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Abstract

Until recently, small form factor satellites (such as CubeSats) relied almost exclusively
on micro electromechanical system (MEMS) gyroscopes for attitude propagation
purposes. Unfortunately, the nature of MEMS gyros is such that they exhibit a
measure of bias drift. This drift must be compensated for, a task for which stellar
gyros have proved to be exceptionally useful.
Stellar gyros are satellite subsystems capable of inferring three-axis attitude propaga-
tion based on the displacement of a series of stars between successive image frames.
Their design is analogous to that of star trackers, using many of the same hard-
ware designs and algorithms. When used in combination with MEMS solutions,
stellar gyros provide not only a means for drift compensation, but also a measure of
functional redundancy with regard to attitude propagation.
This thesis presents the design and implementation of stellar gyroscope algorithms
capable of operating alongside existing orientation algorithms on traditional star
tracker hardware. The CubeStar star tracker module is used as development plat-
form. The proposed stellar gyro solution retains CubeStar’s existing star extraction
algorithms, while investigating alternative methods for star centroiding in addition to
the existing centre of gravity (CoG) approach. A dynamic proximity based matching
algorithm is suggested to determine star correspondence between image frames.
Finally, various well established estimation algorithms are considered for the purpose
of rate determination, including singular value decomposition (SVD), Davenport’s
q-Method and weighted least-squares (WLS).
An initial evaluation of the proposed algorithms is made based on simulations in the
MATLAB environment. Simulation results are confirmed through means of practical
tests, performed on a simulated night sky in a controlled environment. With a focus
on low angular rates, results suggest reliable operation up to ±1 deg/s in all three
axes of rotation. As expected for stellar imaging solutions, angular rates estimated
in both cross-boresight axes are almost an order of magnitude more accurate than
the corresponding estimates in the boresight axis itself.
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Opsomming

Mikrosatelliete, soos CubeSats, het tot onlangs byna uitsluitlik op mikro elektro-
meganiese (MEMS) vibrerende struktuur giroskope staatgemaak vir die meet van
hoeksnelhede. Ongelukkig is die aard van MEMS giroskope sodanig dat hierdie
metings afsette toon wat al hoe verder van hul werklike waardes verskuif. Daar moet
gekompenseer word vir hierdie verskuiwing, ’n taak waarvoor stergiroskope besonder
geskik is.
Sterrebeeld gebaseerde giroskope (of bloot gewoon stergiroskope) is satelliet substelsels
wat daartoe in staat is om ’n satelliet se oriëntasie in drie dimensies te propageer deur
gebruik te maak van die verplasing van ’n reeks sterre tussen twee opeenvolgende
beelde. Hulle ontwerp in terme van beide hardeware en algoritmes is soortgelyk aan
dié van stervolger kameras. Stergiroskope kan ook saam met MEMS toestelle gebruik
word. Hulle verskaf beide ’n metode om te kompenseer vir verskuiwings in MEMS
metings sowel as ’n funksionele alternatief met betrekking tot hoekafskatting.
Hierdie tesis beskryf die ontwerp en implementering van ster giroskoop algoritmes wat
in staat is om hand-in-hand met bestaande oriëntasie algoritmes op tradisionele ster
volger hardeware te funksioneer. Die CubeStar stervolger module is as ontwikkelings
platform gebruik. Die beoogde stergiroskoop ontwerp behou CubeStar se bestaande
ster ontginnings algoritmes. Verskeie metodes benewens die bestaande swaartepunt
benadering word wel ondersoek vir die bepaling van ster sentroïedes. Die korrespon-
densie tussen opeenvolgende sterbeelde word bepaal deur middel van ’n dinamiese
nabyheid gebaseerde passings algoritme. Ten slotte word verskeie algoritmes oorweeg
vir die afskatting van ’n satelliet se hoeksnelhede. Dit sluit in enkelvoud waarde
ontbinding (SVD), Davenport se q-metode en ’n geweegte kleinste kwadraat (WLS)
benadering.
Die voorgestelde algoritmes is ge-evalueer op grond van simulasies in die MATLAB
omgewing. Praktiese toetse is uitgevoer op ’n gesimuleerde sterrebeeld om simulasie
resultate te bevestig. Met ’n fokus op lae hoeksnelhede dui resultate op betroubare
afskatting teen hoeksnelhede van tot ±1 grade/s rondom al drie rotasie-asse. Soos
verwag van ster kameras is die hoekafskattings rondom die transversale asse ’n orde
meer akkuraat as die ooreenstemmende afskattings rondom die optiese as.
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Chapter 1

Introduction

This chapter serves as introduction to the relevant concepts that motivate the work
presented in this thesis. This is followed by an overview of the aims and objectives
for the proposed stellar gyro project.

1.1 CubeSat Design Standard
The CubeSat Project, introduced in 1999 through a collaborative effort between Prof.
Jordi Puig-Suari at California Polytechnic State University and Prof. Bob Twiggs at
Stanford University’s Space Systems Development Laboratory (SSDL), presents a
design standard for small scale satellites aimed primarily at reducing development
time and costs while increasing accessibility to space [1].
The most commonly used CubeSat form factor, namely a 1U, is essentially defined
as a miniature satellite that exhibits dimensions of exactly (10× 10× 10) cm3 and
a mass not exceeding 1.33 kg. Figure 1.1(a) shows an image of ZACUBE-1, South
Africa’s first 1U CubeSat launched in November 2013 [2].

(a) ZACUBE-1 (1U) [2] (b) ZA-AeroSat (2U) [3]

Figure 1.1 – Two South African satellites based on the CubeSat design standard

1
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CHAPTER 1. INTRODUCTION 2

1.1.1 Relevance of CubeSats
The original motivation behind the CubeSat project was to facilitate university-
level hands-on space education. A gradual international acceptance of the CubeSat
design standard not only provided such educational opportunities, but it also allowed
commercial and research institutes from developing countries to participate in space
exploration. A reliance on build redundancy, inexpensive commercial of-the-shelf
(COTS) components and a standardized launch interface greatly simplified the
design process while also reducing development and manufacturing time and costs.
Furthermore, the design standardization of such satellites facilitate international
collaboration and provide a support structure for less experienced and financially
capable participants.

1.1.2 QB50 Launch Mission
The upcoming QB50 mission [4] epitomizes the significance of the CubeSat standard
with respect to international collaboration. It will oversee the launch of 50 CubeSats
from 27 different countries from all over the world with the goal of achieving afford-
able and sustainable access to space for small-scale space research and planetary
exploration missions. The project also has scientific significance, as it aims to carry
out atmospheric research and analysis within the lower thermosphere, the least ex-
plored layer of the atmosphere to date. Figure 1.1(b) shows an image of ZA-AeroSat,
a 2U CubeSat [(10× 10× 20) cm3] designed and manufactured at the University of
Stellenbosch that embodies Africa’s contribution to the QB50 mission.

1.2 CubeSat Subsystems
The international success of the CubeSat design standard places a strong emphasis
on the miniaturization of satellite subsystems. Unfortunately, such miniaturization
introduces strict limitations with respect to power consumption and physical volume,
which highlights the importance of component integration as well as harnessing the
full potential of each of these subsystems. Considering the flawed nature of existing
micro-electromechanical system (MEMS) solutions (due to bias drift, as detailed in
section 1.2.1), the miniaturization of image based rate determination solutions seem
particularly enticing.

1.2.1 Physical Gyroscopes
Satellite attitude propagation typically relies on the integration of gyroscopic data.
Gyroscopic sensors (commonly referred to simply as gyroscopes or gyros) employ
various operating principles, such as fibre-optics, solid-state laser rings and vibrating
structures (MEMS). Even though remarkably accurate, the fibre-optic and laser-ring
varieties tend to be large and expensive (the latter, for example, being used on the
International Space Station). The MEMS variety, on the other hand, is relatively
compact and affordable. Until recently, small satellites relied almost exclusively on
MEMS sensors to determine three-axis angular rates.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 3

Z

Y

X

ΩZ

v

v

acoriolisacoriolis

acoriolis = 2(v×ΩZ)

Figure 1.2 – Illustration of a tuning fork vibrating structure (MEMS) gyro

Figure 1.2 illustrates the basic theory of operation of a tuning fork1 vibrating structure
(MEMS) gyroscope. Consider two proof masses, constantly oscillating and moving
in opposite directions (with a velocity of v). When an angular velocity (ΩZ) is
applied, the Coriolis effect induces an acceleration in the proof masses equal to
acoriolis = 2(v×ΩZ). The resultant displacements of these masses are then read from
a capacitive sensing structure.
One of the main drawbacks of using MEMS sensors is bias drift. Inertial sensors,
such as MEMS gyroscopes, exhibit a non-zero output even in the absence of an input
signal. This output offset, also referred to as the measurement bias, is added to the
measured signal. Furthermore, this bias offset drifts over time due to temperature
and other stochastic factors. The uncertainty of these factors complicate the process
of characterizing and compensating for the observed drift. Furthermore, the dead
reckoning nature of MEMS sensors mean that errors are cumulative. The angular
rates obtained through integration of MEMS sensor measurements will therefore drift
further from its actual value as time progresses [5]. In order to retain an acceptable
level of accuracy, drift compensation must be performed.

1.2.2 Star Trackers
Star trackers are three-axis attitude determination devices that utilize the combination
of a sensitive camera connected to a micro-controller unit (MCU) and a list of
celestially referenced star locations (commonly referred to as a star catalogue) to
determine the orientation of a satellite relative to inertial space.
The attitude determination process is initiated through star imaging, after which
various complex algorithms are employed to extract star locations from the raw image
data. Pattern recognition is performed to match the extracted star locations to an
on-board star catalogue, which contains the locations of various stars as referenced
to the celestial sphere. If the captured stars are successfully identified, it enables

1other vibrating structure gyroscope implementations include piezoelectric, hemispherical
resonator, cylindrical resonator and vibrating wheel designs
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the star tracker to determine its orientation relative to the celestial sphere. Such
orientation is usually determined in the form of an attitude quaternion.
Star trackers have several advantages over alternative attitude sensors (such as sun
and horizon sensors). They are

• up to two orders of magnitude more accurate [6],

• capable of reliable operation in both sun-lit (requires baffle) and eclipse portions
of an orbit,

• autonomous, capable of determining the attitude quaternion without any
external processing.

Due to recent advancements in image sensor technology, CubeSats now frequently
resort to star trackers for attitude determination purposes.

1.2.3 Stellar Gyroscopes
Stellar gyroscopes are based on the principle of attitude propagation through a
combination of image processing and visual analysis. More specifically, the stellar
gyro concept describes the process of inferring three-axis attitude propagation based
on the displacement of a series of stars between successive image frames (i.e., image
based rate determination).
The physical design of stellar gyros are analogous to that of star trackers. They use
similar optical solutions and hardware designs, consequently also exhibiting similar
size, weight and power consumption characteristics. Furthermore, stellar gyros also
utilize many of the same algorithms for star extraction and centroiding. The main
difference being that star trackers apply the determined star vectors towards attitude
determination, whereas in stellar gyros they are applied towards attitude propagation.
This analogy is of particular interest with regard to application, since it allows stellar
gyro algorithms to be implemented alongside existing orientation algorithms on star
tracker solutions. This adds a substantial measure of functionality to an existing
subsystem without the need for any additional hardware. Furthermore, since such
algorithms largely repurpose existing data, they require very little additional power
and execution time.
It is also worth noting that, since angular rates are estimated based solely on the
displacement of stars between consecutive image frames, rate estimates are independ-
ent of one another. This eliminates the possibility of a cumulative error as observed
for its MEMS counterpart (see section 1.2.1). When used in combination with
MEMS solutions, stellar gyros not only provide a measure of functional redundancy
with regard to attitude propagation, but they can also be used to perform drift
compensation for their MEMS counterparts.
The implementation of stellar gyro solutions on CubeSats would therefore not only
reduce overall hardware costs, but also increase the availability of resources for the
satellite payload.
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1.3 Project Aims
For accentuation purposes, the project aims are presented in list format:

• Develop and implement an accurate and reliable stellar gyro solution capable
of operating on CubeStar hardware.

• Stellar gyro algorithms should be capable of operating interchangeably with
existing orientation algorithms.

• With a focus on low angular rates, the stellar gyro solution should be capable
of reliably estimating angular rates up to ±1 deg/s in all three axes of rotation.

The implementation of such stellar gyro algorithms is expected to improve the
existing CubeStar subsystem by

• extending functionality without the need for any additional hardware (and
very little additional power and execution time requirements),

• providing a measure of functional redundancy with regard to attitude propaga-
tion when used in conjunction with MEMS gyroscopes, and

• enabling CubeStar to perform drift compensation for traditional MEMS solu-
tions.
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Chapter 2

Background

This chapter provides the necessary theoretical background related to the work
presented in this thesis. Topics include an overview of CubeStar, relevant astronomy
concepts, coordinate systems, attitude representations as well as review of related
work.

2.1 CubeStar
CubeStar (see fig. 2.1) is a CubeSat compatible star tracker camera designed by Alex
Erlank at the University of Stellenbosch’s Electronic Systems Laboratory (ESL) [7].
Among various other aspects, the ESL specialises in the development of CubeSat
compatible subsystems, which include space flown units such as CubeSense and
CubeComputer [8, 9, 10]. Due to its infancy, CubeStar unfortunately does not yet
boast the same flight heritage as the aforementioned subsystems. It does however
use many of the same hardware designs, which not only sped up development time,
but also provided confirmation as to the applicability of the chosen components. The
CubeStar module is used as development platform for the stellar gyro algorithms
proposed by this thesis.

Figure 2.1 – Images of the CubeStar star tracker module

6
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CHAPTER 2. BACKGROUND 7

2.1.1 Specifications and Performance
The CubeStar module is a relatively small and lightweight package, measuring in
at 50.1× 35.2× 64 mm3 with a weight of 56 g. It features nominal and peak power
consumption values of 320 mW and 500 mW respectively. The implementation of both
I2C and UART data interfaces provide a measure of communication flexibility. One
of CubeStar’s most unique features is its exceptionally large field of view, covering an
area of 52◦ × 27◦. The main advantage of such a large FOV is the ability to achieve
full sky coverage (see section 3.5) with a less light sensitive, and therefore also less
expensive, image sensor.
Despite CubeStar’s comparatively low sensitivity (capable of detecting stars up to
MV = 4), performance claims are impressive, with 1σ accuracies of 0.01◦ and 0.03◦
in the cross-boresight and roll axes respectively.

2.1.2 Hardware Design
CubeStar optics consist of the combination of a Melexis MLX75412 monochrome
CMOS image sensor and Lensation BL6012 lens. Key features of the MLX75412
include a 1024× 512 pixel resolution, low power rolling shutter, 8/10/12 bit parallel
data output, I2C communications and a temperature operating range of −40 ◦C to
115 ◦C. The main drawbacks of the chosen image sensor are its 2:1 aspect ratio, which
results in a large component of the incoming light falling outside the image sensor
area, as well as the implementation of a rolling shutter as opposed to the better
suited global shutter solution. Fortunately, these drawbacks are easily overshadowed
by the low unit cost, flexible parallel data output functionality and large temperature
operating range. The Lensation BL6012 was chosen due to its compatibility with
the Melexis image sensor, featuring a 1/3 inch optical format and S-Mount mount
type. The most distinct feature of the Lensation lens is its exceptionally low focal
ratio (f-stop of 1.2), which maximises the amount of light passing through the lens
aperture to reach the image sensor.
At its core, CubeStar uses a 32bit Energy Micro ARM Cortex M3 processor
(EFM32GG280F1024), featuring 128 kB of RAM and 1024 kB of flash memory. The
EFM32GG was chosen due to its exceptionally low power consumption claims and
high performance capabilities. Since the EFM32GG was previously used on-board
CubeComputer, various libraries and code snippets could easily be reapplied to
CubeStar.
Images captured using the Melexis sensor are 512 kB in size, rendering the internal
128 kB RAM insufficient for storing such images. An external memory mapped
1024 kB Alliance Semiconductor SRAM module is therefore used. An Actel IGLOO
NANO AGLN030 FPGA acts as buffer between the micro controller and image
sensor.

2.1.3 Algorithms
Star trackers use a variety of algorithms to determine orientation. Since this research
is focussed on the design of a stellar gyroscope capable of operating in parallel with
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existing orientation algorithms, some of the algorithms written for CubeStar were
reapplied. To promote a general understanding, a brief overview of the orientation
process is given below.
The process is initiated through imaging. Once an image is captured, stars must
be extracted from the raw image data. This is done by assessing whether the value
of certain pixels exceed a predetermined minimum threshold required for it to be
part of a star. The specific pixels to be assessed are determined such as to minimise
the required number of computations that will guarantee the extraction of each and
every star. If a pixel is identified as exceeding this threshold, that pixel is subjected
to a recursive growing algorithm responsible for extracting all adjacent pixels also
exceeding the threshold. If the extracted pixel group exceeds the minimum number
of pixels required for it to be classified as a star, the pixel group is subjected to a
centre of gravity (CoG) centroiding algorithm in order to determine the star centroid.
The determined centroid location is then corrected for lens distortion. This process
is repeated until all stars have been extracted from the captured image. Finally, the
centroid locations are subjected to a geometric voting algorithm to determining the
star tracker’s orientation. Even though the voting algorithm is of little use in stellar
gyroscope applications, the remaining algorithms can easily be reapplied.

2.2 Relevant Astronomy Concepts
The nature of this thesis is such that it relies heavily on various astronomical concepts.
Since many of these concepts are often unfamiliar to engineers, a brief description is
provided to promote a general understanding of the work contained throughout.

2.2.1 Stellar Parallax
Stellar parallax describes the apparent shift in position of celestial bodies relative
to one another as seen by an observer from two separate points. Figure 2.2 depicts
the maximum parallax angle case for an earth based observer, also referred to as the
annual parallax.

Sun

Earth’s Location (January)

Earth’s Location (July)

A

B

Foreground
Star

Earth’s
Orbit

Parallax
Angle

Distant
Fixed
Stars

Figure 2.2 – Annual stellar parallax relative to an earth-based observer
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It is observed that the location of the foreground star relative to distant “fixed” stars
will differ depending on the earth’s position in orbit. Note that the distant stars
will also exhibit some form of parallax, but the effect will be much less pronounced
than that of relatively close stars. Even though stellar parallax will have a more
significant impact on orientation algorithms than their rate estimation counterparts,
a general analysis is performed here in the interest of meticulosity.
Consider Proxima Centauri from the Alpha Centauri system, the closest star to our
Solar system. The distance between the Sun and Proxima Centauri is approxim-
ately 4.24 light-years (40.11× 1012 km). Considering an average orbital radius of
149.6× 106 km for the earth’s orbit around the Sun, the worst case annual parallax
angle (as is determined by the closest star) can be determined as

ρ = tan−1
(

149.6× 106

40.11× 1012

)
= 0.000 214◦ (2.2.1)

Note that the annual parallax angle calculated above is based on a six month cycle.
Since stellar gyroscope algorithms only rely on data from two successive images,
usually captured less than a second apart, the effect of stellar parallax is negligible.

2.2.2 Celestial Sphere
The concept of a celestial sphere is often used to describe the position of various
celestial bodies relative to a point of observation.
The conclusions made in section 2.2.1 imply that, for the purpose of low earth
orbit (LEO) stellar gyroscope applications, the position of distant celestial bodies
(with an emphasis on stars) relative to one another is for all intents and purposes
“fixed”. Describing the location of such celestial bodies relative to an observer in
terms of distance therefore carries very little value. A more relevant and meaningful
representation can be obtained by projecting all stars onto an imaginary sphere of
arbitrary radius with the observer based at its origin, and defining star locations
exclusively in terms of separation angles. Such representation, as illustrated by
fig. 2.3, is referred to as the celestial sphere.
The applicability of such representation can be bolstered even further by defining a
sphere with unit radius, allowing star locations to be described using unit vectors.
This offers various advantages both in terms of interpretation and manipulation.
The analogy between direction and unit vectors allows for the unique description
(independent of surrounding stars) of star locations relative to the point of observation.
Furthermore, representing stars as unit vectors accommodate transformation between
reference frames using various well established methods [11]. Section 2.3.1 presents
an overview of the celestial coordinate system.
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Figure 2.3 – Illustration of the celestial sphere for stars up to MV = 5

2.2.3 Stellar Magnitude
The magnitude system, devised around 150 BCE by Greek astronomer Hipparchus, is
a logarithmic measure of the brightness of celestial objects [12]. Hipparchus originally
classified stars based on how bright they appeared to the naked eye. The brightest
stars would fall in the first magnitude class, whereas the dimmest stars would fall in
the sixth magnitude class. The problem with Hipparchus’ representation is twofold:
firstly, the human eye is more sensitive to some frequencies than to others and
secondly, the classification does not consider the distance of each star from the point
of observation. These problems led to the eventual distinction between the apparent
and absolute magnitude scales, as well as frequency standardisation through use of
the UBV photometric system.

Apparent Magnitude

The apparent magnitude scale resembles Hipparchus’ original representation in the
sense that it defines star brightness relative to an earth based observer. The simplicity
of such representation lies in the fact that it only requires a measure of the apparent
brightness of an object in order to determine its magnitude. The apparent magnitude
scale therefore forgoes the distinction between the intrinsic brightness of a star and
its distance to the point of observation in favour of a more empirical representation.
As emphasised in section 2.2.1 through the concept of stellar parallax, a stellar
gyro in LEO is for all intents and purposes an earth based observer. The apparent
magnitude scale is therefore much better suited for analysing stellar gyro detection
capabilities than the absolute scale (see below).

Absolute Magnitude

Some astronomical applications rely on information regarding the intrinsic brightness
of stars. This requires some comparative measure capable of assessing star brightness
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irrespective of its distance from the point of observation. The absolute magnitude
scale provides such measure by determining the apparent magnitude each star would
have if it were placed at a distance of 10 parsecs (32.616 light years) from the point
of observation. The absolute magnitude scale has very little use where LEO stellar
gyro applications are concerned.

The UBV Photometric System and Visual Magnitude

One of the main problems of determining stellar magnitudes with the human eye is
frequency bias. Human vision is limited to the visible portion of the electromagnetic
spectrum (see fig. 2.4). Radiation in this visible portion, commonly referred to
simply as light, accounts for wavelengths ranging from about 400 to 700 nm [13].
Furthermore, as illustrated by the Bayer filter, the human eye is most sensitive to
yellow-green light, which constitutes the low frequency portion of the visible spectrum.
Since many stars emit radiation in the higher frequency (blue and ultraviolet) spectra,
brightness analysis via the naked eye creates an unfair bias.

X-RaysGamma
Rays

UV
Rays

Visible Spectrum

Infrared
Rays

Microwave Radio

400 nm 500 nm 600 nm 700 nm
Wavelength

Figure 2.4 – Illustration of the visible frequency spectrum

The UBV photometric system, introduced in 1950 by American astronomers Harold
Lester Johnson and William Wilson Morgan, proposed a solution to this problem by
defining a photometric system for classifying star magnitude based on its frequency
[14]. The UBV system categorises magnitudes in three different wavelength bands:
U (centred within the ultraviolet spectrum at 350 nm), B (centred in the blue region
of the visible spectrum at 430 nm) and V (centred close to the middle of the human
visual range at 550 nm) [14]. Determining the radiation in each of these wavelength
bands provide a much more accurate portrayal of star brightness. Seeing as most
image sensors mimic the electromagnetic response of the human eye, star tracker
operation is concerned mainly with radiation in the visible (V) band. Consequently,
star brightness is often described by a visual magnitude, which represents the
apparent magnitude due to radiation in the visible spectrum. For the remainder of this
thesis, the terms visual magnitude and apparent magnitude are used interchangeably,
both referring to the apparent magnitude due to radiation in the visible spectrum.
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2.3 Coordinate Systems
Coordinate systems are used to describe the location of objects relative to their
surroundings. Four coordinate systems are used throughout this thesis: celestial
coordinates, earth-centred inertial coordinates, body-fixed coordinates and image
plane coordinates.

2.3.1 Celestial Coordinates
The celestial coordinate system, as illustrated by fig. 2.5, uses spherical coordinates
to define the location of objects on the celestial sphere (see section 2.2.2). It is
analogous to the geographic coordinate system used on the surface of the earth.
Grewal et al. [15] defines celestial coordinates as a system for inertial directions
referenced to the earth’s rotation axis and the vernal equinox.
Considering the aforementioned analogy, the polar celestial coordinates right as-
cension and declination can be interpreted as the celestial equivalents of longitude
and latitude respectively. The celestial equator, defined to coincide with the earth’s
equator, serves as the 0◦ reference for measuring declination. Convention defines
positive and negative declination values north and south of the celestial equator
respectively (declination values range between −90◦ to 90◦). Similarly, the vernal
equinox serves as 0◦ reference for measuring right ascension, which is measured in an
eastwards direction along the celestial equator (right ascension values range between
0◦ to 360◦). Right ascension can be measured using either degrees (preferred in this
thesis), radians or hours (with a 15 ◦/h conversion factor).

15◦ 30◦ 45◦

10◦
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Figure 2.5 – Celestial coordinate system
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2.3.2 Earth-Centred Inertial (ECI) Coordinates
Grewal et al. [15] defines the earth-centred inertial reference frame such that (a) the
origin coincides with the earth’s centre of mass; (b) the Z-axis is directed along the
earth’s rotation axis; (c) the X-axis is directed towards the vernal equinox; and (c)
the Y-axis is defined to complete the right handed coordinate system (see fig. 2.6).
Similar to the celestial coordinate system, the ECI coordinate system is fixed relative
to the celestial sphere. The main difference between these coordinate systems is that
the ECI system uses a three dimensional unit vector representation as opposed to
the spherical approach employed by the celestial system. Even though the physical
interpretation of such unit vector representation might be less intuitive than its
spherical counterpart, its versatility and applicability to existing algorithms identify
it as the better suited of the two representations for most stellar imagery applications.
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Figure 2.6 – Earth-centred inertial (ECI) coordinate system

2.3.3 Body-Fixed Coordinates
The body-fixed coordinate system is defined relative to the body of an object. How-
ever, various formalism exist for describing the location of the origin and orientation
of the axes relative to the body itself.
For the purpose of this thesis, the body-fixed coordinate system was defined such that
(a) the origin coincides with the optical centre of the lens (an ideal pinhole model
is assumed); (b) the Z-axis is directed along the camera boresight; (c) the Y-axis
points towards the upwards vertical direction; and (d) the X-axis points towards
the transverse direction completing the right handed coordinate system. Figure 2.7
illustrates the orientation of the axes relative to a stellar gyro camera.
Body-fixed coordinates are of particular interest to stellar gyro applications. Stars
within the camera FOV are often described using body-fixed unit vector coordinates.
Angular rates are also estimated relative to the these axes.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. BACKGROUND 14
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Figure 2.7 – Orientation of the body-fixed axes relative to a stellar gyro camera

2.3.4 Image Plane Coordinates
Image plane coordinates are two dimensional coordinates used to describe a location
on the image sensor surface (and therefore also on the image itself). The origin is
usually defined as the point where the lens boresight axis intersects the image plane.
Coordinates can be expressed using either millimetres or pixels, the later preferred
throughout this thesis. Figure 2.8 illustrates the image plane coordinate system
using a pinhole lens model.
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t

Star in FOV

Figure 2.8 – Image plane coordinate system

2.4 Attitude Representations
Various formalisms exist for describing both the orientation and transformation of
objects in three dimensional space. These formalisms are particularly useful when
describing the attitude of a satellite in orbit. Of interest is a publication by Shuster
[11] in which he performs a comprehensive survey and analysis of such formalisms
with respect to satellite attitude determination. This section presents a brief overview
of the attitude representations used throughout this thesis.
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2.4.1 Axis-Angle
Euler’s rotation theorem, in its most fundamental form, states that any rotation in
three dimensional space can be expressed as a single rotation about a fixed axis. This
axis is unique in the sense that it remains unchanged by the rotation. Figure 2.9
illustrates such rotation about fixed axis n̂ through angle θ.

X Y

Z
n̂

θ

Figure 2.9 – Euler rotation through angle θ about Eigen-axis n̂

The merit of the axis-angle representation lies in its simplistic and intuitive inter-
pretation. It resembles the way the human mind instinctively describes rotation in
a three dimensional space; the rotation of an object through some angle about a
specific point or axis. Of particular interest is the close resemblance between the
axis-angle and quaternion representations (the latter detailed in section 2.4.3). Using
these representations interchangeably consolidates the intuitive interpretation of
angle-axis with the computational power of quaternions.
The axis-angle representation does however have two fundamental drawbacks. Firstly,
the rotation axis is defined by the rotation itself. The absence of such rotation (i.e.,
an angle of rotation θ equal to zero) will therefore result in the rotation axis being
undefined. Secondly, the axis-angle representation also mandates often undesirable
trigonometrical computations.

2.4.2 Rotation Matrix and Euler Rotation Angles
Any vector in three dimensional space can be expressed as

v = v1ê1 + v2ê2 + v3ê3 (2.4.1)

where orthonormal basis E : {ê1, ê2, ê3} designates the abstract directions in three
coordinate axes and vector components {v1, v2, v3} designate the components of
arbitrary vector v along those axes [11]. Alternatively, the orthonormal basis E can
be interpreted as a reference frame of vector v.
A rotation matrix, otherwise known as a Direction Cosine Matrix (DCM), is a 3× 3
matrix that defines the rotation (or transformation) between two such reference
frames. Typical applications in the field of satellite attitude determination include
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rotations between inertial-, orbital- and body-fixed coordinate systems. Given
arbitrary reference frames a and b, the rotation of vector v can be represented as

vb = Abava =

û1 v̂1 ŵ1
û2 v̂2 ŵ2
û3 v̂3 ŵ3

va (2.4.2)

where Aba is the 3 × 3 matrix that describes the rotation from frame a to frame
b. The columns of a rotation matrix is composed of three unit vectors û, v̂ and ŵ,
which form the rotated basis.
The rotation matrix representation exhibits no singularities or trigonometric functions,
making for a robust and unequivocal method of representing satellite attitude.
Unfortunately, since any three-dimensional rotation can be fully described using a
minimum of three parameters, the rotation matrix representation (consisting of nine
parameters) is somewhat less concise and efficient than its alternatives.
The single rotation described by such rotation matrix can also be broken down into
three consecutive rotations about body-fixed specific orthogonal axes such that

A = A3A2A1 = AZAYAX (2.4.3)

where

AX =

1 0 0
0 cosθ1 sinθ1
0 −sinθ1 cosθ1

 AY =

cosθ2 0 −sinθ2
0 1 0

sinθ2 0 cosθ2

 AZ =

 cosθ3 sinθ3 0
−sinθ3 cosθ3 0

0 0 1


(2.4.4)

The angles θ1, θ2 and θ3 are referred to as Euler rotation angles. Unfortunately, the
definition of Euler angles is not unique, seeing as the collective rotation represented
by such angles is dependant on both the axes about which rotation takes place as
well as the sequence of these rotations.
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θ1

(a) First Euler rotation
about the X-axis through
angle θ1
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(b) Second Euler rotation
about the Y′-axis through
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Y′′
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(c) Third Euler rotation
about the Z′′-axis through
angle θ3

Figure 2.10 – Definition of the Euler 1–2–3 rotation
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Figure 2.10 illustrates one such rotational sequence, namely Euler 1–2–3. The first
rotation is defined as a roll about the X-axis through angle θ1. The second rotation
is defined as a pitch about the intermediate Y′-axis through angle θ2. The third
and final rotation is defined by a yaw about the Z′′-axis through angle θ3. Another
particularly common representation used in the fields of science and engineering is
the Euler 3–1–3 sequence.
One of the main advantages of Euler angles is its simple and intuitive interpretation.
Furthermore, Euler angles exhibit no redundancy, since they describe rotations using
only three parameters. Unfortunately, this efficiency comes at the cost of a heavy
reliance on trigonometric computation and singularities at some angles.

2.4.3 Quaternions
Quaternion parametrisation is a method of representing rotation as a four-component
vector. Unlike most attitude representations, quaternions are somewhat unintuit-
ive. The quaternion representation of a rotation, parametrised as a versor (unit
quaternion), is given by

q̂ = iq1 + jq2 + kq3 + q4 =
[
q1 q2 q3 q4

]T
(2.4.5)

Recall from section 2.4.1 that, according to Euler’s rotation theorem, any rotation
in three dimensional space can be expressed as a single rotation by some angle (θ)
about a fixed axis (n̂). Quaternions extend this representation by combing the angle
and axis of rotation to create a single four-component vector. A versor can therefore
also be expressed as

q̂ = sinθ2(inx + jny + knz) + cosθ2 (2.4.6)

Regardless of their unintuitive interpretation, quaternions offer various advantages in
terms of attitude representation. Similar to rotation matrices, quaternions exhibit no
trigonometric functions or singularities. They are also more compact than rotation
matrices (one redundant parameter as opposed to matrices’ nine), and therefore less
susceptible to rounding errors.

2.5 Related Work
The use of star trackers as primary on-orbit attitude determination devices has
been the subject of various research endeavours since the mid 20th century. Due to
sensitivity and bandwidth limitations, star trackers were traditionally used primarily
as a method of drift compensation for physical gyroscopes [16]. Advancements in star
sensor technology increasingly suggested using star trackers as autonomous attitude
determination devices [17], capable not only of absolute referencing but also inertial
referencing. The recent shift towards satellite miniaturization has further encouraged
research specifically regarding the design of gyro-less spacecraft [18]. Stellar gyros
are of particular interest with regard to such applications due to their exceptional
accuracy capabilities [6]. Recent advancements in sensor technology (pioneered
largely by the shift towards APS sensors) suggests that replacing traditional gyros
with their stellar counterparts is becoming increasingly feasible [19].
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Attitude Dependence
Rate estimation algorithms, as employed by stellar gyroscopes, can be separated into
two categories: attitude dependant and attitude independent approaches.
Attitude dependant approaches approximate a dynamic model of the system through
implementation of a Kalman filter that models the external torques acting on the
spacecraft as a random process, using absolute attitude measurements to estimate
angular rates [20]. The main disadvantage of using this approach is its heavy reliance
on an accurate dynamic model, meaning that angular rate estimates are subject to
errors in spacecraft attitude estimates.
Attitude independent approaches, on the other hand, estimate angular rates based
on the time derivative of star tracker body measurements [20]. These methods are
independent of star identification and attitude measurements, rendering angular rate
estimates immune to poorly modelled system dynamics. Due to their reliability and
robustness, attitude independent approaches has since become the norm for stellar
gyro applications.
Another important aspect to consider with regard to attitude independent approaches
is the angular rates at which the stellar gyro is expected to operate.

Low Angular Rates
When imaging at low angular rates, stars typically manifest themselves as point
spread functions (PSFs). Various sophisticated centroiding algorithms exist that,
when combined with deliberate optical defocussing, allow centroid locations to be
determined with exceptional accuracy [21]. Once determined, stars must be matched
between image frames. Ruocchio et al. [22] suggests incorporating traditional star
tracker functionality via star identification. Once stars are identified, matching
between image frames becomes a relatively straightforward task. Rawashdeh et
al. [23, 24, 5, 25] suggests an alternative approach concerned with matching stars
between image frames using a variation of the Random Sample Consensus (RANSAC)
algorithm. Various image intrinsic parameters such as proximity and star brightness
are considered in an attempt to improve the initial matching estimate, often greatly
reducing the number of iterations required. Not only is RANSAC significantly more
robust that the aforementioned star identification approach, but it also greatly reduces
complexity [25]. Section 4.6.2 discusses the viability of implementing RANSAC on
CubeStar.
Various algorithms exist that address the problem of rate estimation using the
previously matched star vector pairs. Crassidis [26] suggests a linear least-squares
approach based on first-order difference approximation. Liu et al. [27] expands
upon the linear least-squares approach by incorporating dynamic estimation through
adaptive Kalman filtering (specifically the implementation of a Sage-Husa filter).
Rawashdeh et al. [24] suggests Davenport’s q-method, which minimizes the sum
of the square errors of all the star vector pairs. Simulations performed by the
aforementioned authors suggest that each of these methods are capable of reliably
estimating angular rates, albeit with varying degrees of accuracy.
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High Angular Rates
At high angular rates, on the other hand, stars typically manifest themselves as star
streaks. Accardo and Rufino [28] suggests an approach in which the endpoints of such
star streaks are extracted from two successive images. These endpoints, which are
assumed to represent the star locations, are then matched between images based on
proximity. The angular rates can subsequently be estimated using methods similar
to those used at low angular rates. Liebe et al. [19] suggests an alternative approach
in which the star streaks are subjected to a spherical fit routine, responsible for
identifying the axis of rotation associated with each star streak. Once these axes of
rotation are known, the accompanying spherical angles (which are analogous to the
spin angles of the stellar gyroscope) can be calculated using the lengths of the star
streaks. With known sampling time between successive images, the angular rates
can be determined based on the aggregate of these spherical angles.
When designing a stellar gyro to operate at high angular rates, there are a few
important factors that must be taken into account. Consider a stellar gyro with
fixed exposure time. When stationary or rotating at very low angular rates, the total
incoming photons from any given star is focussed on a relatively small area. When
rotating at higher angular rates, the equivalent number of photons is distributed over
a much larger area, effectively reducing the projected star brightness. Stars are now
much harder to identify above the noise floor, reducing the minimum detectable star
brightness. Also consider the effect of high angular rates on projected star streak
locations. Recall that stellar gyro algorithms designed to operate at high angular
rates require information regarding both the length and endpoints of a projected star
streak. Unfortunately, operating at such high angular rates increases the probability
that a portion of a star streak will fall outside the image area. Consequently, neither
the length nor endpoint(s) can be determined accurately, rendering that star streak
invalid for the purpose of rate estimation.
Liebe et al. [19] suggests that these influences can be mitigated by using a low noise,
high update rate image sensor with comparably large pixels. Such characteristics
are typical of dedicated star sensors (e.g., ON Semiconductor’s STAR family, most
Mikro-Tasarim sensors). Note that CubeStar, the star tracker camera that serves as
development platform for the work proposed by this thesis, was intended to operate
exclusively at very low angular rates. In an attempt to reduce costs, CubeStar also
uses a COTS sensor originally intended for automotive applications [7]. Unsurpris-
ingly, CubeStar meets none of the aforementioned mitigation criteria, making it a
poor choice for implementing high angular rate algorithms.

Hybrid Approach
Fasano et al. [29] recently proposed a novel hybrid approach capable of operating at
both low and high angular rates. Using successive star images, the velocity vector
field arising from the relative motion between the celestial sphere and the imaging
solution is calculated using a region based matching technique. This is followed
by computing the unit vectors and unit vector derivatives corresponding to the
velocity vector field using a neural-network-based calibration procedure. With the
unit vectors and their derivatives known, angular rates are estimated based on the
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Poisson equation using a minimum-least-squares approach. Simulations suggest
reliable operation at angular rates up to 5 deg/s. Unfortunately, this approach is
still largely unoptimized, exhibiting comparably high noise levels while posing a
significant computational burden to current generation small satellite technology.
This algorithm was therefore not considered for implementation on CubeStar.
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Chapter 3

Optical Analysis

One of the most important steps in the design and development of a star tracker/stellar
gyro camera is a thorough optical analysis. Such analysis involves (a) characterizing
lens and image sensor operation, (b) determining the optimal operational parameters
given certain requirements and environmental conditions, and finally, (c) estimating
the star detection capability of the assembled unit.
Erlank [7] performed an initial sensitivity analysis for CubeStar optics (which com-
bines the Melexis MLX75412 image sensor and Lensation BL6012 lens), verifying
reliable spaceborne operation. Considering the increased reliability demand of multi-
algorithm functionality, a more in-depth analysis is performed here.

3.1 Spectral Irradiance and Photon Influx
This section aims to characterize the photon influx for an MV = 0 reference star as a
function of wavelength. The significance of such characterization with regard to star
tracker detection capabilities will be clarified at a later stage.
The visual magnitude/spectral irradiance of two stars are related by [14]

MV (x) −MV (ref) = −2.5× log10

(
Ix
Iref

)
(3.1.1)

where MV (x) and MV (ref) represent the respective visual magnitudes of the invest-
igated and reference stars, while Ix and Iref represent their respective irradiance
values.
The sun, a star of spectral classification G2 (T = 5800 K), exhibits a visual magnitude
of MV = −26.7 and a solar irradiance of approximately 1370 W/m2. The sun is a
convenient reference for determining the spectral irradiance of other stars due to
(a) its relatively close proximity to the earth, allowing solar irradiance values to be
measured with reasonable accuracy, and (b) the fact that many bright stars have
surface temperatures close to that of the sun.

21
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Using the sun as reference, the total spectral irradiance of an MV = 0 star can be
determined as

Ix = Iref 10(MV (x)−MV (ref))/−2.5 (3.1.2)
= (1370× 10−6 W/mm2) 10(−26.7/−2.5)

I(MV =0) = 2.862× 10−14 W/mm2 (3.1.3)

With the total spectral irradiance known, its distribution per wavelength should be
investigated.
The incident energy from an MV = 0 star on an area of 1 mm2 has the same relative
spectral characteristic curve as a blackbody radiator. A blackbody can be defined as
an object or system that absorbs all radiation incident on its surface and re-emits
radiation based on its temperature (thermal radiation). The spectral irradiance of a
blackbody is given by Planck’s radiation law as [13]

I(λ, T ) = 2πhc2

λ5
(
ehc/λkbT − 1

) [
W/m3

]
(3.1.4)

where I is the spectral irradiance per unit wavelength, λ is the wavelength of radiation
(in metre), T is the temperature of the blackbody (in Kelvin), h is Planck’s constant
at 6.626× 10−34 J s, c is the speed of light in a vacuum at 2.998× 108 m/s and kb
is Boltzmann’s constant at 1.38× 10−23 J/K. Figure 3.1 shows typical blackbody
spectral characteristic curves as a function of temperature and wavelength.

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,0000

0.02

0.04

0.06

0.08

0.1

0.12

5800 K
6000 K

5000 K

4000 K

Wavelength [nm]

Sp
ec
tr
al

Ir
ra
di
an

ce
[W

/m
m

2 /
nm

]

Figure 3.1 – Typical blackbody spectral characteristic curves

With the spectral irradiance of a blackbody known at any given temperature and
wavelength, the total irradiance can be determined by integrating eq. (3.1.4) over
the entire wavelength range. Recall that an MV = 0 star has the same relative
spectral characteristic as a blackbody. The constant of proportionality can therefore
be determined by dividing the total irradiance of an MV = 0 star by that of a
blackbody. Figure 3.2 shows the resulting spectral characteristic curve for anMV = 0
star. Note that the specified wavelength range is based on the spectral response of
the MLX75412 image sensor (see section 3.3).
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Figure 3.2 – Spectral irradiance from a 5800 K, MV = 0 star

To determine a more quantitative representation, the spectral irradiance can be
converted to an equivalent number of photons. Consider the energy of a single photon
given by

E = hc

λ
[J] (3.1.5)

where h is Planck’s constant, c is the speed of light and λ is the wavelength of the
photon (in metre). By dividing the irradiance per wavelength by the energy of a
single photon over the entire wavelength range, the spectral characteristic curve can
be represented in terms of the number of photons per second as shown in fig. 3.3.
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Figure 3.3 – Photon influx from a 5800 K, MV = 0 star on the focal plane

Summating over the entire wavelength range shows that, for an MV = 0 reference
star, the total photon influx amounts to 63 623 photons/(s mm2).

3.2 Optical Defocussing
From the perspective of a star tracker camera, a star is for all practical purposes
a point source of light. Imaging with perfectly focussed optics will result in all
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incoming light being distributed over an area smaller than that of a single pixel.
Practically, this introduces a number of complications.
Firstly, confining a star to a single pixel will render it indistinguishable from dead
pixels. During spaceborne operation, various factors such as exposure to extreme
temperatures, natural component degradation and even radiation can lead to single
pixels becoming unresponsive, possibly stuck in either an inactive or active state.
Inactive dead pixels will result in stars being masked while their locations, as projected
to the image plane, coincide with that of dead pixels. Active dead pixels, on the
other hand, could lead to the detection of false stationary stars. Since rates are
estimated based exclusively on the displacement of star locations between successive
image frames, the detection of such false stationary stars could severely impair stellar
gyro functionality.
Secondly, for a single pixel star distribution, image plane searching algorithms (see
section 4.1) will require a significant number of computations. In order to guarantee
that all stars are extracted from a captured image, the searching algorithm will
have to analyse each and every pixel. For the MLX75412 sensor, this amounts to
1024 × 512 = 524 288 computations. Now consider star distribution over a 3 × 3
pixel grid. All stars can now be extracted by only analysing every third pixel. This
reduces the required number computations to 1024/3× 512/3 = 58 255, nine times
less than that of the single pixel distribution case. The number of computations
can be decreased even further by increasing the grid size (through means of optical
defocussing). Note, however, that an increase in grid size will also reduce the
detectable star magnitude.
Finally, single pixel distribution will severely impair star centroiding. A star centroid
is typically determined as a weighted function of the photon distribution over all
pixels related to that star. Since no information is captured regarding sub-pixel
photon distribution, the centroid location will always be identified as falling in the
middle of the confining pixel.
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Figure 3.4 – RMS centroid bias error with respect to Gaussian spread for various
grid size and fill factor simulations (Data recompiled from [30])

Considering the aforementioned complications, star tracker optics are deliberately
defocussed to improve accuracy and reliability. A research publication by Hancock
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et al. [30] determined that optimal star tracker performance can be achieved by
defocussing stars over a 5× 5 pixel grid, with a corresponding σPSF = 0.7 (see
fig. 3.4(a)). These defocussing parameters will be used for any further analyses. It is
also shown that, for a 5× 5 pixel grid size, altering the fill factor has no significant
impact on the RMS centroid bias characteristic curve (see fig. 3.4(b)). The fill factor
of an image sensor describes the ratio between each pixel’s light sensitive area and its
total area. Since CMOS sensors (such as the employed Melexis MLX75412) generally
exhibit much smaller fill factors than their CCD counterparts, elimination of fill
factor as a sensor selection criteria further validates using the CMOS variety.
The theory behind how an image sensor reacts to incoming starlight is rather complex
(a detailed discussion can be found in [31]). For the purpose of this thesis, it is
sufficient to assume that a star PSF can be approximated by a two-dimensional
Gaussian distribution. Figure 3.5 illustrates such approximation using the previously
determined standard deviation of σPSF = 0.7.
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Figure 3.5 – Gaussian photon distribution over 5× 5 pixel grid using σPSF = 0.7

Note, however, that the minimum resolvable element with respect to photon distri-
bution is the size of a single pixel. In order to determine a meaningful representation
of the overall photon distribution, two scenarios were considered. The first scenario,
as seen in fig. 3.6(a), involves a projected star centroid falling precisely in the centre
of a single pixel. As a result, the majority of the incoming photons will be confined
to the centroid pixel, with neighbouring pixels exhibiting a gradual falloff. The
second scenario, as seen in fig. 3.6(b), involves a projected star centroid falling on
the boundary between four adjacent pixels. In this case, the majority of incoming
photons will be evenly distributed over the four boundary pixels, with a much steeper
falloff observed for neighbouring pixels. These scenarios represent the best and worst
case distributions respectively. Designing star tracker optics based on this worst case
distribution should ensure reliable operation throughout.
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Figure 3.6 – 3D Visualization of the per pixel photon distribution

As mentioned earlier, one of the primary motivations behind optical defocussing
is to enable the star tracker to distinguish between dead pixels/sensor anomalies
and actual stars. The detection algorithm therefore also requires a predetermined
threshold specifying the minimum number of adjacent pixels falling above the
detection threshold that is required to classify the detected pixel group as a star.
Iterative simulations showed that specification of a 9 pixel minimum, effectively a
3× 3 grid, ensures optimal detection rates. This essentially means that at least 9
pixels per detected pixel group should fall above the detection threshold for a star to
be identified. Figure 3.7 shows the per pixel percentile photon distribution.
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Figure 3.7 – Per pixel percentile photon distribution

For the first scenario, fig. 3.7(a) shows that the photon quantity obtained through
summation of 5.86 % of the total incoming photons per star must be greater than
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the minimum photon quantity specified by the detection threshold (see eq. (3.3.2).
Similarly, for the second scenario, fig. 3.7(b) shows that a summation of 3.7 % of
the incoming photons must be greater than the detection threshold photon quantity.
This detection threshold is characterized in section 3.3.

3.3 Detection Threshold
The detection threshold is a sensor specific parameter, determined by characteristics
such as spectral response, sensitivity and responsivity. Figure 3.8 shows the spectral
response of the Melexis MLX75412 image sensor.
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Figure 3.8 – Spectral response of the Melexis MLX75412 image sensor

The effective number of photons per wavelength (i.e., the sensor specific photon
influx) can now be determined by multiplying the star photon influx (fig. 3.3) by the
sensor specific spectral response (fig. 3.8). The result is shown in fig. 3.9.
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Figure 3.9 – Photons detected by an MLX75412 image sensor from a 5800 K, MV = 0
star

With spectral efficiency now taken into consideration, summating over the entire
wavelength range reveals a total photon influx of 42 627.34 photons/(s mm2).
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Notice the impact of the image sensor’s spectral efficiency on the effective number of
photons. Even for the Melexis sensor, which exhibits a comparatively high spectral
efficiency, the effective number of photons from an MV = 0 star amounts to a mere
67% of the total incoming photons. It is therefore paramount that the chosen image
sensor exhibit a superior spectral efficiency.
In order to fully characterize the detection capabilities of the star tracker optics, it
is necessary to determine the sensor specific detection sensitivity. The MLX75412
datasheet specifies a power requirement of 25 nW/cm2 @ 535 nm in order to achieve
a signal-to-noise ratio (SNR) of 10. In a research publication by Truesdale et al.
[32] on the development of DayStar, a star tracker designed under the University
of Colorado Aerospace Capstone Program, SNR6 is determined to be sufficient for
detecting stars with visual magnitudes between 4 and 8. Assuming an estimated
maximum detection capability of less than MV = 4 for CubeStar (based on the
sensitivity analysis performed by Erlank [7]), SNR10 is a conservative benchmark.
Since the output resolution of an image is determined by the number of pixels in
the image sensor array, no meaningful information can be obtained by investigating
the photon/energy distribution on a sub-pixel level. For the Melexis sensor, which
exhibits a (5.6× 5.6) µm2 pixel size, the image sensor power requirement can therefore
be rewritten as

(25× 10−9 W/cm2)(10−8)(5.62 µm2/pixel) = 7.84× 10−15 W/pixel (3.3.1)

Using eq. (3.1.5), the energy of a single photon at the benchmark wavelength of
535 nm can be determined as 3.678× 10−19 J. Dividing the power requirement in
eq. (3.3.1) by the energy per photon determines a detection threshold of

7.84× 10−15

3.678× 10−19
��W photons
��W s pixel = 21 313.85 photons/(s pixel) (3.3.2)

Essentially, this detection threshold value specifies the minimum number of photons
required (per second of exposure) to distinguish an illuminated pixel from background
sensor noise.

3.4 Lens Selection
Apart from selecting a suitable image sensor, the accompanying lens should also be
considered. Not only does the lens determine the achievable sky coverage of the star
tracker (see section 3.5), but it also regulates the amount of light that reaches the
image sensor array.
A star tracker’s achievable sky coverage is dependant on its FOV which, in turn, is
jointly dependant on the image sensor dimensions and the lens focal length. The
Melexis MLX75412 image sensor, with its 2:1 aspect ratio (5.8016 mm× 2.912 mm),
exhibits different horizontal and vertical FOV values. Considering the camera pinhole
model illustrated by fig. 3.10, these values can be determined using eq. (3.4.1).

FOVH = 2 tan−1
(
dx
f

)
FOVV = 2 tan−1

(
dy
f

)
(3.4.1)
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Figure 3.10 – Pinhole model of star tracker optics

Notice that the FOV values are inversely proportional to the lens focal length.
Minimizing the focal length will therefore maximize the FOV, consequently also
maximizing the average number of stars in the FOV. Theoretically, increasing the
average number of stars will improve algorithm accuracy and reliability. Unconditional
application of this approach however introduces a practical complication.
Space, as seen from the perspective of a star tracker camera, not only consists of
a series of stars, but also of various visual obstructions such as the sun, earth, and
space debris. These objects, often brightly illuminated by a relatively close light
source or being a light source in itself, are much brighter than the observed stars.
When such objects enter the camera FOV they risk saturating the image sensor,
impairing star tracker operation in the process. To mitigate such complications,
the minimum FOV that guarantees full sky coverage should be determined. This is
discussed in more detail in section 3.5.
Combining the horizontal and vertical FOVs, a single value equivalent can be
determined in the form of a circular FOV. This facilitates direct comparison between
different lenses and image sensor form factors (with regard to sky coverage in
particular). The circular FOV can be determined using eq. (3.4.2).

FOVcirc = 2
√

FOVH FOVV

π
(3.4.2)

Due to CubeStar’s strict budget limitations, only COTS lenses were considered.
Furthermore, lens selection was restricted to a 1/3” optical format, corresponding
to that of the MLX75412 sensor. Finally, only s-mount configurations (M12× 0.5)
were considered in an attempt to minimize the weight and size of the CubeStar
module. Comprehensive research and comparison during the original CubeStar
design procedure narrowed the selection down to two suitable lenses: the Marshall
V–4305.7–1.3–A and the Lensation BL6012. The latter was approved for the original
CubeStar design. Table 3.1 summarizes the key lens specifications.
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Table 3.1 – COTS Lenses considered for implementation CubeStar

Manufacturer Marshall Lensation Lensation
Model V-4305.7-1.3-A BL6012 BL4012DN

Image Format 1/3” 1/3” 1/3”
Mount Configuration s-Mount s-Mount s-Mount
Focal Length 5.7 mm 6 mm 4 mm
FOV with MLX75412 54× 28.6◦ 51.6× 27.28◦ 71.9× 40◦

Circular FOV 44.34◦ 42.33◦ 60.513◦

Aperture f/1.4 f/1.2 f/1.2
Weight 5 g 32.5 g 21 g

The Lensation BL4012DN, a wider FOV and therefore more light sensitive solution,
was also considered for comparative reasons. Since CubeStar already exhibits a
relatively large FOV compared to most commercial alternatives, realistic consideration
of such large FOV lens is unlikely. The BL4012DN lens should however be considered
for future research, specifically with regard to a stellar gyro designed to operate at
higher angular rates.

3.5 Sky Coverage Simulations
Sky coverage, a quantity based jointly on the star tracker FOV, detectable star
magnitude and star distribution over the celestial sphere, is a measure of the reliability
of star tracker operation. More specifically, sky coverage can be interpreted as the
likelihood of a star tracker being able to detect the minimum number of stars
required for accurate and reliable operation. Orientation algorithms, which form
the foundation of CubeStar, require a minimum of 3 stars in its FOV for accurate
and reliable operation. Stellar gyro algorithms, on the other hand, require only 2
stars. Since both sets of algorithms utilize the same hardware, component viability
is assessed based on a 3 star coverage.
Figure 3.11 shows the celestial distribution plot for stars up to MV = 4. Even though
the magnitude detection threshold of CubeStar is expected to be slightly lower than
the plotted maximum, a higher star density serves to emphasize distribution patterns
over the celestial sphere. Note that stars are not evenly distributed. The detected
number of stars, and therefore also the likelihood of detecting the required number
of stars, will be dependant largely on the orientation of the star tracker camera with
respect to the celestial sphere.
In order to determine accurate sky coverage estimates, Monte Carlo simulations
consisting of 10 000 iterations per FOV were performed. Simulations considered
stars in the Hipparcos, Yale Bright Star, and Gliese catalogues, with a minimum
of 3 stars required to validate sky coverage. Results are shown in fig. 3.12. The
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Figure 3.11 – Celestial distribution plot for stars up to MV = 4

detection capability and resultant sky coverage of the assembled CubeStar unit
(which combines the Melexis MLX75412 image sensor and Lensation BL6012 lens) is
characterized in Section 3.6.
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Figure 3.12 – Monte Carlo simulations showing the estimated sky coverage as a
function of the FOV for various visual magnitudes

3.6 Detection Capability
With the desired level of optical defocusing and the detection threshold now determ-
ined, the sensor specific detection capability can be characterised. Equation (3.3.2)
specifies a single pixel detection threshold of 21 313.85 photons/(s pixel). As determ-
ined in section 3.2, worst case operation necessitates that the sum of 3.7 % of the
total incoming photons must fall above the detection threshold. This allows the total
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number of photons required for star detection to be determined as

# photons = 21 313.85
0.037 = 576 050 photons/s (3.6.1)

Recall from section 3.3 that, for the Melexis MLX75412, the sensor specific photon
influx from anMV = 0 star amounts to 42 627.34 photons/(s mm2). Since the number
photons incident from a star is directly proportional to its spectral irradiance, the
ratio given by eq. (3.1.1) can be used to determine the number of photons per unit
area based on star magnitude. Taking the exposure time and effective lens area into
consideration, the total number of photons reaching the image plane for a star of
arbitrary magnitude can be determined as

# photons =
(

42 627.34 photons
s mm2

)(
10MV /(−2.5)

)(
tx

s
exposure

)(
Ar mm2

)
(3.6.2)

where MV is the visual magnitude of the star in question, tx is the image exposure
time and Ar is the effective lens area. Figure 3.13 shows the detection threshold
superimposed on the total number of photons per magnitude. Simulations assume a
one second exposure time and an effective lens area of

Ar = πr2 = π(7.95)2 = 198.56 mm2
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Figure 3.13 – Detection capability of CubeStar’s original optical solution (Melexis
MLX75412 image sensor with Lensation BL6012 lens

Simulations show that, assuming worst case operation, the detection capability of
CubeStar’s original optical solution is limited to MV = 2.92 stars. From fig. 3.12,
this corresponds to a sky coverage of merely 85 %. Note, however, that various
conservative design choices were made, including an absolute worst case photon
distribution, overly conservative SNR specification as well as the strict wavelength
range limitation. Considering best case photon distribution (represented by the
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5.86 % detection threshold) the detection capability is increased to MV = 3.42 stars,
corresponding to a sky coverage of 93 %. It is therefore safe to assume that, during
spaceborne operation, CubeStar optics should be capable of achieving close to full
sky coverage (> 99%).

Remarks
As opposed to the various conservative design decisions, simulations assume exag-
gerated exposure times. Considering the relatively poor detection capabilities of
the MLX75412 sensor, maximizing exposure time is crucial. Fortunately, the fast
execution of both orientation (star tracker) and rate determination (stellar gyro)
algorithms facilitate such long exposure times, but at the cost of increased power
consumption. Since imagers tend to consume far more power during imaging than
they do during inactive or standby modes, increased exposure times typically corres-
pond to proportional increases in power consumption. Fortunately, CubeStar was
designed with long exposure times in mind, sustaining acceptable levels of power
consumption throughout.
Furthermore, simulations fail to account for the effects of rotation on star distribution
patterns. Fortunately, due to the relatively low range of operation (angular rates of
up to ±1 deg/s), the impact on detection capabilities should be minimal.
In light of these considerations (or lack thereof), future iterations of CubeStar would
benefit from implementing a more light sensitive, similarly low powered image sensor.
This would facilitate reduced exposure times, thereby also lessing the effects of
rotation on star distribution patterns. Key considerations for selecting an alternative
star tracker/stellar gyro image sensor are discussed appendix B.
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Chapter 4

Algorithms

This chapter presents an overview of the algorithms used throughout the stellar gyro
process. To aid understanding, algorithms are presented in order of execution.

4.1 Image Plane Search
Once an image is captured, star locations must be extracted from the raw image
data. This is done by comparing pixel values to a predetermined detection threshold
(see section 3.3). In order for a star to be extracted, only a single pixel related to
that star must be identified as falling above the detection threshold.

1

2
3

4

5
6
7

8

1 2 3 4 5 6 7 8 9 10 11 12

Image Sensor Pixel

Compared Pixel

Region Growing

Figure 4.1 – Graphical representation of image plane search and region growing
algorithms

The coordinates of the compared pixels are determined based on the level of optical
defocussing (see section 3.2). For star distribution over a 5× 5 pixel grid (as
illustrated by fig. 4.1), only every fifth pixel need be compared to the detection
threshold in order to guarantee the extraction of each and every star. Once a pixel
is identified as falling above the detection threshold, a recursive growing algorithm is
called with that pixel as seed point. The region growing algorithm is responsible for
extracting the remaining pixels associated with that star.

34
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4.2 Region Growing Algorithm
The region growing algorithm is responsible for extracting all pixels related to a star
using a region-based image segmentation approach. The process can be outlined as
follow:

1. The algorithm is given the coordinates of a single pixel with a value exceeding
the detection threshold. This pixel, referred to as a seed point, is added to the
region identifying it as being part of a possible star.

2. The value of the seed pixel is set to zero to prevent it from being detected by
further recursions of the algorithm.

3. Each pixel adjacent to the seed pixel is compared to the detection threshold
(see fig. 4.1).

4. If the value of a pixel exceeds the detection threshold, the algorithm is called
recursively with that pixel as seed point.

5. Recursion continues until all pixels related to the possible star have been added
to the region.

Figure 4.2 illustrates a star region extracted from a captured image using a threshold
value of 14. Note that CubeStar uses 8-bit parallel data communication, allowing for
a resolution of 28 = 256 different intensity values.
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Figure 4.2 – Star region extracted from a night sky image captured by CubeStar

Once extracted, the region is subjected to a further verification step to prevent the
detection of false stars. For a region to be representative of a star, the number of
pixels within that region must fall within a predetermined allowable range. If the
number of pixels fall below the allowable minimum, the region likely indicates either
a dead pixel or a star that is too faint for reliable centroiding. If the number of pixels
exceed the allowable maximum, the region likely indicates some form of brightly
illuminated celestial object other than a star (e.g., the earth, sun or moon). The
allowable pixel range is determined based on camera hardware as well as the level of
optical defocussing (see section 3.2).
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Since centroids are determined based only on the pixels contained within these star
regions, the algorithm effectively serves both as a star extraction tool as well as
background noise filter. The latter is especially significant where star centroiding is
concerned.

4.3 Centroiding Algorithms
Once all star regions have been extracted, the exact star locations corresponding to
these regions are determined through sub-pixel centroiding. Centroiding plays an
important role in achieving the desired accuracy and reliability for both matching
and rate estimation algorithms. Identifying the best suited centroiding method is
therefore an important step in the stellar gyro design process.
The original CubeStar design draws on the centre of gravity (CoG) approach for
centroiding purposes. Even though the existing implementation of this method proved
to be largely successful, a more comprehensive weighted centre of gravity (WCoG)
method is also considered in the interest of thoroughness. Other state-of-the-art
centroiding methods do exist (e.g., Least Squares Gaussian Fit, and Gaussian Grid
[33]), but their implementation tends to be significantly more processor intensive.
Erlank [7] deduced that CubeStar should be capable of determining star centroids
within 0.2 pixels using the CoG approach, which is sufficiently accurate for stellar
gyro implementation.

4.3.1 Centre of Gravity (CoG) Method
The CoG method was originally chosen for implementation on CubeStar. The
centroid location is given by

(xc, yc) =
(∑

ij Iijxij∑
ij Iij

,

∑
ij Iijyij∑
ij Iij

)
(4.3.1)

where (xc, yc) represents the estimated centroid coordinates, (xij, yij) represents the
coordinates of each pixel in the star region and Iij represents the respective intensities
of those pixels.
The main advantages of the CoG method are its relative simplicity and fast execution.
Note that CoG centroiding accuracy is contingent on optimal background noise
filtration [21]. For more information regarding the implementation of the CoG
algorithm on CubeStar, refer to [7].

4.3.2 Weighted Centre of Gravity (WCoG) Method
The weighted centre of gravity (WCoG) method expands upon the basic CoG
approach by incorporating information regarding the point spread function (PSF)
through means of a weighting factor. The star centroid (xc, yc) can be determined as

(xc, yc) =
(∑

ijWijIijxij∑
ijWijIij

,

∑
ijWijIijyij∑
ijWijIij

)
(4.3.2)
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where Wij is the approximate value of a two-dimensional Gaussian distribution at
coordinates (xij, yij) given by

Wij = V exp

[
−
(

(xij − xc)2

2σ2
x

+ (yij − yc)2

2σ2
y

)]
(4.3.3)

The coefficient V is set equal to the maximum intensity value. Note that the weighting
function requires an initial estimate of the centroid location. Assuming a largely
undistorted PSF, the centroid location can be approximated as the coordinates of
the brightest pixel.
Considering the low angular rates at which the proposed stellar gyro is expected to
operate, assuming equal standard deviations for random variables x and y (σx =
σy = σ) should provide a reasonable although not entirely accurate approximation of
the actual distribution. The complexity associated with accurately characterizing the
standard deviation values based on angular rates could not be justified at the desired
range of operation. Resultantly, the joint standard deviation can be determined as

σ = fwhm

2
√

2 log(2)
(4.3.4)

where the full width at half maximum (fwhm) represents the maximum width of
the Gaussian function between points where the function value is equal to half its
maximum value (i.e., half the intensity value of the brightest pixel). This value can
be approximated by taking the square root of the number of pixels with a value
higher than half the maximum value [33].
By incorporating information about the PSF, the WCoG method is theoretically
capable determining star centroids more accurately than its CoG counterpart.
Note, however, the reliance of the weighting function on an initial centroid estimate.
Recall from eq. (4.3.3) that the centroid coordinates are initially assumed to be the
coordinates of the brightest pixel. Considering an ideal PSF, the validity of this
assumption is maximised by a unique brightest pixel. Image sensor saturation will
increase the number of pixels that exhibit this “brightest” intensity value, diminishing
the accuracy of the estimated centroid location in the process. Even though CubeStar
was determined to avoid saturation for exposure times shorter than 4.06 s [7], this
reliance still makes for a worthwhile consideration where saturation is unavoidable
(see section 6.2).
The reliability of the WCoG method is also contingent on the validity of the assump-
tion regarding equal standard deviations. Centroiding accuracy is therefore inversely
proportional to the magnitude of the angular rates.

4.4 Distortion Correction
Up to this point algorithms assumed an ideal pinhole lens model. Unfortunately,
physical lenses all exhibit some form of optical distortion (i.e., lens error). The most
commonly encountered form of optical distortion is radial distortion, which is radially
symmetric with respect to the optical axis.
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Radial distortion manifests itself as either barrel or pincushion distortion (see fig. 4.3).
Barrel distortion is commonly associated with wide-angle lenses exhibiting relatively
short focal lengths, where the FOV is wider than the size of the image sensor. The
result is an apparent spherical mapping due to a decrease in image magnification
proportional to the distance from the optical axis. Pincushion distortion is the exact
opposite of barrel distortion, where image magnification increases proportional to
the distance from the optical axis. The effect is an image that appears “pinched”
at its centre. This form of distortion is commonly associated with optical solutions
where the FOV is smaller than the size of the image sensor.

Undistorted Barrel Pincushion

Figure 4.3 – Visual representations of barrel and pincushion distortion

Another form of optical distortion is tangential distortion, resulting from slight
misalignments in a lens’s optical design or between the lens and image sensor. Even
though radial distortion typically dominates distortion models (the effects of radial
distortion exceed those of tangential distortion by at least an order of magnitude [34]),
accurate distortion models should ideally consider both forms of optical distortion.
A simplified version of Brown’s distortion model, which only considers the first two
distortion coefficients, was used to perform distortion correction on CubeStar [7].
Consideration of higher order distortion coefficients is only necessary for lenses that
exhibit extreme levels of distortion (e.g., fisheye lenses).
Points on the image plane can be undistorted using eqs. (4.4.1) to (4.4.2).

xu = x(1 +K1r
2 +K2r

4) + P2(r2 + 2x2) + 2P1xy (4.4.1)
yu = y(1 +K1r

2 +K2r
4) + P1(r2 + 2y2) + 2P2xy (4.4.2)

with
x = xd − xc

f
y = yd − yc

f

where
xu, yu = undistorted image points as projected by ideal pinhole camera
xd, yd = distorted image points as projected on image plane
xc, yc = distortion centre (assumed to be the principal point)

f = lens focal length
Kn = nth radial distortion coefficient
Pn = nth tangential distortion coefficient

r =
√

(xd − xc)2 + (yd − yc)2
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Even though the distortion coefficients were determined for the original CubeStar
optics, each and every lens exhibits slightly different intrinsic parameters. The
calibration procedure used to determine these coefficients must therefore be repeated
for the CubeStar unit used as development platform. The calibration procedure is
detailed by Erlank [7].

4.5 Image Plane to Unit Vector Conversion
Once undistorted, star centroids are transformed from image plane to body-fixed
coordinates using eq. (4.5.1). A full derivation of this equation is performed by
Erlank [7].

uxuy
uz

 =



(xu − xc) ppx

fmm

[
1 +

(
(xu − xc) ppx

fmm

)2
+
(
(yu − yc) ppy

fmm

)2
]− 1

2

(yu − yc) ppx

fmm

[
1 +

(
(xu − xc) ppx

fmm

)2
+
(
(yu − yc) ppy

fmm

)2
]− 1

2

[
1 +

(
(xu − xc) ppx

fmm

)2
+
(
(yu − yc) ppy

fmm

)2
]− 1

2


(4.5.1)

where

ux, uy, uz = components of a unit vector
xu, yu = undistorted centroid locations in pixels
xc, yc = coordinates of the principal point in pixels

ppx, ppy = pixel pitches1of the image sensor in mm
fmm = focal length of the lens in mm

It is worth noting that even though star matching can also be performed using
image plane coordinates, many rate estimation algorithms necessitate body-fixed
unit vector representations of star locations.

4.6 Matching Algorithm
Rate estimation algorithms determine angular rates based on the displacement of
a series of centroids between successive image frames. In order to determine such
displacement, the algorithm requires information regarding the correspondence of
centroid locations between images (i.e., centroid matching).

4.6.1 Star Identification Based Approach
One possibility for centroid matching is through star identification. Using CubeStar’s
existing star identification algorithms, centroid locations are matched to catalogue
stars. Once the stars have been identified, the matching process becomes relatively

1The pixel pitch of an image sensor is the distance between the centre points of two adjacent
pixels
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simple. The efficiency of this method as a means of centroid matching is however
questionable.
Star identification algorithms tend to be relatively complex. Orientation procedures
necessitate star identification, justifying the execution of such complex algorithms.
Rate estimation algorithms, on the other hand, require only centroid locations
matched from one image frame to the next. The identity of the stars in question are
therefore of no concern to such algorithms, rendering the execution of unnecessarily
complicated star identification undesirable. Furthermore, star identification is much
less reliable than simply matching centroids between images, as orientation algorithms
mandate a high level of certainty with respect to star identity.

4.6.2 RANSAC (Random Sample Consensus)
Rawashdeh et al. [5] proposed an alternative solution to the star correspondence
problem using a variation of the RANSAC (Random Sample Consensus) algorithm.
The approach can be summarized as:

1. Hypothesize: The rotation matrix (describing the rotation between successive
image frames) is computed using two randomly selected stars from each image
frame.

2. Test: The rotation matrix is tested for consensus against all remaining stars.
Consensus is registered if the hypothesized rotation matrix correctly describes
the rotation of a star between image frames, given some measurement of
deviation.

3. Iterate: The algorithm iterates between the aforementioned steps until con-
sensus is achieved for at least 40% of stars in the first image frame. Stars which
showed consensus are then matched.

The design of the RANSAC algorithm is such that it is capable of estimating the
parameters of a mathematical model from a set of observed data contaminated by
a large number of outliers that do not fit the model [35]. This not only identifies
RANSAC as a robust and reliable method for star matching (even when images are
particularly noisy), but it also eliminates the need to detect and discard false stars
(see section 4.2).
The main disadvantage of RANSAC is that it requires a significantly large number of
iterations to find a hypothesis that registers consensus. Rawashdeh and Lumpp [25]
suggest that the number of iterations can be drastically reduced by first performing
crude matching based on proximity or star brightness. In this case, random star
centroids are still selected from the first image frame, but the corresponding centroids
in the subsequent frame are selected such that (a) their locations correspond to
where the transformed centroid is expected based on previous angular rate estimates,
or (b) they exhibit similar brightness values.
Rawashdeh and Lumpp [25] motivate the use of RANSAC over more primative
methods of establishing correspondance (e.g., matching purely based on proximity or
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similar brightness) by referring to the severely detrimental effect false correspondence
can have on angular rate estimates. Since simulations based on CubeStar hardware
determine flawless correspondence for angular rates up to ±1 deg/s in all axes when
using the aforementioned primitive methods (see section 5.3), the complexity and
computational burden RANSAC would add to CubeStar could not be justified.

4.6.3 Proximity Based Approach
A proximity based matching algorithm was developed for implementation on Cube-
Star. The remainder of this section is dedicated to providing a detailed algorithm
breakdown.
Note that centroids are matched based on their body-fixed unit vector coordinates
(see section 4.5). Even though slightly less intuitive than image plane coordinates with
regard to star matching, the unit vector representation retains general applicability
regardless of the chosen optical solution (i.e., the distances between unit vector star
locations remain fixed, whereas the corresponding distances between their image
plane locations are determined by the camera focal length). Any matching parameters
determined through simulation (see section 5.3) therefore applies to stellar gyro
solutions in general.
Once the centroid lists of two consecutive images have been constructed, centroid
matching is initiated. For simplicity, the centroid lists corresponding to the first and
second image frames will from here on be referred to as listA and listB respectively.
The matching procedure can be described as follow:

Step 1: Initial centroid matching
The algorithm uses each centroid location in listA as origin for a circular region
of interest (ROI) in which its projected location in listB can be expected. The
size of this ROI, defined as a search radius, is based on the maximum angular
rates at which the stellar gyro is expected to operate. A more comprehensive
analysis of the ROI origin and size is performed in section 5.3. Every centroid
in listB that falls within the ROI for a centroid in listA is identified as a possible
match (see fig. 4.4(a)). The indices of both centroids are preserved in the form
of a match pair, which is then subjected to an additional verification step based
on the availability of previous angular rate estimates. If

(a) no previous rate estimates are available,
a new entry is created in the match list for each possible centroid pair.

(b) previous rate estimates are available,
the algorithm determines the centroid’s expected direction of displacement
between image frames in both the X- and Y-directions. This reduces the
valid ROI by a factor of four (see fig. 4.4(b)). The location of each poten-
tial matching centroid is then compared to the reduced ROI. Considering
the distribution of stars visible to CubeStar (see section 5.3), compar-
ison with this reduced ROI should eliminate the majority of conflicting
matches. Since a body-fixed coordinate system is used, comparison in
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the Z-direction (which is representative of the camera boresight) will be
relatively inaccurate and unreliable.

X

Y
Valid
ROI

Possible
projected
locations

(a) ROI where no previous rate estimates
are available

X

Y
Valid
ROI

Projected
location

(b) ROI where previous rate estimates
define ∆x ≥ 0 and ∆y ≥ 0

Figure 4.4 – ROI based on the availability of previous rate estimates

Matching centroids based on previous angular rate estimates introduces a
significant complication when confronted with abrupt changes in the direction
of rotation. To illustrate this point, consider a scenario where the employed
rate estimation algorithm determined a small positive angular rate around
either cross-boresight axis. Say now at the next sampling instance that the
direction of rotation around that axis has changed since the positive estimate
was made. The matching algorithm, unaware of this change in the direction
of rotation, erroneously determines each centroid’s direction of displacement
based on the previous angular rate estimates. Each centroid’s correct match
will now be discarded due to this verification imposed by the availability of
previous rate estimates. A similar complication could occur at almost negligibly
small angular rates due to algorithm errors and inaccuracies.
Simulations show that, for angular rates up to 0.5 deg/s, the proposed matching
algorithm is capable of flawless matching regardless of the availability of angular
rates (see section 5.3). The aforementioned complication can therefore be
avoided by assuming that rate information is unavailable if previous rate
estimates fall below a predetermined threshold. Following a conservative design
approach, a threshold of 0.2 deg/s was chosen. Consequently, the matching
algorithm will assume that rate information is unavailable at any point where
previous rate estimates fall between ±0.2 deg/s.

Step 2: Second matching phase
If the initial matching phase was unable to identify a possible match for any
centroid in listA, the algorithm once again assesses the availability of previous
rate estimates. If

(a) no previous rate estimates are available,
the algorithm abandons the matching process for the centroid in question.
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(b) previous rate estimates are available,
the algorithm determines the expected location of the centroid as projected
to the second frame based on these rate estimates. Rate estimation
algorithms assume very small changes in angular rates from one sampling
instance to the next. Previous rate estimates should therefore provide
a reasonably accurate estimate of the projected centroid location. The
matching process detailed in Step 1 is repeated with the expected location
as the new ROI origin. Furthermore, a larger search radius is also used
during the second iteration to improve the likelihood of finding a match.
The comprehensive verification procedure associated with the availability
of angular rates ensure that matching reliability is not compromised
through use of a larger search radius.
Figure 4.5 illustrates an example in which the projected ROI succeeds in
identifying the correct match where the original ROI failed to do so. If
the second iteration also fails to identify a possible match, the matching
process is abandoned for the centroid in question.

Estimate of the
projected location

Original star
location Actual projected

location

Projected ROI

Figure 4.5 – ROI based on the estimate of the projected centroid location

Step 3: Resolve listA matching disputes
Once the matching process for a centroid in listA is completed, the number
of entries in the match list associated with that centroid is determined. If the
match list contains more than one entry for the centroid in question (i.e., one
or more centroids from listB have been erroneously matched to the centroid in
listA), the match dispute is resolved based on the Euclidean distance between
the location of each matched centroid in listB and the best estimate of the
current location of the centroid in listA. If

(a) no previous rate estimates are available,
the best estimate of the current location is the existing entry in listA.

(b) previous rate estimates are available,
the best estimate of the current location is the projected location of the
centroid onto the second frame. As was explained in Step 2, previous
rate estimates can be used to determine a reasonably accurate projection
of a centroid onto the second frame.
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Most likely match
(No previous estimates)

Most likely match
(Previous estimates available)

Estimate of the
projected location

Figure 4.6 – Resolve listA matching dispute

As illustrated by fig. 4.6, the matched centroid closest to the best estimate
of the current location is identified as the most likely match, after which the
other less suitable entries are discarded.

Step 4: Resolve listB matching disputes
The match list has now been resolved to the extent that it contains a maximum
of one match pair for each centroid in listA. The final step is to confirm that
no centroid from listB has been matched to more than one centroid from listA.
This is done by comparing the index value of each entry in listB to the index
value of every other entry in an attempt to find a possible duplicate. If more
than one match is identified for any centroid in listB, the match dispute is
resolved in a manner similar to that detailed in Step 3. As shown in fig. 4.7,
the match pair for which the centroid in listB is closest to the best estimate of
the current location of the corresponding centroid in listA is identified as the
most likely match, after which the other less suitable entries are discarded.

A B

Overlapping ROI area

Most likely match
for star A

Possible matches for both stars A and B

Most likely match
for star B

Figure 4.7 – Resolve listB matching dispute

The algorithm was tested for reliability through simulation in the MATLAB environ-
ment. Results are shown in chapter 5.
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4.7 Significant Developments in the Field of
Satellite Attitude Determination

Satellite attitude determination is an overarching term that describes the process of
measuring and calculating vector data using a combination of physical sensors and
mathematical models, after which satellite attitude is determined by subjecting said
data to various estimation algorithms. Attitude is typically described using either
rotation matrices, Euler angles or quaternions, each providing their own advantages in
terms of analysis and application (see section 2.4). Considering the immense accuracy
requirements and low tolerance for errors mandated by spaceborne operation, the
importance of accurate and reliable attitude determination can not be overstated.
Significant amongst attitude determination algorithms are the rate estimation tech-
niques employed by stellar gyroscopes. Comprehension of such techniques, however,
requires some background regarding the development of attitude determination
algorithms in general.

4.7.1 TRIAD Algorithm
The TRIAD algorithm, presented by Harold Black in 1964 [36], is one of the earliest
and simplest solutions to the problem of spacecraft attitude determination. What
makes the TRIAD algorithm distinct from its predecessors is its methodology, being
the first algorithm to use body and reference observations for attitude determination.
The interpretation presented here is based on a related textbook publication by
Markley and Crassidis [37] entitled Fundamentals of Spacecraft Attitude Determina-
tion and Control.
Fundamentally, the TRIAD algorithm attempts to find the rotation matrix A that
transforms a set of vectors from a reference frame to the spacecraft body frame, i.e.,

bi = Ari for i = 1, 2 (4.7.1)

where bi and ri denote the vectors in the reference and body frames respectively.
Equation (4.7.1) implies that

b1 • b2 = (Ar1) • (Ar2) = rT1 ATAr2 = r1 • r2 (4.7.2)

which is generally not possible in the presence of measurement noise. In order for
eq. (4.7.1) to be true for both sets of vectors, eq. (4.7.2) must be obeyed. TRIAD
proposes a solution to this problem by stating that, given the corresponding orthonor-
mal vector triads {v1,v2,v3} and {w1,w2,w3} in the reference and spacecraft body
frames respectively, the attitude matrix

A ≡
[
w1 w2 w3

] [
v1 v2 v3

]T
=

3∑
i=1

wivTi (4.7.3)

will transform vi to wi by

wi = Avi for i = 1, 2, 3 (4.7.4)
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The triads {v1,v2,v3} and {w1,w2,w3} are formed from the reference and spacecraft
body frame vector sets respectively according to

v1 = r1 v2 = r× ≡
r1 × r2

||r1 × r2||
v3 = r1 × r× (4.7.5a)

w1 = b1 w2 = b× ≡
b1 × b2

||b1 × b2||
w3 = b1 × b× (4.7.5b)

An estimate of the attitude matrix can be obtained by substituting eqs. (4.7.5a)
to (4.7.5b) into eq. (4.7.3), giving

ÂTRIAD = b1rT1 + (b1 × b×)(r1 × r×)T + b×rT× (4.7.6)

Some algebraic manipulation shows that eq. (4.7.6) satisfies eq. (4.7.1) for both
vector sets if and only if eq. (4.7.2) is obeyed. The derivation above highlights the
simplicity of the TRIAD algorithm. Even though various algorithms have since
surpassed TRIAD in terms of functionality and usability, its simplicity and efficiency
still encourage further research regarding its application.

4.7.2 Whaba’s Problem
The main disadvantage of the TRIAD algorithm is the limitation of only being able
to combine the information of two measurements. Whaba’s Problem, published
by Grace Whaba in 1965 [38], improves upon the TRIAD algorithm by posing a
three-axis attitude determination problem that seeks to find a proper orthogonal
attitude matrix which brings two vector sets, each containing n independent vector
entries, into least squares coincidence with one another. In other words, Whaba’s
Problem is concerned with finding the optimal rotation matrix between two reference
frames that will minimize the cost function

L(A) ≡ 1
2

N∑
i=1

ai||bi −Ari||2 (4.7.7)

Note that, unlike the TRIAD algorithm, eq. (4.7.7) facilitates the integration of
an arbitrary number of measurements, as well as the arbitrary weighting of such
measurements.
Considering the orthogonality of the attitude matrix A and the resultant unit norm
of the body and reference unit vectors, the latter part of eq. (4.7.7) can be rewritten
as

||bi −Ari||2 = ||bi||2 + ||Ari||2 − 2bi • (Ari) (4.7.8)
= 2− 2bi • (Ari)

||bi −Ari||2 = 2− 2tr(AribTi ) (4.7.9)

The trace of the product of matrices functions similarly to the dot-product of vectors.
This similarity, along with the inherent cyclic invariance of the matrix trace, validates
eq. (4.7.9).
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Substituting eq. (4.7.9) into eq. (4.7.7) gives

L(A) ≡ 1
2

N∑
i=1

ai
(
2− 2 tr(AribTi )

)
(4.7.10)

≡
N∑
i=1

ai − tr
(

N∑
i=1

aiAribTi

)
L(A) ≡ λ0 − tr(ABT ) (4.7.11)

where
λ0 =

N∑
i=1

ai and B =
N∑
i=1

aibirTi (4.7.12)

It is worth noting that the loss function presented in eq. (4.7.7) reveals no intuitive
approach regarding its minimization, whereas the rewritten form of eq. (4.7.11)
clearly shows that maximization of the term tr(ABT ) will minimize the loss function
in question.
Assuming the availability of at least one observation, the weights can be normalized
to give

λ0 =
N∑
i=1

ai = 1 (4.7.13)

This allows for the simplification of eq. (4.7.11) to

L(A) ≡ 1− tr(ABT ) (4.7.14)

In order to retain the general applicability of the proposed estimation algorithms,
the cost function presented in eq. (4.7.11) will be used for further derivations unless
otherwise specified.

4.8 Rate Estimation Algorithms
The fundamental concern of Whaba’s problem is to find the optimal rotation matrix
between two reference frames. Solutions to this problem typically focus on orientation,
concerned with determining the rotation matrix between body-fixed and inertially
referenced frames. Fortunately, due to the general applicability of such solutions,
algorithms can easily be repurposed to determine angular rates. By specifying two
consecutive star images as reference frames, the rotation matrix now describes the
angular displacement between such images. Given the delay between successive
captures, the process of determining angular rates becomes relatively simple. The
algorithms considered for stellar gyro implementation are detailed here.

4.8.1 q-Method
Paul Davenport provided the first useful solution to Whaba’s problem with respect
to spacecraft attitude determination. His solution was first used onboard the NASA
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High Energy Astronomy Observatory satellites (HEAO–1,2,3) launched in 1978 [39].
The q-method employs the quaternion representation

q(e, θ) =
[
q1:3
q4

]
=
[
e sin(θ/2)
cos(θ/2)

]
(4.8.1)

Equation (4.8.1) allows for the quaternion parametrization of the attitude matrix as

A(q) = (q2
4 − ||q1:3||2) I3×3 − 2q4[q1:3×] + 2q1:3qT1:3 (4.8.2)

Substituting eq. (4.8.2) into eq. (4.7.11), followed by considerable matrix algebra
[40], gives

L(A(q)) = λ0 − qTK(B)q (4.8.3)

where K(B) is the symmetric traceless matrix

K(B) ≡
[
B + BT − (trB)I3×3 z

zT trB

]
(4.8.4)

with

z ≡
N∑
i=1

aibi × ri =

B23 −B32
B31 −B13
B12 −B21

 (4.8.5)

Using Lagrange multipliers, the optimal solution (which maximizes the term qTK(B)q)
is shown to be a quaternion that is the normalized eigenvector of K(B) corresponding
to the largest positive eigenvalue, i.e., the solution of

K(B)qopt ≡ λmaxqopt (4.8.6)

The nature of the q-Method is such that it determines the quaternion representation
of the attitude matrix rather than the attitude matrix itself.

4.8.2 Singular Value Decomposition
In 1987, Markley [41] provided an alternative solution to Whaba’s Problem based on
the singular value decomposition (SVD) of a 3× 3 matrix. Even though significantly
more computationally expensive than the method proposed by Davenport, SVD
provides valuable analytical insight through the determination of the eigenvalues and
eigenvectors of the covariance matrix in addition to the desired attitude estimate.
These values allow for a more in-depth analysis of attitude uncertainty.
The singular value decomposition of the matrix B is given by

B = USVT (4.8.7)

where U and V are orthogonal matrices and

S = diag(s1, s2, s3) with s1 ≥ s2 ≥ s3 ≥ 0 (4.8.8)
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a diagonal matrix containing the singular values of matrix B.
At this point, it is convenient to define (see appendix A for the derivation of
eq. (4.8.10))

U+ = U[diag(1, 1, |U|)] and V+ = V[diag(1, 1, |V|)] (4.8.9)

with
W ≡ UT

+AV+ = cosθ I3×3 + (1− cosθ)eeT − sinθ[e×] (4.8.10)
Also define the diagonal matrix

S′ = diag(s1, s2, |U||V|s3) (4.8.11)

The singular value decomposition of matrix B (eq. (4.8.7)) can now be written as

B = U+S′VT
+ (4.8.12)

Substituting eq. (4.8.12) into Whaba’s loss function (eq. (4.7.14)) gives

L(A) = 1− tr(AUT
+S′V+) (4.8.13)

Using the cyclic invariance of the matrix trace gives

L(A) = 1− tr(S′UT
+AV+) (4.8.14)

= 1− tr(S′W)
L(A) = 1− trS′ + (1− cosθ)[s2 + |U||V|s3

+ (s1 − s2)e2
2 + (s1 − |U||V|s3)e2

3]
(4.8.15)

Considering the singular value characterization of s1 ≥ s2 ≥ s3 ≥ 0, it is seen that
the minimization of L(A) can be achieved by specifying θ = 0, reducing eq. (4.8.15)
to

L(Aopt) = 1− trS′ = 1− s1 − s2 − |U||V|s3 (4.8.16)
Substitution of the angle condition θ = 0 into eq. (4.8.10) gives

W ≡ UT
+AoptV+ = cos(0) I + (1− cos(0))eeT − sin(0)[e×] (4.8.17)

UT
+AoptV+ = I

Aopt = U+VT
+ = U[diag(1, 1, |U||V|)]VT (4.8.18)

The resultant optimal rotation matrix Aopt represents the transformation from
reference to body coordinates. Alternatively, from a stellar gyro perspective, Aopt

represents the optimal rotation of set of points from one image frame to the next.
Note that, unlike the preceding q-Method, SVD solves the attitude matrix directly.

4.8.3 Weighted Least-Squares Estimation
Crassidis [26] proposed a weighted least-squares approach to determine the satellite
angular velocity directly from star tracker body measurements. Consider the following
attitude measurement model at time tk:

b̃i(k) = A(k)ri + vi(k) (4.8.19)
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where b̃i(k) is the ith body measurement vector, A(k) is the proper-orthogonal
attitude matrix, ri is the star reference vector (an inertially fixed, time independent
representation), and vi(k) is the measurement noise given by a zero-mean Gaussian
white-noise process. Shuster [42] came to the conclusion that, from a practical stand-
point, the probability density on a sphere is indistinguishable from the corresponding
density on a tangent plane as far as star trackers are concerned. The measurement
noise covariance can therefore be represented as

Ωv = E
{
vi(k)vTi (k)

}
= σ2

i I3×3 (4.8.20)

Taking the difference between successive measurements of eq. (4.8.19) gives

b̃i(k + 1)− b̃i(k) = [A(k + 1)−A(k)]ri + vi(k + 1)− vi(k) (4.8.21)

It can be shown that, for small rotation angles between successive measurements, the
relation between successive attitude matrices is given by the first-order approximation

A(k + 1) ≈
(
I3×3 −∆t[ω(k)×]

)
A(k) (4.8.22)

where

[ω(k)×] =

 0 −ω3(k) ω2(k)
ω3(k) 0 −ω1(k)
−ω2(k) ω1(k) 0


A comprehensive derivation of this approximation can be found in appendix A.
Substituting eq. (4.8.22) into eq. (4.8.21) gives

b̃i(k + 1)− b̃i(k) = −∆t[ω(k)×]A(k)ri + vi(k + 1)− vi(k) (4.8.23)

The next step is to determine an angular velocity estimate independent of attitude
and reference vector. By eliminating the reference vector, the angular velocity can
be estimated by comparing only the information available in successive images. This
in turn eliminates the need for star matching (as well as the need for star catalogue
data), greatly reducing algorithm complexity and execution time. As described in
section 4.6, dedicated matching algorithms can also be much more reliable than star
identification algorithms.
The reference vector can be eliminated by solving eq. (4.8.19) in terms of A(k)ri and
substituting the result into eq. (4.8.23), defining the new measurement model as

1
∆t [b̃i(k + 1)− b̃i(k)] = [b̃i(k)×]ω(k) + wi(k) (4.8.24)

where wi(k) is the new effective measurement noise given by

wi(k) ≡ [ω(k)×]vi(k) + 1
∆t [vi(k + 1)− vi(k)] (4.8.25)

Assuming a stationary noise process vi, the new measurement noise covariance
expression can be derived as

Ωw = E{wi(k)wT
i (k)} = σ2

i [ω(k)×][ω(k)×]T +
(

2σ2
i

∆t2

)
I3×3 (4.8.26)
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Recall that the first-order approximation of eq. (4.8.22) assumed small rotation angles
between successive measurements. It is therefore safe to assume that the bandwidth
of the attitude variations is well below the Nyquist frequency with a safety factor of
10, that is

||ω(k)|| < 2π
10 ·

fs
2 (4.8.27)

Normalization of the frequency content allows eq. (4.8.27) to be written as

||ω(k)|| < 1
∆t ·

2π(0.5)
10 (4.8.28)

Combining eq. (4.8.28) with the equality ||[ω(k)×]|| = ||ω(k)|| as defined by the
two-norm of matrices results in the inequality

||σ2
i [ω(k)×][ω(k)×]T || < π2

100 ·
σ2
i

∆t2 �
2σ2

i

∆t2 (4.8.29)

From eq. (4.8.29) it is clear that the measurement noise covariance expression is
dominated by the second term. Equation (4.8.26) can therefore be approximated as

E{wi(k)wT
i (k)} ≈

(
2σ2

i

∆t2

)
I3×3 (4.8.30)

The significance of this approximation will become clear at a later stage. We now
seek to find the least-squares approximation corresponding to the measurement
model derived in eq. (4.8.24). Note that this measurement model adheres to the
overdetermined form

yi =
N∑
j=1

Xijβj + εj (i = 1, 2, ...,m) (4.8.31)

For simplicity, the equivalent matrix representation is given by

y = Xβ+ ε (4.8.32)

where

y =


y1
y2
...
ym

 , X =


X11 X12 · · · X1n
X21 X22 · · · X2n
... ... . . . ...

Xm1 Xm2 · · · Xmn

 , β =


β1
β2
...
βn

 , ε =


ε1
ε2
...
εn

 (4.8.33)

The general least-squares (GLS) approach is concerned with finding the coefficients
β resulting in the best approximation of eq. (4.8.32) by minimizing the sum of the
squared residuals, i.e., estimation via optimization of the minimization problem [43]

β̂ = arg min
β
||y−Xβ||2 (4.8.34)

It can be shown that the optimization problem has a unique solution, provided that
the columns of matrix X are linearly independent, given by

β̂ = (XTX)−1XTy (4.8.35)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. ALGORITHMS 52

A special case of the GLS method, called weighted least-squares (WLS), occurs when
the off-diagonal entries of the measurement error covariance matrix Ω are zero [44].
The significance of eq. (4.8.30) now becomes clear, as it verifies the adherence of the
measurement model to the aforementioned requirement. The WLS case concerns
itself with the optimization of the minimization problem

β̂ = arg min
β
||
√

W(y−Xβ)||2 (4.8.36)

Note that the aforementioned condition for WLS classification is based on the
assumption that the measurement errors (1) are uncorrelated with each other and
with the independent variables and (2) have equal variances. The Gauss-Markov
theorem [45] states that, for a linear regression model (as is the concern of the
method of least-squares) in which the errors (1) have expectation zero, (2) are
uncorrelated and (3) have equal variances, the best linear unbiased estimator of the
coefficients is given by the ordinary least squares estimator (β̂). The measurement
model in question adheres to the first two conditions, but generally exhibits different
uncertainties for each measurement. The work of renown mathematician Alexander
Aitken [46] addresses this problem by showing that, when the weighted sum of the
residuals is minimized, the ordinary least-squares estimator (β̂) is a best linear
unbiased estimator if the weights are equal to the reciprocal of the variances of the
individual measurements.
Similar to the case of GLS, the optimization problem in eq. (4.8.36) has a unique
solution given by

β̂ = (XTWX)−1XTWy (4.8.37)
The measurement model of eq. (4.8.24) can now be cast into the WLS form of
eq. (4.8.37), giving

ω̂(k) = 1
∆t

{
n∑
i=1

σ̄−2
i [b̃i(k)×]T [b̃i(k)×]

}−1

×
n∑
i=1

σ̄−2
i [b̃i(k)×]T

(
b̃i(k + 1)− b̃i(k)

)
(4.8.38)

where ω̂(k) is the best linear unbiased estimate of ω(k) and the weight σ̄−2
i ≡

2σ2
i /∆t2 is the effective measurement error variance.
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Chapter 5

Simulations

This chapter presents an evaluation of the proposed matching and rate estimation
algorithms based on simulations performed in the MATLAB environment. In order
to best approximate realistic behaviour, the simulation procedure was designed such
as to resemble spaceborne stellar gyro operation as closely as possible.

5.1 Simulation Procedure
Prior to MCU implementation, various simulations were performed in the MATLAB
environment to evaluate the validity, reliability and robustness of the proposed al-
gorithms. Accurate simulation of both stellar gyro operation as well as its spaceborne
surroundings provide an environment capable of estimating behaviour under various
extreme conditions. The general MATLAB test procedure can be outlined as follow:

1: Import star data from an external star catalogue
This data includes the ID tag, celestial coordinates (right ascension and declin-
ation) and visual magnitude of each star.

2: Limit visual star magnitude
All stars that adhere to a predetermined maximum visual magnitude condition
are extracted. In most cases, this maximum magnitude is representative of the
stellar gyro’s detection capability.

3: Transform star coordinates
The coordinates of each valid star1 is then transformed from celestial to body-
fixed unit vector coordinates (see section 2.3). Recall that the concern of stellar
gyro algorithms is merely the displacement of a series of star centroids from
one image frame to the next. The inertially referenced locations of stars are
therefore irrelevant. Such transformation simplifies the process of accurately
simulating stellar gyro behaviour.

4: Determine stars that fall within the camera FOV
This process can be simplified by first extracting all stars that fall within a

1a valid star in this context being a star that adheres to the aforementioned magnitude condition,
and which should therefore be visible to the stellar gyro
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circular FOV that covers the entirety of the image sensor area (see fig. 3.10 in
section 3.4) based on their angular displacement from the camera boresight.
Extracted stars are then transformed to image plane coordinates (see sec-
tion 2.3.4), after which any stars falling outside the image sensor area are
discarded.

5: Generate star image
A simulated night sky image is generated by projecting the extracted star
locations onto a uniformly black bitmap with resolution equal to that of the
image sensor. The plotted PSF of each star is jointly based on the level of
optical defocussing, detection capabilities of the stellar gyro optics and the
visual magnitude of the star itself.

6: Image processing
The generated images are subjected to image processing algorithms in an
attempt to recover the centroids of the plotted stars. Once recovered, these
centroids are stored as centroid list A.

7: Simulate angular rotation
To simulate angular rotation, each star extracted in step 2 is rotated based on
predetermined angular rates. Steps 4-6 are repeated to determine a second
set of star centroids, which is then stored as centroid list B. Lists A and B now
contain the star centroids identified in two consecutive images.

8: Star matching
At this point centroid lists A and B merely contain the centroid locations ex-
tracted from successive images. In order to estimate angular rates, information
regarding the correspondence of stars between such images is required. This is
achieved through means of a dedicated star matching algorithm (as detailed in
section 4.6), which ties corresponding star locations in the form of matched
centroid pairs.

9: Estimate angular rates
Rate estimation algorithms use these matched centroid pairs to determine the
angular displacement from one image frame to the next in three dimensional
space. With the time lapse between successive images known, angular rates
are determined from these angular displacement values.

10: Repeat
Once the angular rates have been estimated, the centroids stored in list B
are transferred to list A, after which steps 7-9 are repeated to determine the
angular rates at the next sampling instance.

5.2 Validity of Generated Star Images
Accurate recreation and simulation of spaceborne stellar gyro surroundings rely
heavily on the authenticity of generated star images. The two most important
aspects to consider with regard to such authenticity are photon distribution and
inertially referenced orientation.
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5.2.1 Photon Distribution
As detailed in section 3.2, a two-dimensional Gaussian distribution serves as close
approximation of an actual star PSF. Star images can therefore be generated by
determining the value of each pixel in an arbitrarily large grid around each star
centroid using eq. (5.2.1).

f(X) = I exp
{
−1

2(X− X̄)TΣ−1(X− X̄)
}

(5.2.1)

where

X =
[
xi
yi

]
→ discrete coordinates of each pixel in the chosen grid

X̄ =
[
xc
yc

]
→ coordinates of the star centroid

Σ =
[
σ2 0
0 σ2

]
→ covariance matrix

The coefficient I scales the amplitude of the Gaussian distribution based on the
visual magnitude of the star in question. Determining an accurate mathematical
representation of such scaling factor would require a comprehensive and unnecessarily
complicated optical analysis. Alternatively, an accurate approximation can be
obtained by comparing actual images to their generated counterparts, iteratively
adjusting the scaling factor until an acceptable level of similarity has been achieved.
The latter method is more than suitable for the simulations presented here. Similarly,
the scaling factor for the variance of the Gaussian distribution was also determined
in an iterative manner.
Note that the random variables x and y were assumed to exhibit equal variances,
while also being uncorrelated. Considering the low angular rates at which the
proposed stellar gyro is expected to operate, these assumptions should allow for an
accurate approximation of actual star images.

(a) Generated Image (b) Captured Image

Figure 5.1 – Comparison of generated and captured partial star images of the Southern
Cross from the constellation Crux

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. SIMULATIONS 56

Figure 5.1 shows a comparison between generated and captured1 partial star images of
the Southern Cross from the constellation Crux. A clear similarity is observed between
images. Generated stars are slightly brighter than their captured counterparts in
an attempt to compensate for light pollution and refraction through the earth’s
atmosphere. Note, however, that the similarity of the PSF differ from star to star.
This is due to the assumption of a linear scaling function, whereas actual stellar gyro
operation introduces various unmodelled non-linearities. For the purpose of these
simulations, the generated images exhibit a satisfactory level of similarity.

5.2.2 Orientation
Stellar gyroscope algorithms are concerned only with the propagation of a series of star
centroids between successive image frames. It is therefore crucial to accurately project
stars within the camera FOV onto the image plane. With orientation algorithms
readily available, generated star images were uploaded to CubeStar in order to
determine their boresight coordinates relative to the celestial sphere. Comparing
these coordinates to those specified as generation parameters provide a rough estimate
of star projection accuracy.
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Figure 5.2 – Attitude determination error for simulated star images

Of a 50 image sample group, each generated with random boresight coordinates,
CubeStar was able to successfully determine the orientation in 34 images. Note that
the orientation algorithms used by CubeStar rely heavily on a tracking mode, in
which the boresight coordinates can be approximated based on a previous attitude
estimate. Orientation determination is also much more reliable when operating in
tracking mode. Given that each image in the sample group was generated with
random boresight coordinates, orientation algorithms were forced to operate in lost
mode, justifying a 68% identification rate. For a more in-depth explanation regarding
CubeStar modes of operation, refer to [7].
Figure 5.2 shows the orientation error for each successful iteration. Standard devi-
ations of 0.0853◦ and 0.0597◦ were determined for right ascension and declination
errors respectively, verifying the validity of the generated star images.

1Night sky images captured using CubeStar hardware
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5.3 Matching Algorithm Reliability
The efficiency and reliability of the proposed matching algorithm are contingent
on the selection of an optimal region of interest (ROI). This ROI, defined jointly
by its origin and radius, specifies the area on the celestial sphere in which a star
centroid transformed through rotation from one sampling instance to the next can
be expected (see section 4.6). Alternatively, the size and origin of such ROI can
be interpreted as the level of certainty regarding the location of the transformed
centroid. Since this measure of certainty is dependant on the availability of attitude
information, dynamically adjusting ROI parameters based on the availability of such
information should theoretically increase matching efficiency and reliability. This
hypothesis will be tested through simulation.
To fully understand the importance of determining the optimal ROI size, the con-
sequences of a poor selection should be considered. On the one hand, specifying
an excessively small radius could decrease the probability of identifying the correct
match, especially since the projected centroids (which are subject to measurement
noise and optical aberrations) might deviate from their expected locations. Specify-
ing an excessively large radius, on the other hand, could result in the identification
of multiple possible projections for a single star. This would not only slow down
algorithm execution time, but also increase the likelihood of making an incorrect
match. The radius should therefore be chosen such that the ROI (a) is large enough
to facilitate the desired angular rates, while (b) also being small enough to contain
only the correct match whenever possible.
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Figure 5.3 – Simulations aimed at determining the optimal ROI size

Figure 5.3(a) shows the number of stars that, in the absence of additional angular
rate information, will fail to provide a unique solution (i.e., the ROI will contain

1Search radius describes the maximum Euclidean distance between the ROI origin and any
point within the area the ROI encompasses on the celestial sphere
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more than one possible projection) for a given search radius. Such stars will from
here on be referred to as conflicting stars.
Assuming a detection threshold of 3.4 (as determined for Cubestar hardware in
section 3.6), search radii up to approximately 0.023 show no significant change in
terms of the number of conflicting stars. Notice, however, that an increase in visual
magnitude corresponds to an increase in the rate of change between the specified
search radius and the number of conflicting stars for radii exceeding 0.012. Recall
from chapter 3 that, due to various conservative assumptions, increased detection
capabilities are expected during spaceborne operation. Consequently, the larger the
specified ROI, the larger the corresponding increase in the number of conflicting stars
expected during spaceborne operation. To ensure that matching efficiency is not
compromised by a possible increase in detection capabilities, a conservative search
radius of 0.012 was chosen.
Figure 5.3(b) shows the maximum angular rates at which reliable operation can be
expected for any given search radius (i.e., the star centroid transformed through
rotation will fall within the specified search radius). According to these simulations,
the chosen search radius of 0.012 should allow for reliable operation at angular
rates of up to 0.45 deg/s simultaneously in all three axes. Note that these are the
maximum rates at which the algorithm can reasonably be expected to match all
centroids in the absence of previous angular rate estimates. Since such estimates
will usually be available, and rate estimation algorithms theoretically require only
two stars for successful operation, accurate estimates can be expected at rates far
exceeding 0.45 deg/s.
The availability of previous angular rate estimates provide an additional verification
step for star matching, effectively reducing the valid ROI area by a factor of four (see
section 4.6). Since such estimates greatly improve the level of certainty regarding
the location of the transformed centroid, the matching algorithm can safely search
for possible projections over a much larger area. Assuming that reliable operation
is required at maximum angular rates of 1 deg/s in all axes, the search radius can
be increased to 0.03 where previous rate estimates are available. Furthermore, the
availability of such estimates allow the algorithm to determine the expected location
of a transformed centroid. Positioning the ROI origin at this expected location
should further increase the likelihood of finding the correct match.
Figure 5.4 illustrates the reliability of the matching algorithm using the previously
determined radii. For each rate denomination, matching is performed both with
(assisted) and without (unassisted) previous angular rate estimates. A few false stars
were also generated in close proximity to either the original or transformed location
of some centroids to further assess algorithm reliability. In all cases, the locations of
the false stars were generated such as to be less suitable matches than the true star
locations.
The algorithm is observed to reliably match all stars up to angular rates of approx-
imately 0.5 deg/s regardless of the availability of previous rate estimates. Further
increases in angular rates show a steady decline in the success rate of unassisted
matching. For angular rates exceeding 0.7 deg/s, the average success rate for unas-
sisted matching amounts to a mere 14.2%. Assisted matching, on the other hand,
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Figure 5.4 – Number of successfully matched stars for gradually increasing angular
rates

maintains a 100% success rate for angular rates up to 1 deg/s. Commendably, none
of the generated false stars were matched at any point. As hypothesised, dynamic-
ally adjusting ROI parameters based on the availability of previous rate estimates
drastically improves matching reliability at higher angular rates.
It is important to remember that the preceding simulations serve only to characterize
and determine the limitations and reliability of the matching algorithm itself. This
being said, the current version of CubeStar is unlikely to operate reliably at angular
rates exceeding ±1 deg/s.
CubeStar exhibits relatively long exposure times of up to 520 ms which, at high
angular rates, introduces a practical complication. Long exposure times at high
angular rates are likely to result in a star being smeared over the image plane (i.e.,
appearing as a line/star streak rather than a point source of light). A smeared star
introduces two major complications:

1. The total number of photons from any given star is distributed over a much
larger number of pixels. Consequently, pixels related to such star are now
much more likely to fall below the detection threshold. Star smearing therefore
reduces the detection capabilities of a stellar gyro.

2. Since stars are no longer observed as point sources of light, the symmetrical
PSF approximation (see section 3.2) of the photon distribution is no longer
valid. This impairs centroiding accuracy, since the chosen algorithms assume
such symmetry.

Considering such complications, the purpose of these simulations are twofold: (a) to
identify the optical solution as the limiting factor with respect to maximum angular
rate capabilities rather than the matching algorithm itself, as well as (b) to verify
the accuracy and reliability of the proposed matching algorithm. Implementing a
more light sensitive image sensor would facilitate a shorter exposure time, increasing
the maximum angular rates at which reliable operation can be expected.
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5.4 Comparison of Rate Estimation Algorithms
Simulations were used to compare candidate rate estimation algorithms and ultimately
to identify the best suited method for implementation on CubeStar. Given initial
boresight coordinates1 of

[RA,Dec,Rotation] = [−146.428◦,−60.996◦,−150◦]

successive star images were generated over a 100 second interval using the angular
rates specified in eq. (5.4.1).

ω(t) =
[ X Y Z

0.2 sin(8t) 0.4 0.2 cos(8t)
]
deg/s (5.4.1)

The remainder of the simulation procedure, as detailed in section 5.1, was performed
for each method individually. The results are presented in fig. 5.5.
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Figure 5.5 – Estimated angular rates for each candidate method

All three methods provide seemingly accurately estimates of the specified angular
rates. Since these simulations identify no clear favourite, a more in-depth comparative
analysis is performed based on the estimation errors of each method (as shown in
fig. 5.6). Take note of the fact that results are analysed on a comparative basis only.
A detailed analysis of the estimation error for the chosen method is presented in
section 5.5.
Results are once again almost indistinguishable from one another. Choosing a
method based on estimation accuracy would therefore be ill-advised, suggesting the
consideration of alternative parameters. CubeStar imposes relatively strict limitations
with respect to execution time and memory usage. Algorithm complexity therefore
logically presents itself as the next most important consideration.
The MATLAB Profiler tool determines the execution time of a script based on CPU
time. Even though execution times determined through MATLAB profiling in no

1the chosen coordinates point in the direction of the Southern Cross, an abundantly populated
region on the celestial sphere
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Figure 5.6 – Estimation error for each candidate method

way resemble those expected for MCU implementation, they provide a valuable
comparative guideline for further analysis. Profiling over the aforementioned 100
second interval, execution times of 0.02 s, 0.017 s and 0.011 s were determined for the
WLS-, q- and SVD-methods respectively. Even though a clear difference in execution
time is observed, especially with SVD being almost twice as fast as WLS, the order
of magnitude of these differences render them largely insignificant with respect to
the overall execution time.
Overall, comparisons suggest remarkable similarity between methods in terms of
both estimation accuracy and complexity. At his point it is worth considering that,
based purely on the derivation of each algorithm, both the SVD- and q-methods
would likely be much harder to implement and debug on CubeStar hardware than
the WLS method. Since neither of the preceding comparisons favoured a particular
method, WLS was chosen due to its simplicity and ease of implementation.
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5.5 WLS Simulation Analysis
With the WLS algorithm identified as the best suited candidate for implementation
on CubeStar, a more in-depth error analysis was performed. The stellar gyroscope
process introduces three major inaccuracies: measurement noise, which is largely
characterized by the image sensor, centroiding errors, which accompanies image
processing, and WLS estimation bias, which is the result of various assumptions and
approximations made during the derivation of the chosen WLS algorithm. In an
attempt to identify the contribution of each inaccuracy towards the overall estimation
error, simulations isolating each inaccuracy were performed. Note that since optical
aberrations are characterized and accounted for (see section 4.4), they were not
considered as inaccuracies.
Simulations were repeated using the constant angular rates specified in eq. (5.5.1).

ω(t) =
[ X Y Z

0.2 0.4 −0.3
]
deg/s (5.5.1)

This was done to aid visual comparison between axes as well as to accentuate
estimation errors. Figure 5.7 shows the estimated angular rates over a 200 second
simulation period, as well as the number of stars detected at any point within this
interval.
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Figure 5.7 – WLS estimation results for constant angular rate simulations

The most striking observation is the increased noise levels associated with rotation
around the Z-axis. The convention by which the axes are defined in the body-fixed
coordinate system dictate that rotations around either the X- or Y-axes will result
in angular displacement values that are perpendicular to the camera boresight (i.e.,
a cross-boresight rotation). Rotations around the Z-axis, on the other hand, will
result in angular displacement values that are representative of rotations around the
camera boresight. Since the focal length of a stellar gyro is usually much larger than
the dimensions of the image sensor, rotation around the boresight axis will induce
a much smaller displacement relative to the image plane than a similar rotation
around either of the cross-boresight axes (see fig. 5.8). Star tracker cameras (which
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utilize similar hardware to stellar gyros) are typically in the order of 6–16 times less
accurate around the boresight axis [47]. Any noise or inaccuracies can therefore be
expected to have a much more pronounced effect on rate estimation accuracy around
the boresight axis than around its cross-boresight counterparts.

Rotation around the
boresight axis

Rotation around the
cross-boresight axis

θ

θ

d1

d2

Figure 5.8 – Visual comparison of the angular displacement resulting from a rotation
through angle θ around either the boresight or cross-boresight axis

Another noteworthy observation is the correlation between estimation error levels and
the number of stars detected. Section 4.8.3 illustrates that the nature of least-squares
algorithms is such that estimation accuracy is proportional to the number of data
samples available. Consequently, a larger number of stars can be expected to produce
a more accurate estimate.
Figure 5.9 shows the simulation errors associated with each major inaccuracy.
The Ideal Centroids case resembles a simulation where (a) the centroids normally
used to generate star images are fed directly into the matching algorithm (image
processing is therefore eliminated), and (b) no measurement noise is induced. The
entirety of the observed error can therefore be ascribed to the algorithm itself. Note
that, in all three axes of rotation, the algorithm error is approximated by a near
constant offset. Such behaviour is typical where assumptions and approximations
are made to aid algorithm implementation. Since the aforementioned errors are
by-products of the algorithm itself, further simulations where image processing and
measurement noise are introduced should be centred around these offset values.
The Measurement Noise case resembles a simulation similar to that described by the
Ideal Centroids case, the main difference being that the ideal centroid locations are
now corrupted by measurement noise. Measurement noise, with respect to stellar
gyro operation, is primarily associated with the optical solution. Since accurate
characterization of such noise is a relatively complex process, the noise induced here
is artificial in nature. A zero-mean Gaussian distribution with a standard deviation of
10−5 degrees should provide an adequate estimate of the measurement noise expected
during operation.
The Image Processing case resembles a simulation where the ideal centroid locations
were used to generate star images based on the method described in section 5.2.1.
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Figure 5.9 – Estimation errors associated with each major inaccuracy

These images were then subjected to a centroiding algorithm (see section 4.3) in an
attempt to recover the plotted centroids, after which the extracted centroid locations
were matched between image frames. The error associated with image processing can
be jointly ascribed to the resolution of the image sensor and the chosen centroiding
algorithm.
Comparing the isolated effects of the Measurement Noise and Image Processing cases,
the latter is clearly identified as the more prominent of the two inaccuracies. As
mentioned earlier, the error associated with image processing can be reduced either
through implementation of a higher resolution image sensor, which would improve
centroiding accuracy by distributing each star over a larger number of pixels, or
through implementation of a more accurate and comprehensive centroiding method.
Since changing the image sensor used on-board CubeStar would be a relatively
complex and time consuming task, various centroiding methods were evaluated
through means practical tests in an attempt to minimize the error associated with
image processing.
Figure 5.10 illustrates the probability distribution of the estimation error in each
axis of rotation. In all cases, the error could be fitted to a Gaussian distribution
with reasonable accuracy. Table 5.1 shows the 3σ accuracies for each case.
As expected, rates in both cross-boresight axes are estimated with a much higher level
of certainty than the corresponding rates in the boresight axis. Furthermore, notice
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Figure 5.10 – Probability distribution functions of rate estimation errors for each
inaccuracy

that the mean value of each distribution plot corresponds to the offset introduced by
the algorithm itself. For the Measurement Noise case, angular rates in all three axes
are estimated with at least twice the level of certainty of those corresponding to the
Image Processing case. This confirms image processing as being the more prominent
source of inaccuracy. Incorporating both measurement noise and image processing,
which represents actual stellar gyro behaviour, shows very little change with respect
to error distribution when compared to the isolated Image Processing case.

Table 5.1 – 3σ Accuracies determined for each simulated case

3σ Accuracy [deg/s]
Simulation Case X Y Z
Measurement Noise 0.00091 0.00086 0.00399
Image Processing 0.00358 0.00194 0.01274
Measurement Noise + Image Processing 0.00374 0.00235 0.01295
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Chapter 6

Testing and Results

This chapter presents the results of practical tests performed on the proposed stellar
gyro algorithms. CubeStar hardware was used as testing platform. A detailed
breakdown of the test setup is included, as well as an assessment of its authenticity
as accurate reconstruction of the night sky.

6.1 Test Setup
Stellar gyro algorithms should ideally be tested using actual star images. Unfortu-
nately, the propagation of light through the earth’s atmosphere is somewhat erratic.
Continual fluctuations in air density cause light to refract unpredictably as it passes
through different layers of the atmosphere. The amount of light reaching a point of
observation therefore differs from one moment to the next, causing stars to scintillate.
Considering CubeStar’s relatively limited detection capability (see section 3.6), such
inconsistencies could jeopardize stellar gyro functionality. An accurate reconstruction
of the night sky was therefore approved for testing purposes rather than the night
sky itself. Figure 6.1 illustrates the proposed test setup.
Rotation is achieved through means of an Ideal Aerosmith Model 1270VS rate
table, fundamentally a closed-loop motion control system consisting of a DC servo
motor, controller and optical encoder. Key features include bidirectional rotation
capabilities, a speed range of 1-216 000 deg/min and a rotation accuracy of ±0.1%.
The rate table facilitates communication through means of an RS-232 port, which
also provides access to some advanced functions only available through remote link.
The stellar gyro is mounted atop the table surface. The nature of the rate table
is such that it only facilitates rotation around a single axis. Practical tests will
therefore be conducted for each body axis individually. Figure 6.2 illustrates the test
setup orientation for each axis of rotation.
The night sky is simulated using a (3.5× 2) m2 circularly arched surface with a
2 m radius. The rate table, with stellar gyro mounted atop, is placed at the arch
centre point. The distance between the simulated night sky and the lens focal point
therefore remains fixed throughout rotation. Note that the surface is only curved
in the rotating plane, slightly deviating from the ideal spherical representation of
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Figure 6.1 – Illustration of the proposed test setup [not to scale]

X-axis Y-axis Z-axis

Figure 6.2 – Test setup orientation for each axis

the celestial sphere. The impact of such discrepancy on rate estimates should be
relatively small.
Stars are simulated using Wah Wang Series 5A3 ultra bright white LEDs. Key
specifications include a colour temperature of 5500 K, closely resembling that of
most stars visible to CubeStar, as well as a strong directivity with narrow light
distribution, approximating collimation as closely as possible (section 6.2 details the
desired light distribution patterns). Stars are introduced to the simulated night sky
by mounting the LEDs behind small holes in the arched surface.
In an attempt to replicate spaceborne operation as closely as possible, practical tests
were performed using CubeStar’s maximum exposure time of 520 ms (at which it
was designed to operate).

6.2 Star Distribution Patterns
Centroiding algorithms assume a PSF approximated by an ideal two-dimensional
Gaussian distribution over a 5× 5 pixel grid (see section 3.2). In order to maximize
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centroiding accuracy, simulated stars should exhibit photon distribution patterns that
closely resemble this ideal assumption. Figure 6.3 compares the per-pixel distribution
patterns of ideal, night sky1 and simulated stars.

Ideal Simulated Stars
1 2 3

Night Sky
4

Figure 6.3 – Comparison between ideal, night sky and simulated star distribution
patterns

Even though the ideal and simulated distributions are far from identical, clear
similarities are observed with regard to intensity falloff. In all cases, the brightest
pixels are located near the centre of the distribution, with a gradual falloff observed
for neighbouring pixels. It is worth noting that the ideal distribution considers a
star located precisely at the centre of a pixel, facilitating the observed symmetry.
Furthermore, it also disregards any form of measurement error or optical aberration
(see section 4.4).
A more pragmatic approach would be to compare simulated stars to those captured
of the night sky using CubeStar hardware, both equally susceptible to the aforemen-
tioned optical and measurement errors. Even though simulated distributions still
appear slightly more rugged and uneven than their night sky counterparts, they were
deemed to exhibit sufficient similarity for reliable testing.
Note from fig. 6.3 that the fourth simulated star contains seven saturated pixels,
despite being distributed over a mere 6× 6 pixel area. This has to do with the
distribution of light.
Stars are for all practical purposes infinitely far away from a stellar gyro in LEO.
This implies that light rays incident on the image sensor surface can be considered
collimated. The result is a decidedly focused light distribution that, when combined
with optical defocussing, approximates the expected two-dimensional Gaussian PSF
(see section 3.2). Stars should therefore ideally be simulated using collimated light
sources.
Since collimating numerous simulated stars can be a somewhat expensive and arduous
process, unaltered ultra bright LEDs were used as alternative (see section 6.1). Even
though such LEDs exhibit strong directivity with narrow light distribution (the
chosen LEDs exhibiting a mere 15◦ radiation angle), their close proximity to the
stellar gyro prevent them from approximating a collimated distribution (see fig. 6.4).
The result is that multiple pixels are now exposed to the maximum LED radiation,
saturating them in the process. Unfortunately, in order to ensure that the region
growing algorithm (see section 4.2) detects simulated stars (which requires that a
star region contain at least 9 pixels), some saturation is unavoidable.

1Night sky stars were captured using CubeStar hardware
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Figure 6.4 – Simulated and ideal light distribution patterns [not to scale]

6.3 Comparison of Centroiding Algorithms
Recall from section 4.3 that two different centroiding algorithms were proposed for
implementation on CubeStar, namely the standard CoG approach and the more
comprehensive WCoG approach.
Here it is important to understand how the CoG method is implemented. Since the
algorithm expects a two-dimensional Gaussian distribution as PSF, it assumes that
the majority of the distribution will be taken into consideration if the 5× 5 pixel grid
(dictating which pixels are considered during centroiding) is centred at the brightest
pixel. Note from fig. 6.3, however, that simulated stars often contain multiple pixels
that saturate the image sensor (the observed saturation is explained in section 6.2),
resulting in multiple brightest pixels. Since the centroiding algorithm has no way
of distinguishing between such pixels, it identifies the first pixel to saturate as the
brightest pixel, after which the rest are discarded based on the fact that they don’t
actually exceed the saturation value (they merely match it). This approach should
have little impact on smaller stars, but can severely impair centroiding accuracy for
larger stars containing numerous saturated pixels (see fig. 6.5).

First saturated pixel

Identified star area (5× 5 pixel area)

Most accurate star area (5× 5 pixel area)

Figure 6.5 – Graphical illustration of the CoG centroiding algorithm facing numerous
saturated pixels

To avoid such inaccuracies, the CoG algorithm was modified to determine the
brightest pixel based not only on its value, but also on its location. This was done
such that if the modified CoG algorithm encounters multiple saturated pixels, it
identifies the pixel located closest to the centre of the star region as the brightest
pixel.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. TESTING AND RESULTS 70

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

0.5
A
ng

ul
ar

R
at
e
[d
eg
/s
]

CoG (5x5)

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

0.5

Time [s]

Modified CoG (5x5)

0 20 40 60 80 1000

0.1

0.2

0.3

0.4

0.5
WCoG (5x5)

Figure 6.6 – Comparison of centroiding algorithms based on practical tests

In an attempt to accurately assess the efficiency of each centroiding method, specific-
ally with regard to their implementation on CubeStar, practical tests were conducted
at various angular rates (see fig. 6.6). Rotations were performed around the X-
axis. All three methods correspond to reasonably accurate rate estimates. Specific
accuracies are detailed in table 6.1.

Table 6.1 – Estimation accuracies associated with each centroiding method

3σ Accuracy [deg/s]
Angular Rate

[deg/s] CoG Modified
CoG WCoG

0.05 0.0081 0.0036 0.0093
0.1 0.0087 0.0048 0.0102
0.2 0.0129 0.0114 0.0153
0.4 0.0168 0.0135 0.0168

As expected, modification of the CoG method showed significant improvements with
regard to the accuracy of estimated rates. This improvement is particularly noticeable
at low angular rates, where estimates corresponding to the modified method are
more than twice as accurate. Notice that the more comprehensive WCoG method is
less accurate than both variations of the standard CoG. This is due to the WCoG
method’s heavy reliance on an accurate, unsaturated Gaussian distribution (see
section 4.3.2) which the simulated stars fail to provide.
Even though the original CoG and WCoG methods should prove to be reliable
during spaceborne operation, the more robust modified CoG method was approved
for further testing.

6.4 Constant Rate Tests
Stellar gyro design specifications stipulate reliable operation up to angular rates
of ±1 deg/s in all three axes of rotation. To this end, the maximum angular rate
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capabilities were determined through means of constant rate tests. The modified
CoG approach was used for centroiding purposes (see section 6.3). Test results are
shown in fig. 6.7.
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Figure 6.7 – Constant angular rate tests in all three axes of rotation

Results suggest reliable operation up to angular rates of ±0.8 deg/s in all three axes
of rotation. Tests at a maximum angular rate of ±1 deg/s proved to be similarly
reliable in the X- and Z-axes. Such tests were however omitted from the Y-axis. This
was done due to test setup limitations rather than lacking stellar gyro capabilities.

Table 6.2 – Estimation accuracies for constant angular rate tests

3σ Accuracy [deg/s]
Angular Rate

[deg/s]
X Y Z

+ - + - + -
0.05 0.0037 0.0033 0.0038 0.0036 0.0114 0.0128
0.1 0.0048 0.0054 0.0053 0.0058 0.0182 0.0174
0.2 0.0113 0.0116 0.0114 0.0097 0.0189 0.0161
0.4 0.0136 0.0170 0.0194 0.0140 0.0252 0.0232
0.8 0.0190 0.0196 0.0350 0.0188 0.0292 0.0241
1.0 0.0241 0.0258 0.0379 0.0280

Specific accuracies are detailed in table 6.2. Note that, in all three axes of rotation,
increasing angular rates correspond to decreasing estimation accuracies. Such re-
sponse can be expected, since increased angular rates cause star distribution patterns
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to deviate from the ideal symmetrical Gaussian distribution (see section 5.3). Such
deviation impairs the centroiding process, meaning that star centroids are determined
with less accuracy. This, in turn, reduces the accuracy of the estimated rates, which
are proportional to the accuracy by which centroids are determined.
Rate estimates in the cross-boresight axes are also observed to be much more accurate
than corresponding estimates in the boresight axis. This is particularly noticeable at
lower angular rates, where estimates in the cross-boresight axes are more than three
times as accurate. Such disparity is typical of star imaging solutions (see section 5.5).
All things considered, test results suggest reliable operation up to maximum angular
rates of ±1 deg/s in all three axes of rotation during spaceborne operation, verifying
the designed stellar gyro’s adherence to the maximum rate design specification.

6.5 Reliability Tests
Attitude control systems rely heavily on the availability of accurate attitude estimates.
Stellar gyros should therefore, apart from adhering to strict accuracy requirements,
be as robust and reliable as possible to ensure the availability of rate estimates
throughout.
To evaluate stellar gyro reliability within the confines of its operational limitations,
two rudimentary tests were devised that assess the urgency and reliability of the
algorithms’ response to either a constant angular acceleration/deceleration or abrupt
changes in angular rates.

6.5.1 Constant Angular Acceleration/Deceleration
Satellites are often controlled to rotate at specific angular rates, usually in the interest
of stabilization (e.g., a Y-Thomson mode of stabilization). Such rates are commonly
achieved through gradual angular acceleration or deceleration. Apart from being
required to operate at constant angular rates, stellar gyros should therefore also be
capable of reliably estimating time varying angular rates.
Given an initial angular rate of ±0.2 deg/s, the stellar gyro was subjected to a
constant angular acceleration of ±0.0015 deg/s2 for a period of 150 s. Due to rate
table limitations, the angular rate can only be updated once every two seconds,
resulting rather in a sampled approximation of the desired constant acceleration. Such
approximation was deemed sufficiently accurate to evaluate stellar gyro reliability.
Test results are shown in fig. 6.8.
Results are similar to those observed at constant angular rates. Table 6.3 details
the 3σ accuracies over the entire interval. Once again, rates are estimated almost
twice as accurately in the cross-boresight axes than in the boresight axis itself. The
gradually increasing angular rates also correspond to steady declines in estimation
accuracy. This is particularly noticeable in the X-axis. Specific accuracies are as
anticipated based on constant angular rate tests, verifying the designed stellar gyro’s
reliance when faced with time varying angular rates.
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Figure 6.8 – Constant angular acceleration tests in all three axes of rotation

Table 6.3 – Estimation accuracies for constant angular acceleration/deceleration tests

3σ Accuracy [deg/s]
Acceleration

[deg/s2] X Y Z

+ 0.0015 0.0140 0.0135 0.0247
– 0.0015 0.0168 0.0158 0.0294

6.5.2 Rate Steps
Preceding tests suggest that the designed stellar gyro is capable of reliably estimating
both constant as well as gradually changing angular rates. In order to exhaustively
evaluate its reliability, an assessment of the algorithms’ response to abrupt changes
in angular rates (approximating discontinuity) is required.
To this end, a test resemblant of bang-bang control was performed. From an
initial standstill or slow rotation, angular rates were iteratively incremented and
decremented throughout the testing process. Since the employed rate table is capable
of accelerating at up to 500 deg/s2, rates could be changed almost instantly.
The results shown in fig. 6.9 confirm that the designed stellar gyro is capable of
operating reliably regardless of the abrupt changes in angular rates. This assessment
is based solely on immediate observations, since comparative analyses of estimation
accuracies were already performed in preceding tests. It’s worth noting that, even

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. TESTING AND RESULTS 74

0 100 200
−0.2

−0.1

0

0.1

0.2
A
ng

ul
ar

R
at
e
[d
eg
/s
]

X-axis

0 100 200
−0.2

−0.1

0

0.1

0.2

Time [s]

Y-axis

0 100 200
−0.2

−0.1

0

0.1

0.2
Z-axis

Figure 6.9 – Rate step tests in all three axes of rotation

though these tests provide a measure of conformation regarding algorithm robust-
ness and reliability, such instantaneous rate “jumps” are unlikely to occur during
spaceborne operation.
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Chapter 7

Conclusion

This chapter summarizes the topics discussed throughout this thesis, draws con-
clusions based on those discussions that address the project aims, and ultimately
provides recommendations for improvements and future work.

7.1 Summary and Conclusions
The project was aimed at the development and implementation of stellar gyro
algorithms capable of operating interchangeably with orientation algorithms on
existing CubeStar star tracker hardware. With a focus on low angular rates, the
stellar gyro solution was expected to operate reliably at angular rates of up to
±1 deg/s in all three axes of rotation.

7.1.1 Motivation
Small satellites have become increasingly popular for both commercial and educational
space research and exploration missions. This success can largely be attributed to
the CubeSat project, which presents a design standard for small scale satellites aimed
at reducing development time and costs, as well as sustaining frequent launches and
increasing accessibility to space. This standardization also provides a platform for
international collaboration, as well as a support structure for less experienced and
financially capable participants. This is epitomized by the upcoming QB50 mission,
which will oversee the launch of 50 CubeSats from 27 different countries from all
over the world with the goal of achieving affordable and sustainable access to space.
The size and power limitations imposed by the CubeSat design standard however
places a strong emphasis on the miniaturization of satellite subsystems. To this end,
CubeSats typically rely on MEMS gyros for attitude propagation purposes due to
their affordability and compact design. One of the main drawbacks of MEMS sensors
is bias drift, which causes errors to accumulate over time. This drift must in some
way or another be compensated for, a task for which stellar gyros have proved to be
exceptionally useful.
Stellar gyros are devices capable of inferring three-axis attitude propagation based on
the displacement of a series of stars between successive image frames. Their design
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is analogous to that of star trackers, fundamentally consisting of a sensitive camera
connected to a micro-controller unit (MCU). They also employ many of the same
algorithms for star extraction and centroiding. The main difference being that star
trackers apply the determined star vectors towards attitude determination, whereas
in stellar gyros they are applied towards attitude propagation.
This analogy is particularly significant with regard to application, since it allows
stellar gyro algorithms to be implemented alongside orientation algorithms on star
tracker solutions. This adds a substantial measure of functionality to an existing
subsystem without the need for any additional hardware (and very little additional
power and execution time requirements). When used in combination with MEMS
sensors it provides not only a means for drift compensation, but also a measure of
functional redundancy with regard to attitude propagation.

7.1.2 Detection Capability
The viability of CubeStar as a platform for stellar gyro implementation was assessed
based on its detection capabilities. It was determined that the RMS centroid bias error
could be minimized by defocussing the camera optics to such an extent that a star PSF
is distributed over a 5× 5 pixel grid with a standard deviation of σPSF = 0.7. This
necessitates that any pixel containing upwards of 3.7% of the total incoming photons
should be detectable above the noise floor to ensure reliable operation throughout.
By combining the star photon influx and sensor specific spectral response, the sensor
specific photon influx was determined as a function of star magnitude. Taking into
account the aforementioned detection requirement, CubeStar’s absolute worst case
detection threshold was determined as MV = 2.92 stars. This corresponds to a sky
coverage of approximately 80%. Fortunately, simulations assumed various overly
conservative operational parameters. During spaceborne operation CubeStar is
expected to reliabily detect stars up to MV = 3.8, which corresponds an approximate
full sky coverage (> 99%).

7.1.3 Algorithms
The proposed stellar gyro retains CubeStar’s original approach for extracting stars
from raw image data. An image plane search algorithm is used to identify single
pixels that could form part of a possible star, after which the remaining pixels
associated with that star are extracted using a region based image segmentation
method.
Once a star region is extracted, CubeStar employs a centre of gravity (CoG) approach
to determine the corresponding star centroid. An alternative implementation of
the standard CoG approach, termed “modified CoG”, was suggested that aims to
improve centroiding accuracy when faced with multiple brightest pixels. A more
comprehensive weighted centre of gravity (WCoG) approach was also considered.
Practical tests favoured the modified CoG approach, with average 3σ accuracies
of 0.0116, 0.0083 and 0.0129 for the CoG, modified CoG and WCoG methods
respectively.
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Three distinct methods were considered to determine star correspondence between
image frames. The RANSAC and star identification based approaches, even though
advantageous in some respects, were deemed unnecessarily complex and processor
intensive for implementation on CubeStar. Instead, star correspondence was determ-
ined using a proximity based approach, which dynamically adjusts the region of
interest based on the availability of previous rate estimates. Simulations suggested
flawless matching up to angular rates of ±1 deg/s in all axes whenever previous rate
estimates were available.
Three rate estimation approaches were considered, namely singular value decomposi-
tion (SVD), Davenport’s q-Method and weighted least-squares (WLS) estimation.
Simulations suggested remarkable similarity between these methods in terms of
accuracy and reliability. This suggested comparison based on alternative parameters,
for which algorithm execution time was deemed most relevant. The timing analysis
was performed using the MATLAB Profiler tool. Even though clear differences in
execution time were observed, the order of magnitude of these differences rendered
them largely insignificant with respect to overall execution time. Since simulations
failed to identify a clear favourite, the WLS method was chosen due to its simplicity
and ease of implementation.

7.1.4 Practical Tests
Simulation results were verified through means of practical testing. Considering the
somewhat erratic propagation of light through the earth’s atmosphere, tests were
performed on simulated stars in a controlled environment rather than the night sky
itself.
Rotation was achieved through means of an Ideal Aerosmith Model 1270VS rate
table, which exhibits a rotational accuracy of ±0.1%. The night sky was simulated
using a (3.5× 2) m2 circularly arched surface with a 2 m radius. The rate table,
with stellar gyro mounted atop, was placed at the arch centre point. Stars were
simulated using ultra bright white LEDs with a colour temperature of 5500 K, closely
resembling that of many visible stars. Stars were introduced to the simulated night
sky by mounting the LEDs behind small holes in the arched surface. Regardless of
slight deviations from the ideal night sky model, the observed distribution patterns
of simulated stars closely approximated their night sky counterparts.
The maximum angular rate capabilities were evaluated through means of constant rate
tests. Results suggested reliable operation up to angular rates of ±1 deg/s in all three
axes of rotation, with average 3σ accuracies of 0.0133, 0.0127 and 0.0219 deg/s in the
X-, Y- and Z-axes respectively. Constant angular acceleration tests were performed
to assess the stellar gyro’s ability to reliably estimate time varying angular rates.
Results were similar to those observed at constant angular rates, with average 3σ
accuracies of 0.0154, 0.0147 and 0.0270 deg/s in the X-, Y-, Z-axes respectively. This
verified the stellar gyro’s performance when faced with time varying angular rates. In
order to exhaustively evaluate the reliability of the proposed algorithms, the stellar
gyro’s response to abrupt changes in angular rates (approximating discontinuity)
was assessed. Once again, angular rates were estimated successfully, verifying the
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proposed stellar gyro’s reliability over the desired range of operation (rates of up to
±1 deg/s).

7.2 Recommendations for Future Work
This section discusses potential improvements to the proposed stellar gyro, as well
as to the CubeStar star tracker module (with a focus specifically on improved stellar
gyro functionality).

Consider alternative image sensors
Worthwhile considerations include sensor technology (CMOS or CCD), sens-
itivity, colour (or mono), resolution, pixel size, aspect ratio and shutter type.
The implementation of a higher resolution, more light sensitive image sensor is
of particular interest for CubeStar, since it would allow (and justify) using a
more accurate and comprehensive centroiding method such as Gaussian Fit or
Grid. Appendix B presents a detailed breakdown of significant image sensor
selection criteria. The majority of recommendations that follow assume the
implementation of an alternative image sensor (significant improvement to the
CubeStar module mandates an alternative image sensor).

Implement a smaller FOV lens
One of the main disadvantages of a large FOV lens (such as the Lensation
BL6012 used on-board CubeStar) is that it increases the risk of brightly
illuminated celestial objects (such as the sun, earth, moon, etc.) falling within
the camera FOV. Such objects often saturate the image sensor, disrupting
stellar gyro operation in the process. The implementation of a more light
sensitive image sensor would increase detection capabilities, allowing for full
sky coverage to be achieved using a smaller FOV lens.

Operate at higher angular rates
Increased detection capabilities would also reduce the exposure time necessary
to guarantee detection of the required minimum number of stars. Shorter
exposure times would in effect reduce star smear, increasing the maximum
angular rates at which reliable stellar gyro operation can be expected. This
would encourage supplementing the existing stellar gyro with a high angular
rate mode, transitioning between algorithms based on previous angular rate
estimates (recall that stellar gyro algorithms differ drastically depending on the
desired range of operation). This would require a significant amount of work,
but could revolutionize the multifunctional star tracker/stellar gyro concept.

Consider alternative matching parameters
The proposed matching algorithm would benefit from an in-depth comparative
analysis of the various parameters on which correspondence can be based.
These parameters include proximity (favoured by the current design), number
of pixels per star region, detected star brightness and even colour data (which
would of course require a colour image sensor). Of interest is a publication
by Enright and McVittie [48] that proposes a method for star identification
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based on a combination of geometric and colour data. The potential benefits
of colour data for both star tracker and stellar gyro applications encourage
further research regarding colour sensor implementation (see appendix B for a
more in-depth discussion).

Consider the RANSAC approach for star validation and matching
Appendix B illustrates how an increase in detectable star magnitude would
correspond to an almost exponential upsurge in the number of stars detected.
Depending on the extent of such increase, it could call into question the re-
liability and efficiency of the somewhat primitive proximity based matching
approach. Future iterations of CubeStar would therefore benefit from consider-
ing the more comprehensive and robust RANSAC approach for star validation
and matching purposes.

Incorporate windowing
One of the advantages of CMOS sensors (over their CCD counterparts) is the
ability to read image data from only specific areas of interest, a feature referred
to as “windowing”. Recall that the proximity based matching approach is
capable of estimating the projected location of a star based on previous angular
rates, effectively determining such areas of interest. The image read time, as
well as the memory required to store image data, can be reduced by reading
only (a) these areas of interest and (b) the image bounding area (of which the
size can also be determined based on previous angular rates). All stars within
an image frame can reasonably be expected to fall within these areas.

Improved calibration techniques
CubeStar would benefit from a more accurate and comprehensive calibration
procedure. Various publications [47, 49, 50] discuss the optical characterization
and calibration of star trackers in great detail. Of particular interest to Cube-
Star is the publication by Dzamba and Enright [50], which discusses various
calibration techniques specifically for low-cost star trackers. Furthermore, it
might be worth investigating (autonomous) on-orbit calibration using captured
star images. This would provide the means for compensating for any misalign-
ments caused by vibration during launch. The concept is discussed by Samaan
et al. [51].

Further consolidate star tracker and stellar gyro functionality
Even though the work presented in this thesis confirms the proposed stellar
gyro’s compatibility with the CubeStar unit, it would nevertheless benefit from
further consolidation of star tracker and stellar gyro algorithms. Suggested
improvements include dynamic adjustment of image sensor parameters (such as
frame rate, exposure time, etc.) based on the mode of operation (star tracker
or stellar gyro), as well as a possible streamlined/simplified star extraction
approach that incorporates windowing (see above). It might also be worth
investigating the possibility of inferring the attitude quaternion using angular
rate estimates whenever rates exceed the star tracker’s operational range.
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Appendix A

Derivation of Crassidis’ Method of
Least-Squares Estimation

The following revision of vector algebra and attitude representation serves specifically
as derivation for the first order approximation used in Crassidis’s method of weighted
least-squares (WLS) estimation. Other references do exist, but not to the derivation
in its entirety. Equations (A.1) to (A.18) highlight the derivation of the rotation
matrix representation specified by the SVD method. The majority of the information
contained in this derivation is based on a publication by Shuster [11] regarding
attitude representation.
Any vector in three dimensional space can be represented as

v = v1e1 + v2e2 + v3e3 (A.1)

with base E : {e1, e2, e3} designating the abstract1 directions of the three coordinate
axes. Of particular interest is the representation of the base with respect to itself

(e1)E =

1
0
0

 = 1 (e2)E =

0
1
0

 = 2 (e3)E =

0
0
1

 = 3 (A.2)

Equation (A.2) is true for every base by definition. This results in numerical values
1, 2 and 3 being independent of the base itself.
Arbitrarily rotating around the Z-axis (see fig. A.1), the equations of rotation are
given by

e
′

1 = cosθ e1 + sinθ e2 (A.3)
e
′

2 = −sinθ e1 + cosθ e2 (A.4)
e
′

3 = e3 (A.5)

Using eqs. (A.3) to (A.5), the general rotation matrix for a rotation about the Z-axis
can be determined as

R(3, θ) =

 cosθ sinθ 0
−sinθ cosθ 0

0 0 1

 (A.6)

1abstract in this context implies that meaning can be attached to these values without having
to attach a numerical/concrete value
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e1
e′1

e′2
e2

e′3e3

Figure A.1 – Arbitrary rotation of a three dimensional coordinate system about the
Z-axis

The result corresponds with general rotation matrix theory. Note that eq. (A.6)
denotes the rotation about a specific axis. In order to derive an expression for a
rotation matrix about an arbitrary axis of rotation, further inspection is required

R(3, θ) 1 = cosθ

1
0
0

− sinθ

0
1
0

 = cosθ 1− sinθ 2

= cosθ 1− sinθ (3× 1) (A.7)

R(3, θ) 2 = sinθ

1
0
0

+ cosθ

0
1
0

 = cosθ 2 + sinθ 1

= cosθ 2− sinθ (3× 2) (A.8)
R(3, θ) 3 = 3 (A.9)

Recall that the numerical quantities 1, 2 and 3 are independent of basis. Consequently,
the general form of eqs. (A.7) to (A.9) can be applied to any basis. For n an arbitrary
unit vector and v⊥ the projection of the vector v onto the plane perpendicular to n,
then

R(n, θ) v⊥ = cosθ v⊥ − sinθ (n× v⊥)
= cosθ v⊥ + sinθ [n×] v⊥ (A.10)

Also note that v‖, the projection of v along n, is not changed by rotation (see
fig. A.1), i.e.,

R(n, θ) n = n (A.11)
thus

R(n, θ) v = v‖ + cosθ v⊥ + sinθ [n×] v⊥ (A.12)
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Using Lagrange’s formula, the vector projections v‖ and v⊥ can be rewritten in terms
of know vector values v and n as

a × (b× c) = b(a • c)− c(a • b) (A.13)
n× (n× v) = n(n • v)− v(n • n) (A.14)

v = n(n • v)− n× (n× v)
v = v‖ + v⊥ = nnTv− [n×]2v (A.15)

Using eq. (A.15), the rotation matrix can be expressed as

R(n, θ) v = nnTv + cosθ(−[n×]2v) + sinθ([n×]3v) (A.16)
= nnTv− cosθ[n×]2v− sinθ[n×]v ([u×]3 = −|u|2[u×])

R(n, θ) = nnT − cosθ[n×]2 − sinθ[n×]
= I + [n×]2 − cosθ[n×]2 − sinθ[n×] ([u×][v×] = −(u • v)I + vuT )

R(n, θ) = I− sinθ[n×] + (1− cosθ)[n×]2 (A.17)

Substitution of the equality (I = nnT − [n×]2) into eq. (A.17) results in the rotation
matrix representation specified by the SVD method

R(n, θ) = cosθ I + (1− cosθ)nnT − sinθ[n×] (A.18)

Suppose the rotation vector representation θ = θ n. For θ infinitesimally small
(frequently written as ∆θ), then sin∆θ ≈ ∆θ and cos∆θ ≈ 1. Euler’s formula
(eq. (A.17)) becomes

R = I− [∆θ×] + O(|∆θ|2) where ∆θ = ∆θ n (A.19)

O(xc) in eq. (A.19) denotes a quantity that becomes proportional to xc as x tends to
zero.
Assuming that the attitude is changing with time, the relation between the rotation
matrices at successive sampling instances is given by

R(t+ ∆t) = Φ(t+ ∆t, t)R(t) (A.20)
Φ(t+ ∆t, t) = R(t+ ∆t)R(t)−1 (A.21)

where Φ(t + ∆t, t), also a rotation matrix, describes the rotation of R between
sampling points t and t+ ∆t.
Considering the general form for an attitude rotation matrix as derived in eq. (A.19),
Φ(t+ ∆t, t) can be represented as

Φ(t+ ∆t, t) = I− [∆ξ(t)×] + O(|∆ξ(t)|2) (A.22)
R(t+ ∆t)R(t)−1 = I− [∆ξ(t)×] + O(|∆ξ(t)|2)

R(t+ ∆t) = R(t)− [∆ξ(t)×]R(t) + O(|∆ξ(t)|)∆t
1

∆t
(
R(t+ ∆t)−R(t)

)
≈ − 1

∆t [∆ξ(t)×] (A.23)
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Note that ω(t), the body-referenced angular velocity, is defined as

ω(t) ≡ lim
∆t→0

∆ξ(t)
∆t (A.24)

Substituting eq. (A.24) into eq. (A.23) gives

1
∆t
(
R(t+ ∆t)−R(t)

)
≈ −[ω(t)×]R(t) (A.25)

R(t+ ∆t) ≈ −∆t[ω(t)×]R(t) + R(t)
≈
(
I−∆t[ω(t)×]

)
R(t) (A.26)

Recall that, in order to derive eq. (A.26), it was assumed that (a) the rotation θ – and
therefore the body-referenced angular rate ω – between successive measurements
is infinitesimally small, and (b) terms higher than first order (hence the first-order
approximation classification) in ω∆t is ignored.
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Appendix B

Image Sensor Selection

This appendix elaborates on various key image sensor characteristics, as well as their
significance towards star tracker/stellar gyro capabilities.

Sensor Technology
Star tracker cameras traditionally employ one of two sensor types: CCD (charge-
coupled device) or CMOS (complementary metal-oxide semiconductor). The decision
of which to use is largely based on application, since both options feature distinct
advantages over the other. Until recently, the digital vision sensor market was
dominated by the CCD array. Technological advancements in terms of CMOS
performance and efficiency has however reduced this divide significantly.
Fundamentally, CCD and CMOS sensors are based on similar principles. Incoming
photons strike the image sensor array on light sensitive elements called pixels, which
consist of specially doped silicon semiconductor substrates that release electrons
proportional to the photon influx on their surface. The released electrons, collected
over the course of a predetermined integration period, are processed based on the
chosen technology.

A/D
Converter

Output
Amplifier

Horizontal shift register

Vertical shift registers
Pixel

Light
Sensitive
Area

Figure B.1 – CCD sensor principles of operation
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CCD sensors, as illustrated by fig. B.1, employ shift registers to carry the accu-
mulated electron charge to external amplification and conversion circuitry. Such
externalization facilitates an increased fill factor, a quantity that describes the ratio
of a pixel’s light sensitive area to its overall area. Since CCD sensors use a single
charge-to-voltage converter for the entire pixel array, they also tend to exhibit a high
pixel-to-pixel consistency. The main drawback of CCD sensors is speed, since the
transfer and conversion of electron charge is limited by the capabilities of the shift
registers and external conversion circuitry.

R
ow

D
ec
od

er

Column Decoder

Light
Sensitive
Area

Pixel Amplifier

Sampling
Capacitor

Column
Amplifier

Readout

Figure B.2 – CMOS sensor principles of operation

CMOS sensors, as illustrated by fig. B.2, incorporate the amplification and charge-
to-voltage conversion circuitry into each pixel. This facilitates much higher speeds
than what can be achieved by CCD sensors, since the accumulated electron charge
is converted at the pixel itself. The lessened flow of electrons also translate to
much lower power consumption and dissipation. The per-pixel circuitry also enables
“windowing”, which refers to the selective addressing and readout of certain areas of
interest. Unfortunately, the greatest strength of CMOS sensors also give rise to its
most critical weaknesses. Since the necessary circuitry is incorporated into each pixel,
CMOS sensors generally exhibit much smaller fill factors than their CCD counterparts.
Furthermore, fabrication inconsistencies in the various charge-to-voltage conversion
circuits introduce a measure of fixed-pattern noise to the overall image. Fortunately,
such noise can easily be compensated for.
Modern day star trackers, specifically those designed for use in small form factor
satellites such as CubeSats, strongly favour the CMOS variety due to its increased
speed, smaller size and reduced power consumption. Even though CMOS sensors
still exhibit smaller fill factors than their CCD counterparts, the difference is much
less substantial than it once was.
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Sensitivity
One of the most important characteristics of an image sensor is its sensitivity which,
with regard to star tracker/stellar gyro applications, dictates the detectable star
magnitude. The data presented in fig. B.3 shows the total number of stars within a
certain visual magnitude, considering all stars in the Hipparcos, Yale Bright Star,
and Gliese catalogues. This accentuates how an increase in sensitivity, and therefore
in maximum detectable star magnitude, could correspond to an almost exponential
upsurge in the number of detectable stars.
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Figure B.3 – Total number of stars within a certain visual magnitude

The sensitivity is largely characterized by the image sensor’s spectral response, which
describes the relative efficiency of detection as a function of wavelength. Ideally,
image sensor selection should seek to maximize the spectral response over the entire
visible spectrum. Figure B.4 illustrates typical image sensor spectral response curves.
This underlines another important consideration: choosing between monochromatic
and colour configurations.
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Figure B.4 – Typical image sensor spectral response curves
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Monochrome vs Colour
Both CMOS and CCD sensors are inherently monochromatic. The electron charge
converted to an equivalent voltage is only capable of capturing luminance information.
To determine chrominance information, the sensor area is typically overlaid with a
mosaic colour filter array (CFA) which assigns colour tones to each pixel.

Additive (RGB)
Colour Model

RGB Bayer Array CMY Bayer Array Subtractive (CMY)
Colour Model

Figure B.5 – Illustration of the RGB and CMY Bayer colour filter patterns alongside
their respective colour models

Figure B.5 illustrates the most commonly used CFA arrangement namely the Bayer
array, which suggests two colour registration methods: RGB (Red-Green-Blue) and
CMY (Cyan-Magenta-Yellow). The RGB pattern consists of 25% red, 50% green and
25% blue colour filters. The CMY pattern employs a similar ratio, with 25% cyan,
50% yellow and 25% magenta colour filters. The Bayer array prioritises green/yellow
filters to mimic the physiology of the human eye, which is most sensitive to light in
those portions of the visible spectrum.
One of the biggest disadvantages of employing such colour arrays is a loss of luminance
information (and therefore sensitivity). Not only does it limit the photon influx
on each pixel to a specific portion of the visible spectrum (see fig. B.4), but it also
absorbs some of the colour it is intended to pass due to the non-ideal nature of the
colour dyes. This is where the CMY pattern poses a significant advantage over its
RGB counterpart. The RGB CFA is created by overlaying two layers of dye: yellow
and magenta for red, yellow and cyan for green, and magenta and cyan for blue. The
CMY pattern, on the other hand, consists of only a single dye per colour. The result
is that the CMY CFA absorbs a much smaller portion of the light it is intended to
pass. As illustrated by fig. B.4, this leads to a much better signal-to-noise (SNR)
ratio and spectral response.
From a pure sensitivity perspective, star trackers would benefit from employing the
monochromatic image sensor variety. Since if forgoes any form of filtration, each pixel
is subjected to the entire spectrum of light incident on its surface. This maximizes
both the achievable SNR as well as the spectral response over the entire visible
spectrum. Furthermore, colour sensors also require various sophisticated interpolation
techniques to reconstruct the final image from raw data. This is referred to as
“demosaicing”. Monochrome sensors, which avoid the need for such reconstruction,
therefore produce slightly higher resolution images that more accurately depict the
actual photon distribution on the sensor array.
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It is however worth investigating the application of colour data (and therefore colour
sensors) towards star identification and matching. Of interest is a publication by
Enright and McVittie [48] that proposes a method for star identification based on a
combination of geometric information (as favoured by traditional star identification
algorithms) and amplitude ratios calculated from the red, green and blue colour chan-
nels. They suggest that, by incorporating chromatic dat,a the proposed algorithms
are capable of finding matches with only two imaged stars in most regions of the
sky (in contrast to traditional identification algorithms that require a minimum
of three stars for reliable matching). The detection capabilities of such a design
could potentially be bolstered even further by opting for a CMY colour arrangement.
Considering the stellar gyro project at hand, colour data could also be used to
match stars between image frames. All things considered, the multitude of possible
applications strongly encourage further research with regard to incorporating colour
data into star tracker/stellar gyro functionality.

Resolution and Pixel Size
Recent advancements in image sensor technology has shown a gradual increase in the
imaging resolution of small form factor star trackers, with resolutions in the multi-
megapixel range not uncommon. The key benefit of a larger resolution image sensor
is that a star PSF is distributed over a much larger number of pixels. Considering
the CubeStar module, not only would this greatly increase the centroiding accuracy
for existing CoG methods (recall that image resolution and centroiding accuracy
was determined as the limiting factors with regard to the achievable rate estimation
accuracy), but it would also justify the use of more comprehensive centroiding
methods such as Gaussian Grid or Fit.
Another important consideration is pixel size. Larger pixels tend to capture more
photons, increasing the image sensor’s sensitivity (and therefore detection capabilities).
Terrestrial applications such as automotive or surveillance cameras prioritize high
resolutions since sensitivity is often not an issue. For star tracker/stellar gyro
applications, on the other hand, these considerations are of almost equal significance.
Assuming strict limitations with regard to image sensor dimensions (as is usually
the case for small form factor star trackers/stellar gyros), the pixel size must be
large enough to attain the desired sensitivity (detectable star magnitude) without
reducing the resolution to such an extent that it compromises centroiding accuracy.
Furthermore, it is worth noting that high resolution image sensors tend to consume
more power than their similarly sized, low resolution counterparts.

Aspect Ratio
The Melexis MLX75412 image sensor (as employed by CubeStar) features a 2:1 aspect
ratio, which means that a large portion of the lens’s FOV is projected outside the
image sensor area. This is to some extent compensated for by using an exceptionally
large FOV lens. Future iterations of CubeStar, which might opt for a smaller FOV
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lens, would benefit from implementing an image sensor approximating a square form
factor (aspect ratio of 1:1).

Shutter Type
The MLX75412 employs a rolling shutter mechanism, in which rows are exposed
sequentially. The global (frame) shutter mechanism, on the other hand, exposes all
pixels simultaneously. Consequently, image sensors that employ a rolling shutter
mechanism are more prone to certain distortion effects, specifically those related to
movement (such as motion blur). This is of little significance to star trackers, which
are designed to operate exclusively near zero angular rates. Stellar gyros, on the
other hand, rely on the continuation of rotation (movement). Using a rolling shutter
mechanism could therefore contribute to image distortion, impairing the accuracy of
rate estimates.

Image Sensors Considered for CubeStar
(see next page)
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Appendix C

Support Software

C-Functions
The stellar gyro algorithms were implemented on CubeStar in the C programming
language. An overview of the stellar gyro specific functions is provided.

void matchStars ( void )

ThematchStars function oversees the matching process. This involves calling auxiliary
functions (as detailed below), specifying ROI parameters, as well as resolving match
disputes that arise from multiple matchID index entries that point to a single centroid
in the oldCentroidList structure.

uint8_t matchingProcess ( i n t i , f l o a t search_radius , uint8_t
ratecheck )

The matchingProcess function is responsible for matching stars between successive
images. It accepts an index integer i that points to a specific centroid in the
oldCentroidList structure, a float search_radius that defines the maximum Euclidean
distance between a star centroid and the boresight coordinates that should register
consensus, as well as an 8-bit unsigned integer ratecheck that specifies the availability
of angular rates. The centroid at location i in the oldCentroidList structure is
compared to each centroid in the centroidList structure in an attempt to find a
possible match. The index of each centroid in the centroidList structure that registers
consensus is tied to the index value i and stored in a matchID structure for further
processing.

void c learMatchedStars ( void )

Clear all entries in the matchID structure. This ushers in each new matching
iteration.
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void ca l cRates ( void )

Estimates angular rates using the unit vector coordinates of matched star centroids
as tied by their index values in the matchID structure.

void r e s o l v eDup l i c a t e ( i n t i , i n t j , uint8_t ratecheck )

The resolveDuplicate function is responsible for resolving match disputes that arise
from duplicatematchID index entries that point to a single centroid in the centroidList
structure. It accepts integers i and j, which represent the matchID index values for
the duplicate entries, as well as an 8-bit unsigned integer ratecheck that specifies the
availability of previous angular rate estimates.

CubeStar Ground Support – Additions
The CubeStar ground support software package is a standalone application, written
in the C# programming language, that provides the means for interfacing with the
CubeStar unit through either UART or I2C interfaces. Additions to the ground
support package, specifically those related to stellar gyro operation, are detailed
here.

Rate Estimation Mode

Figure C.1 – Rate estimation mode for the CubeStar ground support package

The rate estimation mode, as illustrated by fig. C.1, facilitates star matching between
two manually uploaded images. The image plane and body-fixed unit vector coordin-
ates, as determined from both image frames, are provided for each matched star.
The three axis angular rates are estimated based on the matched stars.

Continuous Rate Estimation Mode

Figure C.2 – Continuous rate estimation mode for the CubeStar ground support
package
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The continuous rate estimation mode, as illustrated by fig. C.2, automates the
stellar gyro process. Star images, either captured or generated (using a simulation
environment), are sequentially uploaded to the CubeStar unit. Star centroids are
extracted and matched between images, after which angular rates are estimated. The
process iterates until all images in the specified directory has been accounted for.

MATLAB Scripts
This section presents an overview of selected MATLAB scripts that proved relevant
to the stellar gyro design procedure.

Star Catalogue Generator
The script reads the HYG star database1 (which contains all stars in the
Hipparcos, Yale Bright Star and Gliese catalogues) provided in either xls or xlsx
file format. It extracts the ID, right ascension (which it converts from hours to
degrees), declination, and visual magnitude of each star. The extracted data is
stored in a mat file for future use.

Plot Magnitude Distribution
Uses the data extracted via the star catalogue generator to determine the
number of stars within a certain visual magnitude. Extracted stars are then
plotted in three-dimensional space to illustrate distribution patterns over the
celestial sphere. The script also plots a 2D projection of the celestial sphere
(i.e., a star map).

Practical Test Scripts
Provides a means for interfacing with both the Aerosmith Model 1270VS
rate table and the CubeStar star tracker unit via the MATLAB environment
(includes image download functionality). Scripts used to evaluate the stellar
gyro algorithms as implemented on CubeStar are also included.

Random Image Generator
Generates an arbitrary number of images, each with random boresight co-
ordinates. Can be used to evaluate the reliability of CubeStar’s orientation
algorithms.

Sky Coverage Simulation
Performs Monte Carlo simulations that determine the sky coverage (for both
a two and three star minimum) as a function of the circular FOV for various
visual magnitudes.

Stellar Gyro Simulation
Encompasses the entire stellar gyro simulation process as detailed in section 5.1.
The procedure is also visualized.

1Available at: http://www.astronexus.com/hyg [25 September 2015]
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Important Datasheet Extracts
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CubeStar 
Nano Star Tracker 

Description 

 

CubeStar is a CubeSat compatible nano star 

tracker. CubeStar can operate in full 

autonomous mode, outputting attitude 

estimates in inertial quaternions at a rate of 

1Hz. 

 

CubeStar builds largely on the proven 

hardware designs of CubeSense and 

CubeComputer. 

Features Performance  

 Output attitude quaternions or raw 

images. 

 

 Onboard current monitors and power 

switches safeguard against radiation 

induced latchups. 

 

 CubeStar has been tested in a lab 

environment and under the night sky. 

 

 Vacuum, thermal and vibration testing to be 

completed. 

Sensitivity Range (Star Mag) < 4.0 

Number of Stars Tracked 15 

Accuracy (deg, 1σ) 0.01 (cross bore) 

0.03 (roll) 

Update Rate (Hz) 1 

Max Tracking Rate (deg/s) 0.3 

Max Acquisition Time (ms) 1000 
Specifications (without Baffle) 

 

Weight (g) 56g 

Dimensions (mm) 50.1 x 35.2 x 64 

Power (mW) 320 nominal 

500 peak 

Operating Voltage (V) 3.3 

Data Interface I2C / UART 

Field of View (deg) 52 x 27 

Star Catalogue Size 415 

Electronics Systems Laboratory 

Engineering Faculty 

University of Stellenbosch 

Private Bag X1 Matieland 7602 

South Africa 

Contact Us: 

Phone: +27-21-808-4926 

Fax: +27-21-808-4981 

Email: whsteyn@sun.ac.za 

URL: http//www.esl.sun.ac.za 
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...the world's most energy friendly microcontrollers

2014-05-23 - EFM32GG280FXX - d0036_Rev1.30 1 www.silabs.com

EFM32GG280 DATASHEET
F1024/F512

• ARM Cortex-M3 CPU platform
• High Performance 32-bit processor @ up to 48 MHz
• Memory Protection Unit

• Flexible Energy Management System
• 20 nA @ 3 V Shutoff Mode
• 0.4 µA @ 3 V Shutoff Mode with RTC
• 0.8 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out

Detector, RAM and CPU retention
• 1.1 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz

oscillator, Power-on Reset, Brown-out Detector, RAM and CPU
retention

• 80 µA/MHz @ 3 V Sleep Mode
• 219 µA/MHz @ 3 V Run Mode, with code executed from flash

• 1024/512 KB Flash
• Read-while-write support

• 128 KB RAM
• 85 General Purpose I/O pins

• Configurable push-pull, open-drain, pull-up/down, input filter, drive
strength

• Configurable peripheral I/O locations
• 16 asynchronous external interrupts
• Output state retention and wake-up from Shutoff Mode

• 12 Channel DMA Controller
• 12 Channel Peripheral Reflex System (PRS) for autonomous in-

ter-peripheral signaling
• Hardware AES with 128/256-bit keys in 54/75 cycles
• Timers/Counters

• 4× 16-bit Timer/Counter
• 4×3 Compare/Capture/PWM channels
• Dead-Time Insertion on TIMER0

• 16-bit Low Energy Timer
• 1× 24-bit Real-Time Counter and 1× 32-bit Real-Time Counter
• 3× 16/8-bit Pulse Counter  with asynchronous operation
• Watchdog Timer with dedicated RC oscillator @ 50 nA

• Backup Power Domain
• RTC and retention registers in a separate power domain, avail-

able in all energy modes
• Operation from backup battery when main power drains out

• External Bus Interface for up to 4x256 MB of external
memory mapped space
• TFT Controller with Direct Drive

• Communication interfaces
• 3× Universal Synchronous/Asynchronous Receiv-

er/Transmitter
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S

• 2× Universal Asynchronous Receiver/Transmitter
• 2× Low Energy UART

• Autonomous operation with DMA in Deep Sleep
Mode

• 2× I2C Interface with SMBus support
• Address recognition in Stop Mode

• Ultra low power precision analog peripherals
• 12-bit 1 Msamples/s Analog to Digital Converter

• 8 single ended channels/4 differential channels
• On-chip temperature sensor

• 12-bit 500 ksamples/s Digital to Analog Converter
• 2× Analog Comparator

• Capacitive sensing with up to 16 inputs
• 3× Operational Amplifier

• 6.1 MHz GBW, Rail-to-rail, Programmable Gain
• Supply Voltage Comparator

• Low Energy Sensor Interface (LESENSE)
• Autonomous sensor monitoring in Deep Sleep Mode
• Wide range of sensors supported, including LC sen-

sors and capacitive buttons
• Ultra efficient Power-on Reset and Brown-Out Detec-

tor
• Debug Interface

• 2-pin Serial Wire Debug interface
• 1-pin Serial Wire Viewer

• Embedded Trace Module v3.5 (ETM)
• Pre-Programmed UART Bootloader
• Temperature range -40 to 85 ºC
• Single power supply 1.98 to 3.8 V
• LQFP100 package

32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:

• Energy, gas, water and smart metering
• Health and fitness applications
• Smart accessories

• Alarm and security systems
• Industrial and home automation
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