to that used by past scholars in 151 

a sense that it utilises short circuit current measurements to determine geometric CR. 152 

2. Asymmetric CPC design, construction and methods 153 

2.1. Asymmetric CPC design 154 

Recent research (Muhumuza et al., 2019b) found that a poor field of view of solar radiation in 155 

a basic horizontal configuration of a thermal diode ICSSWH with cylindrical vessels constrains 156 

heat transfer to the absorber zone where the Heat Transfer Fluid (HTF) Phase Change Material 157 

(PCM) resides. This is because the solar radiation reaching the desired absorber zone (denoted 158 

“CDE” on Fig. 2a) is insufficient, resulting in suboptimal operation of the thermal diode. 159 

Pugsley et al (2019) provides a clear technical description of the operation of such thermal 160 

diodes. Insufficient solar radiation in the desired absorber zone reduces evaporation and vapour 161 

mass transfer rates within the thermal diode resulting in increased absorber surface heat loss 162 

and reduced rate of heat transfer into the inner vessel (storage tank). Fig. 2b shows that a 163 

suitable reflector design could increase solar radiation in the desired absorber zone, thereby 164 

increasing evaporation of the working fluid and the rate of latent heat transfer to the inner 165 

storage vessel. 166 

 167 



 

 

Fig. 2. A basic cylindrical thermal diode ICSSWH (Muhumuza et al., 2019b) (a) receives 168 

poor sunlight in the desired absorber zone ‘CDE’ interfacing the Phase Change Material 169 

(PCM) heat transfer fluid, (b) a suitable reflector can divert sunlight to the desired zone. 170 

Fig. 3a shows the selected untruncated asymmetric CPC reflector profile PB of an inverted 171 

involute curve. The reflector provides a significant volume of hot air trap (convection-172 

suppressing cavity) near the targeted region of the absorber as shown in Fig. 3b. Past research 173 

(Tripanagnostopoulos and Yianoulis, 1992; Tripanagnostopoulos et al., 2000, 2002; Souliotis 174 

et al., 2011) highlighted the benefit of having a hot air trap adjacent to the absorber in cavities 175 

of reverse asymmetric reflector designs. It substantially reduces convection heat transfer from 176 

the absorber to the ambient particularly for single tank cylindrical solar collectors, which is 177 

beneficial for the overall heat retention performance of the thermal diode ICSSWH.  178 

 179 

Fig. 3. Geometry showing (a) the selected untruncated asymmetric CPC profile and (b) the 180 

truncated asymmetric CPC structure that provides solar radiation around the absorber area 181 

NCDP′EP with a hot air trap near the targeted absorber surface denoted “CDE”. 182 

The following description focuses on the truncated asymmetric CPC profile shown in Fig. 3b. 183 

The reflector profile is a circle’s involute curve (Chaves, 2016; Guichard et al., 2019) and 184 

originates at P in contact with the absorber surface whereby OP makes an angle of 45° with 185 

OE to achieve a significant volume of stagnant hot air. The tangent at P′  on the absorber 186 

remains perpendicular to the tangent of the circle’s involute curve at their intersection at Q. P′ 187 

signals that point P is a moving point, which traverses the circumference of the absorber while 188 

defining different lengths of the absorber tangent P′𝑄 for different 𝑄(𝑥, 𝑦) coordinates of the 189 

involute curve. A rotation angle of ∅ =
5𝜋

3
 radians measured from OP truncates the reflector to 190 

minimise reflector material cost and defines the aperture MN at a tilt angle of 15° with the 191 

horizontal allowing rainwater runoff to minimise soiling of the glass cover. For applications in 192 

equatorial latitudes (up to 35° north and south of the equator), a tilt angle of 15° allows 193 

operation of the AFRICaS prototype in a fixed position while keeping the solar radiation 194 



 

 

incident on the aperture near the optimal value. By slightly oversizing the receiver or slightly 195 

undersizing the circle’s involute curve, most reflected light should reach the receiver after one 196 

or two reflections. Geometrical interpretation derives Eq. (1) as the parametric equation of the 197 

truncated asymmetric CPC, 198 

 
𝑥 =

𝑅

√2
[(1 + ∅) sin ∅ + (1 − ∅) cos ∅]

𝑦 =
𝑅

√2
[(1 + ∅) cos ∅ − (1 − ∅) sin ∅]

  for 0 ≤ ∅ ≤
5𝜋

3
 (1) 

where 𝑅 is the radius (in mm) and Ø is the rotation angle (in radians) from OP. A radius of 199 

𝑅 = 𝑅2 = 100 mm (the radius of the outer cylindrical vessel in the current study) creates an 200 

optical cavity depth and width of 482 mm and 751 mm, respectively. The fabricated prototype 201 

has an aperture width MN = 459 mm and an aperture length of 981 mm, resulting in an aperture 202 

surface area of  Aap = 0.45 m2 . Considering the illuminated surface area of the absorber 203 

NCDP′EP of Aabs = 0.46 m2, the reflector profile has a design geometric 𝐶𝑅 = Aap Aabs⁄ =204 

0.98 ≈ 1 . This is not considered as concentration (Hadjiat et al., 2018), but it achieves 205 

illumination of the targeted zone CDE on the absorber surface without the need for sun 206 

tracking. 207 

2.2. Materials, construction and methods 208 

Outdoor and indoor experiments employed PV cells to measure solar radiation flux on the 209 

absorber surface in order to verify results of the results from the ray tracing simulation. Sections 210 

2.2.1 and 2.2.2 describe fabrication, preparation and utilization of the new device of miniature 211 

PV cell panels employed for indoor and outdoor validation experiments. The number of 212 

measurement positions around the cylindrical absorber determines the smoothness of the 213 

determined experimental solar radiation flux profile. The experimental plan adopted 12 214 

measurement positions of equal arc lengths around the circumference of the targeted section of 215 

the absorber. A smooth experimental flux profile is necessary in validating results from the 2D 216 

RTM but a judicious choice ensures a less laborious experiment. Similarly, the 2D RTM was 217 

prepared to produce results corresponding to the 12 experimental positions. Fig. 4 illustrates 218 

the solar radiation flux measurement positions around the absorber that comprise 12 equal arc 219 

lengths. Also shown, is the specification of experimental incidence angles in the experimental 220 

and ray tracing methodology. The experimental measurements were taken central to the 221 

longitudinal axis of the absorber, at about 490 mm from either end of the absorber in order to 222 



 

 

minimize end reflection effects and achieve a setup consistent with the computer-based 2D 223 

RTM. 224 

 225 

Fig. 4. The 12 arc lengths of flux measurement positions around the desired absorber region 226 

and the definition of incidence angles in the RTM and the experiment. 227 

2.2.1. Device fabrication and selection of suitable electrical conductors 228 

The new fabricated device consists of 12 discrete miniature PV panels to measure short circuit 229 

current around the cylindrical absorber according to the experimental scheme in Fig. 4. The 230 

PV cell strips are BP Solar Saturn crystalline silicon (c-Si) measuring  109 mm long ×231 

9 mm wide and 0.4 mm thick. Green et al (1988) and Bruton et al (2003) describe the specific 232 

features of the BP Solar Saturn crystalline silicon PV cells  and their laboratory performance 233 

in a 16 PV cell panel fabricated using larger area 7 cm long × 7 cm wide PV cells. Parallel 234 

connection of the PV cells in each miniature panel ensured the production of a measurable 235 

amount of current from any available solar radiation.  236 

Fig. 5 shows the dimensions and components of each fabricated miniature PV panel. Each 237 

miniature PV panel consisted of three strips of PV cells connected in parallel in a manual 238 

soldering process. Soldering of the PV cell strips employed appropriate lengths of tinned 239 

copper ribbons measuring 2.5 mm wide and 0.2 mm thick  in cross-sectional area, using 240 

recommended soldering temperatures. Overall, each complete miniature PV panel measured 241 

120 mm long × 39 mm wide and 2.5 mm thick with the width considered tangential to the 242 

absorber circumference. A 2.5 mm thick Perspex substrate provided the support base for the 243 



 

 

soldered PV cell strips using double-sided adhesive tape. The exposed circumferential length 244 

of the desired region of the absorber is 471 mm and resulted in an approximate arc length of 245 

39 mm for each miniature PV panel. 246 

 247 

Fig. 5. Schematic structure of one of the fabricated miniature PV panels consisting of three 248 

BP Saturn monocrystalline PV cell strips (each 109 mm long x 9 mm wide and 0.4 mm thick) 249 

connected in parallel using tinned copper ribbons (2.5 mm wide x 0.2 mm thick) and attached 250 

on a Perspex substrate support (120 mm long x 39 mm wide and 2.5 mm thick) using double 251 

sided adhesive tape 252 

The aperture of the prototype must be unshaded during experiments. This precludes direct 253 

access to the electrical terminals of each miniature PV panel and necessitates extending wires 254 

through one end of the prototype. Therefore, fabrication considered extending the positive and 255 

negative terminals of each miniature PV panel for a total length of 600 mm without 256 

significantly increasing the electrical resistance of the setup. To select an appropriate electrical 257 

conductor, an experiment was undertaken to evaluate two wire options, i.e., low-weight tinned 258 

copper ribbon measuring 1.5 mm wide and 0.2 mm thick ≅ 0.3  mm2 in cross-sectional area 259 

and low resistance single core stranded copper wire of nominal cross-sectional area 2.5  mm2. 260 

The experiment consisted of placing one of the miniature PV panels under a solar simulator 261 

and measuring the incident irradiance using a Kipp & Zonen-CM11 pyranometer (calibrated 262 

on 15th June 2018 in accordance with ISO 9847, type IIc) connected to a digital multimeter 263 

(Mastech MAS830L) to measure voltage. Conversion of the voltage measurement of the 264 

pyranometer, 𝑉pyra  (in millivolt) into the corresponding irradiance, 𝐺  (in W/m2 ) at the 265 

mounting position utilised Eq.(2), 266 

 𝐺 = 𝑉pyra × 1000 𝜕𝐺⁄  (2) 



 

 

where, 𝜕𝐺  is the light sensitivity a Kipp & Zonen-CM11 pyranometer with a value 267 

4.66 𝜇V/W m2.  268 

Two handheld multimeters and the an I-V tracer (Daystar DS1000) were then installed 269 

according to the circuit schematic in Fig. 6 and  current and voltage outputs of the miniature 270 

PV panel were measured for measured solar radiation of 858 ± 21 W/m2  and 987 ±271 

21 W/m2  provided by the solar simulator at the mounting position. The uncertainty of 272 

±21 W/m2 in the measured irradiance is due to the resolution of the voltage display (one 273 

decimal place) of digital multimeter. A resolution of 0.1 mV of the digital multimeter means a 274 

rounding error of ±0.05 mV, resulting in an uncertainty of ± 10.7 W/m2 using Eq.(2) and an 275 

expanded uncertainty of ±21 W/m2 with a coverage factor of 𝑘 = 2 (UKAS, 2012).  276 

 277 

Fig. 6. Circuit schematic to evaluate suitable electrical conductors to extend the positive and 278 

negative terminals using one of the miniature PV panels, two handheld digital multimeters to 279 

measure current and voltage and an I-V tracer (Daystar DS1000). 280 

The experiment measured voltage and current produced by one miniature PV panel mounted 281 

in position for three scenarios: (a) no terminal extending wires, (b) terminals extended with 282 

low-weight tinned copper ribbon (estimated weight 2.9 g/m) and (c) terminals extended with 283 

low resistance single core stranded copper wire (nominal weight 35 g/m). The setup utilised 284 

for testing the different experimental scenarios under the solar simulator is shown in the 285 

photograph of Fig. 7. As expected, low resistance single core stranded copper wire performed 286 



 

 

better than low-weight tinned copper ribbon but resulted in a heavy and rigid device. The thick 287 

low resistance single core stranded copper wire was difficult to handle and caused kinks at 288 

soldered joints, breaking terminal connections and damaging the soldered contacts at the PV 289 

cells during wire routing. 290 

 291 

Fig. 7. Experimental testing of appropriate terminal extending wires using a single miniature 292 

PV panel 293 

Consequently, low-weight tinned copper ribbon was selected as a favourable alternative to low 294 

resistance single core stranded copper wire for extending the terminals of each miniature PV 295 

panel. Low-weight conductors have a higher electrical resistance which could produce 296 

erroneous current measurements with a handheld digital multimeter at higher irradiance levels. 297 

However, a photovoltaic I-V curve tracer DS-1000 (Daystar, n.d.) is capable of presenting zero 298 

impedance at the extended terminals of miniature PV panels as opposed to a handheld digital 299 

multimeter which has internal impedance. The Daystar I-V tracer DS-1000 varies the 300 

impedance of its internal capacitive load from zero to infinity. This changes the operating point 301 

of the miniature PV panel from short-circuit current condition to open-circuit voltage condition 302 

to obtain an I-V curve.  303 



 

 

Fig. 8 depicts the fabricated device consisting of 12 discrete miniature PV panels and the 304 

extension of the positive and negative terminals using low weight tinned copper ribbons. A 305 

handheld digital multimeter confirmed functional operation of each parallel connection the 306 

soldered PV cell strips as shown in Fig. 8a. The bare tinned copper ribbon wires were insulated 307 

using heat shrink tubing (diameter 2.5 mm and shrinkage ratio 1:3) colour coded at the ends 308 

(yellow for positive and black for negative) to prevent short-circuiting during wire routing as 309 

shown  in Fig. 8b. Fig. 8c shows the completed device consisting of 12 discrete miniature PV 310 

panels with terminal extending wires and hooked on two flexible Velcro strands. Fig. 9 shows 311 

the mounting of the completed device on the absorber of the prototype and the routing of 312 

terminal extending wires for external access during experimental measurements. The wires 313 

were indexed with numbers corresponding to the number positions of the discrete miniature 314 

PV panels placed around the cylindrical absorber (see Fig. 4) to ensure a robust experiment.  315 



 

 

 316 

Fig. 8. The fabrication process from (a) soldering of PV cell strips with tinned copper ribbons 317 

to create each miniature PV panel, (b) extending the positive and negative terminals for the 318 

12 miniature PV panels and an additional spare, (c) to the completed device of 12 miniature 319 

PV panels on flexible Velcro tape strands pending mounting around the cylindrical absorber.320 
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 321 
Fig. 9. Preparation of the experiment. (a) the wrapping of two Velcro strands (loop side) 322 

around the cylindrical absorber of the thermal diode ICSSWH mounted in the AFRICaS 323 

prototype, (b) the miniature PV panels hooked on the Velcro strand loops around the 324 

cylindrical absorber and (c) additional instrumentation and the complete experimental rig 325 

with wires extending electrical terminals of the 12 miniature PV panels hooked around the 326 

absorber for external access. 327 

2.2.2. The indoor and outdoor experimental procedure 328 

Indoor and outdoor experiments maintained the same set of instruments described in the 329 

foregoing sections including a pyranometer, handheld digital multimeter, PV I-V tracer and the 330 

fabricated device of 12 miniature PV panels. A thick piece of polystyrene foam insulation 331 

measuring 981 mm long × 523 mm wide and 50 mm thick was used to cover the aperture 332 

between measurements to avoid overheating of the PV cells in high solar radiation flux zones 333 

on the cylindrical receiver. A digital K-Type thermocouple reader (TENMA 72-7715) enabled 334 

continuous monitoring of the cavity temperature of the CPC reflector in the prototype 335 

enclosure. Solar radiation on the aperture at the various angles of incidence was measured as 336 

described in section 2.2.1 using a Kipp & Zonen-CM11 pyranometer connected to a digital 337 

multimeter (Mastech MAS830L). 338 

The indoor experiment involved placing the AFRICaS prototype under a solar simulator 339 

maintaining an appropriate distance (1.8m from lamps to AFRICaS aperture) to ensure the 340 

uniformity of artificial solar radiation and enable sufficient collimation. The solar simulator 341 

employs an array of 35 metal halide lamps and an earlier study (Zacharopoulos et al., 2009) 342 

established average uniformity and average collimation of 95 % and 83 %, respectively with 343 

reference to the AM 1.5 spectrum. Arya et al (2018) present a concise description of the indoor 344 

https://www.sciencedirect.com/topics/engineering/polystyrene-foam
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solar simulator, its functional features and the spectral output. Fig. 10 shows the solar 345 

simulator, its light output spectrum compared to the AM 1.5 standard reference spectrum and 346 

the spectral responsivity (i.e., the ratio of the current produced by the PV cell to the radiative 347 

power incident on the PV cell in ampere per watt (A/W)) of a crystalline silicon PV cell. Tilting 348 

the solar simulator with respect to the aperture of the AFRICaS prototype achieved the required 349 

angles of incidence ranging from  −60° ≤ 𝜃𝑖 ≤ 60°  relative to the aperture plane normal. 350 

Angular tilt measurements of the solar simulator were measured using a digital inclinometer 351 

(FISCO Solatronic). For each angle of incidence, solar radiation intensity measurements were 352 

made on the aperture plane and two sets of readings from the miniature PV panel array were 353 

performed, both with and without glazing on the aperture. All experiments were undertaken 354 

with the Solar Simulator’s IR filter in place to remove unrealistic infrared spectral components 355 

generated by the metal halide lamps.   356 

 357 

Fig. 10. Indoor solar simulator. Graph on the right shows the spectral output compared with 358 

AM 1.5 standard reference spectrum and the typical normalised spectral responsivity of 359 

crystalline silicon (Arya, 2014; Dirnberger et al., 2015; Theristis et al., 2018) 360 

For outdoor experiments, the AFRICaS prototype was moved to the roof of the main laboratory 361 

building of Ulster University at Jordanstown campus, Northern Ireland, UK (54°41′10″ N 362 

5°52′55″ W) as shown in Fig. 11a. For each duration of 12 outdoor measurements (one for each 363 

miniature PV panel in place around the absorber arc), a custom-built device (Fig. 11b) was 364 

utilised to ensure that the solar vector remained in the meridian plane of the AFRICaS aperture. 365 

In addition, circles with radii corresponding to the shadow-length of a pin fixed normal to the 366 
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surface of the custom-built device in Fig. 11b enabled tilt adjustments to set incidence angles 367 

from −60° ≤ 𝜃𝑖 ≤ 60° relative to the aperture plane normal. System alignment with the solar 368 

vector at the custom incidence angle-setting rig was checked at 4-minute intervals and adjusted 369 

to minimize alignment errors. A 4-minute interval corresponds to a one-degree change in the 370 

solar hour angle. All measurements were taken under clear sunny days while recording the total 371 

and diffuse solar radiation in the plane of the aperture. The diffuse part of solar radiation was 372 

measured using a custom-made opaque circular cardboard disc of 80 mm diameter (see Fig. 373 

11c), which shaded the pyranometer thereby screening out the direct solar beam.  374 

 375 
Fig. 11. Outdoor experimental setup. (a) AFRICaS prototype during outdoor measurement of 376 

the reference short circuit currents on the aperture including the (b) purpose made incident 377 

angle-setting rig and the (c) purpose made shading disc to facilitate the measurement of 378 

diffuse solar radiation. 379 

Optical efficiency and the distribution of solar radiation flux around the cylindrical absorber 380 

are a function of the angle of incidence of solar radiation on the aperture. The short-circuit 381 

current produced by PV cells is proportional to the incident solar radiation intensity (Labouret 382 

and Villoz, 2010). Indoor and outdoor experiments validated this using one of the fabricated 383 

miniature PV panels to verify the relationship between short circuit current and solar radiation 384 

intensity as depicted in section 3.2, Fig. 14. The ratio of the total radiation measured on the 385 

absorber, 𝐺abs  (in W/m2 ) to the total radiation measured on the aperture, 𝐺ap  (in W/m2 ) 386 

provides an estimate of the dimensionless local CR produced by the reflector according to 387 

Eq.(3), 388 

 𝐶𝑅 = 𝐺abs 𝐺ap⁄ = 𝐼SC,abs 𝐼SC,ap⁄  (3) 



 

Page 18 of 37 

 

where, 𝐼SC,abs  is the short-circuit current measured with an individual miniature PV panels in 389 

one of the 12 positions around the receiver and 𝐼SC,ap is the short-circuit current measured with 390 

an individual miniature PV panel placed on the aperture of the AFRICaS aperture.  391 

Several tests were undertaken to determine reference responses of the PV panels and to verify 392 

their linearity in terms of the relationship between irradiance (𝐺ref) and short circuit current 393 

( 𝐼SC,ref) . Due to differences in outdoor and indoor solar radiation conditions, reference 394 

conditions were established in separate indoor and outdoor experiments. Current-Voltage (I-395 

V) curves were obtained using a photovoltaic I-V curve tracer, DS-1000 (Daystar, n.d.), via a 396 

computer for accurate determination of the short circuit current produced by the individual 397 

miniature PV panels in their respective positions. Using reference values determined from 398 

initial measurements, Eq.(4) was used to obtain the short circuit current (𝐼SC,ap) corresponding 399 

to the measured solar radiation on the aperture (𝐺ap) for a particular incidence angle.  400 

 𝐼SC,ap = (𝐼SC,ref × 𝐺ap) 𝐺ref⁄  (4) 

2.2.3. Ray Tracing Model (RTM) and simulation 401 

Simulation of the solar radiation flux distribution on the absorber of the prototype employed a 402 

computer-based 2D RTM for several incidence angles ranging from −60° ≤ 𝜃𝑖 ≤ 60°. The 403 

RTM has been progressively developed in-house by Centre for Sustainable Technologies 404 

(CST) at Ulster University and validated in previous studies (Smyth et al., 1999a; 405 

Zacharopoulos, 2001; Souliotis et al., 2011; Zacharopoulos et al., 2012). Computer-based ray 406 

tracing simulations employed 5,000 rays for each incidence angle. The model traces each ray 407 

entering the aperture of the reflector until it intercepts the absorber or until it exits through the 408 

aperture of the system after multiple reflections (Zacharopoulos et al., 2012). Table 1 shows 409 

optical properties of materials in the ray tracing simulation, corresponding to material 410 

properties in the fabricated AFRICaS prototype. The RTM assumes parallel incident rays in 411 

the meridian of the reflector, ignoring end reflection effects. Results from the ray tracing 412 

simulation were analysed to visualise calculated values of concentration ratio around the 413 

desired region of the absorber thereby enabling experimental validation in accordance with Fig. 414 

4 in section 2.2.415 
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Table 1 416 

Materials, devices and associated parameters 417 

Material or device Parameter Unit Value/dimensions 

Ordinary glass (aperture 

glazing) 

Extinction coefficient 

(Kreith and 

Krumdieck, 2013)   

m-1 19.69 

Length x Width x 

Thickness 
mm 1108 x 700 x 4 

Refractive index - 1.526 

Reflector (MIRO-SUN®) 

(Alanod-Solar, n.d.) 

Specular reflectance - 0.87 

Length x Width x 

Thickness 
mm 1337 x 981 x 0.5 

Receiver/ outer 

cylindrical vessel 
Radius mm 100 

Pyranometer Spectral sensitivity 𝜇V/W m2 4.66 

PV I-V Tracer Model number - Daystar DS1000 

BP Solar Saturn c-Si PV 

cell strip 

Length x Width x 

Thickness 
mm 109 x 9 x 0.4 

Perspex substrate 
Length x Width x 

Thickness 
mm 120 x 39 x 2.5 

Heavy-duty sticky back 

and reusable Velcro tape 
Width x Thickness mm 25 x 2 

Heat shrink tubing 
Diameter mm 2.5 

Shrinkage ratio - 1:3 

Tinned copper ribbons 

(Solder type: 96.5% Tin, 

3% Silver and 0.5 

Copper) 

Weight g/m 2.9 

Cross-sectional area  mm2 0.3 

Stranded copper wire 
Weight g/m 35 

Cross-sectional area  mm2 2.5 

Digital multimeter 

(Mastech  MAS830L) 

DC current range A 10 

DC current resolution mA 10 

DC voltage range mV 200 

DC voltage resolution µV 100 

Digital multimeter 

(AMPROBE AM-510-

EUR) 

DC voltage range V 4 

DC voltage resolution mV 1 

Solar Simulator 

(Zacharopoulos et al., 

2009) 

Number of metal 

halide lamps 
- 35 

Lamp rows x columns - 7 x 5 

Lamp housing (length 

x width x depth) 
mm 

2750 x 2020 x 

350 

EN17 digital 

inclinometer, FISCO 

Solatronic 

Accuracy 

specifications 
Degrees (°) 

±0.05° (for 0°, 

90°) , ±0.2 (for 

other angles 1° to 

89°) 
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3. Results and discussion 418 

3.1. Optical results from the ray tracing simulation 419 

Fig. 12 considers a practical range of incidence angles on the aperture to show results of the 420 

ray tracing simulation including optical efficiency and angular acceptance function of the 421 

asymmetric CPC profile. The angular acceptance function confirms that the inverted 422 

asymmetric CPC design provides a significant field of view with angular acceptance ranging 423 

from 93.5% to 99.1% for incidence angles ranging from 45°  to −45° , respectively. The 424 

incidence angle of solar radiation is the angle between the perpendicular plane at the aperture 425 

of the collector and the incident ray as earlier depicted in Fig. 4. The optical efficiency increases 426 

from 64.6 % at an incidence angle of 0° and reaches 74.0% for incidence angles in the 427 

range −40° ≤ 𝜃𝑖 ≤ −45°.  428 

 429 

Fig. 12. Ray tracing model results showing optical efficiency and angular acceptance for the 430 

glazed asymmetric CPC as functions of the incidence angle. 431 

Fig. 13 presents a summary of ray tracing simulation results of local concentration ratio around 432 

the illuminated circumference of the absorber for various angles of incidence ranging from 433 

−60° ≤ 𝜃𝑖 ≤ 60°. It also highlights the concerned targeted area of the absorber (CDE) and the 434 

preferred focal point (D). It is clear from the results that the asymmetric CPC profile distributes 435 

solar radiation flux around the targeted absorber surface to target the base of the ICSSWH 436 

where the phase change heat transfer fluid is located. The ray tracing simulation indicates that 437 
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the distribution of solar radiation flux is nonuniform – an inherent problem with non-imaging 438 

reflectors. At an incidence angle of 0°, the targeted zone (D) of the absorber receives a local 439 

CR reaching 1.3 suns but higher CRs up to 8.5 appear near the periphery of the targeted zone 440 

(E). This necessitates suitable absorber material to reduce the effect of hot spots. Ustaoglu et 441 

al (2016) found that copper and aluminium absorbers attain greater uniformity in temperature 442 

distribution on the absorber due to better thermal conductivity compared to stainless steel 443 

absorbers. Peaks of high local CR shift further away from the target zone (from E towards P) 444 

and into the inverted hot air cavity for increasing negative incidence angles but move further 445 

into the targeted zone (from E towards D) for increasing positive incidence angles. Installation 446 

of the device in a real operating scenario should therefore take account of this preference for 447 

positive incidence angles as opposed to negative ones in respect of the local seasonal variations 448 

in solar altitude.449 
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 450 

Fig. 13. Results of the ray tracing simulation for a glazed AFRICaS prototype showing (a) a 451 

ray tracing diagram for incidence angle θi = 0° indicating the targeted zone (CDE) of the 452 

absorber and the preferred focal point (D); and solar radiation flux distribution plots for (b) 453 

negative incidence angles from 0° to −60° and (c) positive incidence angles from 0° to 60°. 454 

3.2. Correlation of ray tracing, indoor and outdoor experimental results 455 

The proportional relationship between short-circuit current at the terminals of crystalline 456 

silicon solar cells and the intensity of solar radiation has significant importance in the current 457 

experimental methodology. Fig. 14 shows correlations of short-circuit current and the 458 

measured solar radiation intensity in a series of outdoor and indoor experiments for one of the 459 

fabricated miniature PV panels. There is a discrepancy between the correlations of the outdoor 460 

and indoor cases owing to the spectral mismatch between sunlight and light from metal halide 461 

lamp arrays of the solar simulator as earlier shown in Fig. 10. Li et al (2015) has shown that 462 

the spectral composition of indoor light has an important influence on the output of PV cells 463 

optimised for natural light. Fortunately, dividing the short circuit currents produced by the same 464 
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panels placed on the absorber and the aperture to calculate local concentration ratio using 465 

Eq.(3) eliminates the discrepancy.  466 

 467 

Fig. 14. Comparison of outdoor and solar simulator correlations between the measured light 468 

intensity and short circuit current output for a single fabricated miniature PV panel. 469 

Fig. 15 shows indoor and outdoor results of current-voltage curves of each miniature PV panel 470 

for the 0° incidence angle. During the indoor experiments with constant irradiance of 817 ±471 

21 W/m2, the short-circuit current around the 12 positions (see Fig. 4 and Fig. 9) for the glazed 472 

(Fig. 15a) AFRICaS prototype are up to 11 % lower than in the unglazed (Fig. 15b) prototype. 473 

This magnitude of losses is reasonable and occurs as solar radiation interacts with the glass 474 

cover. Duffie and Beckman (2013) indicate that the reflection losses associated with a single 475 

untreated glass pane reach 8 % without considering reflection losses on reflector surface.476 
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 477 

Fig. 15. Experimental results of I-V curves to derive short-circuit current values at an 478 

incidence angle of θi = 0° for (a) indoor testing of the unglazed AFRICaS prototype under the 479 

solar simulator at 817 ± 21 W/m2, (b) indoor testing of a glazed AFRICaS prototype under 480 

the solar simulator at 817 ± 21 W/m2; (c) outdoor testing of the glazed AFRICaS prototype 481 

for different corresponding (d) graphical values of total and diffuse solar irradiation measured 482 

on the glazed aperture. 483 

For the outdoor case, Fig. 15c shows a significant increase in the short-circuit currents due to 484 

higher outdoor irradiances but also reflects the better response of BP Solar Saturn crystalline 485 

silicon PV cells to natural light. Also shown in Fig. 15d, are graphical measurements of total 486 

and diffuse solar radiation values recorded on the aperture during each I-V curve measurement 487 

with the miniature panels placed on the absorber surface. The total solar irradiance on the 488 

collector aperture during the clear sky period of the day ranged from 966 ± 21 W/m2  to 489 

1073 ± 21 W/m2 whilst the measured diffuse component was as low as 100 ± 21 W/m2. At 490 

the incidence angle of 0°, panel 10 produces the highest short-circuit current in the outdoor 491 

experiment. The circumferential arc length covered by panel 10 in the ray tracing simulation 492 

ranges from 357 mm to 392 mm around the absorber (see Fig. 13) and is the region where ray 493 
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tracing predicts a peak local concentration ratio reaching 8.5 suns for the incidence angle of 0°. 494 

This outdoor experimental result is also consistent with the indoor experimental result for the 495 

glazed and unglazed prototype and validates the result of the ray tracing simulation. 496 

There is a considerable decline in the open circuit voltage produced by all miniature PV panels 497 

during the outdoor experiment compared to the open circuit voltage produced during the indoor 498 

experiments with unglazed (Fig. 15a) and a glazed (Fig. 15b) prototype. This arises from an 499 

increase in PV cell temperature (Joy et al., 2016). Notably so, the decrease in open circuit 500 

voltage during the outdoor experiment is greater for panel 10, 11 and 12 which are located near 501 

the hot air trap and hence are likely to be subjected to a higher local ambient temperature. 502 

Additionally, the miniature PV panels were close to the black painted absorber, which would 503 

become warmer overtime such that the rise in PV cell temperature due to internal heat 504 

generation under higher solar irradiance may be less important. The temperature of PV cells 505 

has been found to have a modest impact on the short circuit current (Tian et al., 2012; Yadav 506 

et al., 2013). Since the present research utilises short circuit current measurements, the decline 507 

in open circuit voltage is of insignificant importance. 508 

Fig. 16 compares the detailed experimental (outdoor and indoor) results of Fig. 15 and ray 509 

tracing simulation results of Fig. 13 for the incidence angle of 0°. Indoor experimental work 510 

and ray tracing simulations considered two scenarios of a glazed and unglazed prototype whilst 511 

outdoor experiments considered a glazed prototype only. There is significant consistency 512 

between the experimental results and the ray tracing simulation. The local CR defines the 513 

distribution of the solar radiation flux around the absorber surface. Each experimental 514 

measurement corresponds to the location of each miniature PV panel. Slight mismatches 515 

between ray tracing simulation predictions and measured results may be indicative of minor 516 

fabrication errors in certain sections of the asymmetric CPC profile or may be related to the 517 

fact that the ray tracing simulation is two dimensional and ignores end reflection effects that 518 

may be significant in the experimental prototype.519 
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 520 

Fig. 16. Prediction of local CR by the ray tracing simulation and comparison with 521 

experimental results (indoor and outdoor) for an incidence angle of θi = 0°. Also shown are 522 

the targeted zone CDE and preferred focal point D on the absorber circumference. 523 

Fig. A. 1 and Fig. A. 2 in the Annex provide complete summaries of local CR results from the 524 

ray tracing simulation, the indoor and the outdoor experiments for other incidence angles. A 525 

closer look indicates that a range of incidence angles −30° ≤ 𝜃𝑖 ≤ 30° produces a CR greater 526 

than 1-sun in the absorber region interfacing the PCM, i.e., panels 5, 6, 7 and 8. This is an 527 

important finding for technical deployment of horizontally operating thermal diode ICSSWHs 528 

with an asymmetric CPC reflector in equatorial latitudes. The asymmetric inverted CPC 529 

reflector enables illumination of the bottom part of the absorber vessel and improvement of the 530 

thermal diode is probable but remains to be proven beyond doubt in future experimental work. 531 

Fig. 17 summarises the experimental and simulated optical efficiencies of the glazed (Fig. 17a) 532 

and unglazed (Fig. 17b) cases of the asymmetric CPC reflector in the AFRICaS prototype as a 533 

function of incidence angle. There is close similarity in optical efficiency results predicted by 534 

the RTM and those derived from the indoor solar simulator and outdoor experiments for the 535 

glazed case, but a pronounced difference between the RTM and indoor solar simulator results 536 

for the unglazed case. As expected, glazing affects the optical efficiency. 537 
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 538 

Fig. 17. Variation of optical efficiency of the AFRICaS prototype as a function of incidence 539 

angles: (a) indoor, outdoor and ray tracing simulation for a glazed subsystem, (b) indoor and 540 

ray tracing simulation for unglazed subsystem. 541 

Table 2 summaries percentage differences between the modelled and experimentally realised 542 

optical efficiencies for the AFRICaS prototype and compares these with results from 543 

Zacharopoulos et al (2012) who investigated the performance of a different type of non-544 

imaging reflector using similar techniques. There was no outdoor testing of the unglazed 545 

AFRICaS prototype in the present work whilst outdoor and indoor testing by Zacharopoulos et 546 

al (2012) considered an unglazed device only. The main observations are: a) Indoor tests give 547 

consistently lower optical efficiencies than the ray tracing simulation and also generally give 548 

lower optical efficiencies than outdoor tests probably due to poor collimation, b) Ray tracing 549 

simulations give optical efficiencies which, on average, are similar to those achieved in practice 550 

outdoors, although some significant differences between predictions and measurements occur 551 

at specific angles (presumably owing to inaccuracies in the reflector construction, PV cell 552 

placement, solar vector alignment and other experimental limitations).553 
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Table 2 554 

Comparison between studies of percentage differences in predicted results of optical efficiency in experiments using PV cells (indoor/outdoor) 555 

and in the ray tracing simulation considering glazed and unglazed prototypes. 556 

Research work 

Incidence 

angle (°) 
Outdoor vs indoor (%) Outdoor vs ray tracing (%) Indoor vs ray tracing (%) 

 Unglazed Glazed Unglazed Glazed Unglazed Glazed 

This work 

-30 - 11.8 - -4.0 -18.6 -18.0 

-15 - 7.9 - -4.0 -14.5 -12.9 

0 - 13.5 - 7.8 -14.0 -6.6 

15 - 5.6 - 1.7 -22.1 -4.0 

30 - 11.0 - 8.4 -6.0 -3.0 

(Zacharopoulos et al., 

2012) 

-30 2.2 - -3.2 - -5.5 - 

-15 3.0 - -1.7 - -4.8 - 

0 1.7 - -3.8 - -5.6 - 

15 3.0 - -1.7 - -4.9 - 

30 -2.2 - -11.8 - -9.4 - 

557 
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3.3. Investigation of accuracy in reflector realisation 558 

The ray tracing simulation generated results by utilising Eq.(1) to construct a perfect reflector 559 

curve of Fig. 3b. The artisanal fabrication process realised the inverted involute curve by 560 

providing nine wooden supporting ribs to establish a support base for curving the reflector 561 

material. There are intrinsic inaccuracies in the reflector construction and extrinsic inaccuracies 562 

in performing the experiment such as placement of PV cells, incidence angle setting, solar 563 

vector alignment and other experimental limitations. While the degree of extrinsic inaccuracy 564 

in the experiment may be minimised by adequate experimental design, intrinsic inaccuracy in 565 

the reflector construction are irremediable from experimental results. To investigate the impact 566 

of inaccuracy due to residual fabrication errors, WebPlotDigitizer (Rohatgi, 2019) was used to 567 

generate a set of 108 random coordinates along the ideal reflector profile to mimic the artisanal 568 

fabrication process. Fig. 18 shows the distribution of the random points generated by the 569 

software along the ideal profile and indicates the placement of reflector wooden supporting 570 

ribs in the designed AFRICaS prototype. 571 

 572 

Fig. 18. Generation of a random imperfect reflector profile using WebPlotDigitizer (Rohatgi, 573 

2019) as an approximation of the artisanal fabrication process. 574 

The ray tracing diagrams for the 0° angle of incidence of the glazed AFRICaS prototype design 575 

are presented in Fig. 19a for the perfect reflector profile and in Fig. 19b for the randomly 576 

generated imperfect reflector profile. Fig. 19c presents a graphical comparison of local CR of 577 
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the imperfect reflector and the perfect reflector for the 0° incidence angle. A distortion in the 578 

reflected rays is evident on the ray tracing diagrams. A mismatch between the predicted local 579 

CR of the randomly generated reflector profile and the perfect reflector profile in Fig. 19c is of 580 

a similar pattern to the results in Fig. 16 except that it occurs at different locations of the 581 

absorber. The randomly generated reflector profile produces a similar effect as the actual 582 

reflector realised by the artisanal fabrication process. Thus, the degree of intrinsic inaccuracy 583 

in the presented experimental results of the actual fabricated reflector may be of greater 584 

importance than the degree of extrinsic inaccuracy of performing the experiment. 585 

 586 

Fig. 19. Results comparison at 0° incidence angle for a glazed AFRICaS prototype with ray 587 

tracing diagram of the (a) perfect reflector and the (b) imperfect reflector generated using 588 

WebPlotDigitizer (Rohatgi, 2019) and their (c) graphical comparison ray tracing results. 589 

4. Conclusions and future work 590 

This study develops a new experimental device to determine the distribution of solar radiation 591 

flux produced by an asymmetric CPC reflector around the absorber of a cylindrical thermal 592 

diode Integrated Storage Solar Water Heater (ICSSWH) using photovoltaic (PV) cells. It 593 

introduces the Asymmetric Formed Reflector with Integrated Collector and Storage 594 

(AFRICaS) system that achieves increased potential of solar radiation collection and 595 

corresponding heat flux distribution around a targeted section of the absorber with the aim of 596 

improving forward mode PCM heat transfer fluid evaporation rates. The study employs the 597 
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new device in indoor and outdoor experiments to quantify solar radiation flux distribution on 598 

a cylindrical absorber and to determine concentration ratios (CRs) and optical efficiencies for 599 

the purpose of validating a computer-based ray tracing model (RTM) developed at Centre for 600 

Sustainable Technologies (CST) at Ulster University. The experimental method demonstrates 601 

that beneficial CRs are attainable in the targeted section of the absorber for improved solar 602 

energy collection potential. CR reaches 1.4 suns at the receiver section interfacing the PCM for 603 

incidence angles −30° ≤ 𝜃𝑖 ≤ 30°. This range of incidence angles is useful for installations in 604 

equatorial latitudes. There is significant agreement between results from the ray tracing 605 

simulation and experiments. Future work should examine the current methodology in non-606 

imaging reflectors with higher CRs and explore automatic rendering of multiple I-V curves and 607 

rapid extraction of short-circuit currents. Additionally, experimental and analytical work 608 

should explore the performance improvement of the thermal diode due to providing sunlight in 609 

the targeted section of the absorber and the corresponding thermal collection improvement of 610 

the system. Finally, the RTM lacks diffuse solar radiation modelling and it would be of interest 611 

to adapt the model algorithms to improve predictions for climates where hazy and cloudy 612 

conditions are prevalent. 613 
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Annex A 623 

 624 

Fig. A. 1. Predictions of local concentration ratio around the absorber by ray tracing and 625 

experimental (indoor and outdoor) methods for a glazed and unglazed AFRICaS prototype 626 

(incidence angles -15°, 15°, -30° and 30°). Also shown are the targeted zone CDE and the 627 

zone of PCM. 628 
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 629 

Fig. A. 2. Predictions of local concentration ratio around the absorber by ray tracing and 630 

experimental (indoor and outdoor) methods for a glazed and unglazed AFRICaS prototype 631 

(incidence angles -45°, 45°, -60° and 60°). Also shown are the targeted zone CDE and the 632 

zone of PCM  633 
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