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Summary

Nonclinical in vivo animal studies have to be completed before starting clinical studies

of the pharmacokinetic behavior of a drug in humans. The drug exposure in animal studies

is often measured by the area under the concentration versus time curve (AUC). The classic

complete data design, where each animal is sampled for analysis once per time point, is

usually only applicable for large animals. In the case of rats and mice, where blood sampling

is restricted, the batch design or the serial sampling design needs to be considered. In batch

designs samples are taken more than once from each animal, but not at all time points.

In serial sampling designs only one sample is taken from each animal. In this paper we

present an estimator for the AUC from 0 to the last time point that is applicable to all

three designs. The variance and asymptotic distribution of the estimator are derived and

confidence intervals based upon the asymptotic results are discussed and evaluated in a

simulation study. Further, we define an estimator for linear combinations of AUCs and

investigate its asymptotic properties mathematically as well as in simulation.

Keywords: Area under the concentration time curve; AUC; batch design; sparse

sampling

1 Introduction

Pharmakocinetic studies aim to understand how an organism reacts to a drug and fre-

quently involves measuring the concentration of the drug in the blood. Under the additive

heteroscedastic model the observed concentration for subject i at time t is Yit = µt + εit,

where the errors, εit, have mean zero and finite variance, and are independent and iden-

tically distributed with continuous distribution Gt. Naturally the concentrations have to
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be non-negative and µt is the mean drug concentration at time t. The area under the

concentration versus time curve (AUC) from 0 to the last observed time point, tlast, is one

of the pharmacokinetic parameters of interest when measuring the exposure to the drug

and is defined as ∫ tlast

0
µtdt. (1)

Techniques to construct confidence intervals for the AUC from 0 to the last observed

time point based on the linear trapezoidal rule for the serial sampling design were pre-

sented in Bailer (1988), Tang-Liu and Burke (1988) as well as in Nedelman et al. (1995).

Procedures based on other rules to approximate the integral can be found in Nedelman

and Gibiansky (1996) and in Gagnon and Peterson (1998). Testing for difference of two

AUCs is discussed in Heinzl (1996) and in Bailer and Ruberg (1996) whereas testing for

equivalence is addressed by Hu et al. (2004), Wolfsegger (2007) and Jaki et al. (2008).

Estimation of the AUC from 0 to infinity in the case of serial sampling is addressed in

Wolfsegger and Jaki (2005).

Yeh (1990) extended the work of Tang-Liu & Burke for a special case of the batch

design assuming that subsets are sampled at mutually exclusive subsets of times. Nedel-

man and Jia (1998) extended this work to the general batch design with correlated data.

A unified approach for confidence intervals for AUCs that is applicable to the complete

data, batch and serial sampling designs was presented in Holder et al. (1999). A method

for constructing confidence intervals for the AUC in a batch design using a generalized

jackknife estimator for the standard error can be found in Singer and Berger (2003).
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In this note we build the theoretical framework for the unified approach of Holder et al.

which also justifies the generalized jackknife-based confidence interval by Singer & Berger.

Throughout this manuscript focus will be given to the batch design, as the serial sampling

design and the complete data design are special cases of it. Section 2 discusses an estimator

for the AUC based on the linear trapezoidal rule together with its central moments. We

then derive the asymptotic distribution and in a small scale simulation study evaluate

confidence intervals based on the asymptotic result. Section 3 presents an estimator for

linear combinations of AUCs. The asymptotic distribution is given and assessed through

simulation. The report concludes with an illustrative example and a brief discussion.

2 Area under the concentration versus time curve

Consider a study in which measurements are taken at J time points, {t1, . . . , tJ}, let B be

the number of batches in the study and let Jb ⊆ {1, . . . , J} be the indices of time points

investigated in batch b = 1, . . . , B. We consider the case where a specific time point tj is

only used in one batch, i. e. Jb ∩ Jb′ = ∅ ∀ b 6= b′ and
⋃B
b=1 Jb = {1, . . . , J}. Every subject

belongs to exactly one batch and has measurements at all time points of this particular

batch. Note that this construction covers both the serial sampling and the complete data

design. For the serial sampling situation, only one time point is included in each batch,

while for the complete data design only one batch with all time points can be used.

Since we do not observe a continous recording of the concentrations, Yit, over time,

the integral in Equation (1) needs to be approximated. In this note we choose to do so

by using the linear trapezoidal rule and consequently will define the AUC to be consistent
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with this approximation. For other approximations see for example Gagnon and Peterson

(1998). The total AUC from the first to the last time point using the linear trapezoidal

rule can therefore be defined as

AUC =
B∑
b=1

∑
j∈Jb

wjµtj =
J∑
j=1

wjµtj (2)

with weights, wj , equal to

w1 = 1
2 (t2 − t1)

wj = 1
2(tj+1 − tj−1) (2 ≤ j ≤ J − 1)

wJ = 1
2(tJ − tJ−1).

In order to estimate the total AUC and the associated standard error, we introduce the

partial AUC of batch b as pAUCb =
∑

j∈Jb wjµtj , for convenience. This partial AUC can

be thought of as the contribution of a given batch to the total AUC. It is, however, not the

total AUC for this batch, as the weights are computed based on all time points and not

just the ones observed for this batch. Although it seldomly is of interest to find the AUC

of a given batch due to the small number of observed time points, it could be estimated

using the total AUC for only this batch. With nb observations at each time point in batch

b, these AUCs can be estimated by

p̂AUCb =
1
nb

nb∑
i=1

∑
j∈Jb

wjYitj

ÂUC =
B∑
b=1

p̂AUCb =
B∑
b=1

1
nb

nb∑
i=1

∑
j∈Jb

wjYitj . (3)

2.1 Moments

It is easy to see that E
[
ÂUC

]
=
∑B

b=1

∑
j∈Jb wjµtj and hence the estimator of the total

AUC is unbiased. To find the variance of the AUC, consider first the variance of a partial
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AUC for one subject and denote Cov(Yitj , Yitk), the covariance of the drug concentration

of a subject between time points, as σtj ,tk . Then the variance of the partial AUC for the

ith subject is

V

∑
j∈Jb

wjYitj

 =
∑
j∈Jb

∑
k∈Jb

wjwkσtj ,tk

and because the subjects within each batch are independent the variance of the partial

AUC is

V
[
p̂AUCb

]
=

1
nb

∑
j∈Jb

∑
k∈Jb

wjwkσtj ,tk .

As batches are independent the variance of the total AUC is

V
[
ÂUC

]
=

B∑
b=1

1
nb

∑
j∈Jb

∑
k∈Jb

wjwkσtj ,tk . (4)

In practice the variance of the AUC needs to be estimated because the covariance is usually

unknown.

Lemma 1 Let σtj ,tk be estimated by the sample covariance between times tj and tk, then

V̂ (ÂUC) = θ̂2 =
B∑
b=1

s2b
nb

(5)

where s2b =
1

nb − 1

nb∑
i=1

(∑
j∈Jb

wjYitj −
1
nb

nb∑
k=1

∑
j∈Jb

wjYktj

)2
.

This result implies that the variance of the total AUC can be estimated based on the

sample variance of the individual partial AUCs for each batch which is in fact the estimator

proposed in Holder et al. (1999). The proof of this lemma is given in the appendix.

2.2 Asymptotic distribution

Lemma 2 Let Jb ⊆ {1, . . . , J} with Jb∩Jb′ = ∅ ∀ b 6= b′ and
⋃B
b=1 Jb = {1, . . . , J}, and let

each batch b be measured on a strictly monotone increasing sequence of fixed time points for

5



which the Lindeberg-Levy condition (e.g. Resnick, 1999) holds at every time point. Then

as nb →∞,

√
nb
p̂AUCb − pAUCb

ϑb

d→ N (0, 1)

where ϑ2
b =

∑
j∈Jb

∑
k∈Jb wjwkσtj ,tk . Let nb = n, 1 ≤ b ≤ B, then as n→∞,

ÂUC −AUC
θ

d→ N (0, 1)

where

θ2 =
1
n

B∑
b=1

ϑ2
b =

1
n

B∑
b=1

∑
j∈Jb

∑
k∈Jb

wjwkσtj ,tk . (6)

The proof of the lemma is given in the appendix.

2.3 Confidence Intervals

Three different confidence intervals can be constructed based on the asymptotic result

presented above. As defined in Lemma 1, s2b and θ̂2 denote the estimated asymptotic

variances of the partial and total AUC, respectively. The asymptotic confidence interval

uses the asymptotic normal distribution to construct a 1− α confidence interval as

[
ÂUC + zα

2
θ̂ ; ÂUC + z1−α

2
θ̂
]

where zα is the lower α percentile of the standard normal distribution. In addition

to relying on the convergence of the distribution of the estimated AUC to the normal

distribution, this interval in theory requires the standard error, θ, to be known. As this is

usually not the case, this interval will only have nominal coverage for large sample sizes.

A more adequate interval which explicitly takes into account that the standard error is in

fact estimated while assuming that the distribution of the AUC is normal can be found by
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using the t-distribution as the reference distribution. The interval has the form

[
ÂUC + tν,α

2
θ̂ ; ÂUC + tν,1−α

2
θ̂
]

where tν,α denotes the lower α percentile of a t-distribution with ν degrees of freedom. The

degrees of freedom can be estimated using Satterthwaite’s formula (Satterthwaite, 1946)

as

ν =

(
nθ̂2
)2

∑B
b=1

(s2b)
2

n−1

.

A resampling-based confidence interval is the bootstrap-t-interval (e.g. Davison and

Hinkley, 1997). This interval usually works well for location parameters according to Efron

and Tibshirani (1993, page 360). We will use the ‘star’ notation to indicate bootstrap-

based estimators. Therefore, ÂUC
∗
(r) is the rth bootstrap replication of the estimator

ÂUC. The bootstrap-t-interval estimates the distribution of ÂUC−AUC
θ̂

by the bootstrap

equivalent t∗(r) = ÂUC
∗
(r)−ÂUC
θ̂∗

. The resulting confidence interval then becomes

[
ÂUC − t∗1−α

2
θ̂ ; ÂUC − t∗α

2
θ̂
]

where t∗α is the lower α percentile of the bootstrap estimates t∗(r), r = 1, . . . , R. Notice

that this interval requires two separate estimates for the standard error of ÂUC. In addition

to the estimate, θ̂, used in the previous two intervals, a second estimate, θ̂∗, is necessary

to find t∗(r). To obtain, θ̂∗, usually a jackknife estimator on the bootstrap sample is used

which would require a computer intensive additional ‘layer’ of resampling. Furthermore,

this additional resampling layer may lead to poor estimates in the case of small sample

sizes per time point which is frequently the case in non-clinical in vivo studies. We hope to

avoid this problem and obtain the desired interval faster by using the asymptotic variance

from Equation (6) on the bootstrap sample instead.
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2.4 Simulations

A small simulation study was performed using R (R Development Core Team, 2007) to

evaluate the intervals described above. In addition to the methods described, the general-

ized jackknife approach presented in Singer and Berger (2003), was included in the study.

The following one-compartmental model with first order absorption and elimination af-

ter extravascular administration (e.g. oral, intramuscular, rectal, etc.) was used for data

generation

Yit = µt + εit =
kaFX0

V (ka − λ)

(
e−λt − e−kat

)
+ εit (7)

with the parameterization λ = 0.0693, ka = 0.231, V = 10, X0 = 500 and F = 1 taken

from Gibaldi and Perrier (1982, page 440) specified at baseline and ten time points (1h,

2h, 3h, 4h, 6h, 8h, 12h, 18h, 24h and 36h) after drug administration. We define three

batches with time points {1,4,12,36}, {2,6,18} and {3,8,24} hours and generated data for

each batch with correlations of 0, 0.3, 0.6 and 0.9 to incorporate the dependence of mea-

surements within subjects. For sample sizes of nb = n = 3, 5, 10 and 100 the data were

generated such that the coefficient of variation (CV) of Yit is 20% for all time points with

mean level µt as defined above and follow either a normal or a log-normal distribution. Al-

though in theory a normal distribution could yield negative concentrations, the probability

of this happening was negligible (<0.0001) for a CV of 20% under the above model for all

time points and consequently was never observed in the simulations.

10000 simulation runs were carried out for each parameter setting with preselected sam-

ple sizes. 1000 bootstrap replications were used for the bootstrap-t-confidence interval. For

the Singer & Berger generalized jackknife approach, one observation was left out for n = 3
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and 100 while a leave-2-out approach was used for n = 5 and 10. The regular jackknife

estimator was used for n = 3 as leaving out more than one observations would omit over

half of the observations and therefore make the estimator very unstable, while for n = 100

the procedure was computationally too expensive.

Tables 1 and 2 give the empirical coverage of the four intervals with nominal level of

90% and the average relative length of the intervals, i.e. the average length of the interval

scaled by the true AUC. The t-interval, bootstrap-t and generalize jackknife interval show

coverage at nominal level for sample sizes of 5 or larger. Throughout the different settings

the generalized jackknife approach, however, appears to have the smallest average interval

length among these intervals. In addition it also maintains nominal coverage for n = 3 while

the t-interval and bootstrap-t-interval are conservative. The purely asymptotic procedure

expectedly undercovers for smaller sample sizes and only reaches nominal level for n = 100.

Overall the generalized jackknife procedure appears to be superior or on par with the

other methods presented. The t-distribution-based interval, however, is a strong alterna-

tive for sample sizes of 5 or larger as it is computationally much more efficient than the

method by Singer & Berger, which can be excrutiating slow for larger sample sizes.
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Table 1: Empirical coverage for normally distributed concentrations with 3 and 4 time

points per batch using a nominal coverage of 90%.

Confidence Interval
n ρ asymptotic t-interval bootstrap-t gen. jackknife

3 0 0.849 (0.1398) 0.923 (0.1822) 0.928 (0.2112) 0.894 (0.1614)
0.3 0.849 (0.1644) 0.925 (0.2149) 0.925 (0.2484) 0.895 (0.1898)
0.6 0.849 (0.1855) 0.923 (0.2420) 0.923 (0.2792) 0.894 (0.2142)
0.9 0.847 (0.2053) 0.921 (0.2681) 0.923 (0.3097) 0.891 (0.2371)

5 0 0.874 (0.1109) 0.906 (0.1232) 0.910 (0.1269) 0.899 (0.1208)
0.3 0.874 (0.1304) 0.906 (0.1450) 0.907 (0.1492) 0.900 (0.1421)
0.6 0.876 (0.1468) 0.907 (0.1633) 0.908 (0.1683) 0.902 (0.1599)
0.9 0.874 (0.1621) 0.908 (0.1803) 0.907 (0.1855) 0.901 (0.1765)

10 0 0.891 (0.0791) 0.903 (0.0824) 0.903 (0.0827) 0.902 (0.0821)
0.3 0.891 (0.0931) 0.905 (0.0969) 0.902 (0.0973) 0.904 (0.0966)
0.6 0.884 (0.1052) 0.896 (0.1096) 0.895 (0.1101) 0.896 (0.1092)
0.9 0.889 (0.1163) 0.901 (0.1211) 0.903 (0.1217) 0.900 (0.1207)

100 0 0.898 (0.0253) 0.899 (0.0254) 0.898 (0.0254) 0.899 (0.0254)
0.3 0.895 (0.0297) 0.897 (0.0298) 0.895 (0.0298) 0.897 (0.0298)
0.6 0.897 (0.0335) 0.899 (0.0336) 0.897 (0.0336) 0.899 (0.0336)
0.9 0.896 (0.0370) 0.897 (0.0371) 0.895 (0.0371) 0.897 (0.0371)

Values in parenthesis are the average interval length relative to the total AUC

n ... sample size per time point

ρ ... correlation between measurements for a subject

Table 2: Empirical coverage for log-normal-distributed concentrations with 3 and 4 time

points per batch using a nominal coverage of 90%.

Confidence Interval
n ρ asymptotic t-interval bootstrap-t gen. jackknife

3 0 0.847 (0.1375) 0.920 (0.1802) 0.925 (0.2101) 0.890 (0.1588)
0.3 0.852 (0.1617) 0.922 (0.2124) 0.924 (0.2475) 0.895 (0.1867)
0.6 0.843 (0.1823) 0.918 (0.2391) 0.920 (0.2780) 0.888 (0.2106)
0.9 0.840 (0.2017) 0.919 (0.2651) 0.920 (0.3107) 0.888 (0.2329)

5 0 0.867 (0.1090) 0.902 (0.1214) 0.906 (0.1258) 0.896 (0.1187)
0.3 0.868 (0.1285) 0.902 (0.1431) 0.899 (0.1485) 0.896 (0.1400)
0.6 0.868 (0.1446) 0.903 (0.1612) 0.902 (0.1677) 0.897 (0.1575)
0.9 0.875 (0.1600) 0.906 (0.1785) 0.905 (0.1859) 0.899 (0.1743)

10 0 0.881 (0.0783) 0.894 (0.0816) 0.895 (0.0824) 0.893 (0.0813)
0.3 0.889 (0.0918) 0.902 (0.0956) 0.900 (0.0965) 0.900 (0.0952)
0.6 0.884 (0.1038) 0.897 (0.1081) 0.895 (0.1092) 0.896 (0.1077)
0.9 0.889 (0.1148) 0.902 (0.1197) 0.901 (0.1211) 0.901 (0.1192)

100 0 0.900 (0.0250) 0.901 (0.0251) 0.899 (0.0251) 0.901 (0.0251)
0.3 0.893 (0.0293) 0.894 (0.0294) 0.893 (0.0294) 0.894 (0.0294)
0.6 0.894 (0.0331) 0.895 (0.0332) 0.894 (0.0333) 0.895 (0.0332)
0.9 0.896 (0.0366) 0.898 (0.0367) 0.897 (0.0367) 0.898 (0.0367)

Values in parenthesis are the average interval length relative to the total AUC

n ... sample size per time point

ρ ... correlation between measurements for a subject
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3 Linear combination of AUCs

Evaluating differences between pharmacokinetic parameters of different drugs or doses of

one drug is a common problem in pharmacokinetic studies. To do so, this section considers

linear combinations of K independent area under the curves. Denote the kth estimated

area under the curve as ÂUCk, k = 1, . . .K, with mean AUCk and asymptotic variance

θ2
k. We allow the sample sizes to be different between each AUC, but they are assumed to

be constant within each AUC.

Lemma 3 Let c1, . . . , cK be constants such that
∑K

k=1 cj = c < ∞. If the conditions of

Lemma 2 are satisfied for AUC1, . . . , AUCK , then∑K
k=1 ckÂUCk −

∑K
k=1 ckAUCk

τ

d→ N (0, 1) (8)

where

τ2 =
K∑
k=1

c2kθ
2
k. (9)

The proof of the lemma is given in the appendix.

3.1 Confidence Intervals

In a similar fashion as described in Section 2.3 the asymptotic result can be used to form

1 − α confidence intervals for linear contrasts of AUCs. The normal theory asymptotic

interval can be defined as[
K∑
k=1

ckÂUCk + zα
2
τ̂ ;

K∑
k=1

ckÂUCk + z1−α
2
τ̂

]

while the t-distribution based interval has the form[
K∑
k=1

ckÂUCk + tη,α
2
τ̂ ;

K∑
k=1

ckÂUCk + tη,1−α
2
τ̂

]
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with degrees of freedom η =
∑K

k=1 νk.

The bootstrap-t-interval can in a similar fashion be found as[
K∑
k=1

ckÂUCk − t∗1−α
2
τ̂ ;

K∑
k=1

ckÂUCk − t∗α
2
τ̂

]

where t∗(r) =

(∑K
k=1 ckÂUCk

)∗
(r)−

∑K
k=1 ckÂUCk

τ∗
.

Note that p-values can also easily be obtained using the asymptotic variance of the

contrasts, which are usually more useful when correcting for multiple comparisons. We

can find the p-value for the 2-sides hypothesis as 2P (Tη > |t|) because the distribution of

the statistic t =
PK
k=1 ckÂUCk−Q

τ̂ , where Q is the value under the null hypothesis, can be

approximated by a t-distribution with η degrees of freedom.

3.2 Simulations

We present simulation results for the empirical coverage and power for the difference of two

AUCs in this section in order to evaluate the confidence intervals for the linear combina-

tion of AUCs. Once more 10000 Monte Carlo samples were obtained and 1000 bootstrap

resamples used for the bootstrap-t-interval. Both AUCs are generated under the model in

equation (7) with one having a 10% higher mean than the other at all time points with the

same within-subject correlations varying between 0 and 0.9. Table 3 gives the results for

normal distributed concentrations when the coefficient of variation is constant at 20% for

both AUCs while in Table 4 it is 20% for the lower and 40% for the higher AUC. The same

setup was also used with log-normal distributed concentrations. This situation, however,

yielded almost identical results and hence these are not presented in this note.
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Table 3: Empirical coverage and power for normally distributed concentrations with 3 and

4 time points per batch using a nominal coverage of 90% for comparing two AUCs with a

10% mean difference and identical coefficients of variation.

Confidence Interval
n ρ asymptotic t-interval bootstrap-t

3 0 0.872 (0.471) 0.913 (0.393) 0.920 (0.363)
0.3 0.874 (0.392) 0.909 (0.321) 0.920 (0.298)
0.6 0.869 (0.333) 0.907 (0.265) 0.917 (0.244)
0.9 0.876 (0.294) 0.914 (0.232) 0.920 (0.212)

5 0 0.885 (0.622) 0.905 (0.587) 0.905 (0.583)
0.3 0.886 (0.519) 0.903 (0.486) 0.904 (0.481)
0.6 0.887 (0.457) 0.903 (0.425) 0.905 (0.416)
0.9 0.884 (0.389) 0.900 (0.355) 0.902 (0.353)

10 0 0.892 (0.864) 0.898 (0.856) 0.897 (0.855)
0.3 0.887 (0.761) 0.894 (0.751) 0.893 (0.751)
0.6 0.896 (0.669) 0.902 (0.657) 0.901 (0.655)
0.9 0.896 (0.594) 0.903 (0.580) 0.903 (0.583)

100 0 0.901 (1.000) 0.902 (1.000) 0.901 (1.000)
0.3 0.899 (1.000) 0.899 (1.000) 0.898 (1.000)
0.6 0.903 (1.000) 0.904 (1.000) 0.905 (1.000)
0.9 0.903 (1.000) 0.904 (1.000) 0.902 (1.000)

Values in parenthesis are the empirical power

n ... sample size per time point

ρ ... correlation between measurements for a subject

For the situation of equal coefficient of variation, both the t-distribution-based interval

and the bootstrap-t-interval are conservative for three subjects per time point but reach

nominal coverage for larger sample sizes. The purely asymptotic interval, however, once

more only reaches nominal coverage for n = 100 per time point. The estimated power

also shows the expected behavior as it increases with sample size. Additionally the power

decreases as the correlation within batches increases, dropping about 40% between inde-

pendence and strong correlation within subjects.

The results for unequal coefficients of variation again show that for sample sizes of
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Table 4: Empirical coverage and power for normally distributed concentrations with 3 and

4 time points per batch using a nominal coverage of 90% for comparing two AUCs with a

10% mean difference and coefficients of variation of 20% and 40%.

Confidence Interval
n ρ asymptotic t-interval bootstrap-t

3 0 0.860 (0.275) 0.901 (0.218) 0.915 (0.189)
0.3 0.864 (0.237) 0.899 (0.184) 0.916 (0.155)
0.6 0.857 (0.212) 0.895 (0.165) 0.914 (0.137)
0.9 0.861 (0.195) 0.900 (0.153) 0.917 (0.125)

5 0 0.882 (0.339) 0.899 (0.310) 0.904 (0.298)
0.3 0.878 (0.282) 0.895 (0.254) 0.902 (0.239)
0.6 0.882 (0.246) 0.898 (0.222) 0.905 (0.209)
0.9 0.870 (0.214) 0.887 (0.189) 0.894 (0.180)

10 0 0.894 (0.530) 0.901 (0.516) 0.900 (0.511)
0.3 0.891 (0.404) 0.897 (0.392) 0.897 (0.383)
0.6 0.895 (0.346) 0.901 (0.334) 0.904 (0.327)
0.9 0.896 (0.300) 0.901 (0.289) 0.905 (0.281)

100 0 0.900 (1.000) 0.901 (1.000) 0.899 (1.000)
0.3 0.898 (0.998) 0.899 (0.998) 0.897 (0.998)
0.6 0.903 (0.988) 0.904 (0.988) 0.901 (0.988)
0.9 0.902 (0.971) 0.902 (0.971) 0.902 (0.970)

Values in parenthesis are the empirical power

n ... sample size per time point

ρ ... correlation between measurements for a subject

5 or above the coverage is on par for the t-interval as well as the bootstrap-t-interval.

For n = 3, however, a surprising difference can be seen as the bootstrap-t-interval once

more is conservative, while the t-interval maintains nominal coverage. The power in this

scenario shows the same overall patterns as before. The power increases with sample size

and decreases with increased correlation. The added variability in this situation is also

reflected in the power which generally is drastically lower than in the equal CV case.

4 Example

In this example we use the dataset in Holder et al. (1999) which investigates the plasma

levels of a single-oral-dose toxicokinetic study at 6 different dose levels (100, 300, 450, 600,
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750 and 1000 mg/kg). Each dose level is measured using 3 batches with time points {1,

6}, {2, 10} and {4, 24} hours for 3 female rats in each batch. Holder et al. show in detail

how the AUCs and corresponding standard errors for the dose groups can be obtained.

Our focus will be on identifying the highest dose for which we cannot reject the null

hypothesis of dose proportionality, which can be formulated as a sequence of hypothesis

testing problems. On the assumption of dose proportionality and using the power law model

(Wixley, 1997), AUC
dose = µ holds for every dose irrespective of equally or non-equally spaced

doses. Let µ1, . . . , µk be the dose-normalized AUCs of the k = 6 increasing dose levels

investigated. The alternative hypothesis of a saturable absorption leads to the following

sequence of hypothesis

H0i : µ1 = . . . = µi vs. H1i : µ1 = . . . = µi−1 < µi (2 ≤ i ≤ k)

whereas the alternative hypothesis of a saturable metabolism leads to

H0i : µ1 = . . . = µi vs. H1i : µ1 = . . . = µi−1 > µi (2 ≤ i ≤ k) .

Testing such sequences of hypothesis with control of the type I error in a strong sense

can be archieved by application of the closure principle (Marcus et al., 1976). Ruberg

(1989) and Tamhane et al. (1996) address the closure principle based on contrasts in great

detail. We used a step-down approach based on reverse helmert contrasts as this contrast

type has good power properties for rejection of H0i (2 ≤ i ≤ k) for low dose levels. We

think that the risk of not detecting a low non-proportional dose is more crucial than the

risk of not detecting a high non-proportional dose. The coefficients of these contrasts are

given in Table 5.
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Table 5: Coefficients for reverse Helmert contrasts.

Dose
Contrast 100mg/kg 300mg/kg 450mg/kg 600mg/kg 750mg/kg 1000mg/kg

c1 c2 c3 c4 c5 c6
1 5 -1 -1 -1 -1 -1
2 4 -1 -1 -1 -1 0
3 3 -1 -1 -1 0 0
4 2 -1 -1 0 0 0
5 1 -1 0 0 0 0

Using the step-down approach, the hypothesis are tested sequentially from H0k to H02

at a pre-specified α-level until we fail to reject for the first time. We used two-sided p-

values to account for both alternatives at H0k. For this reason the procedure also has to

be stopped in the case of rejection of H0k and subsequent rejection of H0i (i < k) when

the corresponding t-statistic has a different direction than the t-statistic of hypothesis H0k.

Table 6 provides the estimates, standard error and degrees of freedom for each contrast as

well as the corresponding p-values. Two-sided 95% confidence intervals for the contrasts

are depicted in Figure 1. The null hypothesis of dose proportionality is rejected for the

dose range investigated against the alternative of a saturable absorption as can be seen

from the graph as well as the p-values.

Table 6: Summary of reverse Helmert contrasts with two-sided p-values.

Hypothesis Contrast Estimate SE df p-value

H06 1 1.2462 0.2149 13.8799 0.0000
H05 2 0.9362 0.1721 11.8656 0.0002
H04 3 0.6847 0.1307 9.6044 0.0004
H03 4 0.4120 0.0901 7.3462 0.0023
H02 5 0.1917 0.0504 4.9721 0.0127
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Figure 1: Two-sided 95% confidence intervals for the reverse Helmert contrasts.
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5 Discussion

In this note we provide the theoretical framework of the estimator for the area under the

concentration curve in batch designs proposed by Holder et al. (1999). The asymptotic

distribution of the estimator is derived and used to form asymptotic confidence intervals.

These intervals are evaluated in a simulation study against the generalized jackknife ap-

proach, a method that also relies on the asymptotic result, which is presented in Singer

and Berger (2003). The simulations show that the generalized jackknife is superior or

equivalent to the presented methods for all situations considered. The t-distribution-based

interval, however, is a viable and fast alternative for sample sizes of 5 or larger per time

point.

17



In the second part of this manuscript the results are extended to linear combinations

of area under the concentration curves in batch designs. Confidence intervals based on

asymptotic theory are derived and evaluated in a simulation study in terms of coverage

and power. The t-distribution-based interval and the bootstrap-t-interval showed very

similar properties throughout the sitations considered. The only exception was found for

three subjects per time point, where, in the case of different coefficients of variation, the

t-interval had nominal coverage while the bootstrap-based interval was conservative. We

therefore recommend the use of the t-interval for linear combinations of AUCs in the batch

design.

We have shown that the sample size between batches can be different, while it was

necessary for the derivation of the asymptotic distribution for the sample sizes to be equal

within batches. Future work will try to relax this assumption and investigate methods

for handling missing data in batch designs. Another, related, point of interest are ob-

servations that fall below the detection limit. Common practice in this situation is to

either set those values to half the detection limit or to zero. A different approach to these

ad-hoc methods is to model non-detected data as censored data. Lambert et al. (1991)

suggest a method in the context of environmental data that should be explored further for

medical data in general and for the estimation of pharmacokinetic parameters in particular.
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A Appendix

Proof of Lemma 1: The estimated asymptotic variance can be written as

V̂
[
ÂUC

]
=

B∑
b=1

1
nb

∑
j∈Jb

∑
k∈Jb

wjwkσ̂tj ,tk =
B∑
b=1

ξ̂2b
nb

and it therefore suffices to show that ξ̂2b = s2b . Using the sample covariance estimate,

σ̂tj ,tk =
1

nb − 1

nb∑
i=1

YitjYitk −
1

nb(nb − 1)

nb∑
i=1

Yitj

nb∑
l=1

Yltk

we get

ξ̂2b =
∑
j∈Jb

∑
k∈Jb

wtjwtk

( 1
nb − 1

nb∑
i=1

YitjYitk −
1

nb(nb − 1)

nb∑
i=1

Yitj

nb∑
l=1

Yltk

)
=

1
nb − 1

nb∑
i=1

(∑
j∈Jb

wjYitj

)2
− 1
nb(nb − 1)

( nb∑
i=1

∑
j∈Jb

wjYitj

)2

= s2b .

�

Proof of Lemma 2: Because the partial area under the curves are independent and

identically distributed, the central limit theorem (e.g. Resnick, 1999) gives that

√
nb
p̂AUCb − pAUCb

ϑb

d→ N (0, 1)

where

ϑ2
b =

∑
j∈Jb

∑
k∈Jb

wjwkσtj ,tk

if ϑ2
b < ∞. Since we assumed that σ2

tj < ∞ the covariances are also finite and therefore

ϑ2
b <∞ in fact holds.

Let nb = n and Zn = (p̂AUC1, p̂AUC2, . . . , p̂AUCB) which are pairwise indepen-

dent because time points are only used once. Let µ = E[Zn] and V [Zn] = 1
nΣ =
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1
n

 ϑ2
1 0 0

0
. . . 0

0 0 ϑ2
B

, by the first result and independence,
√
n (Zn − µ) d→ MVN(0,Σ).

The total AUC,
∑B

b=1 p̂AUCb, then is a linear statistic in Zn and therefore also converges

in distribution (e.g. Serfling, 1980), that is

ÂUC −AUC
θ

d→ N (0, 1)

where

θ2 =
1
n

B∑
b=1

∑
j∈Jb

∑
k∈Jb

wjwkσtj ,tk .

�

Proof of Lemma 3: From Lemma 2 we know that each total AUC converges in distri-

bution and because the AUCs are independent from each other we also get ÂUC1
...

ÂUCK

−
 AUC1

...
AUCK


 θ2

1 . . . 0
...

. . .
...

0 . . . θ2
K


d→ MVN (0, I)

if nk →∞.
∑K

k=1 ckAUCk, however, is again a linear statistic and therefore,

∑K
k=1 ckÂUCk −

∑K
k=1 ckAUCk)

τ
→d N(0, 1)

with

τ2 =
K∑
k=1

c2kθ
2
k.

�
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