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Abstract 

Endothelial injury and dysfunction precede the development of cardiovascular diseases. The 

endothelium may be regarded as the first line of defence against inflammation / obesity-

induced vascular injury, therefore gaining more information on the mechanisms of injury 

and response to injury, as well as modulating endothelial function may be key in the 

prevention of cardiovascular diseases. Endothelial cells differ in structure and function, 

therefore endothelial heterogeneity may be relevant when investigating endothelial 

function and dysfunction. Understanding endothelial heterogeneity in response to 

pathophysiological stimuli may be of significance in the prevention of cardiovascular 

diseases. Oleanolic acid (OA), a plant-derived triterpenoid, has been shown to possess 

endothelio-protective properties; however, its role in reversing endothelial injury is poorly 

understood.  

This study investigated endothelial heterogeneity between aortic endothelial cells (AECs) 

and cardiac microvascular endothelial cells (CMECs) at baseline and in response to an 

inflammatory insult via the cytokine, tumour necrosis factor-alpha (TNF-α). An in vitro 

model of endothelial injury was developed by treating AECs and CMECs with 20 ng/ml TNF-α 

for 24 hours. Endothelial heterogeneity was investigated by comparing intracellular nitric 

oxide (NO) and reactive oxygen species (ROS) production, protein expression and 

phosphorylation, and large-scale protein expression and regulation in AECs and CMECs. The 

experimental techniques included flow cytometry, western blots and proteomic analyses. 

An ex vivo model of endothelial injury was included to investigate vascular function in aortic 

rings from lean and high fat diet (HFD) rats. The role of OA in reversing TNF-α-induced injury 

and modulating vascular function in the ex vivo model was investigated.  

Although baseline NO-levels were similar between AECs and CMECs, heterogeneity was 

observed with regards to the NO biosynthetic pathway in terms of increased eNOS 

expression in CMECs.  Baseline ROS levels were heterogeneous between AECs and CMECs, 

interestingly CMECs possessed higher anti-oxidant capacity. An in vitro model of TNF-α-

induced injury was confirmed by decreased NO-levels, increased ROS-levels and necrosis, 

up-regulation of apoptotic proteins and activation of inflammatory pathways in AECs and 

CMECs. Here, heterogeneity between AECs and CMECs was also observed: endothelial 

activation was mediated through different proteins in AECs (CD9 molecule, galectin) and 
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CMECs (ICAM-1 and IL-36α). Apoptosis was mediated by caspase 3 in AECs and Bid in 

CMECs. AECs appeared to advance to a dysfunctional state shown by up-regulation of 

endothelin-converting enzyme and angiotensin II-converting enzyme, while CMECs 

maintained an activated state. OA reversed TNF-α-induced injury through restoring NO-

production, decreasing ROS-production in both AECs and CMECs, and inhibiting necrosis in 

AECs.  In the ex vivo model of injury, aortic rings from 16-week HFD rats showed a pro-

contractile response to phenylephrine-induced contraction, a response that was reversed by 

OA.  

In conclusion, we demonstrated novel findings with regards to endothelial heterogeneity 

between AECs and CMECs under baseline and TNF-α-treated conditions. Although reduced 

NO-bioavailability may be the hallmark of endothelial dysfunction, signalling pathways 

mediating endothelial injury may differ between cell types as was shown in this study. We 

demonstrated that OA possess protective properties in AECs and CMECS, an observation 

which was translated to the ex vivo model.  
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Opsomming 

Endoteelbesering en –disfunksie gaan die ontwikkeling van kardiovaskulêre siektes vooraf. 

Die endoteel word as die eerste linie van verdediging teen inflammasie / vetsug-

geïnduseerde vaskulêre skade beskou; dus is die ontginning van nuwe inligting betreffende 

die meganismes van en respons tot besering, asook die modulering van endoteelfunksie 

essensieël in die voorkoming van kardiovaskulêre siektes. Endoteelselle verskil t.o.v. 

struktuur en funksie, en dus is endoteel-heterogeniteit relevant tydens die ondersoek van 

endoteelfunksie en –disfunksie. ‘n Beter begrip van endoteel-heterogeniteit in die respons 

tot patofisiologiese stimuli kan betekenisvol tot die voorkoming van kardiovaskulêre siektes 

bydra. Oleanoliese suur (OA), ‘n triterpenoïed afkomstig van plante is voorheen bewys om 

endoteelbeskermende eienskappe te besit; die rol van OA in die omkering van 

endoteelbesering is egter minder bekend. 

Hierdie studie het endoteel-heterogeniteit tussen aorta endoteelselle (AECs) en hart 

mikrovaskulêre endoteeelselle (CMECs) by basislyn en in respons tot ‘n inflammatoriese 

besering via die sitokien, tumor nekrose faktor-alfa (TNF-α), ondersoek. ‘n In vitro model 

van endoteelbesering is ontwikkel deur AECs en CMECs met 20 ng/ml TNF-α vir 24 uur te 

behandel. Endoteel-heterogeniteit was ondersoek deur intrasellulêre stikstofoksied (NO) en 

reaktiewe suurstofspesies (ROS) produksie, proteïenuitdrukking en fosforilering, en 

grootskaalse proteïenuitdrukking en regulering in AECs en CMECs te vergelyk. Die 

eksperimentele tegnieke het ingesluit: vloeisitometrie, western blots en proteomika. ‘n Ex 

vivo model van endoteelbesering was ook ingesluit deur die vaskulêre funksie in aortaringe 

van normale en hoë vet dieet-gevoerde (HFD) rotte te meet. Die rol van OA in die omkering 

van TNF-α-geïnduseerde besering en modulering van vaskulêre funksie was in hierdie model 

is ondersoek. 

Alhoewel basislyn NO-vlakke vergelykbaar was in AECs en CMECs, is heterogeniteit wel 

aangetoon m.b.t. die NO biosintese pad met verhoogde eNOS uitdrukking in die CMECs. 

Basislyn ROS-vlakke was verskillend in AECs en CMECs en die CMECs het hoër anti-oksidant 

kapasiteit getoon. ‘n In vitro model van TNF-α-geïnduseerde besering is bevestig met die 

waarneming van verlaagde NO-vlakke, verhoogde ROS-vlakke en nekrose, opregulering van 

apoptotiese proteïene en aktivering van inflammatoriese paaie in AECs en CMECs. Hier was 

heterogeniteit ook opmerkbaar: endoteelaktivering was deur verskillende proteïene in AECs 
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(CD9 molekule, galektien) en CMECs (ICAM-1, IL-36α) bemiddel. Apotose was deur kaspase 

3 in AECs en Bid in CMECs bemiddel. Dit het geblyk dat AECs tot ‘n staat van 

endoteeldisfunksie gevorder het met die opregulering van endotelien-omsettingsensiem en 

angiotensien II-omsettingsensiem, terwyl CMECs eerder ‘n geaktiveerde staat gehandhaaf 

het. OA het TNF-α-geïnduseerde besering omgekeer deur NO-produksie te herstel, ROS-

produksie te onderdruk in beide AECs en CMECs, en nekrose te inhibeer in AECs. In die ex 

vivo model van besering, het aortaringe van 16-week HFD rotte ‘n pro-kontraktiele respons 

tot fenielefrien-geïnduseerde kontraksie getoon, wat deur OA omgekeer is. 

Ten slotte, nuwe bevindinge is waargeneem m.b.t. endoteel-heterogeniteit tussen AECs en 

CMECs onder basislyn en TNF-α-behandelde omstandighede. Alhoewel verlaagde NO-

biobeskikbaarheid die waarmerk van endoteeldisfunksie is, het hierdie studie getoon dat 

seintransduksiepaaie wat endoteelbesering medieer verskillend is tussen seltipes. Die studie 

het verder ook gedemonstreer dat OA beskermende eienskappe toon in AECs en CMECs, ‘n 

waarneming wat ook in die ex vivo model aangetoon kon word. 

 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



vi | P a g e  
 

Acknowledgements 

I would like to acknowledge the following people: 

To my supervisor, Prof Hans Strijdom: thank you for your invaluable contribution, guidance, 

insight and dedication throughout this study. Thank you for being an inspiring leader, and 

for always thriving for excellence in every project.  

My co-supervisor, Prof Anna-Mart Engelbrecht, for her invaluable input and guidance. 

My family (siblings and sister in law) for their continuous support throughout this project  

My collegues Amanda and Corli for their assistance and support throughout the project.  

My husband for the words of encouragement whenever I felt like giving up and continuous 

support. 

Everyone in the department for creating a warm and friendly environment, and for all the 

assistance.  

I thank God for seeing me through all the challenges in the duration of this study. 

  

Stellenbosch University  https://scholar.sun.ac.za



vii | P a g e  
 

List of Tables 
Chapter 1 

Table 1.1: Summary of endothelium-derived vasoactive factors ........................................... 11 

Table 1.2: Differences between arteries and veins ................................................................. 49 

Table 1.3: Differences in the molecular markers expressed in arterial and venous 

endothelium ............................................................................................................................. 49 

Table 1.4: Endothelio-protective agents and their mechanisms of action ............................. 58 

 

Chapter 2 

Table 2.1: Proteins measured by western blotting ................................................................. 77 

Table 2.2: Western blot protocols ........................................................................................... 77 

Table 2.3: Details of data acquisition ...................................................................................... 83 

Table 2.4: Protein search parameters ..................................................................................... 84 

Table 2.5: Composition of the HFD and control diets ............................................................. 87 

 

Chapter 3 

Table 3.1: List of up-regulated proteins in control, untreated AECs (vs. CMECs) ................. 149 

Table 3.1 (continued): List of up-regulated proteins in control, untreated AECs (vs. CMECs)

................................................................................................................................................ 150 

Table 3.2: Biological processes associated with strongly represented proteins in control, 

untreated AECs (vs. CMECs) ................................................................................................... 152 

Table 3.3: Cellular components associated with strongly represented proteins in control, 

untreated AECs (vs control, untreated CMECs) ..................................................................... 153 

Table 3.4: List of up-regulated proteins in control, untreated CMECs (vs AECs) .................. 154 

Table 3.4 (continued): List of up-regulated proteins in control, untreated CMECs (vs AECs)

................................................................................................................................................ 155 

Table 3.5: Biological processes associated with strongly represented proteins in control, 

untreated CMECs (vs control, untreated AECs) ..................................................................... 157 

Table 3.6: Cellular components associated with strongly represented proteins in control, 

untreated CMECs (vs. control, untreated AECs) .................................................................... 158 

Table 3.7: List of up-regulated proteins in AECs + TNF (vs untreated AECs) ......................... 160 

Stellenbosch University  https://scholar.sun.ac.za



viii | P a g e  
 

Table 3.8: Biological processes associated with strongly represented proteins in AECs+TNF 

samples (vs control, untreated AECs) .................................................................................... 162 

Table 3.9: List of up-regulated proteins in CMECs + TNF (vs control, untreated CMECs) .... 164 

Table 3.10: Biological processes associated with strongly represented proteins in 

CMECs+TNF (vs control, untreated CMECs) .......................................................................... 166 

Table 3.11: List of up-regulated proteins in AECs + TNF (vs CMECs + TNF) .......................... 169 

Table 3.11 (continued): List of up-regulated proteins in AECs + TNF (vs CMECs + TNF) ...... 170 

Table 3.11 (continued): List of up-regulated proteins in AECs + TNF (vs CMECs + TNF) ...... 171 

Table 3.12: Biological processes associated with strongly represented proteins in AECs+TNF 

(vs CMECs + TNF) ................................................................................................................... 173 

Table 3.13: Cellular components associated with strongly represented proteins in AECs+TNF 

(vs CMECs + TNF) ................................................................................................................... 174 

Table 3.14: List of up-regulated proteins in CMECs + TNF (vs AECs + TNF) .......................... 177 

Table 3.14 (continued): List of up-regulated proteins in CMECs + TNF (vs AECs + TNF) ...... 178 

Table 3.14 (continued): List of up-regulated proteins in CMECs + TNF (vs AECs + TNF) ...... 179 

Table 3.15: Biological processes associated with strongly represented proteins in 

CMECs+TNF (vs AECs + TNF) .................................................................................................. 181 

Table 3.16: Cellular components associated with strongly represented proteins in 

CMECs+TNF (vs AECs + TNF) .................................................................................................. 182 

 

Chapter 4 

Table 4.1: Heterogeneous protein expression and phosphorylation patterns under baseline 

conditions ............................................................................................................................... 243 

Table 4.2: Heterogeneous anti-oxidant protein up-regulation in response to TNF-α .......... 253 

 

  

Stellenbosch University  https://scholar.sun.ac.za



ix | P a g e  
 

List of figures 
 

Chapter 1 

Figure 1.1: Global non-communicable disease related deaths in the age group of under 70 in 

2008 ........................................................................................................................................... 3 

Figure 1.2: Cardiovascular diseases as the major cause of death in the Western Cape in the 

year 2000 ................................................................................................................................... 4 

Figure 1.3: Twenty major conditions associated with death in the Western Cape during the 

year 2000. .................................................................................................................................. 5 

Figure 1.5: A depiction of the flow of electrons during catalysis of NO production. .............. 15 

Figure 1.6: Phosphorylation sites and the kinases involved in eNOS ...................................... 18 

Figure 1.7: Different stages of endothelial activation ............................................................. 26 

Figure 1.8: ED and progression to atherosclerosis in a nutshell ............................................. 28 

Figure 1.9: eNOS uncoupling ................................................................................................... 32 

Figure 1.10: Progression of insulin resistance to type 2 diabetes parallels progression of ED 

to atherosclerosis ..................................................................................................................... 35 

Figure 1.11: ADMA synthesis and NOS inhibition ................................................................... 43 

Figure 1.12: Participation of ox-LDL in atherogenesis in different cells in the vascular system

.................................................................................................................................................. 45 

Figure 1.13: Endothelial cell heterogeneity in arterial, venous and capillary endothelium ... 51 

Figure 1.14: Paracrine communication between CMECs and cardiomyocytes....................... 53 

 

Chapter 2 

Figure 2.1: Passaging of cells and storage in liquid nitrogen .................................................. 67 

Figure 2.2: A representative example of a forward-side scatter plot with a gate representing 

the cell population of interest ................................................................................................. 69 

Figure 2.3: The experimental protocols for DAF-2/DA, DHR-123 incubation, and positive 

controls administrations .......................................................................................................... 72 

Figure 2.4: A representative histogram showing the autofluorescence, and DAF-2/DA 

fluorescence in control and positive control samples, measured in the FL1-H channel of the 

flow cytometer ......................................................................................................................... 72 

Stellenbosch University  https://scholar.sun.ac.za



x | P a g e  
 

Figure 2.5: The experimental protocol for DCF incubation and positive control .................... 72 

Figure 2.6: The experimental protocol for PI incubation ........................................................ 74 

Figure 2.7: A representative histogram of a sample exposed to an injurious insult resulting in 

a high percentage necrotic cells as demonstrated by the high PI-uptake in the necrotic cell 

sub-population ......................................................................................................................... 74 

Figure 2.8: Protocols to determine the TNF-α concentration-response effects for 24 or 48 

hour treatment durations ........................................................................................................ 80 

Figure 2.9: Protocols for baseline studies with 40 µM OA ...................................................... 80 

Figure 2.10: OA pre-treatment protocol prior to injury induction by means of TNF-α 

administration for 24 hours ..................................................................................................... 80 

Figure 2.11: The tissue organ bath system .............................................................................. 87 

Figure 2.12: Schematic representation of the incisions made for the removal of the aorta.. 89 

Figure 2.13: The excised aorta placed on cold Krebs-Henseleit buffer and cleaned of excess 

fat and connective tissue ......................................................................................................... 89 

Figure 2.14: A 4 mm aortic ring mounted on two stainless steel hooks and lowered into the 

organ bath ................................................................................................................................ 90 

Figure 2.15: A representative recording obtained from the LabChart pro software showing 

the standard isometric tension protocol ................................................................................. 93 

Figure 2.16: A representative recording obtained from the LabChart pro software showing 

the OA pre-treatment protocol ............................................................................................... 94 

 

Chapter 3 

Figure 3.1 A: A histogram representation of the mean DAF-2/DA fluorescence intensity 

generated by 100 µM DEA/NO administration (positive control for DAF-2/DA) .................... 97 

Figure 3.1 B: A histogram representation of the mean DHR-123 and DCF fluorescence 

intensity generated by 100 µM authentic ONOO- and 100 µM H2O2 administration 

respectively (positive controls for DHR-123 and DCF) ............................................................ 97 

Figure 3.2: Baseline mean DAF-2/DA fluorescence in AECs and CMECs ................................. 98 

Figure 3.3 A: Baseline mean DHR-123 fluorescence in AECs and CMECs ............................... 99 

Figure 3.3 B: Baseline mean DCF fluorescence in AECs and CMECs ....................................... 99 

Figure 3.4 A: AECs: DAF-2/DA TNF-α concentration-response findings after 24 hours 

treatment ............................................................................................................................... 101 

Stellenbosch University  https://scholar.sun.ac.za



xi | P a g e  
 

Figure 3.4 B: AECs: DAF-2/DA TNF-α concentration-response findings after 48 hours 

treatment ............................................................................................................................... 101 

Figure 3.4 C: CMECs: DAF-2/DA TNF-α concentration-response findings after 24 hours 

treatment ............................................................................................................................... 102 

Figure 3.4 D: CMECS: DAF-2/DA TNF-α concentration-response findings after 48 hours 

treatment ............................................................................................................................... 102 

Figure 3.5 A: Direct comparison of % changes in DAF-2/DA fluorescence between AECs and 

CMECs treated with TNF-α for 24 hours ................................................................................ 104 

Figure 3.5 B: Direct comparison of % changes in DAF-2/DA fluorescence between AECs and 

CMECs treated with TNF-α for 48 hours. ............................................................................... 104 

Figure 3.6 A: AECs: DHR-123 TNF-α concentration-response findings after 24 hours 

treatment. .............................................................................................................................. 106 

Figure 3.6 B: AECs: DHR-123 TNF-α concentration-response findings after 48 hours 

treatment. .............................................................................................................................. 106 

Figure 3.6 C: CMECs: DHR-123 TNF-α concentration-response findings after 24 hours 

treatment ............................................................................................................................... 107 

Figure 3.6 D: CMECs: DHR-123 TNF-α concentration-response findings after 48 hours 

treatment ............................................................................................................................... 107 

Figure 3.7 A: Direct comparison of % changes in DHR-123 fluorescence between AECs and 

CMECs treated with TNF-α for 24 hours ................................................................................ 109 

Figure 3.7 B: Direct comparison of % changes in DHR-123 fluorescence between AECs and 

CMECs treated with TNF-α for 48 hours ................................................................................ 109 

Figure 3.8 A: AECs: DCF TNF-α concentration-response findings after 24 hours treatment.

................................................................................................................................................ 111 

Figure 3.8 B: AECs: DCF TNF-α concentration-response findings after 48 hours treatment

............................................................................................................................................... .111 

Figure 3.8 C: CMECs: DCF TNF-α concentration-response findings after 24 hours treatment

................................................................................................................................................ 112 

Figure 3.8 D: CMECs: DCF TNF-α concentration-response findings after 48 hours treatment

................................................................................................................................................ 112 

Figure 3.9 A: Direct comparison of % changes in DCF fluorescence between AECs and CMECs 

treated with TNF-α for 24 hours ............................................................................................ 114 

Stellenbosch University  https://scholar.sun.ac.za



xii | P a g e  
 

Figure 3.9 B: Direct comparison of % changes in DCF fluorescence between AECs and CMECs 

treated with TNF-α for 48 hours ............................................................................................ 114 

Figure 3.10 A: AECs: TNF-α concentration-response findings after 24 hours treatment 

showing % propidium iodide-stained cells ............................................................................ 116 

Figure 3.10 B: AECs: TNF-α concentration-response findings after 48 hours treatment 

showing % propidium iodide-stained cells ............................................................................ 116 

Figure 3.10 C: CMECs: TNF-α concentration-response findings after 24 hours treatment 

showing % propidium iodide-stained cells ............................................................................ 117 

Figure 3.10 D: CMECs: TNF-α concentration-response findings after 48 hours treatment 

showing % propidium iodide-stained cells. ........................................................................... 117 

Figure 3.11 A: Direct comparison of changes in the % propidium iodide-stained cells 

between AECs and CMECs treated with TNF-α for 24 hours................................................. 119 

Figure 3.11 B: Direct comparison of changes in the % propidium iodide-stained cells 

between AECs and CMECs treated with TNF-α for 48 hours................................................. 119 

Figure 3.12 A & B: (A) Total eNOS expression and (B) phosphorylated eNOS (Ser 1177) in 

AECs and CMECs with or without TNF-α treatment (20 ng/ml; 24 hours) ............................ 121 

Figure 3.12 C: Phospho / total eNOS ratios in AECs and CMECs with or without TNF-α 

treatment (20 ng/ml; 24 hours) ............................................................................................. 121 

Figure 3.13 C: Phospho / total PKB/Akt ratios in AECs and CMECs with or without TNF-α (20 

ng/ml; 24 hours) .................................................................................................................... 123 

Figure 3.14: Heat shock 90 expression in AECs and CMECs with or without TNF-α (20 ng/ml; 

24 hours). ............................................................................................................................... 124 

Figure 3.15: IKB-alpha expression in AECs and CMECs with or without TNF-α (20 ng/ml; 24 

hours). .................................................................................................................................... 125 

Figure 3.16: Nitrotyrosine expression in AECs and CMECs with or without TNF-α (20 ng/ml; 

24 hours) ................................................................................................................................ 126 

Figure 3.17 A: AECs: DAF-2/DA fluorescence data with 10 and 40 µM OA treatment for 1 

hour. ....................................................................................................................................... 128 

Figure 3.17 B: CMECs: DAF-2/DA fluorescence data with 10 and 40 µM OA treatment for 1 

hour ........................................................................................................................................ 128 

Figure 3.18 A: AECs: DCF fluorescence data with 40 µM OA treatment for 1 hour.............. 130 

Figure 3.18 B: CMECs: DCF fluorescence data with 40 µM OA treatment for 1 hour .......... 130 

Stellenbosch University  https://scholar.sun.ac.za



xiii | P a g e  
 

Figure 3.19 A: AECs: % propidium iodide-stained cells treated with 40 µM OA (1 hour). .... 132 

Figure 3.19 B: CMECs: % propidium iodide-stained cells treated with 40 µM OA (1 hour) .. 132 

Figure 3.20 A: AECs: DAF-2/DA fluorescence data in AECs treated with 40 µM OA (24 hours)

................................................................................................................................................ 134 

Figure 3.20 B: CMECs: DAF-2/DA fluorescence data in CMECs treated with 40 µM OA (24 

hours) ..................................................................................................................................... 134 

Figure 3.21 A: AECs: DCF fluorescence data in AECs treated with 40 µM OA (24 hours) ..... 136 

Figure 3.21 B: CMECs: DCF fluorescence data in CMECs treated with 40 µM OA (24 hours)

................................................................................................................................................ 136 

Figure 3.22 A: AECs: % propidium iodide-stained cells treated with 40 µM OA (24 hours) . 138 

Figure 3.22 B: CMECs: % propidium iodide-stained cells treated with 40 µM OA (24 hours)

................................................................................................................................................ 138 

Figure 3.23 A: AECs: DAF-2/DA fluorescence data in OA, TNF-α and OA pre-treatment 

groups. ................................................................................................................................... 140 

Figure 3.23 B: CMECs: DAF-2/DA fluorescence data in OA, TNF-α and OA pre-treatment 

groups .................................................................................................................................... 140 

Figure 3.24 A: AECs: DCF fluorescence data in OA, TNF-α and OA pre-treatment groups. .. 142 

Figure 3.24 B: CMECs: DCF fluorescence data in OA, TNF-α and OA pre-treatment groups.

................................................................................................................................................ 142 

Figure 3.25 A: AECs: % propidium iodide-stained cells in OA, TNF-α and OA pre-treatment 

groups .................................................................................................................................... 144 

Figure 3.25 B: CMECs: % propidium iodide-stained cells in OA, TNF-α and OA pre-treatment 

groups .................................................................................................................................... 144 

Figure 3.26 A: Venn diagram showing the total protein expression distribution in control, 

untreated AECs and CMECs. .................................................................................................. 145 

Figure 3.26 B: Venn diagram showing the total protein expression distribution in TNF-α 

treated AECs and CMECs. ...................................................................................................... 145 

Figure 3.27 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Aldehyde dehydrogenase, dimeric NADP-preferring in three 

control, untreated AEC samples (AEC1, AEC2, AEC3) compared to three control, untreated 

CMEC samples (CMEC1, CMEC2, CMEC3). ............................................................................. 151 

Stellenbosch University  https://scholar.sun.ac.za



xiv | P a g e  
 

Figure 3.27 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Aldehyde dehydrogenase L1 in three control, untreated AEC 

samples (AEC1, AEC2, AEC3) compared to three control, untreated CMEC samples (CMEC1, 

CMEC2, CMEC3). .................................................................................................................... 151 

Figure 3.28 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Tight junction protein-1 in three control, untreated CMEC 

samples (CMEC1, CMEC2, CMEC3) compared to three control, untreated AEC samples 

(AEC1, AEC2, AEC3). ............................................................................................................... 156 

Figure 3.28 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of BCL-2 related protein A1B in three control, untreated CMEC 

samples (CMEC1, CMEC2, CMEC3) compared to three control, untreated AEC samples 

(AEC1, AEC2, AEC3). ............................................................................................................... 156 

Figure 3.29 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Superoxide dismutase [Mn] mitochondrial in three TNF-α 

treated AEC samples (AEC+TNF1, AEC+TNF2, AEC+TNF3) compared to three control, 

untreated AEC samples (AEC1, AEC2, AEC3). ........................................................................ 161 

Figure 3.29 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of NF-KB p49/p100 in three TNF-α treated AEC samples 

(AEC+TNF1, AEC+TNF2, AEC+TNF3) compared to three control, untreated AEC samples 

(AEC1, AEC2, AEC3). ............................................................................................................... 161 

Figure 3.30 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Plasminogen activator inhibitor-1 (PAI-1) in three TNF-α treated 

CMEC samples (CMEC+TNF1, CMEC+TNF2, CMEC+TNF3) compared to three control, 

untreated CMEC samples (CMEC1, CMEC2, CMEC3). ........................................................... 165 

Figure 3.30 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of NF-KB p49/p100 in three TNF-α treated CMEC samples 

(CMEC+TNF1, CMEC+TNF2, CMEC+TNF3) compared to three control, untreated CMEC 

samples (CMEC1, CMEC2, CMEC3). ....................................................................................... 165 

Figure 3.31 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Endothelin-converting enzyme 1 in three TNF-α treated AEC 

samples (AEC+TNF1, AEC+TNF2, AEC+TNF3) compared to three TNF-α-treated CMEC 

samples (CMEC+TNF1, CMEC+TNF2, CMEC+TNF3). .............................................................. 172 

Stellenbosch University  https://scholar.sun.ac.za



xv | P a g e  
 

Figure 3.31 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Aldehyde dehydrogenase L1 in three TNF-α treated AEC 

samples (AEC+TNF1, AEC+TNF2, AEC+TNF3) compared to three TNF-α-treated CMEC 

samples (CMEC+TNF1, CMEC+TNF2, CMEC+TNF3) ............................................................... 172 

Figure 3.32 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Platelet endothelial cell adhesion molecule in three TNF-α 

treated CMEC samples (CMEC+TNF1, CMEC+TNF2, CMEC+TNF3) compared to three TNF-α-

treated AEC samples (AEC+TNF1, AEC+TNF2, AEC+TNF3). ................................................... 180 

Figure 3.32 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Plexin D1 in three TNF-α treated CMEC samples (CMEC+TNF1, 

CMEC+TNF2, CMEC+TNF3) compared to three TNF-α-treated AEC samples (AEC+TNF1, 

AEC+TNF2, AEC+TNF3) ........................................................................................................... 180 

Figure 3.33: Total body weights of lean and HFD rats after 16 weeks .................................. 184 

Figure 3.34: Total body weights of lean and HFD rats after 24 weeks .................................. 184 

Figure 3.35: Intra-peritoneal fat mass in lean and HFD rats after 16 weeks ........................ 185 

Figure 3.36: Intra-peritoneal fat mass in lean and HFD rats after 24 weeks ........................ 185 

Figure 3.37: Phenylephrine-induced aortic ring contraction in lean and HFD groups .......... 187 

Figure 3.38: Acetylcholine-induced aortic ring relaxation in lean and HFD groups (16 weeks)

................................................................................................................................................ 187 

Figure 3.39: Phenylephrine-induced contraction in aortic rings from lean animals (16 weeks) 

exposed to OA administration ............................................................................................... 189 

Figure 3.40: Acetylcholine-induced relaxation in aortic rings from lean animals (16 weeks) 

exposed to OA administration. .............................................................................................. 189 

Figure 3.41: Phenylephrine-induced contraction in aortic rings from HFD animals (16 weeks) 

exposed to OA administration ............................................................................................... 191 

Figure 3.42: Acetylcholine-induced relaxation in aortic rings from HFD animals (16 weeks) 

exposed to OA administration. .............................................................................................. 191 

Figure 3.43: Phenylephrine-induced contraction in aortic rings from lean animals (24 weeks) 

exposed to OA administration. .............................................................................................. 193 

Figure 3.44: Acetylcholine-induced relaxation in aortic rings from lean animals (24 weeks) 

exposed to OA administration. .............................................................................................. 193 

Stellenbosch University  https://scholar.sun.ac.za



xvi | P a g e  
 

Figure 3.45: Phenylephrine-induced contraction in aortic rings from HFD animals (24 weeks) 

exposed to OA administration. .............................................................................................. 195 

Figure 3.46: Acetylcholine-induced relaxation in aortic rings from HFD animals (24 weeks) 

exposed to OA administration ............................................................................................... 195 

Figure 3.47: Direct, cumulative administration of OA after phenylephrine pre-contraction to 

assess possible pro-relaxation effects in aortic rings from lean and HFD rats ...................... 196 

 

Chapter 4 

Figure 4.1: Proposed mechanism of TNF-α induced cell necrosis ......................................... 215 

Figure 4.2: The TNF-α signalling pathway ............................................................................. 229 

Figure 4.3: Summary of the effects of TNF-α on NO production, ROS production and necrosis 

in AECs and CMECs. ............................................................................................................... 245 

Figure 4.4: Proposed TNF-α signalling in the AECs based on the integration of flow 

cytometry, western blot and proteomic data ....................................................................... 247 

Figure 4.5: Proposed TNF-α signalling in the CMECs based on the integration of flow 

cytometry, western blot and proteomic data. ...................................................................... 249 

Figure 4.6: The loss of balance in vasoconstrictor and vasodilator factor synthesis in TNF-α 

treated AECs compared to TNF-α CMECs .............................................................................. 251 

Figure 4.7: TNF-α signalling in AECs compared to CMECs. .................................................... 255 

Figure 4.8: TNF-α signalling in CMECs compared to AECs ..................................................... 255 

 

  

Stellenbosch University  https://scholar.sun.ac.za



xvii | P a g e  
 

List of abbreviations 

ACE angiotensin converting enzyme 

Ach acetylcholine 

ADMA asymmetric dimethyl arginine 

AECs aortic endothelial cells 

AGEs advanced glycation end-products  

AMPK AMP-activated protein kinase  

ASS argininosuccinate synthase 

ATP adenosine triphosphate 

BH3- trihydrobiopterin radical 

BH4 tetrahydrobiopterin 

Bid  BH3 interacting domain death agonist 

BMI body mass index  

CaMKII calcium / calmodulin-dependent protein kinase II 

cAMP cyclic adenosine monophosphate  

cGKI cGMP-dependent protein kinase I 

cGMP cyclic guanosine monophosphate 

CMECs cardiac microvascular endothelial cells 

COX cyclooxygenase 

CRP c-reactive protein 

DAF-2/DA diaminofluorescein diacetate 

DAF-2T diaminofluorescein-triazol 

DAVID the Database for Annotation, Visualization and Integrated Discovery 

DCF 2’,7’-dichlorofluorescein 

DDAH dimethylaminohydrolases 

DEA/NO diethylammonium 

DHR-123 Dihydrorhodamine-123 

DiL-ac-LDL 1,1-dioctadecyl-3,3,3’,3’-tetramethylindocarbocynanine 

perchlorate-acylated-low density lipoprotein 

DMSO dimethyl sulfoxide 

ECE endothelin converting enzyme 

Stellenbosch University  https://scholar.sun.ac.za



xviii | P a g e  
 

ED endothelial dysfunction 

EDHF endothelial derived hyperpolarizing factor 

EDRF endothelium-derived relaxation factor 

EETs epoxyeicosatrienoic acids 

EGM endothelial growth medium 

eNOS endothelial nitric oxide synthase 

ESL endothelial surface layer 

ET-1 endothelin-1 

ETE endothelin converting enzyme  

FAD flavin adenine dinucleotide  

FADD fas-associated death domain 

FASP filter aided sample preparation 

FBS fetal bovine serum  

FMN flavin mononucleotide 

GO gene ontology 

GTP guanosine triphosphate 

H2O2 hydrogen peroxide  

hEGF human epidermal growth factor 

HFD high fat diet  

HOMA-IR  homeostatic model assessment of insulin resistance  

HSP 90 heat shock protein 90 

HUVECs human umbilical vein endothelial cells   

ICAM-1 intercellular adhesion molecule 1. 

IkB-alpha i-kappa-B-alpha 

IHD ischaemic heart disease 

IL-1 Interleukin-1 

IL-36α interleukin-36 alpha 

IL-6 Interleukin-6 

iNOS inducible nitric oxide synthase 

LDL low density lipoprotein 

LOX-1 lectin-like ox-LDL receptor 1 

Stellenbosch University  https://scholar.sun.ac.za



xix | P a g e  
 

LPS lipopolysaccharide 

MCP-1 monocyte chemoattractant protein 1 

MLCP myosin light chain phosphatase  

MMTS methyl methanethiosulphonate 

MnSOD manganese superoxide dismutase 

mRNA messenger ribonucleic acid 

NaCl sodium chloride 

NADPH nicotinamide adenine dinucleotide phosphate 

NaVO3 sodium orthovanadate 

NFkB nuclear factor kappa-B 

nNOS  neuronal nitric oxide synthase 

NO nitric oxide 

NOS nitric oxide synthase 

O2
- superoxide anion 

ONOO- peroxynitrite 

ox-LDL oxidised low density lipoprotein 

PARP-1 Poly [ADP-ribose] polymerase 1 

PBS phosphate buffered saline 

PDE2A phosphodiesterase 2A 

PDEs phosphodiesterases 

PE phenylephrine  

PECAM-1 platelet endothelial cell adhesion molecule 1 

PGI2 prostacyclin 

PI propidium iodide 

PKA protein kinase A 

PKB / Akt  protein kinase B 

PKC protein kinase C 

PMRT protein arginine N-methyltransferase 

R3-IGF-1 human insulin-like growth factor 

RAGE receptor for AGEs 

RIP receptor interacting protein 

Stellenbosch University  https://scholar.sun.ac.za



xx | P a g e  
 

RNA ribonucleic acid 

ROS  reactive oxygen species  

SDS sodium dodecylsulfate 

Ser serine 

sGC soluble guanylyl cyclase 

SOD  superoxide dismutase 

SODD silencer of death domain 

TCEP triscarboxyethyl phosphine 

TEAB triethyl ammonium bicarbonate 

TFA trifluoroacetic acid 

Thr threonine 

TIC total ion current 

TNFR1 tumour necrosis factor receptor 1 

TNFR2 tumour necrosis factor receptor 2 

TNF-α tumor necrosis factor-alpha 

TRADD TNF receptor-associated death domain 

TRAF TNF receptor-associated factor 

TXA2 thromboxane A2 

Tyr tyrosine 

VCAM-1 vascular cell adhesion molecule 1 

VE-cadherin vascular endothelial-cadherin 

VEGF vascular endothelial growth factor 

VLDL very low density lipoprotein 

VSMCs vascular smooth muscle cells 

VVOs vesiculo-vacuolar organelles 

vWF von Willebrand factor 

WHO world health organisation  

WPBs weibel-palade bodies 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



xxi | P a g e  
 

 

Units of measurements  

° C degree celcius 

% percentage  

ng nanogram 

ml millilitre 

µl microliter 

kDa kilodalton  

rpm revolutions per minute 

µg microgram 

mm millimetre 

nM nanomolar 

mM millimolar  

M molar  

g gram 

µm micrometre 

kj kilojoule 

  

Stellenbosch University  https://scholar.sun.ac.za



xxii | P a g e  
 

Table of Contents 

Declaration .................................................................................................................................. i 

Abstract ...................................................................................................................................... ii 

Opsomming ............................................................................................................................... iv 

Acknowledgements ................................................................................................................... vi 

List of Tables ............................................................................................................................ vii 

List of figures ............................................................................................................................. ix 

List of abbreviations ............................................................................................................... xvii 

Chapter 1: Literature review ............................................................................................. 1 

1.1 Introduction ............................................................................................................... 1 

1.2 The endothelium ........................................................................................................ 6 

1.2.1 Anatomy and structure of the endothelium ........................................................ 7 

1.3 Endothelial physiology and function ....................................................................... 10 

1.3.1 Endothelium-derived factors ............................................................................. 12 

1.3.1.1 Nitric oxide (NO) ......................................................................................... 12 

1.3.1.1.1 Nitric oxide synthase (NOS) ...................................................................... 12 

1.3.1.1.2 Endothelial nitric oxide synthase (eNOS) ................................................. 16 

1.3.1.1.3 eNOS activation ........................................................................................ 16 

1.3.1.1.4 Effects of NO ............................................................................................. 19 

1.3.1.2 Endothelium hyperpolarising factor (EDHF) .................................................... 20 

1.3.1.3 Prostanoids ...................................................................................................... 21 

1.3.1.4 Endothelin-1 ..................................................................................................... 22 

1.3.1.5 Angiotensin II ................................................................................................... 23 

1.4 Pathophysiological changes in the endothelium ..................................................... 24 

1.4.1 Endothelial activation ............................................................................................. 24 

1.4.2 Endothelial dysfunction (ED) .................................................................................. 27 

Stellenbosch University  https://scholar.sun.ac.za



xxiii | P a g e  
 

1.4.2.1 Reduced NO production .................................................................................. 29 

1.4.2.3 Oxidative / Nitrosative stress ........................................................................... 29 

1.4.2.3 eNOS uncoupling ............................................................................................. 31 

1.4.2.4 Protein nitration............................................................................................... 33 

1.4.3 Atherosclerosis ................................................................................................... 33 

1.5 Risk factors associated with pathophysiological changes of the endothelium ............. 34 

1.5.1 Diabetes / Insulin resistance ................................................................................... 34 

1.5.2 Hyperlipidaemia /Hypercholesterolaemia.............................................................. 36 

1.5.3 Smoking ................................................................................................................... 36 

1.5.4 Aging ....................................................................................................................... 37 

1.5.5 Inflammation and oxidative stress ......................................................................... 38 

1.6 Harmful stimuli associated with pathophysiological changes ....................................... 40 

1.6.1 Tumour necrosis factor-alpha (TNF-α) ................................................................... 40 

1.6.2 Asymmetric dimethyl arginine (ADMA) .................................................................. 41 

1.6.3 Oxidised low density lipoprotein (ox-LDL) .............................................................. 44 

1.7 Endothelial heterogeneity ............................................................................................. 46 

1.7.1 Venous, arterial and capillary endothelium ........................................................... 48 

1.7.1.1 Venous and arterial endothelium .................................................................... 48 

1.7.1.2 Capillary endothelium ...................................................................................... 50 

1.7.2 Cardiac microvascular endothelial cells (CMECs) and aortic endothelial cells 

(AECs). .............................................................................................................................. 52 

1.8 Studying obesity as a risk factor of endothelial dysfunction ......................................... 55 

1.9 Anti-endothelial dysfunction therapy ............................................................................ 57 

1.9.1 Oleanolic acid (OA) ................................................................................................. 59 

1.10 Rationale and motivation ............................................................................................ 61 

1.11 Hypotheses .................................................................................................................. 62 

Stellenbosch University  https://scholar.sun.ac.za



xxiv | P a g e  
 

1.12 Research aims .............................................................................................................. 63 

1.12.1 In vitro studies ....................................................................................................... 63 

1.12.2 Ex vivo studies ....................................................................................................... 64 

Chapter 2: Materials and Methods.................................................................................. 65 

2.1 Cell culture studies (in vitro studies).............................................................................. 65 

2.1.1 Cardiac microvascular endothelial cells (CMECs) and aortic endothelial cells (AECs)

.......................................................................................................................................... 65 

2.1.2 Flow cytometric analyses ........................................................................................ 68 

2.1.2.1 NO measurements ........................................................................................... 70 

2.1.2.2 ROS measurements .......................................................................................... 71 

2.1.2.3 Cell viability measurements ............................................................................. 73 

2.1.3 Western blot analyses............................................................................................. 75 

2.1.4 Experimental Protocols: Endothelial injury and oleanolic acid studies .................. 78 

2.1.4.1 Induction of endothelial injury with TNF-α ..................................................... 78 

2.1.4.2 Oleanolic acid studies ...................................................................................... 78 

2.1.4.3 OA pre-treatment studies ................................................................................ 79 

2.2 Proteomic Analyses ........................................................................................................ 81 

2.2.1 Protein extraction ................................................................................................... 81 

2.2.2 Filter aided sample preparation (FASP) .................................................................. 81 

2.2.3 LC MS/MS analysis .................................................................................................. 82 

2.2.4 Data analysis ........................................................................................................... 84 

2.2.4.1 Protein Identification ....................................................................................... 84 

2.2.4.2 Label free protein quantitation and differential regulation ............................ 85 

2.2.4.3 Functional annotation analyses of proteins .................................................... 85 

2.3 Rat aortic ring isometric tension studies (ex vivo studies) ............................................ 86 

2.3.1 Aortic ring model .................................................................................................... 86 

Stellenbosch University  https://scholar.sun.ac.za



xxv | P a g e  
 

2.3.2 Animals .................................................................................................................... 86 

2.3.3 Isolation of the aortic rings ..................................................................................... 88 

2.3.4 Isometric tension measurement protocol .............................................................. 91 

2.3.5 Assessment of the effects of ex vivo OA administration on aortic ring contraction 

and relaxation .................................................................................................................. 92 

2.3.5.1 Pre-treatment protocol.................................................................................... 92 

2.3.5.2 Protocol assessing OA’s direct pro-relaxation effects ..................................... 92 

2.4 Statistical analyses ......................................................................................................... 95 

Chapter 3: Results .......................................................................................................... 96 

3.1 Cell culture studies (in vitro models): ............................................................................ 96 

3.1.1 Validation of fluorescence probe-specificity (DAF-2/DA, DHR-123 and DCF) ........ 96 

3.1.2 Baseline studies ...................................................................................................... 98 

3.1.2.1 Baseline NO levels in AECs and CMECs ............................................................ 98 

3.1.2.2 Baseline ROS levels in AECs and CMECs .......................................................... 99 

3.1.3 Endothelial injury induction: NO-production, ROS production and cell viability . 100 

3.1.3.1 Concentration-response investigations ......................................................... 100 

3.1.3.1.1 NO measurements with DAF-2/DA ......................................................... 100 

3.1.3.1.2 ROS Measurements with DHR-123 and DCF........................................... 105 

3.1.3.1.3 Necrosis measurements with PI ............................................................. 115 

3.1.4 Endothelial injury induction: Western blot analyses of signalling proteins ......... 120 

3.1.4.1 Total and phosphorylated eNOS (Ser 1177) .................................................. 120 

3.1.4.2 Total and phosphorylated PKB/Akt (Ser 473) ................................................ 122 

3.1.4.3 Heat shock protein 90 (HSP 90) expression ................................................... 124 

3.1.4.4 IKB alpha expression ...................................................................................... 125 

3.1.4.5 Nitrotyrosine expression................................................................................ 126 

3.1.5 Oleanolic acid (OA) studies ................................................................................... 127 

Stellenbosch University  https://scholar.sun.ac.za



xxvi | P a g e  
 

3.1.5.1 1 hour treatment studies ............................................................................... 127 

3.1.5.2 24 hour treatment studies ............................................................................. 133 

3.1.6 OA (40 µM) pre-treatment studies. ...................................................................... 139 

3.1.6.1 DAF-2/DA (NO production) fluorescence measurements with OA pre-

treatment ................................................................................................................... 139 

3.1.5.2 DCF (H2O2 production) fluorescence measurements with OA pre-treatment

.................................................................................................................................... 141 

3.2 Proteomics studies ....................................................................................................... 145 

3.2.1 Control, untreated AECs and CMECs .................................................................... 146 

3.2.1.1 Comparative differential protein regulation and functional annotation 

analysis: Strongly represented proteins in control, untreated AECs (compared to 

CMECs) ....................................................................................................................... 146 

3.2.1.2 Comparative differential protein regulation and functional annotation 

analysis: Strongly represented proteins in control, untreated CMECs (compared to 

AECs) .......................................................................................................................... 147 

3.2.2 TNF-α treated AECs and CMECs ............................................................................ 159 

3.2.2.1 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated AECs (compared to control, untreated AECs)

.................................................................................................................................... 159 

3.2.2.2 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated CMECs (compared to control, untreated 

CMECs) ....................................................................................................................... 163 

3.2.2.3 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated AECs compared to TNF-α treated CMECs ... 167 

3.3 Rat aortic ring isometric tension studies (ex vivo studies) .......................................... 183 

3.3.1 Biometric data ....................................................................................................... 183 

3.3.2 Baseline isometric tension studies in aortic rings from Lean and HFD (16 weeks)

........................................................................................................................................ 186 

Stellenbosch University  https://scholar.sun.ac.za



xxvii | P a g e  
 

3.3.3 Effects of ex vivo oleanolic acid (OA) administration on aortic ring contraction and 

relaxation from lean and HFD rats (16 weeks) .............................................................. 188 

3.3.3.1 OA administration (aortic rings from lean rats)............................................. 188 

3.3.3.2 OA administration (aortic rings from HFD rats) ............................................. 190 

3.3.4 Effects of ex vivo oleanolic acid (OA) administration on aortic ring contraction and 

relaxation from lean and HFD rats (24 weeks) .............................................................. 192 

3.3.4.1 OA administration (aortic rings from lean rats)............................................. 192 

3.3.4.2 OA administration (aortic rings from HFD rats) ............................................. 194 

3.3.5 Effects of direct OA administration on rat aortic rings (24 weeks) ...................... 196 

Chapter 4: Discussion ................................................................................................... 197 

4.1 Cell culture studies (in vitro models) ........................................................................... 197 

4.1.1 Summary of findings ............................................................................................. 197 

4.1.1.1 Baseline findings ............................................................................................ 197 

4.1.1.2 Endothelial injury induction findings ............................................................. 197 

4.1.1.3 Western blot analyses of signalling proteins ................................................. 199 

4.1.1.4 Oleanolic acid studies .................................................................................... 200 

4.1.2 Discussion of cell culture (in vitro models) data ................................................... 201 

4.1.2.1 Baseline findings ............................................................................................ 202 

4.1.2.2 Endothelial injury induction ........................................................................... 206 

4.1.2.3 Oleanolic acid studies .................................................................................... 217 

4.2 Proteomics ................................................................................................................... 219 

4.2.1 Endothelial cell proteomics .................................................................................. 219 

4.2.2 Large scale protein expression and regulation in control, untreated AECs and 

CMECs ............................................................................................................................ 219 

4.2.2.1 Strongly represented proteins in untreated control AECs compared to CMECs

.................................................................................................................................... 220 

Stellenbosch University  https://scholar.sun.ac.za



xxviii | P a g e  
 

4.2.2.2 Strongly represented proteins in untreated control CMECs compared to AECs

.................................................................................................................................... 223 

4.2.3 Large scale protein expression and regulation in TNF-α treated AECs and CMECs

........................................................................................................................................ 226 

4.2.3.1 Strongly represented proteins in TNF-α treated AECs (compared to control, 

untreated AECs) ......................................................................................................... 226 

4.2.3.2 Strongly represented proteins in TNF-α treated CMECs (compared to control, 

untreated CMECs) ...................................................................................................... 230 

4.2.3.3 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated AECs compared to TNF-α treated CMECs. .. 233 

4.2.3.4 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated CMECs compared to TNF-α treated AECs. .. 235 

4.3 Rat isometric tension studies (ex vivo studies)............................................................ 237 

4.3.1 Summary of findings ............................................................................................. 237 

4.3.2 Discussion of data ................................................................................................. 238 

4.3.2.1 Isometric tension studies in aortic rings from lean and HFD rats (16 week diet)

.................................................................................................................................... 238 

4.3.2.2 Effects of ex vivo oleanolic acid (OA) pre-administration on aortic ring 

contraction and relaxation from lean and HFD rats (16 and 24 week diet). ............. 239 

4.3.2.3 Effects of direct OA administration on aortic rings (24 week diet) ............... 241 

4.4 Integration of findings.................................................................................................. 242 

4.4.1 Baseline endothelial heterogeneity in AECs and CMECs ...................................... 242 

4.4.2 Heterogeneity in AEC and CMEC model of endothelial injury ............................. 244 

4.4.2.1 TNF-α signalling in AECs (compared to control, untreated AECs) ................. 246 

4.4.2.2 TNF-α signalling in CMECs (compared to control, untreated CMECs)........... 248 

4.4.2.3 NO production and eNOS signalling in TNF-α treated AECs vs. TNF-α treated 

CMECs. ....................................................................................................................... 250 

Stellenbosch University  https://scholar.sun.ac.za



xxix | P a g e  
 

4.4.2.4 ROS production in TNF-α treated AECs vs. TNF-α treated CMECs ................ 252 

4.4.2.5 Cell viability in TNF-α treated AECs vs. TNF-α treated CMECs ...................... 254 

4.4.2.6 TNF-α signalling in AECs vs. CMECs ............................................................... 254 

4.4.2.7 Modulation of endothelial injury by OA ........................................................ 256 

4.4.3. Aortic ring experiments ....................................................................................... 257 

Chapter 5: Conclusions ................................................................................................. 259 

Limitations of the current study: ....................................................................................... 265 

Outputs emanating directly or indirectly from the current study ..................................... 266 

References ................................................................................................................... 257 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



1 | P a g e  
 

Chapter 1 
 

1.1 Introduction 

Globally, under the non-communicable disease category, cardiovascular diseases are 

reported to be the leading cause of death according to the World Health Organisation (WHO 

2011b; http://www.who.int/cardiovascular_diseases/publications/atlas_cvd/en/). 

Furthermore, according to the WHO, cardiovascular diseases accounted for 30 % 

(approximately 17 million deaths) of total global deaths in 2008 (Figure 1.1) (WHO 2011a: 

http://www.who.int/nmh/publications/ncd_report2010/en/). From these statistics about 

7.3 million deaths were attributable to coronary artery disease (WHO 2011b). By the year 

2030, cardiovascular disease associated deaths are expected to rise to a staggering 23.3 

million (Mathers & Loncar 2006). In South Africa, cardiovascular diseases accounted for 

about 195 deaths per day between 1995 and 2004 (Steyn 2007). Cardiovascular disease 

related deaths are envisaged to increase by 41 % between 2000 and 2030 in the working 

age group (ages 35-64 years) in South Africa (Steyn 2007). In the Western Cape, 

cardiovascular diseases were reported to be the leading cause of death where about 1 in 4 

people died from cardiovascular diseases in the year 2000 (Figure 1.2 & 1.3) (Bradshaw et al 

2000).  

Cardiovascular disease describes a group of pathophysiological conditions affecting the 

blood vessels such as atherosclerosis and coronary artery disease, as well as affecting the 

heart such as myocardial ischaemia or ischaemic heart disease (IHD) (WHO 2011b). 

Atherosclerosis is described as the hardening of the arteries due to cholesterol and fatty 

acid build up which may lead to a blockage in the coronary artery (Mehta et al 2006). 

Myocardial Ischaemia or IHD describes a condition by which blood supply to the heart is 

diminished due to a blockage in the blood vessel, leading to oxygen deprivation and 

infarction of heart cells (cardiomyocytes) (Shimokawa & Yasuda 2008). Obesity, diabetes, 

tobacco use, hypertension and hyperlipidaemia / dyslipidaemia are documented as the top 

risk factors associated with development of cardiovascular diseases (Deaton et al 2011).  
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The endothelium, the cell layer lining the blood vessels, holds key to the development of 

atherosclerosis and eventually IHD (Michiels 2003). Introduction of risk factors such as those 

mentioned above, lead to pathophysiological changes of the endothelium that result in 

endothelial activation and dysfunction (Hunt & Jurd 1998, Hadi et al 2005). The endothelium 

shifts from a vascular homeostasis maintaining cell layer to an atherosclerotic disease-

mediating cell layer (Esper et al 2006). Endothelial activation and dysfunction represent the 

initial reversible steps towards the development of atherosclerosis (Deanfield et al 2007). 

Hence understanding endothelial physiology especially with regards to vascular bed 

specificity, including vascular bed specific endothelial cell characteristics and functions, is 

imperative in the prevention and management of atherosclerosis.  
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Figure 1.1: Global non-communicable disease related deaths in the age group of under 70 in 2008. 

Cardiovascular diseases accounted for a large proportion of non-communicable disease related 

deaths (WHO 2011a).  

  

  

Stellenbosch University  https://scholar.sun.ac.za



4 | P a g e  
 

 

 

Figure 1.2: Cardiovascular diseases as the major cause of death in the Western Cape in the year 2000 

(Bradshaw et al 2000). 
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Figure 1.3: Twenty major conditions associated with death in the Western Cape during the year 

2000. Ischaemic heart disease accounted for 12 % of all deaths (Bradshaw et al 2000). 
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1.2 The endothelium 

In the nineteenth century, Rudolph Virchow observed a cell layer inside a capillary vessel 

and referred to it as a simple membrane with flattened nuclei (Laubichler et al 2007). The 

word endothelium was invented by a Swiss anatomist Wilhelm His in 1865 (Laubichler et al 

2007). According to His, the endothelium lined the body cavities such as blood vessels, 

lymphatics and other mesothelial-lined spaces (Aird 2007a). The description of the word 

endothelium was later refined to an inner cell lining of the blood vessels and lymphatics 

(Laubichler et al 2007, Aird 2007a).  

Wilhelm His differentiated the endothelium from the epithelium, stating that subsequent to 

their development, endothelial cells assume their characteristic flattened shape, becoming 

quiescent and not significantly contributing to growth processes in the body (Laubichler et 

al 2007). For many years after its discovery, the endothelium was deemed an inactive, 

partially permeable barrier which merely served to protect the underlying tissues from their 

external environment (Mas 2009). However, over the years, this cell layer evoked a lot of 

interest in research, thus leading to ground breaking discoveries of its function on the 

vascular system in health and disease (Michiels 2003). With some authors now referring to it 

as the cellular orchestra maestro (Nachman 2012, Eliseyeva 2013), it has now been 

established that the endothelium is by no means an inactive organ.  

The endothelium is now perceived as a receptor effector organ which is able to input and 

process different types of chemical or mechanical stimuli, and elicits a response by 

producing factors appropriate for each stimulus (Esper et al 2006). In this way, the 

endothelium is able to accomplish some of its major roles such as to maintain vascular 

homeostasis, regulate vascular tone and vascular inflammation during physiological 

conditions (Eliseyeva 2013). Regulating vascular homeostasis entails keeping a constant 

balance between a vasodilatory state and a vasoconstrictory state (Esper et al 2006). During 

a vasodilatory state, factors such as nitric oxide (NO), endothelium derived hyperpolarising 

factor (EDHF) and prostacyclin (PGI2) are released by endothelial cells. All these factors are 

commonly associated with anti-oxidant, anti-inflammatory and anti-thrombotic activity 

(Mudau et al 2012). Conversely, a vasoconstrictory state is accompanied by the endothelial 

release of factors such as endothelin-1 (ET-1), angiotensin-II and thromboxane A2 (TXA2) , all 
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of which are associated with pro-oxidant, pro-inflammatory, and pro-thrombotic activity 

(Mudau et al 2012).  Via the release of these vasoactive factors, the endothelium regulates 

vasomotor tone in response to increased blood flow or shear stress in addition to 

maintaining the structural integrity of the blood vessel (Mas 2009). A diversion in this 

delicate balance favours development of endothelial dysfunction (ED) which is a 

predecessor of various life threatening cardiovascular diseases such as atherosclerosis and 

ischaemic heart disease (Strijdom & Lochner 2009). Hence the endothelium could be 

considered a gatekeeper of the vascular system during physiological conditions.  

 

1.2.1 Anatomy and structure of the endothelium 

The endothelium is a single cell layer comprised of about ten trillion cells serving as a semi 

permeable barrier between blood and underlying tissues in the entire vascular system (Ait-

Oufella et al 2010).  The endothelium contributes about 1-1.5 kg of overall body weight and 

can be spread out to cover an enormous surface area of about 4000-7000 m2 (Ait-Oufella 

2010, Galley & Webster 2004). Endothelial cells are typically thin and flat, with their length 

ranging from 25 to 50 µm, width from 10 to 15 µm and up to 5 µm in thickness (Thorin & 

Shreeve 1998, Limaye & Vadas 2006).  

Within the same species or individual segments of the blood vessels, endothelial cells may 

differ in structure, function, and antigen expression thus giving rise to the phenomenon of 

endothelial heterogeneity (Thorin & Shreeve 1998, Aird 2007a). Endothelial heterogeneity is 

influenced by the location, size and function of the host blood vessel (Thorin & Shreeve 

1998). For example, endothelial cells in high endothelial venules are plump or cuboidal 

unlike the typically flat characteristic observed in other endothelial cells across the vascular 

tree (Girard & Springer 1995). Capillary and vein derived endothelial cells are ± 0.1 µm in 

thickness and round in shape, whereas aortic endothelial cells are about 1 µm thick and 

spindle shaped (Aird 2007a, Mas 2009).  

The plasma membranes of endothelial cells are endowed with various specific receptors, 

and proteins that facilitate signal transduction, maintenance of homeostasis, inflammation 

and permeability regulation, thus preserving a non-thrombogenic surface (Simionescu et al 
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2002). Weibel-palade bodies (WPBs) are plasmalemmal vesicles exclusively found in 

endothelial cells, which store a procoagulant, von Willebrand factor (vWF) and 

proinflammatory protein, P-selectin; hence playing a role in vascular injury response (Mas 

2009). However, these vesicles are not equally distributed across the vascular tree, and they 

are not expressed in all endothelial cells (Thorin & Shreeve 1998, Aird 2007a). WPBs have 

been found to occur in high numbers in vessels that are in close proximity to the heart and 

are low in some microvessels (Thorin & Shreeve 1998). Capillary-derived endothelial cells 

have more WPBs than arteriolar-derived endothelial cells (Thorin & Shreeve 1998). The 

density of caveolae has also been found to differ in endothelial cells in different sites of the 

vascular system (Aird 2012). Caveolae are flask shaped invaginations of the cellular 

membrane which mediate signal transduction and movement of substances through the 

endothelium (transcytosis) (Aird 2012, Mas 2009). Capillary-derived endothelial cells are 

profusely supplied with caveolae, amounting to a density of up to 10 000 per cell, than 

endothelial cells from other sites such as arteries, arterioles, veins and venules (Aird 2012). 

However, this also differs according to the location in the vascular tree. For instance, 

capillary endothelium in the blood-brain barrier has significantly lower density of caveolae 

than myocardial capillary endothelium (Simionescu et al 2002). 

Endothelial cell to cell attachment is mediated by three types of intercellular junctions, 

namely, adherens junctions, tight junctions and gap junctions (Mas 2009). Adherens 

junctions are made up of transmembrane proteins, vascular endothelial cadherin (VE-

cadherin), whereas tight junctions are made up of transmembrane proteins, occludin and 

claudin-5 (Mas 2009). These structures are not merely intercellular connecting junctions, 

but are also involved in the regulation of cell growth and apoptosis (Dejana 2004). Tight 

junctions regulate paracellular transport of solutes and ions, as well as cell polarity (Dejana 

2004, Aird 2007a). Gap junctions are composed of channels referred to as connexons, which 

are made up of six transmembrane proteins, connecting the cytoplasm of adjacent cells. 

Gap junctions can either link two neighbouring endothelial cells with each other 

(homocellular junctions), or link endothelial cells to adjacent smooth muscle cells 

(heterocellular junctions) (Mas 2009). 

A layer lining the endothelium is found at the luminal surface of the vascular system (Pries 

et al 2000). This layer is referred to as the glycocalyx and has a membrane bound gel-like 
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composition of macromolecules such as proteins, glycolipids, glycoproteins and 

proteoglycans (Pries et al 2000; VanTeefflen et al 2007). The glycocalyx is coated by a much 

thicker layer of fixed plasma which can prohibit red blood cells and other larger molecular 

solutes from permeating the endothelium (Pries et al 2000). These two layers are 

collectively referred to as the endothelial surface layer (ESL) (Reitsma et al 2007). Besides 

controlling what penetrates the endothelium, this layer also regulates shear stress sensing, 

leukocyte adhesion and signalling (Reitsma et al 2007). Several studies have shown that this 

layer is altered in pathophysiological conditions such as diabetes, ischaemia / reperfusion 

and atherosclerosis (Reitsma et al 2007). Although endothelial cells have mitochondria, they 

preferentially derive their energy or adenosine triphosphate (ATP) from anaerobic 

glycolysis, and hence the major role of mitochondria in endothelial cells may be signalling, 

such as to modulate reactive oxygen species (ROS) production (Kluge et al 2013). 

Endothelial heterogeneity has been shown to influence the quantity of mitochondria across 

the vascular tree (Kluge et al 2013). For example, endothelial cells from the blood-brain 

barrier express larger numbers of mitochondria than capillaries of other vascular locations 

(Oldendorf et al 1977). 
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1.3 Endothelial physiology and function 

Under normal circumstances, the endothelium strives to maintain vascular homeostasis, 

which includes the regulation of vascular tone, vascular inflammation, leukocyte trafficking 

and blood coagulation (Strijdom & Lochner 2009). Functionally, the endothelium may 

exhibit regional specialization such that vasomotor tone is primarily regulated in the arteries 

and arterioles, leukocyte trafficking in venules whereas selective solute exchange is 

primarily regulated in the capillaries (Aird 2007a, Mas 2009).  However, regardless of the 

vascular location, the release of endothelium-derived factors is crucial for endothelial cells 

to carry out most of their physiological functions (Table 1.1).  
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Table 1.1: Summary of endothelium-derived vasoactive factors (Mudau et al 2012). 

Endothelium-derived 
factors 

Physiological effects Enzymatic source and 
mechanism of action 

 
1.Nitric Oxide (NO) 

 Potent vasodilator 

 Inhibits inflammation, VSMC 
proliferation and migration, 
platelet aggregation and 
adhesion, and leukocyte 
adhesion. 

 Regulates myocardial 
contractility. 

 Regulates cardiac metabolism. 

 Cardioprotective during 
ischaemia-reperfusion injury. 

 It is synthesised by the 
enzymes: eNOS, nNOS and 
iNOS, with eNOS being the 
major source of NO during 
physiological conditions in the 
endothelium. 

 Diffuses from endothelial cells 
to underlying VSMCs where it 
binds to an enzyme, soluble 
guanylyl cyclase, leading to a 
cascade of events that 
ultimately result in vascular 
relaxation. 

 
2. Prostacyclin (PGI2) 

 Vasodilatory agent. 

 Inhibits platelet aggregation. 

 Derived from arachidonic acid 
by enzyme cyclooxygenase-2 
(COX-2). 

 
3.Endothelium-derived 
hyperpolarising factor 
(EDHF) 

 Exerts vasolidatory effects 
particularly in small arteries of 
diameter of ≤ 300 μm. 

 Its identity is still under 
suspicion with proposed 
candidates such as potassium 
ions and, hydrogen peroxide. 

 Causes relaxation of VSMCs by 
means of membrane 
hyperpolarisation. 

 
4. Endothelin-1 (ET-1) 

 A potent vasoconstrictor.  Synthesised by endothelin-
converting enzyme. 

 Exerts its effects via two 
receptors: ETA expressed on 
endothelial cells and ETB on 
VSMCs. ETA receptors promote 
vasoconstriction, whereas ETB 

receptors promote NO 
production and ultimately 
reduction in ET-1 production. 

 
5.Thromboxane A2 (TXA2) 

 A potent vasoconstrictor.  Derived from arachidonic acid 
by enzyme COX-1. 

 
6. Angiotensin ll 

 A potent vasoconstrictor.  Synthesised by angiotensin 
converting enzyme. 

 Elicits its effects via two 
receptors: AT1 which 
promotes vasoconstriction 
and cell proliferation, and AT2 

which antagonises the effects 
of AT1.  
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1.3.1 Endothelium-derived factors 

1.3.1.1 Nitric oxide (NO) 

NO is a diatomic gas and a free radical which up until the 1980s was considered to be 

nothing more than a toxic atmospheric pollutant (Strijdom et al 2009). Its discovery as the 

endothelium-derived relaxing factor (EDRF) (Ignaro et al 1987, Hutschingson et al 1987), led 

to vast amounts of research and hence publications, revealing its dynamic role in the 

cardiovascular system. NO is endogenously produced by a family of enzymes, referred to as 

nitric oxide synthases (NOS) from an amino acid L-arginine (Andrew & Mayer 1999) . NO is 

endowed with biochemical properties that favour signalling thus leading to a wide array of 

physiological reactions (Strijdom et al 2009). For example, NO being a gas and a free radical, 

allows for easy diffusion between cells and interaction with various molecules in the body 

(Strijdom et al 2009). Furthermore, NO is extremely soluble in hydrophobic milieus 

(Rochette et al 2013).  

 

1.3.1.1.1 Nitric oxide synthase (NOS) 

NOS is an enzyme with a molecular mass which varies from 131 to 161 kDa and catalyses 

the conversion of L- arginine to NO and L-citrulline as a by-product (Bruckdofer 2005). This 

enzyme exists in three isoforms dubbed, neuronal NOS (nNOS) first isolated in neuronal 

tissues, inducible NOS (iNOS) first isolated in the macrophages and endothelial NOS (eNOS) 

first isolated in endothelial cells (Daff 2010). eNOS and nNOS are constitutively expressed 

and are calcium dependent whereas, iNOS is expressed upon a pro-inflammatory stimuli 

such as an increase in circulating inflammatory cytokines due to injury / insult, and is 

calcium independent (Fostermann & Sessa 2011). Upon induction, iNOS can produce large 

amounts of NO, in fact a 1000-fold more than eNOS and nNOS (Strijdom et al 2009). As NO 

has high affinity for superoxide anion (O2
-) (Strijdom & Lochner 2009), excess NO 

immediately reacts with O2
- producing a highly reactive nitrogen species known as 

peroxynitrite (ONOO-) (Strijdom et al 2009). Amongst other roles, nNOS-derived NO in the 

central nervous system has been reported to modulate central blood pressure (Togashi et al 

1992, Fostermann and Sessa 2011). The eNOS isoform is considered to be the major source 
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of physiological (baseline) NO production in the cardiovascular system (Fostermann & 

Munzel 2006).  

NOS enzymes are synthesized in monomeric forms (Fostermann & Munzel 2006). However, 

for optimal enzyme activity, dimerization of the two monomers is required forming a 

homodimer (Figure 1.4) (Rochette et al 2013). Co-factors such as tetrahydrobiopterin (BH4), 

nicotinamide adenine dinucleotide phosphate (NADPH), calmodulin and substrates oxygen 

and L-arginine are essential for catalytic activity of the enzyme (Fostermann & Munzel 

2006). All NOS isoforms are expressed with an N-terminal oxygenase domain that binds a 

haem prosthetic group, BH4, oxygen and L-arginine, and a C-terminal reductase domain 

which binds NADPH, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) 

(Balligand 2002). The dimeric structure of NOS is arranged in such a manner that the 

reductase domain of one dimer coordinates with the oxygenase domain of the other dimer 

(Rochette et al 2013). Homodimers comprise of a zinc thiolate cluster at the dimer frontier, 

which arises from a zinc ion that is arranged in a tetrahedral conformation to pairs of 

cysteine residues [Cys-(X)4-Cys motif], from each monomer (Fostermann & Munzel 2006, 

Raman et al 1998). This structure facilitates the binding of L-arginine and BH4 (Raman et al 

1998). BH4 may serve as an electron donor for oxygen reduction during synthesis of NO 

(Fostermann & Munzel 2006).  

NO synthesis involves the flow of electrons from NADPH through the flavins (FMN and FAD) 

to the haem (Stuehr et al 2001). Binding of calmodulin increases the movement of electrons 

to the haem (Stuehr et al 2001). For calcium dependent eNOS and iNOS, a rise in 

intracellular calcium levels is necessary for calmodulin to bind to the enzyme (Fostermann & 

Sessa 2011). However, in iNOS, calmodulin readily binds to the enzyme at low levels of 

intracellular calcium (Fostermann and Sessa 2011). Upon reaching the haem, the electrons 

reduce and activate oxygen as well as oxidising L-arginine (Daff 2010, Fostermann & Sessa 

2011). L-arginine is metabolised in two steps, it is initially hydroxylated into Nω-hydroxy-L-

arginine, which is further oxidized into L-citrulline and NO (Stuehr et al 2001, Daff 2010) 

(Figure 1.5).  
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Figure 1.4: A diagram showing the structure of the eNOS homodimer (Mudau et al 2012). 
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Figure 1.5: A depiction of the flow of electrons during catalysis of NO production. Electrons flow 

from the reductase domain through the flavins to the haem where oxygen is activated. BH4 may 

donate one electron, itself being reduced to BH3
-. Ascorbic acid may recycle BH3

- to BH4. Activation of 

oxygen leads to L-arginine hydroxylation and formation of NO. 
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1.3.1.1.2 Endothelial nitric oxide synthase (eNOS) 

eNOS as the name suggests, was initially discovered in endothelial cells, but is also 

expressed in, among others, cardiac myocytes, platelets, some neuronal tissue in the brain 

and tubular epithelial cells in the kidneys (Forstermann et al 1998). When inactive, eNOS is 

confined to caveolae where it interacts with a caveolae-derived scaffolding protein known 

as caveolin-1 (Feron et al 1998).  The eNOS-caveolin-1 association significantly diminishes 

the activity of eNOS (Feron et al 1998). In fact, caveolin-1 deficient mice have been shown 

to have increased endothelium dependent vasodilation (Frank et al 2003). Binding of 

calmodulin to eNOS in response to an intracellular rise in calcium, displaces eNOS from 

caveolin-1 into the cytoplasm thus leading to enzyme activity (Frank et al 2003). Hence, 

caveolin-1 may serve as a modulator of eNOS activity during physiological conditions (Frank 

et al 2003).  

 

1.3.1.1.3 eNOS activation 

eNOS activity is regulated by a multitude of factors such as localization to caveolae, post-

translational alteration such as phosphorylation or association with certain regulatory 

proteins such as heat shock protein 90 (HSP 90) (Takahashi & Mendelsohn 2003a). Various 

agonists such as shear stress, acetylcholine, bradykinin, insulin, oestrogen, vascular 

endothelial growth factor (VEGF) can stimulate eNOS activity via a variety of signalling 

pathways (Figure 1.6) (Kolluru et al 2010, Fostermann & Sessa 2011). Shear stress can 

activate eNOS in a calcium-independent fashion via phosphorylation of the enzyme 

(Fisslthaler et al 2000). Phosphorylation of eNOS can occur at different sites such as Serine 

(Ser) residues, Tyrosine (Tyr) residues and Threonine (Thr) residues by various kinases 

(Kolluru et al 2010). Sites such as Ser 1177/1179, Ser 617/615, and Ser 633/635 facilitate 

eNOS activity whereas sites such as Ser 116 and Thr 495 have an inhibitory effect (Figure 

1.6) (Kolluru et al 2010). Phosphorylation at site Ser 1177, for example, in response to shear 

stress, enhances the flow of electrons to the haem, and the affinity of calcium / calmodulin 

for eNOS thereby activating the enzyme (Fleming & Busse 2003). Kinases involved in eNOS 

phosphorylation include protein kinase B (PKB / Akt), calcium / calmodulin-dependent 

protein kinase II (CaMKII), AMP-activated protein kinase (AMPK), Protein kinase A (PKA), and 
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protein kinase C (PKC) (Figure 1.6) (Fleming 2010). Recruitment of kinases for eNOS 

phosphorylation may differ in accordance with the respective agonists (Fleming & Busse 

2003). For example, shear stress, oestrogen, vascular endothelial growth factor (VEGF) and 

insulin activate eNOS via phosphorylation of Ser 1177 by PKB / Akt, AMPK or PKA (Fisslthaler 

et al 2000, Balligand 2002, Kolluru et al 2010). On the other hand, the agonist bradykinin 

employs CaMKII to phosphorylate eNOS at Ser 1177 (Kolluru et al 2010).  

HSP 90 is a molecular chaperone that is involved in folding, stabilization and refolding of 

other proteins (Papapetropoulos et al 2005). In eNOS, HSP 90 takes part in the placing of the 

haem to the developing enzyme, as well as activating the enzyme (Fleming 2010).  Certain 

agonists such as shear stress, insulin, VEGF enhance the binding of HSP 90 to eNOS leading 

to eNOS activation and hence an increase in NO production (Takahashi & Mendelsohn 

2003a). HSP 90 can either increase the binding of calmodulin to eNOS or stimulate PKB / Akt 

to phosphorylate eNOS thus leading to enzyme activity (Dudzinski & Michel 2007). The latter 

has been reported to result in formation of eNOS-HSP 90-PKB / Akt complex with a 

subsequent yield in NO production (Takahashi & Mendelsohn 2003b). 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



18 | P a g e  
 

 

 

Figure 1.6: Phosphorylation sites and the kinases involved, in eNOS. eNOS activity is regulated at 

different phosphorylation sites in response to various agonists (Fleming 2010).  
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1.3.1.1.4 Effects of NO  

Physiological effects of NO are widespread, and hence the existence of the three isoforms of 

NOS in their specialized areas, producing NO in response to specific stimuli in each target 

organ (Bruckdorfer 2005). Amongst its diverse physiological signalling actions, the first 

recognised role of NO was vasodilation, though the identification of the EDRF as NO and the 

pathway through which vasodilation occurs was elucidated at a later stage (Rastaldo et al 

2007). Acetylcholine (Ach), an endogenous neurotransmitter, was reported to induce 

vasodilation in the presence of the endothelium and vasoconstriction in the absence of the 

endothelium (Furchgott & Zawadzki 1980). It was later established that Ach is an agonist 

that stimulates the endothelium to release of NO (initially recognised as the EDRF) leading 

to relaxation of vascular smooth muscle and hence vasodilation (Ignarro et al 1987).  

In smooth muscle containing blood vessels such as the arteries, NO acts in a paracrine 

manner, immediately diffusing into the underlying vascular smooth muscle cells (VSMCs) 

where it targets a protein called soluble guanylyl cyclase (sGC) (Bruckdofer 2005). NO binds 

to the haem of sGC, activating it to catalyse the conversion of guanosine triphosphate (GTP) 

to cyclic guanosine monophosphate (cGMP) (Bruckdofer 2005). cGMP activates a cGMP-

dependent protein kinase I (cGKI) which acts downstream to activate specific proteins that 

alters the smooth muscle contraction pathways (Pfeifer et al 1998). For example, by 

lowering intracellular calcium levels or increasing activity of myosin light chain phosphatase 

(MLCP), which is a phosphatase that dephosphorylates the myosin light chain, thus 

decreasing contraction, leading to relaxation of the VSMCs (Pfeifer et al 1998, Bruckdofer 

2005). The smooth muscle cell levels of cGMP are regulated by a group of proteins known as 

phosphodiesterases (PDEs) (Soderling et al 2000). PDEs, especially PDE5, degrade cGMP and 

are hence involved in vascular tone regulation (Soderling et al 2000). 

Similarly, NO accomplishes its anti-platelet aggregation role by diffusing from the 

endothelium into the platelets (Bruckdofer 2005). However, platelets have also been 

reported to produce their own NO (Gkaliagkousi et al 2007). In the platelets, NO binds to 

the haem of sGC leading to the production of cGMP, and hence activation of cGK1 

(Smolenski 2012). Platelet cGK1 phosphorylates specific downstream proteins that lead to a 
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decrease in intracellular calcium levels, and deterrence of granule secretion and platelet 

aggregation (Moro et al 1996). 

Aside from regulating vascular tone, NO possesses anti-inflammatory and anti-atherogenic 

properties (Strijdom et al 2009). NO has been reported to regulate the Nuclear factor kappa-

B (NF-kB) / IkB-alpha complex, thereby regulating inflammation (Peng et al 2005). NF-kB is a 

transcriptional factor that is involved in the inflammatory response by recruiting certain pro-

inflammatory proteins (Kempe et al 2005). In the absence of a stimulus, IkB-alpha regulates 

NF-kB activity, by binding to NF-kB and keeping it inactive (Matthwes et al 1996). Prolonged 

degradation of IkB, such as during chronic inflammatory conditions (Viatour et al 2005) 

leads to over activity of NF-kB which can result in vascular dysfunction (Kassan et al 2013). 

Studies with NO donors have shown that NO increases IkB messenger RNA expression and 

hinder NF-kB activity (Peng et al 1995, Spiecker et al 1998). In addition, NO donors have 

been found to reduce cytokine-stimulated expression of adhesion molecules, such as 

vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule (ICAM-1) 

which are markers of endothelial activation and inflammation (Khan et al 1996, De Caterina 

et al 1995) 

 

1.3.1.2 Endothelium hyperpolarising factor (EDHF) 

Vascular relaxation has been shown to persist even after blocking NO synthesis or other 

vasodilatory factors in some blood vessels, especially in the small arteries (Nakashima et al 

1993, Cowan & Cohen 1991). This has since been attributed to the hyperpolarisation of the 

vascular smooth muscle cells (VSMCs), a mechanism that has been found to induce 

relaxation independent of an increase in cyclic nucleotides such cGMP (Cohen & Vanhoutte 

1995). The factor responsible for this hyperpolarising mechanism has been termed EDHF 

(Edwards et al 1998), however, its identity still remains elusive (Coats et al 2001).  

EDHF causes hyperpolarisation of the VSMCs by opening the potassium channels, resulting 

in vasodilation (Ohashi et al 2012). Numerous substances such as potassium ions, hydrogen 

peroxide (H2O2) and epoxyeicosatrienoic acids (EETs) (a product of arachidonic acid 

metabolism), have been suggested as the candidates for EDHF (Edwards et al 1998, Matoba 
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et al 2002, Coats et al 2001); however none of them has been formally identified as EDHF 

(Stankevicus et al 2003). EDHF has been found to be of high significance in particularly small 

vessels, with its pro-vasodilatory properties being inversely proportional to the diameter of 

the vessels (Shimokawa et al 1996).  

 

1.3.1.3 Prostanoids 

Prostanoids, such as PGI2 and TXA2, are synthesised from arachidonic acid, via a reaction 

catalysed by the enzymes cyclooxygenases (COX) 1 and 2 (COX-1 for TXA2 and COX-2 for PGI2 

synthesis) (Moncada et al 1977). PGI2 and TXA2 are major pro-inflammatory mediators, and 

hence the development of COX inhibitors for treatment against pain and inflammation 

(Zivkovic et al 2013). In the vascular system, PGI2 is endothelium-derived and plays a major 

role in vasodilation and platelet anti-aggregation (Moncada et al 1977) whereas TXA2 is 

mostly derived from activated platelets and facilitates vasoconstriction and platelet 

aggregation (Kobayashi et al 2004).  

In view of the opposing roles played by these two prostanoids in the vascular system, it is 

critical that a biosynthetic balance is maintained (Minuz et al 1990). Cheng et al (2002) 

found that mice with genetic deletion of PGI2 receptors exhibit platelet hyperactivity and 

vascular proliferation upon vascular injury; however, these effects were not seen in mice 

devoid of both PGI2 and TXA2 receptors. Furthermore, a TXA2 antagonist was able to reverse 

the enhanced platelet activation in response to vascular injury. TXA2 has been found to be 

augmented in children with congenital heart disease and pulmonary vascular disorders 

(Adatia et al 1993).  

Selective COX-2 inhibition decreases PGI2 synthesis, which may result in a PGI2 / TXA2 

biosynthetic imbalance in favour of TXA2 and has been associated with thrombotic events 

and myocardial infarction (Murkhejee et al 2001). Furthermore, Zivkovic et al (2013) 

reported poor cardiac function and coronary flow with COX-2 selective inhibition in rat 

hearts, a response that was exacerbated by blocking NO synthesis. PGI2 causes vasodilation 

and inhibition of platelet aggregation via activating adenylyl cyclase to catalyse formation of 

cyclic adenosine monophosphate (cAMP). cAMP activates PKA to phosphorylate 
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downstream proteins, resulting in VSMCs relaxation and platelet aggregation (Smolenski 

2012, Sprague et al 2008).  

 

1.3.1.4 Endothelin-1 

Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor, produced continuously 

in small amounts during physiological conditions and participating in vascular tone 

regulation (Pollock et al 1995). Factors that modulate the biosynthesis of ET-1 include shear 

stress which has been reported to decrease ET-1 synthesis (Malek & Izumo 1992), a change 

in pH in the renal endothelium (Wesson et al 1998), hypoxia (Rakugi et al 1990), and 

exercise which has been shown to stimulate myocardial ET-1 synthesis (Maeda et al 1998). 

ET-1 expression is also increased by various cardiovascular risk factors such as diabetes 

mellitus (Schneider et al 2002), obesity (Weil et al 2011), and aging (Donato et al 2009). 

Enhanced expression of ET-1 is associated with cell proliferation and adhesion, thrombosis, 

inflammation (Yang et al 2004, Bohm & Pernow 2007) and atherosclerosis (Barton et al 

1998).  

ET-1 exerts its effects via two G-coupled protein receptors, namely ETA receptors expressed 

in VSMCs and ETB receptors expressed in endothelial cells and VSMCs (Pollock et al 1995). 

During physiological conditions, activation of ETA receptors lead to vasoconstriction by 

prompting calcium release from intracellular stores, whereas activation of ETB receptors 

prompt the endothelial release of NO leading to vasodilation (Pollock et al 1995). Hence ETB 

receptors may counteract the vasoconstrictive effects of ET-1 via the NO pathway during 

physiological conditions (Liu et al 2003). This is suggestive that, during conditions of 

decreased NO bioavailability such as in ED, the vasoconstrictor effects of ET-1 are enhanced. 

On the other hand, enhanced expression of ET-1 has been reported to decrease eNOS 

expression and hence NO production via a PKC mediated mechanism (Sud & Black 2009).  
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1.3.1.5 Angiotensin II 

Angiotensin II forms part of the renin-angiotensin system and is among the most potent 

endothelial derived vasoconstrictors, playing a major role in modulating blood pressure 

(Mehta & Griendling 2007). The enzyme renin cleaves angiotensinogen to angiotensin I 

which is further processed to angiotensin II by the angiotensin converting enzyme (ACE) 

(Mehta & Griendling 2007).  Receptors associated with angiotensin II functions are AT1 and 

AT2 (Schmieder et al 2007). AT1 receptors are associated with most of angiotensin II 

functions such as vasoconstriction, cell proliferation and inflammation, whereas AT2 

receptors appear to oppose the proliferative effect of AT1 receptors (Schmieder et al 2007). 

 

 

 

 

 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



24 | P a g e  
 

1.4 Pathophysiological changes in the endothelium 

1.4.1 Endothelial activation 

Although endothelial cells are constantly monitoring their external environment and 

regulating homeostasis metabolically, they are considered to be quiescent, resembling a 

non-thrombogenic smooth surface during physiological conditions (Hunt & Jurd 1998, 

Dryden et al 2012). Endothelial activation involves structural changes in the endothelium, 

which is, induced by inflammation, is characterised by endothelial expression of adhesion 

molecules such as ICAM-1, VCAM-1, and E-selectin (Hunt & Jurd 1998). Inducers of 

endothelial activation include pro-inflammatory cytokines such as tumour necrosis factor-

alpha (TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-6) (Bach et al 1997, Liao 2013).  

Endothelial activation occurs in two phases, namely, Type I endothelial cell activation and 

Type II endothelial cell activation (Figure 1.7) (Zhang et al 2010). Type I endothelial cell 

activation is a reversible step that appears directly after exposure to the stimulus and does 

not involve an increase in protein synthesis or gene transcription (Hunt & Jurd 1998). During 

this phase, endothelial retraction occurs, which may result in haemorrhage, oedema and 

increased permeability (Zhang et al 2010). The adhesion molecule, P-selectin, is expressed, 

accompanied by the release of vWF (Hunt & Jurd 1998). Type II endothelial activation is a 

late reaction and involves an increase in synthesis of proteins and transcription of genes 

involved in adhesion such as ICAM-1, VCAM-1, E-selectin, and those involved in cytokine, 

chemokine and tissue factor formation (Hunt & Jurd 1998, Zhang et al 2010). The structural 

changes associated with the Type II endothelial activation phase include endothelial cell 

protrusion into the vascular lumen, endothelial cell enlargement, enhanced vascular 

permeability and enhancement of biosynthetic organelles such as Golgi apparatus, 

endoplasmic reticulum and ribosomes (Zhang et al 2010).  

When kept under control, endothelial activation may be reversible and the cells may revert 

to their quiescent phenotype, however, uncontrolled progression can lead to endothelial 

apoptosis (Bach et al 1997). Endothelial activation should not be confused with endothelial 

injury as the two are not the same, they may however overlap (Blann 2000). During 

endothelial activation, endothelial cells undergo structural modifications with inducible new 

functions, without loss of integrity (Zhang et al 2010). This may however progress to 
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endothelial injury and consequently, dysfunction in states of chronic activation (Zhang et al 

2010).  NO has been shown to play a role in modulation of endothelial activation (Liao 

2013). De Caterina et al (1995) reported decreased cytokine induced expression of ICAM-1, 

VCAM-1, and E-selectin with NO donors. Increased production of ROS associated with 

inflammation during endothelial activation may lead to decreased NO bioavailability which 

may lead to ED (Liao 2013). Decreased NO bioavailability will result in endothelial activation 

progressing uncontrolled which will lead to endothelial cell injury and death, thus worsening 

the condition of ED (Liao 2013, Zhang et al 2010). 
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Figure 1.7: Different stages of endothelial activation (Zhang et al 2010). 
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1.4.2 Endothelial dysfunction (ED) 

NO takes centre stage in endothelial function and hence ED is described as the reduced 

bioavailability of NO which may be partly mediated by increased oxidative stress (Strijdom & 

Lochner 2009, Rubanyi & Vanhoutte 1986, Galan et al 2014). ED is characterised by loss of a 

homeostatic balance between a vasodilatory and a vasoconstrictory state in favour of the 

latter (Strijdom & Lochner 2009). The endothelium assumes a pathophysiological role, 

releasing vasocontricting, pro-oxidant, pro-coagulant, proinflammatory and prothrombotic 

factors (Esper et al 2006). The significance of ED as a subject of research lies in that it 

precedes the development of atherosclerosis and it is reversible (Figure 1.8), therefore 

prevention of ED can prevent cardiovascular diseases (Mudau et al 2012). The 

pathophysiological impact of ED extends beyond the cardiovascular system (Malyszko 

2010); it is of major importance in kidney function (Malyszko 2010), erectile function and 

brain function (Schwarts & Kloner 2011). However, for the purpose of this study, 

cardiovascular function will be the main focus.  

Pathological conditions commonly associated with ED include diabetes mellitus / insulin 

resistance, obesity, metabolic syndrome, aging, smoking, inflammation and oxidative stress 

(Hadi et al 2005). Although oxidative stress itself can be an inducing factor for ED, it also 

appears to be the common underlying cellular mechanism of ED associated with the 

pathological conditions mentioned above (Mudau et al 2012). In addition to reduced NO 

bioavailability and oxidative stress, other cellular mechanisms involved in ED include eNOS 

uncoupling and protein nitration which will be discussed below. More recently, endoplasmic 

reticulum stress was documented as another risk factor for development of ED, a process 

which is mediated via oxidative stress (Galan et al 2014). The endoplasmic reticulum is 

responsible for protein translation, folding and trafficking in a cell (Galan et al 2014). 

Endoplasmic reticulum stress can be brought on by factors such as hyperglycaemia, 

oxidative stress, hypoxia, high levels of calcium and certain chemicals (Kim et al 2008). 
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Figure 1.8: ED and progression to atherosclerosis in a nutshell (Mudau et al 2012). 
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1.4.2.1 Reduced NO production 

Reduced vascular NO bioavailability may be attributable to factors such as decreased 

expression and activity of eNOS, or enhanced NO degradation due to increased O2
- levels 

during conditions of oxidative stress (Cai & Harrison 2000). eNOS activity may be decreased 

by lack of eNOS cofactors and substrates such as BH4 and L-arginine (Yan et al 2012), 

increased interaction of eNOS-caveolin-1 protein (Davignon & Ganz 2004, Geraldes & King 

2010), reduced activity of upstream phosphorylators such as PKB / Akt at site Ser 1177 or 

increased PKC mediated phosphorylation of the inhibitory site Thr 495 (Fleming 2010). 

During pathophysiological conditions such as oxidative stress, eNOS has been shown to 

produce ROS at the expense of NO, hence further contributing to oxidative stress and ED 

(Fostermann & Munzel 2006).  

Recently a new mechanism that may lead to decreased NO production has been reported 

(Pleger et al 2008, Sen et al 2014). An elongation factor-hand type calcium binding protein 

called S100A1 has been shown to be expressed in endothelial cells and its deficiency can 

result in ED (Pleger et al 2008, Sen et al 2014). Pleger et al (2008) studied thoracic aortas 

derived from S100A1 knockout mice, and reported decreased Ach-induced relaxation as 

compared to wild type mice, whereas transfection of endothelial cells with S100A1 

significantly increased Ach-stimulated NO production. Furthermore this study validated the 

expression of the protein in different endothelial cell types such as rat cardiac endothelial 

cells, mouse aortic endothelial cells and human coronary artery endothelial cells. Sen et al 

(2014) reported decreased eNOS activity and hence loss of NO in cytokine mediated 

decrease of S100A1. S100A1 is an inositol triphosphate receptor agonist and thus stimulate 

the release of intracellular calcium (Most et al 2013). Since eNOS is a calcium dependent 

enzyme, S100A1 mediated decrease of NO production may be explained by decreased eNOS 

enzyme activity (Most et al 2013). 

 

1.4.2.3 Oxidative / Nitrosative stress 

Oxidative stress is described as the augmented production of ROS such as O2
-, ONOO- and 

H2O2, coupled with a decrease in antioxidant activity by superoxide dismutase (SOD) and 

glutathione peroxidase (Fenster et al 2003). These mechanisms ultimately lead to a scenario 
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whereby ROS overwhelms the defensive mechanisms of antioxidants (Cai & Harrison 2000, 

Esper et al 2006). Cardiovascular oxidative stress is associated with conditions such as heart 

failure (Landmesser et al 2002a), atherosclerosis, hyperlipidaemia, diabetes, hypertension, 

and smoking (Fenster et al 2003). Implications of oxidative stress on vascular function 

include impaired vasomotor function, oxidation of lipids, VSMC growth, increased 

expression of adhesion molecules, apoptosis, activation of matrix metalloproteinases and 

hence vascular remodelling (Harrison et al 2003, Griendling et al 2000).  

Cardiovascular sources of ROS include NADPH oxidase, xanthine oxidase, and uncoupled 

eNOS (Cai & Harrison 2000). Mitochondria may also contribute to oxidative stress through 

the electron transport chain (Mittal et al 2014). Recently, changes in mitochondrial 

dynamics such as fission and fusion have been implicated in oxidative stress (Kluge et al 

2013). Mitochondrial fission is a physiological process whereby the mitochondrion divides to 

form new individual smaller mitochondria in an attempt to dispose of damaged 

mitochondria (Youle & Van Der Bliek 2012). Enhanced fission has been shown to cause ED 

via oxidative stress in diabetic patients and in cultured human aortic endothelial cells (AECs) 

exposed to high glucose (Shenouda et al 2011). Makino et al (2010) reported similar 

observations in type-1 diabetic mouse derived coronary endothelial cells.  

Landmesser et al (2002a) reported a 200 % increase in xanthine oxidase which was 

associated with oxidative stress and impaired vasodilation in patients with chronic heart 

failure. Arterial vasodilation was improved with administration of xanthine oxidase 

inhibitors in smokers (Guthikonda et al 2004).  However, NADPH oxidase is reported to be 

the major source of ROS in the vascular system (Griendling et al 2000, Guzik et al 2000, 

Landmesser et al 2002b). Physiologically, cardiovascular NADPH oxidase is constitutively 

expressed and produces low amounts of O2
-
 at a relatively slow rate (Griendling et al 2000). 

Angiotensin II has been shown to play a role in NADPH oxidase activation in endothelial cells 

and VSMCs (Griendling et al 1994, Li & Shah 2003), which has been linked to increased 

oxidative stress, decreased endothelium dependent vasodilation and uncoupled eNOS in 

mice (Dikalov et al 2010). NADPH oxidase is composed of membrane bound subunits 

p22phox, gp91phox and cytosol residing subunits such as p47phox and p67phox in 

endothelial cells (Jones et al 1996, Bayraktutan et al 1998). These subunits are used as 

markers of increased NADPH oxidase expression and activity by many researchers. p22phox 
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expression has been shown to be increased with oxidative stress in human coronary arteries 

(Azumi et al 1999), in human umbilical vein endothelial cells (HUVECs) together with 

gp91phox (Gorlach et al 2000) and in rat aortas during angiotensin II mediated hypertension 

(Fukui et al 1997). On the other hand p47phox has been associated with enhanced oxidative 

stress in angiotensin II induced hypertension in mice, and in mouse AECs (Landmesser et al 

2002b). Guzik et al (2002) showed increased expression of p22phox, p47phox and p67phox 

in arteries and veins of diabetic patients. One of the major implications of increased O2
- in 

the cardiovascular system is that it reacts with NO to form another potent oxidant, ONOO- 

(Reiter et al 2000, Yokoyama 2004). O2
- has been shown to react much faster with NO than 

it does with the enzyme responsible for its clearance, namely SOD (rate constant = 6.7 × 

109 m/s with NO as compared with SOD, rate constant = 2.0 × 109 m/s) (Huang 2003). 

ONOO- has been reported to result in protein nitration, DNA damage, lipid oxidation and 

destabilising the structure of eNOS (Mihm et al 2000, Kuzkaya et al 2003). 

 

1.4.2.3 eNOS uncoupling 

eNOS uncoupling is described as the deviation of eNOS from its critical physiological role of 

producing NO to a pathophysiological role of producing O2
- (Fostermann & Munzel 2006). A 

lack of substrate L-arginine or essential cofactors such as BH4 results in eNOS uncoupling 

(Yang et al 2009). As eNOS functions optimally in producing NO as dimer, failure of the 

enzyme to dimerise has been linked to eNOS uncoupling, as eNOS monomers catalyse the 

formation O2
- in place of NO (Fostermann & Munzel 2006). Although eNOS expression might 

be expected to decrease with the development of cardiovascular risk factors, it may also 

unexpectedly increase with exposure to some risk factors (Li H et al 2002). This has been 

attributed to H2O2 which has been shown to enhance eNOS expression at transcriptional 

and post-transcriptional level in human and bovine AECs (Drummond et al 2000). Even so, 

enhanced ROS production and decreased NO are observed in the presence of cardiovascular 

risk factors (Fostermann & Munzel 2006). ONOO- has been reported to induce eNOS 

uncoupling by oxidising the cofactor BH4 or oxidising the Zn ion from the zinc thiolate 

cluster, thus destabilising the dimeric structure of eNOS (Figure 1.9) (Zou et al 2002). BH4 as 

a supplement has been shown to restore eNOS function (Yang et al 2009).   
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Figure 1.9: eNOS uncoupling. ONOO- oxidises BH4 and releases the zinc ion from the zinc thiolate 

cluster, destabilising the dimer and leading to eNOS uncoupling (Mudau et al 2012). 
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1.4.2.4 Protein nitration 

In addition to inducing eNOS uncoupling, ONOO- is known to cause nitration of proteins at 

the tyrosine residues forming nitrotyrosine (Beckman 1996). Prostacyclin synthase has also 

been shown to be a target of nitration by ONOO-, thus leading to decreased production of 

prostacyclin (Nie et al 2006). Nitrotyrosine has been used as a marker of oxidative protein 

damage in a variety of pathological conditions (Beckman 1996). Elevated nitrotyrosine has 

been found in conditions such as coronary artery disease (Shishehbor et al 2003), 

myocardial inflammation (Neil et al 1997), hyperlipidaemia (Onody et al 2003), and TNF-α 

mediated ED in type 2 diabetes (Gao et al 2007). Pretreatment with nitrotyrosine has been 

shown to impair Ach-dependent vasodilation and induce DNA damage in thoracic aortic 

rings harvested from healthy rats (Mihm et al 2000).  

 

1.4.3 Atherosclerosis 

Initiation of the atherosclerotic process begins with inflammation, which progresses 

throughout the disease (Libby et al 2002). In fact, atherosclerosis has been described as an 

inflammatory disease per se (Libby et al 2002, Ross 1999). Deposition of lipids into the 

arterial wall, as well as co-occurrence of other cardiovascular risk factors initiates 

endothelial activation, thus leading to an inflammatory response (Mannarino & Pirro 2008). 

Endothelial activation culminates in the adhesion of monocytes and subsequent infiltration 

into the intimal space, due to enhanced expression of adhesion molecules and chemokines 

such as monocyte chemoattractant protein-1 (MCP-1) (Gu et al 1998). In the intima, 

monocytes are transformed into macrophages that express receptors enabling them to 

engulf lipids and lipoproteins such as oxidised low density lipoprotein (ox-LDL) and hence 

transforming into so-called foam cells (Libby et al 2002). Activated macrophages and 

recruitment of more leukocytes into the intima lead to production of cytokines such as IL-1 

and TNF-α which further amplifies the inflammatory response (Ross 1999). VSMC 

proliferation and migration are enhanced, accompanied by increased extracellular matrix, 

all contributing to the progression of inflammation to atherosclerosis (Ross 1999). This 

cascade of events represents the initiation and progression of the atherosclerotic lesion. 
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Furthermore, advanced stages of atherosclerosis have been associated with VSMC apoptosis 

(Bennett 1999).  

1.5 Risk factors associated with pathophysiological changes of the endothelium 

1.5.1 Diabetes / Insulin resistance 

Insulin resistance can be defined as the reduced ability of the cells to utilize insulin leading 

to glucose uptake failure and hence hyperglycaemia which may ultimately lead to diabetes 

mellitus (Kim et al 2006). Insulin resistance may occur hand and in hand with conditions 

such as diabetes, obesity and dyslipidaemia, all which are risk factors of ED (Kim et al 2006). 

Both type 1 and type 2 diabetes are strong predictors of cardiovascular disease (Grundy et 

al 1999). Progression of insulin resistance to diabetes mellitus has been reported to occur 

concurrently with the progression of ED to atherosclerosis (Figure 1.10) (Hsue et al 2004). 

Oxidative stress has been shown to be the primary mediator of ED in diabetes as evidenced 

by increased NADPH expression and eNOS uncoupling (Guzik et al 2002).  

Hyperglycaemia has been shown to enhance PKC activation via oxidative stress. PKC 

phosphorylates eNOS at its inhibitory site Thr 495 leading to diminished eNOS activity 

(Geraldes & King 2010). Furthermore PKC activation also increases ET-1 production leading 

to enhanced contractility (Park et al 2000), increases adhesion molecule expression and 

cytokine release leading to an inflammatory response (Booth et al 2002). Consequences of 

the latter include increased extracellular matrix production, cellular proliferation and 

vascular permeability (Koya & king 1998). Hyperglycaemia and oxidative stress result in 

increased glycation of proteins and lipids leading to the formation of advanced glycation 

end-products (AGEs) (Goldin et al 2006). AGEs are known to reduce NOS activity and 

increase ET-1 production (Xu et al 2003, Quehenberger et al 2000). Binding of AGEs to 

receptors for AGEs (RAGE) has been shown to enhance activity of the pro-inflammatory NF-

kB, adhesion molecules such as VCAM-1, ICAM-1 and E-selectin, and cytokines such as TNF-

α, all of which lead to the amplification of the inflammatory response (Goldin et al 2006).   
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Figure 1.10: Progression of insulin resistance to type 2 diabetes parallels progression of ED to 

atherosclerosis (Hsue et al 2004). 
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1.5.2 Hyperlipidaemia /Hypercholesterolaemia  

A state of hyperlipidaemia is characterised by increased circulating triglycerides, LDL and 

very low density lipoprotein (VLDL) (Park 2009). Hyperlipidaemia has been associated with 

atherogenesis via increased oxidative stress (Yang et al 2008) and increased plasma levels of 

asymmetric dimethyl arginine (ADMA) (Böger et al 1998). ADMA may act as an eNOS 

inhibitor as it competes with L-arganine for a binding site on eNOS, leading to production of 

O2
- instead of NO (Böger et al 1998).  Cooke et al (1999) showed improved endothelial 

function in rabbits with hypercholesterolaemia following infusion of L-arginine. LDL is 

vulnerable to oxidation by ROS leading to the formation of ox-LDL, which plays a major role 

in atherogenesis, as it is engulfed by macrophages resulting in foam cell formation 

(Morawiets 2007). Through binding to the lectin-like ox-LDL receptor -1 (LOX-1), ox-LDL 

impairs endothelial function by decreasing NO (Cominacini et al 2001) and increasing ET-1 

production (Boulanger et al 1992), amplifying endothelial activation, and causing apoptosis 

of endothelial cells and VSMCs. Furthermore, hypercholesterolaemia has been reported to 

decrease eNOS activity by enhancing caveolin-1 expression and its inhibitory association 

with eNOS, thus decreasing NO production (Feron et al 1999). Dyslipidaemia and insulin 

resistance may occur in obesity which is an independent risk factor of cardiovascular 

disease. Excess white adipose tissue is associated with the release of free fatty acids and 

inflammatory cytokines such as TNF-α and IL-6, which blunt the functions of insulin and 

induce endothelial activation (Caballero 2003, Hotamisligil et al 1995).  

 

1.5.3 Smoking  

Cigarette smoking has been reported to pose a risk for the development of cardiovascular 

disease (Burke & Fitzgerald 2003). Endothelium functional changes associated with cigarette 

smoking are said to be reversible upon smoking cessation (Benowitz 2003). Passive smoking 

has also been implicated in inducing endothelial damage (Benowitz 2003). Oxidative stress 

has been linked to cigarette smoking-induced endothelial damage (Raij et al 2001). Cigarette 

smoke is a rich source of oxidants, and not only does it directly deposit free radicals into the 

circulation, but it also facilitates the endogenous production of oxidants (Burke & Fitzgerald 

2003). Cigarette smoking has been associated with an enhanced inflammatory response 
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which is improved by administration of antioxidants such as vitamin C, suggesting that 

oxidative stress is a major role player in cigarette smoking induced endothelial activation 

(Kalra et al 1994, Webber et al 1996, Lehr et al 1994). Furthermore, smokers were reported 

to have higher levels of nitrotyrosine as compared to non-smokers, which is indicative of 

increased ONOO- production (Pignatelli et al 2001). Esen et al (2004) showed decreased flow 

mediated dilation and enhanced wall thickness in brachial arteries of smokers, whereas Raij 

et al (2001) reported decreased Ach-dependent relaxation in cigarette smoke exposed 

aortic rings, which could be prevented by SOD. This is suggestive of reduced NO 

bioavailability, which may be due to O2
- scavenging in smokers. Presence of increased ox-

LDL, ONOO-, and nitrotyrosine has been confirmed in smokers (Yagamuchi et al 2005, 

Heizter et al 1996). 

 

1.5.4 Aging  

Aging is associated with development and progression of cardiovascular diseases (Herrera et 

al 2010). Furthermore, conditions such as diabetes mellitus, inflammation, hypertension 

and hypercholesterolaemia have been observed with aging, further worsening the 

cardiovascular morbidity (Herrera et al 2010). Production of ROS is increased with aging, 

and hence plays a major role in development of cardiovascular disease (Seals et al 2011). 

Endothelium dependent relaxation is also decreased with aging (Matz et al 2000), a 

response which is often observed in larger vessels such as the aorta (Brandes et al 2005, 

Seals et al 2011). Though NO may be reduced with aging, some studies have reported 

increased expression and activation of eNOS, whereas others have shown downregulated 

eNOS mRNA expression (Van Der Loo et al 2000, Seals et al 2011). These disparities may be 

reflective of vascular bed differences. On the other hand iNOS is said to increase with aging, 

which may be attributed to the presence of inflammatory cytokines in aged vessels (Herrera 

et al 2010). Indeed, iNOS is associated with the generation of large amounts of NO, which in 

combination with O2
- results in the formation of ONOO- (Yamaoka et al 2002, Lancel et al 

2004, Xia et al 2010).  

The activity of the enzyme arginase I has been shown to increase with aging (Katusic 2007). 

Arginase I or II is responsible for the conversion of L-arginine to urea and ornithine, hence it 
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may compete with eNOS for the substrate L-arginine leading to eNOS uncoupling (Berkowitz 

et al 2003). Blocking arginase I activity was reported to improve NO production (White et al 

2006, Berkowitz et al 2003). Antioxidant capacity decreases with aging in the endothelium, 

which may be attributed to tyrosine nitration of SODs, as shown by Van Der Loo et al (2000) 

in aged rat aortas where increased ONOO- resulted in nitration of manganese SOD (MnSOD).  

 

1.5.5 Inflammation and oxidative stress  

Although inflammation and oxidative stress are independent risk factors associated with 

pathophysiological changes of the endothelium, they also appear to mediate the 

development of endothelial damage induced by cardiovascular risk factors, hence playing 

central roles in cellular mechanisms of ED induction (Mudau et al 2012).  An intimate 

relationship appears to exist between inflammation and oxidative stress. Oxidative stress 

initiates a cascade of events that leads to endothelial activation and inflammation, whereas 

inflammatory cytokines and cells aggravate oxidative stress (Harrison 2012). In fact, ROS are 

considered to be a major factor in the progression of inflammation (Mittal et al 2014). 

Mitochondrial ROS have been implicated in induction of pro-inflammatory cytokines such as 

IL-1, IL-6 and TNF-α (Bulua et al 2011). During physiological conditions, vascular 

inflammation is well regulated by factors such as NO, however during pathophysiological 

conditions, inflammation progresses uncontrolled (De Caterina et al 1995). On the other 

hand, oxidation of LDL by ROS is one the major steps in initiation and progression of an 

atherosclerotic lesion, a process which further amplifies inflammation and ROS generation 

(Berliner et al 1995). Hence atherosclerosis has been deemed an inflammatory disease 

(Libby et al 2002).  

Pro-inflammatory cytokines such as TNF-α and IL-6 play a major role in inducing vascular 

inflammation and oxidative stress (Barnes & Karin 1997). The major signalling pathway 

involved in inflammation is the IkB-alpha / NF-kB pathway (Barnes & Karin 1997). The 

inhibitory interaction between IkB-alpha and NF-kB regulates and inhibits NF-kB activity 

until an introduction of certain stimuli (Barnes & Karin 1997). Upon a stimulus, NF-kB 

translocates to the nucleus, where it assumes the role of regulating the transcription of 

inflammatory genes (Virdis & Schiffrin 2003). NF-kB activation is stimulated by factors such 
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as inflammatory cytokines (TNF- α, IL-1, or IL-6), AGEs, ox-LDL and angiotensin II (Brasier 

2010) and ROS (Barnes & Karin 1997). Active NF-kB in turn facilitates transcription and 

expression of genes for adhesion molecules, chemokines and cytokines (Barnes & Karin 

1997). This will lead to enhanced endothelial activation and production of more cytokines 

including TNF-α which recruits inflammatory cells (leukocytes) to the site (Barnes & Karin 

1997). Inflammatory cells are in turn associated with ROS generation. The pro-inflammatory 

cytokine TNF-α has been shown to induce NADPH oxidase activity and O2
- generation in 

human dermal microvascular endothelial cells (Li J-M et al 2005). 

NF-kB may also play a role in induction of iNOS (Barnes & Karin 1997), in response to 

inflammatory cytokines during inflammatory conditions (MacNaul & Hutchinson 1993). 

Large amounts of NO produced by iNOS may play a role in endothelial damage during 

inflammation via ONOO- formation and consequent nitrosative stress (Beckman 1996). 

Clinically, increased circulating inflammatory markers such as C-reactive protein (CRP) are 

strongly associated the development of cardiovascular disease (Virdis & Schriffrin 2003). 

CRP has been shown to stimulate the release of IL-6 and TNF-α from monocytes, and the 

endothelial cell expression of VCAM-1, ICAM-1 and MCP-1 (Pasceri et al 2001). CRP may 

contribute to ED by decreasing eNOS expression and activity as was shown in human AECs, a 

response which was accompanied by an increase in monocyte adhesion (Venugopal et al 

2002).  
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1.6 Harmful stimuli associated with pathophysiological changes 

1.6.1 Tumour necrosis factor-alpha (TNF-α) 

TNF-α is an inflammatory cytokine that is released by a variety of cells such as macrophages, 

endothelial cells, adipocytes, fibroblasts, neuronal cells, lymphoid tissue and 

cardiomyocytes (Wajant et al 2003, Hotamisligil et al 1995, Meldrum 1998). TNF-α exerts its 

functions via two receptors, namely tumour necrosis factor recetor 1 and 2 (TNFR1 and 

TNFR2) (Wajant et al 2003). TNFR1 is constitutively expressed and is associated with 

caspase-mediated apoptosis of injured or stressed cells (Wajant et al 2003). Through binding 

to the receptor, TNF-α activates NF-kB via facilitating the phosphorylation of its inhibitor 

IkB-alpha, leading to the dissociation of IkB-alpha from the NF-kB, and consequent NF-kB 

translocation to the nucleus (Sakurai et al 2003). TNF-α may also induce an inflammatory 

response via the sphingomylinase pathway leading to production of PKC, which in turn 

induces the expression of cell adhesion molecules on endothelial cells (Schutze et al 1994). 

The importance of TNF-α in the development of cardiovascular diseases such as myocardial 

infarction, chronic heart failure, atherosclerosis and myocarditis has previously been 

established (Meldrum 1998). Increased TNF-α has been observed in cardiovascular risk 

factors such as hyperlipidaemia, diabetes and aging (Zhang H et al 2009). In the 

endothelium, TNF-α has been shown to decrease eNOS expression in human umbilical vein 

endothelial cells (Lai et al 2003), and human AECs (MacNaul & Hutchinson 1993). The 

decrease in eNOS expression was accompanied by an increase in iNOS in human AECs 

(McNaul & Hutchinson 1993). The increased iNOS expression may be via TNF-α mediated 

NFkB activation. It has been suggested that TNF-α may reduce eNOS expression through 

rapid eNOS mRNA degradation, as shown in human umbilical vein endothelial cells where 

TNF-α shortened the eNOS mRNA half-life from 48 to 3 hours (Yoshizumi et al 1993). 

Indeed, TNF-α has been associated with diminished NO dependent vasodilation in coronary 

arteries (Gao et al 2007, Picchi et al 2006, Ahmad et al 2002). Recycling of the NO synthesis 

by-product L-citrulline back to L-arginine is another factor that regulates NO synthesis and is 

mediated by the enzyme argininosuccinate synthase (ASS). TNF-α has been reported to 

downregulate ASS mRNA and protein expression in aortic endothelial cells (Goodwin et al 

2007).  
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TNF-α has also been implicated in the impairment of the EDHF mediated vasodilation in 

human omental arteries and porcine coronary arteries (Gillham et al 2008, Kessler et al 

1999). EETs are amongst the proposed candidates of EDHF and are derived from arachidonic 

acid through the action of cytochrome P450 oxygenase (Coats et al 2001). TNF-α has been 

shown to diminish cytochrome P450 protein expression in porcine aortic endothelial cells 

(Kessler et al 1999).  

In addition to decreasing eNOS expression, TNF-α may lead to ED via ROS induction (Chen et 

al 2008). Conditions such as diabetes have been linked with TNF-α mediated generation of 

ROS via increased NADPH oxidase (Gao et al 2007, Picchi et al 2006). Furthermore, AGEs-

mediated activation of NF-kB in diabetes leads to increased production of TNF-α which in 

turn increases ROS (Gao et al 2007). TNF-α has been linked with increased NADPH 

expression in rat coronary microvascular endothelial cells and human dermal microvascular 

endothelial cells (Li J-M et al 2005). Other sources of TNF-α-mediated ROS production 

include mitochondria through the electron transport chain and xanthine oxidase (Chen et al 

2008). In myocardial ischaemia / reperfusion, TNF-α has been reported to induce O2
- via 

activation of xanthine oxidase leading to ED (Zhang et al 2006). In the myocardium, TNF-α 

has been linked with contractile dysfunction and cardiomyocyte apoptosis (Meldrum 1998). 

 

1.6.2 Asymmetric dimethyl arginine (ADMA) 

ADMA has emerged as a harmful stimulus associated with the development of 

cardiovascular disease (Ito et al 1999). Increased levels of ADMA are associated with various 

cardiovascular risk factors such as diabetes mellitus, hypercholesterolaemia, hypertension 

and cigarette smoking (Cooke 2004). ADMA uncouples eNOS by acting as an L-arginine 

competitor for a binding site in eNOS, thus leading to O2
- generation (Böger et al 1998). 

Böger et al (2000) showed that ADMA can be synthesised in endothelial cells and it is 

associated with increased ROS production and expression of adhesion molecules. Levels of 

ADMA may be regulated by the balance between the ADMA synthetic enzyme, protein 

arginine N-methyltransferase (PRMT), and the ADMA degrading enzyme 

dimethylaminohydrolase (DDAH) (Cooke 2004). ADMA synthesis involves protein 

methylation of arginine residues by the action of PRMTs (Figure 1.11) (Böger et al 2000). 
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TNF-α and ox-LDL have been found to increase ADMA levels and decrease activity of DDAH 

(Ito et al 1999). Hypercholesterolaemia was also shown to be associated with diminished 

DDAH activity in rabbits (Ito et al 1999). 
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Figure 1.11: ADMA synthesis and NOS inhibition. Conditions such as oxidative stress may lead to 

enhanced ADMA synthesis by PRMTs. ADMA competively inhibits NOS, leading to NOS uncoupling 

and consequent ROS production. ADMA is degraded to dimethylamine and citrulline by the enzyme 

DDAH   (Carraro et al 2013).  

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



44 | P a g e  
 

1.6.3 Oxidised low density lipoprotein (ox-LDL) 

Ox-LDL has been shown to be a good marker of coronary artery disease and has been 

positively correlated with cardiovascular risk factors such as type 2 diabetes, obesity, 

hypercholesterolaemia and aging (Holvoet et al 2001). Ox-LDL has been implicated in major 

atherogenesis processes such as endothelial activation and dysfunction, formation of foam 

cells, and proliferation and migration of VSMCs (Pirillo et al 2013). Introduction of ox-LDL to 

human coronary endothelial cells led to the expression of VCAM-1, ICAM1, E selectin and P 

selectin via the receptor LOX-1, thus initiating an endothelial inflammatory process (Li D et 

al 2002). LOX-1 expression is low under physiological conditions, but is up-regulated by ox-

LDL, inflammatory cytokines (TNF-α, IL-1), ROS, angiotensin II, ET-1 (Pirillo et al 2013), and 

are expressed in endothelial cells (Sawamura et al 1997), macrophages and VSMCs (Figure 

1.12) (Draude et al 1999, Kataoka et al 2001).  

Interestingly, Blair et al (1999) showed that ox-LDL led to displacement of caveolin-1 and 

eNOS from caveolae to the internal membrane compartment, which compromised eNOS 

activity in porcine pulmonary artery endothelial cells. On the other hand, Liao et al (1995) 

reported decreased eNOS mRNA expression with ox-LDL treatment in human saphenous 

vein endothelial cells. Furthermore, ox-LDL has been shown to enhance arginase II activity in 

human AECs, which like arginase I, competes with eNOS for L-arginine, thus uncoupling 

eNOS (Ryoo et al 2006). Evidently ox-LDL initiates the process of endothelial activation and 

dysfunction. ET-1 has been shown to facilitate endothelial cell uptake of ox-LDL (Morawietz 

et al 2001). Li et al (2003) showed that ox-LDL via LOX-1 leads to the expression of the ACE 

gene. Furthermore, ox-LDL may result in apoptosis of endothelial cells via activation of 

caspases and downregulation of anti-apoptotic proteins (Chen et al 2004). 
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Figure 1.12: Participation of ox-LDL in atherogenesis in different cells in the vascular system. Binding 

of ox-LDL TO LOX-1 receptors in endothelial cells leads to endothelial activation, decreased 

vasorelaxation, and enhanced apoptosis. In VSMCs, ox-LDL via LOX-1 leads enhanced proliferation, 

apoptosis and foam cell formation. ox-LDL prompts foam cell formation in macrophages and platelet 

activation in platelets (Pirillo et al 2013). 
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1.7 Endothelial heterogeneity 

In 1966, Florey (1966) stated that: “now it is recognised that there are many kind of 

endothelial cells which differ from one another substantially in structure, and to some extent 

in function”. As mentioned previously, endothelial cells from different organs, or within the 

same organ, in the same species may differ in structure, function and antigenic properties 

(Thorin & Shreeve 1998). Endothelial heterogeneity can be viewed as the adaptive trait of 

the endothelium to cater to the various needs of the underlying tissues (Aird 2007a). For 

example, throughout the vascular tree, the endothelium demonstrates a remarkable 

division of labour as Aird (2006) puts it; such that the endothelium contained in smooth 

muscle containing vessels (arterial endothelium) is primarily dedicated at regulating 

vasomotor tone, postcapillary venule endothelium at mediating leukocyte trafficking and 

capillary endothelium at regulating solute exchange or modulating organ specific barrier 

needs such as in the blood brain barrier (Aird 2006). Other endothelial cell subtypes 

primarily regulate organ-specific homeostasis and function. For example endocardial 

endothelium together with the myocardial capillary endothelium in the heart regulate 

cardiomyocyte growth and function in a paracrine manner (Brustaert 2003).  

The extracellular environment and epigenetics may play a major role in determining 

mechanisms of endothelial cell heterogeneity (Aird 2006). The environmental influences 

include biomechanical forces such as shear stress, and biochemical signals such as 

hormones, growth factors, cytokines, chemokines, pH, and constituents of the extracellular 

matrix (Aird 2006). For example, arterial endothelial cells are situated in territories of 

elevated shear stress due to increased blood flow, as opposed to capillary and venous 

endothelial cells that experience low levels of shear stress (Davies 2007). However, within 

the arterial system, flow patterns may differ, with some areas experiencing an undisturbed 

laminar flow with higher shear stress, whereas other areas are exposed to a disturbed 

laminar flow with lower shear stress (Davies 2007). Hence, arterial endothelial cells in these 

two distinct regions are acclimatised to different extracellular environments, a factor which 

may play a role in phenotypic heterogeneity (Passerini et al 2005). Capillary-derived 

endothelial cells in the heart receive paracrine factors from cardiomyocytes and are 

subjected to forces of myocardial contractions whereas endothelial cells of the blood brain 

barrier receive paracrine factors from the astroglia cells (Aird 2007a). Hence, endothelial cell 
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site specific properties may be lost when endothelial cells are removed from their 

microenvironment and cultured in in vitro conditions. Cell shape, protein expression, barrier 

function, cell growth, apoptosis and leukocyte adhesion modifications may all represent 

phenotypic responses to extracellular environmental factors (Aird 2006).  

Epigenetically-induced endothelial cell heterogeneity may be mediated by deoxyribonucleic 

acid (DNA) methylation, histone modification, and chromatin remodelling (Fish et al 2005). 

It has been established that arteries are more prone to developing atherosclerosis than 

veins.  Deng et al (2006) reported increased expression of proliferative, adhesive and 

apoptotic genes in response to treatment with ox-LDL, TNF-α and IL-1 in coronary arterial 

endothelial cells compared to saphenous vein endothelial cells in culture. The fact that 

these differences were maintained in culture may be representative of the role played by 

epigenetics in endothelial heterogeneity (Aird 2007a). In another study, freshly isolated 

endothelial cells derived from post-capillary high endothelial venules in lymphoid tissue of 

tonsils was compared with the same cells that had been in culture for at least two days 

(Laccore et al 2004). The cultured cells had lost some of their site specific properties 

following two days of culture as compared to their freshly isolated counterparts, however, 

some properties were maintained (Laccore et al 2004). This is suggestive of the two-way 

role played by both microenvironment and epigenetics in these cells. 

Endothelial heterogeneity has also been observed with regards to the release of 

endothelium-derived vasoactive factors (Thorin & Shreeve 1998). Arterial endothelial cells 

exhibit greater eNOS expression than venous endothelial cells (Andries et al 1998). In live 

rats, infusion of a NOS inhibitor elicited varied responses in different vascular beds, with 

vascular resistance strongly increasing in skeletal muscle and increasing to a lesser extent in 

the cerebellum (Greenblatt et al 1993). Endothelial cells have been reported to release 

variable amounts of ET-1 in different vascular beds regardless of the vessel size (Thorin & 

Shreeve 1998). Large porcine artery derived endothelial cells were shown to release more 

ET-1 than small coronary artery derived-endothelial cells (Ohbayashi et al 1994). Rabbit 

cerebral arteries produced more ET-1 than the aorta (Thorin & Shreeve 1998), while human 

cerebral endothelium was shown to produce less ET-1 than the superficial temporal vessel 

derived-endothelial cells (Thorin et al 1997).  In sheep, pulmonary endothelium produced 

more PGI2 than endocardial or AECs (Thorin & Shreeve 1998). On the other hand, hypoxia-
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induced PGI2 production was observed in endocardial and pulmonary endothelial cells and 

not in AECs (Mebazza et al 1995).  

 

1.7.1 Venous, arterial and capillary endothelium 

1.7.1.1 Venous and arterial endothelium  

Arteries and veins are both conduit blood vessels and possess continuous non-fenestrated 

endothelium (Aird 2007b). However, arteries and veins show some variation in structure 

and function (Table 1.2 and Figure 1.13) (Aird 2007b, Dela Paz & D’Amore 2009). Arterial 

and venous endothelial cells have both been shown to express distinct genetic markers from 

the onset of vessel development, which are independent of their respective 

microenvironment influences. (Table 1.3) (Wang et al 1998). Arterial endothelial cells are 

orientated in the direction of blood flow in the regions of undisturbed laminar flow and 

possess properly developed tight junctions, a feature representative of their low 

permeability (Aird 2007b). On the other hand, venous endothelial cells are not aligned with 

the direction of blood flow and have less tight endothelial junctions, with post capillary 

venules having scantily developed endothelial tight junctions (Aird 2007b). Arterial 

endothelial cells are long and narrow, whereas venous endothelial cells are short and wide, 

with the high endothelial venules showing a plumper phenotype (Dela Paz & D’Amore 

2009). Venous endothelial cells (venules in particular) are endowed with cytoplasmic bound 

vesicles, referred to as vesiculo-vacuolar organelles (VVOs), which may be representative of 

their permeability and leukocyte trafficking role (Aird 2007a).  

During inflammatory conditions, leukocyte trafficking and permeability primarily takes place 

in the postcapillary venules (Aird 2007a, Dela Paz & D’Amore 2009). The process of 

leukocyte trafficking involves cell adhesion molecules such as E-selectin and P-selectin (Aird 

2007a). E-selectin is expressed during endothelial activation, largely in the postcapillary 

venules (Aird 2007a). P-selectin is also predominantly found in the postcapillary venules 

(Aird 2007a).  
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Table 1.2: Differences between arteries and veins (Aird 2007b, Dela Paz & D’Amore 2009). 

Arteries Veins 

Thick walls, pulsate Thin walls, do not pulsate 

Tighter endothelial cell junctions  Loose endothelial cell junctions 

Carries oxygenated blood Carries deoxygenated blood 

Some regions i.e. branching points and 
curvatures are exposed to disturbed 
laminar flow, making them susceptible to 
inflammation, coagulation and 
atherosclerosis 

High inflammatory response capacity  

More prone to atherosclerosis Rarely affected 

Conduit function Conduit function  

Have no valves Have valves 

Shear stress level at 10-40 dyne/cm2 Shear stress levels at 1-5 dyne/cm2 

 

Table 1.3: Differences in the molecular markers expressed in arterial and venous 

endothelium (Aird 2007b, Dela Paz & D’Amore 2009) 

Arterial endothelium        Venous endothelium 

 ephrinB2 
 Delta-like 4 (Dll4) 
 Activin-receptor -like kinase 1 (Alk1) 
 Endothelial PAS domain protein 1 

(EPAS1) 
 Hey1 and Hey2 
 Neuropilin 1 (NRP1) 
 Decidual protein induced by 

progesterone (Depp ) 
 VEGF 
 Notch 1, 4, and 5 
 Jagged 1 and 2 
 Connexin 40 

 EphB4 
 Neuropilin2 (NRP2) 
 COUP-TFII 
 Lefty-1 and Lefty-2 
 Tie2 
 Flt4 
 Endomucin 
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1.7.1.2 Capillary endothelium 

Capillaries are mainly involved in solute and fluid exchange between blood and the 

underlying tissue and hence capillary endothelium is specifically acclimatised to its 

underlying tissue environment, thus playing a role in maintaining of the underlying tissue 

homeostasis (Aird 2007b). In accordance with the requirements of the underlying tissues, 

capillary endothelium may be continuous and fenestrated, or continuous and non-

fenestrated, or discontinuous (Simionescu et al 2002). Continuous non-fenestrated 

endothelium resides in the vessels of the brain, heart, skin and lungs whereas continuous 

fenestrated endothelium is inherent in territories that are more involved with filtration or 

secretion such as vessels of the exocrine and endocrine glands, glomeruli, gastric and 

intestinal mucosa (Simionescu et al 2002, Aird 2007a). Discontinuous endothelium is 

characterized by larger fenestrations with no diaphragm and a scantily formed basement 

membrane and can be located in territories such as the vessels of the liver sinusoids (Aird 

2007a). Territories with reduced permeability such as the blood brain barrier are 

characterized by a continuous non-fenestrated endothelium with a reduced number of 

caveolae and increased tight junctions (Figure 1.13) (Aird 2012).  
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Figure 1.13: Endothelial cell heterogeneity in arterial, venous and capillary endothelium (Aird 

2007b). 
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1.7.2 Cardiac microvascular endothelial cells (CMECs) and aortic endothelial cells (AECs).  

CMECs and endocardial endothelial cells collectively form the cardiac endothelium (Strijdom 

& Lochner 2009), and it has been shown that the two cardiac endothelial cell types share 

many common features (Brutsaert et al 1998). Hendrickx et al (2004) compared gene 

expression in endocardial endothelial cells and AECs in culture, and reported heterogeneous 

expression of certain genes in these cell lines, which was further validated in vivo. Genes 

that were preferentially expressed in AECs included decorin which is associated with 

angiogenesis, connexin 26 which is a gap junction protein, VCAM-1 which is an adhesion 

molecule and vasopressin V1a receptor which regulates cell contraction and proliferation 

(Hendrickx et al 2004). CMECs, the focus of the current study, are in close association with 

cardiomyocytes and are hence primarily dedicated at regulating cardiomyocyte homeostasis 

and function (Brutsaert 2003). CMECs are of significance as they constitute approximately 

33 % of the total cells in the ventricular wall, and are exposed to a larger fraction of the 

myocardial muscle cells (Nishida et al 1993, Shah & MacCarthy 2000). Furthermore, it has 

been proposed that for each cardiomyocyte there is one capillary and each cardiomyocyte is 

surrounded by at least 3 CMECs (Brutsaert 2003, Hsieh et al 2006). Capillaries do not 

contain smooth muscle tissue and hence CMECs do not participate in vasodilation (Strijdom 

& Lochner 2009). However, CMECs-derived bioactive factors such as NO, ET-1 and PGI2 

diffuse into the underlying cardiomyocytes in a paracrine manner, thus influencing 

cardiomyocyte growth, contraction and rhythmicity (Figure 1.14) (Strijdom & Lochner 2009). 

Furthermore, CMECs also receive paracrine factors such NO, angiopoietin-1 and VEGF-A 

(Strijdom & Lochner 2009) (Figure 1.14).  

CMEC-derived ET-1 stimulates NO and PGI2 release via activation of ETA receptors in an 

autocrine fashion, while inducing myocardial contraction in a paracrine manner via ETB 

receptor activation on cardiomyocyte (Hsieh et al 2006). Within the cardiac endothelium, 

endothelial cell heterogeneity has been observed with endocardial endothelium showing 

more gap junctions and deeper intercellular clefts than the CMEC (Aird 2007b). The 

endocardial endothelium exhibits a high expression of eNOS which is more located in the 

golgi body than CMECs (Andries et al 1998). vWF is also more abundant in the endocardial 

endothelium compared to CMECs (Aird 2007b). 
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Figure 1.14: Paracrine communication between CMECs and cardiomyocytes. Paracrine factors 

released from CMECs regulate cardiomyocyte growth, contractile function and rhythmicity, similarly 

factors released from the cardiomyocytes regulate CMEC growth, function and activity (Strijdom & 

Lochner 2009). 
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Unlike CMECs, AECs are not in close proximity to cardiomyocytes and are more involved in 

regulation of systemic circulation (Dela Paz & D’Amore 2009). In the vascular wall, AECs lie 

adjacent to VSMCs and are hence primarily dedicated at maintaining vascular homeostasis 

(Strijdom & Lochner 2009). Owing to their location in the main muscular artery of the body, 

AECs are constantly exposed to high degrees of shear stress (Davies 2007). However arterial 

cells are more prone to developing ED (Davies 2007), especially those that lines the 

branching points or curvatures of the arteries (Aird 2006). As was reported by Deng et al 

(2006), coronary arterial endothelial cells showed genetic propensity to developing ED. In 

human AECs, Li et al (2004) showed C-reactive protein (CRP)-mediated enhanced expression 

of LOX-1, leading to increased AEC-monocyte adhesion and ox-LDL uptake. Through gene 

expression profiling studies, Brooks et al (2002) compared mRNA expression in cultured 

human AECS when exposed to high shear steady laminar flow or low non-steady, non-

unidirectional disturbed flow. They reported increased expression of pro-atherosclerotic 

genes in AECs exposed to low non-steady disturbed flow, including genes for adhesion 

molecules, chemokines and pro-inflammatory cytokines, which were downregulated upon 

exposure to high shear steady laminar flow. Furthermore, conditions of disturbed flow were 

associated with downregulation of genes encoding for antioxidants such as SOD1 and 2. The 

authors further showed that treatment with TNF-α increased monocyte adhesion on AECs 

exposed to disturbed flow as compared to AECs exposed to static conditions.  

Clearly AECs and CMECs are situated in and acclimatised to two different 

microenvironments which will have an influence on the heterogeneity between the two 

endothelial cell types. CMECs receive paracrine factors from cardiomyocytes and are 

subjected to contractions of the myocardium in vivo (Brutsaet 2003). On the other hand, 

AECs most likely receive paracrine factors from VSMCs and are subjected to factors such as 

enhanced shear stress in vivo (Strijdom & Lochner 2009), all of which will play a role in 

endothelial heterogeneity. However, whether endothelial heterogeneity between these two 

distinct cell lines is also present in vitro or in cell culture conditions is poorly investigated, 

and to the best of our knowledge, no evidence exists in the literature of studies that have 

investigated this question.  
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1.8 Studying obesity as a risk factor of endothelial dysfunction 

By 2005, approximately 1.3 billion people globally were reported to be overweight 

(Goedecke et al 2006). At that time in South Africa, over 29 % men and 56 % women were 

overweight or obese (Goedecke et al 2006). Obesity poses a major risk for the development 

of cardiovascular disease (Hubert et al 1983). Obesity often arises from a high caloric diet 

combined with a sedentary lifestyle and low basal metabolism (Goedecke et al 2006). In 

humans, obesity is characterised by a body mass index (BMI) of 30 kg/m2 and higher, and is 

associated with conditions such as dyslipidaemia, insulin resistance, type 2 diabetes, and 

metabolic syndrome (Perticone et al 2001). As discussed in the previous sections, these 

factors impact negatively on the endothelium, initiating endothelial activation and 

dysfunction, which if untreated, progresses to atherosclerosis. 

In view of the obesity burden, diet-induced obese rat models have been employed to study 

a variety of conditions such as insulin resistance, obesity and type 2 diabetes mellitus 

(Reuter 2007). The development of laboratory-based, animal models of obesity is a useful 

tool in studying the in vivo, ex vivo and in vitro implications of obesity. Our own laboratory 

has developed models of diet-induced obesity in Wistar rats, namely a high sucrose diet 

with added sugar and condensed milk, and a diet containing high fat (prepared with holsum 

cooking fat) combined with high sucrose and condensed milk (Salie et al 2014). Following a 

16 week feeding programme, these animals exhibited significant increases in body weight, 

intra-peritoneal fat, blood glucose and insulin levels, and hence insulin resistance as 

determined by the homeostatic model assessment of insulin resistance index (HOMA-IR 

index) (Huisamen et al 2013). Obesity and insulin resistance has previously been shown to 

induce endothelial dysfunction (Kim et al 2006). The high fat diet is further associated with 

development of hypertension (Huisamen et al 2013).  

Previous studies have shown that animals receiving a high fat diet developed endothelial 

dysfunction. In a study on mice fed with a high fat diet, diabetes-induced endothelial 

dysfunction was observed, which was characterised by impaired endothelium dependent 

vasodilation, increased nitrotyrosine formation (indicative of increased ONOO- production), 

and decreased expression of eNOS dimers suggesting eNOS uncoupling (Molnar et al 2005). 
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In the current study, a high fat model developed in our laboratory was employed to study 

the effects of obesity on endothelial-dependent aortic function. 
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1.9 Anti-endothelial dysfunction therapy 

ED may be modulated by a variety of interventions, including diet, exercise, pharmacological 

drugs, and the use of medicinal plant extracts. Pharmacological drugs such as statins and 

fibrates have been shown to possess eNOS stimulating properties (in addition to their 

traditional role of lowering cholesterol), hence improving NO dependent vasodilation 

(Davignon & Ganz 2004). The statin family includes drugs such as pravastatin, atorvastatin, 

simvastatin and fluvastatin. In addition to increasing eNOS activity, statins have also been 

shown to increase eNOS expression via stabilising its mRNA (Beckman and Creager 2006). 

Statins have a stimulatory effect on PKB / Akt which in turn activates eNOS (Davignon & 

Ganz 2004). Furthermore, statins may inhibit endothelial cell cytokines, chemokines, and 

adhesion molecules via modulation of NF-kB activity (Beckman and Creager 2006). Fibrates 

such as fenofibrate have been shown to induce eNOS activation and NO production via 

AMPK-induced phosphorylation at site Ser 1177 in human umbilical vein endothelial cells 

(Murakami et al 2006). Using a similar cell line, Liu et aI (2011) showed that fenofibrate was 

able to restore BH4 levels which were initially reduced by the endotoxin lipopolysaccharide, 

hence fenofibrate may restore eNOS function and diminish eNOS uncoupling. In older 

individuals fenofibrate improved endothelial function and resulted in the reduction of 

plasma levels of ox-LDL (Walker et al 2012). 

In addition to the statins and fibrates, a variety of other pharmacological agents have been 

shown to improve endothelial function. For a summary of other endothelio-protective 

agents and drugs, see Table 1.4. In addition to the development and use of traditional 

pharmacological drugs, there is a growing number of studies investigating the potential 

clinical application of non-traditional, plant-derived compounds. The putative antioxidant, 

anti-inflammatory and cardioprotective properties of many plant extracts have gained much 

interest as many societies globally have been using such extracts for healing purposes for 

centuries (Usharani et al 2013). Oleanolic acid is one such plant extract that has been 

derived from the leaves of the African Waterberry tree in the north eastern parts of South 

Africa. 
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Table 1.4: Endothelio-protective agents and their mechanisms of action (Versari et al 2008, 

Balakumar et al 2009). 

Endothelio-protective agents Mechanisms 

Nebivolol (β1-blocker) 

 

Stimulation of NOS function,  

Antioxidant mechanisms (decreases ROS 

generation). 

Carvedilol (β/α1-blocker) Antioxidant mechanisms (decreases ROS 

generation). 

Calcium channel blockers  Inhibition of calcium channels, reduces 

blood pressure. 

ACE inhibitors 

Angiotensin receptor blocker 

Antioxidant, anti-inflammatory mechanisms. 

Glitazones (insulin sensitizing agents) Inhibition of ADMA. 

Demethylasterriquinone Activates PKB / Akt. 

8-Br-cAMP Activates PKA. 

Daidzein 

17-β-estradiol 

Inhibition of caveolin-1-eNOS interaction. 
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1.9.1 Oleanolic acid (OA) 

OA is a plant derived triterpenoid that has been shown to exert a variety of beneficial 

effects and is isolated from plant species such as Syzigium Cordatum (African Waterberry 

tree) and Olea europaea (Liu et al 1995, Mapanga et al 2009, Pollier & Goosens 2012). This 

plant extract has been shown to have anti-cancer, anti-inflammatory, anti-diabetic, hepato-

protective, anti-hyperlipidaemic, and anti-oxidant properties (Liu et al 1995, Teodoro et al 

2008). Recently OA has also been shown to exert beneficial effects on the cardiovascular 

system (Senthil et al 2007, Mapanga et al 2012, Rodriguez-Rodriguez et al 2008). One study 

showed that ex vivo administration of OA resulted in NO-dependent relaxation in aortic 

rings derived from rat superior and small mesenteric arteries (Rodriguez-Rodriguez et al 

2008). Furthermore, OA enhanced phosphorylation of PKB / Akt at site Ser 473 and eNOS at 

site Ser 1177 in human umbilical vein endothelial cells (Rodriguez-Rodriguez et al 2008). OA 

has been found to protect against hyperglycaemia-mediated oxidative stress and apoptosis 

following myocardial ischaemia / reperfusion injury (Mapanga et al 2012). According to 

Senthil et al (2007), pre-treatment of rats with OA elicited protection against isoproterenol-

induced myocardial ischaemia. In VSMCs, OA was reported to induce production of PGI2 via 

upregulation of COX-2 (Martinez-Gonzalez et al 2008). OA improved vasodilation in aortic 

rings derived from spontaneously hypertensive rats and increased eNOS expression 

(Rodriguez-Rodriguez et al 2007). 

Inflammation plays a major role in mediating development of cardiovascular diseases, and 

OA has been shown to exert anti-inflammatory effects. In human umbilical vein endothelial 

cells, OA elicited protection against lipopolysaccharide (LPS)-induced expression of adhesion 

molecules, and enhanced permeability and transendothelial migration of leukocytes (Lee et 

al 2013). Furthermore, OA inhibited LPS-induced production of TNF-α and NFkB activation 

(Lee et al 2013). In rats fed a high cholesterol-diet, OA was able to lower serum levels of 

total cholesterol and triglycerides (Liu et al 2007). 

Evidently OA appears to have stimulatory effects on NO production and anti-inflammatory 

effects and may thus be beneficial to endothelial function. However chronic use and high 

doses may have detrimental effects (Xu et al 2013). Concentrations of 500 µmol / kg and 

higher were associated with hepatocyte necrosis and apoptosis, and liver dysfunction in 

Stellenbosch University  https://scholar.sun.ac.za



60 | P a g e  
 

mice (Xu et al 2013). Further studies are necessary to elucidate the cellular mechanisms of 

OA with regards to endothelial injury and vascular bed cell specificity.  
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1.10 Rationale and motivation 

As South Africa is a developing nation, morbidity and mortality due to cardiovascular 

disease are rapidly increasing, claiming lives of individuals in both the older and younger 

generations, and thus also beginning to affect the economically active population. The 

development of atherosclerosis, and by extension IHD, is highly dependent on endothelial 

function. Therefore, studies that aim to explore the function of the endothelium and 

mechanisms underlying its responses to physiological and pathophysiological stimuli are 

imperative. There is a plethora of studies on endothelial function and dysfunction, however, 

the concept of endothelial heterogeneity is rarely addressed, particularly in the in vitro 

setting. The proposed study therefore aims to bridge this apparent gap in the literature. 

Furthermore, we propose to investigate the above in endothelial cells derived from two 

distinct locations in the vascular tree, namely from the myocardial capillary network 

(CMECs) and from the aorta (AECs) respectively. CMECs are situated in close proximity to 

cardiomyocytes and are thus primarily involved with the regulation of myocardial function, 

whereas AECs are associated with the traditional role of regulating vascular homeostasis.  In 

spite of these important in vivo differences, CMECs and AECs are rarely investigated with a 

view to compare their responses to harmful stimuli, particularly to evaluate whether the in 

vivo functional differences are retained or abolished when exposed to the in vitro culture 

environment. 

The burden of obesity has risen greatly in South Africa, and its relationship with metabolic 

syndrome, type 2 diabetes and cardiovascular disease has been documented. Excess fat is 

associated with the release of factors that impact negatively on the endothelium leading to 

endothelial activation and dysfunction. The occurrence of conditions such as type 2 diabetes 

with obesity further worsens the cardiovascular morbidity. Hence an ex vivo model of 

studying endothelial function in aortic segments derived from normal weight and obese rats 

was developed and established for this study. We aimed to explore whether aortic 

segments from obese rats exhibited ED, and whether administration of OA could improve 

endothelial function.  
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1.11 Hypotheses 

A. In view of the location and functional differences between CMECs and AECs, and 

previous studies on differences in genetic propensity to atherosclerosis in different 

vascular beds, we hypothesise that AECs and CMECs will exhibit a heterogeneous 

phenotype under baseline conditions, and in response to endothelial insult as assessed 

by the measurement of NO production, cell viability and underlying cellular mechanisms. 

We furthermore hypothesize that OA will increase NO production via the activation of 

eNOS.  

 

B. In view of the negative impacts of obesity on the cardiovascular system, and the 

endothelium in particular, we hypothesize that the aortic rings derived from obese (high 

fat diet) rats will exhibit ED when compared to aortic rings from lean, age-matched rats. 

We further hypothesise that OA will improve ex vivo endothelial function, as studied by 

isometric tension measurements of aortic ring segments.  
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1.12 Research aims 

1.12.1 In vitro studies 

The first part of this study aimed to investigate and compare the cellular responses of 

endothelial cells derived from two distinct locations in the vascular tree, to both baseline 

conditions and to pathophysiological stimuli usually associated with cardiovascular risk 

factors. Data obtained from this part of the study were used to determine whether the two 

cell lines (CMECs and AECs) responded similarly, or differently to the stimuli. 

A. This was achieved as follows: 

 Establishment of optimal culture conditions for the two cell lines, namely CMECs 

and AECs. 

 Evaluation and comparison of baseline functional parameters in CMECs and AECs 

with regard to cell viability (apoptosis and necrosis), NO production and ROS 

production. 

 Induction and evaluation of endothelial cell injury by exposure to harmful stimuli. 

The stimulus TNF-α is designed to create an inflammatory microenvironment. 

Evaluation of endothelial cell injury was achieved by the measurement of cellular 

responses to TNF-α. Endpoints included necrosis, NO production, peroxynitrite 

production, ROS production and the expression and/or activation of various 

signalling proteins related to the NO, ROS and pathways. 

B. The second part of this section aimed to investigate how the two cell lines (under 

baseline, control and TNF-α stimulated conditions) responded to the administration 

of the putatively beneficial compound, namely, a plant extract derived triterpenoid: 

OA. The effects of OA were evaluated by its administration prior to TNF-α treatment 

(OA pre-treatment). Similar endpoints as listed under (A) above were measured. 

Data obtained were analysed to determine whether the two cell lines responded 

similarly or differently to the administration OA. 

C. In an attempt to explore large-scale protein expression and differential regulation 

patterns in AECs and CMECs in the presence or absence of TNF- α, proteomics 

studies were undertaken. 
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1.12.2 Ex vivo studies 

A. In this section, we aimed to measure the endothelium-dependent vasomotor responses 

of aortic rings derived from obese and lean, age-matched control rats to a phenylephrine 

and acetylcholine challenge.  

B. Furthermore, in order to establish whether the effects of the putatively beneficial 

compound, OA, in the in vitro setting translate into the ex vivo setting, the endothelium-

dependent function of aortas from high fat-diet induced obese and lean, age-matched 

control rats was investigated via isometric tension organ bath studies. 

 

 

 

 

 

 

 

 

 

 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



65 | P a g e  
 

Chapter 2 
 

Materials and methods 

2.1 Cell culture studies (in vitro studies) 

2.1.1 Cardiac microvascular endothelial cells (CMECs) and aortic endothelial cells (AECs)  

Both adult rat CMECs and AECs were purchased from VEC technologies (Rensselaer, New 

York, USA). The endothelial cell isolation protocols used by the suppliers have been 

previously described (Nishida et al 1993, Piper et al 1990).  The cells arrived in fibronectin-

coated 75 cm2 tissue culture flasks and were grown to confluency in an endothelial growth 

medium (EGM) (Clonetics EGM-2MV; Lonza, Walkerville, MD). At confluency, cells were 

evenly distributed across the surface, reached maximum growth and entered the G0 phase 

of the cell cycle at which point no further mitotic activity occurred. Endothelial cell purity 

was confirmed by the cell uptake of an endothelial cell specific fluorescent probe 1,1-

dioctadecyl-3,3,3’,3’-tetramethylindocarbocynanine perchlorate-acylated-low density 

lipoprotein (Dil-Ac-LDL) (Biomed Technlogies, Stroughton, MA). Microscopic examination of 

cells further showed a characteristic cobble stone appearance, a unique trait of endothelial 

cells in culture, further validating endothelial cell purity. For optimal endothelial cell growth 

and survival, the EGM was supplemented with 10 % foetal bovine serum (FBS) (Highveld 

Biological, RSA). The suppliers furthermore included a kit containing endothelial growth 

factors, namely vascular endothelial growth factor (VGEF), human epidermal growth factor 

(hEGF), human fibroblastic growth factor (hFGF), human insulin-like growth factor (R3-IGF-1), 

as well as the antibiotics gentamicin and amphotericin B.  Other supplements that were 

supplied in the EGM kit included ascorbic acid, hydrocortisone and an addition of heparin 

for AECs. The cells were grown at a temperature of 37° C, under atmospheric conditions of 

21 % oxygen, 5 % carbon dioxide, and 40-60 % humidity in a standard tissue culture 

incubator (NuAire, Plymouth, USA). 

Upon reaching confluency, cells were removed from the 75 cm2 flasks by addition of trypsin 

(500 BAEE units trypsin / 180 µg EDTA.4Na/ml in Dulbecco’s PBS; Life Technologies, 

Carlsbad, Carlifonia, USA). Trypsin digests the fibronectin bonds thus releasing cells from the 

Stellenbosch University  https://scholar.sun.ac.za



66 | P a g e  
 

surface of the flasks. Isolated cells obtained from each 75 cm2 flask were centrifuged at 

1000 rpm for 4 minutes, resuspended in EGM and re-seeded in five 25 cm2 tissue culture 

flasks. When grown to confluency, the flasks were trypsinized as described above, and 

passaged in a 1:2 ratio, thus giving rise to ten 25 cm2 flasks which were designated passage 

1 (P1). Half of P1 was passaged to P2 while the isolated cells from each of the remaining 

flasks were resuspended in a so-called freezing medium, transferred into cryovials and 

stored in liquid nitrogen for later use. The freezing medium was composed of 90 % FBS, 5 % 

EGM and 5 % dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Saint Louis, MO, SA).  This was 

repeated until P3 was reached and frozen away for later use (Figure 2.1). 

For experimental purposes, endothelial cells from P1, P2 or P3 were plated on 35 mm petri 

dishes.  Petri dishes were coated with gelatine-containing attachment factor (Life 

Technologies, Carlsbad, California, USA), and cells grown to confluency. Upon reaching 

confluency, cells underwent trypsinization, and were plated in a 1:2 ratio until a sufficient 

number of plates were reached for experiments. Experiments were conducted from the 

cells of the 4th to 6th generations, as these generations provided enough sample size and 

cells while still at their optimum viability and function.  
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Figure 2.1: Passaging of cells and storage in liquid nitrogen (Adapted from Genis A, PhD thesis 2014).  

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



68 | P a g e  
 

 

2.1.2 Flow cytometric analyses  

Cellular characteristics measured by flow cytometry include cell size, cell granularity and 

fluorescence intensity. In this study, flow cytometric analyses were performed on a flow 

cytometer (Becton-Dickinson FACSCalibur, Franklin Lakes, NJ) located in the Stellenbosch 

University-BD flow cytometry unit, Faculty of Medicine and Health Sciences. Analyses were 

mainly focussed on the measurement of NO and ROS production, and evaluating the 

development of cell injury (necrosis) by employing appropriate fluorescent probes. Data 

acquisition was performed by Cellquest Pro® software (Version 5.2.1) (Becton-Dickson and Co, 

San Jose, CA), and final analysis by Windows Multiple Document Interface for flow cytometry 

(WinMDI; version 2.9, Joseph Trotter, 1993-2000). All flow cytometric protocols have been 

established and previously described by Strijdom et al (2004 and 2006). A total of 5000-10000 

events were acquired for each sample. Inter-sample uniformity was maintained throughout the 

acquisition of samples, by the process of gating cell populations of the control samples 

according to their forward scatter (cell size) and their side scatter (cell granularity) (Figure 2.2). 

The gating of a sample population served to exclude cellular debris and non-cellular particles 

that could contaminate the samples, thus ensuring acquisition (and ultimately analysis) of the 

cell populations of interest. The same gate was maintained for all control and experimental 

samples during acquisition and analysis of a given experimental group. Post-acquisition analysis 

was performed by recording the mean fluorescence intensity of each experimental sample as 

determined from histograms, and calculated as a percentage of control (control adjusted to 100 

%). For the cell viability studies, the percentage necrotic cells were recorded and expressed as 

percentage of control (control adjusted to 100 %). For all flow cytometry analyses, experiments 

were repeated at least twice, and number of samples (N) ranged from 4 – 15.  
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Figure 2.2: A representative example of a forward-side scatter plot with a gate (in red) representing the 

cell population of interest. (SSC-H: side scatter, FSC-H: forward scatter). 
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2.1.2.1 NO measurements 

Intracellular NO levels were measured by flow cytometric analysis of the NO-specific 

fluorescent probe, diaminofluorescein diacetate (DAF-2/DA) (Calbiochem, San Diego, CA, USA). 

The DAF-2/DA protocol has previously been developed in our laboratory (Strijdom et al., 2004 

and 2006). When DAF-2/DA reacts with NO, the probe is oxidised to diaminofluorescein-triazol 

(DAF-2T) which emits a green fluorescence analysed in FL1-H channel.  

DAF-2/DA protocol (Figure 2.3): Whilst in culture, cells were treated with 10 µM DAF-2/DA 

dissolved in PBS and incubated for 3 hours at 37°C. After 3 hours, cells were removed from 

culture by trypsinization and resuspended in probe-free PBS for flow cytometry. For all 

experiments, absolute control samples (fluorescent probe-free) which was probe-free and a 

DAF-2/DA probe-containing samples were included to determine the auto-fluorescence or 

natural fluorescence of fluorescent probe-free cells and the DAF-2/DA fluorescence 

respectively. A significant increase in DAF-2/DA fluorescence as determined by comparing the 

absolute control and the DAF-2/DA-containing control sample confirmed sufficient DAF-/DA 

uptake by the cells, indicative of detectable baseline NO-levels in the cells. In order to validate 

the specificity of the DAF-2/DA probe, positive control samples treated with a NO donor, 

diethylammonium salt (DEA/NO) (Life Technologies, Carlsbad, California, USA) were also 

routinely included. Cells were treated with 100 µM DEA/NO 1 hour after DAF-2/DA 

administration and incubated for a further 2 hours (Figure 2.3). A representative histogram 

depicting the mean DAF-2/DA fluorescence intensity in absolute control (autofluorescence), 

DAF-2/DA-containing control, and DEA/NO-treated positive control samples respectively is 

shown in Figure 2.4. 
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2.1.2.2 ROS measurements  

Dihydrorhodamine-123 (DHR-123) and 2’,7’-dichlorofluorescein (DCF) (Sigma-Aldrich, Saint 

Louis, MO, USA) fluorescent probes were employed to measure intracellular peroxynitrite 

(ONOO-)  and H2O2 levels respectively.  

 

DHR-123 protocol (Figure 2.3): Cells were treated with 2 µM DHR-123 dissolved in PBS and 

incubated for 3 hours at 37°C. After 3 hours, the cells were removed from culture, resuspended 

in probe-free PBS and analysed flow cytometrically in the FL3-H channel. Absolute control 

(probe-free) samples were included, as described previously for the DAF-2/DA experiments. 

Samples treated with authentic peroxynitrite (Millipore, Billerica, MA, USA) were included as 

positive controls to validate the specificity of the DHR-123 probe. Authentic peroxynitrite (100 

µM) was added 1 hour after DHR-123 administration and incubated for a further 2 hours at 

37°C.  

DCF protocol (Figure 2.5): Cells were treated with 10 µM DCF dissolved in PBS and incubated 

for 1 hour at 37°C. Following the incubation period, cells were removed from culture, and 

resuspended in probe free PBS for analysis in the FL-2H channel. As with the DAF-2/DA and 

DHR-123 experiments, absolute control samples were included to distinguish between the 

autofluorescence of the cells and DCF uptake by the cells. To validate the H2O2-specificity of the 

DCF probe, H2O2 (Sigma-Aldrich, Saint Louis, MO, USA) was used as positive control. Briefly, 100 

µM H2O2 was administered to the cells 30 minutes after DCF administration and incubated for a 

further 30 minutes at 37 °C.  
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Figure 2.3: The experimental protocols for DAF-2/DA, DHR-123 incubation, and positive controls 

administrations (DEA/NO for DAF-2/DA and authentic peroxynitrite for DHR-123). 

 

Figure 2.4: A representative histogram showing the autofluorescence (grey), and DAF-2/DA fluorescence 

in control (blue) and positive control (purple) samples, measured in the FL1-H channel of the flow 

cytometer. A shift in fluorescence to the right, as demonstrated by the autofluorescence vs. control, and 

control vs. positive control, indicates increasing intracellular levels of NO. 

 

Figure 2.5: The experimental protocol for DCF incubation and positive control (H2O2).  
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2.1.2.3 Cell viability measurements 

The propidium Iodide (PI) fluorescent probe (Sigma-Aldrich, Saint Louis, MO, USA) was 

employed to measure necrosis (Krysko et al 2008). When the cell is viable and its membrane 

integrity is intact, PI is unable to penetrate the cell. However, when the cell is damaged and 

membrane integrity is compromised, the PI probe is able to enter the cell and move into the 

nucleus where it stains nuclear nucleic acids resulting in the emission of a red fluorescence. 

Cells were removed from culture by trypsinization and resuspended in 1 ml PBS, followed by 

the addition of 5 µM PI. Cells were subsequently incubated at room temperature in the dark for 

15 minutes followed by flow cytometric analysis (Figure 2.6). For analysis, PI fluorescence was 

measured in the FL-2H channel as shown in Figure 2.7. 
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Figure 2.6: The experimental protocol for PI incubation. Cells were trypsinized prior to addition of the PI 

probe, followed by 15 minutes incubation in the dark at room temperature. 

 

Figure 2.7: A representative histogram of a sample exposed to an injurious insult resulting in a high 

percentage necrotic cells as demonstrated by the high PI-uptake in the necrotic cell sub-population 

(peak on the right).  
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2.1.3 Western blot analyses 

In order to further investigate possible evidence of endothelial heterogeneity between AECs 

and CMECs (untreated control and TNF-α-treated), western blot analyses were employed to 

determine the expression and / or phosphorylation of the following proteins: eNOS, PKB / Akt, 

heat shock protein 90 (HSP 90), IkB-alpha; and expression of the marker of protein nitration, 

nitrotyrosine. The process of extracting protein from the cells entailed removing cells from 

culture by trypsinisation followed by a cell lysis protocol. Trypsinised and isolated CMECs and 

AECS were centrifuged at 1000 rpm for 4 minutes until cell pellets were obtained. Ten petri 

dishes were pooled together for each experimental sample, in order to obtain a sufficient 

protein yield. Zirconium oxide beads (0.15 mm in size) were placed on the cell pellet and  700 - 

800 µl of lysis buffer was added. The lysis buffer consisted of 20 mM Tris, 1 mM EGTA, 150 mM 

NaCl, 1 mM β-glycerophosphate, 1 mM sodium orthovanadate (NaVO3), 2.5 mM tetra-sodium 

diphosphate, 1 mM PMSF, 0.1 % sodium dodecylsulfate (SDS), 10 µg/ml aprotinin, 10 µg/ml 

leupeptin, 50 nM NaF and 1 % triton-X100. The zirconium oxide beads and lysis buffer 

containing cell pellets were subjected to homogenisation in a Bullet Blender™ (Next Advance, 

Inc., NY, USA) followed by centrifugation at 10 000 rpm for 10 minutes.  

The supernatant was analysed for protein content by means of the Bradford protein assay 

(Bradford 1976). Next, the calculated protein content was used to prepare the sample lysates, 

which were composed of the Laemnli buffer (4 % SDS, 20 % glycerol, 10 % 2-mercatoethanol, 

0.004 % bromopheno blue and 0.125 M Tris HCl), lysis buffer and the supernatant, ensuring a 

50 µg/10 µl protein content for each sample. Cell lysate proteins were then loaded on a SDS-

polyacrylamide gel and transferred onto a PVDF membrane (Immobilon™-P, from Millipore). 

Non-specific binding was eliminated by blocking with 5 % fat-free milk which was dissolved in 

Tris-buffered saline, 0.1 % tween-20 (Merck Millipore, Billerica, US).  

Membranes were probed with the following specific rabbit polyclonal primary antibodies: anti-

eNOS, anti-phospho eNOS (Ser 1177), anti-PKB / Akt, anti-phospho PKB (Ser 473), anti-heat 

shock protein 90, anti-IkB-alpha (Cell Signaling Technologies, Beverly, MA, USA), and anti-

nitrotyrosine (Santa Cruz Biotechnologies, Santa Cruz, CA, USA) (Table 2.1 and 2.2). This was 
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followed by exposing the membranes to a horseradish peroxidise-linked anti-rabbit IgG 

secondary antibody (AEC Amersham, Buckinghamshire, UK). Detection of protein bands was 

achieved by use of enhanced chemiluminescence (ECL™) (AEC Amersham, Buckinghamshire, 

UK). Densitometry (UN-SCAN-IT, Silk Scientific, Orem, UT, USA) was performed to analyse all 

western blot data. The sample size for all western blot experiments ranged from N = 3 – 4 per 

group. Western blot data were expressed as a ratio of AEC untreated control (adjusted to 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



77 | P a g e  
 

Table 2.1: Proteins measured by western blotting 

 

Table 2.2: Western blot protocols 

Antibody Size 
KDa 

% Gel Primary  
antibody dilution 

Secondary  
antibody dilution 

Exposure 
time 
(min) 

eNOS 

phospho eNOS 

140 

140 

7.5 

7.5 

1:1000 in TBS/Tween 

1:1000 in TBS/Tween 

1:4000 in 5 % milk 

1:4000 in 5 % milk 

10-20 

10-20 

PKB 

phospho PKB 

63 

63 

10 

10 

1:1000  in TBS/Tween 

1:1000 in TBS/Tween 

1:4000 in TBS/Tween 

1:4000 in 2.5 % milk 

5-10 

5-10 

HSP 90 90 10 1:1000 in TBS/Tween 1:4000 in 5 % milk 3-5 

Nitrotyrosine 90 10 1:500 in TBS/Tween 1:4000 in TBS/Tween ±1 

IkB-alpha 35 12 1:1000 in TBS/Tween 1:4000 in TBS/Tween ±1 

β-tubulin 55  1:1000 in TBS/Tween 1:4000 in 2.5 % milk 15 

Protein Role 

eNOS: 

 Total eNOS  

 Phosphorylated eNOS at Ser 1177 

Primary source of nitric oxide in endothelial cells. 

PKB / Akt:  

 Total PKB / Akt  

 Phosphorylated PKB/Akt at Ser 473 

Upstream activator of eNOS by means of 
phosphorylation. 

Heat shock protein 90 (HSP 90) Chaperone protein that mediates eNOS 
phosphorylation by PKB / Akt 

Nitrotyrosine A marker of harmful protein nitration by 
peroxyntrite. 

IkB-alpha Decreased expression of IkB-alpha was used as a 
marker of increased NFkB activity.   
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2.1.4 Experimental Protocols: Endothelial injury and oleanolic acid studies 

2.1.4.1 Induction of endothelial injury with TNF-α 

To induce endothelial cell injury, cells were exposed to treatment with the pro-

inflammatory cytokine TNF-α. First, concentration-response experiments were conducted to 

determine the optimal concentration and incubation period for injury induction. The TNF-α 

concentrations were chosen from previous studies in the literature. Confluent AECs and 

CMECs were treated with 3 different concentrations of TNF-α and incubated at 37°C for 24 

or 48 hours as follows (Figure 2.8): 

AECs: 0.5, 5 and 20 ng/ml TNF-α (24 or 48 hours). 

CMECs: 0.5, 5 and 20 ng/ml TNF-α (24 or 28 hours). 

Following the incubation periods, cells were washed with PBS and treated with DAF- 2/DA 

for NO measurements, or DHR-123 and DCF for ROS measurements or PI for necrosis 

measurements, as described earlier. Based on the results, the 20 ng/ml TNF-α for 24 hours 

treatment protocol was chosen for injury induction. 

 

2.1.4.2 Oleanolic acid studies 

OA (Sigma-Aldrich, Saint Louis, MO, USA) was dissolved in DMSO, and volume-matching 

vehicle control samples were included in all experiments (0.06 % DMSO for 10 µM OA and 

0.24 % DMSO for 40 µM OA samples). To establish the optimum concentration of OA, 

concentration-response experiments were conducted, using two different concentrations. 

Confluent AECs and CMECs were treated with 10 or 40 µM OA and incubated at 37°C for 1 

hour. After 1 hour, cells were washed with PBS and treated with DAF-2/DA probe, followed 

by flow cytometric analyses of the DAF-2/DA fluorescence. Based on the results of the 1 

hour concentration-response studies, 40 µM OA was chosen for further experiments in view 

of the potent NO-increasing properties observed at this concentration. 

Baseline studies were subsequently conducted with 40 µM OA on both AECs and CMECs to 

investigate the effects of OA with regards to NO production, ROS production and cellular 

necrosis. Briefly, confluent AECs and CMECs were treated with 40 µM OA and incubated at 
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37 °C for 1 hour or 24 hours (Figure 2.9). After the incubation periods, the following 

parameters were measured based on the protocols described earlier: 

 NO production,  

 ROS production (DCF fluorescence) or  

 Necrosis  

 

2.1.4.3 OA pre-treatment studies 

Due to its ability to increase NO production, we further investigated putative beneficial 

effects of OA on TNF-α-induced endothelial cell injury. The aim of this part of the study was 

to determine whether OA pre-treatment was able to reduce or prevent the injurious effects 

of TNF-α on the endothelial cells. This was achieved by administration of OA to the cells 

prior injury induction with TNF-α. The OA pre-treatment protocol was identical for both 

AECs and CMECs: 

Cells were pre-treated with 40 µM OA 1 hour prior to the administration of 20 ng / ml TNF-α 

for a further 24 hours at 37°C. OA remained present for the full duration (25 hours in total) 

(Figure 2.10).  

Following the 25 hour period, cells were washed with PBS and treated with: 

 DAF- 2/DA for NO measurements, or  

 DCF for ROS measurements, or  

 PI for necrosis measurements, as described above.  
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Figure 2.8: Protocols to determine the TNF-α concentration-response effects for 24 or 48 hour 

treatment durations.  

 

Figure 2.9: Protocols for baseline studies with 40 µM OA.  

 

 

Figure 2.10: OA pre-treatment protocol prior to injury induction by means of TNF-α administration 

for 24 hours. 
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2.2 Proteomic Analyses  

Analysing biological samples by proteomics provide a quantitative, comprehensive insight 

into large-scale protein expression and differential regulation patterns in samples exposed 

to experimental interventions vs. untreated controls. In this study, proteomic analyses were 

performed on both AECs and CMECs under untreated control and TNF-α treated conditions.  

 

2.2.1 Protein extraction 

Protein extraction from the various AEC and CMEC samples was performed in an identical 

fashion as described above for the western blot analyses (section 2.1.3), except that the 

lysis buffer was slightly modified by excluding triton and using 1 % SDS instead of 0.1 %. The 

experimental groups were as follows: AEC untreated control (N = 3), AEC TNF-α treated (N = 

3), CMECs untreated control (N = 3) and CMECs TNF-α treated (N = 3). A final protein yield of 

50 µg/ 10 µl was obtained for each sample. The experimental and protein extraction 

procedures were performed in our laboratory. All subsequent procedures described below 

were performed at the Centre for Proteomics and Genomics Research in Cape Town (CPGR; 

Dr Zac McDonald). 

 

2.2.2 Filter aided sample preparation (FASP)  

All reagents were analytical grade or equivalent. 200 ug of total protein from each lysate 

was placed in a 1.5 ml LoBind Eppendorf tube and reduced with 0.1 volume 50 mM 

triscarboxyethyl phosphine (TCEP; Fluka) for 1 hour at 60 oC. After protein reduction, the 

SDS concentration was diluted to 0.5 % with 8 M urea (Sigma) 100 mM triethyl ammonium 

bicarbonate (TEAB; Sigma) buffer. Reduced protein was placed on a 30 kDA MWCO 

centrifugal filter (Amicon ultra; Millipore). The centrifugal filter ensures the reduction of the 

liquid volume thereby concentrating the proteins.  Samples were concentrated down to 30 

µl by centrifugation at 13000 g. The retentate was alkylated by the addition of 100 µl 15 mM 

methyl methanethiosulphonate (MMTS; Sigma) in 8 M urea 100 mM TEAB buffer for 15 

minutes at 20 oC. Buffer was exchanged by adding 350 µl 8 M urea 100 mM TEAB buffer to 

the alkylated sample and reducing the volume to 30 µl by centrifugation at 13000 g. Buffer 
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exchange was repeated three times to ensure excess SDS was washed out. Urea 

concentration was reduced by two washes with 100 µl 100 mM TEAB, each time reducing 

the retentate volume to 30 µl by centrifugation at 13000 g. Proteins were digested by 

adding trypsin (Promega) in 100 mM TEAB to a final protein: trypsin ratio of 50:1, and then 

incubated for 18 hours at 37 oC. Peptides were collected in a new collection tube by 13000 g 

centrifugation, followed by two MilliQ H2O filter washes. Samples were dried and re-

suspended in 0.1 % trifluoroacetic acid (TFA; Sigma). 

 

2.2.3 LC MS/MS analysis 

 
Nano-RP LC MS/MS analysis was conducted with a Q-Exactive quadrupole-Orbitrap mass 

spectrometer (Thermo Fisher Scientific, USA) coupled with a Dionex ultimate 3000 nano-

HPLC system (Thermo Fisher Scientific, USA). The sample volume injected was 4 µl. The 

mobile phases consisted of solvent A (0.1 % formic acid in water) and solvent B (90 % ACN, 

10 % water, and 0.1 % formic acid). Tryptic peptides (see above FASP protocol) from each 

sample were dried under vacuum and re-solubilized in sample loading buffer (95 % water, 5 

% Acetonitrile, 0.05 % TFA). An estimated 3 µg of total peptide was loaded on a C18 trap 

column (100 µm × 20 mm × 5 µm). Chromatographic separation was performed with an 

Acclaim® PepMap100 C18 column (75 µm ×250 mm × 3 µm) (Thermo Fisher Scientific, USA). 

The gradient was delivered at 250 nl/min and consisted of a linear gradient of mobile phase 

B initiating from solvent B, 6–30 % over 90 min. The mass spectrometer was operated in 

positive ion mode with a capillary temperature of 250 °C. The applied electrospray voltage 

was 1.95 kV. In one cycle the top 10 most abundant peptides were chosen for MS / MS 

fragmentation with a dynamic exclusion of 30s. Details of data acquisition are shown in 

Table 2.3.  
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Table 2.3: Details of data acquisition 

Full Scan  

Resolution  70,000 (@ m/z 200)  

AGC target value  3e6  

Scan range  350-2000 m/z 

Maximal injection time (ms)  100  

Data-dependent MS/MS  

Resolution  17,500 (@ m/z 200)  

AGC target value  1e5  

Maximal injection time (ms)  50  

Isolation window width (Da)  3  

NCE (%)  27 

Data-dependent Settings  

Underfill ratio (%)  1 % 

Charge exclusion  Charge states 1,6-8,>8 

Peptide match  preferred  

Exclusion isotopes  on  

Dynamic exclusion (s)  30  
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2.2.4 Data analysis 

2.2.4.1 Protein Identification 

Database interrogation was performed with the MASCOT algorithm (Matrix Science, 

London, U.K.; version 2.3) and X! Tandem (version CYCLONE™) using a taxonomic filtered 

“Rattus” only uniprotKB sourced database (http://www.uniprot.org/). Search parameters 

are detailed in Table 2.4.  All identified peptides had an ion score above the Mascot peptide 

identity threshold and global false discovery rate was controlled to below 1.5 %.  A protein 

was considered identified if at least two such unique peptide matches were apparent for the 

protein.  

 

Table 2.4: Protein search parameters 

Type of search MS/MS Ion Search 

Enzyme Trypsin 

Fixed modifications Methylthio (C) 

Variable modifications Deamidated (NQ), Oxidation (M) 

Mass values Monoisotopic 

Peptide mass tolerance ± 20 ppm 

Fragment mass tolerance ± 20 mmu 

Max missed cleavages 2 

Instrument type ESI-TRAP 
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2.2.4.2 Label free protein quantitation and differential regulation  

Label free proteomic profiling was accomplished using either Scaffold software for MS / MS 

proteomics (Proteome Software, USA) or SIEVE 2.0 (Thermo Scientific, USA). Scaffold 

calculates the Spectrum Count quantitative value by normalizing spectral counts across an 

experiment. This is achieved by taking the sum of all the Total Spectrum Counts for each MS 

sample. These sums are then scaled so that they are all the same, after which Scaffold 

applies the scaling factor for each sample to each protein group and outputs a normalized 

quantitative value. SIEVE aligns chromatograms from different experimental conditions and 

then determines features in the data (m/z and retention time pairs) that differ across 

chromatograms. Significance was calculated within Scaffold or SIEVE using a standard T-test 

and results were filtered for a minimum of two peptides identified and quantified per 

protein with frames having a p-value of less than 0.05. Based on three biological replicates 

per condition a normalized fold change and a normalized p-value was calculated for each 

protein.  Proteins were considered regulated if their fold change was greater than or equal 

to 1.5 and their corresponding p-value was less than or equal to 0.05.  All protein 

quantification was normalized to total ion current (TIC). 

 

2.2.4.3 Functional annotation analyses of proteins 

Functional annotation analyses of the identified proteins in the various samples were 

performed by submitting protein lists to the functional annotation tool of DAVID (The 

Database for Annotation, Visualization and Integrated Discovery) Bioinformatics Resources 

6.7 (Huang et al 2009). The DAVID functional annotation tool allocates functionally related 

proteins from the submitted lists to specific Gene Ontology (GO) terms, and in this study, we 

were interested in the significantly represented GO terms determined by biological process. 

Biological processes with p-values < 0.05 and larger fold-enrichments (≥ 1.5) were of 

particular interest when interpreting the functional annotation data.  
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2.3 Rat aortic ring isometric tension studies (ex vivo studies) 

2.3.1 Aortic ring model 

Endothelium-dependent vascular function was studied in thoracic aortic ring segments from 

high fat diet (HFD)-induced obese and age-matched lean, control male Wistar rats. In 

addition to investigating the effects of the high fat diet on aortic function, we also explored 

the short-term effects of ex vivo administered OA on the aortic rings. The isometric tension 

system consisted of a tissue-organ bath (AD Instruments, Bella Vista, New South Wales, 

Australia), connected to a 0 – 25 g force transducer (Figure 2.11). The organ bath system has 

a stainless steel stationery hook, whereas the transducer has a stainless steel hook attached 

to the transducer by a free flowing string, for tension adjustment. The aortic rings were 

mounted onto the two hooks as described in more detail below. Data were acquired via a 

PowerLab™ data acquisition amplifier (AD Instruments), and analysed with LabChart™ Pro 7 

(version 7.3.1) data capturing software (AD Instruments).  

 

2.3.2 Animals  

For the animal studies, ethics clearance was obtained from the Research Ethics Committee 

for Animal Care and Use, Stellenbosch University (Ethics number: SU-ACUM11-00002). The 

animals were supplied by and housed in the Animal Research Facility (Faculty of Medicine 

and Helath Sciences, Stellenbosch University), and they were given food and water ad 

libitum. Animals were housed according to the revised guidelines of the South African 

National Standard for the care and use of Animals for Scientific Purposes (South African 

Bureau of Standards, SANS 10386, 2008). Male Wistar rats (weighing  250 g) were 

randomly divided in two groups, namely, the lean, control group (fed normal rat chow) and 

the HFD group (fed rat chow with added condensed milk and Holsum™ cooking fat). Rats 

remained on the feeding program for 16 or 24 weeks after which they were sacrificed and 

experiments commenced. The composition of the diets is shown in Table 2.5.  
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Figure 2.11: The tissue organ bath system (Adapted from Loubser DJ, MSc thesis 2014). 

 

Table 2.5: Composition of the HFD and control diets. 

 Lean, Control HFD 

Energy (kj / 100 g) 1 272 1 354 

Total fat (g / 100 g) 4.8 11.5 

Saturated fat (g / 100 g) 0.9 7.6 

Cholesterol (mg / 100 g) 2.2 13 

% protein 17.1 8.3 

% carbohydrate 34.6 42 

Sucrose (g / 100 g) 5.3 20.4 
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2.3.3 Isolation of the aortic rings 

Rats were anaesthetised through intraperitoneal injection of 160 mg/kg pentobarbital. 

Upon loss of consciousness, rats were dissected by making an incision on the ventral side 

just below the thoracic region, moving from the left to the right lateral side (Figure 2.12). 

The diaphragm was subsequently cut open, thus revealing the thoracic cavity. The rib cage 

was cut at the lateral sides in a cranial direction (Figure 2.12), leaving the thoracic organs 

exposed. The heart and other thoracic organs (lungs, trachea and oesophagus) were all 

removed, thus exposing the aorta. The thoracic aorta was excised by dissecting at the lower 

region of the aorta just above the diaphragm and superiorly at a region just distal to the 

aortic arch. The aorta was subsequently placed in a cold Krebs-Henselheit (KH) buffer made 

up of 119.0 mM NaCl, 25.0 mM NaHCO3, 4.75 mM KCl, 1.2 mM KH2PO4, 0.6 mM 

MgSO4.7H2O, 0.6 mM Na2SO4, 1.25 mM CaCl2.H2O and 10.0 mM glucose in distilled water 

(Figure 2.13).  The aorta was cleaned by removing the excess connective tissue and 

perivascular fat, and subsequently cut into  4 mm rings, which were mounted on the 

tissue-organ bath system.  

The aortic rings were mounted by carefully sliding them over the two hooks from the 

transducer and the organ bath, where after the mounted rings were lowered into the organ 

bath filled with 25 ml KH buffer (Figure 2.14). The organ bath was kept at 37°C and gassed 

with 95 % oxygen and 5 % carbon dioxide. The ring was stabilised at 1.5 g tension for 30 

minutes with KH buffer being changed every 10 minutes. About 4 – 9 aortic rings per group 

(N = 4 – 9 per group) were used for all experiments. 
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Figure 2.12: Schematic representation of the incisions made for the removal of the aorta (Adapted 

from Loubser DJ, MSc thesis 2014). 

 

                                 

Figure 2.13: The excised aorta placed on cold Krebs-Henseleit buffer and cleaned of excess fat and 

connective tissue (Adapted from Loubser DJ, MSc thesis 2014).  

 

 

Stellenbosch University  https://scholar.sun.ac.za



90 | P a g e  
 

 

Figure 2.14: A 4 mm aortic ring mounted on two stainless steel hooks and lowered into the organ 

bath (Adapted from Loubser DJ, MSc thesis 2014).                                        
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2.3.4 Isometric tension measurement protocol  

Following the 30 minutes stabilisation, the first contraction / relaxation measurements were 

performed to determine the endothelial functionality of the aortic ring. The first contraction 

was achieved by addition of a 100 nM phenylephrine (PE) bolus (Figure 2.15). PE is a 

selective α1-adrenergic receptor agonist which results in smooth muscle contraction. 

Following PE addition, the aortic ring was allowed to contract until the tension readings 

reached a plateau. A single administration of 10 µM Ach followed, causing the aortic ring to 

undergo endothelium-dependent, NO-induced relaxation, with the relaxation readings 

allowed to reach their maximum values (Figure 2.15). Relaxation was expressed as the 

percentage of the maximum PE-induced contraction. Aortic rings achieving relaxation of ≥ 

60 % were accepted as viable and included for the rest of the isometric tension experiment. 

Conversely, aortic rings not able to relax by more than 60 % of maximum PE-induced 

contraction were discarded and assumed to be injured by the excision and / or mounting 

procedure.  

After the first contraction / relaxation, the KH buffer was rinsed out and replaced with fresh 

buffer. The aortic ring was subsequently stabilised for another 30 minutes at 1.5 g tension 

with buffer changes every 10 minutes. After the stabilisation period, the rings were 

subjected to a cumulative contraction and cumulative relaxation protocol. PE was 

administered in a cumulative fashion in order to obtain final concentrations of 100 nM, 300 

nM, 500 nM, 800 nM and 1 uM respectively after each addition (Figure 2.15). Once 

maximum contraction was reached after the final PE administration (total final 

concentration: 1 µM), cumulative concentrations of Ach were administered in order to 

obtain final concentrations of 30 nM, 100 nM, 300 nM, 1 uM and 10 uM respectively after 

each addition (Figure 2.15), thus inducing relaxation.   
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2.3.5 Assessment of the effects of ex vivo OA administration on aortic ring contraction and 

relaxation 

The effects of ex vivo OA administration on the contraction and relaxation of aortic rings 

were investigated via two different protocols: 

2.3.5.1 Pre-treatment protocol 

To investigate whether OA pre-treatment would affect aortic ring contraction and 

relaxation, a single administration of OA (40 µM) was given after second 30 minutes 

stabilization period (baseline tension: 1.5 g), prior to PE-induced cumulative contractions. 

The OA was allowed to infuse for 15 minutes in the organ bath. The baseline tension 

remained stable at 1.5 g upon addition of OA and remained stable for the rest of the 15 

minutes (Figure 2.16). After 15 minutes, the OA was not washed out, and cumulative PE-

induced contraction followed by Ach-induced relaxation was subsequently performed as 

described earlier.  

 

2.3.5.2 Protocol assessing OA’s direct pro-relaxation effects 

To investigate whether OA was able to induce direct pro-relaxation effects, OA was 

administered cumulatively following pre-contraction with PE. Following the second 30 

minute stabilisation, cumulative PE-induced contraction was performed as per the 

previously described protocol, followed by cumulative additions of OA at 10 µM, 10 µM and 

20 µM (total final concentration: 40 µM).    
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Figure 2.15: A representative recording obtained from the LabChart pro software showing the 

standard isometric tension protocol. A = first stabilization, B = pre-contraction with PE and relaxation 

with Ach to determine functionality of the ring, C = second stabilisation, D = cumulative contraction 

with PE, and E = cumulative relaxation with Ach. 
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Figure 2.16: A representative recording obtained from the LabChart pro software showing the OA 

pre-treatment protocol. Pre-treatment with 40 µM OA 15 minutes prior to cumulative contraction / 

relaxation shown by the arrow. 
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2.4 Statistical analyses 

All data were analysed by Graph Pad Prism® version 5.01 software. Student’s t-test, one-

way ANOVA (with Bonferroni post-hoc test) or two-way ANOVA analyses were applied 

where appropriate. Data are expressed as mean ± SEM and were considered statistically 

significant if displaying a p-value of < 0.05.  
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Chapter 3 

Results 

3.1 Cell culture studies (in vitro models): 

3.1.1 Validation of fluorescence probe-specificity (DAF-2/DA, DHR-123 and DCF) 

In order to validate the NO-specificity of the DAF-2/DA fluorescent probe, the NO-donor, 

DEA/NO, was administered to CMECs as a positive control (see experimental protocol: 

Chapter 2, Section 2.1.2.1). Treatment of cells with 100 µM DEA/NO significantly increased 

DAF-2/DA fluorescence (DEA/NO: 130.1 ± 3.4 %) vs. control (adjusted to 100%), p < 0.05, N = 

12 (Figure 3.1 A).  

The specificity of the ROS fluorescent probes, DHR-123 and DCF, was validated in CMECs 

with authentic peroxynitrite (ONOO-) and H2O2 respectively (see experimental protocols: 

Chapter 2, Section 2.1.2.2). Treatment with 100 µM authentic ONOO- significantly increased 

DHR-123 fluorescence (182.9 ± 2.8 %, p < 0.05, N = 4) vs. 100 % control (Figure 3.1 B). 

Treatment with H2O2 (100 µM) resulted in  3-fold increase in DCF fluorescence (383 ± 36.68 

%) vs. 100 % Control, p < 0.05, N = 4-8 (Figure 3.1. B). 
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Figure 3.1 A: A histogram representation of the mean DAF-2/DA fluorescence intensity generated by 

100 µM DEA/NO administration (positive control for DAF-2/DA). *p < 0.05 vs control; control 

adjusted to 100 %. 
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Figure 3.1 B: A histogram representation of the mean DHR-123 and DCF fluorescence intensity 

generated by 100 µM authentic ONOO- and 100 µM H2O2 administration respectively (positive 

controls for DHR-123 and DCF). *p < 0.05 vs control; control adjusted to 100%. 
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3.1.2 Baseline studies 

3.1.2.1 Baseline NO levels in AECs and CMECs  

In order to compare NO levels in AECs and CMECs under control, baseline conditions, the 

mean DAF-2/DA fluorescence was measured and expressed as % of fluorescence observed 

in absolute control (DAF-2/DA-free samples), with absolute control fluorescence adjusted to 

100 %. Results showed that the fluorescence intensity did not differ significantly between 

AECs and CMECs (N = 6) (Figure 3.2).  
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Figure 3.2: Baseline mean DAF-2/DA fluorescence in AECs and CMECs. *p < 0.05 vs. absolute control; 

absolute control adjusted to 100 %.  
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3.1.2.2 Baseline ROS levels in AECs and CMECs 

Under control, baseline conditions, mean DHR-123 fluorescence (measuring ONOO- levels) 

was significantly increased in CMECs (168.2 ± 8.4 %) compared to AECs (116.8 ± 10.8 %), p < 

0.05, N = 4 (Figure 3.3 A). Conversely, mean DCF fluorescence (measuring H2O2 levels) was 

significantly increased in AECs (278.6 ± 12.7 %) compared to CMECs (196.5 ± 7.4 %) (Figure 

3.3 B).  
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Figure 3.3 A: Baseline mean DHR-123 fluorescence in AECs and CMECs. *p < 0.05 vs. absolute 

control; absolute control adjusted to 100 %. #p < 0.05 vs. AECs control.  
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Figure 3.3 B: Baseline mean DCF fluorescence in AECs and CMECs. *p < 0.05 vs. absolute control; 

absolute control adjusted to 100 %. #p < 0.05 vs. CMECs control.  
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3.1.3 Endothelial injury induction: NO-production, ROS production and cell viability 

3.1.3.1 Concentration-response investigations  

Concentration-response investigations were conducted with the pro-inflammatory cytokine 

TNF-α at 0.5, 5 and 20 ng/ml (24 and 48 hours) in AECs and CMECs to determine the optimal 

concentration for endothelial injury induction.  

3.1.3.1.1 NO measurements with DAF-2/DA 

AECs: DAF-2/DA concentration-response investigations with TNF-α treatment 

Mean DAF-2/DA fluorescence significantly decreased in AECs following treatment with TNF-

α at all concentrations after 24 hours:  0.5 ng/ml TNF-α (73.20 ± 9.8 %), 5 ng/ml TNF-α 

(71.33 ± 2.98 %) and 20 ng/ml TNF-α (74.98 ± 7.1 %) vs. 100 % Control, p < 0.05, N = 9-14 

(Figure 3.4 A). The margin of decrease in NO-production by TNF-α was even more 

pronounced at all concentrations after 48 hours: 0.5 ng/ml TNF-α (54.28 ± 9.0 %), 5 ng/ml 

TNF-α (52.81 ± 6.2 %) and 20 ng/ml (42.44 ± 8.9 %) vs. 100 % Control, p < 0.05, N = 7-13 

(Figure 3.4 B).  

CMECs: DAF-2/DA concentration-response investigations with TNF-α treatment  

TNF-α treatment significantly decreased mean DAF-2/DA fluorescence after 24 hours at 5 

ng/ml (79.34 ± 3.7 %) and 20 ng/ml (79.28 ± 3.7 %) vs. 100 % Control, p < 0.05, N = 10-14. 

However, 0.5 ng/ml had no significant effect on NO production after 24 hours (Figure 3.4 C). 

After 48 hours, TNFα significantly decreased mean DAF-2/DA fluorescence at all 

concentrations: 0.5 ng/ml TNF-α (66.39 ± 5.2 %), 5 ng/ml TNF-α (56.67 ± 3.6) and 20 ng/ml 

TNF-α (58.91 ± 2.8 %) vs. 100 % Control, p < 0.05, N = 12-15 (Figure 3.4 D).  
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Figure 3.4 A: AECs: DAF-2/DA TNF-α concentration-response findings after 24 hours treatment. *p < 

0.05 vs. control; control adjusted to 100 %. 
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Figure 3.4 B: AECs: DAF-2/DA TNF-α concentration-response findings after 48 hours treatment. *p < 

0.05 vs control; control adjusted to 100 %. 

  

Stellenbosch University  https://scholar.sun.ac.za



102 | P a g e  
 

C
ontr

ol 

 0
.5

 n
g/m

l_
TN

F- 

5 
ng/m

l_
TN

F- 

20
 n

g/m
l_

TN
F-

0

25

50

75

100

125

150

* *

N
O

 p
ro

d
u

c
ti

o
n

(%
 o

f 
c

o
n

tr
o

l)

 

Figure 3.4 C: CMECs: DAF-2/DA TNF-α concentration-response findings after 24 hours treatment. *p 

< 0.05 vs control; control adjusted to 100 %. 
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Figure 3.4 D: CMECs: DAF-2/DA TNF-α concentration-response findings after 48 hours treatment.*p 

< 0.05 vs. control; control adjusted to 100 %. 
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Direct comparisons between TNF-α treated AECs and CMECs: NO production 

Next, the response in NO production to TNF-α treatment in the AECs and CMECs was 

directly compared. Following 24 hours, TNF-α treatment did not result in significant 

differences between AECs and CMECs at any of the TNF-α concentrations (Figure 3.5 A). 

However, after 48 hours, the mean DAF-2/DA fluorescence in AECs (20 ng/ml TNF-α) was 

significantly decreased when compared to CMECs at the same TNF-α concentration (AECs: 

42.44 ± 8.9 % vs. CMECs: 58.91 ± 2.9 %, p < 0.05) (Figure 3.5 B).  
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Figure 3.5 A: Direct comparison of % changes in DAF-2/DA fluorescence between AECs and CMECs 

treated with TNF-α for 24 hours.  
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Figure 3.5 B: Direct comparison of % changes in DAF-2/DA fluorescence between AECs and CMECs 

treated with TNF-α for 48 hours. #p < 0.05: AECs vs. CMECs (TNF-α: 20 ng / ml). 
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3.1.3.1.2 ROS Measurements with DHR-123 and DCF 

DHR-123 (ONOO- production) concentration-response investigations with TNF-α 

treatment 

AECs:  

After 24 hours all concentrations of TNF-α significantly decreased mean DHR-123 

fluorescence: 0.5 ng/ml (92.44 ± 2.1 %), 5 ng/ml (85.73 ± 1.4 %) and 20 ng/ml (85.41 ± 1.2 

%) vs. 100 % Control, p < 0.05, N = 7 per group (Figure 3.6 A). Similar results were observed 

following the 48 hour treatment period: 0.5 ng/ml (94.57 ± 1.9 %), 5 ng/ml (91.20 ± 1.1 %) 

and 20 ng/ml (89.41 ± 1.5 %) vs. 100 % Control, p < 0.05, N = 8 per group (Figure 3.6 B). 

CMECs:  

Following 24 hours treatment, TNF-α significantly decreased mean DHR-123 fluorescence at 

all concentrations: 0.5 ng/ml (79.42 ± 1.5 %), 5 ng/ml (71.26 ± 1.4 %) and 20 ng/ml (65.95 ± 

1.3 %) vs. 100 % Control, p < 0.05, N = 7 per group (Figure 3.6 C). Treatment with TNF-α for 

48 hours also led to significant reductions in mean DHR-123 fluorescence at all 

concentrations: 0.5 ng/ml (86.14 ± 1.7 %), 5 ng/ml (81.46 ± 1.0 %) and 20 ng/ml (81.38  ± 2.4 

%) vs. 100 % Control, p < 0.05, N = 5 per group (Figure 3.6 D). 
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Figure 3.6 A: AECs: DHR-123 TNF-α concentration-response findings after 24 hours treatment. *p < 

0.05 vs. control; control adjusted to 100 %. 
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Figure 3.6 B: AECs: DHR-123 TNF-α concentration-response findings after 48 hours treatment. *p < 

0.05 vs. control; control adjusted to 100 %. 
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Figure 3.6 C: CMECs: DHR-123 TNF-α concentration-response findings after 24 hours treatment.            

*p < 0.05 vs. control; control adjusted to 100 %. 
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Figure 3.6 D: CMECs: DHR-123 TNF-α concentration-response findings after 48 hours treatment. *p < 

0.05 vs. control; control adjusted to 100 %. 
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Direct comparisons between TNF-α treated AECs and CMECs: ONOO- production  

The mean DHR-123 fluorescence differed significantly between AECs and CMECs at both 24 

and 48 hours TNF-α treatment periods. Overall, DHR-123 fluorescence intensity was 

consistently lower in CMECs when compared to AECs.  

24 hours (Figure 3.7 A):  

 0.5 ng/ml TNF-α (AECs: 92.44 ± 2.1 % vs. CMECs: 79.92 ± 1.5 %, p < 0.05) 

 5 ng/ml TNF-α (AECs: 85.73 ± 1.4 % vs. CMECs: 71.26 ± 1.4 %, p < 0.05) 

 20 ng/ml  TNF-α (AECs: 85.41 ± 1.2 % vs. CMECs: 65.95 ± 1.3 %, p < 0.05) 

48 hours (Figure 3.7 B): 

 0.5 ng/ml TNF-α (AECs: 94.57 ± 1.9 % vs. CMECs: 86.14 ± 1.7, p < 0.05) 

 5 ng/ml TNF-α (AECs: 91.20 ± 1.1 % vs. CMECs: 81.46 ± 1.0 %, p < 0.05) 

 20 ng/ml TNF-α (AECs: 89.41 ± 1.1 % vs. CMECs: 81.38 ± 2.4 %, p < 0.05)  
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Figure 3.7 A: Direct comparison of % changes in DHR-123 fluorescence between AECs and CMECs 

treated with TNF-α for 24 hours. #p < 0.05: AECs vs. CMECs. 
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Figure 3.7 B: Direct comparison of % changes in DHR-123 fluorescence between AECs and CMECs 

treated with TNF-α for 48 hours. #p < 0.05: AECs vs. CMECs. 
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DCF (H2O2 production) concentration-response investigations with TNF-α treatment 

AECs:  

TNF-α, at all concentrations, significantly increased mean DCF fluorescence after 24 hours: 

0.5 ng/ml (275.9 ± 14.98 %), 5 ng/ml (291.1 ± 21.19 %) and 20 ng/ml (279 ± 14.68) vs. 100 % 

Control, p < 0.05, N = 6 per group (Figure 3.8 A). However after 48 hours, 5 and 20 ng/ml 

TNF-α significantly decreased mean DCF fluorescence: 5 ng/ml (81.48 ± 7.8 %) and 20 ng/ml 

(77.20 ± 7.0 %) vs. 100 % Control, p < 0.05, N = 6 per group (Figure 3.8 B).  

CMECs:  

Treatment with 5 and 20 ng/ml TNF-α for 24 hours significantly increased mean DCF 

fluorescence: 5 ng/ml (113.9 ± 3.6 %) and 20 ng/ml (141.4 ± 4.5 %) vs. 100 % Control, p < 

0.05, N = 6 per group (Figure 3.8 C). At 48 hours treatment, TNF-α exerted no significant 

effects on DCF fluorescence at any of the concentrations (Figure 3.8 D).  
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Figure 3.8 A: AECs: DCF TNF-α concentration-response findings after 24 hours treatment. *p < 0.05 

vs. control; control adjusted to 100 %. 
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Figure 3.8 B: AECs: DCF TNF-α concentration-response findings after 48 hours treatment. *p < 0.05 

vs. control; control adjusted to 100 %. 

  

Stellenbosch University  https://scholar.sun.ac.za



112 | P a g e  
 

C
ontr

ol 

0.
5 

ng/m
l T

N
F- 

5 
ng/m

l T
N
F- 

20
 n

g/m
l T

N
F-

0

50

100

150

200

*

*

H
2
O

2
p

ro
d

u
c

ti
o

n

(%
 o

f 
C

o
n

tr
o

l)

 

Figure 3.8 C: CMECs: DCF TNF-α concentration-response findings after 24 hours treatment. *p < 0.05 

vs. control; control adjusted to 100 %. 
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Figure 3.8 D: CMECs: DCF TNF-α concentration-response findings after 48 hours treatment. 
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Direct comparisons between TNF-α treated AECs and CMECs: H2O2
 production  

Mean DCF fluorescence intensity differed significantly between AECs and CMECs following 

24 hour TNF-α treatments, with AECs generally responding to treatment with increased 

fluorescence measurements (Figure 3.9 A):  

 0.5 ng/ml (AECs: 275.9 ± 14.98 % vs. CMECs: 109 ± 4.9 %, p < 0.05) 

 5 ng/ml (AECs: 291 ± 21.19 % vs. CMECs: 113.9 ± 3.6 %, p < 0.05) 

 20 ng/ml (AECs: 279 ± 14.68 % vs. CMECs: 141 ± 4.5 %, p < 0.05) 

Following 48 hours treatment, there were no significant differences in the DCF fluorescence 

readings between AECs and CMECs at 0.5 and 5 ng/ml TNF-α. However, at 20 ng/ml TNF-α, 

AECs displayed lower fluorescence compared to their concentration-matched CMEC 

counterparts (Figure 3.9 B):  

 0.5 ng/ml (AECs: 92.26 ± 5.7 % vs. CMECs: 94.33 ± 3.6 %, p > 0.05) 

 5 ng/ml (AECs: 81.48 ± 7.8 % vs. CMECs: 97.14 ± 5.0 %, p > 0.05) 

 20 ng/ml (AECs: 77.20 ± 7.0 % vs. CMECs: 122.2 ± 12.06 %, p < 0.05)  
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Figure 3.9 A: Direct comparison of % changes in DCF fluorescence between AECs and CMECs treated 

with TNF-α for 24 hours. #p < 0.05: AECs vs. CMECs. 
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Figure 3.9 B:  Direct comparison of % changes in DCF fluorescence between AECs and CMECs treated 

with TNF-α for 48 hours. #p < 0.05: AECs vs. CMECs. 
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3.1.3.1.3 Necrosis measurements with PI 

Percentage cells that stained positively for PI were expressed as % of control, and control 

was adjusted to 100 %.   

AECs:  

Treatment with 5 and 20 ng/ml TNF-α for 24 hours significantly increased necrosis as 

measured by % cellular PI uptake: 5 ng/ml (156 ± 22.8 %) and 20 ng/ml (331.4 ± 91.1 %) vs. 

100 % Control, p < 0.05, N = 5-7 per group (Figure 3.10 A). After 48 hours, TNF-α had no 

significant effect on necrosis in AECs at any of the concentrations (Figure 3.10 B).  

CMECs:  

TNF-α significantly increased necrosis as measured by % cellular PI uptake after 24 hours: 

0.5 ng/ml (176.5 ± 34.7), 5 ng/ml (177.8 ± 15.6 %), 20 ng/ml (230.3 ± 26.9) vs. 100 % Control, 

p < 0.05, N = 4-6 per group (Figure 3.10 C). After 48 hours, 5 ng/ml TNF-α significantly 

decreased necrosis (70.6 ± 2.1 %) vs. 100 % Control (Figure 3.10 D). However, treatment 

with 20 ng/ml TNF-α significantly increased necrosis: (396.4 ± 61.6 % vs. 100 % Control, p < 

0.05, N = 4-6 (Figure 3.10 D). 
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Figure 3.10 A: AECs: TNF-α concentration-response findings after 24 hours treatment showing % 

propidium iodide-stained cells. *p < 0.05 vs. control; control adjusted to 100 %. 
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Figure 3.10 B: AECs: TNF-α concentration-response findings after 48 hours treatment showing % 

propidium iodide-stained cells. 
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Figure 3.10 C: CMECs: TNF-α concentration-response findings after 24 hours treatment showing % 

propidium iodide-stained cells. *p < 0.05 vs. control; control adjusted to 100 %. 
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Figure 3.10 D: CMECs: TNF-α concentration-response findings after 48 hours treatment showing % 

propidium iodide-stained cells. *p < 0.05 vs. control; control adjusted to 100 %. 

 

  

Stellenbosch University  https://scholar.sun.ac.za



118 | P a g e  
 

Direct comparisons between TNF-α treated AECs and CMECs: Necrosis  

After 24 hours, TNF-α treated AECs and CMECs did not display any significant differences 

with regards to % propidium iodide-staining cells when compared directly with each other 

at identical TNF-α concentrations (Figure 3.11 A).  

After 48 hours TNF-α treatment, no significant differences were observed between AECs 

and CMECs treated with 0.5 and 5 ng/ml TNF-α; however, 20 ng/ml TNF-α treated CMECs 

showed a higher degree of % propidium iodide-staining cells compared to their AECs 

counterparts: AECs: 127.1 ± 40.8 % vs. CMECs: 396.4 ± 61.1 %, p < 0.05 (Figure 3.11 B):  
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Figure 3.11 A: Direct comparison of changes in the % propidium iodide-stained cells between AECs 

and CMECs treated with TNF-α for 24 hours.   
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Figure 3.11 B: Direct comparison of changes in the % propidium iodide-stained cells between AECs 

and CMECs treated with TNF-α for 48 hours. #p < 0.05: AECs vs. CMECs. 
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Based on the concentration-response data, it was decided to continue with a TNF-α 

treatment regime of 20 ng/ml TNF-α for a period of 24 hours as the model of endothelial 

cell injury for all further investigations.  

 3.1.4 Endothelial injury induction: Western blot analyses of signalling proteins 

All western blot data are expressed as a ratio of AEC untreated control, with AEC untreated 

control adjusted to 1. The housekeeping protein, ß-tubulin, was used to control for equal 

protein loading. 

3.1.4.1 Total and phosphorylated eNOS (Ser 1177) 

There were no significant differences in the total eNOS expression between AECs and 

CMECs with or without TNF-α treatment (Figure 3.12 A).  

There were no significant differences in phosphorylated eNOS (Ser 1177) levels between 

AECs and CMECs with or without TNF-α (Figure 3.12 B). 

However, when phosphorylated eNOS (Ser 1177) was expressed as a ratio of total eNOS 

expression, the phospho / total ratios were significantly decreased in control, untreated 

CMECs and TNF-α-treated CMECs vs. their respective AEC counterparts (Figure 3.12 C): 

 AEC-Control (1.0) vs. CMEC-Control (0.72 ± 0.05), p < 0.05, N = 3.  

 AEC-TNF-α (0.98 ± 0.03) vs. CMEC-TNF-α (0.70 ± 0.12), p < 0.05, N = 4.  
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Figure 3.12 A & B: (A) Total eNOS expression and (B) phosphorylated eNOS (Ser 1177) in AECs and 

CMECs with or without TNF-α treatment (20 ng/ml; 24 hours). AC, AEC control; AT, AEC+TNF-α; CC, 

CMEC control; CT, CMEC+TNF-α. 
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Figure 3.12 C: Phospho / total eNOS ratios in AECs and CMECs with or without TNF-α treatment (20 

ng/ml; 24 hours). **p < 0.05 vs. AEC-Control, *p < 0.05 vs. AEC-TNF-α. 
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3.1.4.2 Total and phosphorylated PKB/Akt (Ser 473) 

Total PKB/Akt expression was significantly decreased in (i) TNF-α-treated AECs vs. control, 

untreated AECs, (ii) control, untreated CMECs vs. control, untreated AECs, and (iii) in TNF-α-

treated AECs vs. TNF-α-treated CMECs (Figure 3.13 A): 

 AEC-TNF-α (0.71 ± 0.01) vs. AEC-Control (1.0), p < 0.05, N = 3-4 per group. 

 AEC-Control (1.0) vs. CMEC-Control (0.87 ± 0.04), p < 0.05, N = 3. 

 AEC-TNF-α (0.71 ± 0.01) vs. CMEC-TNF-α (0.88 ± 0.03), p < 0.05, N =4.  

Phosphorylated PKB/Akt (Ser 473) was significantly increased in (i) control, untreated 

CMECs vs. control, untreated AECs, and (ii) in TNF-α-treated CMECs vs. TNF-α-treated AECs 

(Figure 3.13 B): 

 AEC-Control (1.0) vs. CMEC-Control (1.41 ± 0.1), p < 0.05, N =3. 

 AEC-TNF-α (1.01 ± 0.11) vs. CMEC-TNF-α (1.57 ± 0.09), p < 0.05, N =4.  

PKB/Akt phospho / total ratios were significantly increased in control, untreated CMECs 

(1.61 ± 0.06) vs. control, untreated AECs (1.0), p < 0.05, N = 3 (Figure 3.13 C).  
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Figure 3.13 A & B: (A) Total PKB/Akt expression and (B) Phosphorylated PKB/Akt (Ser 473) in AECs 

and CMECs with or without TNF-α (20 ng/ml; 24 hours). **p < 0.05 vs. AEC-Control, *p < 0.05 vs. 

AEC-TNF-α. AC, AEC control; AT, AEC+TNF-α; CC, CMEC control; CT, CMEC+TNF-α.  
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Figure 3.13 C: Phospho / total PKB/Akt ratios in AECs and CMECs with or without TNF-α (20 ng/ml; 

24 hours). **p < 0.05 vs. AEC-Control.  
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3.1.4.3 Heat shock protein 90 (HSP 90) expression 

HSP 90 expression was significantly decreased in TNF-α-treated AECs (0.37 ± 0.10) and 

control, untreated CMECs (0.28 ± 0.01) compared to control, untreated AECs (1.0), p < 0.05, 

N = 3-4 per group (Figure 3.14). 

 

 

Figure 3.14: Heat shock 90 expression in AECs and CMECs with or without TNF-α (20 ng/ml; 24 

hours). **p < 0.05 vs. AEC-Control. AC, AEC control; AT, AEC+TNF-α; CC, CMEC control; CT, 

CMEC+TNF-α. 
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3.1.4.4 IKB alpha expression 

IKB alpha expression was significantly increased in control, untreated CMECs (1.23 ± 0.07) 

vs. control, untreated AECs (1.0), p < 0.05, N = 3, and significantly decreased in TNF-α-

treated CMECs (0.78 ± 0.02) vs. control, untreated CMECs (1.23 ± 0.07), p < 0.05, N = 3-4 per 

group (Figure 3.15). 

 

 

Figure 3.15: IKB-alpha expression in AECs and CMECs with or without TNF-α (20 ng/ml; 24 hours). 

**p < 0.05 vs. AEC-Control, *p < 0.05 vs. CMEC-Control. AC, AEC control; AT, AEC+TNF-α; CC, CMEC 

control; CT, CMEC+TNF-α. 
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3.1.4.5 Nitrotyrosine expression  

Nitrotyrosine expression was significantly increased in control, untreated CMECs (1.30 ± 

0.02) vs. control, untreated AECs (1.0), p < 0.05, N = 3 (Figure 3.16).  

 

 

Figure 3.16: Nitrotyrosine expression in AECs and CMECs with or without TNF-α (20 ng/ml; 24 hours). 

**p < 0.05 vs. AEC-Control. AC, AEC control; AT, AEC+TNF-α; CC, CMEC control; CT, CMEC+TNF-α.
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3.1.5 Oleanolic acid (OA) studies 

3.1.5.1 1 hour treatment studies 

NO measurements (DAF-2/DA fluorescence) 

The ability of OA to increase NO production was investigated in AECs and CMECs at 

concentrations of 10 and 40 µM for an incubation period of 1 hour. DSMO was included as 

vehicle controls at volumes corresponding to their respective OA concentrations.  

AECs:  

Treatment with both 10 and 40 µM OA for 1 hour significantly increased mean DAF-2/DA 

fluorescence: 10 µM OA (132 ± 14.4 %) and 40 µM (154.2 ± 12.1 %) versus 100 % Control, p 

< 0.05, N= 9-12 per group (Figure 3.17 A). 

CMECs:  

Mean DAF-2/DA fluorescence was significantly increased when CMECs were treated with 10 

and 40 µM OA for 1 hour: 10 µM OA (150.4 ± 1.6 %) and 40 µM (163.4 ± 5.2 %) vs. 100 % 

Control, p < 0.05, N = 4-7 per group (Figure 3.17 B).  
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Figure 3.17 A: AECs: DAF-2/DA fluorescence data with 10 and 40 µM OA treatment for 1 hour. *p < 

0.05 vs. Control; control adjusted to 100 %. (0.06 % DMSO for 10 µM OA and 0.24 % DMSO for 40 

µM OA treatments). 
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Figure 3.17 B: CMECs: DAF-2/DA fluorescence data with 10 and 40 µM OA treatment for 1 hour. *p < 

0.05 vs. Control; control adjusted to 100 %. (0.06 % DMSO for 10 µM OA and 0.24 % DMSO for 40 

µM OA treatments). 
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At this point it was decided to continue with OA treatment at a concentration of 40 µM for 

all further investigations. 

DCF (H2O2 production) fluorescence measurements with 40 µM OA treatment for 1 hour 

AECs:  

Treatment with 40 µM OA significantly decreased mean DCF fluorescence after 1 hour: 75.9 

± 2.7 % vs. 100 % Control, p < 0.05, N =  5. There were no vehicle effects observed (Figure 

3.18 A).  

CMECs:  

After 1 hour, 40 µM OA treatment significantly increased DCF fluorescence: 119.3 ± 6.5 % 

vs. 100 % Control, p < 0.05, N = 6. However, this observation was likely due to a DMSO 

vehicle effect: DMSO: 120 ± 10.8 % vs. 100 % Control, p < 0.05, N = 3 (Figure 3.18 B).  
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Figure 3.18 A: AECs: DCF fluorescence data with 40 µM OA treatment for 1 hour. *p < 0.05 vs. 

Control; control adjusted to 100 %, ^p < 0.05: vs. DMSO vehicle (0.24 % DMSO). 
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Figure 3.18 B: CMECs: DCF fluorescence data with 40 µM OA treatment for 1 hour. *p < 0.05 vs. 

Control; control adjusted to 100 %. 0.24 % DMSO vehicle. 
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Necrosis measurements with PI 

AECs:  

The % cellular PI uptake was reduced by  50 % in AECs treated with 40 µM OA for 1 hour 

compared to untreated controls: 43.33 ± 8.0 % vs. 100 % Control, p < 0.05, N = 6. DMSO as a 

vehicle control differed significantly with the control: 76 ± 7.4 % vs. 100 % Control, p < 0.05, 

N = 5. However, despite the moderate vehicle effect, OA per se exerted PI-lowering effects 

independently from the vehicle effect: 40 µM OA (43.33 ± 8.0 %) vs. DMSO (76 ± 7.4 %), p < 

0.05 (Figure 3.19 A).  

CMECs:  

Treatment of CMECs with OA 40 µM (1 hour) significantly increased the PI uptake after 1 

hour: 40 µM OA: 132.2 ± 8.8 % vs. 100 % Control, p > 0.05, N = 7. Vehicle effects were not 

observed (Figure 3.19 B). 
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Figure 3.19 A: AECs: % propidium iodide-stained cells treated with 40 µM OA (1 hour). *p < 0.05 vs. 

Control; control adjusted to 100 %, ^p < 0.05 vs. DMSO (0.24 % DMSO vehicle).  
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Figure 3.19 B: CMECs: % propidium iodide-stained cells treated with 40 µM OA (1 hour). *p < 0.05 vs. 

Control; control adjusted to 100 %. 0.24 % DMSO vehicle. 
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3.1.5.2 24 hour treatment studies 

DAF-2/DA (NO production) fluorescence measurements with 40 µM OA treatment for 24 

hours 

AECs:  

There were no significant differences in the mean DAF-2/DA fluorescence following 

treatment with 40 µM OA for 24 hours compared to control, untreated samples (Figure 3.20 

A).  

CMECs:  

Treatment with 40 µM OA for 24 hours significantly increased mean DAF-2/DA fluorescence: 

OA: 161.8 ± 29.6 % vs. 100 %, p > 0.05, N = 7 per group. There were no vehicle effects 

observed (Figure 3.20 B). 

  

Stellenbosch University  https://scholar.sun.ac.za



134 | P a g e  
 

 

Figure 3.20 A: AECs: DAF-2/DA fluorescence data in AECs treated with 40 µM OA (24 hours). 0.24 % 

DMSO vehicle. 
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Figure 3.20 B: CMECs: DAF-2/DA fluorescence data in CMECs treated with 40 µM OA (24 hours).*p < 

0.05 vs. Control; control adjusted to 100 %. 0.24 % DMSO vehicle.  
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DCF (H2O2 production) fluorescence measurements with 40 µM OA treatment for 24 hours  

AECs:  

Treatment with OA for 24 hours significantly decreased mean DCF fluorescence: 86.8 ± 1.3 

% vs. 100 % Control, p < 0.05, N =6. There were no vehicle effects observed (Figure 3.21 A).  

CMECs:  

At 24 hour treatment, OA exerted no significant effects on DCF fluorescence (Figure 3.21 B).  
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Figure 3.21 A: AECs: DCF fluorescence data in AECs treated with 40 µM OA (24 hours). *p < 0.05 vs. 

Control; control adjusted to 100 %, ^p < 0.05 vs. DMSO (0.24 % DMSO vehicle).  
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Figure 3.21 B: CMECs: DCF fluorescence data in CMECs treated with 40 µM OA (24 hours). 0.24 % 

DMSO vehicle.  
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Propidium uptake (necrosis) measurements with 40 µM OA treatment for 24 hours  

AECs:  

OA significantly decreased the % propidium iodide-staining cells after 24 hours treatment: 

40 µM OA: 70.8 ± 3.9 % vs. 100 %, p < 0.05, N = 6. There were no vehicle effects observed 

(Figure 3.22 A). 

CMECs:  

There were no significant differences in the % propidium iodide-staining cells between 

control and OA samples after 24 hours treatment: 40 µM OA: 87 ± 14.9 % vs. 100 % Control, 

p > 0.05, N = 6 (Figure 3.22 B). 
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Figure 3.22 A: AECs: % propidium iodide-stained cells treated with 40 µM OA (24 hours). *p < 0.05 

vs. Control; control adjusted to 100 %. 0.24 % DMSO vehicle. 
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Figure 3.22 B: CMECs: % propidium iodide-stained cells treated with 40 µM OA (24 hours). 0.24 % 

DMSO vehicle.  
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3.1.6 OA (40 µM) pre-treatment studies.  

Both AECs and CMECs were pre-treated with 40 µM OA 1 hour prior to the administration of 

20 ng / ml TNF-α for a further 24 hours.  

3.1.6.1 DAF-2/DA (NO production) fluorescence measurements with OA pre-treatment 

AECs:  

OA treatment alone significantly, albeit modestly, increased mean DAF-2/DA fluorescence, 

whereas TNF-α significantly decreased DAF-2/DA fluorescence compared to control, 

untreated samples; there was also a significant increase in fluorescence in the OA-treated 

cells vs. TNF-α-treated cells: OA (106 ± 0.6 %) vs. TNF-α (85 ± 2.3 %) vs. 100 % Control, p < 

0.05, N = 6 -12 per group. In the OA pre-treatment samples (OA+TNF-α), the DAF-2/DA 

fluorescence increased by almost an identical margin as observed with OA treatment alone 

compared to control, untreated cells: OA + TNF-α (106.9 ± 1.5 %) vs. 100 % Control, p < 0.05, 

N =6. Furthermore, the OA pre-treatment group showed significantly increased DAF-2/DA 

fluorescence compared to the TNF-α only group: OA + TNF-α (106.9 ± 1.5) vs. TNF-α (85 ± 

2.3 %), p < 0.05. No DMSO vehicle effects were observed (Figure 3.23 A). 

CMECs:  

OA treatment alone significantly increased DAF-2/DA fluorescence, while TNF-α treatment 

resulted in decreased fluorescence compared to control, untreated samples; there was also 

a significant increase in fluorescence in the OA-treated cells vs. TNF-α-treated cells: OA 

(147.2 ± 17.6 %) vs. TNF-α (78.9 ± 2.9 %) vs. 100 % Control, p < 0.05, N = 5-11 per group. 

Although DAF-2/DA fluorescence did not differ significantly in the OA pre-treatment group 

compared to control, untreated samples, pre-treatment with OA did succeed in significantly 

increasing DAF-2/DA fluorescence compared to the TNF-α only treatment group: OA + TNF-

α (128.2 ± 14.1 %) vs. 100 % Control, p > 0.05, N = 7; OA + TNF-α (128.2 ± 14.1 %) vs. TNF-α 

(78.9 ± 2.9 %), p < 0.05. No vehicle effects were observed (Figure 3.23 B). 
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Figure 3.23 A: AECs: DAF-2/DA fluorescence data in OA, TNF-α and OA pre-treatment groups. *p < 

0.05 vs. Control; control adjusted to 100 %, **p < 0.05 vs. TNF-α. 
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Figure 3.23 B: CMECs: DAF-2/DA fluorescence data in OA, TNF-α and OA pre-treatment groups. *p < 

0.05 vs. Control; control adjusted to 100 %, **p < 0.05 vs. TNF-α.  
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3.1.5.2 DCF (H2O2 production) fluorescence measurements with OA pre-treatment 

AECs:  

Mean DCF fluorescence was significantly decreased in the OA treatment group, and 

significantly increased in the TNF-α group compared to untreated controls; there was also a 

significantly lower fluorescence in the OA treatment group vs. TNF-α: OA (84.1 ± 3.4 %) vs. 

TNF-α (261.7 ± 21.3 %) vs. 100 % Control, p < 0.05, N = 7-10 per group. The OA pre-

treatment cells showed significantly decreased DCF fluorescence compared to both TNF-α 

samples and control, untreated samples: OA + TNF-α (60.3 ± 2.4 %) vs. TNF-α (261.7 ± 21.3 

%) vs. 100 % Control, p < 0.05, N = 12. No vehicle effects were observed (Figure 3.24 A).  

CMECs:  

Mean DCF fluorescence was significantly lower in OA treatment alone samples compared to 

TNF-α treated and control, untreated samples respectively; furthermore, DCF fluorescence 

was significantly increased in the TNF-α group compared to control, untreated samples: OA 

(66.80 ± 2.1 %) vs. TNF-α (137.1 ± 5.8 %) vs. 100 % Control, p < 0.05, N = 6–7 per group. OA 

pre-treatment significantly decreased DCF fluorescence compared to TNF-α treatment 

samples as well as control, untreated samples: OA + TNF-α (63.9 ± 3.1 %) vs. TNF-α (137.1 ± 

5.8 %) vs. 100 % Control, p < 0.05, N =8. No vehicle effects were observed (Figure 3.24 B). 
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Figure 3.24 A: AECs: DCF fluorescence data in OA, TNF-α and OA pre-treatment groups. *p < 0.05 vs. 

Control; control adjusted to 100 %, **p < 0.05 vs. TNF-α. 

C
ontr

ol

D
M

SO

M
 O

A


40 



20 
ng/m

l T
N
F-

 +
 O

A



TN
F-

0

50

100

150

200

250

300

*
**

*

*

H
2
O

2
P

ro
d

u
c

ti
o

n

(%
 o

f 
C

o
n

tr
o

l)

**

 

Figure 3.24 B: CMECs: DCF fluorescence data in OA, TNF-α and OA pre-treatment groups. *p < 0.05 

vs. Control; control adjusted to 100 %, **p < 0.05 vs. TNF-α. 
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3.1.5.3 PI uptake (necrosis) measurements with OA pre-treatment 

AECs:  

The % of propidium iodide-staining cells was significantly lower in the OA treatment group 

compared to both TNF-α and control, untreated groups, and the TNF-α group showed 

significantly increased propidium iodide staining compared to untreated controls: OA (80. 8 

± 3.8 %) vs. TNF-α (190.5 ± 53 %) vs. 100 % Control, p < 0.05, N = 5-10 per group. OA pre-

treatment significantly decreased propidium iodide staining compared to TNF-α samples 

and control, untreated samples: OA + TNF-α (66.2 ± 3.9 %) vs. TNF-α (190.5 ± 53 %) vs. 100% 

Control, p < 0.05, N = 9. No DMSO vehicle effects were observed (Figure 3.25 A).  

CMECs:  

There were no significant differences in the propidium iodide measurements between any 

of the treatment groups (Figure 3.25 B). 

 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



144 | P a g e  
 

C
ontr

ol

D
M

SO

M
 O

A


40

 



20
 n

g/m
l_

TN
F- 

O
A
 +

 T
N
F-

0

100

200

300

*

*

*

**

%
 N

e
c
ro

s
is

(%
 o

f 
c
o

n
tr

o
l)

**

 

Figure 3.25 A: AECs: % propidium iodide-stained cells in OA, TNF-α and OA pre-treatment groups. *p 

< 0.05 vs. Control; control adjusted to 100 %, **p<0.05 vs. TNF-α. 0.24 % DMSO vehicle.  
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Figure 3.25 B: CMECs: % propidium iodide-stained cells in OA, TNF-α and OA pre-treatment groups. 

0.24 % DMSO vehicle. 
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3.2 Proteomics studies 

Comparing large-scale protein expression and regulation patterns in AECs and CMECs 

A combined total of 2372 proteins were identified in control, untreated AECs and CMECs, of 

which 1695 proteins were shared, 320 were unique to AECs, and 357 unique to CMECs 

(Figure 3.26 A).  In TNF-α-treated cells (TNF-α 20 ng / ml; 24 hours), a combined total of 

2426 proteins were positively identified in AECs and CMECs, of which 1701 proteins were 

shared, 322 proteins were unique to AECs, and 403 unique to CMECs (Figure 3.26 B).  

 

Figure 3.26 A: Venn diagram showing the total protein expression distribution in control, untreated 

AECs and CMECs.  

 

 

Figure 3.26 B: Venn diagram showing the total protein expression distribution in TNF-α treated AECs 

and CMECs.  
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3.2.1 Control, untreated AECs and CMECs 

3.2.1.1 Comparative differential protein regulation and functional annotation analysis: 

Strongly represented proteins in control, untreated AECs (compared to CMECs) 

Differential protein regulation analysis showed that a total of 73 proteins (calculated by 

Scaffold software) and 68 proteins (calculated by Sieve software) respectively were up-

regulated in control, untreated AECs vs. their CMEC counterparts (as determined by the 

minimum criteria of ≥1.5-fold regulation and p < 0.05). Table 3.1 shows a list of the top up-

regulated proteins in control, untreated AECs compared to CMECs. In addition to the 

significantly up-regulated proteins, there were 320 proteins that were only detected in 

AECs, of which 158 fulfilled the minimum criteria of positive identification in ≥ 2 samples. 

Proteins that were up-regulated in AECs, include protein Syne3 (6.8-fold up-regulated; 

cytoskeletal anchoring), cytosolic acyl coenzyme A thioester hydrolase (5-fold up-regulated; 

fatty acid metabolism), glioma pathogenesis-related protein 2 (4.8-fold up-regulated; 

epithelial cell migration), insulin-degrading enzyme (4.6-fold up-regulated; insulin 

breakdown), integrin beta (4.6-fold up-regulated; actin binding and cell adhesion molecule 

binding), aldehyde dehydrogenase, dimeric NADP-preferring (4.4-fold up-regulated; 

oxidation-reduction), fermitin-3 (3.6-fold up-regulated; haemostasis, coagulation and cell 

adhesion), and cytoskeleton associated protein 5 (3.6-fold up-regulated; spindle formation) 

(Table 3.1). A representative example of a protein abundance graph depicting the 

normalised total spectra of the up-regulated protein aldehyde dehydrogenase, dimeric 

NADP-preferring is shown in Figure 3.27 A. Figure 3.27 B is an abundance graph of the 

protein aldehyde dehydrogenase L1, which was only detected in control, untreated AECs. 

In order to make sense of the data, a combined list of the up-regulated proteins plus those 

proteins that were only detected in AECs (collectively referred to as “strongly represented 

proteins”), was submitted to DAVID (The Database for Annotation, Visualization and 

Integrated Discovery) Bioinformatics Resources 6.7 on-line software for functional 

annotation analysis.  Tables 3.2 and 3.3 show the biological processes and cellular 

components respectively with which the strongly represented proteins were significantly 

associated. Biological processes such as triglyceride mobilization, dopamine biosynthesis, 

microtubule polymerization/depolymerization regulation, amino acid biosynthesis, 

endocytosis and protein transport were highly enriched in control, untreated AECs (Table 
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3.2). Cellular components such as the retromer complex, endosome membrane, nuclear 

membrane, and vesicle membrane were highly enriched in the AECs (Table 3.3). 

 

3.2.1.2 Comparative differential protein regulation and functional annotation analysis: 

Strongly represented proteins in control, untreated CMECs (compared to AECs) 

Differential protein regulation analysis showed that a total of 127 proteins (calculated by 

Scaffold software) and 221 proteins (calculated by Sieve software) respectively were up-

regulated in control, untreated CMECs vs. their AEC counterparts (as determined by the 

minimum criteria of ≥1.5-fold regulation and p < 0.05). Table 3.4 shows a list of the top up-

regulated proteins in control, untreated CMECs compared to AECs. In addition to the 

significantly up-regulated proteins, there were 357 proteins that were only detected in 

CMECs, of which 162 fulfilled the minimum criteria of positive identification in ≥ 2 samples. 

Proteins that were significantly up-regulated in control, untreated CMECs include: protein 

Lamc1 (20-fold up-regulated; extracellular matrix protein), Laminin alpha 5 (12.5-fold up-

regulated; extracellular matrix protein and angiogenesis), Laminin subunit beta-2 (10-fold 

up-regulated; extracellular matrix protein), tight junction protein-1 (10-fold up-regulated; 

tight junction assembly and cell-cell signalling), activated RNA polymerase II transcriptional 

coactivator p15 (5-fold up-regulated; transcription), AMP deaminase 3 (5-fold up-regulated; 

purine and energy metabolism), von Willebrand factor (5-fold up-regulated; thrombosis and 

platelet plug formation), and endothelial nitric oxide synthase, eNOS (1.5-fold up-regulated; 

nitric oxide generation) (Table 3.4). Figure 3.28 A shows a representative protein abundance 

graph of the protein tight junction protein-1, which was up-regulated in control, untreated 

CMECs. The abundance graph of the protein, BCL2-related protein A1B, which was only 

detected in CMECs, is shown in Figure 3.28 B. 

The strongly represented proteins in control, untreated CMECs were submitted to DAVID 

software for functional annotation analysis. Table 3.5 shows the highly enriched biological 

processes with which the strongly represented proteins in CMECs associated. The top 

biological processes include actin filament severing, capping and depolymerization 

regulation, hydrogen peroxide metabolism, response to ROS, aerobic respiration, 

tricarboxylic acid cycle, vacuole organisation, electron transport chain and glucose 
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metabolic process. The highly enriched cellular components in control, untreated CMECs are 

shown in Table 3.6. They include the myosin 1 complex, filamentous actin, lateral plasma 

membrane, endoplasmic reticulum, mitochondrial outer membrane, lumen, matrix and 

inner membrane, lysosome, vacuole and vesicular fraction. 
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Table 3.1: List of up-regulated proteins in control, untreated AECs (vs. CMECs) 

  

Identified Proteins Fold Up AECs P-value 

Protein Syne3 (cytoskeletal anchoring) 6.8 0.0005 

Cytosolic acyl coenzyme A thioester hydrolase (fatty acid 
metabolism) 

5.0 0.002 

Glioma pathogenesis-related protein 2 (epithelial cell migration) 4.8 0.041 

Insulin-degrading enzyme (insulin breakdown) 4.6 0.02 

Integrin beta (actin binding; cell adhesion molecule binding) 4.6 0.03 

Aldehyde dehydrogenase, dimeric NADP-preferring (oxidation-
reduction) 

4.4 0.001 

Fermitin family member 3 (hemostasis, coagulation, integrin 
activation, cell adhesion) 

3.6 0.001 

Cytoskeleton associated protein 5 (spindle formation) 3.6 0.04 

CDGSH iron-sulfur domain-containing protein 1 (electron 
transport and oxidative phosphorylation) 

3.5 0.01 

Catechol O-methyltransferase (catecholamine breakdown) 3.3 0.04 

Basic leucine zipper and W2 domain-containing protein 2 (cell 
differentiation) 

3.2 0.03 

Fatty acid synthase (long chain fatty acid synthesis) 3.0 0.04 

Poly [ADP-ribose] polymerase 1; PARP-1 (inflammatory response; 
cell death pathways) 

3.0 0.02 

WAS protein family, member 2 (actin cytoskeleton regulation) 3.0 0.01 

Copine 3 protein (membrane traficking) 2.9 0.01 

GTP-binding protein Rheb (mTOR signaling pathway) 2.8 0.03 

Obg-like ATPase 1 (ATP hydrolysis) 2.8 0.005 

FK506 binding protein 5 (immunoregulation; protein folding) 2.7 0.005 

DNA replication licensing factor MCM6 (DNA replication) 2.6 0.002 

Stathmin (microtubule disassembly) 2.6 0.006 

Apoptosis regulator BAX (pro-apoptotic) 2.5 0.006 

CTP synthase (ATP binding; CTP synthesis) 2.5 0.006 

Cysteinyl-tRNA synthetase (gene expression; protein synthesis) 2.4 0.006 

Receptor-type tyrosine-protein phosphatase beta (angiopoeitin 
signalling; vascular remodeling and angiogenesis) 

2.4 0.006 

Transmembrane protein 43 (inner nuclear membrane) 2.4 0.04 

NADP-dependent malic enzyme (NADPH generation for fatty acid 
synthesis; links glycolysis with citric acid cycle) 

2.3 0.03 

Mcm5 protein (DNA replication) 2.2 0.003 

N-acetyl-D-glucosamine kinase (amino-sugar metabolism) 2.2 0.03 

Protein Mcm2 (DNA replication) 2.2 0.004 

Anoctamin (Calcium-activated choride channel; transepithelial 
ion transport) 

2.1 0.002 

Calpain-1 catalytic subunit (degradation of extracellular matrix) 2.1 0.02 
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Table 3.1 (continued): List of up-regulated proteins in control, untreated AECs (vs. CMECs) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Identified Proteins Fold Up in AECs P-value 

NAD-dependent protein deacetylase sirtuin-2 (cell cycle 
control; microtubule dynamics; cell differentiation; 
autophagy) 

2.1 0.01 

Nuclear autoantigenic sperm protein (DNA replication) 2.1 0.04 

Nuclear pore complex protein Nup93 (nuclear pore complex 
assembly-disassembly) 

2.1 0.04 

Apolipoprotein B-100 (component of LDL and VLDL; 
cholesterol metabolism) 

2.0 0.049 

Endothelial-specific receptor tyrosine kinase (receptor for 
growth factors such as VEGF and angiopoeitins) 

2.0 0.001 

Isocitrate dehydrogenase [NADP], mitochondrial 2.0 0.003 

Vacuolar protein sorting-associated protein 26A (shuttling of 
proteins from endosomes to trans-Golgi network)  

2.0 0.004 
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Figure 3.27 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Aldehyde dehydrogenase, dimeric NADP-preferring in three control, 

untreated AEC samples (AEC1, AEC2, AEC3) compared to three control, untreated CMEC samples 

(CMEC1, CMEC2, CMEC3). 

 

Figure 3.27 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Aldehyde dehydrogenase L1 in three control, untreated AEC samples 

(AEC1, AEC2, AEC3) compared to three control, untreated CMEC samples (CMEC1, CMEC2, CMEC3). 
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Table 3.2: Biological processes associated with strongly represented proteins in control, 

untreated AECs (vs. CMECs) 

Gene Ontology Terms: Biological Processes Fold Enrichment P-value 

GO:0006642~triglyceride mobilization 41.7 0.046 

GO:0006297~nucleotide-excision repair, DNA gap filling 32.6 0.0001 

GO:0009070~serine family amino acid biosynthetic process 24.1 0.007 

GO:0042417~dopamine metabolic process 14.9 0.02 

GO:0031111~negative regulation of microtubule polymerization or 
depolymerization 

14.9 0.02 

GO:0008652~cellular amino acid biosynthetic process 10.6 0.001 

GO:0031110~regulation of microtubule polymerization or 
depolymerization 

10.4 0.03 

GO:0034311~diol metabolic process 10.1 0.03 

GO:0006584~catecholamine metabolic process 10.1 0.03 

GO:0030162~regulation of proteolysis 7.9 0.01 

GO:0006260~DNA replication 6.7 0.0002 

GO:0016485~protein processing 6.3 0.003 

GO:0043406~positive regulation of MAP kinase activity 5.1 0.04 

GO:0006897~endocytosis 4.1 0.02 

GO:0010324~membrane invagination 4.1 0.02 

GO:0015031~protein transport 2.7 0.002 

GO:0045184~establishment of protein localization 2.6 0.002 

GO:0016192~vesicle-mediated transport 2.4 0.02 

GO:0006928~cell motion 2.3 0.04 

GO:0032268~regulation of cellular protein metabolic process 2.3 0.04 

GO:0008104~protein localization 2.2 0.009 

GO:0046907~intracellular transport 2.1 0.04 

GO:0055114~oxidation reduction 2.0 0.03 

GO:0042127~regulation of cell proliferation 2.0 0.02 
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Table 3.3: Cellular components associated with strongly represented proteins in control, 

untreated AECs (vs control, untreated CMECs) 

Gene Ontology Terms: Cellular Components Fold Enrichment P-value 

GO:0030904~retromer complex (endosomal protein sorting) 67.1 0.03 

GO:0005662~DNA replication factor A complex 50.4 0.04 

GO:0044440~endosomal part 10.3 0.007 

GO:0010008~endosome membrane 10.3 0.007 

GO:0031965~nuclear membrane 6.4 0.02 

GO:0005938~cell cortex 4.6 0.009 

GO:0012506~vesicle membrane 4.4 0.01 

GO:0030659~cytoplasmic vesicle membrane 4.1 0.03 

GO:0009986~cell surface 2.7 0.02 
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Table 3.4 List of up-regulated proteins in control, untreated CMECs (vs AECs) 

Identified Proteins Fold Up CMECs P-value 

Protein Lamc1 (extracellular matrix) 20.0 0.0005 

Laminin, alpha 5 (extracellular matrix, angiogenesis) 12.5 0.0001 

Laminin subunit beta-2 (extracellular matrix) 10.0 0.01 

Tight junction protein-1(tight junction assembly, cell-cell signalling) 10.0 0.0006 

Activated RNA polymerase II transcriptional coactivator p15 
(transcription) 

5.0 0.002 

AMP deaminase 3 (purine and energy metabolism) 5.0 0.001 

Rho guanine nucleotide exchange factor-7 (membrane ruffling, cell 
migration and attachment) 

5.0 0.01 

Dedicator of cytokinesis 6 (activates Cdc42 and Rac1; coagulation) 5.0 0.02 

LOC683667 protein (calcium ion transport) 5.0 0.03 

Procollagen, type XVIII, alpha 1 (extracellular matrix; endothelial cell 
morphogenesis; angiogenesis; cell adhesion) 

5.0 0.002 

Prostaglandin G/H synthase 1 (prostaglandin biosynthesis) 5.0 0.0001 

Protein Cingulin-like 1 (cell junction assembly; RhoA and Rac1 
regulation) 

5.0 0.0006 

von Willebrand factor (thrombosis; platelet plug formation) 5.0 0.0001 

Alpha-adducin (actin cytoskeleton organisation) 3.3 0.02 

Coactosin-like protein (actin binding) 3.3 0.02 

Cullin-5 (proteasomal degradation of target proteins) 3.3 0.03 

Endophilin-B1 (mitochondrial morphology; endosomal traficking) 3.3 0.0004 

Fermitin family homolog 2 (cell-extracellular matrix adhesion) 3.3 0.0008 

Neurolysin, mitochondrial (metalloprotease; member of the renin-
angiotensin pathway) 

3.3 0.02 

N-terminal kinase-like protein (vesicle-mediated transport) 3.3 0.047 

Platelet endothelial cell adhesion molecule; PECAM-1; CD31 (cell 
adhesion molecular) 

3.3 0.001 

Protein tyrosine phosphatase non-receptor type 12 (cell growth; 
differentiation; adhesion; shape) 

3.3 0.01 

SH3 and multiple ankyrin repeat domains protein 3 3.3 0.007 

SPARC (extracellular matrix) 3.3 0.0006 

1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 
(receptor tyrosine kinase signalling) 

2.5 0.002 

Arylsulfatase B (lysosomal breakdown of large sugar molecules) 2.5 0.02 

CD2-associated protein (adapter protein between membrane 
proteins and actin cytoskeleton) 

2.5 0.003 

Cleavage and polyadenylation specific factor 6, 68kDa (cleavage 
factor in RNA processing) 

2.5 0.04 

DNA-(apurinic or apyrimidinic site) lyase (DNA repair and cell redox 
homeostasis) 

2.5 0.002 

GDP-mannose 4, 6-dehydratase (fructose and mannose metabolism) 2.5 0.02 

Glutaminyl-tRNA synthetase (protein biosynthesis) 2.5 0.04 
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Table 3.4 (continued): List of up-regulated proteins in control, untreated CMECs (vs AECs) 

Identified proteins  Fold UP CMECs P-value 

Glycosyltransferase 25 domain containing 1 (lipopolysaccharide 
synthesis; endothelial cell adhesion)  

2.5 0.008 

Heat shock protein 70kDa 12B (chaperone protein; protein folding) 2.5 0.02 

Inosine-5'-monophosphate dehydrogenase 2 (guanine nucleotide 
synthesis; cell growth) 

2.5 0.01 

Integrin alpha 3 variant A (cell adhesion) 2.5 0.0005 

LIM and senescent cell antigen-like domains 1 isoform E (cell-cell 
junction; cell-matrix adhesion) 

2.5 0.0001 

Major vault protein (intracellular signal transduction; immune 
response) 

2.5 0.005 

Polypeptide N-acetylgalactosaminyltransferase 1 (protein 
glycosylation) 

2.5 0.005 

Probable ATP-dependent RNA helicase DDX46 (RNA splicing) 2.5 0.04 

Protein Acin1 (chromatin condensation; apoptotic pathways) 2.5 0.0006 

Heparan sulfate proteoglycan-2; Perlecan (vascular extracellular 
matrix; maintenance of endothelial barrier) 

2.5 0.0001 

Insulin growth factor 2 mRNA binding protein-2 (insulin growth 
factor-2 synthesis) 

2.5 0.004 

Protein RGD1309995 (endosomal transport) 2.5 0.004 

Talin-2 (cell adhesion; cytoskeletal anchoring) 2.5 0.002 

Rattus norvegicus utrophin (actin filament binding) 2.5 0.02 

Superoxide dismutase [Mn], mitochondrial (anti-oxidant) 2.5 0.01 

Gluthathione peroxidase (anti-oxidant) 2.1 0.000003 

Cytochrome C subunit 6B1 (mitochondrial respiration) 2.0 0.0001 

3-ketoacyl-CoA thiolase, mitochondrial (anti-apoptosis; inhibits 
mitochondrial damage) 

2.0 0.02 

Basal cell adhesion molecule (lamin alpha-5 receptor; cell adhesion) 2.0 0.005 

Coronin (phagocytosis)  2.0 0.03 

Keratin, type II cytoskeletal 6A (cytoskeleton; cell proliferation) 2.0 0.001 

Peroxiredoxin-6 (antioxidant; reduction of hydrogen peroxide) 2.0 0.01 

Unconventional myosin-Ic (intracellular movements) 2.0 0.04 

Vesicle-associated membrane protein-associated protein A (vesicle 
trafficking)  

2.0 0.0004 

Endothelial cell selective adhesion molecule (cell adhesion; 
angiogenesis; permeability; leukocyte transmigration)  

1.8 1.3x10-12 

Intercellular adhesion molecule (leukocyte adhesion; leukocyte 
transmigration) 

1.8 2x10-12 

High density lipoprotein binding protein (Vigilin) (binds HDL; regulate 
cholesterol levels)  

 
1.5 

 
6x10-7 

Junctional adhesion molecule (tight junction formation; monocyte 
transmigration; platelet activation)  

1.5 0.000002 

Nitric oxide synthase (NOS3; eNOS) (Nitric oxide biosynthesis) 1.5 0.02 
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Figure 3.28 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Tight junction protein-1 in three control, untreated CMEC samples 

(CMEC1, CMEC2, CMEC3) compared to three control, untreated AEC samples (AEC1, AEC2, AEC3). 

 

Figure 3.28 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of BCL-2 related protein A1B in three control, untreated CMEC samples 

(CMEC1, CMEC2, CMEC3) compared to three control, untreated AEC samples (AEC1, AEC2, AEC3). 
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Table 3.5: Biological processes associated with strongly represented proteins in control, 

untreated CMECs (vs control, untreated AECs) 

Gene Ontology Terms: Biological Processes Fold Enrichment P-value 

GO:0051014~actin filament severing 78.5 0.03 

GO:0051693~actin filament capping 21.4 0.008 

GO:0042744~hydrogen peroxide catabolic process 18.1 0.01 

GO:0030834~regulation of actin filament depolymerization 15.7 0.01 

GO:0042743~hydrogen peroxide metabolic process 13.1 0.003 

GO:0034614~cellular response to reactive oxygen species 12.1 0.004 

GO:0009060~aerobic respiration 11.6 0.005 

GO:0001836~release of cytochrome c from mitochondria 11.2 0.03 

GO:0008637~apoptotic mitochondrial changes 10.8 0.006 

GO:0006099~tricarboxylic acid cycle 10.7 0.03 

GO:0007040~lysosome organization 10.7 0.03 

GO:0031333~negative regulation of protein complex assembly 10.2 0.03 

GO:0046356~acetyl-CoA catabolic process 10.2 0.03 

GO:0007033~vacuole organization 9.5 0.008 

GO:0034599~cellular response to oxidative stress 8.9 0.009 

GO:0019319~hexose biosynthetic process 8.7 0.04 

GO:0045333~cellular respiration 8.6 0.0002 

GO:0046496~nicotinamide nucleotide metabolic process 7.7 0.02 

GO:0034637~cellular carbohydrate biosynthetic process 7.2 0.001 

GO:0045454~cell redox homeostasis 6.2 0.008 

GO:0022900~electron transport chain 5.5 0.01 

GO:0016051~carbohydrate biosynthetic process 4.9 0.007 

GO:0019882~antigen processing and presentation 4.7 0.02 

GO:0007005~mitochondrion organization 4.1 0.01 

GO:0005996~monosaccharide metabolic process 4.1 0.0002 

GO:0006006~glucose metabolic process 4.0 0.002 

GO:0008610~lipid biosynthetic process 2.5 0.03 

GO:0006461~protein complex assembly 2.5 0.006 

GO:0070271~protein complex biogenesis 2.5 0.006 
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Table 3.6: Cellular components associated with strongly represented proteins in control, 

untreated CMECs (vs. control, untreated AECs) 

Gene Ontology Terms: Cellular Components Fold Enrichment P-Value 

GO:0045160~myosin I complex 70.4 0.03 

GO:0031941~filamentous actin 12.4 0.02 

GO:0016328~lateral plasma membrane 11.7 0.03 

GO:0005788~endoplasmic reticulum lumen 6.3 0.008 

GO:0005741~mitochondrial outer membrane 5.1 0.006 

GO:0031980~mitochondrial lumen 4.0 0.0008 

GO:0005759~mitochondrial matrix 4.0 0.0008 

GO:0005764~lysosome 3.9 0.002 

GO:0044432~endoplasmic reticulum part 3.2 0.001 

GO:0005773~vacuole 3.2 0.007 

GO:0044429~mitochondrial part 3.1 0.00003 

GO:0042598~vesicular fraction 3.1 0.002 

GO:0005743~mitochondrial inner membrane 2.9 0.002 

GO:0015629~actin cytoskeleton 2.7 0.03 

GO:0005739~mitochondrion 1.9 0.0001 

GO:0005829~cytosol 1.9 0.0004 

GO:0005856~cytoskeleton 1.7 0.01 

GO:0044430~cytoskeletal part 1.7 0.04 

GO:0005886~plasma membrane 1.3 0.03 
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3.2.2 TNF-α treated AECs and CMECs 

3.2.2.1 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated AECs (compared to control, untreated AECs) 

Differential protein regulation analysis showed that a total of 7 proteins (calculated by 

Scaffold software) and 23 proteins (calculated by Sieve software) respectively were up-

regulated in TNF-α treated AECs vs. control, untreated AECs (as determined by the minimum 

criteria of ≥1.5-fold regulation and p < 0.05). Table 3.7 shows a list of the top up-regulated 

proteins in TNF-α treated AECs vs. control, untreated AECs. In addition to the significantly 

up-regulated proteins, there were 40 proteins that were only detected in TNF-α treated 

AECs.  

Proteins that were up-regulated in response to TNF-α include guanylate binding protein 2 

(3-fold up-regulated; involved in immune response), Superoxide dismutase [Mn] 

mitochondrial (2.8-fold up-regulated; an antioxidant), Cystatin-B (2.8-fold up-regulated; 

protects against cathepsin-B induced protein degradation), sequestosome_1 (2.3-fold up-

regulated; activates NF-kB via TNF-receptor-associated factor 6), Leucine-rich repeat 

flightless-interacting protein 1 (2.2-fold up-regulated; involved in innate immune response 

and regulation of TNF-α expression), Acetyl_CoA acetyltransferase (2-fold up-regulated; 

involved in lipid metabolism), Ras-related protein Ral_B (1.9-fold up-regulated; cell 

membrane trafficking, cell proliferation and anti-apoptosis), Glutaredoxin_3 (1.7-fold; up-

regulated, cell redox homeostasis), Protein NDRG1 (1.7-fold up-regulated; stress response) 

and caspase 3 (1.5-fold up-regulated, involved in initiation of apoptosis) (Table 3.7). 

Differentially regulated protein abundance of Superoxide dismutase [Mn] mitochondrial in 

TNF-α treated AECs compared to control, untreated AECs is shown in Figure 3.29 A. NF-KB 

p49/100 was only detected in TNF-α treated AECs compared to control, untreated AECs as 

shown by a differentially regulated protein abundance graph in Figure 3.29 B.  

Biological processes enriched in TNF-α treated AECs compared to control, untreated AECs as 

determined by the DAVID annotation tool are shown in Table 3.8. These were primarily 

associated with regulation of cell death and included release of cytochrome c from 

mitochondria (37-fold enriched), apoptotic mitochondrial changes (26.9-fold enriched), anti-

apoptosis (8-fold enriched), and negative regulation of apoptosis (4.6-fold enriched).  
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Table 3.7: List of up-regulated proteins in AECs + TNF-α (vs untreated AECs) 

Identified proteins Fold Up P-value 

Guanylate binding protein 2 (immune response) 3.0 9.9x10-20 

Protein Rtcd1 (RNA processing) 3.0 0.03 

Superoxide dismutase [Mn]_ mitochondrial (anti-oxidant) 2.8 8.4x10-10 

Cystatin-B (inhibition of Cathepsin-B: protects proteins against cathepsins 
leaking out of lysosomes) 

2.8 0.03 

Testin (anti-cell proliferation and growth) 2.8 0.03 

Multidrug resistance protein 1a (transmembrane transport) 2.4 0.005 

Sequestosome_1 (activates NF-kB via TNF-receptor-associated factor 6) 2.3 9.9x10-20 

Leucine-rich repeat flightless-interacting protein 1 (innate immune response; 
regulation of TNF expression) 

2.2 0.01 

MHC class I RT1.Au heavy chain (immune response) 2.1 1.2x10-11 

Acetyl_CoA acetyltransferase_ cytosolic (lipid metabolism) 2.0 0.000005 

ATPase_ H_ transporting_ lysosomal 38kDa_ V0 subunit d1 (acidification of 
intracellular organelles necessary for protein sorting and receptor-mediated 
endocytosis) 

1.9 0.02 

Ras_related protein Ral_B (cell membrane traficking; cell proliferation; anti-
apoptosis) 

1.9 8.8x10-8 

Protein Parp14 (immune response) 1.8 0.0002 

AMP deaminase 3 (energy metabolism) 1.7 0.0001 

Protein NDRG1 (Stress response) 1.7 6x10-11 

Glutaredoxin_3 (cell redox homeostasis) 1.7 1.8x10-7 

Peflin (proteolysis) 1.7 0.009 

Heterogeneous nuclear ribonucleoprotein D (mRNA processing and stability) 1.6 0.007 

Afadin (cell-cell junction) 1.6 0.007 

Phenylalanyl_tRNA synthetase_ beta subunit (gene expression; translation) 1.6 0.01 

UDP_glucose 6_dehydrogenase (extracellular matrix) 1.5 8.4x10-8 

Protein Pml (pro-apoptosis) 1.5 0.008 

Basic transcription factor 3 (initiation of transcription) 1.5 6.3x10-7 

Nucleophosmin (ribosome biogenesis) 1.5 2.2x10-15 

Transmembrane protein 43 (nuclear envelope maintenance) 1.5 0.02 

Caspase 3 (initiation of apoptosis) 1.5 2 x 10-8 
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Figure 3.29 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Superoxide dismutase [Mn] mitochondrial in three TNF-α treated AEC 

samples (AEC+TNF1, AEC+TNF2, AEC+TNF3) compared to three control, untreated AEC samples 

(AEC1, AEC2, AEC3). 

 

Figure 3.29 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of NF-KB p49/p100 in three TNF-α treated AEC samples (AEC+TNF1, 

AEC+TNF2, AEC+TNF3) compared to three control, untreated AEC samples (AEC1, AEC2, AEC3). 
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Table 3.8: Biological processes associated with strongly represented proteins in AECs +TNF-α 

samples (vs control, untreated AECs) 

 
Term Fold Enrichment P-value 

GO:0001836~release of cytochrome c from mitochondria 37.1 0.05 

GO:0008637~apoptotic mitochondrial changes 26.9 0.07 

GO:0006916~anti-apoptosis 8.1 0.04 

GO:0006091~generation of precursor metabolites and 
energy 

6.6 0.02 

GO:0043066~negative regulation of apoptosis 4.7 0.04 

GO:0043069~negative regulation of programmed cell death 4.6 0.05 

GO:0060548~negative regulation of cell death 4.6 0.05 

GO:0008219~cell death 3.8 0.08 

GO:0006955~immune response 3.8 0.08 

GO:0042981~regulation of apoptosis 2.9 0.08 

GO:0043067~regulation of programmed cell death 2.8 0.08 

GO:0010941~regulation of cell death 2.8 0.08 

 
 

Functional annotation analysis of Cellular Components in TNF-α-treated AECs vs control, 

untreated AECs did not reveal any significant results. 
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3.2.2.2 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated CMECs (compared to control, untreated CMECs) 

Differential protein regulation analysis showed that a total of 17 proteins (calculated by 

Scaffold software) and 28 proteins (calculated by Sieve software) respectively were up-

regulated in TNF-α treated CMECs vs. control, untreated CMECs (as determined by the 

minimum criteria of ≥1.5-fold regulation and p < 0.05). Table 3.9 shows a list of the top up-

regulated proteins in TNF-α treated CMECs vs. control, untreated CMECs. In addition to the 

significantly up-regulated proteins, there were 61 proteins that were only detected in TNF-α 

treated CMECs.  

In CMECs, TNF-α elicited up-regulation of proteins such as Protein Gbp5 (6-fold up-

regulated; involved in inflammation and immune response), BH3 interacting domain death 

agonist (4.8-fold up-regulated; release of cytochrome C from mitochondria, apoptosis), 

intercellular adhesion molecule 1 (4-fold up-regulated, involved in cell adhesion and 

immune response), guanylate binding protein 2 (3.2-fold up-regulated; immune response), 

protein Tapbp (3-fold up-regulated; involved in regulation of leukocyte-mediated cell 

toxicity), plasminogen activator inhibitor (2.6-fold up-regulated; pro-clotting factor), A1b 

(2.2-fold up-regulated; NF-KB signalling), Protein NDRG1 (2.2-fold up-regulated; stress 

response), and superoxide dismutase [Mn] mitochondrial (2.2-fold up-regulated; 

antioxidant) (Table 3.9). A representation of the differentially regulated protein abundance 

of plasminogen activator inhibitor-1 in TNF-α treated CMECs compared to control, 

untreated CMECs is shown in Figure 3.30 A. NF-KB p49 / p100 was only detected in TNF-α 

treated CMECs compared to control, untreated CMECs as shown in the protein abundance 

graph (Figure 3.30 B).  

Biological processes determined from strongly represented proteins in TNF-α treated CMECs 

by DAVID software annotation tool are listed in Table 3.10. Enriched biological processes in 

TNF-α treated CMECs (compared to control, untreated CMECs) included membrane to 

membrane docking (112-fold enriched), regulation of mitochondrial membrane permeability 

(76.6-fold enriched), release of cytochrome C from my mitochondria (40-fold enriched), 

apoptotic mitochondrial changes (29-fold enriched), regulation of cell-cell adhesion (26.7-

fold enriched), positive regulation of nitric oxide biosynthesis (25.5-fold enriched), and 

leukocyte adhesion (24-fold enriched). 
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Table 3.9: List of up-regulated proteins in CMECs + TNF-α (vs control, untreated CMECs) 

Identified proteins Fold Up P-value 

Protein Gbp5 (inflammation; immune response) 6.0 9.99 x 10-16 

BH3 interacting domain death agonist (cytochrome C release from 
mitochondria; apoptosis) 

4.8 0.006 

Intercellular adhesion molecule 1 (immune response; cell adhesion) 4.0 3.52 x  10-8 

Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1 
(carbohydrate metabolism) 

3.4 0.01 

Guanylate binding protein 2 (immune response) 3.2 0.0004 

Protein Tapbp (regulation of leukocyte-mediated cell toxicity) 3.0 9.9 x 10-20 

Plasminogen activator inhibitor 1 (pro-clotting) 2.6 0.01 

Interleukin 1 family_ member 6 (cytokine / chemokine production) 2.5 5.47 x 10-8 

BH3 interacting domain death agonist (immune response; cell 
adhesion) 

2.5 3.46 x 10-13 

Protein Tapbp (regulation of leukocyte-mediated cell toxicity) 2.5 0.0006 

Plasminogen activator inhibitor 1 (pro-clotting) 2.4 5.77 x 10-7 

A1b (NF-kB signaling) 2.2 9.9 x 10-20 

Protein NDRG1 (stress-response protein; apoptosis) 2.2 0.002 

RT1.A1(F) protein (antigen presentation; immune response) 2.2 9.9 x 10-20 

Superoxide dismutase [Mn]_ mitochondrial (anti-oxidant) 2.2 9.9 x 10-20 

Cathepsin L1 (proteolysis; antigen presenting) 2 0.02 

Catechol O-methyltransferase (catecholamine synthesis; response to 
bacterial molecules) 

1.8 0.02 

3-hydroxyisobutyrate dehydrogenase, mitochondrial (amino acid 
metabolism) 

1.7 0.01 

Protein Parp14 (pro-survival of injured cells) 1.7 0.0001 

Plexin D1 (endothelial cell migration) 1.6 0.0001 

Branched-chain-amino-acid aminotransferase, mitochondrial (amino 
acid metabolism) 

1.5 0.01 

Proteasome subunit beta type-8 (proteolysis) 1.5 0.01 

Protein Serpinb9 (anti-apoptosis) 1.5 2.89 x 10-15 
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Figure 3.30 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Plasminogen activator inhibitor-1 (PAI-1) in three TNF-α treated CMEC 

samples (CMEC+TNF1, CMEC+TNF2, CMEC+TNF3) compared to three control, untreated CMEC 

samples (CMEC1, CMEC2, CMEC3). 

 

Figure 3.30 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of NF-KB p49/p100 in three TNF-α treated CMEC samples (CMEC+TNF1, 

CMEC+TNF2, CMEC+TNF3) compared to three control, untreated CMEC samples (CMEC1, CMEC2, 

CMEC3). 
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Table 3.10: Biological processes associated with strongly represented proteins in CMECs + 
TNF-α (vs control, untreated CMECs) 

Functional annotation analysis of Cellular Components in TNF-α-treated CMECs vs control, 

untreated CMECs did not reveal any significant results. 

  

Term Fold Enrichment P-value 

GO:0022614~membrane to membrane docking 112.4 0.02 

GO:0046902~regulation of mitochondrial membrane permeability 76.6 0.0006 

GO:0051881~regulation of mitochondrial membrane potential 46.8 0.04 

GO:0001836~release of cytochrome c from mitochondria 40.1 0.002 

GO:0008637~apoptotic mitochondrial changes 29.1 0.004 

GO:0002478~antigen processing and presentation of exogenous 
peptide antigen 

28.1 0.07 

GO:0022407~regulation of cell-cell adhesion 26.8 0.07 

GO:0007006~mitochondrial membrane organization 26.5 0.005 

GO:0045429~positive regulation of nitric oxide biosynthetic process 25.6 0.07 

GO:0007159~leukocyte adhesion 24.5 0.07 

GO:0002474~antigen processing and presentation of peptide 
antigen via MHC class I 

24.5 0.07 

GO:0019884~antigen processing and presentation of exogenous 
antigen 

22.5 0.08 

GO:0048002~antigen processing and presentation of peptide 
antigen 

21.6 0.008 

GO:0022406~membrane docking 21.6 0.08 

GO:0045428~regulation of nitric oxide biosynthetic process 20.8 0.08 

GO:0006839~mitochondrial transport 17.9 0.01 

GO:0019882~antigen processing and presentation 16.9 0.0002 

GO:0050900~leukocyte migration 14.8 0.016 

GO:0019221~cytokine-mediated signaling pathway 13.2 0.02 

GO:0030335~positive regulation of cell migration 9.2 0.04 

GO:0051272~positive regulation of cell motion 8.4 0.047 

GO:0006916~anti-apoptosis 7.8 0.01 

GO:0007005~mitochondrion organization 7.4 0.05 

GO:0030155~regulation of cell adhesion 7.0 0.06 

GO:0008283~cell proliferation 5.6 0.01 

GO:0043069~negative regulation of programmed cell death 4.9 0.006 

GO:0060548~negative regulation of cell death 4.9 0.006 

GO:0006886~intracellular protein transport 4.9 0.02 

GO:0006955~immune response 4.8 0.002 

GO:0001775~cell activation 4.6 0.05 

GO:0046907~intracellular transport 4.0 0.006 

GO:0007155~cell adhesion 3.0 0.07 
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3.2.2.3 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated AECs compared to TNF-α treated CMECs 

Differential protein regulation analysis showed that a total of 54 proteins (calculated by 

Scaffold software) and 112 proteins (calculated by Sieve software) respectively were up-

regulated in TNF-α treated AECs vs. TNF-α treated CMECs (as determined by the minimum 

criteria of ≥ 1.5-fold regulation and p < 0.05). Table 3.11 shows a list of the top up-regulated 

proteins in TNF-α treated AECs vs. TNF-α treated CMECs. In addition to the significantly up-

regulated proteins, there were 146 proteins that were only detected in TNF-α treated 

CMECs. 

Proteins that were up-regulated in TNF-α treated AECs compared to TNF-α treated CMECs 

include CD9 molecule (27.7-fold up-regulated; cell adhesion and migration), CD59 

glycoprotein (19.2-fold up-regulated; immune response), D_3_phosphoglycerate 

dehydrogenase (10.6-fold up-regulated; oxidoreductase activity), Galectin (8.7-fold up-

regulated; cell-cell interaction, cell-matrix adhesion, apoptosis), Legumain (5.9-fold up-

regulated; lysosomal protein degradation, antigen presentation), Endothelin-converting 

enzyme 1 (5.2-fold up-regulated; endothelin-1 biosynthesis), Sequestosome_1 (3.6-fold up-

regulated; activation of NF-kB via TNF-receptor associated factor 6), Endothelial_specific 

receptor tyrosine kinase (3.4-fold up-regulated; anti-apoptosis via PKB / Akt activation), 

NAD(P)H dehydrogenase [quinone] 1 (2.7-fold up-regulated; antioxidant activity), 

Glutathione reductase (1.9-fold up-regulated; glutathione reduction, antioxidant activity), 

Programmed cell death 6_interacting protein (1.6-fold up-regulated; regulation of apoptosis 

and cell proliferation),  Angiotensin_converting enzyme (1.5-fold up-regulated; biosynthesis 

of angiotensin II), Caspase 8 (1.5-fold up-regulated, apoptosis) and  Apoptosis regulator BAX 

(1.5-fold up-regulated; facilitates apoptosis) (Table 3.11). Graphical representation of 

differentially regulated protein abundance (measured as normalized total protein spectra) 

are shown below, where endothelin-converting enzyme 1 is up-regulated in TNF-α treated 

AECs compared to TNF-α treated CMECs (Figure 3.31 A), and aldehyde dehydrogenase L1 is 

only detected in TNF-α treated AECs compared to TNF-α treated CMECs (Figure 3.31 B). 

Biological processes associated with strongly represented proteins in TNF-α treated AECs 

compared to TNF-α treated CMECs are shown in Table 3.12, and these include nucleotide-

excision repair, DNA gap filling (36.5-fold enriched), DNA replication initiation (29.2-fold 
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enriched), response to reactive oxygen species (5.2-fold enriched), regulation of 

inflammatory response (4.8-fold enriched), regulation of cell migration (3.5-fold enriched), 

negative regulation of cell death (3.4-fold enriched), and regulation of cell death (2.4-fold 

enriched).  

Cellular components that were enriched in TNF-α treated AECs compared to their CMECs 

counterparts include DNA replication factor C complex (39.5-fold enriched), sarcolemma (5-

fold enriched), receptor complex (4.7-fold enriched), cytoplasmic vesicle membrane (4-fold 

enriched) and Golgi apparatus (2-fold enriched) (Table 3.13). 
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Table 3.11: List of up-regulated proteins in AECs + TNF-α (vs CMECs + TNF-α) 

Identified proteins Fold Up P-value 

CD9 molecule (cell adhesion and migration)  27.7 0.00001 

CD59 glycoprotein (immune response) 19.2 1.9 x 10-13 

D_3_phosphoglycerate dehydrogenase (oxidoreductase activity) 10.6 9.9 x 10-20 

Galectin (cell-cell interaction, cell-matrix adhesion, apoptosis) 8.7 4.2 x 10-11 

Tyrosine-protein kinase (energy metabolism)  8.0 0.009 

Embigin (cell adhesion)  7.6 1.6 x 10-14 

Biliverdin reductase A ( glucose metabolism; cell growth and antioxidant) 7.5 2.3 x 10-7 

Legumain (lysosomal protein degradation; antigen presentation) 5.9 1.2 x 10-6 

Adenosine deaminase (immune response) 5.3 0.01 

Endothelin-converting enzyme 1 (endothelin-1 biosynthesis) 5.2 0.003 

Cytosolic 10_formyltetrahydrofolate dehydrogenase (oxidoreductase 
activity) 

4.5 9.9 x 10-20 

Glutathione S_transferase mu 4 (glutathione binding and transferase 
activity) 

4.3 1.3981E-05 

Insulin-degrading enzyme (cleavage of polypeptides including insulin) 4.1 0.02 

Importin subunit alpha (importation of proteins into the nucleus)  4.0 0.005 

Integrin beta (cell adhesion)  3.9 1.9 x 10-6 

Asparagine synthetase [glutamine-hydrolyzing] (asparagine synthesis) 3.8 0.003 

Protein Stom (regulation of ion channels) 3.8 1 x 10-7 

Sequestosome_1 (activates NF-KB via TRAF6) 3.6 9.9 x 10-20 

Cyclin-dependent kinase 1 (regulates cell cycle) 3.6 0.01 

Fatty acid synthase (synthesis of long-chain fatty acids) 3.6 0.007 

Catechol_O_methyltransferase (degradation of catecholamines) 3.6 4 x 10-8 

Fermt3 protein (cell-cell adhesion; leukocyte adhesion; plate aggregation) 3.5 0.008 

Protein S100_A4 (cell cycle progression and differentiation)  3.5 0.0002 

Endothelial_specific receptor tyrosine kinase (anti-apoptosis via PKB/Akt)  3.4 1 x 10-8 

DNA replication licensing factor MCM6 (DNA replication) 3.2 0.004 

Protein Mcm2 (DNA replication)  3.1 0.009 

Glutathione S_transferase Mu 1 (glutathione binding and transferase 
activity) 

2.9 0.0009 

Dusp3 protein (inactivation of mitogen activated protein kinases)  2.8 0.03 

Protein Larp1 (cell growth and proliferation) 2.8 0.03 

Protein Mcm4 (DNA replication) 2.8 0.04 

Protein Cmip (immune response) 2.7 1 x 10-13 

NAD(P)H dehydrogenase [quinone] 1 (antioxidant activity) 2.7 9.9 x 10-20 

UDP_glucose 6_dehydrogenase (biosynthesis of extracellular matrix 
components)  

2.7 6.9 x 10-6 

Protein Syne3 (cytoskeletal anchoring) 2.6 8 x 10-7 

Protein Lrrc32 (negative regulation of cytokine production) 2.6 1.8 x 10-9 

Anoctamin (anion transport and smooth muscle contraction) 2.6 0.03 

Cb1-727 (DNA replication) 2.6 0.0004 
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Table 3.11 (continued): List of up-regulated proteins in AECs + TNF-α (vs CMECs + TNF-α) 

Identified proteins Fold Up P-value 

Protein Epb41l2 (regulation of cell structural integrity)  2.6 0.02 

Proliferating cell nuclear antigen (DNA replication) 2.4 9.9 x 10-20 

S100 calcium binding protein A10 (protein phosphorylation) 2.4 9.9 x 10-20 

Nuclear autoantigenic sperm protein (DNA replication and cell growth) 2.4 0.04 

Peptidyl-prolyl cis-trans isomerase FKBP4 (Heat shock protein 90 binding) 2.4 0.02 

Podocalyxin (cell adhesion and migration) 2.3 0.0007 

Eukaryotic translation initiation factor 6 (ribosome binding) 2.2 1 x 10-16 

CTP synthase (DNA synthesis, immune response) 2.2 1.3 x 10-7 

Ribose_phosphate pyrophosphokinase 2 (nucleotide synthesis) 2.2 6.6 x 10-5 

FK506 binding protein (endocytosis, protein folding) 2.2 0.002 

Tyrosine--tRNA ligase, cytoplasmic (interleukin-8 receptor binding) 2.2 0.001 

Chloride intracellular channel protein 5 (ion absorption and secretion) 2.2 9 x 10-5 

Hypoxanthine_guanine phosporibosyltransferase (nucleotide synthesis) 2.1 2.6 x 10-8 

Aldehyde dehydrogenase, dimeric NADP-preferring (detoxification; 
oxidation of toxic aldehydes)  

2.1 0.03 

Cysteinyl-tRNA synthetase (gene expression; protein synthesis)  2.1 0.001 

Proteasome (Prosome, macropain) 26S subunit, non-ATPase, 5 (protein 
folding)  

2.1 0.01 

Ornithine aminotransferase_ mitochondrial (amino acid biosynthesis) 2.1 2.5 x 10-15 

Neuronal guanine nucleotide exchange factor (activation of RhoA, Rac1 
and CDC42) 

2.0 0.005 

Sodium_coupled neutral amino acid transporter 2 (ion and amino acid 
transport)  

2.0 2.8 x 10-6 

Annexin (anticoagulant protein) 2.0 9.9 x 10-20 

Cysteine-rich protein 1 (zinc absorption and transport)  2.0 0.004 

Phosphoserine aminotransferase (amino acid biosynthesis)  2.0 0.003 

Tyrosine-protein phosphatase non-receptor type 23 (endosome sorting) 2.0 0.03 

Glutamate cysteine ligase modifier subunit (glutathione synthesis)  2.0 0.0002 

4F2 cell_surface antigen heavy chain (transport of L-arginine)  2.0 1.2 x 10-10 

Calpain_1 catalytic subunit (proteolysis of proteins associated with 
cytoskeletal remodelling)  

2.0 1.1 x 10-6 

Tyrosine__tRNA ligase_ cytoplasmic (interleukin-8 receptor binding) 2.0 1.4x10-6 

Glutathione reductase (glutathione reduction, antioxidant activity)  1.9 0.0002 

Ribose_phosphate pyrophosphokinase 1 (nucleotide synthesis) 1.9 2.6 x 10-8 

Protein Thbd (endothelial cell receptor, thrombin reduction)  1.9 0.01 

Copine 3 protein (membrane trafficking) 1.9 5.6 x 10-11 

Multidrug resistance protein 1a (resistance against drugs and toxins, 
transpoter in blood-brain barrier) 

1.8 1.4 x 10-14 

Protein DEK (chromatin organization)  1.8 7.8 x 10-11 

GMP synthase [glutamine_hydrolyzing] (guanine nucleotides synthase)  1.8 5.6 x 10-5 

Basic leucine zipper and W2 domain_containing protein 1 (transcription) 1.8 0.0005 
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Table 3.11 (continued): List of up-regulated proteins in AECs + TNF-α (vs CMECs + TNF-α) 

Identified proteins  Fold Up P-value 

Isocitrate dehydrogenase [NADP]_ mitochondrial (energy metabolism)  1.8 9.9 x 10-20 

Minichromosome maintenance protein 7 (DNA replication) 1.8 7.6 x 10-6 

Acyl-CoA-binding protein (carrier of acyl-CoA esters, neuropeptide) 1.8 0.03 

Phosphoribosylglycinamide formyltransferase (AMP and GMP formation) 1.8 0.03 

Secretory carrier-associated membrane protein 1 (endocytosis) 1.8 0.001 

Ataxin_10 (intracellular glycosylation homeostasis)  1.8 9.9 x 10-20 

Acyl_CoA thioesterase 7 (lipid homeostasis) 1.8 9.9 x 10-20 

G protein_coupled receptor_ family C_ group 5_ member A 1.8 1.3 x 10-9 

Annexin A1 (exocytosis)  1.8 9.9 x 10-20 

Niban_like protein 1 (anti-apoptosis)  1.8 9.9 x 10-20 

Phospholipase D3 (cell death, lipid degradation)  1.7 2 x 10-14 

Programmed cell death 6_interacting protein (regulation of apoptosis and 
cell proliferation ) 

1.6 9.9 x 10-20 

Angiotensin_converting enzyme (biosynthesis of angiotensin II) 1.5 9.9 x 10-20 

Caspase 8 (apoptosis) 1.5 0.007 

Apoptosis regulator BAX (facilitates apoptosis) 1.5 1.8 x 10-6 
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Figure 3.31 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Endothelin-converting enzyme 1 in three TNF-α treated AEC samples 

(AEC+TNF1, AEC+TNF2, AEC+TNF3) compared to three TNF-α-treated CMEC samples (CMEC+TNF1, 

CMEC+TNF2, CMEC+TNF3). 

 

Figure 3.31 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Aldehyde dehydrogenase L1 in three TNF-α treated AEC samples 

(AEC+TNF1, AEC+TNF2, AEC+TNF3) compared to three TNF-α-treated CMEC samples (CMEC+TNF1, 

CMEC+TNF2, CMEC+TNF3).  
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Table 3.12: Biological processes associated with strongly represented proteins in AECs + 

TNF-α (vs CMECs + TNF) 

 

 

 

 

 

 

 

 

 

  

Term Fold Enrichment P-value 

GO:0006297~nucleotide-excision repair, DNA gap filling 36.6 4 x 10-7 

GO:0006270~DNA replication initiation 29.3 0.004 

GO:0046112~nucleobase biosynthetic process 29.3 0.004 

GO:0043200~response to amino acid stimulus 12.2 0.004 

GO:0000302~response to reactive oxygen species 5.3 0.01 

GO:0016485~protein processing 4.9 0.02 

GO:0050727~regulation of inflammatory response 4.8 0.047 

GO:0046394~carboxylic acid biosynthetic process 4.6 0.004 

GO:0006732~coenzyme metabolic process 4.3 0.005 

GO:0006887~exocytosis 4.2 0.03 

GO:0002252~immune effector process 4.0 0.03 

GO:0006979~response to oxidative stress 3.7 0.01 

GO:0006281~DNA repair 3.7 0.01 

GO:0030334~regulation of cell migration 3.5 0.03 

GO:0043066~negative regulation of apoptosis 3.5 0.00006 

GO:0043069~negative regulation of programmed cell death 3.5 0.0007 

GO:0060548~negative regulation of cell death 3.5 0.0007 

GO:0033554~cellular response to stress 2.5 0.01 

GO:0042981~regulation of apoptosis 2.4 0.001 

GO:0043067~regulation of programmed cell death 2.4 0.001 

GO:0010941~regulation of cell death 2.4 0.001 
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Table 3.13: Cellular components associated with strongly represented proteins in AECs + 

TNF-α (vs CMECs + TNF-α) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Term Fold Enrichment P-value 

GO:0005663~DNA replication factor C complex 39.5 0.049 

GO:0042383~sarcolemma 5.5 0.04 

GO:0043235~receptor complex 4.7 0.02 

GO:0045121~membrane raft 4.3 0.005 

GO:0030659~cytoplasmic vesicle membrane 4.0 0.03 

GO:0005635~nuclear envelope 3.6 0.02 

GO:0009986~cell surface 3.2 0.002 

GO:0012505~endomembrane system 2.2 0.01 

GO:0005794~Golgi apparatus 2.1 0.02 

GO:0005886~plasma membrane 1.4 0.02 
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3.2.2.4 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated CMECs compared to TNF-α treated AECs 

Differential protein regulation analysis showed that a total of 116 proteins (calculated by 

Scaffold software) and 150 proteins (calculated by Sieve software) respectively were up-

regulated in TNF-α treated CMECs vs. TNF-α treated AECs (as determined by the minimum 

criteria of ≥1.5-fold regulation and p < 0.05). Table 3.14 shows a list of the top up-regulated 

proteins in TNF-α treated CMECs vs. TNF-α treated AECs. In addition to the significantly up-

regulated proteins, there were 166 proteins that were only detected in TNF-α treated 

CMECs. 

Up-regulated proteins in TNF-α-treated CMECs (compared to TNF-α-treated AECs) include: 

Ectonucleoside triphosphate diphosphohydrolase 1 (75.2-fold enriched; inhibition of 

platelet aggregation), cGMP_dependent 3_5_cyclic phosphodiesterase (46.7-fold up-

regulated; cAMP and cGMP activity), Protein LOC100909685 (34-fold up-regulated; motor 

activity), A1b (Fragment) (28.3-fold up-regulated; antigen presentation), Protein Lamc1 (20-

fold up-regulated extracellular matrix), Prostaglandin G/H synthase 1 (16-fold up-regulated; 

prostanoids biosynthesis), Protein Pxdn (14.5-fold up-regulated; breakdown of hydrogen 

peroxide), Interleukin 1 family_member 6 (6.1-fold up-regulated; inflammatory cytokine), 

Procollagen_type XVIII_ alpha 1 (6-fold up-regulated; cell adhesion, migration, apoptosis), 

Mitochondrial carrier homolog 2 (C. elegans) (5-fold up-regulated; mitochondrial membrane 

permeability and apoptosis), Rho guanine nucleotide exchange factor 2 (5-fold up-regulated; 

NF-KB activation, immune response), von Willebrand factor (5-fold up-regulated; pro-

clotting factor), Platelet endothelial cell adhesion molecule (3.5-fold up-regulation; cell 

adhesion, leukocyte migration, platelet activation), Poly (ADP-ribose) polymerase family, 

member 3 (3.3-fold up-regulated; inflammatory gene expression and cell death), and 

Intercellular adhesion molecule 1 (3.1-fold up-regulated; leukocyte adhesion and migration) 

(Table 3.14).  

Figure 3.32-A shows a graphical illustration of differentially regulated protein abundance of 

Platelet endothelial cell adhesion molecule in TNF-α treated CMECs compared to TNF-α 

treated AECs. Plexin D1 was only detected in TNF-α treated CMECs compared to TNF-α 

treated AECs, as shown by the differentially regulated protein abundance graph in Figure 

3.32 B.  
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Biological processes (as determined by functional annotation analysis) that were 

significantly enriched in TNF-α treated CMECs compared to their AECs counterparts are 

listed in Table 3.15. These include actin filament severing (83.3-fold enriched), peptide 

antigen transport (83.3-fold enriched), protection from natural killer cell mediated 

cytotoxicity (55.5-fold enrichment), release of cytochrome c from mitochondria (11.9-fold 

enriched), apoptotic mitochondrial changes (8.6-fold enriched), and glutathione metabolic 

process (8.6-fold enriched). Table 3.16 shows the cellular components associated with 

strongly represented proteins in TNF-α treated CMECs vs. TNF-α treated AECs, which 

include: MHC class I peptide loading complex (58.1-fold enriched), integral to mitochondrial 

inner membrane (51.6-fold enriched), and endoplasmic reticulum lumen (11-fold enriched).  
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Table 3.14: List of up-regulated proteins in CMECs + TNF-α (vs AECs + TNF-α) 

Identified proteins Fold Up P-value 

Ectonucleoside triphosphate diphosphohydrolase 1 (inhibition of platelet 
aggregation)  

75.2 8 x 10-14 

cGMP_dependent 3_5_cyclic phosphodiesterase (cAMP and cGMP 
activity) 

46.7 0.00005 

Protein LOC100909685 (motor activity)  34.0 0.003 

A1b (Fragment) (antigen presentation)  28.3 9.9 x 10-20 

Protein Lamc1 (extracellular matrix) 20.0 0.001 

Prostaglandin G/H synthase 1 (prostanoids biosynthesis)  16.0 9.9 x 10-20 

Scinderin (exocytosis) 15.1 0.015 

Antigen_presenting glycoprotein CD1d (immune response) 14.9 1.5 x 10-8 

Protein Pxdn (breakdown of hydrogen peroxide) 14.5 9.9 x 10-20 

Elongation factor Tu_ mitochondrial (protein synthesis) 12.5 1.9 x 10-15 

Laminin, alpha 5 (extracellular matrix) 11.1 0.0001 

Plexin D1 (cell migration) 10.1 2.5 x 10-14 

Liver carboxylesterase 4 (hydrolase activity, detoxification processes)  10.0 0.0003 

1_phosphatidylinositol 4_5_bisphosphate phosphodiesterase gamma_2 
(transmembrane signalling)  

8.8 0.003 

Protein Hspg2 (extracellular matrix) 6.5 9.9 x 10-20 

Interleukin 1 family_ member 6 (inflammatory cytokine) 6.1 0.01 

Procollagen_ type XVIII_ alpha 1 (cell adhesion; migration; apoptosis)  6.0 9.9 x 10-20 

Unconventional myosin_Id (microfilament movements) 5.6 4.7 x 10-11 

Nidogen_1 (extracellular matrix binding)  5.3 0.004 

Protein Alyref (gene expression) 5.3 2.1 x 10-8 

Ab2-417 (ferric ion binding) 5.0 0.001 

AMP deaminase 3 (energy metabolism)  5.0 0.0003 

LOC679149 protein (hydrolase activity)  5.0 0.0001 

LOC683667 protein (calcium ion binding) 5.0 0.01 

Mitochondrial carrier homolog 2 (C. elegans) (mitochondrial membrane 
permeability and apoptosis)  

5.0 0.03 

Neutral cholesterol ester hydrolase 1 (hydrolysis, lipid degradation)  5.0 0.009 

Protein Cgnl1 (motor activity)  5.0 0.006 

Protein Ptpn12 (protein dephosphorylation)  5.0 0.009 

Protein Tjp1 (cell-cell junction assembly, apoptosis)  5.0 0.001 

Rho guanine nucleotide exchange factor 2 (NF-KB activation ) 5.0 0.005 

von Willebrand factor (pro-clotting factor) 5.0 0.002 

Protein phosphatase 1F (PP2C domain containing) (apoptosis) 4.1 9.9 x 10-20 

Acyl_protein thioesterase 2 (lipid hydrolysis) 3.8 0.0009 

Platelet endothelial cell adhesion molecule (cell adhesion; leukocyte 
migration; platelet activation) 

3.5 9.9 x 10-20 

Activated RNA polymerase II transcriptional coactivator p15 
(transcription) 

3.5 8.7 x 10-15 
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Table 3.14 (continued): List of up-regulated proteins in CMECs + TNF-α (vs AECs + TNF-α) 

Identified proteins Fold Up P-value 

BH3 interacting domain death agonist (apoptosis)             3.4 4.1 x 10-11 

2 '-5 ' oligoadenylate synthetase 1K (immune response; antiviral enzyme)             3.3 0.02 

A-kinase anchor protein 2 (PKA binding protein)             3.3 0.005 

Arhgef7 protein (Fragment) (membrane ruffling; cell attachment and 
migration) 

            3.3 0.02 

Cathepsin L1 (lysosomal protein degration)             3.3 0.03 

Ddx17 protein (regulation of transcription)              3.3 0.01 

Laminin subunit beta-2 (cell attachment, migration and organization)             3.3 0.004 

Lipoma-preferred partner homolog (cell adhesion)             3.3 0.01 

Mitochondrial carnitine/acylcarnitine carrier protein (shuttling of 
acylcarnitines during fatty acid oxidation) 3.3 0.03 

Poly (ADP-ribose) polymerase family, member 3 (inflammatory genes 
expression and cell death) 3.3 0.002 

SH3 and multiple ankyrin repeat domains protein 3 (dendritic spice and 
synapse formation) 3.3 0.03 

SPARC (regulation of cell growth) 3.3 0.0003 

Vasp protein (cytoskeletal remodelling)  3.3 0.  03 

Rho GTPase_activating protein 29 (attenuates RhoA signalling) 3.2 0.0005 

Coactosin_like protein (actin binding protein, actin cytoskeleton 
regulation) 3.2 8.5 x 10-7 

Intercellular adhesion molecule 1 ( leukocyte adhesion and migration)  3.1 6 x 10-7 

Peroxiredoxin_6 (redox regulation; reduction of hydrogen peroxide)  3.1 9.9 x 10-20 

Protein Tapbp (immune response)  3.1 9.9 x 10-20 

Guanylate binding protein 2 (immune response) 3.1 9.9 x 10-20 

Plasminogen activator inhibitor 1 (inhibition of fibrinolysis)  2.9 5.2 x 10-6 

Protein LOC100912203 (redox regulation)  2.9 1.6 x 10-10 

Protein Gbp5 (inflammatory response)  2.9 9.9 x 10-20 

Guanine nucleotide_binding protein subunit gamma (Fragment) (G-
protein coupled receptor signalling)  2.8 1.6 x 10-6 

Dedicator of cytokinesis 6 (guanine nucleotide exchange factor)  2.7 0.0005 

Canopy 4 homolog (Zebrafish) 2.7 0.000001 

Calmodulin (calcium binding, enzymatic stimulation)  2.5 9.9 x 10-20 

15 kDa selenoprotein (redox regulation; regulation of protein folding)  2.5 0.03 

1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 
(cell migration)  

2.5 0.01 

3'(2'),5'-bisphosphate nucleotidase 1 (hydrolysis of adenosine 3’,5’ 
biphosphate) 

2.5 0.03 

3-ketoacyl-CoA thiolase, mitochondrial (anti-apoptosis; anti-
mitochondrial damage)  

2.5 0.01 

Arylsulfatase B (breakdown of sulfates) 2.5 0.005 

C-terminal-binding protein 2 (transcription repressor) 2.5 0.03 
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Table 3.14 (continued): List of up-regulated proteins in CMECs + TNF-α (vs AECs + TNF-α) 

Identified proteins Fold Up  P-value 

Fermitin family homolog 2 (Drosophila) (cell-extracellular matrix 
adhesion)  

 
2.5 

 
0.01 

Gba protein (anti-inflammation) 2.5 0.01 

GDP-mannose 4, 6-dehydratase (mannose metabolism) 2.5 0.003 

Granulin (inflammatory response)  2.5 0.004 

Heat shock protein 70kDa 12B (stress response) 2.5 0.009 

Protein Col4a1 (anti-angiogenesis)  2.5 0.01 

Protein FAM65A 2.5 0.02 

Protein Smarcc2 (gene transcription)  2.5 0.008 

Protein Tmtc3 (cell development)  2.5 0.03 

Sideroflexin-1 (iron component transport)  2.5 0.006 

UDP-glucose 4-epimerase (carbohydrate metabolism)  2.5 0.008 

V-type proton ATPase subunit B, brain isoform (cell acidification)  2.5 0.003 

Hsc70_interacting protein (interaction of heat shock protein 90 and 70) 2.4 1.3 x 10-11 

APEX (Fragment) 2.4 4 x 10-8 

Tricarboxylate transport protein_ mitochondrial (energy metabolism)  2.4 0.00002 

Astrocytic phosphoprotein PEA_15 (anti-apoptosis) 2.4 7.4 x 10-9 

LIM and senescent cell antigen_like domains 1 isoform E (cell adhesion) 2.4 0.000001 

Gelsolin (actin filament assembly, anti-apoptosis)  2.1 9.9 x 10-20 

Glutathione peroxidase (anti-oxidative; reduction of hydrogen peroxide)   2.1 2.6x10-5 

Lactadherin (phagocytic clearance of apoptotic cells)  2.1 5.5 x 10-12 
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Figure 3.32 A: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Platelet endothelial cell adhesion molecule in three TNF-α treated CMEC 

samples (CMEC+TNF1, CMEC+TNF2, CMEC+TNF3) compared to three TNF-α-treated AEC samples 

(AEC+TNF1, AEC+TNF2, AEC+TNF3). 

 

Figure 3.32 B: Graph showing the differentially regulated protein abundance (measured as 

normalised total spectra) of Plexin D1 in three TNF-α treated CMEC samples (CMEC+TNF1, 

CMEC+TNF2, CMEC+TNF3) compared to three TNF-α-treated AEC samples (AEC+TNF1, AEC+TNF2, 

AEC+TNF3). 
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Table 3.15: Biological processes associated with strongly represented proteins in CMECs + 

TNF-α (vs AECs + TNF-α) 

 

 

 

 

 

  

Term Fold Enrichment P-value 

GO:0051014~actin filament severing 83.4 0.02 

GO:0046968~peptide antigen transport 83.4 0.02 

GO:0042270~protection from natural killer cell mediated 
cytotoxicity 

55.6 0.04 

GO:0019883~antigen processing and presentation of 
endogenous antigen 

55.6 0.04 

GO:0002475~antigen processing and presentation via MHC 
class Ib 

41.7 0.002 

GO:0001916~positive regulation of T cell mediated cytotoxicity 20.8 0.008 

GO:0019884~antigen processing and presentation of 
exogenous antigen 

16.7 0.0002 

GO:0001914~regulation of T cell mediated cytotoxicity 16.7 0.01 

GO:0002711~positive regulation of T cell mediated immunity 12.5 0.02 

GO:0001836~release of cytochrome c from mitochondria 11.9 0.02 

GO:0006099~tricarboxylic acid cycle 11.4 0.03 

GO:0046356~acetyl-CoA catabolic process 10.9 0.03 

GO:0001912~positive regulation of leukocyte mediated 
cytotoxicity 

10.4 0.03 

GO:0019882~antigen processing and presentation 10.0 5.8 x 10-7 

GO:0006695~cholesterol biosynthetic process 10.0 0.03 

GO:0022406~membrane docking 9.6 0.04 

GO:0031341~regulation of cell killing 9.5 0.008 

GO:0009060~aerobic respiration 9.3 0.04 

GO:0008637~apoptotic mitochondrial changes 8.6 0.046 

GO:0006749~glutathione metabolic process 8.6 0.046 

GO:0006839~mitochondrial transport 7.1 0.02 

GO:0034637~cellular carbohydrate biosynthetic process 5.1 0.04 

GO:0016042~lipid catabolic process 3.7 0.02 

GO:0055114~oxidation reduction 2.3 0.002 
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Table 3.16: Cellular components associated with strongly represented proteins in CMECs + 

TNF-α (vs AECs + TNF-α) 

 

 

 

 

 

 

 

 

 

  

Term Fold Enrichment P-value 

GO:0042824~MHC class I peptide loading complex 58.9 0.0009 

GO:0031305~integral to mitochondrial inner membrane 51.7 0.04 

GO:0005788~endoplasmic reticulum lumen 11.1 0.000006 

GO:0000502~proteasome complex 5.7 0.03 

GO:0044432~endoplasmic reticulum part 5.0 2.2 x 10-7 

GO:0044455~mitochondrial membrane part 4.6 0.02 

GO:0005743~mitochondrial inner membrane 4.1 0.00001 

GO:0031980~mitochondrial lumen 3.9 0.001 

GO:0005759~mitochondrial matrix 3.9 0.001 

GO:0005792~microsome 3.8 0.0001 

GO:0042598~vesicular fraction 3.7 0.0002 

GO:0000323~lytic vacuole 3.3 0.01 

GO:0005764~lysosome 3.3 0.01 

GO:0005773~vacuole 2.8 0.04 

GO:0005768~endosome 2.6 0.03 

GO:0005624~membrane fraction 1.9 0.009 
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3.3 Rat aortic ring isometric tension studies (ex vivo studies) 

3.3.1 Biometric data 

Total rat body weight 

Male Wistar rats were placed on a high fat (HFD) diet or normal rat chow diet for 16 and 24 

weeks respectively. At 16 weeks, HFD rats weighed significantly more compared to their 

time-matched lean controls: Lean (423.6 ± 13.23 g) vs. HFD (497.7 ± 9.9 g), p < 0.05, N = 15 

(Figure 3.33). Similarly at 24 weeks, HFD rats exhibited significantly greater total body 

weights compared to time-matched lean control rats: Lean (434 ± 5.9 g) vs. HFD (503.7 ± 8.5 

g), p < 0.05, N = 33 (Figure 3.34).  

Intra-peritoneal fat weight 

At 16 weeks, the intra-peritoneal (IP) fat weight was  2-fold greater in HFD rats compared 

to lean control rats: Lean (11.7 ± 1.1 g) vs. HFD (22.6 ± 1.4 g), p < 0.05, N = 10 (Figure 3.35). 

Similar differences were observed for rats on the 24 week diet: Lean (21.4 ± 0.9 g) vs. HFD 

(39.7 ± 1.5), p < 0.05, N = 33 (Figure 3.36). 
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Figure 3.33: Total body weights of lean and HFD rats after 16 weeks. *p < 0.05 Lean vs. HFD. 
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Figure 3.34: Total body weights of lean and HFD rats after 24 weeks. *p < 0.05 Lean vs. HFD. 

  

Stellenbosch University  https://scholar.sun.ac.za



185 | P a g e  
 

16 weeks IP fat mass

Le
an

H
FD

0

10

20

30 *

M
a
s
s
 (

g
r
a
m

s
)

 

Figure 3.35: Intra-peritoneal fat mass in lean and HFD rats after 16 weeks. *p < 0.05 Lean vs. HFD. 
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Figure 3.36: Intra-peritoneal fat mass in lean and HFD rats after 24 weeks. *p < 0.05 Lean vs. HFD. 
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3.3.2 Baseline isometric tension studies in aortic rings from Lean and HFD (16 weeks) 

Aortic rings isolated from HFD rats showed pro-contractile effects in response to 

phenylephrine (PE) administration compared to aortic rings isolated from lean rats (p = 

0.0012, N = 7) (Figure 3.37). However, there were no significant differences observed in 

acetylcholine (Ach)-induced relaxation in aortic rings isolated from HFD rats compared to 

lean rats (Figure 3.38). 
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Figure 3.37: Phenylephrine-induced aortic ring contraction in lean and HFD groups (16 weeks).  
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Figure 3.38: Acetylcholine-induced aortic ring relaxation in lean and HFD groups (16 weeks).  
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3.3.3 Effects of ex vivo oleanolic acid (OA) administration on aortic ring contraction and 

relaxation from lean and HFD rats (16 weeks) 

3.3.3.1 OA administration (aortic rings from lean rats) 

OA was administered into the organ bath 15 minutes prior to the standard PE-induced 

contraction and Ach-induced relaxation protocol. Although a pro-contractile response to PE-

was observed in aortic rings exposed to OA administration compared to control rings (p = 

0.02, N = 4-9 per group), the rings receiving DMSO vehicle administration demonstrated a 

similar pro-contractile effect, which was not significantly different from the OA rings. 

Therefore it appears as if the response observed in the OA pre-treatment rings was due to a 

vehicle effect rather than the drug per se (Figure 3.39). The Ach-induced relaxation data 

showed that there were no significant differences between any of the groups (p > 0.05, N = 

4-9 per group) (Figure 3.40).  
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Figure 3.39: Phenylephrine-induced contraction in aortic rings from lean animals (16 weeks) exposed 

to OA administration. *p = 0.02: OA administration vs. lean control. 
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Figure 3.40: Acetylcholine-induced relaxation in aortic rings from lean animals (16 weeks) exposed to 

OA administration. 
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3.3.3.2 OA administration (aortic rings from HFD rats) 

In the aortic rings of HFD rats, OA administration prior to the PE protocol induced significant 

anti-contractile effects compared to HFD control rings, which was not influenced by the 

vehicle (p = 0.03 N = 4–9 per group) (Figure 3.41). The Ach-induced relaxation data showed 

that there were no significant differences between any of the groups (Figure 3.42).  
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Figure 3.41: Phenylephrine-induced contraction in aortic rings from HFD animals (16 weeks) exposed 

to OA administration. *p = 0.03: OA administration vs. HDF control.  
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Figure 3.42: Acetylcholine-induced relaxation in aortic rings from HFD animals (16 weeks) exposed to 

OA administration.  
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3.3.4 Effects of ex vivo oleanolic acid (OA) administration on aortic ring contraction and 

relaxation from lean and HFD rats (24 weeks) 

3.3.4.1 OA administration (aortic rings from lean rats) 

OA administration resulted in a significantly anti-contractile response in aortic rings from 

lean rats compared to control rings (p < 0.0001 N = 4-7). Although the graphs may suggest 

that a vehicle effect was at play, statistical analysis showed that the areas under the curve 

of the OA pre-treatment and vehicle groups differed significantly, which indicated an 

additive effect exerted by OA per se (Figure 3.43). From the relaxation data, it is clear that 

OA administration exerted significant pro-relaxation responses compared to both lean 

control and vehicle-treated rings (p = 0.007 N = 4-7) (Figure 3.44).  As a general observation, 

the % ACh-induced relaxation in the rings of the lean control animals was poor (<50 % 

relaxation at the final cumulative Ach concentration). This was most likely due age-

dependent factors, as is clearly demonstrated when compared to the relaxation of control 

rings isolated from younger rats (± 4 weeks old) (Figure 3.44).  
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Figure 3.43: Phenylephrine-induced contraction in aortic rings from lean animals (24 weeks) exposed 

to OA administration.*p = 0.05: OA administration vs. vehicle (DMSO), **p < 0.0001: OA 

administration vs. lean control.  
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Figure 3.44: Acetylcholine-induced relaxation in aortic rings from lean animals (24 weeks) exposed to 

OA administration.*p = 0.007: OA administration vs. lean control vs. OA vehicle (DMSO). 
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3.3.4.2 OA administration (aortic rings from HFD rats) 

Although OA administration resulted in pro-contractile effects in aortic rings isolated from 

HFD rats (24 weeks), this response was due to a vehicle effect exerted by the DMSO vehicle 

(Figure 3.45). Ach-induced relaxation was significantly impaired in aortic rings exposed to 

OA administration compared to HFD control rings (p < 0.0001, N = 4-8 per group) (Figure 

3.46).  
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Figure 3.45: Phenylephrine-induced contraction in aortic rings from HFD animals (24 weeks) exposed 

to OA administration.* p = 0.003: OA administration and OA vehicle (DMSO) vs. HFD control rings. 
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Figure 3.46: Acetylcholine-induced relaxation in aortic rings from HFD animals (24 weeks) exposed to 

OA administration.*p < 0.0001: OA administration vs. HFD control rings. 
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3.3.5 Effects of direct OA administration on rat aortic rings (24 weeks) 

To assess the direct effects OA on aortic ring relaxation, the routine Ach administration 

protocol was replaced with three aliquots of OA administered into the organ bath in a 

cumulative fashion (10, 10 and 20 µM; final concentration: 40 µM) following pre-contraction 

with phenylephrine. The results showed that direct OA administration had no relaxing 

effects on lean or HFD rats (Figure 3.47). 
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Figure 3.47: Direct, cumulative administration of OA after phenylephrine pre-contraction to assess 

possible pro-relaxation effects in aortic rings from lean and HFD rats. 
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Chapter 4 

Summary and Discussion of Data 

4.1 Cell culture studies (in vitro models) 

4.1.1 Summary of findings 

4.1.1.1 Baseline findings 

Endothelial heterogeneity was investigated by comparing NO and ROS production in control, 

untreated AECs and CMECs at baseline conditions. The summarised findings are as follows: 

 Baseline NO levels did not differ between AECs and CMECs (Figure 3.2), 

 Baseline ONOO- levels were higher in CMECs compared to AECs (Figure 3.3 A), 

 Baseline H2O2 levels were higher in AECs compared to CMECs (Figure 3.3 B).  

 

4.1.1.2 Endothelial injury induction findings  

In this study, TNF-α, an inflammatory cytokine and a major mediator of endothelial 

activation, was used to simulate a state of endothelial injury in our in vitro cell culture 

models. Concentration-response curves were conducted by incubating both AECs and 

CMECs with 0.5, 5 and 20 ng/ml TNF-α for 24 and 48 hours. Decreased intracellular NO 

production, and increased ONOO-, H2O2 production and cellular necrosis were regarded as 

the primary markers of endothelial injury. The responses of AECs and CMECs to TNF-α were 

compared using the primary end points or makers of endothelial injury mentioned above. 

The summarised findings are as follows:  

NO production 

AECs: All TNF-α concentrations (0.5, 5, 20 ng/ml TNF-α) significantly decreased NO 

production after 24 and 48 hours (Figures 3.4 A & B).   

CMECs: Only 5 and 20 ng/ml TNF-α significantly decreased NO production after 24 hours 

(Figure 3.4 C). However, after 48 hours, all concentrations of TNF-α significantly decreased 

NO production (Figure 3.4 D).  
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AECs vs. CMECs: NO production was significantly lower in 20 ng/ml TNF-α treated AECS 

compared to CMECs at similar TNF-α concentration after 48 hours (Figure 3.5 B).  

ONOO- production 

AECs: All TNF-α concentrations significantly decreased ONOO- after 24 and 48 hours (Figures 

3.6 A & B).  

CMECs: Similarly, all TNF-α concentrations significantly decreased ONOO- after 24 and 48 

hours (Figures 3.6 C & D).  

AECs vs. CMECs: CMECs responded with lower ONOO- production compared to AECs at all 

TNF-α concentrations after both 24 and 48 hours incubation periods (Figures 3.7 A & B). 

H2O2 production 

AECs: After 24 hours, all TNF-α concentrations significantly increased H2O2 production; 

however, after 48 hours, treatment with 5 and 20 ng/ml TNF-α significantly decreased H2O2 

production (Figures 3.8 A & B).  

CMECs: Only 5 and 20 ng/ml TNF-α treated cells exhibited a significantly increased H2O2 

production after 24 hours (Figure 3.8 C). There were no significant differences in H2O2 

production at any of the TNF-α concentrations after 48 hours (Figure 3.8 D).  

AECs vs. CMECs: H2O2 production was significantly enhanced in AECs compared to CMECs at 

all TNF-α concentrations after 24 hours (Figure 3.9 A). However, after 48 hours, H2O2 

production was significantly lower in 20 ng/ml TNF-α treated AECs compared to CMECs 

(Figure 3.9 B).  

Necrosis 

AECs: 5 and 20 ng/ml TNF-α significantly increased necrosis after 24 hours (Figure 3.10 A). 

However, after 48 hours, TNF-α had no significant pro-necrosis effects at any of the 

concentrations (Figure 3.10 B). 

CMECs: Necrosis was increased at all TNF-α concentrations after 24 hours (Figure 3.10 C). 

After 48 hours, 0.5 and 5 ng/ml TNF-α significantly decreased necrosis, whereas 20 ng/ml 

TNF-α significantly increased necrosis (Figure 3.10 D). 
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AECs vs. CMECs: AECs exhibited lower levels of necrosis compared to CMECs at 20 ng/ml 

TNF-α after 48 hours (Figure 3.11 B). 

Based on the findings above, 20 ng/ml TNF-α concentration and the 24 hour incubation 

period were chosen as the model of the endothelial injury in both AECs and CMECs and for 

further investigations.  

4.1.1.3 Western blot analyses of signalling proteins 

The summarised Western blot data are as follows: 

Phospho / total ratios of eNOS were significantly decreased in control, untreated CMECs 

compared to control, untreated AECs, and in TNF-α treated CMECs compared to their TNF-α 

treated AEC counterparts (Figure 3.12 C). 

Total PKB expression was significantly decreased in (Figure 3.13 A): 

 TNF-α treated AECs compared to control, untreated AECs, 

 Control, untreated CMECs compared to control, untreated AECs, 

 TNF-α treated AECs compared to TNF-α treated CMECs.  

Phosphorylated PKB was significantly decreased in (Figure 3.13 B): 

 Control,  untreated CMECs compared to control, untreated AECs, 

 TNF-α treated AECs compared to TNF-α treated CMECs.  

Phospho / total ratios of PKB were significantly increased in control, untreated CMECs 

compared to control, untreated AECs (Figure 3.13 C).   

HSP 90 expression was significantly decreased in (Figure 3.14): 

 TNF-α treated AECs compared to control, untreated AECs, 

 Control, untreated CMECs compared to control, untreated AECs.  

IkB alpha expression was significantly increased in control, untreated CMECs compared to 

control, untreated AECs, and significantly decreased in CMECs TNF-α treated compared 

CMECs untreated control (Figure 3.15). 
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Nitrotyrosine expression was significantly increased in control, untreated CMECs compared 

to control, untreated AECS (Figure 3.16).  

 

4.1.1.4 Oleanolic acid studies 

The summarised findings with oleanolic acid are as follows: 

1 hour baseline studies 

Concentration response curves showed that both 10 and 40 µM OA concentrations (1 hour 

treatment) had NO producing properties in AECs and CMECs (Figure 3.17 A & B). However, 

40 µM OA was chosen for further studies: 

AECs:  40 µM OA significantly decreased H2O2 production (Figure 3.18 A) and necrosis 

(Figure 3.19 A) and after 1 hour. 

CMECs: An increase in H2O2 production observed with 40 µM OA after 1 hour was likely the 

result of a DMSO vehicle effect (Figure 3.18 B). Necrosis was significantly increased after 1 

hour treatment with 40 µM OA (Figure 3.19 B).  

24 hours baseline studies 

AECs:  

 OA significantly decreased H2O2 production (Figure 3.21 A),  

 OA significantly decreased necrosis (Figure 3.22 A).  

CMECs: 

 OA significantly increased NO production after 24 hours (Figure 3.20 B), 

 OA had no significant effect on baseline H2O2 production (Figure 3.21 B) and necrosis 

(Figure 3.22 B) after 24 hours. 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



201 | P a g e  
 

Oleanolic acid pre-treatment studies 

AECs:  

 TNF-α-treated cells showed significantly reduced NO levels vs. control, untreated 

cells, which was reversed when pre-treated with OA (Figure 3.23 A),  

 TNF-α-treated cells showed significantly increased H2O2 production vs. control, 

untreated cells, which was abolished when pre-treated with OA (Figure 3.24 A),  

 TNF-α-treated cells showed a significant pro-necrosis response vs. control, untreated 

cells, which was abolished when pre-treated with OA (Figure 3.25 A) 

CMECs:  

 TNF-α-treated cells showed significantly reduced NO levels vs. control, untreated 

cells, which was reversed when pre-treated with OA (Figure 3.23 B),   

 TNF-α-treated cells showed significantly increased H2O2 production vs. control, 

untreated cells, which was abolished when pre-treated with OA (Figure 3.24 B), 

 There were no changes observed in necrosis measurements in any of the groups 

(Figure 3.25 B).    

 

4.1.2 Discussion of cell culture (in vitro models) data 

The first part of this study focused primarily on comparing AECs and myocardial capillary 

derived CMECs under physiological conditions or when exposed to a harmful, pro-

inflammatory stimulus, for which a model of endothelial cell injury was established in both 

cell lines. AECs are situated in close association with the VSMCs and the endothelial derived 

factors released by this cell layer are primarily dedicated at regulating vascular homeostasis, 

whereas CMECs are in close association with cardiomyocytes and primarily regulate 

cardiomyocyte function and homeostasis (Strijdom & Lochner 2009, Brutsaert 2003, Shah & 

MacCarthy 2000). It is known that the extracellular environment and epigenetics are 

important factors in determining endothelial heterogeneity (Aird 2006b). In view of the 

differences in their location and function, AECs and CMECs would be expected to exhibit 

heterogeneous responses to harmful stimuli. Endothelial injury and dysfunction have 

previously been studied in AECs and CMECs separately (Venugopal et al 2002, Okruhlicova 

Stellenbosch University  https://scholar.sun.ac.za



202 | P a g e  
 

et al 2005). However, CMECs seems to be poorly investigated, especially with regards to 

their response to various harmful stimuli such as the pro-inflammatory cytokine TNF-α. In 

AECs, Venugopal et al (2002) demonstrated decreased eNOS expression and bioactivity 

accompanied by increased adhesion molecules VCAM 1 and ICAM 1 in response to 

inflammatory marker CRP (5 – 50 µg/ml over 6, 12 and 24 hours). On the other hand, CMECs 

derived from streptozotocin-induced diabetic rats and a model of hypertensive rats 

exhibited decreased NOS activity and ultrastructural remodelling (Okruhlicova et al 2005). 

Whether endothelial heterogeneity is relevant with regards to AECs and CMECs during 

pathological conditions remains to be explored. Furthermore, there are a lack of studies 

that have investigated and compared endothelial cells from different sites addressing the 

eNOS-NO biosynthetic pathway, ROS production and viability in response to harmful stimuli. 

Whether endothelial cell heterogeneity is relevant in in vitro settings, when cells have been 

removed from their inherent environment is a subject that needs further attention. Deng et 

al (2006) demonstrated differences in gene expression in coronary AECs and saphenous vein 

endothelial cells in response to ox-LDL in in vitro settings, with coronary AECs expressing 

genes associated with atherogenesis while saphenous vein endothelial cells expressed anti-

atherogenesis (protective) genes upon ox-LDL exposure. This suggests that some level of 

heterogeneity is maintained when endothelial cells are removed from their respective 

inherent environments. Whether this is applicable to the eNOS-NO biosynthetic pathway, 

ROS production and cell viability remains to be explored.   

 

4.1.2.1 Baseline findings  

NO production and the NO biosynthetic pathway 

In baseline conditions, endothelial heterogeneity did not appear to exist with regards to NO 

production between control, untreated AECs and CMECs as measured by flow cytometric 

analyses of DAF-2/DA fluorescence (Figure 3.2).  As eNOS is the chief constitutively 

expressed enzymatic source of NO in endothelial cells, we went a step further to measure 

and compare total and phosphorylated (Ser 1177) eNOS protein in both control, untreated 

AECs and CMECs by western blot analysis. Total and phosphorylated eNOS did not exhibit 

significant differences under baseline conditions between AECs and CMECs, though total 
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CMEC eNOS expression was  1.4-fold greater vs. AECs (Figure 3.12 A). In the present study, 

proteomics analysis showed a significantly higher ( 1.5-fold) expression of eNOS in CMECs 

versus AECs under control, untreated conditions (Table 3.4), suggesting that heterogeneous 

baseline eNOS expression patterns may exist between AECs and CMECs. The baseline 

relative eNOS activation (expressed as phosphorylated / total eNOS ratios) was however, 

significantly lower in CMECs compared to AECs, suggesting that some degree of 

heterogeneity also exists between CMECs and AECs in this regard. Andries et al (1998) 

demonstrated higher eNOS expression in endocardial and coronary arterial endothelium 

compared to CMECs and coronary vein endothelium in rat hearts. Heterogeneous 

distribution of the eNOS enzyme was further shown in swine, where eNOS expression was 

higher in conduit arteries compared to veins (Simmons et al 2012). Another study compared 

cultured rat mesenteric arteriolar and venular endothelial cells, and reported higher 

baseline NO synthetic capacity in venular compared to arteriolar endothelial cells as 

measured by high eNOS protein levels and activity (Wagner et al 2001). From these studies 

and our own findings, it is evident that endothelial cell regional specificity is relevant when 

determining eNOS expression and activity.  

eNOS activation and inactivation are dependent on posttranslational events such as 

interaction with the protein caveolin-1 (Ferron et al 1998, Frank et al 2003). Interaction of 

eNOS with caveolin-1 is a regulatory mechanism that keeps eNOS in an inactive state, hence 

leading to diminished NO production until calmodulin binds to eNOS in response to a rise in 

intracellular calcium levels (Frank et al 2003). Immunofluorescence studies revealed 

enhanced caveolin-1 staining in CMECs compared to endocardial and arterial endothelium 

(Andries et al 1998). This might explain the low eNOS activity observed in CMECs compared 

to AECs in the current study.  

PKB / Akt is an important upstream facilitator of eNOS phosphorylation, hence resulting in 

NO production (Dimmeler et al 1999). We further compared baseline total and 

phosphorylated PKB / Akt protein as measured by western blot analysis. Total PKB / Akt was 

heterogeneously expressed between AECs and CMECs, with CMECs exhibiting a lower 

baseline expression compared to AECs (Figure 3.13 A). In addition to stimulating eNOS 

phosphorylation, PKB / Akt is also important for survival of endothelial cells, including 

protection against apoptosis (Fujio & Walsh 1999). Given the location of AECs, where they 
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are more exposed to different factors from the circulating blood and mechanical forces such 

as shear stress,  higher expression of PKB / Akt may be essential for cell survival and it’s 

phosphorylation may  be triggered by a given stimuli at a given time. Furthermore, PKB / Akt 

phosphorylates eNOS at site Ser 1177 during conditions of shear stress, which in turn 

produces NO to regulate vasomotor activity (Luo et al 2000). It is therefore expected that 

PKB / Akt would be highly expressed in AECs compared to CMECs since they are located in 

the vasomotor regulating blood vessels. While eNOS activation was lower in CMECs 

compared to AECs, phosphorylated PKB / Akt (Ser 473) and relative PKB / Akt activation 

(phosphorylated / total PKB-Akt ratios) were significantly higher in CMECs compared to AECs 

at baseline conditions (Figure 3.13 B & C). It’s difficult to elucidate why PKB / Akt activity 

was high while eNOS activity was low in CMEC compared to AECs. Perhaps activated PKB / 

Akt also possess other regulatory properties other than activating eNOS in CMECs. In human 

CMECs, PKB / Akt phosphorylation was associated with restoration of ROS-induced barrier 

dysfunction, a response which was blocked by API-2-induced PKB / Akt inhibition and not L-

NAME-induced eNOS inhibition (Dossumbekova et al 2008). An intact CMEC barrier would 

be critical in regulating myocardial function and activity in in vivo settings.   

The molecular chaperone, HSP 90, has been shown to interact with eNOS to stimulate 

activity and hence production of NO (Takahashi & Mendelsohn 2003b). Furthermore, HSP90 

may act in co-operation with PKB / Akt forming a HSP 90-eNOS-PKB / AKt complex leading to 

enhanced eNOS activity (Takahashi & Mendelsohn 2003a). Interestingly, heterogeneity was 

also evident with regards to the baseline expression of HSP 90, which was significantly lower 

in CMECs compared to AECs at baseline conditions (Figure 3.14). Interaction of HSP 90 with 

eNOS is often stimulated by factors such as shear stress to elicit vasodilation (García-

Cardeña et al 1998). Therefore high HSP 90 expression might not be necessary in CMECs as 

they are located in an areas of low shear stress and non-dilating blood vessels compared to 

AECs. Furthermore, HSP 90 is also involved in protein folding and stress response (García-

Cardeña et al 1998). Other HSP isoforms were perhaps more expressed in CMECs compared 

to AECs for the purpose of protein folding and stress response. For example, our proteomics 

data revealed up-regulation of HSP 70 (2.5-fold up-regulated) in CMECs compared to AECs 

(Table 3.4).  A study in endothelial cells derived from conduit arteries and veins of swine 

demonstrated a heterogeneous expression of HSP 90, with the arteries having a higher 
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expression compared to veins (Simmons et al 2012). This provides further evidence of 

endothelial heterogeneity with regards to HSP 90 expression, in endothelial cells from 

different vascular beds.  

 

ROS production  

Baseline intracellular ONOO- and H2O2 levels were measured and compared in AECs and 

CMECs. ONOO- is a powerful oxidant formed from the reaction of NO and O2
- and has been 

implicated in eNOS uncoupling and nitration of proteins including eNOS (Fostermann & 

Munzel 2006). Though ONOO- is often associated with cardiovascular injury, it can exert 

beneficial effects at low levels, such as relaxation of coronary arteries, inhibition of platelet 

aggregation and reduction of leukocyte - endothelial cell adherence (Lefer et al 1997). In the 

current study, AECs and CMECs exhibited heterogeneous baseline intracellular ONOO- levels, 

with CMECs demonstrating higher baseline ONOO- levels compared to AECs (Figure 3.3 A). 

Given the critical location of CMECs, baseline ONOO- released from CMECs may play a 

homeostatic role in preserving myocardial function in in vivo settings. For example, low 

levels of ONOO- have been reported to enhance cardiomyocyte contraction and relaxation 

through PKA-mediated phosphorylation of phospholamban (Kohr et al 2010). Our baseline 

ONOO- findings were further validated by the western blot measurement of baseline 

nitrotyrosine expression, which was significantly higher in CMECs compared to AECs. 

Nitrotyrosine is a marker of ONOO- -induced protein nitration, and this thus confirmed the 

heterogeneous ONOO- production in AECs and CMECs. 

H2O2 is generated from the reaction between SOD and O2
-; however, it can also be directly 

generated by some ROS producing enzymes such as glucose oxidase and xanthine oxidase 

(Breton-Romero & Lamas 2014). Endothelial heterogeneity was evident with regards to 

baseline H2O2 production between AECs and CMECs in the present study. AECs exhibited 

enhanced baseline H2O2 production compared to CMECs (Figure 3.3 B). Since low levels of 

H2O2 possess physiological roles such as regulating endothelial cell proliferation (Stones & 

Collins 2002), it is tempting to speculate that higher baseline levels of H2O2 in AECs 

compared to CMECs my serve a regulatory role specific for AECs location. However, our 

proteomics data revealed significant up-regulation of anti-oxidants associated with H2O2 
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clearance including glutathione peroxidase (2.1-fold up-regulated) and peroxiredoxin-6 (2-

fold up-regulated) in CMECs compared AECs at baseline conditions (Table 3.4). Hence this 

may be accountable for lower baseline H2O2 levels in CMECs, and the heterogeneity might 

lie in that these proteins are up-regulated in CMECs and not AECs resulting in differences in 

H2O2 baseline levels.  

 

4.1.2.2 Endothelial injury induction 

NO production 

Inflammation is one of the major underlying mechanisms that links cardiovascular risk 

factors and disease conditions with endothelial injury or dysfunction (Meldrum 1998). The 

pro-inflammatory cytokine TNF-α is a chief mediator of inflammation (Medrum 1998) and 

its injurious effects including apoptosis, diminished eNOS expression and activity, 

diminished NO production and ROS generation on the macrovascular-derived endothelium 

has previously been well documented (Polte et al 1997, Anderson et al 2004, Goodwin et al 

2007, Corda et al 2001). In this section the effects of TNF-α on the NO biosynthetic pathway, 

ROS production and necrosis in AECs and CMECs are discussed. Furthermore, unlike most 

studies in the literature that measure downstream breakdown products of NO metabolism 

such as nitrites and nitrates, direct measurements of intracellular levels of NO by means of 

DAF-2/DA fluorescence was done in the current study. In our hands, treatment of AECs with 

low (0.5 ng/ml), medium (5 ng/ml) and high (20 ng/ml) concentrations of TNF-α significantly 

decreased NO production after 24 and 48 hours (Figure 3.4 A & B). Anderson et al (2004) 

demonstrated a decrease in eNOS gene promoter activity with a TNF-α concentration of as 

low as 100 pg/ml in bovine AECs, however this study did not measure NO production. On 

the other hand, Goodwin et al (2007) reported a decrease in NO production with 10 ng/ml 

TNF-α in bovine AECs, measured as nitrite levels in the tissue culture medium.  

In the CMECs, NO production was reduced at medium and high TNF-α concentrations (5 and 

20 ng/ml) after 24 hours and at all concentration after 48 hours (Figure 3.4 C & D). As far as 

we are aware, the current study is the first to investigate the role of TNF-α in CMECs, as a 

thorough literature review did not identify any previously published papers that have 
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investigated the response of CMECs to TNF-α especially with regards to NO production. 

When studying endothelial function or dysfunction, most in vitro-based studies often 

employ endothelial cells derived from large vessels such as the HUVECs or aortic endothelial 

cells as they are easier to harvest, thus overlooking the possibility that their data might be, 

at least in part, specific to the particular endothelial cell type that cannot be extrapolated to 

all endothelial cells (endothelial heterogeneity) (Aird 2007b). It is evident from the literature 

that there is a lack of studies investigating NO production in endothelial cells derived from 

microvascular beds. An exception is a study by Bove et al (2001) that investigated the effects 

of 50 ng/ml TNF-α on cultured bovine pulmonary microvessel endothelial cells; however, 

they reported no significant effects on NO production after 24 hours treatment. Another 

study showed the development of a compromised rat lung microvascular endothelial cell 

barrier in response to 10 ng/ml TNF-α for 1 hour as demonstrated by enhanced endothelial 

permeability. However, NO production was not measured in this study (Sawant et al 2013).  

The responses of AECs and CMECs to TNF-α treatment were directly compared in a time- 

and concentration-matched manner in order to assess whether in vitro heterogeneity exists 

between these two endothelial cell types with regards to NO production. The results 

showed that generally, both cell types responded with similar NO decreasing trends, with 

the exception of the TNF-α 20 ng/ml, 48 hours concentration and time point at which a 

measure of heterogeneity was present (NO production was significantly lower in AECs 

compared to CMECs) (Figure 3.5 B). This is suggestive that at high concentrations over 

longer periods, TNF-α may exert pronounced loss of NO in AECs compared to CMECs. In 

contrast to our findings, a study reported increased iNOS-induced NO production (measured 

as nitrite levels), which was more enhanced in rat AECs compared to rat lung microvascular 

endothelial cells in response to a combination of TNF-α (60 000 U/ml) + lipopolysaccharide 

(500 ng/ml), and TNF-α (60 000 U/ml + interferon-gamma (1 000 U/ml) (Geiger et al 1997), 

thus demonstrating heterogeneity in response to TNF-α between macrovascular and 

microvascular derived endothelial cells . 

Taken together, the above data are suggestive of the development of a generally reduced 

NO-producing capacity in both cell types after exposure to a range of TNF-α concentrations 

and treatment times. Endothelial dysfunction is often defined as a state of reduced NO bio-

availability, and based on this definition, there is a strong possibility that both the AECs and 
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CMECs have switched to a dysfunctional state induced by the pro-inflammatory stimulus 

(Liao 2013).  

NO biosynthetic pathway 

We next sought to determine whether the TNF-α-induced reduction of NO was due to 

diminished eNOS expression or activity. The effects of TNF-α on eNOS expression and 

phosphorylation (site Ser 1177) in both AECs and CMECs were further investigated by 

western blot analysis.  TNF-α has previously been shown to reduce eNOS expression (Lai et 

al 2003, Valerio et al 2006). Anderson et al (2004) demonstrated a reduction in eNOS 

protein level and gene promoter activity following 24 hours treatment with 100 and 1000 

pg/ml TNF-α in bovine AECs.  TNF-α at 3 ng/ml (over 24 hours) in HUVECs was also shown to 

decrease eNOS mRNA (Yoshizumi et al 1993), while 10 ng/ml TNF-α treatment after 12 and 

24 hours decreased eNOS expression in bovine AECs (Gonzalez-Fernandez et al 2001). In the 

present study, TNF-α had no significant effect on eNOS expression and phosphorylation or 

relative eNOS activation in either AECs or CMECs compared to their respective controls 

(Figure 3.12 A - C). This is rather surprising as TNF-α elicited significant reductions in NO 

production in both cell lines. As eNOS is the chief enzymatic source of NO in endothelial 

cells, it would be expected that TNF-α would at least diminish eNOS activity, as was 

determined by the analysis of eNOS phosphorylation site Ser 1177 in our endothelial cell 

models. It should, however, be kept in mind that eNOS activity is influenced by multiple 

phosphorylation sites including Ser 615 and Ser 633 (Kolluru et al 2010). It is possible that 

eNOS activity might have been regulated at different phosphorylation sites other than Ser 

1177 in TNF-α treated AECs and CMECs compared to their respective controls.  

While some authors reported on reduced eNOS expression, others have shown that TNF-α 

may possess stimulatory effects on eNOS phosphorylation. In human dermal microvascular 

endothelial cells, 20 ng/ml TNF-α (at 1, 3, and 6 hours) significantly increased eNOS 

phosphorylation at site Ser 1177, a response which was diminished by wortmanin inhibition 

of PKB/Akt (Kawanaka et al 2002). This was further supported by the findings of De Palma et 

al (2006), where 50 ng/ml TNF-α (for 6 hours) significantly increased PKB / Akt-mediated 

activation of eNOS (phosphorylation site was not specified). The pathway involved included 

activation of neutral-sphingomyelinase-2 leading to activation of sphingosine-kinase 1 and 
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sphingosine-1-phosphate which ultimately activates PKB / Akt, leading to eNOS 

phosphorylation (De Palma et al 2006). From the above study, it appears that TNF-α may 

stimulate eNOS phosphorylation via other pathways.  

A heterogeneous response was observed between TNF-α treated AECs and CMECs, with TNF 

treated CMECs exhibiting lower relative eNOS activation (expressed as phosphorylated / 

total eNOS ratios) compared to TNF-α treated AECs (Figure 3.12 C). However, this response 

may not be attributable to TNF-α, as a similar response was observed at baseline (control, 

untreated) conditions (section 4.3.2). The observations made by Andries et al (1998) with 

immunofluorescence studies where CMECs showed high caveolin-1 staining may also 

explain the lower eNOS activity in TNF-α treated CMECs. Furthermore, Wang et al (2008) 

demonstrated via immunofluorescence and western blot analysis, that 0.5 ng/ml TNF-α 

(over 4 hours) significantly enhanced caveolin-1 density in endothelial cells derived from 

porcine pulmonary arteries. Hence, TNF-α may exacerbate the lower eNOS activity in CMECs 

compared to AECs. 

The effects of TNF-α on PKB / Akt expression and phosphorylation (site Ser 473 were further 

investigated by western blot analysis. While TNF-α elicited no effect on PKB / Akt expression 

in CMECs compared to their respective controls, there was a significant reduction in PKB / 

Akt expression in AECs compared to their respective controls in the present study (Figure 

3.13 A). Since PKB / Akt is upstream of eNOS, the reduction in PKB / Akt expression in 

response to TNF-α in AECs may represent an early phase initiation of endothelial injury. 

However, PKB / Akt phosphorylation (site Ser 473) or relative activation (expressed of 

phospho / total PKB / Akt ratios) was not affected by TNF-α in both AECs and CMECs (Figure 

3.13 B & C). While TNF-α would be expected to decrease PKB / Akt phosphorylation in 

endothelial cells, other studies have reported that TNF-α significantly increases 

phosphorylation as demonstrated by De Palma et al 2006 (50 ng/ml TNF-α for 6 hours), 

Murao et al 2000 (10 ng /ml TNF-α for 2 hours, Palmieri et al 2014 (10 ng/ml TNF-α for 1 

hour) in HUVECs.  PKB / Akt activation may be important for endothelial cell survival in 

response to TNF-α.  

TNF-α elicited heterogeneous PKB / Akt expression and phosphorylation in AECs and CMECs. 

PKB / Akt expression and phosphorylation were significantly reduced in TNF-α treated AECs 
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compared to TNF-α treated CMECs (Figure 3. 13 A – C). Hence the PKB / Akt pathway 

appears to be compromised in AECs compared to CMECs in response to TNF-α. This may 

represent a step in the initiation of endothelial injury in AECs compared to CMECs. 

As HSP 90 is another protein involved in modulating eNOS activity, we investigated the 

effects of TNF-α on HSP 90 expression in both AECs and CMECs. TNF-α treated AECs 

exhibited lower HSP 90 expression compared to its respective control, while TNF-α treated 

CMECs showed no significant response in HSP 90 expression compared to their respective 

control (Figure 3.14). The reduction of HSP 90 expression in TNF-α treated AECs may have 

been an initial step in the disruption of the NO biosynthetic pathway. However, the HSP 90-

PKB / Akt-eNOS complex does not portray a convincing model of a compromised NO 

biosynthetic pathway, since PKB / Akt and eNOS activity were not affected by TNF-α in AECs.  

The same could be said for CMECs as HSP 90 expression, PKB Akt and eNOS activity were not 

affected by TNF-α. Hence our protein signalling data do not coincide with reduced NO levels 

observed following TNF-treatment in both cell lines. However, taking into consideration the 

reduced HSP 90 and total PKB expression in AECs in response to TNF-α, this pathway could 

have signalled an initiating step in rendering the AECs dysfunctional, while it proved to be 

resistant in CMECs. The reduced NO bioavailability in both AECs and CMECs probably 

represents the initial step of endothelial activation before the signalling pathway is 

compromised. With regards to direct comparison, HSP 90 expression did not differ in TNF-α 

treated AECs compared to their CMECs counterparts. Hence, TNF-α did not elicit a 

heterogeneous expression of this particular protein. 

 

ROS production 

TNF-α has previously been linked to the increased generation of mitochondrial and NADPH 

oxidase-mediated ROS, thus leading to oxidative stress and endothelial injury (Chen et al 

2008). In the current study, the intracellular ROS levels in AECs and CMECs exposed to TNF-

α-treatment were investigated by measuring ONOO- and H2O2. Many studies measure 

ONOO- indirectly, through western blot analysis of nitrotyrosine expression. Though we also 

applied this method, we first measured intracellular levels of ONOO- by flow cytometric 

analysis of DHR-123 fluorescence. Interestingly, in our hands ONOO- levels were significantly 
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decreased at all TNF-α concentrations following both 24 and 48 hours incubation periods, in 

both AECs and CMECs. These findings are unexpected and contradict what has been 

previously reported in the literature. In a study by Neumann et al (2006), 100 ng/ml TNF-α 

increased ONOO- production (as determined by immunofluorescence and western blot 

analysis of nitrotyrosine expression) after 30 minutes of treatment in pulmonary 

microvessel endothelial cells, however, this effect was reversed after 4 hours. It has to be 

noted that the TNF-α concentration used in the study by Neumann (100 ng/ml) is very high 

and supra-physiological. Despite this shortcoming, one could speculate that the incubation 

periods in our study were too long, and that a burst in ONOO- production might have 

occurred at an earlier time-point. Another study also reported an increase in ONOO- 

production following 40 ng/ml TNF-α over a period of 24 hours, as measured by enhanced 

nitrotyrosine expression in human umbilical vein endothelial cells (Xia et al 2010). However, 

this was accompanied by increased iNOS-induced NO, and O2
- production (Xia et al 2010). 

Our nitrotyrosine data did not reveal any significant differences in both TNF-α treated AECs 

and CMECs compared to their respective controls (Figure 3.16). iNOS expression is known to 

be induced by inflammatory cytokines such as TNF-α, leading to production of large 

amounts of NO, which via the reaction with O2
- leads to ONOO- formation (Yamaoka et al 

2002, Lancel et al 2004, Xia et al 2010). Given the reduced NO levels observed with TNF-α 

treatment in the current study, it was decided not to measure iNOS expression. In addition, 

separate studies in our laboratory failed to show iNOS expression in CMECs upon TNF-α 

stimulation [C Westcott; PhD dissertation; University of Stellenbosch 2014]. It can also be 

speculated that in response to the TNF-α stimuli, the cells were able to up-regulate 

protective enzymes such as SOD, to rapidly quench O2
- hence preventing formation of 

ONOO-. In support of this postulation, the proteomics data showed significant up-regulation 

of SOD in both TNF-α-treated AECs (2.8 fold; Table 3.7; Figure 3.29) and CMECs (2.2-fold; 

Table 3.9).  

An interesting trend was noticed when comparing TNF-α concentration and time-matched 

ONOO- levels between the two cell types. Although both cell types responded to TNF-α 

treatment with reduced ONOO- levels versus control, untreated values, the relative degree 

of decrease in the CMECs was consistently more pronounced compared to the AECs (Figure 

3.7 A & B). These responses are even more intriguing given that the baseline ONOO- levels 
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were significantly higher in the CMECs than in AECs (Figure 3.3 A). The biological significance 

of these heterogeneous responses is unclear, and difficult to explain given the data to our 

disposal. Furthermore, our nitrotyrosine data did not coincide with the observed ONOO- 

findings, as there were no significant differences in nitrotyrosine expression in TNF-α 

treated AECs compared to TNF-α treated CMECs (Figure 3.16).  

The role of TNF-α in H2O2 production was also investigated in both AECs and CMECs. In 

AECs, 24 hours TNF-α treatment significantly increased intracellular H2O2 production by 3-

fold at all concentrations, however, this trend was abolished and even reversed after 48 

hours (Figures 3.8 A & B). In agreement with our 24 hour data, treatment of bovine AECs 

with 0 – 100 U/ml TNF-α resulted in a dose-dependent increase in H2O2 production after 30 

minutes (Leopold et al 2003), whereas another study showed that 2 ng/ml TNF-α 

significantly increased H2O2 production after 1 hour in human AECs  (Chen et al 2002). Both 

these studies applied microplate fluorometer analysis of DCF fluorescence to measure H2O2 

levels. An increase in H2O2 production has also been demonstrated in HUVECs treated with 

40 ng/ml TNF-α for 24 hours (Xia et al 2010) or 1 and 10 ng/ml TNF-α for 1 hour (Corda et al 

2001). After the 48 hour period our cells might have recovered from the TNF-α-mediated 

ROS production, possibly by up-regulating the ROS defence enzymes such as catalase which 

is responsible for decomposing H2O2 to water and oxygen; this, however does not 

necessarily negate the possible harmful effects exerted earlier by the profound increases in 

H2O2 observed at 24 hours. In the CMECs, TNF–α significantly increased H2O2 production at 

medium (5 ng/ml) and high (20 ng/ml) concentrations at 24 hours; however, the relative 

increases were not as profound as observed in the AECs (Figure 3.8 C). Similar to the AECs, 

the increased H2O2 production disappeared after 48 hours treatment (Figure 3.8 D). In a 

study by Li et al (2005), 100 U/ml TNF-α resulted in an increase in DCF-stained coronary 

microvascular endothelial cells 30 minutes.  

The direct, concentration and time matched comparative data between AECs and CMECs 

demonstrated significant heterogeneity with regards to TNF-α-induced H2O2 production as 

shown by consistently higher levels in the AECs compared to CMECs at 24 hours treatment 

(Figure 3.9). Conversely, in the 48 hour treatment groups, the heterogeneous responses 

disappeared, with the exception of the 20 ng/ml TNF-α groups, which showed higher levels 

in the CMECs versus AECs. In a study that also compared macrovascular and microvascular 
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endothelial cell responses, Wang et al. (2002) investigated the effects of a TNF-α (20 ng/ml, 

for 24 hours) + neutrophil challenge on pulmonary artery endothelial cells and pulmonary 

microvascular endothelial cells. In contrast to our 24 hour findings, they demonstrated 

increased DCF fluorescence in the pulmonary microvascular endothelial cells compared to 

macrovascular pulmonary artery endothelial cells, which exhibited no significant effects. A 

heterogeneous response was also demonstrated in another study on HUVECs and human 

microvascular endothelial cells, with the former showing significant increases in H2O2 

production, and the latter exhibiting no significant effects following exposure to high 

glucose treatment (Patel et al 2013). From the data of these studies, as well as our own data 

(particularly the 24 hour TNF-α treatment groups), there is evidence to suggest that 

considerable heterogeneity exists between endothelial cells from larger blood vessels (such 

as the aorta, pulmonary artery and human umbilical vein) and endothelial cells from 

microvascular beds (such as CMECs and the pulmonary microvasculature) with regards to 

H2O2 production in response to a harmful stimulus.  

 

Cell necrosis  

TNF-α has been shown to induce both apoptotic and necrotic cell death via TNFR1 (Lin et al 

2004). Involvement of ROS has been implicated in TNF-α induced cell necrosis (Ardestani et 

al 2013), and Lin et al (2004) demonstrated the abolishment of TNF-α induced necrosis by a 

ROS scavenger, butylated hydroxyanisole, in mouse embryonic fibroblasts. Binding of TNF-α 

to TNFR1 leads to the recruitment of TNFR1 associated death domain (TRADD). In a necrotic 

death pathway, it has been suggested that TNFR-associated factor 2 (TRAF2) and receptor-

interacting protein (RIP) are further recruited, forming a complex which leads to 

accumulation of ROS and cell necrosis (Figure 4.1) (Lin et al 2004).  In the current study, 

AECs exhibited a high percentage of necrotic cells following 5 and 20 ng/ml TNF-α treatment 

for 24 hours, whereas 48 hours treatment showed no significant effect (Figure 3.10 A – B). 

Similarly in CMECs, all TNF-α concentrations significantly increased necrosis after 24 hours 

(Figure 3.10 C). Interestingly, 5 ng/ml TNF-α significantly decreased necrosis, whereas 20 

ng/ml TNF-α significantly increased necrosis after 48 hours in CMECs (Figure 3.10 D). TNF-α 

did not elicit a heterogeneous response with regards to necrosis after 24 hours treatment 
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between AECs and CMECs. However, following 48 hours with 20 ng/ml TNF-α, CMECs 

exhibited a higher necrosis percentage compared to their AECs counterparts. Hence in 

CMECs, high concentrations of TNF-α for a longer treatment period compromised cell 

viability. Variable findings on TNF-α and endothelial cell viability have been reported in the 

literature. According to Wang et al (1996), 5-50 ng/ml TNF-α did not induce necrosis 

following incubation periods of 6-24 hours in HUVECs. In pulmonary microvessel endothelial 

cells, 50 ng/ml TNF-α had no effect on cell viability after 24 hours as determined by the 

trypan blue exclusion assay (Bove et al 2001).  Conversely, in pulmonary artery endothelial 

cells, 50 ng/ml TNF-α significantly reduced cell viability after 48 hours, as measured by 

crystal violet staining (Polte et al 1997). In line with the findings of the current study, Corda 

et al (2001) demonstrated a significant increase in necrosis following 1 hour exposure of 

HUVECs to 10 ng/ml TNF-α, which was accompanied by increased H2O2 levels.  
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Figure 4.1: Proposed mechanism of TNF-α induced cell necrosis (Lin et al 2004). 
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The TNF-α signalling pathway  

NF-kB forms an integral part of the TNF-α inflammatory signalling pathway. IKB-alpha 

interacts with NF-kB keeping it inactive during physiological conditions, and hence, it is an 

important post-translational modulator of NF-kB activity. Diminished expression of IkB has 

previously been used as a marker of enhanced NF-kB activity (Zhou et al 2003). TNF-α has 

previously been shown to induce NF-kB activity and monocyte adhesion in human AECs, a 

pathway indicative of endothelial activation (Csiszar et al 2006). In the current study, IkB-

alpha expression was significantly down-regulated in TNF-α treated CMECs compared to 

control, untreated CMECs (Figure 3.15). This is indicative of enhanced NF-kB activity and 

hence an inflammatory response in CMECs following stimulation with TNFα. This was 

further supported by our proteomics data where NF-kB was only detected in TNF-α treated 

CMECs compared to their respective control (Figure 3.30 B). Though our western blot data 

did not yield any significant differences, IkB-alpha exhibited a decreasing trend in TNF-α 

treated AECs compared to control, untreated AECs. This was also confirmed by our 

proteomics data, where NF-kB was only detected in TNF-α treated AECs compared to their 

respective control (Figure 3.29 B). This is suggestive of an inflammatory response in both 

AECs and CMECs in response to TNF-α.  

Heterogeneity was evident when comparing baseline IKB-alpha expression in control, 

untreated CMECs vs. AECs, where CMECs exhibited higher baseline expression of IkB-alpha 

(Figure 3.15). This finding could be suggestive of lower baseline NF-kB activity and 

inflammation in CMECs. Low NF-kB activity could translate into lower expression of baseline 

inflammatory proteins and resistance to endothelial activation in CMECs compared to AECs.  
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4.1.2.3 Oleanolic acid studies 

A growing body of literature has focused on the putative beneficial properties of certain 

plant extracts on the vascular system, many of which, are postulated to act through 

modulation of endothelial function (Schmitt & Dirsch 2009). OA is one such plant extract 

that has been shown to possess endothelio-protective properties. OA has been shown to 

induce endothelium-dependent relaxation in mesenteric arteries, stimulate eNOS 

phosphorylation at Ser 1177 in human umbilical vein endothelial cells (Rodriguez-Rodriguez 

et al 2008), and stimulate PGI2 release in coronary smooth muscle cells (Martinez-Gonzalez 

et al 2008). We set out to investigate the effects of OA in AECs and CMECs and to 

additionally evaluate whether the putative protective effects will further reveal 

heterogeneity between the two endothelial cell types. Short term (1 hour) treatment with 

OA resulted in enhanced NO production in both AECs and CMECs compared to the 

respective control, untreated samples (Figure 3.17 A & B). At 24 hours OA treatment, only 

the CMECs responded with increased NO production (Figure 3.20 B). In AECs, OA further 

reduced baseline necrosis and H2O2 production after 1 and 24 hours treatments (Figures 

3.18 A, 3.19 A, 3.21 A, 3.22 A). OA has previously been shown to decrease baseline H2O2 

levels and apoptosis in H9c2 cells (Cardiomyoblasts) (Mapanga et al 2012). However, this 

was not the case in CMECs, as 1 hour OA treatment significantly increased necrosis (Figure 

3.19 B) and no significant differences in either necrosis or H2O2 were observed following 24 

hours treatments.  Supraphysiological levels of NO may potentially be cytotoxic. In high 

amounts, NO is available for a reaction with O2
- leading to the formation of potent cytotoxic 

oxidant, nitrotyrosine (Gobbel et al 1997). For example, high levels of NO have been shown 

to induce both apoptosis and necrosis in rat cardiomyocytes (Uchiyama et al 2002). As 

endothelial cells exhibit variable responses to stimuli, the enhanced NO above control levels 

following 1 hour OA treatment might have been harmful in CMECs as evidenced by the 

enhanced necrosis. This might also have been a short lived response, as OA elicited no harm 

after 24 hours in CMECs.  

In light of the NO stimulatory properties of OA, and in some cases the anti-necrotic and 

antioxidant effects observed in our cells, we further investigated the putative anti-

endothelial injury properties of OA pre-treatment in endothelial cells exposed to 24 hours of 

TNF-α treatment. Pre-treatment with OA, not only significantly reversed the TNF-α-induced 
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reduction in NO production, but also abolished the TNF-α-induced H2O2 production and 

necrosis in AECs (Figures 3.23 A, 3.24 A, 3.25 A). Similar trends were observed in the CMECs 

with regards to NO and H2O2 production (Figures 3.23 B, 3.24 B); however no significant 

effects were observed with necrosis. Overall, the data suggest that OA exerted anti-

endothelial injury properties in both AECs and CMECs. In agreement with our data, OA 

reduced hyperglycaemia-induced oxidative stress and apoptosis in H9c2 cells (Mapanga et al 

2012). In HUVECs, OA blunted lipopolysaccharide-induced expression of adhesion 

molecules, leukocyte adhesion, NF-KB activation and production of TNF-α, and further 

restored endothelial barrier function (Lee et al 2013). This is suggestive that OA may exert 

its anti-inflammatory properties via diminishing NF-KB activity in endothelial cells. According 

to Rodriguez-Rodriguez et al (2008), OA significantly increased eNOS phosphorylation at Ser 

1177 and PKB / Akt phosphorylation at Ser 473 in human umbilical vein endothelial cells. 

Hence PKB / Akt-eNOS pathway may be the chief mechanism of inducing NO production in 

endothelial cells. In myocardial ischaemia-reperfusion, cardioprotective mechanisms of OA 

were associated with increased mitochondrial antioxidants such as glutathione and alpha-

tocopherol (Du & Ko 2006). In hypertensive rats, OA normalized protein levels of the 

antioxidants, glutathione peroxidase and SOD (Somova et al 2003). Hence the mechanisms 

underlying OA-induced oxidative stress reduction in the current study may be through up-

regulation of cellular antioxidant proteins. Antioxidant mechanisms of OA remain under-

investigated in endothelial cells, in fact, mechanisms underlying endothelio-protective 

properties of OA are poorly investigated.  
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4.2 Proteomics  

4.2.1 Endothelial cell proteomics  

Proteomics provides a tool for broad spectrum analysis and characterisation of protein 

expression and regulation in cells under physiological conditions or in response to certain 

stimuli (Anderson & Anderson 1998). Since proteomic analyses provide an opportunity for 

exploration of a large number of proteins, it may potentially lead to discovery of novel 

signalling pathways and biomarkers in response to a variety of stimuli or pathological 

conditions (Vivanco et al 2007). Hence, endothelial cell proteomics may be of great value in 

endothelial physiology and may yield vital information in relation to endothelial function or 

dysfunction and hence prevention of cardiovascular disease. Furthermore, in the subject of 

endothelial heterogeneity, proteomics may represent an invaluable tool for characterization 

of differential protein expression and regulation in endothelial cells from distinct vascular 

beds. Nonetheless, a wide gap exists in the literature with regards to studies focusing on 

vascular endothelial proteomics (Richardson et al 2010), particularly in the context of 

differential protein expression and regulation in endothelial cells from distinct vascular 

beds. The analysis of HUVECs is over-represented in the field of vascular proteomics 

(Bruneel et al 2003, Richardson et al 2010), due to its availability and relatively wide supply; 

however this trend is in conflict with the reality of endothelial heterogeneity. Furthermore, 

studies that have applied endothelial cell proteomics in response to stimuli such as TNF-α 

are limited.  In the present study, proteomic analyses were performed in two endothelial 

cell lines isolated from distinct vascular sites, namely AECs and CMECs, to characterise the 

differences in protein expression and regulation between these two cell lines. We further 

investigated changes in protein expression and regulation in response to TNF-α in both cell 

lines.  

 

4.2.2 Large scale protein expression and regulation in control, untreated AECs and CMECs 

A total of 2372 proteins were identified in both untreated AECs and CMECs, 1695 of which 

were shared by both cell lines. 320 proteins were exclusively identified in AECs whereas 357 

were exclusive to CMECs (Figure 3.26 A). As far as we are aware, these proteomic data 
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represent the most comprehensive documentation of its kind in AECs and CMECs to date. 

For the purposes of this study, “strongly represented proteins” refers to proteins that are 

detected only in a given cell type PLUS proteins that are significantly up-regulated in a given 

cell type relative to the other cell type.  

 

4.2.2.1 Strongly represented proteins in untreated control AECs compared to CMECs 

In this section, strongly represented proteins in AECs, and their functional annotation 

analysis will be discussed as shown in Tables 3.1 and 3.2. 

In previous-proteomics based studies, microarray analysis and real-time PCR revealed 299 

genes that were up-regulated in endocardial endothelium and 201 genes that were up-

regulated in AECs (Hendrickx et al 2004).  Genes upregulated in endocardial endothelium 

included those encoding for ion exchange channels, inositol-1,4,5-triphosphate receptor, 

transforming growth factor β2, oxidized low density lipoprotein receptor 1 and apoliprotein 

E all which may possess a regulatory role in cardiac function (Hendrickx et al 2004). 

Conversely, genes up-regulated in AECs encoded angiogenic protein Decorin, gap junction 

protein connexin 26, VCAM-1 and vasopressin V1a receptor (Hendrickx et al 2004). In 

HUVECs, proteomic analysis led to the identification of 53 endothelial proteins (Bruneel et al 

2003). These proteins included cytoskeletal proteins, proteins involved in apoptosis and cell 

senescence regulation, coagulation proteins, proteins concerned with antigen presentation, 

as well as enzymatic proteins (Bruneel et al 2003).   

In the present study, cytoskeletal proteins such as protein syne3, cytoskeleton associated 

protein 5, and WAS protein family (member 2), were highly up-regulated in AECs. The 

cytoskeleton is involved in maintenance of cell shape and polarity and it is important in 

transduction of shear stress-induced signals (Resnick et al 2003, Morgan et al 2011). In 

endothelial cells, the cytoskeleton is also important in maintenance of barrier functions and 

further serves as a scaffold for organisation of membrane proteins inside the cell (Ziegler et 

al 2012). Protein syne3 (6.8-fold up-regulated) anchors the cell nucleus to the cytoskeleton 

and has previously been shown to be highly expressed in human AECs (Morgan et al 2011). 

In human AECs, protein syne3 is involved in regulation of cell morphology. For example, 
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silencing protein syne3 resulted in a shift from the characteristic endothelial cell cuboidal 

shape to an elongated shape (Morgan et al 2011). Interestingly, the switch in endothelial 

cell morphology from cuboidal to elongation is often a response of mechanical stimuli such 

as unidirectional shear stress (Potter et al 2011).  Furthermore, silencing protein syne3 

abrogated flow-induced cell migration in human AECs (Morgan et al 2011). Hence protein 

syne3 may play a homeostatic role during mechanical stress. 

Proteins associated with fatty acid metabolism were also upregulated in AECs. These 

included cytosolic acyl coenzyme A thioester hydrolase, and fatty acid synthase. 

Furthermore, according to the functional annotation analysis, the most highly enriched 

biological process in AECs was triglyceride mobilization (41-fold enriched).  Cytosolic acyl 

coenzyme A thioester hydrolases (5-fold up-regulated) is responsible for the hydrolysis of 

acyl coenzyme A to the free fatty acid and coenzyme A, and is hence involved in the 

regulation of intracellular levels of acyl coenzyme A, free fatty acids and coenzyme A (Hunt 

et al 2005). Fatty acid synthase catalyses the synthesis of long chain fatty acid and it is 

known to promote cell proliferation and angiogenesis in endothelial cells (Browne et al 

2006, Seguin et al 2012). In addition to proteins associated with fatty acid metabolism, 

Apolipoprotein B-100, a component of VLDL and LDL was also upregulated in AECs. 

Apolipoprotein B-100 is involved in cholesterol assembly and mobilization, and its 

overexpression has previously been linked with atherosclerosis (Ouguerram et al 2004, 

Olofsson & Boren 2005). Since AECs line the conduit aorta, they might be adapted to 

metabolize fatty acids and lipids from the circulating blood, a function that could be 

construed as less essential in the endothelial cells of the cardiac microvascular circulation.  

Insulin-degrading enzyme was also up-regulated in AECs compared to CMECs (Table 3.1). In 

addition to its insulin and glucagon breakdown role, insulin-degrading enzyme has 

previously been shown to be abundantly expressed in brain endothelial cells, where it is 

responsible for the degradation of amyloid beta peptides (Lynch et al 2006). Insulin 

receptors have been identified in vascular endothelial cells, and binding of insulin has been 

shown to regulate vascular tone through the PKB / Akt-eNOS pathway and ET-1 (Vicent et al 

2003). Hence, in AECs the role of insulin-degrading enzyme may be to regulate insulin levels. 

The up-regulation of insulin-degrading enzyme would indeed be more essential in AECs 

compared to CMECs as they are situated in a vascular tone regulating blood vessel. 
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Catechol O-methyltransferase is an enzyme responsible for degradation of the 

catecholamines such as dopamine, epinephrine, and norepinephrine (Gogos et al 1998). This 

enzyme was up-regulated in AECs compared to CMECs (Table 3.1). Unlike CMECs, AECs line 

the smooth muscle containing aorta which possess vasoactive properties such as 

vasodilating and vasoconstricting (Strijdom & Lochner 2009). Catecholamines such as 

norepinephrine possess vasoconstrictory effects (Hirano et al 2007), and hence catechol O-

methyltransferase in AECs may serve to regulate cellular levels of such catecholamines. In 

fact, lack of catechol O-methyltransferase in rats has been associated with hypertension 

(Hirano et al 2007, Hernandez et al 2013).  

Poly [ADP-ribose] polymerase 1 (PARP-1), an enzyme which is activated in response to DNA 

damage, and responsible for DNA repair (Pacher & Szabo 2007) was up-regulated in AECs 

compared to CMECs. PARP-1 activation has been linked with conditions that induce DNA 

damage such as oxidative and nitrosative stress (Mathews & Berk 2008, Szabo et al 2004). 

However, enhanced activity of PARP-1 may lead to cell energy depletion and consequently 

endothelial cell death (Szabo et al 2004, Pacher & Szabo 2007, Mathews & Berk 2008). 

Hence, PARP-1 has been implicated in conditions such as ED and cardiovascular diseases 

(Szabo et al 2004, Pacher & Szabo 2007, Mathews & Berk 2008). In addition to DNA damage, 

PARP-1 seems to be stimulated by stressful conditions including low shear stress-induced 

inflammation (Qin et al 2013). Considering the location of AECs, where they are exposed to 

different factors from the circulation (some which may elicit injury to cells) and mechanical 

forces exerted by the circulating blood, PARP-1 may be essential in AECs for stress response 

and DNA damage repair.  

A pro-apoptotic protein, BAX, was up-regulated in AECs compared to CMECs (Table 3.1). 

BAX is a member of the BCL-2 family, and is usually activated in response to cell stress 

including ROS and cytokines (Aoki et al 2001, Molostvov et al 2002). Upon its activation, BAX 

translocates from the cytosol to mitochondria where it induces the release of cytochrome C, 

hence leading to apoptosis (Finucane et al 1999). Physiologically, apoptosis plays a 

homeostatic role in the programmed cell death of damaged cells (Finucane et al 1999). 

Given the location of the AECs and exposure to different stimuli including mechanical forces, 

BAX may play a homeostatic role of regulating death of damaged cells.   
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Aldehyde dehydrogenase primarily plays a role in detoxification of toxic compounds such as 

aldehydes, which have been associated with oxidative stress and lipid peroxidation (Ohsawa 

et al 2003). This protein was up-regulated (4.4-fold) in AECs compared to CMECs (Table 3.1, 

Figure 3.27 A). There is lack of literature on the effects of aldehyde dehydrogenase in 

endothelial cells. However, in human umbilical vein endothelial cells, aldehyde 

dehydrogenase activity was associated with a reduction in ROS accumulation, endothelial 

barrier dysfunction and endothelial dysfunction (Solito et al 2013). Owing to their location, 

up-regulation of this aldehyde dehydrogenase in AECs may perhaps participate in the 

detoxification of aldehydes derided from the circulation, hence preventing ROS 

accumulation and lipid peroxidation.  

 

4.2.2.2 Strongly represented proteins in untreated control CMECs compared to AECs 

In this section, strongly represented proteins in CMECs, and their functional annotation 

analysis will be discussed as shown in Tables 3.4 and 3.5. 

A number of extracellular matrix proteins were up-regulated in CMECs including protein 

lamc1 (20-fold), laminin alpha 5 (12.5-fold), laminin subunit beta-2 (10-fold), procollagen, 

type XVIII, alpha 1, heparan sulfate proteoglycan-2, SPARC, and fermitin family homolog 2 

(Table 3.4). This suggests that CMECs may be more involved with angiogenesis than their 

AEC counterparts. The extracellular matrix not only confers structure and organization of 

endothelial cells in the blood vessels, but it is important in endothelial cell migration, 

survival and proliferation (Davies & Senger 2005). Angiogenesis plays an important role in 

formation of new blood vessels, and CMECs have been shown to play a major role in cardiac 

angiogenesis (Li et al 2015). Furthermore, proteins involved in cell proliferation, growth, 

adhesion and migration were also up-regulated. These included protein tyrosine 

phosphatase non-receptor type 12, talin-2, basal cell adhesion molecule, endothelial cell 

selective adhesion molecule, integrin alpha 3 variant A, platelet endothelial cell adhesion 

molecule (PECAM-1; CD31), and Rho guanine nucleotide exchange factor-7. The importance 

of PECAM-1 in angiogenesis has previously been illustrated, where blocking PECAM-1 

resulted in cessation of tube formation by angiogenic rat capillary endothelial cells (DeLisser 

et al 1997) and human umbilical vein endothelial cells (Cao et al 2002). Likewise, tube 
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formation and cell migration was diminished in endothelial cells derived from endothelial 

selective adhesion molecule knockout mice (Ishida et al 2003).  

Proteins associated with intercellular junctions such as tight junction protein-1 (Figure 3.28 

A), protein cingulin-like 1, LIM and senescent cell antigen-like domains 1 isoform E, and 

junctional adhesion molecule were also up-regulated in CMECs. Endothelial junctions play a 

major role in regulation of endothelial cell permeability, leukocyte extravasation, and 

angiogenesis (Dejana et al 1995, Wallez & Huber 2008). Tight junctions are responsible for 

the close cell-to-cell association forming a protective and functional barrier (Dejana et al 

1995). This suggests that CMECs may play an important role in the maintenance of barrier 

function. In CMECs a functional barrier would be critical in regulating passage of substances 

to the underlying cardiomyocytes. Unlike AECs, CMECs are strategically arranged to be in 

paracrine communication with cardiomyocytes, and hence substances released from CMECs 

are able to influence cardiomyocyte growth and function, and vice versa (Strijdom et al 

2009). The intercellular junctions may act as sieve for substances that diffuse from CMECs to 

cardiomyocytes. Furthermore, PECAM-1 is expressed at endothelial cell junctions and in 

addition to angiogenesis it is also involved in preservation of the endothelial barrier and 

regulation of leukocyte transmigration during inflammatory conditions (Cao et al 2002, 

Privratsky et al 2010). 

Compared to AECs, the pro-thrombotic protein, Von Willebrand factor, enzyme 

prostaglandin G/H synthase and nitric oxide synthase (NOS3 /eNOS) were significantly up-

regulated in CMECs (Table 3.4). Although the western blot data did not show any statistical 

significance, total eNOS expression was 1.4-fold higher in CMECs compared to AECs (Figure 

3.12 A). The fact that eNOS was up-regulated in CMECs compared to AECs was quite an 

interesting and potentially a novel finding. Fish et al (2005) stated that eNOS is highly 

expressed in medium to large sized arterial blood vessels for vasomotor and vascular 

homeostasis regulation purposes. In the present study, we show that the expression of 

eNOS is more abundant in the microvascular (CMECs) compared to macrovascular 

endothelial cells (AECs), hence refuting this notion. Prostaglandin G/H synthase is 

responsible for biosynthesis of prostaglandin, the precursor of PGI2 and TXA2. In CMECs, 

eNOS-derived NO and other endothelial derived factors such as PGI2 diffuses into the 

underlying cardiomyocytes (in vivo settings) in a paracrine manner where it modulates 
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cardiomyocyte growth and function in addition to maintaining the endothelial surface 

integrity (Strijdom et al 2009, Shah & MacCarthy 2000). As it has previously been shown, 

eNOS expression and NO production are higher in CMECs compared to cardiomyocytes 

(Strijdom et al 2006).  

CMECs exhibited up-regulation of antioxidant proteins such as superoxide dismutase [Mn] 

(mitochondrial) (MnSOD), gluthathione peroxidase, and peroxiredoxin-6 (Table 3.4). MnSOD 

is responsible for clearance of O2
- through dismutation into H2O2 and water, whereas 

gluthathione peroxidase and peroxiredoxin-6 are responsible for the reduction of H2O2, 

hence protecting cells from oxidative damage. Gluthathione peroxidase and peroxiredoxin-6 

could explain why CMECs exhibited lower levels of H2O2 compared AECs under baseline 

conditions as measured by flow cytometric analysis of DCF fluorescence (Figure 3.3 B). This 

was also reflected by the enriched biological processes, where H2O2 catabolic process was 

18.1-fold enriched in CMECs (Table 3.5). H2O2 has previously been associated with 

cardiomyocyte death and myocardial dysfunction (Meldrum et al 1998). The degradation of 

H2O2 by CMECs, as reflected by the up-regulated proteins and the enriched biological 

processes associated with anti-oxidant activity, may be essential for protection of the 

underlying cardiomyocytes against cell death and consequent myocardial injury. 

Furthermore, proteins involved in the regulation of apoptosis such as BCL-2 related protein 

A1B, protein Acin1 and 3-ketoacyl-CoA thiolase (mitochondrial) were up-regulated in CMECs 

(Table 3.4). Interestingly, BCL-2 is an apoptosis repressor protein which antagonizes the pro-

apoptotic effects of BAX (which was up-regulated in AECs). In fact, BCL-2 related protein A1B 

was only detected in CMECs and not AECs. BCL-2 related protein A1B is activated by NF-kB 

and its expression has been associated with decreased apoptosis (Zong et al 1999). 

Apoptotic activity of CMECs would most likely negatively affect the underlying 

cardiomyocytes, as CMEC-derived factors such as NO and ET1, are dedicated at regulating 

underlying cardiomyocyte function and activity.  Therefore, it is speculated that the up-

regulation of the anti-apoptotic proteins observed in the CMECS could serve to preserve 

underlying cardiomyocyte function and existence.   
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4.2.3 Large scale protein expression and regulation in TNF-α treated AECs and CMECs 

TNF-α (20 ng/ml, over 24 hours) resulted in 2426 proteins being up-regulated in both AECs 

and CMECs. Of these proteins, 1701 proteins were shared by both AECs and CMECs, while 

322 were unique to AECs and 403 unique to CMECs.  

 

4.2.3.1 Strongly represented proteins in TNF-α treated AECs (compared to control, 

untreated AECs) 

In this section, strongly represented proteins in TNF-α-treated AECs and their functional 

annotation analysis will be discussed as shown in Tables 3.7 and 3.8. 

Differential protein regulation analysis revealed 30 proteins that were up-regulated in AECs 

in response to TNF-α compared to control, untreated AECs. Furthermore, 40 proteins were 

detected in TNF-α treated AECs only compared to control, untreated AECs.  In a previous 

proteomics-based study on HUVECs, treatment with TNF-α resulted in differential regulation 

of 21 proteins, with 9 proteins up-regulated, 11 down-regulated and 1 expressed only with 

TNF-α treatment (Ma et al 2006). The up-regulated proteins included a stress response 

protein, MAP kinase kinase kinase protein (MEKKS), whereas eNOS was amongst the down-

regulated proteins (Ma et al 2006).  

In AECs, TNF-α elicited up-regulation of proteins associated with the immune response and 

inflammation including guanylate binding protein 2, leucine-rich repeat flightless-interacting 

protein 1, MHC class I RT1.Au heavy chain, and protein Parp14. Guanylate binding protein 2 

(3-fold up-regulated) belongs to a group of GTPases which possess anti-viral activities and its 

expression is often elicited by the cytokines such as interferon gamma, TNF-α and 

interleukin-1β (IL-1β) in endothelial cells (Tripal et al 2007, Yamamoto et al 2012). The role 

of guanylate binding protein 2 in endothelial cells has not been well described; however, 

other isoforms such as guanylate binding protein 1 has been shown to inhibit endothelial 

cell proliferation and expression of matrix metalloproteinase (Verstal & Jeyaratnam 2011).  
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NF-kB p49/p100, a transcription factor which plays a major role in TNF-α signalling, was only 

detected in TNF-α treated AECs compared to control, untreated AECs (Figure 3.29 B). This is 

indicative of the activation of pro-inflammatory signalling processes by TNF-α in the AECs. 

NF-kB regulates downstream transcription of inflammatory genes encoding for cytokines, 

and proteins involved in proliferation, differentiation, the immune response and regulation 

of apoptosis in response to stimuli such as TNF-α (Kempe et al 2005). Binding of TNF-α to 

TNFR1 leads to trimerization of the receptors and subsequent release of the silencer of 

death domain (SODD) from the intracellular domain of TNFR1 (Jiang et al 1999). This is 

followed by recruitment of TRADD to the exposed intracellular domain of TNFR1 which in 

turn recruit TNFR associated factor 2 (TRAF2), and RIP (Hsu et al 1995) (Figure 4.2). 

Successive downstream signalling pathways lead to phosphorylation and subsequent 

degradation of the inhibitory IkB-alpha by the IkB kinase (IKK complex), hence leading to the 

release of the active NF-kB into the nucleus for gene transcription (Hsu et al 1996) (Figure 

4.2). Though not significant, western blot data showed a modest  16% reduction in IkB-

alpha expression in TNF-α treated AECs compared to control, untreated AECs (Figure 3.15).  

Recruitment of fas-associated death domain (FADD) to the TNFR1-TRADD complex leads to 

cell death through cleavage of caspase 8 followed by cleavage caspase 3 which in turn 

initiates apoptotic cell death (Hsu et al 1996, Lin & Lin 2008) (Figure 4.2). Caspase 3 was 1.5-

fold up-regulated in the TNF-α treated AECs compared to their control untreated AEC 

counterparts (Table 3.7). This is suggestive of the activation of the TNF-α-mediated 

apoptotic cell death pathway in the AECs. Our data is consistent with the literature. TNF-α at 

a concentration of 10 ng/ml over 24 hours was shown to increase apoptosis and caspase 3 

activity in bovine glomerular endothelial cells (Messmer et al 1999).  In human coronary 

artery endothelial cells, TNF-α (40 ng/ml) was also shown to induce apoptosis and caspase 3 

activity (Chen et al 2004).  

The induction of NF-kB activity in TNF-α-treated AECs was further validated by the up-

regulation (2.3-fold) of sequestosome 1 (Table 3.7). Sequestosome 1 modulates NF-kB 

activity via TNFR associated factor 6 (TRAF6) following TNF-α or IL-1 stimulation (Zotti et al 

2014). The underlying mechanism include ubiquitination of the regulatory subunit of the IKK 

complex, NEMO, leading to phosphorylation of the IkB-alpha and subsequent activation of 

NF-kB (Zotti et al 2014). In addition to NF-kB activation, sequestosome 1 is also involved in 
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induction of autophagy, a homeostatic process which involves the auto-degradation of 

damaged cell organelles and proteins (Zhou et al 2013). Reduction of autophagy has been 

implicated in endothelial senescence, enhanced ROS production, inflammation, 

atherogenesis and vascular aging (Xiong et al 2014, Chen et al 2013, Salminen et al 2012). 

MnSOD was up-regulated (2.8-fold) in response to TNF-α in AECs compared to control, 

untreated AECs (Table 3.7) (Figure 3.29 A). This is in support of our flow cytometry data, 

where 0.5, 5 and 20 ng/ml TNF-α (24 hours) resulted in increased H2O2 levels as measured 

by flow cytometric analysis of DCF fluorescence (Figure 3.8 A). Indeed, TNF-α has previously 

been shown to increase MnSOD expression as a protective mechanism against oxidative 

stress (Warner et al 1991, Wong & Goeddel 1988, Nakata et al 1993). Furthermore, removal 

of O2
- through the dismutation process may also play a protective role against inflammation, 

as oxidative stress is known to be pro-inflammatory (Li & Zhou 2011).  

In addition to MnSOD, other protective proteins such as cystatin B was up-regulated (2.8-

fold) following TNF-α treatment in AECs (Table 3.7). Cystatin B is an inhibitor of lysosomal 

cathepsin B, a cysteine protease involved in protein degradation (Mort & Buttle 1997). In 

HUVECs, TNF-α was shown to activate cathepsin B, which in turn initiates caspase-

independent cell death (cathepsin-dependent cell death) (Madge et al 2003). The cathepsin-

dependent cell death involves loss of mitochondrial membrane potential and release of 

cytochrome c from the mitochondria (Li & Pober 2005). Interestingly, amongst the biological 

processes associated with strongly represented proteins in TNF-α treated AECs, release of 

cytochrome C was highly enriched (37.1-fold), suggesting high apoptotic activity in TNF-α 

treated AECs (Table 3.8).  Therefore, the expression of cystatin B was presumably an 

attempt by the cells to alleviate cathepsin B-dependent cell death.  
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Figure 4.2: The TNF-α signalling pathway (Modified from Li & Lin 2008). 
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4.2.3.2 Strongly represented proteins in TNF-α treated CMECs (compared to control, 

untreated CMECs) 

In this section, strongly represented proteins in TNF-α-treated CMECs and their functional 

annotation analysis will be discussed as shown in Tables 3.7 and 3.8. 

Differential protein regulation analysis revealed a total of 45 proteins that were up-

regulated in response to TNF-α in CMECs; furthermore, a total of 61 proteins were only 

detected in TNF-α treated CMECs compared to control, untreated CMECs. Proteins 

associated with the immune response and inflammation were up-regulated in TNF-α treated 

CMECs compared to control, untreated CMECs. This response was also observed in TNF-α 

treated AECs (see section 4.2.3.2), however, the up-regulated proteins in the AECs were 

different except for one immune response protein (guanylate binding protein 2) that was 

up-regulated in both TNF-α treated AECs and CMECs.  This is indicative that some level of 

heterogeneity in protein expression in response to TNF-α exits between these two cell lines. 

Immune response proteins up-regulated in TNF-α treated CMECs included protein Gbp5 (6-

fold) (guanylate binding protein 5), intercellular adhesion molecule 1 (ICAM-1) (4-fold), 

protein Tapbp and guanylate binding protein 2 (3.2-fold) (Table 3.9).   

Enhanced expression of ICAM-1 is induced by pro-inflammatory cytokines including TNF-α, 

and it plays a role in leukocyte transmigration (Lawson & Wolf 2009). TNF-α-induced 

expression of ICAM-1 has previously been shown in most endothelial cell lines including 

HUVECs, human lung microvascular endothelial cells, human AECs and rat CMECs (Burke-

Gaffney & Helewell 1996, Chen et al 2001, Li et al 2010). ICAM-1 is one of the inflammatory 

genes that are transcriptionally regulated by NF-kB in response to TNF-α (Paxton et al 1997, 

Min et al 2005). Similar to the TNF-α treated AECs, NF-kB was also uniquely expressed in 

TNF-α treated CMECs (with no expression detected in control, untreated CMECs). Moreover, 

our western blot data showed a significant reduction in IkB-apha expression in TNF-α CMECs 

compared to control, untreated CMECs (Figure 3.15). This is suggestive of a TNF-α-mediated 

activation of NF-kB and hence a pro-inflammatory response in CMECs. Furthermore, 

another pro- inflammatory cytokine, Interleukin 1 family_ member 6 (Interleukin 36-alpha; 

IL-36α) was 2.5-fold up-regulated in TNF-α treated CMECs compared to control, untreated 

CMECs. There appears to be a lack of studies investigating the effects of IL-36α in 

endothelial cells, but it has previously been shown to be involved in production of cytokines 
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and chemokines including IL-1β, IL-6, IL-12,  and TNF-α in bone marrow dendritic cells (Vigne 

et al 2011). Moreover, IL-36α has been shown to induce NF-KB activity in mouse 

macrophage and neutrophil infiltration in mouse lungs (Ramadas et al 2012). These results 

thus implicate IL-36α in the involvement of an inflammatory response.  

A pro-apoptotic protein, BH3 interacting domain death agonist (Bid) was 4.8-fold up-

regulated in TNF-α treated CMECs compared to control, untreated CMECs (Table 3.9).  Bid is 

cleaved by cathepsins or caspase 8, after which it translocates to the mitochondria, inducing 

mitochondrial membrane permeability and release of cytochrome C (Billien et al 2009). This 

was reflected by the enriched biological processes in our TNF-α treated CMECs, which 

included regulation of mitochondrial membrane permeability (76.6-fold enriched), 

regulation of mitochondrial membrane potential (46.8-fold enriched), release of 

cytochrome C from mitochondria (40.1-fold enriched), and apoptotic mitochondrial changes 

(29.1-fold enriched) (Table 3.10). Hence TNF-α appears to have induced some apoptotic 

activity in CMECs. This response appears to have been more profound in TNF-α treated 

CMECs compared to TNF-α treated AECs, hence heterogeneity was evident in this regard.  

TNF-α elicited a 2.6-fold up-regulation of plasminogen activator inhibitor 1 in CMECs (Table 

3.9, Figure 3.30 A). Plasminogen activator inhibitor 1 is a pro-clotting factor with a 

homeostatic role of preventing excess bleeding during injury (Mehta & Shapiro 2008). 

However, plasminogen activator inhibitor 1 may lead to thrombolytic resistance, 

accumulation of blood clots and consequent occlusion of the vessel, leading to myocardial 

ischaemia (Handt et al 1996). Previous studies have linked the expression of plasminogen 

activator inhibitor 1 with TNF-α in endothelial cells (Swiatkowska et al 2005, Soeda et al 

1998, Handt et al 1996). Clinically, elevated plasminogen activator inhibitor 1 has been used 

as a marker of endothelial dysfunction (Meigs et al 2006, Belo et al 2002). Hence, the up-

regulation of plasminogen activator alpha 1 in TNF-α treated CMECs compared to their 

respective control could be an indicator of the cells switching into a dysfunctional state.   

Like cathepsin B, cathepsin L1 is a cysteine protease involved in breakdown of proteins. 

Cathepsin L1 was 2-fold up-regulated in TNF-α treated CMECs compared to control, 

untreated CMECs. Cathepsin L1 plays a role in antigen presentation, but has also been 

implicated in the process of atherogenesis through the remodelling of vascular extracellular 

Stellenbosch University  https://scholar.sun.ac.za



232 | P a g e  
 

matrix (Zhang F et al 2009, Kitamoto et al 2007). Furthermore, cleavage of collagen XVIII by 

cathepsin L1 generates endostatin, a protein that inhibits angiogenesis (Zhang F et al 2009). 

According Zhang F et al (2009), endostatin diminished endothelium dependent vasodilation 

in bovine coronary arteries. However, in the heart, cathepsin L appears to play a more 

protective role. For example, it has been shown to be involved in cardiac repair and 

remodelling following myocardial infarction (Sun et al 2011). Hearts from cathepsin L1 

deficient mice exhibited dilated cardiomyopathy (Stypmann et al 2002). Hence, up-

regulation of this protein in CMECs may be a protective instinct, for myocardial repair in 

response to insult.  

Similarly to AECs, MnSOD was also up-regulated (2.2-fold) in TNF-α treated CMECs 

compared to control, untreated CMECs. This also supports our DCF fluorescence data, 

where 5 and 20 ng/ml TNF-α over 24 hours increased H2O2 production in CMECs, suggestive 

of the dismutation of O2
- into H2O2 and water by SOD (Figure 3.8 C).  

Finally, a state of endothelial activation appeared to be induced in the CMECs in response to 

TNF-α as evidenced by the up-regulation of inflammatory mediators such ICAM-1 and IL-

36α, and NF-kB activation. Furthermore, biological processes that were enriched included 

antigen processing and presentation (16.9-fold enriched), leukocyte migration (14.8-fold 

enriched), the cytokine-mediated signalling pathway (13.2-fold enriched) and cell activation 

(4.6-fold enriched) (Table 3.10). In addition to this, NO production was significantly 

decreased following 24 hours of TNF-α treatment (Figure 3.4 C), whereas ROS (H2O2) 

production (Figure 3.8 C) and necrosis (Figure 3.10 C) were increased. This is a clear 

indication of TNF-α-induced endothelial injury.  
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In the next two sections, we directly compared the TNF-treated AEC and CMEC proteomic 

data with the objective to gain a more focussed insight into possible heterogeneous 

responses between the two cell types as a result of TNF-α treatment. 

4.2.3.3 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated AECs compared to TNF-α treated CMECs.  

Proteins associated with cell adhesion and migration were up-regulated in TNF-α treated 

AECs compared to TNF-α treated CMECs. These included CD9 molecule, galectin, fermt3 

protein and podocalyxin (Table 3.11). In a previous study in TNF-α treated HUVECs (20 ng/ml 

TNF-α for 20 hours), CD9 molecule (27.7-fold up-regulated) was shown to partner with 

other transmembrane proteins including CD81, CD151, ICAM-1 and VCAM-1 forming 

microdomains that mediate leukocyte intercellular adhesion and migration (Barreiro et al 

2005, 2008). In our cells however, ICAM-1 was only up-regulated in TNF-α treated CMECs 

and not AECs. Although both cell types showed a pro- inflammatory response, there was 

considerable heterogeneity in terms of the proteins involved. Galectin (8.7-fold up-

regulated in TNF-α-treated AECs vs their CMEC counterparts) plays a role in cell 

proliferation, cell adhesion and migration, immune response and apoptosis of endothelial 

cell bound T cells (Hsieh et al 2008, Perillo et al 1995). Apoptosis of endothelial cell bound T 

cells might be a mechanism through which galectin regulates endothelial cell-leukocyte 

adhesion.  Fermt3 protein plays a role in activation of integrin beta which facilitates 

leukocyte adhesion to endothelial cells (Moser et al 2009). Integrin beta is a cell adhesion 

molecule which was 3.9-fold up-regulated in TNF-α AECs compared to CMECs. Up-regulation 

of these proteins is indicative of inflammation and hence TNF-α-induced endothelial 

activation in AECs. Though this response was also observed in CMECs, the proteins 

mediating endothelial activation appears to differ between AECs and CMECs.  

Biliverdin reductase A was 7.5-fold up-regulated in TNF-α treated AECs compared to their 

CMECs counterparts (Table 3.11). Biliverdin reductase A converts billiverdin to bilirubin 

which has been shown to possess antioxidant activity, hence conferring protection from 

ROS (Baranano et al 2002). In HUVECs, silencing biliverdin reductase led to enhanced 

lipopolysaccharide induced- oxidative stress (Jansen et al 2010). Hence, biliverdin reductase 

A could contribute to the antioxidant pathways of the cells to alleviate the oxidative effects 

of TNF-α in AECs. Other protective proteins up-regulated in TNF-α treated AECs compared 
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to TNF-α treated CMECs included glutathione S_transferase Mu 4, glutathione S_transferase 

Mu 1, NAD(P)H dehydrogenase [quinone] 1, aldehyde dehydrogenase (dimeric NADP-

preferring),  and glutathione reductase (Table 3.11). Glutathione S_transferase Mu 4, and 

glutathione S_transferase Mu 1 conjugate with glutathione and are involved in 

detoxification processes. NAD(P)H dehydrogenase [quinone] 1 plays a role in detoxification 

of xenobiotics and scavenging of O2
- , hence acting as an antioxidant (Siegel et al 2004). 

Glutathione reductase is responsible for the reduction of glutathione, which plays a major 

role in the defence against oxidative stress (Harlan et al 1984). Hence, it appears that AECs 

were able to up-regulate anti-oxidant enzymes in response to TNF-α to a greater extent 

compared to their CMEC counterparts. This may possibly account for decreased  ONOO- 

levels in TNF-α treated AECs (at all TNF-α concentrations) as measured by flow cytometric 

analysis of DHR-123 florescence (Figure 3.7 A), however, this response was also observed in 

CMECs. As mentioned in the above sections, only H2O2 production was increased by TNF-α, 

but this can be attributable to the dismutation of O2
- by MnSOD. 

Endothelin-converting enzyme 1, an enzyme responsible for ET-1 biosynthesis was up-

regulated in TNF-α treated AECs compared to their AECs counterparts (Table 3.11, Figure 

3.31 A). Since AECs line the smooth muscle containing blood vessel, ET-1 released from AECs 

would serve a vasoconstrictory role and hence play a role in vasomotor function under 

physiological conditions.  However, ET-1 production is enhanced during pathophysiological 

conditions such as endothelial dysfunction, hence contributing to initiation of cardiovascular 

diseases (Molet et al 2000). In HUVECs, a mixture of TNF-α (20 ng/ml), IL-1β (20 U/ml) and 

interferon gamma (100 U/ml) and chemokines resulted in enhanced mRNA expression of 

both endothelin-converting enzyme and ET-1 (Molet et al 2000). Angiotensin II converting 

enzyme, responsible for the biosynthesis of angiotensin II was also up-regulated in TNF-α 

treated AECs compared to their CMECs counterparts. Like ET1, angiotensin II is a potent 

vasoconstrictor which in the case of AECs, is most likely involved in vasomotor regulation 

during physiological conditions. However, during pathophysiological conditions, angiotensin 

II contributes to initiation of cardiovascular diseases, owing to hyperconstriction of the 

blood vessels. In contrast to our findings, TNF-α (0.1-10 ng/ml) for 24 hours resulted in a 

dose dependent decrease of ACE mRNA expression in human umbilical vein endothelial cells 

(Saijonmaa et al 2001). These differences could be attributable to cell line differences or 
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TNF-α concentration differences.  Co-culture of human AECs with monocytes led to a 

decrease in ACE activity, a response which was believed to be attributable to the monocyte-

induced stimulation of TNF-α and IL-1, as antibodies against TNF-α and IL-1 reversed this 

response (Papapetropoulos et al 1996). As inflammatory cytokines have stimulatory effects 

on iNOS, NO produced from iNOS may affect ACE activity (Ackermann et al 1998). This might 

explain the observations from the above mentioned study. However, iNOS expression or NO 

production was not measured in this study. In our hands, TNF-α (0.5, 5 and 20 ng/ml over 24 

hours) significantly decreased NO production in AECs (Figure 3.4 A). The up-regulation of 

endothelin-converting enzyme and ACE, and the reduced NO levels in AECs could represent 

a switch towards a dysfunctional state. One of the key characteristics of endothelial 

dysfunction is the shift in balance, where vasoconstrictory factors such as ET-1 outweigh 

vasodilatory factors such as NO. The up-regulation of these vasoconstrictory proteins is 

suggestive that AECs were progressing from the activated state and adopting a 

dysfunctional phenotype, while CMECs appear to have maintained an activated state as 

shown by the up-regulation of inflammatory proteins such as ICAM-1 and IL-36α.  

 

4.2.3.4 Differential protein regulation and functional annotation analysis: Strongly 

represented proteins in TNF-α treated CMECs compared to TNF-α treated AECs. 

Ectonucleoside triphosphate diphosphohydrolase 1 (CD39) was highly up-regulated (75.2-

fold) in TNF-α treated CMECs compared to TNF-α treated AECs (Table 3.14). CD39 inhibits 

platelet aggregation and is expressed in platelets, endothelial cells and leukocytes (Koziak et 

al 1999). Mice transfected with the CD39 gene has been shown to be resistant to occlusive 

thrombus formation in response to ferric chloride-induced carotid artery injury compared to 

their controls (Huttinger et al 2012). Furthermore, mice lacking CD39 (CD39 -/- mice) 

demonstrated increased cerebral infarct volume compared to their genotypic CD39 +/+ 

controls (Marcus et al 2001). CD39 hydrolyses ATP and ADP released from activated 

platelets to AMP which is further converted to adenosine (Marcus et al 2001, Colgan et al 

2006). Adenosine possesses anti-inflammatory, anti-thrombotic and cardioprotective 

properties (Colgan et al 2006). Since CMECs line myocardial capillaries, up-regulation of 

CD39 in response to injury would serve a critical role in preventing capillary occlusion in in 

vivo settings and consequent myocardial infarction. Up-regulating CD39 might have also 
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been a counter-acting mechanism for pro-clotting factors, von Willebrand factor (5-fold up-

regulated) and plasminogen activator inhibitor (2.9-fold up-regulated), which were also up-

regulated in TNF-α treated CMECs compared to their AECs counterpart.  

cGMP_dependent 3_5_cyclic phosphodiesterase (PDE2A), a gene coding for PDE2 was up-

regulated (46.7-fold) in TNF-α treated CMECs compared to TNF-α treated AECs (Table 3.14). 

PDE2 is involved in the termination of cAMP and cGMP activity both of which has been 

shown to play a role in the regulation of endothelial permeability (Draijer et al 1995). In 

HUVECs, TNF-α (10 ng/ml, 18 hours incubation time) significantly increased PDE2 activity 

which resulted in increased endothelial permeability (Seybold et al 2005). Similarly, 

Surapisitchat et al (2007) showed an increase in PDE2 expression and enhanced 

permeability in HUVECs following 24 hours of 10 ng/ml TNF-α treatment. Inflammatory 

cytokines including TNF-α have previously been associated with an altered endothelial cell 

barrier. The up-regulation of PDE2A could be an indication of increased endothelial 

permeability in TNF-α treated CMECs compared to TNF-α treated AECs. Generally capillaries 

(except in the blood brain barrier) exhibit high permeability for solute exchange as 

compared to the arteries (Aird 2007a). Inflammation-induced permeability and leukocyte 

trafficking is said to primarily occur in the postcapillary venules, but can also take place in 

other vessels including capillaries, veins and arterioles (Aird 2007a). Leukocyte 

transmigration is mediated by proteins such as ICAM-1, VCAM-1, E-selectin and PECAM-1 

(Aird 2007a), and hence the up-regulation of ICAM-1 (3.1-fold up-regulated) and PECAM-1 

(3.5-fold up-regulated) (Table 3.14) in TNF-α treated CMECs compared to TNF-α treated 

AECs could be another indication of inflammation-induced permeability.  

Although H2O2 production was increased in both AECs and CMECs in response to TNF-α after 

24 hours as shown by our flow cytometry data, proteins specifically associated with the 

degradation of H2O2 were up-regulated in TNF-α treated CMECs compared to TNF-α AECs. 

These included Protein Pxdn (14.5-fold up-regulated), Peroxiredoxin, and Glutathione 

peroxidase (Table 3.14). This could have been an attempt by the CMECs to reduce TNF-α-

induced H2O2 production. This might explain why H2O2 production was lower in TNF-α 

treated CMECs compared to TNF-α AECs treated after 24 hours at all concentrations, as 

shown by DCF fluorescence data (Figure 3.9 A).  
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4.3 Rat isometric tension studies (ex vivo studies) 

4.3.1 Summary of findings  

4.3.1.1 Biometric data 

Male Wistar rats receiving the high fat diet for either 16 or 24 weeks exhibited greater total 

body mass and intraperitoneal fat mass compared to their age and time-matched lean 

controls (Figures 3.33 – 3.36). 

 

4.3.1.2 Isometric tension studies in aortic rings from lean and HFD rats (16 week diet) 

Aortic rings derived from HFD rats exhibited a pro-contractile response to PE compared to 

rings isolated from lean rats (Figure 3.37).  

 

4.3.1.3 Effects of ex vivo oleanolic acid (OA) administration on aortic ring contraction and 

relaxation from lean and HFD rats (16 week diet). 

In aortic rings isolated from lean rats, administration of OA elicited a pro-contractile 

response to PE, however, this was likely due to a vehicle effect (Figure 3.39). 

In aortic rings isolated from HDF rats, administration of OA resulted in an anti-contractile 

response to PE (Figure 3.41).   

 

4.3.1.4 Effects of ex vivo oleanolic acid (OA) administration on aortic ring contraction and 

relaxation from lean and HFD rats (24 week diet) 

OA elicited an anti-contractile response in aortic rings isolated from lean rats (Figure 3.43). 

Furthermore OA exerted pro-relaxing effects in response to Ach in aortic rings from lean rats 

(Figure 3.44).  
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The pro-contractile effects observed in aortic rings from HFD rats were due to a vehicle 

effect (Figure 3.45). OA pre-administration impaired Ach-induced relaxation in aortic rings 

from 24 weeks HFD rats (Figure 3.46).  

 

4.3.1.5 Effects of direct OA administration on aortic rings (24 week diet) 

Direct administration of OA following cumulative contraction with PE, had no relaxing 

effects on aortic rings from lean and HFD rats (Figure 3.47).  

 

4.3.2 Discussion of data  

Obesity poses a great medical challenge as it often occurs hand in hand with cardiovascular 

diseases and metabolic disorders such as insulin resistance (Campia et al 2012). Obesity is 

often associated with reduced endothelial NO bioavailability owing to enhanced 

endogenous production of NOS inhibitor ADMA, oxidative stress and eNOS uncoupling 

(Toda & Okamura 2013). Furthermore, conditions such as insulin resistance leads to an 

imbalance in endogenous production of NO and ET-1, with the scale tipping in favour of ET-1 

production, hence leading to hyper-contraction of blood vessels (Potenza et al 2005). In this 

set of experiments, isometric tension studies were performed to study the vascular function 

in ex vivo settings of thoracic aortas derived from a model of high fat diet fed obese rats and 

age-matched lean control rats.  In addition to enhanced total body and intraperitoneal fat 

mass, our model of HFD rats has previously been shown to exhibit high fasting blood 

glucose, triglyceride and insulin levels (Salie et al 2014).  

 

4.3.2.1 Isometric tension studies in aortic rings from lean and HFD rats (16 week diet) 

Subsequent to a 16 week feeding period, aortic rings isolated from HFD rats exhibited an 

enhanced contractile response to PE compared to rings from their lean counterparts (Figure 

3.37). This is in agreement with the findings by Boustany-Kari et al (2007), where mesenteric 

arteries from rats fed a moderately high fat diet for 11 weeks, demonstrated an enhanced 

contractile response to PE, potassium chloride and serotonin. This is not surprising as 
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obesity is often associated with hypertension owing to amongst other factors, activation of 

the renin-angiotensin system (Kotsis et al 2010). Furthermore, Ach-induced relaxation was 

reported to be blunted in mesenteric arteries isolated from diet induced obese rats 

(Naderali et al 2001) and thoracic aortas from obese / diabetic mice (Seto et al 2010). 

Endothelial dysfunction is a common feature in obesity and is characterised by impaired 

vasodilation (Perticone et al 2001). In our hands, however, the pro-contractile response 

observed was not matched by reduced Ach-induced relaxation, which was found to be 

similar in aortic rings from HFD and lean rats (Figure 3.38). We suspect that the age of the 

rats may also have played a role, as the Ach-induced vasorelaxation in aortic rings from both 

lean and HFD rats was modest. It has previously been shown that progressive age is 

associated with a decline in endothelial function (Celemajer et al 1994). For example, 

contraction has been shown to be enhanced in aortic rings isolated from 15 weeks old rats 

compared to 7 and 11 weeks old rats, whereas relaxation was enhanced in aortic rings from 

7 weeks old rats compared to 11 and 15 weeks old rats (Rohra et al 2006). This trend was 

also observed in our own investigations showing that relaxation was greater in aortic rings 

isolated from young rats (± 4 weeks old) compared to older rats (Figure 3.44).  

In summary, in our hands, the HFD of 16 weeks induced modest signs of aortic endothelial 

dysfunction as shown by the pro-contractile response observed in these rings. Possible 

mechanisms include the modulation of vasoactive mediators released by dysfunctional 

perivascular adipose tissue that affect endothelial function such as reduced adiponectin 

(resulting in reduced anti-contractile effects), and increased reactive oxygen species 

(induction of pro-contractility) [for review see: Szasz et al 2010]. 

 

4.3.2.2 Effects of ex vivo oleanolic acid (OA) pre-administration on aortic ring contraction 

and relaxation from lean and HFD rats (16 and 24 week diet). 

In view of the short-term NO stimulatory properties of OA in both AECs and CMECs (Figure 

3.17 A & B), we further studied the vascular reactivity effects of OA on aortic rings derived 

from 16 and 24 weeks lean and HFD rats. Very few studies have investigated the role of OA 

in vascular reactivity or function in aortic rings. Furthermore, there appears to be lack of 

studies that investigated the effects of OA on vascular reactivity or function in aortic rings 
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derived from diet-induced obese rats. In a previous study, aortic rings isolated from rats fed 

a diet supplemented with OA for 12 weeks were shown to demonstrate a reduced 

contractile response to PE and an enhanced Ach-induced vasorelaxation (Rodriguez-

Rodriguez et al 2007). Furthermore, OA has previously been shown to possess anti-

hypertensive properties via modulation of NO production and antioxidant activity (Samova 

et al 2003, Bachhav et al 2011). 

In our 16 week diet group, ex vivo pre-administration of OA prior PE-induced contraction 

and Ach-induced relaxation in aortic rings from lean rats, resulted in an enhanced 

contractile response to PE (Figure 3.39). However, this response was likely due to a vehicle 

effect. Furthermore, OA pre-administration had no significant effect on Ach-induced 

relaxation compared to the untreated aortic rings from lean rats (Figure 3.40). Hence, it 

appears that pre-administration of OA prior PE-induced contraction and Ach-induced 

relaxation had no significant effect on rings from 16 week lean rats. This was not the case in 

the aortic rings isolated from the lean older rats (24 week diet group), where pre-

administration of OA elicited an anti-contractile response to PE and a pro-relaxing response 

to Ach (Figure 3.43 & 3.44). It is interesting that pre-administration of OA improved vascular 

function in the rings isolated from older lean rats as compared to those isolated from the 

lean 16 week diet group. The link between OA and vascular function in advanced age is not 

clear in the literature. However, since OA has been shown to improve conditions such as 

hypertension, oxidative stress and inflammation (all which are associated with advanced 

age) (Samova et al 2003, Bachhav et al 2011, Lee et al 2013), it is possible that OA is able to 

modulate vascular function in advanced age. This may possibly explain our observations in 

the rings isolated from the lean 24 week diet group.    

In aortic rings isolated from HFD rats (16 week diet group), pre-administration of OA elicited 

an anti-contractile response to PE compared to untreated rings isolated HFD rats (Figure 

3.41). As HFD has been previously associated with impaired vascular function (Boustany-Kari 

et al 2007), it is possible that pre-administration of OA acutely improved endothelial 

function in aortic rings from HFD rats.  However, when compared to age-matched lean 

control aortic rings, there was no difference in Ach-induced relaxation (Figure 3.42). In the 

older 24 week HFD group, the pro-contractile response observed following OA pre-

administration appeared to have been influenced by the vehicle in aortic rings isolated from 
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HFD rats (Figure 3.45). Interestingly, OA pre-administration significantly blunted Ach-

induced relaxation in HFD-isolated aortic rings (24 week diet group) (Figures 3.46). It is not 

clear why OA elicited this response in the aortic rings from older HFD-induced obese rats. 

Whether OA is ineffective or harmful when faced with both advanced age and obesity is 

unclear. Further investigations are necessary on the effects of OA and vascular function in 

obesity and / or advanced age. In previous studies, OA was either given to the rats as part of 

the diet or it was used as a direct vasorelaxant in place of Ach in aortic rings (Rodriguez-

Rodriguez et al 2007, Rodriguez-Rodriguez et al 2004 & 2008). To our knowledge, we are the 

first to test a pre-administration treatment model of OA. Interestingly, the pre-

administration model yielded variable results in both 16 and 24 week diet groups, with OA 

exhibiting beneficial effects only in 16 week HFD rats and in 24 week diet lean rats only.  

 

4.3.2.3 Effects of direct OA administration on aortic rings (24 week diet) 

The direct vasorelaxing effects of OA were investigated by administration of OA in a 

cumulative manner in PE-contracted aortic rings isolated from lean and HFD rats receiving 

the high fat diet for 24 weeks. OA did not elicit a relaxing response in aortic rings isolated 

from either lean or HFD rats (Figure 3.47). These findings contradict previous findings in the 

literature as OA has been shown to directly induce vasorelaxation in PE or noradrenaline 

contracted rat aorta and mesenteric arteries (Rodriguez-Rodriguez et al 2004 & 2008). OA-

induced vasorelaxation was abolished upon the removal of the endothelium or addition of 

NO inhibitors such as ADMA and L-NAME (Rodriguez-Rodriguez et al 2004 & 2008). This thus 

positions NO as a central mediator of OA-induced vasorelaxation. The age of the male 

Wistar rats used in the above mentioned previous studies were in the range of 10-12 and 

12-16 weeks respectively. The age of the rats in our 24 weeks diet rats could have 

potentially affected the responsiveness of the aortas to direct OA administration.  
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4.4 Integration of findings  

4.4.1 Baseline endothelial heterogeneity in AECs and CMECs  

The baseline flow cytometry data demonstrated that NO production did not differ between 

AECs and CMECs, hence endothelial heterogeneity was not observed in this regard. The 

heterogeneous protein expression and phosphorylation patterns of the NO biosynthetic 

pathway are summarised in Table 4.1. Although western blot analysis demonstrated a non-

significant  1.4-fold higher total eNOS expression in CMECs, proteomics did show a 

significant eNOS up-regulation in CMECs compared to AECs. These findings are suggestive of 

a heterogeneous expression of eNOS in AECs and CMECs. This was an interesting finding as 

eNOS is usually thought to be expressed at lower quantities in cardiac microvascular 

endothelial cells, compared to larger-sized coronary vessels where eNOS is required for 

vasomotor regulating purposes.   

In addition to higher eNOS protein levels, prostaglandin G/H synthase also showed a higher 

expression in CMECs compared to AECs.  Prostaglandin G/H synthase synthesises 

prostaglandin, a precursor of vasodilatory PGI2 and vasoconstrictory TXA2. Since CMECs line 

non-vasomotor regulating capillary vessels, it can be presumed that the PGI2 and TXA2 

expressed in CMECs would be dedicated at regulating endothelial function and underlying 

cardiomyocyte function and activity. For example PGI2 and TXA2 play opposing, yet 

homeostatic roles in regulating platelet aggregation in endothelial cells (Nemr et al 2003). 

Futhermore, CMEC-derived PGI2 play a role in regulating cardiac contractile performance 

(Brutsaert 2003). On the other hand, AECs demonstrated up-regulation of proteins that are 

associated with regulating vasomotor function including insulin degrading enzyme and 

catechol O-methyltransferase. Higher expression of PKB / Akt and HSP 90 in AECs compared 

with CMECs (Table 4.1), may be a vasomotor function adaptive trait, as these proteins are 

involved in eNOS activation in conditions of shear stress (Luo et al 2000).  Taken together, 

this is indicative that endothelial heterogeneity with regards to baseline endothelial 

function exists between these two cell lines, and that each cell line is adapted to function in 

their own respective internal environments. This further indicates that, in our hands, some 

measure of endothelial heterogeneity was observed in the in vitro setting, despite removal 

from their in vivo environments.  
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Table 4.1: Heterogeneous protein expression and phosphorylation patterns under baseline 

conditions 

Protein expression / 

phosphorylation  

AECs  CMECs 

Total eNOS low Non-significant, but 1.4-fold 

higher expression, 1.5-fold 

significant up-regulation via 

proteomics 

p eNOS (ser 1177) similar similar 

Relative eNOS activation high low 

Total PKB / Akt  high low 

p PKB / Akt (Ser 473) low high 

Relative PKB / Akt activation low high 

HSP 90  high low 
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Endothelial heterogeneity was also observed with regards to baseline ROS production 

between AECs and CMECs. These findings were further supported by up-regulation of anti-

oxidant proteins which were more pronounced in CMECs compared to AECs. Baseline 

ONOO- levels were lower in AECs, while H2O2 levels where lower in CMECs. The lower H2O2 

levels in CMECs compared to AECs could be accounted for by the up-regulation of H2O2 

degrading proteins which included gluthathione peroxidase and peroxiredoxin-6. These 

findings suggest that CMECs showed a higher H2O2 degrading capacity compared to AECs, an 

adaptive trait that might serve to protect the underlying cardiomyocytes from oxidative 

stress and consequent cell death. Furthermore, an up-regulation of MnSOD was observed in 

CMECs compared to AECs. Hence, CMECs appear to be equipped with a more pronounced 

defence system against oxidative stress compared to AECs.  

 

4.4.2 Heterogeneity in AEC and CMEC model of endothelial injury 

An in vitro model of endothelial injury in both AECs and CMECs was successfully achieved 

with TNF-α as evidenced by: 

 Decreased NO production 

 Increased H2O2 production  

 Increased necrosis  

 Up-regulation of inflammatory proteins  

 Up-regulation of apoptotic proteins  

The increase in H2O2 levels in both TNF-α treated AECs and CMECs was validated by the up-

regulation of MnSOD as demonstrated by the proteomics data (Figure 4.3). This suggests 

that the TNF-α-stimulated O2
- was rapidly dismutated into H2O2 and water. Moreover, the 

up-regulation of MnSOD and reduction in NO production were in agreement with the 

reduced ONOO- levels observed in both TNF-α treated AECs and CMECs (Figure 4.3).  
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Figure 4.3: Summary of the effects of TNF-α on NO production, ROS production and necrosis in AECs 

and CMECs.  
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4.4.2.1 TNF-α signalling in AECs (compared to control, untreated AECs) 

TNF-α elicited expression of NF-kB in AECs as was shown by the proteomics data. The 

western blot data supported the proteomics findings by revealing a modest  16% reduction 

in IkB-alpha expression in TNF-α treated AECs compared to their untreated counterparts. A 

reduction in IkB-alpha is a marker of enhanced NF-kB activity, and hence both these findings 

were strongly suggestive of an inflammatory response elicited by TNF-alpha in the AECs 

(Zhou et al 2003). In the AECs, NF-kB activity appeared to be regulated through TRAF6 

(Figure 4.4), as was demonstrated by the up-regulation of sequestosome 1 which is known 

to facilitate IkB-alpha phosphorylation and modulation of NF-kB activity via TRAF6 (Wooten 

et al 2005, Zotti et al 2014). Activation of NF-kB leads to regulation of inflammatory genes, 

which in the AECs included genes encoding for guanylate binding protein 2 and protein parp 

14, both of which were up-regulated (Figure 4.4). TNF-α appeared to have switched on pro-

apoptosis pathways in the AECs as was shown by the up-regulation of caspase 3 (Figure 4.4). 

In a model of mouse embryonic fibroblasts, Lin et al (2004) reported that TNF-α led to ROS 

accumulation which in turn resulted in necrosis. We propose that, in our hands, binding of 

TNF-α to TNF-α receptors led to ROS accumulation (O2
-), which consequently led to up-

regulation of MnSOD. Dismutation of O2
- led to increased intracellular H2O2 levels, which 

could have overwhelmed the cells, hence triggering necrotic cell death (Figure 4.4).  
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Figure 4.4: Proposed TNF-α signalling in the AECs based on the integration of flow cytometry, 

western blot and proteomic data. 
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4.4.2.2 TNF-α signalling in CMECs (compared to control, untreated CMECs) 

Similarly to AECs, TNF-α elicited the up-regulated expression of NF-KB in CMECs. NF-KB 

activity was confirmed by decreased expression of IkB-alpha as determined through western 

blotting. In CMECS, TNF-α elicited up-regulation of inflammatory genes ICAM-1 and IL-36, in 

addition to guanylate binding protein 2 which was also up-regulated in TNF-α treated AECs 

compared to their respective controls (Figure 4.5).  The CMECs also responded to TNF-α 

treatment in terms of apoptosis; however, in contrast to AECs, the protein mediating 

apoptosis in CMECs seemed to have been Bid rather than caspase-3 (Figure 4.5). Bid may be 

cleaved by caspase 8, after which it translocates to the mitochondria, leading to enhanced 

mitochondrial membrane permeability and release of cytochrome C (Billien et al 2009). The 

necrotic cell death pathway appears to have been similar in both CMECs and AECs (Figure 

4.5).  
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Figure 4.5: Proposed TNF-α signalling in the CMECs based on the integration of flow cytometry, 

western blot and proteomic data.  
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4.4.2.3 NO production and eNOS signalling in TNF-α treated AECs vs. TNF-α treated 

CMECs. 

TNF-α only elicited a heterogeneous response in NO production between AECs and CMECs 

at the higher concentration of 20 ng/ml TNF-α after 48 hours, where NO production was 

lower in AECs compared to CMECs. These findings suggest that, when exposed to a high 

TNF-α concentration for longer periods, AECs were more susceptible to the injurious effects 

of TNF-α than CMECs using reduced NO production as the marker of effect.  

Relative eNOS activation was significantly lower in TNF-α treated CMECs compared to their 

AEC counterparts, however, this response was also observed in baseline untreated 

conditions. Hence TNF-α might not have played an additive role in this heterogeneous 

response. AECs responded to TNF-α with a lower PKB / Akt expression and phosphorylation 

compared to CMECs. Endothelial heterogeneity was not observed with regards to HSP 90 

expression in TNF-α treated AECs and CMECs. Although the combined HSP 90-PKB / Akt-

eNOS pathway findings were not sufficiently convincing to conclude that the AECs were 

more prone to endothelial dysfunction, the compromised PKB / Akt pathway suggests that 

the AECs may have been more susceptible to the injurious effects of TNF-α with regards to 

this important upstream activator of eNOS compared to CMECs. 

Proteomics revealed a differential up-regulation of endothelin converting enzyme and 

angiotensin II converting enzyme in TNF-α treated AECs compared to their CMEC 

counterparts. These proteins are responsible for the synthesis of the vascontrictive peptides 

ET-1 and angiotensin II respectively. As previously described, endothelial dysfunction is 

associated with an imbalance in the endothelial release of vasoconstrictors such as ET-1 and 

angiotensin II at the expense of vasodilators such as NO (Esper et al 2006, Strijdom & 

Lochner 2009). The overall reduction in NO production and up-regulation of endothelin 

converting and angiotensin II converting enzymes may suggest that the AECs were switching 

from an activated state to a dysfunctional state in response to TNF-α compared to CMECs 

(Figure 4.6).  

While the AECs seemingly demonstrated progression to a dysfunctional state, CMECs 

appeared to have maintained an activated state. This was evidenced by up-regulation of 

proteins associated inflammation-induced permeability and leukocyte transmigration such 
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as PDE2A, ICAM-1, IL-36α and PECAM-1 in TNF-α treated CMECs, which was not observed in 

their AEC counterparts.  Endothelial dysfunction is a precursor of atherosclerosis, a 

condition that principally affects large blood vessels including the aorta and coronary 

arteries (Deng et al 2006). The progression of the AECs towards a dysfunctional state may 

be an indicator of their propensity to developing atherosclerosis, as these cells are situated 

in the large conduit aorta.  

 

 

Figure 4.6: The loss of balance in vasoconstrictor and vasodilator factor synthesis in TNF-α treated 

AECs compared to TNF-α CMECs. ETE = endothelin converting enzyme, ACE = angiotensin II 

converting enzyme. 
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4.4.2.4 ROS production in TNF-α treated AECs vs. TNF-α treated CMECs 

TNF-α elicited a heterogeneous response with regards to ROS production and the up-

regulation of anti-oxidant proteins between AECs and CMECs.  Intracellular ONOO- and H2O2 

production were lower in TNF-α treated CMECs compared TNF-α treated AECs. However, 

the ONOO- levels did not coincide with nitrotyrosine expression, as there were no significant 

differences in nitrotyrosine expression between AECs and CMECs following TNF-α 

treatment. The lower H2O2 levels in TNF-α treated CMECs compared to their AEC 

counterparts were attributable to the up-regulation of proteins associated with H2O2 

degradation including, protein pxdn, peroxiredoxin, and glutathione peroxidase. The anti-

oxidant proteins up-regulated in TNF-α treated AECs compared to TNF-α treated CMECs are 

mostly associated with detoxification processes and scavenging of O2
-, and these included 

biliverdin reductase A, NAD(P)H dehydrogenase [quinone] 1, aldehyde dehydrogenase 

(dimeric NADP-preferring). The higher levels of ONOO- and H2O2 in TNF-α treated AECs may 

be suggestive of a higher O2
- production compared to TNF-α treated CMECs, and the up-

regulation of anti-oxidant proteins was most likely a way of counteracting ROS production. 

See Table 4.2 for anti-oxidant proteins in TNF-α treated AECs compared to TNF-α treated 

CMECs.   
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Table 4.2: Heterogeneous anti-oxidant protein up-regulation in response to TNF-α 

TNF-α treated AECs TNF-α treated CMECs 

Biliverdin reductase A Protein pxdn 

Glutathione S_transferase Mu 4 Peroxiredoxin 

Glutathione S_transferase Mu 1 Glutathione peroxidase 

NAD(P)H dehydrogenase [quinone] 1  

Aldehyde dehydrogenase (dimeric NADP-

preferring) 

 

Glutathione reductase  
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4.4.2.5 Cell viability in TNF-α treated AECs vs. TNF-α treated CMECs 

Endothelial heterogeneity with regards to necrosis between AECs and CMECs was only 

observed with 20 ng/ml TNF-α after 48 hours, with CMECs showing increased necrosis 

compared to the AECs. This suggests that at a high concentration over a longer period, TNF-

α may be more cytotoxic to CMECs compared to AECs. The role of TNF-α in apoptosis is well 

known (Deshpande et al 2000, Rastogi et al 2012). TNF-α elicited an up-regulation of pro-

apoptotic proteins in both AECs and CMECs, however there appeared to be heterogeneity in 

terms of the proteins expressed. In TNF-α treated AECs, the up-regulated apoptotic proteins 

included caspase 8 and BAX, while Bid and PARP3 were up-regulated in TNF-α treated 

CMECs compared to their AEC counterparts.  

 

4.4.2.6 TNF-α signalling in AECs vs. CMECs 

Proteomics revealed expression of NF-kB in both TNF-α treated AECs and CMECs, which is 

indicative of an inflammatory response. NF-kB activity was comparable between TNF-α 

treated AECs and TNF-α treated CMECs, as was validated by the IkB-alpha expression, which 

was similar between these two cell lines in response to TNF-α. However, in the AECs, IkB-

alpha degradation and hence NF-kB activity seemed to be modulated via TRAF6, as was 

demonstrated by a differential up-regulation of sequestosome 1 in TNF-α treated AECs 

compared to TNF-α treated CMECs. Endothelial heterogeneity was also observed with 

regards to the up-regulated inflammatory proteins in AECs and CMECs in response to TNF-α, 

suggesting that endothelial activation was mediated by different proteins in the two cell 

lines (Figure 4.7 & 4.8). 
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Figure 4.7: TNF-α signalling in AECs compared to CMECs. 

 

 

 

Figure 4.8: TNF-α signalling in CMECs compared to AECs. 
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4.4.2.7 Modulation of endothelial injury by OA 

The fact that endothelial injury and dysfunction are reversible conditions is of major 

significance in the prevention of cardiovascular diseases, especially in clinical settings. Plant 

extracts such as OA have gained attention due to their putative beneficial properties on 

vascular function. The endothelio-protective properties of OA has previously been 

documented (Rodriguez-Rodriguez et al 2004, Martinez-Gonzalez et al 2008), and hence we 

investigated its role in reversing endothelial injury the AECs and CMECs. Reduced NO 

bioavailability is considered to be the hallmark of endothelial injury or dysfunction.  In this 

study, TNF-α resulted in decreased NO production in both AECs and CMECs. In our hands, 1 

hour pre-treatment with OA significantly reversed TNF-α-induced injury, by restoring NO 

production. Previous studies have shown that OA can stimulate PKB / Akt and eNOS activity, 

which may explain its NO modulating properties. Though TNF-α did appear to convincingly 

affect the eNOS-NO biosynthetic pathway, it is possible that OA pre-treatment might have 

enhanced this pathway leading to restoration of NO production. It should also be kept in 

mind that TNF-α might have abolished NO production via other eNOS phosphorylation sites 

that were not investigated in this study, and that OA could have modulated eNOS activity 

through one of these phosphorylation sites. 

We further showed that pre-treatment with OA significantly decreased TNF-α-induced H2O2 

production in both AECs and CMECs, a finding which suggests that OA may possess anti-

oxidant properties or stimulatory properties on endogenous anti-oxidant systems. It was 

previously reported that OA may possess stimulatory properties on SOD and glutathione 

peroxidase anti-oxidant systems (Samova et al 2003). This could explain the reduction of 

H2O2 production in the current study. The fact that OA was able to abolish H2O2 production 

may also explain the diminished necrosis with OA pre-treatment in AECs. Unfortunately, in 

these set of experiments, CMECs did not show any response with regards to necrosis 

induction by TNF-α or OA pre-treatment.   

From these findings, it appears that the injurious effects of TNF-α can be reversed by OA. 

Unfortunately, western blots or proteomics studies were not performed in OA studies, 

hence the mechanism of action of OA in AECs and CMECs in the current study is unknown. 

Lee et al (2013), showed that OA may exert anti-inflammatory properties through 
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decreasing NF-kB activity. This mechanism may contribute the reversal of TNF-α-induced 

injury by OA as was observed in the current study.  

 

4.4.3. Aortic ring experiments 

An ex vivo model of endothelial injury was included in this study by investigating the 

vascular function of thoracic aortas derived from HFD induced obese rats compared to age-

matched lean control rats. The ex vivo model of endothelial injury was achieved as 

evidenced by an enhanced contractile response to PE in aortic rings from HFD rats 

compared to lean rats. However, Ach-induced relaxation did not differ between aortic rings 

from HFD rats and lean rats. This is suggestive that NO production was maintained in aortic 

rings from HFD rats, although a pro-contractile response to PE was observed. Endothelial 

dysfunction may be characterised by the state at which vasoconstrictive factors such as ET-1 

and angiotensin II are enhanced at the expense of vasodilatory factors such as NO (Esper et 

al 2006). The pro-contractile response observed in aortic rings from HFD rats could 

represent an initial step towards a dysfunctional state. Furthermore, obesity is associated 

with perivascular adipose tissue-derived release of pro-contractile factors such as ROS and 

inflammatory cytokines (including TNF-α) at the expense of anti-contractile factors such as 

adiponectin (Szasz et al 2013). This might have contributed to the pro-contractile response 

observed in rings from HFD rats.  

In a similar fashion to our cultured cell experiments, the putative protective role of OA was 

also investigated in the aortic ring model. Aortic rings from lean and HFD rats were 

subjected to pre-administration of OA 15 minutes prior to PE-induced contraction and Ach-

induced relaxation. This led to anti-contractile response to PE in aortic rings from 16 week 

HFD rats. As discussed above pro-contractile factors released from perivascular tissue in 

obesity include ROS. Given the fact that OA was able to modulate ROS production in our in 

vitro models (AECs and CMECs), the anti-contractile response observed in the ex vivo model 

might be attributable to the ability of OA to lower ROS. Pre-administration of OA further 

resulted in an anti-contractile and pro-relaxing response to PE and Ach respectively in aortic 

rings from older 24 week diet lean rats. And hence the putative endothelio-protective 

properties observed in the in vitro model could be translated to the ex vivo models.   
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Direct administration OA instead of Ach, failed to elicit relaxation in aortic rings isolated 

from 24 week lean and HFD rats. This was in contradiction to previous findings in the 

literature (Rodriguez-Rodriguez et al 2004, 2008), however, in our view, the older age of the 

rats in the current study might have potentially affected the responses of the aortas to the 

direct relaxing effects of OA.   
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Chapter 5 

Conclusions 

This study was divided in two main aims:  

 The principal aim of this study was to investigate and compare the function of aortic 

endothelial cells and cardiac microvascular endothelial cells at baseline conditions 

and in response to a pathophysiological stimulus usually associated with 

cardiovascular risk factors. 

 The second aim of this study was to measure the endothelium-dependent 

vasomotor responses of aortic rings derived from obese and lean, age-matched 

control rats to a phenylephrine and acetylcholine challenge. 

Endothelial heterogeneity is often overlooked when investigating endothelial function, 

activation and dysfunction, as it is usually assumed that all endothelial cells are the same 

and will yield similar responses to pathophysiological stimuli. AECs and CMECs were chosen 

in this study, as they are located in two distinct microenvironments of the vascular system. 

These two cell lines are exposed to different factors and serve distinct specialized roles in 

their respective environments. Endothelial heterogeneity has not previously been 

investigated in AECs and CMECs, especially with regards to NO production, the NO 

biosynthetic signalling pathway, and ROS production at baseline or in response to TNF-α, 

one of the body’s primary pro-inflammatory cytokines. Furthermore, very little is known 

with regards to the response of CMECs to TNF-α-induced endothelial injury. Hence, the 

work of this PhD was expected to generate novel findings with regards to baseline 

endothelial heterogeneity between AECs and CMECs, and their heterogeneous responses to 

TNF-α-induced endothelial injury. Furthermore, proteomics studies were applied for 

comprehensive analysis of protein expression and regulation in AECs and CMECs at baseline 

conditions and in response to TNF-α.  This was expected to add to the novelty of this study, 

as the comparative proteomic analysis between AECs and CMECs had not been previously 

performed at baseline and in response to TNF-α.  The inflammatory cytokine TNF-α was 

chosen as the pathological stimulus to induce endothelial injury, as its role in endothelial 

activation and dysfunction is well known. We further investigated the responses of AECs and 
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CMECs to the putative endothelio-protective properties of the triterpenoid OA at baseline 

and TNF-α treated conditions.  

The challenge that obesity poses on endothelial function has become apparent, and hence 

an ex vivo model which allowed us to study the vascular function in aortic rings from lean 

and HFD rats was also included. It was further investigated whether the endothelio-

protective properties of OA observed in AECs and CMECs (the in vitro model), would also be 

observed in the ex vivo model. Little is known about the effects of OA in vascular function 

and obesity. Hence, the findings in this section were expected to add novel insights to the 

existing literature on the putative beneficial effects of OA in endothelial function.   

Several techniques previously developed in our laboratory and from previous studies were 

undertaken in order to achieve the aims of the current study: 

 Flow cytometry technique: measuring NO production, ROS production and necrosis, 

 Western blot analysis: measuring protein expression and phosphorylation, 

 Proteomics: broad spectrum analysis of protein expression and regulation,  

 Isometric tension organ bath studies: ex vivo measurement of vascular function in 

aortas from lean and HFD rats.  

Baseline studies: Although baseline NO production was similar between AECs and CMECs, 

endothelial heterogeneity was observed with regards to the protein expression and 

phosphorylation patterns of the NO biosynthetic pathway (eNOS, PKB / Akt and HSP 90). 

Interestingly, eNOS expression was found to be higher in CMECs (as discussed in chapters 

4.1 & 4.2) compared to AECs, while relative activated eNOS levels were higher in AECs. The 

fact that eNOS protein was higher in the CMECs compared to AECs is, as far as we are 

aware, a novel finding as eNOS expression is generally considered to be relatively low in the 

microcirculation of the heart. The fact that PKB / Akt and HSP 90 expression was higher in 

AECs compared CMECs was not a surprise as these proteins are essential for eNOS 

activation in large vessels during conditions of shear stress. However, it was interesting to 

note that activated PKB / Akt levels were higher in the CMECs, whilst activated eNOS levels 

were lower compared to AECs. It was therefore concluded that activated PKB / Akt may 

possess regulatory properties such as cell survival and hence barrier integrity in CMECs. 
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Overall these findings are novel and demonstrate endothelial heterogeneity with regards to 

the baseline NO biosynthetic signalling pathway between AECs and CMECs.  

Baseline ROS production was heterogeneous between AECs and CMECs as was 

demonstrated by the higher ONOO- levels and nitrotyrosine expression in CMECs compared 

to AECs. H2O2 levels were higher in AECs compared to CMECs. However, the up-regulation of 

H2O2 catabolic enzymes (glutathione peroxidase and peroxiredoxin-6) as demonstrated by 

proteomics could be responsible for the lower levels of H2O2 in CMECs. Hence, we 

demonstrate for the first time that endothelial heterogeneity exist with regards to ONOO- 

and H2O2 production between AECs and CMECs, and that CMECs possess higher H2O2 

catabolic capacity than AECs.  

Endothelial injury: Concentration response curves were conducted with 0.5, 5 and 20 ng/ml 

TNF-α over 24 and 48 hours periods, however the 20 ng/ml TNF-α concentration and 24 

hour time point was chosen as the optimal experimental protocol for endothelial injury 

induction. An in vitro model of endothelial injury was successfully achieved in both AECs and 

CMECs as was evidenced by: 

 Decreased NO production  

 Increased H2O2  production  

 Increased necrosis  

 Up-regulation of apoptotic proteins  

 Activation of the inflammatory pathway 

The NO biosynthetic signalling (HSP 90-PKB / Akt-eNOS) pathway did not correspond with 

the reduced NO levels in both AECs and CMECs, however the reduction in PKB / Akt and HSP 

90 expression in AECs was possibly suggestive of the initiation of a dysfunctional NO 

biosynthetic pathway in AECs. The NO biosynthetic pathway in CMECs appeared to be 

resistant to the injurious effects of TNF-α. This was not in agreement with previous findings 

as discussed in chapter 4.1, section 4.1.2.2. With regards to endothelial heterogeneity, it 

was demonstrated that the PKB / Akt pathway was compromised in TNF-α treated AECs 

compared to their CMEC counterparts. Taking into consideration that 20 ng/ml over 48 

hours led to lower NO production in AECs compared to CMECs, we conclude that AECs were 
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more susceptible to TNF-α induced endothelial injury with regards to the NO biosynthesis 

pathway.  

Our data suggested that the increased H2O2 levels in response to TNF-α were possibly due to 

dismutation of O2
- as was demonstrated by the up-regulation MnSOD in both TNF- treated 

AECs and CMECs. We concluded that the high levels of H2O2 could be a plausible explanation 

for the enhanced necrosis in both AECs and CMECs. The role of TNF-α in apoptosis is well 

known, and hence up-regulation of apoptotic proteins, caspase 3 in AECs and Bid in CMECs, 

was not a surprise. However this finding was novel with regards to the heterogeneous 

expression of apoptotic proteins in AECs and CMECs.  

The up-regulation of NF-kB and decreased expression of IkB-alpha was indicative of the 

activation of intracellular pro-inflammatory signalling pathways and hence an inflammatory 

response in both TNF-α treated AECs and CMECs. It was shown that NF-kB activity in AECs 

was likely to be regulated through TRAF6, and not TRAF2, thus demonstrating heterogeneity 

in this regard. The up-regulation of inflammatory proteins in response to TNF-α was an 

indicator of endothelial activation in both AECs and CMECs. We demonstrated for the first 

time that endothelial activation is heterogeneously mediated through up-regulation of 

different inflammatory proteins in response to TNF-α in AECs and CMECs. These included 

CD9 molecule, galectin and fermt3 protein in TNF-α treated AECs, and ICAM-1, IL-36α, 

PDE2A, PECAM-1 in TNF-α treated CMECs.   

We conclude that AECs demonstrated progression to a dysfunctional state as was evidenced 

by up-regulation of endothelin converting enzyme and angiotensin II converting enzyme, 

while CMECs probably remained in an activated state. These findings are novel as we 

demonstrate for the first time a heterogeneous response of AECs and CMECs to TNF-α-

induced endothelial injury. Human umbilical vein endothelial cells are often the cells of 

choice when studying endothelial function and dysfunction. Here we show that endothelial 

cells do not necessarily respond in the same manner to pathophysiological stimuli. Although 

end-points such as reduced NO bioavailability may be a general marker of endothelial injury 

or dysfunction in most endothelial cell lines, protein expression and regulation in response 

to pathophysiological stimuli may differ from cell line to cell line as was demonstrated by 

our proteomics data. Furthermore, the expression and phosphorylation patterns of certain 
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proteins may also differ as was demonstrated through western blot in the current study. 

Hence endothelial heterogeneity is relevant when studying endothelial injury and the 

signalling mechanisms involved. It should however be kept in mind that in in vivo conditions, 

these cells are constantly exposed to different factors according to their respective 

environments, which might influence their response to pathophysiological stimuli. For 

example release of factors such as adiponectin from the perivascular adipose tissue would 

influence the response of AECs to injury in in vivo conditions. Factors released from 

underlying VSMCs and cardiomyocytes may also influence the responses of AECs and CMECs 

to endothelial injury respectively. Hence, our in vitro findings may not completely reflect the 

responses of AECs and CMECs in vivo situations.  

Modulation of endothelial injury by OA: Given the fact endothelial injury and dysfunction 

are reversible conditions, and that OA has previously been shown to possess endothelio-

protective properties, it was expected that pre-treatment with OA prior treatment with 

TNF-α, would reverse the injurious effects of TNF-α. Although further investigations are 

necessary, we were excited to observe that OA pre-treatment was indeed successful in 

reversing the injurious effects of TNF-α through restoration of NO production and reducing 

H2O2 production in both AECs and CMECs, as well as necrosis in AECs. Further studies 

investigating the OA signalling mechanisms in both AECs and CMECs are necessary.  

Proteomics: Baseline proteomic analysis revealed the identification of 2372 proteins in AECs 

and CMECs, while a total of 2426 were revealed in both TNF-α treated AECs and CMECs. This 

represented the most comprehensive documentation of its kind in AECs and CMECs to date, 

and hence a novel contribution to existing vascular proteomic databases. Proteomics data 

revealed heterogeneous protein expression and regulation patterns between AECs and 

CMECs at baseline conditions and in response to TNF-α. Most of the proteins up-regulated 

in AECs and CMECs at baseline conditions demonstrated that each of these cell lines are 

adapted to function in their respective internal environments. This finding was novel, as we 

show that some level of endothelial heterogeneity exits between AECs and CMECs when 

cultured in in vitro settings. Changes in protein expression and regulation in response to 

TNF-α were also demonstrated. The proteins up-regulated in response to TNF-α included 

inflammatory proteins, apoptotic proteins, and anti-oxidant proteins. These proteins were 
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heterogeneously expressed, indicating endothelial heterogeneity with regards to signalling 

mechanisms involved in TNF-α-induced injury in AECs and CMECs.  

Isometric tension studies (ex vivo studies): The pro-contractile responses demonstrated in 

aortic rings from 16 week HFD compared to lean rats, could be indicative of the release of 

pro-contractile factors from dysfunctional perivascular adipose tissue or the initial stages of 

endothelial function impairment. Our OA pre-administration model demonstrated enhanced 

vascular function in aortic rings from 16 week HFD rats and 24 week diet lean rats. It is not 

clear why pre-administration of OA elicited a pro-contractile response in aortic rings from 24 

week HFD rats, however, it is possible that the factors released by a dysfunction perivascular 

adipose tissue and the advanced age of rats overwhelmed the beneficial properties of OA. 

Direct administration of OA failed to elicit relaxation in aortic rings from 24 week diet rats. 

This was in contrast to previous findings, and hence we conclude the age of the rats might 

have played role. Overall, OA appears to exert some beneficial properties in vascular 

function as was shown in our pre-treatment models. However, further studies are necessary 

to elucidate the signalling mechanisms involved. 

In summary the work of this PhD provided comprehensive novel insights with regards to: 

 Baseline endothelial heterogeneity in AECs and CMECs. 

 Heterogeneous responses of AECs and CMECs to TNF-α. 

 Signalling mechanisms involved in TNF-α induced endothelial injury in both AECs and 

CMECs. 

 Heterogeneous TNF-α signalling in AECs and CMECs. 

 Reversibility of TNF-α-induced endothelial injury through the bioactive triterpenoid 

OA. 

Finally, in view of the above findings and conclusions, we successfully proved our 

hypothesis, which stated that AECs and CMECs will exhibit heterogeneity under baseline 

conditions or in response to insult. Futhermore, we hypothesized that OA will lead to 

increased NO production in both AECs and CMECs. This was indeed the response that was 

observed. Unfortunately the mechanisms of action of OA were not investigated. 
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As was demonstrated by the enhanced contractile response in aortic rings from HFD rats, 

obesity led to a compromised vascular function in HFD rats, which could have been an early 

sign of a dysfunctional endothelium as per our hypothesis. This response was significantly 

reversed by the pre-administration of OA. Hence, we were able to prove our hypotheses in 

this regard. 

 

Limitations of the current study:  

The following additions to the investigations of the current study would have added greater 

value to the current findings, however due to cost and time constraints these experiments 

were not applied: 

 Western blotting of more proteins involved in the NO biosynthetic pathway such as 

caveolin-1, and investigating other phosphorylation sites involved in eNOS 

activation. 

 Extensive western blotting to support the finding of the proteomics data. 

 Application of western blotting and proteomics in OA studies, to elucidate the 

signalling mechanisms involved in AECs and CMECs at baseline conditions or with 

TNF-α treatments. 

 Use of younger rat models to study the ex vivo vascular reactivity of aortas from lean 

and HFD rats. 

 Use of younger rat models to study effects of OA on vascular reactivity of aortas 

from lean and HFD.  

 Application of western blotting and proteomics in the aortas to investigate the 

signalling mechanisms involved.  

 Consideration of the possibility that the heterogeneity observed in the in vitro 

models are not necessarily a reflection of the in vivo setting; however, the fact that 

heterogeneity was demonstrated, which could be explained in terms of the in vivo 

location and function of CMECs and AECs respectively, does add credibility to the 

findings of this study. 
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Outputs emanating directly or indirectly from the current study 

Research articles: 
 

1. Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early 
predictor of atherosclerosis. Cardiovasc J Afr 2012;23:222-231. 

 
2. Genis A, Smit S, Westcott C, Mthethwa M, Strijdom H. Attenuation of eNOS-NO 

biosynthesis, up-regulation of antioxidant proteins and differential protein 
regulation in TNF-alpha-treated cardiac endothelial cells: Early signs of endothelial 
dysfunction. In: Endothelial Dysfunction: Risk Factors, Role in Cardiovascular 
Diseases and Therapeutic Approaches (Nova Scientific Publishers, Hauppauge, NY, 
USA) 2014. 
 

Conference contributions: 
 

1. Mudau M, Strijdom H. The pathophysiological response of aortic endothelial cells 
and cardiac microvascular endothelial cells to proinflammatory TNF-alpha: Does 
endothelelial heterogeneity play a role? Physiology Society of Southern Africa 
Annual Conference: Stellenbosch, September 2012. 

 
2. Graham R, Mudau M, Westcott C, Strijdom H. Investigating the pro-injury properties 

of ADMA and TNF-α, and endothelioprotective effects of oleanolic acid and 
fenofibrate in cardiac microvascular endothelial cells (CMECs). Physiology Society of 
Southern Africa Congress, Stellenbosch, September 2012. 

 
3. Genis A, Smit S, Westcott C, Mudau M, Strijdom H. A complete profile of the cardiac 

microvascular endothelial cell proteome, following a 24 hour TNF-α treatment. 
Physiology Society of Southern Africa Annual Congress, Stellenbosch, September 
2012. 
 

4. Mudau M, Strijdom H. The heterogenous response of aortic endothelial cells and 
cardiac endothelial cells to proinflammatory TNF-alpha. Annual Academic Day: 
Tygerberg 2012. 
 

5. Genis A, Smit S, Westcott C, Mudau M, Strijdom H. Cardiac microvascular endothelial 
cells treated for 24 hours with TNF-alpha, what does the total protein profile of this 
cell type reveal? Annual Research Day, Faculty of Medicine and Health Sciences, 
Stellenbosch University, August 2012. 

 
6. Strijdom H, Smit S, Westcott C, Mudau M, Genis A. Proteomic characterization of 

cardiac endothelial cell responses to TNF-alpha, hypoxia and asymmetric 
dimethylarginine (ADMA) stimulation. SA Heart 2012; 9(3): 194. 

 
7. Strijdom H, Genis A, Mudau M, Westcott C, Lochner A. Effects of low-dose TNF-α 

administration on oxidative/nitrosative stress, the Akt/eNOS/NO pathway and 
viability in cardiac endothelial cells. Atherosclerosis Supplements 2011; 12(1): 68. 
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8. Strijdom H, Westcott C, Mudau M, Van Rensburg S, Genis A. Microvascular 
endothelial cell responses to inflammatory stimulation. SA Heart 2011; 8(4): 257. 
 

9. M Mudau, Genis A, Westcott C, Strijdom J. The responses of aortic endothelial cells 
and cardiac microvascular endothelial cells to tumor necrosis factor alpha: Does 
endothelial heterogeneity matter? IUPS Congress, UK Birmingham 2013.  
 

10. C. Westcott, A. Genis, M. Mthethwa, H. Strijdom.  Short term fenofibrate treatment 
increases nitric oxide production in cardiac endothelial cells through a nitric oxide 
synthase-independent mechanism.  Frontiers in CardioVascular Biology, Barcelona, 
Spain, July 2014. 

 

Honours students co-supervised: 

Roxanne Graham: graduated 2012 

 

 

 

 

 

 

 

 

 

  

Stellenbosch University  https://scholar.sun.ac.za



268 | P a g e  
 

References 

Ackermann A, Fernández-Alfonso M S, Sánchez de Rojas R, et al. Modulation of angiotensin-

converting enzyme by nitric oxide. Br J Pharmacol 1998; 124: 291-298. 

Adatia I, Barrow SE, Stratton VM, et al. Thromboxane A2 and prostacyclin biosynthesis in 

children and adolescents with pulmonary vascular disease. Circulation 1993; 88: 2117-2122. 

Ahmad M, Zhang Y, Papharalambus C, Alexander RW. Role of isoprenylcysteine carboxyl 

methyltransferase in tumor necrosis factor-α stimulation of expression of vascular cell 

adhesion molecule-1 in endothelial cells. Arterioscler Thromb Vasc Biol 2002; 22: 759-764. 

Aird WC. Endothelial cell heterogeneity. Cold Spring Harb Perpect Med 2012; 2: a006429. 

Aird WC. Mechanisms of endothelial cell heterogeneity in health and disease. Circ Res 2006; 

98: 159-162. 

Aird WC. Phenotypic heterogeneity of the endothelium:I. Structure, function and 

mechanisms. Circ Res 2007; 100:158-173. (a) 

Aird WC. Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. 

Circ Res 2007; 100: 174-190. (b) 

Ait-Oufella H, Maury E, Lehoux S, et al. The endothelium: physiological functions and role in 

microcirculatory failure during severe sepsis. Intensive Care Med 2010, 36: 1288-1298. 

Anderson HDI, Rahmutula D, Gardener DG. Tumor necrosis factor-α inhibits endothelial 

nitric-oxide synthase gene promoter activity in bovine aortic endothelial cells. J Biol Chem 

2004; 279: 963-969. 

Anderson NL and Anderson NG. Proteome and proteomics: new technologies, new 

concepts, and new words. Electrophoresis 1998; 19: 1853-1861. 

Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res 1999; 43: 

521-531. 

Andries LJ, Brutsaert DL, Sys SU. Nonuniformity of endothelial constitutive nitric oxide 

synthase distribution in cardiac endothelium. Circ Res 1998; 82: 195-203. 

Aoki M, Nata T, Morishita R, et al. Endothelial apoptosis induced by oxidative stress through 

activation of NF-κB: Antiapoptotic effect of antioxidant agents on endothelial cells. 

Hypertension 2001; 38: 48-55. 

Ardestani S, Deskins D, Young PP. Membrane TNF-alpha-activated programmed necrosis is 

mediated by ceramide-induced reactive oxygen species. J Mol Signal 2013; 8: 12.  

Stellenbosch University  https://scholar.sun.ac.za



269 | P a g e  
 

Azumi H, Inoue N, Takeshita S, et al. Expression of NADH / NADPH oxidase p22phox in 

human coronary arteries. Circulation 1999; 100: 1494-1498. 

Bach FH, Hancock WW, Ferran C. Protective genes expressed in endothelial cells: a 

regulatory response to injury. Immunol Today 1997; 18: 483-486. 

Bachhav SS, Patil SD, Bhutada MS, Surana SJ. Oleanolic acid prevents glucocorticoid-induced 

hypertension in rats. Phytother Res 2011; 10: 1435-1439. 

Balakumar P, Kaur T, Singh. Potential targets sites to modulate vascular endothelial 

dysfunction: Current perspective and future directions. Toxicology 2008; 245: 49-64. 

Balligand J.-L. Heat shock protein 90 in endothelial nitric oxide synthase signalling: following 

the lead(er)? Circ Res 2002; 90: 838-841.  

Baranano DE, Rao M, Ferris CD, Snyder SH. Biliverdin reductase: A major physiologic 

cytoprotectant. PNAS 2002; 99 16093-16098.  

Barnes PJ, Karin M. Nuclear factor-kB: A pivotal transcriptional factor in chronic 

inflammatory disease. N Engl J Med 1997; 336: 1066-1071. 

Barreiro O, Yanez-Mo M, Sala-Valdes M, et al. Endothelial tetraspanin microdomains 

regulate leukocyte firm adhesion during extravasation. Blood 2005; 105: 2852-2861. 

Barreiro O, Zamai M, Yanez-Mo M, et al. Endothelial adhesion receptors are recruited to 

adherent leukocytes by inclusion in preformed tetraspanin nanoplatforms. J Cell Biol 2008; 

183: 527-542. 

Barton M, Haudenschild CC, d'Uscio LV, et al. Endothelin ETA receptor blockade restores 

NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient 

mice. Proc Natl Acad Sci 1998; 95: 14367–14372. 

Bayraktutan U, Draper N, Lang D, Shah AM. Expression of functional neutrophil-type NADPH 

oxidase in cultured rat coronary microvascular endothelial cells. Cardiovasc Res 1998; 38: 

256 –262. 

Beckman JA, Creager MA. The nonlipid effects of statins on endothelial function. Trends 

Cardiovasc Med 2006; 16: 156-162. 

Beckman JS. Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 

1996; 9: 836-844. 

Belo L, Santos-Silva A, Rumley A, et al. Elevated tissue plasminogen activator as a potential 

marker of endothelial dysfunction in pre-eclampsia: correlation with proteinuria. J Int 

Gynaecol Obstet 2002; 109: 1250-1255.  

Stellenbosch University  https://scholar.sun.ac.za



270 | P a g e  
 

Bennett MR. Apoptosis of vascular smooth muscle cells in vascular remodelling and 

atherosclerotic plaque rupture. Cardiovasc Res 1999; 41: 361-368. 

Benowitz NL. Cigarette smoking and cardiovascular disease: pathophysiology and 

implications for treatment. Prog Cardiovasc Dis 2003; 46: 91-111. 

Berkowitz DE, White R, Li D, Minhas KM, et al. Arginase reciprocally regulates nitric oxide 

synthase activity and contributes to endothelial dysfunction in aging blood vessels. 

Circulation 2003; 108: 2000-2006. 

Berliner JA, Navab M, Fogelman AM, et al. Atherosclerosis: Basics and mechanism. 

Circulation 1995; 91: 2488-2496.  

Billien LP, Shamas-Din A, Andrew DW. Bid: a bax-like BH3 protein. Oncogene 2009; 27: S93-

S104. 

Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ. Oxidized low density lipoprotein 

displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs 

eNOS activation. J Biol Chem 1999; 274: 32512-9. 

Blann AD. Endothelial cell activation, injury, damage and dysfunction: separate entities or 

mutual terms? Blood Coagul Fibrinolysis 2000; 11: 623-630. 

Böger RH, Bode-Böger S, Szuba A, et al. Asymmetric dimethlyarginine (ADMA): a novel risk 

factor for endothelial dysfunction, its role in hypercholesterolemia. Circulation 1998; 98: 

1842-1847. 

Böger RH, Böger-Bode SM, Tsao PS, et al. An endogenous inhibitor of nitric oxide synthase 

regulates endothelial adhesiveness for monocytes. J Am Coll Cardiol 2000; 36: 2287-2295. 

Bohm F, Pernow J. The importance of endothelin-1 for vascular dysfunction in 

cardiovascular disease. Cardiovasc Res 2007; 76: 8-18. 

Booth G, Stalker TJ, Lefer AM. Mechanisms of amelioration of glucose-induced endothelial 

dysfunction following inhibition of protein kinase C in vivo. Diabetes 2002; 51: 1556-1564. 

Boulanger CM, Tanner FC, Bea M-L, et al. Oxidized low density lipoprotein induce mRNA 

expression and release of endothelin from human and porcine endothelium. Circ Res 1992; 

70: 1191-1197. 

Boutstany-Kari CM, Gong M, Akers WS, et al. Enhanced vascular contractility and diminished 

coronary artery flow in rats made hypertensive from diet-induced obesity. Int J Obes 2007; 

31: 1652-1659.  

Bove K, Neumann P, Gertzberg N, et al. Role of ecNOS-derived NO in mediating TNF-induced 

endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2001; 280: L914-L922.  

Stellenbosch University  https://scholar.sun.ac.za



271 | P a g e  
 

Bradford, M.  A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of 

Protein Utilizing the Principle of Protein-Dye Binding.  Anal Biochem  1976; 72: 248-254. 

Bradshaw D, Nannan N, Laubscher R, et al South African National Burden of Disease Study 

2000: Estimates of Provincial Mortality. Western Cape Province: MRC 2000. Available: 

http://www.mrc.ac.za/bod/westerncape. 

Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res 2005; 66: 286-294. 

Brasier AR. The nuclear factor-kB-interleukin-6 signalling pathway mediating vascular 

inflammation. Cardiovasc Res 2010; 86: 211-218. 

Breton-Romero R, Lamas S. Hydrogen peroxide signaling in vascular endothelial cells. Redox 

Biology 2014; 2: 529-534.  

Brooks A, Lelkes PI, Rubanyi GM. Gene expression profiling of human aortic endothelial cells 

exposed to disturbed flow and steady laminar flow. Physiol Genomics 2002; 9: 27-41. 

Browne CD, Hindmarsh EJ, Smith JW. Inhibition of endothelial cell proliferation and 

angiogenesis by orlistat, a fatty acid synthase inhibitor. FASEB J 2006; 20: 2027-2035. 

Bruckdorfer R. The basics about nitric oxide. Mol Aspect Med 2005; 26: 3-31. 

Bruneel A, Labas V, Mailloux A, et al. Proteomic study of human umbilical vein endothelial 

cells in culture. Proteomics 2003; 3: 714-723. 

Brutsaert DL, Fransen P, Andries LJ, et al. Cardiac endothelium and myocardial function. 

Cardiovasc Res 1998; 38: 281-290. 

Brutsaert DL. Cardiac endothelial-myocardial signalling: its role in cardiac growth, contractile 

performance, and rhythmicity. Physiol Rev 2003; 83: 59-115. 

Bulua AC, Simon A, Maddipati R, et al. Mitochondrial reactive oxygen species promote 

production of proinflammatory cytokines and are elevated in TNFR1-associated periodic 

syndromes (TRAPS). J Exp Med 2011; 208: 519-533. 

Burke A, Fitzgerald GA. Oxidative stress and smoking-induced vascular injury. Prog 

Cardiovasc Dis 2003; 46: 79-90. 

Burke-Gaffney A, Hellewell PG. Tumour necrosis factor-alpha-induced ICAM-1 expression in 

human vascular endothelial and lung epithelial cells: modulation by tyrosine kinase 

inhibitors. Br J Pharmacol. 1996; 119: 1149-1158. 

Caballero AE. Endothelial Dysfunction in Obesity and Insulin Resistance: A Road to Diabetes 

and Heart Disease. Obesity Research 2003; 11: 1278–1289.  

Stellenbosch University  https://scholar.sun.ac.za

http://www.mrc.ac.za/bod/westerncape


272 | P a g e  
 

Cai H, Harrison DG. Endothelial dysfunction in cardiovascular disease: the role of oxidant 

stress. Circ Res 2000; 87: 840-844. 

Campia U, Tesauro M, Cardillo C. Human obesity and endothelium-dependent 

responsiveness. Br J Pharmacol 2012; 165: 561-573.  

Cao G, O’Brien CD, Zhou Z, et al. Involvement of human PECAM-1 in angiogenesis and in 

vitro endothelial migration. Am J Physiol Cell Physiol 2002; 282: C1181-C1190. 

Carraro S, Giordano G, Piacentini G, et al. Asymmetric dimethylarginine in exhaled breath 

condensate and serum of children with asthma. Chest. 2013; 144: 405-410. 

Celemajer DS, Sorensen KE, Spiegelhalter DJ, et al. Aging is associated with endothelial 

dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 

1994; 24: 471-476.  

Chen J, Mehta JL, Haider N, et al. Role of caspases in Ox-LDL-induced apoptotic cascade in 

human coronary artery endothelial cells. Circ Res 2004; 94: 370-376. 

Chen ML, Yi L, Jin X, et al. Resveratrol attenuates vascular endothelial inflammation by 

inducing autophagy through the cAMP signaling pathway. Autophagy 2013; 9: 2033-2045. 

Chen X, Andresen1 BT, Hill M, et al. Role of reactive oxygen species in tumor necrosis factor-

alpha induced endothelial dysfunction. Curr Hypertens Rev 2008; 4: 245-255. 

Chen Y-H, Lin S-J, Chen J-W, et al. Magnolol attenuates VCAM-1 expression in vitro in TNF-α-

treated human aortic endothelia cells and in vivo in the aorta of cholesterol-fed rabbits. 

British Journal of Pharmacology 2002; 135: 37-47. 

Chen YH, Lin SJ, Ku HH, et al. Salvianolic acid B attenuates VCAM-1 and ICAM-1 expression in 

TNF-alpha-treated human aortic endothelial cells. J Cell Biochem 2001; 82: 512-521. 

Cheng Y, Austin SC, Rocca B, et al. Role of prostacyclin in the cardiovascular response to 

thromboxane A2. Science 2002; 296: 593-541. 

Coats P, Johnston F, MacDonald J, et al. Endothelium-derived hyperpolarizing factor. 

Identification and mechanisms of action in human subcutaneous resistance arteries. 

Circulation 2001; 103: 1702-1708.  

Cohen RA, Vanhoutte PM. Endothelium dependent hyperpolarization. Beyond nitric oxide 

and cyclic GMP. Circulation 1995; 92: 3337-3349. 

Colgan SP, Eltzschig HK, Eckle T, Thompson LF. Physiological roles for ecto-5’-nucleotidase 

(CD73). Purinergic Signal 2006; 2: 351-360. 

Cominacini L, Rigoni A, Pasini AF, et al. The binding of oxidized low density lipoprotein (ox-

LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in 

Stellenbosch University  https://scholar.sun.ac.za



273 | P a g e  
 

endothelial cells through an increased production of superoxide. J Biol Chem 2001; 276: 

13750-13755. 

Cooke JP, Andon NA, Girerd XJ, et al. Arginine restores cholinergic relaxation of 

hypercholesterolemic rabbit thoracic aorta. Circulation 1999; 83: 1057-1067. 

Cooke JP. Assymetrical dimethylarginine: The Uber marker? Circulation 2004; 109: 1813-

1818. 

Corda S, Laplace C, Vicaut E, Duranteau J. Rapid reactive oxygen species production by 

mitochondria in endothelial cells exposed to tumor necrosis factor-α is mediated by 

ceramide. Am J Respir Cell Mol Biol 2001; 24: 762-768.  

Cowan CL, Cohen RA. Two mechanisms mediate relaxation by bradykinin of pig coronary 

artery: NO-dependent and –independent responses. Am J Physiol 1991; 261: H830-835.  

Csiszar A, Smith K, Labinskyy N, et al. Resveratrol attenuates TNF-alpha-induced activation 

of coronary arterial endothelial cells: role of NF-kappaB inhibition. Am J Physiol Heart Circ 

Physiol. 2006; 291: H1694-H1699. 

Daff S. NO synthase: structure and mechanisms. Nitric Oxide 2010; 23: 1-11. 

Davies GE, Senger DR. Endothelial extracellular matrix: Biosynthesis, remodeling, and 

functions during vascular morphogenesis and neovessel stabilization. Circ Res. 2005; 97: 

1093-1107. 

Davies PF. Endothelial mechanisms of flow mediated atheroprotection and susceptibility. 

Circ Res 2007; 101: 10-12. 

Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation 2004; 109: 

27-32. 

De Caterina R, Libby P, Peng H-B, et al. Nitric oxide decreases cytokine-induced endothelial 

activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and 

proinflammatory cytokines. J Clin Invest 1995; 96: 60-68.  

De Palma C, Meacci E, Perrotta C, et al. Endothelial nitric oxide synthase activation by tumor 

necrosis factor alpha through neutral sphingomyelinase 2, sphingosine kinase 1, and 

sphingosine 1 phosphate receptors: a novel pathway relevant to the pathophysiology of 

endothelium. Arterioscler Thromb Vasc Biol 2006; 26: 99-105. 

Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: Testing and 

clinical relevance. Circulation 2007; 115: 1285–1295. 

Deaton C, Froelicher ES, Wu LH, et al. The global burden of cardiovascular disease. Eur J 

Cardiovasc Nurs 2011; 10: S5-13.  

Stellenbosch University  https://scholar.sun.ac.za



274 | P a g e  
 

Dejana E, Corada M, Lampugnani MG. Endothelial cell-to-cell junctions. FASEB J 1995; 9: 

910-918.  

Dejana E. Endothelial cell-cell junctions: Happy together. Mol Cell Biol 2004; 5: 261-270. 

Dela Paz NG, D’Amore P. Arterial versus venous endothelial cells. Cell Tissues Res 2009; 335: 

5-16.  

DeLisser HM, Christofidou-Solomidou M, Strieter RM, et al. Involvement of endothelial 

PECAM-1 / CD31 in angiogenesis. Am J Pathol 1997; 151: 671-677.  

Deng D.X-F, Tsalenko A, Vailaya A, et al. Differences in vascular bed disease susceptibility 

reflect differences in gene expression response to a high fat diet. Circ Res 2006; 98: 200-208. 

Deshpande SS, Angkeow P, Huang J, Ozaki M, Irani K. Rac 1 inhibits TNF-α-induced 

endothelial cell apoptosis: dual regulation by reactive oxygen species. FASEB J 2000; 14: 

1705-1714. 

Dikalov AE, Gongora MC, Harrison DG, et al. Upregulation of NOX1 in vascular smooth 

muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J 

Physiol Heart Circ Physiol 2010; 299: H673-H679. 

Dimmeler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial 

cells by Akt-dependent phosphorylation. Nature 1999; 399: 601-605.  

Donato AJ, Gano LB, Eskurza I, et al. Vascular endothelial dysfunction with aging: 

endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 2009; 

297: H425-H432.  

Dossumbekova A, Berdyshev EV, Gorshkova I, et al. Akt activates NOS3 and separately 

restores barrier integrity in H2O2-stressed human cardiac microvascular endothelium. Am J 

Physiol Heart Circ Physiol 2008; 295: H2417–H2426.   

Draijer R, Atsma DE, van der Laarse A, van Hinsbergh VW. cGMP and nitric oxide modulate 

thrombin-induced endothelial permeability. Regulation via different pathways in human 

aortic and umbilical vein endothelial cells. Circ Res 1995; 76: 199-208. 

Draude G, Hrboticky N, Lorenz RL. The expression of the lectin-like oxidized low-density 

lipoprotein receptor (LOX-1) on human vascular smooth muscle cells and monocytes and its 

down-regulation by lovastatin. Biochem Pharm 1999; 57: 383-386. 

Drummond GR, Cai H, Davis ME, et al. Transcriptional and posttranscriptional regulation of 

endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res 2000; 86: 347-

354. 

Stellenbosch University  https://scholar.sun.ac.za



275 | P a g e  
 

Dryden NH, Sperone A, Martin-Almedina S, et al. The transcription factor Erg control 

endothelial cell quiescence by repressing activity of nuclear factor (NF)-KB p65. J Biol Chem 

2012; 15: 12331-42. 

Du Y, Ko KM. Oleanolic acid protects against myocardial ischaemia-reperfusion injury by 

enhancing mitochondrial antioxidant mechanism mediated by glutathione and apha-

tocopherol in rats. Planta Med 2006; 72: 222-227.  

Dudzinski D, Michel T. Life history of eNOS: partners and pathways. Cardiovasc Res 2007; 75: 

247-260. 

Edwards G, Dora KA, Gardener MJ, et al. k+ is an endothelium-derived hyperpolarizing factor 

in rat arteries. Nature 1998; 396: 269-272. 

Eliseyeva MR. Endothelium: A road from mystery to discovery. International Journal of 

Biomedicine 2013; 3 (1): 9-11. 

Esen AM, Barutcu I, Acar M, et al. Effects of smoking on endothelial function and wall 

thickness of brachial artery. Circ J 2004; 68: 1123-1126. 

Esper RJ, Nordaby RA, Vilarino JO, et al. Endothelial dysfunction: A comprehensive appraisal. 

Cardiovasc Diabetol 2006; 5:4. 

Fenster BE, Tsao PS, Rockson SG. Endothelial dysfunction: clinical strategies for treating 

oxidant stress. Am Heart J 2003; 146: 218-226.  

Feron O, Dessy C, Moniotte S, et al. Hypercholesterolemia decreases nitric oxide production 

by promoting the interaction of caveolin and nitric oxide synthase. J Clin Invest 1999; 103: 

897-905. 

Feron O, Saldana F, Michel JB, Michel T. The endothelial nitric-oxide synthase-caveolin 

regulatory cycle. J Biol Chem 1998; 273: 3125-3128. 

Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotteri TG, Green DR. Bax-induced caspase 

activation and apoptosis via cytochrome C release from mitochondria is inhibitable by Bcl-

xL. J Biol Chem 1999; 274: 2225-2233.  

Fish JE, Matouk CC, Rachlis A, et al. The expression of endothelial nitric oxide synthase is 

controlled by a cell specific histone code. J Biol Chem 2005; 280: 24824-24838.  

Fisslthaler B, Dimmeler S, Hermann C, et al. Phosphorylation and activation of the 

endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 2000; 168: 81-88.  

Fleming I, Busse R. Molecular mechanisms involved in the regulation of the endothelial nitric 

oxide synthase. Am J Physiol Regul Intergr Comp Physiol 2003; 284: R1-R2.  

Stellenbosch University  https://scholar.sun.ac.za



276 | P a g e  
 

Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch – Eur J 

Physiol 2010; 459: 793-806. 

Florey L. The endothelial cell. BMJ 1977; 5512: 487-490. 

Forstermann U, Munzel T. Endothelial nitric oxide synthase in vascular disease: from marvel 

to menace. Circulation 2006; 113: 1708-1714.  

Fostermann U, Boissel J-P, Kleinert H. Expressional control of the ‘constitutive’ isoforms of 

nitric oxide synthase (NOS I and NOS III). FASEB J 1998; 12: 773-790. 

Fostermann U, Sessa WC. Nitric oxide synthases: regulation and function. European heart 

Journal 2011. doi: 10.1093/eurheartj/ehr304. 

Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, Caveolae, and endothelial cell 

function. Arterioscler Thromb Vasc Biol 2003; 23: 1161-1168.  

Fujio Y, Walsh K. Akt mediates cytoprotection of endothelial cells by vascular endothelial 

growth factor in an anchorage-dependent manner. J Biol Chem 1999; 274: 16349-16354.  

Fukui T, Ishizaka N, Rajagopalan S, et al. p22phox mRNA expression and NADPH oxidase 

activity are increased in aortas from hypertensive rats. Circ Res. 1997; 80: 45–51. 

Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of 

arterial smooth muscle by acetylcholine. Nature. 1980; 288: 373-376. 

Galan M, kassan M, kadowitz PJ, et al. Mechanism of endoplasmic reticulum stress-induced 

vascular endothelial dysfunction. Biochimica et Biophysica Acta 2014; 1843: 1063-1075. 

Galley HF, Webster NR. Physiology of the endothelium. Br J Anaesth 2004; 93: 105-113. 

Gao X, Belmadani S, Picchi A, et al. Tumor necrosis factor-α induces endothelial dysfunction 

in Leprdb mice. Circulation 2007; 115: 245-254. 

García-Cardeña G, Fan R, Shah V, et al. Dynamic activation of endothelial nitric oxide 

synthase by Hsp90. Nature 1998; 392: 821-824. 

Geiger M, Stone A, Mason SN, et al. Differential nitric oxide production by microvascular 

and macrovascular endothelial cells. Am J Physiol 1997; 273: L275-L281. 

Geraldes P, King GL. Activation of protein kinase C isoforms and its impact on diabetic 

complications. Circ Res 2010; 106: 1319-1331.  

Gillham JC, Myers JE, Baker PN, Taggart MJ. TNF-α alters nitric oxide- and endothelium- 

derived hyperpolarizing factor- mediated vasodilatation in human omental arteries. 

Hypertens Pregnancy 2008; 27: 29-38. 

Stellenbosch University  https://scholar.sun.ac.za



277 | P a g e  
 

Girard J-P, Springer TA. High endothelial venules (HEVs): specialized endothelium for 

lymphocyte migration. Immunology Today 1995; 16 (9): 449-457. 

Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. Circ 

Res 2007; 101: 654-662.  

Gobbel GT, Chan TY-Y, Chan PK. Nitric oxide- and superoxide-mediated toxicity in cerebral 

endothelial cells. JPET 1997; 282: 1600-1607.  

Goedecke JH, Jennings CL, Lambert EV. Obesity in South Africa. In editors: Steyn K, Fourie J, 

Temple N. Chronic diseases of lifestyle in South Africa 1995-2005. MRC 2006. 

Gogos JA, Morgan M, Luine V, et al. Catechol-O-methyltransferase-deficient mice exhibit 

sexually dimorphic changes in catecholamine levels and behaviour Proc Natl Acad Sci USA 

1998; 95: 9991–9996. 

Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: Sparking 

the development of diabetic vascular injury. Circulation 2006; 114: 597-605.  

González-Fernández F, Jiménez A, López-Blaya A, et al. Cerivastatin prevents tumor necrosis 

factor-alpha-induced downregulation of endothelial nitric oxide synthase: role of 

endothelial cytosolic proteins. Atherosclerosis 2001; 155: 61-70. 

Goodwin BL, Pendleton LC, Levy MM, et al. Tumor necrosis factor-α reduces 

argininosuccinate synthase expression and nitric oxide production in aortic endothelial cells. 

Am J Physiol Heart Circ Physiol 2007; 293: H1115-H1121. 

Gorlach A, Brandes RP, Nguyen K, et al. A pg91phox containing NADPH oxidase selectively 

expressed in endothelial cells is a major source of oxygen radical generation in the arterial 

wall. Circ Res 2000; 87: 26-32. 

Greenblatt EP, Loeb AL, Longnecker, DE. Marked regional heterogeneity in the magnitude of 

EDRF/NO mediated vascular tone in awake rats. J. Cardiovasc. Pharmacol 1993; 21: 235-240. 

Griendling KK, Sorescu D, Ushio-Fukai M. NADPH oxidase: role in cardiovascular biology and 

disease. Circ Res 2000; 86: 494-501. 

Grindlieng KK, Minieri CA, Ollenshaw JD, Alexander RW. Angiotensin II stimulates NADH and 

NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994; 74: 1141-

1148. 

Grundy SM, Benjamin IJ, Burke GL, et al. Diabetes and cardiovascular disease: A statement 

for healthcare proffessionals from the American Heart Association. Circulation 1999; 100: 

1134-1146.  

Stellenbosch University  https://scholar.sun.ac.za



278 | P a g e  
 

Gu L, Okada Y, Clinton S, et al. Absence of monocyte chemoattractant protein-1 reduces 

atherosclerosis in low-density lipoprotein-deficient mice. Mol Cell 1998; 2: 275-281. 

Guthikonda S, Woods K, Sinkey CA, et al. Role of xanthine oxidase in conduit artery 

endothelial dysfunction in cigarettes smokers. Am J Cardiol 2004; 93: 664-668. 

Guzik TJ, Mussa S, Gastaldi D, et al. Mechanisms of increased vascular superoxide 

production in human diabetes mellitus, role of NAD(P)H oxidase and endothelial nitric oxide 

synthase. Circulation 2002; 105: 1656-1662. 

Guzik TJ, West NEJ, Black E. Vascular superoxide production by NADPH oxidase: association 

with endothelial dysfunction and cardiovascular risk factors. Circ Res 2000; 86: e85-e90. 

Hadi HAR, Carr CS, Suwaidi JAL. Endothelial dyfunction: Cardiovascular risk factors, therapy 

and outcomes. Vascular Health and Risk Management 2005; 1: 183-198.  

Handt S, Jerome WG, Tietze L, Hantgan RR. Plasminogen activator inhibitor secretion by 

endothelial cells increases fibrinolytic resistance of an in vitro fibrin clot: evidence for a key 

role of endothelial cells in thrombolytic resistance. Blood 1996; 87: 4204-4213.  

Harlan JM, Levine JD, Callahan KS, et al. Glutathione redox cycle protects cultured 

endothelial cells against lysis by extracellularly generated hydrogen peroxide. J Clin Invest 

1984; 73: 706-713. 

Harrison D, Grienling KK, Landmesser U, et al. Role of oxidative stress in atherosclerosis. Am 

J Cardiol 2003; 91: 7A-11A. 

Harrison DG. (2012) Oxidative Stress and Vascular Inflammation, in Inflammatory Diseases 

of Blood Vessels, Second Edition (eds G. S. Hoffman, C. M. Weyand, C. A. Langford and J. J. 

Goronzy), Wiley-Blackwell, Oxford, UK. doi: 10.1002/9781118355244.ch9 

Heitzer T, Yla-Herttuala S, Luoma J, et al. Cigarette smoking potentiates endothelial 

dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Circulation 

1996; 93: 1346-1356. 

Hendrickx J, Goggen K, Weinberg EO, et al. Molecular diversity of cardiac endothelial cells in 

vitro and in vivo. Physiol Genomics 2004; 19: 198-206. 

Hernandez M, Hernandez I, Rodriguez F, et al. Endothelial dysfunction in gestational 

hypertension induced by catechol-O-methyltransferase inhibition. Exp Physiol 2013; 98: 

856-866. 

Herrera MD, Mingorance C, Rodrίguez- Rodrίguez R, et al. Endothelial dysfunction and 

aging: an update. Ageing Res Rev 2010; 9: 142–152.  

Stellenbosch University  https://scholar.sun.ac.za



279 | P a g e  
 

Hirano Y, Tsunoda M, Shimosawa T, et al. Suppression of catechol-O-methyltransferase 

activity through blunting of alpha2-adrenoceptor can explain hypertension in Dahl salt-

sensitive rats. Hypertens Res 2007; 30: 269-278. 

Holvoet P, Mertens A, Verhamme P, et al. Circulating oxidized LDL is a useful marker for 

identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2001; 21: 

844-848. 

Hotamisligil GS, Arner P, Caro JF, et al. Increased adipose tissue expression of tumor 

necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409-

2415. 

Hsieh PCH, Davis ME, Lisowski LK, Lee RT. Endothelial-cardiomyocyte interactions in cardiac 

development and repair. Annu Rev Physiol 2006; 68: 51-66. 

Hsieh SH, Yng NW, Wu MH, et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-

2 signaling and modulates the migration of vascular endothelial cells. Oncogene 2008; 27: 

3746-3753.  

Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD–TRAF2 and TRADD–FADD interactions define 

two distinct TNF receptor 1 signal transduction pathways. Cell 1996; 84: 299–308. 

Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death 

and NF-kappa B activation. Cell 1995; 81: 495–504. 

Hsueh WA, Lyon CJ, Quinones MJ. Insulin resistance and the endothelium. Am J Med 2004; 

117: 109-117. 

Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists 

using DAVID Bioinformatics Resources. Nature Protoc 2009, 4: 44-57. 

Huang PL. Endothelial nitric oxide synthase and endothelial dysfunction. Curr Hypertens Rep 

2003; 5: 473–480. 

Hubert HB, Feinleib M, McNamara PM, Castelli WP: Obesity as an independent risk factor 

for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart 

Study. Circulation 1983; 67:968-977.  

Huisamen B, George C, Dietrich d, Genade S. Cardioprotective and anti-hypertensive effects 

of Prosopis glandulosa in rat models of pre-diabetes. Cardiovasc J Afr 2013; 24: 10-16. 

Hunt BJ, Jurd KM. Endothelial cell activation: a central pathophysiological process. BMJ 

1998; 316: 1328-1329. 

Hunt MC, Yamada J, Maltais LJ, et al. A revised nomenclature for mammalian acyl-CoA 

thioesterases/hydrolases. J. Lipid Res 2005; 46: 2029–2032. 

Stellenbosch University  https://scholar.sun.ac.za



280 | P a g e  
 

Hutchingson PJA, Palmer RMJ, Moncada S. Comparative pharmacology of EDRF and nitric 

oxide on vascular strips. Eur J Pharmacol 1987; 141: 445-451. 

Huttinger ZM, Milks MW, Nickoli MS, et al. Ectonucleotide Triphosphate 

Diphosphohydrolase-1 (CD39) Mediates Resistance to Occlusive Arterial Thrombus 

Formation after Vascular Injury in Mice. Am J Pathol 2012; 181: 322-333.  

Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor 

produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 

84:9265-9269. 

Ishida T, Kundu RK, Yang E, et al. Targeted disruption of endothelial cell-selective adhesion 

molecule inhibits angiogenic processes in vitro and in vivo. J Biol Chem 2003; 278: 34598-

34604.  

Ito A, Tsao PS, Adimoolam S, et al. Novel mechanisms for endothelial dysfunction: 

dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 1999; 99: 3092-

3095. 

Jansen T, Hortmann M, Oelze M, et al. Conversion of biliverdin to bilirubin by biliverdin 

reductase contributes to endothelial cell protection by heme oxygenase-1-evidence for 

direct and indirect antioxidant actions of bilirubin. J Mol Cell Cardiol 2010; 49: 186-195. 

Jiang Y, Woronicz JD, Liu W, Goeddel DV. Prevention of constitutive TNF receptor 1 signaling 

by silencer of death domains. Science 1999; 283: 543–6. 

Jones SA, O’Donnell VB, Wood JD, et al. Expression of phagocyte NADPH oxidase 

components in human endothelial cells. Am J Physiol 1996; 271: H1626–H1634. 

Kalra VK, Ying Y, Deemer K, et al. Mechanism of cigarette smoke condensate induced 

adhesion of human monocytes to cultured endothelial cells. J Cell Physiol 1994; 160: 154-

162. 

Kassan M, Choi S-K, Galan M, et al. Enhanced NF-kB activity impairs vascular function 

through PARP-1–, SP-1–, and COX-2–dependent mechanisms in type 2 diabetes. Diabetes 

2013; 62: 2078-2087. 

Kataoka H, Kume N, Miyamoto S. Oxidized LDL modulates Bax/Bcl-2 through the lectin-like 

Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2001; 21: 

955-60. 

Katusic ZS. Mechanisms of endothelial dysfunction induced by aging: role of arginase I. Circ 

Res 2007; 101: 640-641.  

Stellenbosch University  https://scholar.sun.ac.za



281 | P a g e  
 

Kawanaka H, Jones MK, Szabo IL, et al. Activation of eNOS in rat portal hypertensive gastric 

mucosa is mediated by TNF-alpha via the PI3-kinase-Akt signaling pathway. Hepatology 

2002; 35: 393-402. 

Kempe S, Kestler H, Lasar A, Wirth T. NF-κB controls the global pro-inflammatory response 

in endothelial cells: evidence for the regulation of a pro-atherogenic program. Nucleic Acids 

Res 2005; 33: 5308-5519.  

Kessler P, Popp R, Busse R, Schini-Kerth VB. Proinflammatory mediators chronically 

downregulate the formation of the endothelium-derived hyperpolarizing factor in arteries 

via a nitric oxide/cyclic GMP-dependent mechanism. Circulation 1999; 99: 1878-1884. 

Khan BV, Harrison DG, Olbrych MT, et al. Nitric oxide regulates vascular cell adhesion 

molecule 1 geneexpression and redox-sensitive transcriptional events in human vascular 

endothelial cells. Proc. Natl. Acad. Sci. USA 1996; 93: 9114-9119. 

Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and 

therapeutic opportunities. Nat Rev Drug Discov 2008; 7: 1013-1030. 

Kim J, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance 

and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation 

2006; 113: 1888-1904. 

Kitamoto S, Sukhova GK, Sun J, et al. Cathepsin L deficiency reduces diet-induced 

atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation 2007; 115: 

2065-2075. 

Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res 2013; 112: 

1171-1188. 

Kobayashi T, Tahara Y, Matsumoto M, et al. Roles of thromboxane A(2) and prostacyclin in 

the development of atherosclerosis in apoE-deficient mice. J Clin Invest 2004; 114: 784-794. 

Kohr MJ, Traynham CJ, Roof SR, et al. cAMP-independent activation of protein kinase A by 

the peroxynitrite generator SIN-1 elicits positive inotropic effects in cardiomyocytes. J Mol 

Cell Cardiol 2010; 48: 645-648.  

Kolluru GK, Siamwala JH, Chatterjee S. eNOS phosphorylation in health and disease. 

Biochemie 2010; 92: 1186-1198. 

Kotsis V, Stabouli S, Papakatsika S, et al. Mechanisms of obesity-induced hypertension. 

Hypertens Res 2010; 33: 386-393.  

Koya D, King GL. Protein kinase C activation and the development of diabetic complications. 

Diabetes 1998; 47: 859-866.  

Stellenbosch University  https://scholar.sun.ac.za



282 | P a g e  
 

Koziak K, Sevigny J, Robson SC, et al. Analysis of CD39/ATP diphosphohydrolase (ATPDase) 

expression in endothelial cells, platelets and leukocytes. Thromb Haemost 1999; 82: 1538-

1544.  

Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P. Apoptosis and necrosis: detection, 

discrimination and phagocytosis. Methods 2008; 44: 205-221. 

Kuzkaya N, Weissmann N, Harrison DG, et al. Interaction of peroxynitrite, 

tetrahydrobiopterin, ascorbic acid, and thiols. J Biol Chem 2003; 278: 22546–22554. 

Laccore DA, Baekkevold ES, Garrido I, et al. Plasticity of endothelial cells: rapid 

dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the 

lymphoid tissue microenvironment. Blood 2004; 103: 4164-4172.  

Lai PFH, Mohamed F, Monge J-C, Stewart DJ. Downregulation of eNOS mRNA expression by 

TNF-α: identification of the functional characterization of RNA-protein interactions in 3’UTR. 

Cardiovasc Res 2003; 59: 160-168. 

Lancel S, Tissier S, Mordon S, et al. Peroxynitrite decomposition catalysts prevent 

myocardial dysfunction and inflammation in endotoxemic rats. J Am Coll Cardiol 2004; 43: 

2343-2358. 

Landmesser U, Spiekermann S, Dikalov S, et al. Vascular oxidative stress and endothelial 

dysfunction in patients with chronic heart failure: Role of xanthine-oxidase and extracellular 

superoxide dismutase. Circulation 2002; 106: 3073-3078. (a) 

Landmesser U, Cai H, Dikalov S, et al. Role of p47phox in vascular oxidative stress and 

hypertension  caused by angiotensin II. Hypertension 2002; 40: 511-515.(b) 

Laubichler, Aird WC, Maienschein J. The endothelium in history. In Aird WC (editor). 

Endothelial biomedicine. Cambridge University Press 2007: 5-19. 

Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep 2009; 61: 22-32. 

Lee W, Yang EJ, Ku SK, et al. Anti-inflammatory effects of oleanolic acid on LPS-induced 

inflammation in vitro and in vivo. Inflammation 2013; 36: 94-102. 

Lefer DJ, Scalia R, Campbell B, et al. Peroxynitrite inhibits leukocyte-endothelial cell 

interactions and protects against ischemia-reperfusion injury in rats. J Clin Invest 1997; 99: 

684-691. 

Lehr H-A, Frei B, Arfors KE. Vitamin C prevents cigarette smoke-induced leucocyte 

aggregation and adhesion to endothelium in vivo. Proc Natl Acad Sci USA 1994; 91: 7688-

7692. 

Stellenbosch University  https://scholar.sun.ac.za



283 | P a g e  
 

Leopold JA, Zhang Y-Y, Scribner AW, et al. Glucose-6-phosphate dehydrogenase 

overexpression decreases endothelial cell oxidative stress and increase bioavailable nitric 

oxide. Arterioscler Thromb Vasc Biol 2003; 23: 411-417. 

Li C, Zhou H-M. The Role of manganese superoxide dismutase in inflammation defence. 

Enzyme Research 2011, Article ID 387176, 6 pages, 2011. doi:10.4061/2011/387176.  

Li D, Chen H, Romeo F, et al. Statins modulate oxidized low-density lipoprotein mediated 

adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J 

Pharm Exp Ther 2002; 302: 601-605. 

Li D, Singh RM, Liu L, et al. Oxidized-LDL through LOX-1 increases the expression of 

angiotensin converting enzyme in human coronary artery endothelial cells. Cardiovasc Res 

2003; 57: 238-243. 

Li F, Yuan Y, Guo Y, et al. Pulsed magnetic field accelerate proliferation and migration of 

cardiac microvascular endothelial cells. Bioelectromagnetics 2015; 36: 1-9. 

Li H, Wallerath T, Münzel T, Förstermann U. Regulation of endothelial-type NO synthase 

expression in pathophysiology and in response to drugs. Nitric Oxide Biol Chem 2002; 7: 

149-164. 

Li JH, Pober JS. The cathepsin B death pathway contributes to TNF plus IFN-γ-mediated 

human endothelial injury. J Immunol 2005; 175: 1858-1866.  

Li J-M, Fan LM, Christie MR, Shah AJ.  Acute tumor necrosis factor alpha signaling and 

NADPH oxidase in microvascular endothelial cells: Role of p47phox phosphorylation and 

binding to TRAF4. Mol Cell Biol 2005; 25: 2320-2330. 

Li J-M, Shah AJ. Mechanisms of endothelial cell NADPH oxidase activation by angiotensin II. J 

Biol Chem 2003; 278: 12094-12100. 

Li L, Roumeliotis N, Sawamura T, Renier G. C-reactive protein enhances LOX-1 expression in 

human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial 

dysfunction. Circ Res 2004; 95: 877-883. 

Li Y-Z, Liu X-H, Rong H, et al. Carbachol inhibits TNF-α-induced endothelial barrier 

dysfunction through alpha 7 nicotinic receptors. Acta Pharmacologica Sinica 2010; 31: 1389-

1394. 

Liao JK, Shin WS, Lee WY, Clark SC. Oxidised low-density lipoprotein decreases the 

expression of endothelial nitric oxide synthase. J Biol Chem 1995; 270: 319-324. 

Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest 2013; 

123: 540-541. 

Stellenbosch University  https://scholar.sun.ac.za



284 | P a g e  
 

Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105: 

1135-1143. 

Limaye V, Vadas M. The vascular endothelium: structure and function. In Fitridge R and 

Thompson M, editors. Mechanisms of Vascular Disease: A Textbook for vascular Surgeons. 

Cambridge University Press 2006:1-13.  

Lin H, Lin X. Positive and negative signalling components involved in TNF-α induced NF-kB 

activation. Cytokine 2008; 41: 1-8.  

Lin Y, Choksi S, Shen HM, et al. Tumor necrosis factor-induced nonapoptotic cell death 

requires receptor-interacting protein-mediated cellular reactive oxygen species 

accumulation. J Biol Chem. 2004; 279: 10822-10828.  

Liu J, Lu C, Li F, et al. PPAR-α agonist fenofibrate upregulates tetrahydrobiopterin level 

through increasing the expression of guanosine 5’-triphosphate cyclohydrolase-I in human 

umblical vein endothelial cells. PPAR Research 2011; 2011: doi: 10.1155/523520.   

Liu J, Sun H, Wang X, et al. Effects of oleanolic acid and maslinic acid on hyperlipidemia. 

Drug Develop Res 2007; 68: 261-266. 

Liu J. Pharmacology of oleanolic acid. J Ethnopharmacol 1995; 49: 57-58. 

Liu S, Premont RT, Kontos CD, et al. Endothelin-1 activates endothelial cell nitric-oxide 

synthase via heterotrimeric G-protein βү subunit signalling to protein kinase B / Akt. J Biol 

Chem 2003; 278: 49929-49935. 

Luo Z, Fujio Y, Kureishi Y, et al. Acute modulation of endothelial Akt/PKB activity alters nitric 

oxide–dependent vasomotor activity in vivo. J Clin Invest 2000; 106: 493-499.   

Lynch JA, George AM, Eisenhauer PB, et al. Insulin degrading enzyme is localized 

predominantly at the cell surface of polarized and unpolarized human cerebrovascular 

endothelial cell cultures. J Neurosci Res 2006; 83: 1262-1270. 

Ma Z-C, Gao Y, Wang J, et al. Proteomic analysis effects of ginsenoside Rg1 on human 

umbilical vein endothelial cells stimulated by tumor necrosis factor. Life Sciences 2006; 79: 

175–181. 

MacNaul KL, Hutchinson NI. Differential expression of iNOS and cNOS mRNA in human 

vascular smooth muscle cells and endothelial cells under normal and inflammatory 

conditions. Biochem Biophys Res Commun 1993; 196: 1330-1334. 

Madge LA, Li J-H, Choi J, Pober JS. Inhibition of Phosphatidylinositol 3-Kinase Sensitizes 

Vascular Endothelial Cells to Cytokine-initiated Cathepsin-dependent Apoptosis. J Biol Chem 

2003; 278: 21295-21306.  

Stellenbosch University  https://scholar.sun.ac.za



285 | P a g e  
 

Maeda S, Miyauchi T, Sakai S, et al. Prolonged exercise causes an increase in endothelin-1 

production in the heart in rats. Am J Physiol 1998; 275: H2105–H2112. 

Makino A, Scott BT, Dillmann WH. Mitochondrial fragmentation and superoxide anion 

production in coronary endothelial cells from a mouse model of type 1 diabetes. 

Diabetologia 2010; 53: 1783-1794.  

Malek A, Izumo S. Physiological fluid shear stress causes downregulation of endothelin-1 

mRNA in bovine aortic endothelium. Am J Physiol 1992; 263: C389–C396. 

Malyszko J. Mechanisms of endothelial dysfunction chronic kidney disease. Clinica Chimica 

Acta 2010; 411: 1412-1420. 

Mannarino E, Pirro M. Molecular biology of atherosclerosis. Clin Cases Miner Bone Metab 

2008; 5: 57-62. 

Mapanga RF, Rajamani U, Dlamini N, et al. Oleanolic acid: a novel cardioprotective agent 

that blunts hyperglycemia-induced contractile dysfunction. PLos ONE 2012; 7: e47322. doi: 

10.1371 / journal.pone.0047322.  

Mapanga RF, Tufts MA, Shode FO, Musabayane CT. Renal effects of plant-derived oleanolic 

acid in streptozotocin-induced diabetic rats. Ren Fail 2009; 31: 481-491. 

Marcus AJ, Broekman MJ, Drosopoulos JH, et al. Inhibition of platelet recruitment by 

endothelial cell CD39/ecto-ADPase: significance for occlusive vascular diseases.  Ital Heart J 

2001; 2: 824-830. 

Marowietz H. LOX-1 and atherosclerosis: proof of concept in LOX-1 knockout mice. Circ Res 

2007; 100: 1534-1536. 

Martinez-Gonzalez J, Rodriguez-Rodriguez R, Gonzalez-Diez M, et al. Oleanolic acid induces 

prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-

dependent mechanism. J Nutr 2008; 138: 443-448. 

Mas M. A closer look at the endothelium: its role in the regulation of vasomotor tone. Eur 

Urol 2009; 8:48-57. 

Mathers CD, Loncar D. Projections of global mortalityand burden of disease from 2002 to 

2030. PLoS Med 2006; 3(11): e442. doi:10.1371/journal.pmed.0030442 

Mathews MT, Berk BC. PARP-1 inhibition prevents oxidative and nitrosative stress-induced 

endothelial cell death via transactivation of the VEGF receptor 2. Arterioscler Thromb Vasc 

Biol 2008; 28: 711-717. 

Stellenbosch University  https://scholar.sun.ac.za



286 | P a g e  
 

Matoba T, Shimokawa H, Kubota H, et al. Hydrogen peroxide is an endothelium-derived 

hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun 2002; 

290: 909-913. 

Matthews JR, Botting CH, Panico M, et al. Inhibition of NF-kappaB DNA binding by nitric 

oxide. Nucleic Acids Res 1996; 24: 2236–2242. 

Matz RL, Schott C, Stoclet JC, et al. Age-related endothelial dysfunction with respect to nitric 

oxide, endothelium-derived hyperpolarising factor and cyclooxygenase products. Physiol 

Res 2000; 49: 11-18. 

Mebazaa A, Wetzel R, Cherian M, Abraham M. Comparison between endocardial and great 

vessel endothelial cells: morphology, growth, and prostaglandin release. Am J Physiol 1995; 

268: H250-H259. 

Mehta JL, Chen J, Hermont PL, et al. Lectin-like, oxidized low-density lipoprotein receptor-1 

(LOX-1): A critical player in the development of atherosclerosis and related disorders. 

Cardiovasc Res 2006; 69: 36-45.  

Mehta PK, Griendling KK. Angiotensin II cell signalling: physiological and pathological effects 

in the cardiovascular system. Am J Physiol Cell Physiol 2007; 292: C82-C97. 

Mehta R, Shapiro AD. Plasminogen activator inhibitor type 1 deficiency. Haemophilia 2008; 

14: 1255-1260. 

Meigs JB, O’Donnel CJ, Tofler GH, et al. Hemostatic Markers of Endothelial Dysfunction and 

Risk of Incident Type 2 Diabetes: The Framingham Offspring Study. Diabetes 2006; 55: 530-

537. 

Meldrum DR, Dinarello CA, Cleveland JC Jr, et al. Hydrogen peroxide induces tumor necrosis 

factor alpha-mediated cardiac injury by a P38 mitogen-activated protein kinase-dependent 

mechanism. Surgery 1998; 124: 291-296.  

Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol 1998; 274: R577-R595. 

Messmer UK, Briner VA, Pfeilschifter J. Tumor necrosis factor-alpha and lipopolysaccharide 

induce apoptotic cell death in bovine glomerular endothelial cells. Kidney Int 1999; 55: 

2322-2337. 

Michiels C. Endothelial cell functions. J Cell Physiol 2003; 196: 430-443. 

Mihm MJ, Jing L, Bauer JA. Nitrotyrosine causes selective vascular endothelial dysfunction 

and DNA damage. J Cardiovasc Pharmacol 2000; 36: 182-187. 

Min JK, Kim YM, Kim SW, et al. TNF-related activation-induced cytokine enhances leukocyte 

adhesiveness: induction of ICAM-1 and VCAM-1 via TNF receptor-associated factor and 

Stellenbosch University  https://scholar.sun.ac.za



287 | P a g e  
 

protein kinase C-dependent NF-kappaB activation in endothelial cells. J Immunol 2005; 175: 

531-540. 

Minuz P, Barrow SE, Cockcroft JR, Ritter JM. Prostacyclin and thromboxane biosynthesis in 

mild essential hypertension. Hypertention 1990; 15: 469-474. 

Mittal M, Siddiqui MR, Tran K, et al. Reactive oxygen species in inflammation and tissue 

injury. Antioxid Redox Signal 2014; 20: 1126-1167.  

Molet S, Furukawa K, Maghazechi A, et al. Chemokine- and cytokine-induced expression of 

endothelin 1 and endothelin-converting enzyme 1 in endothelial cells. J Allergy Clin Immunol 

2000; 105: 333-338.  

Molnar J, Yu S, Mzhavia N, et al. Diabetes induces endothelial dysfunction but does not 

increase neointimal formation in high-fat diet fed C57BL/6J mice. Circ Res 2005; 96: 1178-

84. 

Molostvov G, Morris A, Rose P, Basu S. Modulation of Bcl-2 family proteins in primary 

endothelial cells during apoptosis. Pathophysiol Haemost Thromb 2002; 32: 85-91. 

Moncada S, Higgs EA, Vane JR. Human arterial and venous tissues generate prostacyclin 

(prostaglandin X), a potent inhibitor of platelet aggregation. Lancet 1977; 1: 18-20.  

Morawietz H, Deurrschmidt N, Niemann B, et al. Induction of the oxLDL receptor by LOX-1 

by endothelin-1 in human endothelial cells. Biochem Biophys Res Commun 2001; 284: 961-

965.  

Morawietz H. LOX-1 and atherosclerosis: Proof of concept in LOX-1–knockout mice. Circ Res. 

2007; 100: 1534-1536. 

Morgan JT, Pfeiffer ER, Thirkill TL, et al. Nesprin-3 regulates endothelial cell morphology, 

perinuclear cytoskeletal architecture, and flow-induced polarization. Mol Biol Cell 2011; 22: 

4324–4334. 

Moro MA, Russell RJ, Cellek S, et al. cGMP mediates the vascular and platelets actions of 

nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase. Proc Natl Acad 

Sci USA 1996; 93: 1480-1485.  

Mort JS, Buttle DJ. Cathepsin B. Int J Biochem Cell Biol 1997; 29: 715-720.  

Moser M, Bauer M, Schmid S, et al. Kindlin-3 is required for beta2 integrin-mediated 

leukocyte adhesion to endothelial cells. Nat Med 2009; 15:300-305. 

Most P, Lerchenmuller C, Rengo G, et al. S100A1 deficiency impairs postischemic 

angiogenesis via compromised proangiogenic endothelial cell function and nitric oxide 

synthase regulation. Circ Res 2013; 112: 66–78. 

Stellenbosch University  https://scholar.sun.ac.za



288 | P a g e  
 

Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of 

atherosclerosis. Cardiovasc J Afr 2012; 23: 222-231. 

Mukherjee D, Nissen SE, Topol EJ. Risk of cardiovascular events associated with selective 

COX-2 inhibitors. JAMA 2001; 286: 954-959. 

Murakami H, Murakami R, Kambe F, et al. Fenofibrate activates AMPK and increases eNOS 

phosphorylation in HUVEC. Biochem Biophys Res Commun 2006; 341: 973-978. 

Murao K, Ohyama T, Imachi H, et al. TNF-alpha stimulation of MCP-1 expression is mediated 

by the Akt/PKB signal transduction pathway in vascular endothelial cells. Biochem Biophys 

Res Commun 2000; 276: 791-796. 

Nachman RL. Endothelium: from cellophane to orchestral maestro. J Clin Invest. 2012; 

122(3): 796-797. 

Naderali EK, Brown MJ, Pickavance LC, et al. Dietary obesity in the rat induces endothelial 

dysfunction without causing insulin resistance: a possible role for triacylglycerols. Clin Sci 

2001; 101: 499-506. 

Nakashima M, Mambouli J-V, Taylor AA, Vanhoutte PM. Endothelium-dependent 

hyperpolarization caused by bradykinin in human coronary arteries. J Clin Invest 1993; 92: 

2867-2871. 

Nakata T, Suzuki K, Fujii J, et al. Induction and release of manganese superoxide dismutase 

from mitochondria of human umbilical vein endothelial cells by tumor necrosis factor-alpha 

and interleukin-1 alpha. Int J Cancer 1993; 55: 646-650. 

Neil K, Lewis SJ, James R, et al. Extensive tyrosine nitration in human myocardial 

inflammation: evidence for the presence of peroxynitrite. Crit Care Med 1997; 25: 812-819. 

Nemr R, Lasserre B, Chahine R. Effects of nicotine on thromboxane/prostacyclin balance in 

myocardial ischemia. Prostaglandins Leukot Essent Fatty Acids 2003; 68: 191-195. 

Neumann P, Gertzberg N, Vaughan E, et al. Peroxynitrite mediates TNF-α induced 

endothelial barrier dysfunction and nitration of actin. Am J Physiol Lung Cell Mol Physiol 

2006; 290: L674-L684.  

Nie H, Wu J-L, Zhang M, et al. Endothelial nitric oxide synthase-dependent tyrosine nitration 

of prostacyclin synthase in diabetes in vivo. Diabetes 2006; 55: 3133-3141. 

Nishida M, Carley WW, Gerritsen ME, et al. Isolation and characterization of human and rat 

cardiac microvascular endothelial cells. Am J Physiol Heart Circ Physiol 1994; 33: H639-H652. 

Stellenbosch University  https://scholar.sun.ac.za



289 | P a g e  
 

Ohashi J, Sawada A, Nakashima S, et al. Mechanisms for enhanced endothelium-derived 

hyperpolarizing factor-mediated responses in microvessels in mice. Circ J 2012;76: 1768-

1779.  

Ohbayashi A, Hiraga T, Okubo M, et al. Characteristics of porcine coronary artery endothelial 

cells in culture: comparison with aortic endothelium. Biochem. Biophys Res Commun 1994; 

202: 504-511. 

Ohsawa I, Nishimaki K, Yasuda C, Kamino K, Ohta S. Deficiency in a mitochondrial aldehyde 

dehydrogenase increases vulnerability to oxidative stress in PC12 cells. J Neurochem 2003; 

84: 1110-1117. 

Okruhlicova L, Tribulova N, Weismann P, et al. Ultrastructure and histochemistry of rat 

myocardial capillary endothelial cells in response to diabetes and hypertension. Cell Res 

2005; 15: 532-538.  

Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capability of the blood-

brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and 

other tissues of the rat. Ann Neurol 1977; 1: 409–417. 

Olofsson SO, Boren J. Apolipoprotein B: A clinically important apolipoprotein which 

assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J 

Intern Med 2005; 258: 395-410.  

Onody A, Csonka C, Giricz Z, Ferdinandy P. Hyperlipidemia by a cholesterol-rich diet leads to 

enhanced peroxynitrite formation in rat hearts. Cardiovasc Res 2003; 58: 663-670. 

Ouguerram K, Chetiveaux M, Zair Y, et al. Apolipoprotein B100 metabolism in autosomal-

dominant hypercholesterolemia related mutations in PCSK9. Arterioscler Thromb Vasc Biol 

2004; 24: 1448-1453.  

Pacher P, Czabo C. Role of poly (ADP-ribose) polymerase 1 (PARP-1) in cardiovascular 

diseases: the therapeutic potential of PARP inhibitors.  

Palmieri D, Perogo P, Palombo D. Estrogen receptor activation protects TNF-α-induced 

endothelial dysfunction. Angiology 2014; 65: 17-21.  

Papapetropoulos A, Antonov A, Virmani R, et al. Monocyte- and cytokine-induced 

downregulation of angiotensin-converting enzyme in cultured human and porcine 

endothelial cells. Circ Res 1996; 79: 512-523. 

Papapetropoulos A, Zhou Z, Gerassimou C, et al. Interaction between the 90-kDa heat shock 

protein and soluble guanyly cyclase: physiological significance and mapping of the domains 

mediating binding. Mol Pharmacol 2005; 68: 1133-1141.   

Park A. Hyperlipidaemia. Medicine 2009; 37: 497:499. 

Stellenbosch University  https://scholar.sun.ac.za



290 | P a g e  
 

Park JY, Takahara N, Gabriele A, et al. Induction of endothelin-1 expression by glucose: an 

effect of protein kinase C activation. Diabetes 2000; 49: 1239-1248. 

Pasceri V, Cheng JS, Willerson JT, et al. Modulation of C-reactive protein mediated 

monocyte chemoattractant protein-1 induction in human endothelial cells by anti-

atherosclerosis drugs. Circulation 2001; 103: 2531–2534. 

Passerini AG, Shi C, Francesco NM, et al. Regional determinants of arterial endothelial 

phenotype dominate the impact of gender or short-term exposure to a high fat diet. 

Biochem Biophys Res Commun 2005; 332: 142-148. 

Patel H, Chen J, Das KC, Kavdia M. Hyperglycemia induces differential change in oxidative 

stress at gene and functional levels in HUVEC and HMVEC. Cardiovascular Diabetology 2013, 

12: 142. 

Paxton LL, Li LJ, Secor V, et al. Flanking sequences for the human intercellular adhesion 

molecule-1 NF-kappaB response element are necessary for tumor necrosis factor alpha-

induced gene expression. J Biol Chem 1997; 272: 15928-15935. 

Peng H-B, Libby P, Liao JK. Induction and stabilization of IkB-apha by nitric oxide mediates 

inhibition of NFkB. J Biol Chem 1995; 270: 14214-14219.  

Perillo NL, Pace KE, Seilhamer JJ, Baum LG. Apoptosis of T cells mediated by galectin-1. 

Nature 1995; 378: 736-739.  

Perticone F, ceravolo R, Candigliota M, et al. Obesity and body fat distribution induce 

endothelial dysfunction by oxidative stress: protective effect of vitamin C. Diabetes 2001; 

50: 159-165. 

Pfeifer A, Klatt P, Massberg S, et al. Defective smooth muscle regulation in cGMP kinase I-

deficient mice. EMBO J 1998; 17: 3045-3051. 

Picchi A, Gao X, Belmadani S, et al. Tumor necrosis factor-α induces endothelial dysfunction 

in the prediabetic metabolic syndrome. Circ Res 2006; 99: 69-77. 

Pignatelli B, Li CO, Boffetta P, et al. Nitrated and oxidized plasma proteins in smokers and 

lung cancer patients. Cancer Res 2001; 61: 778-784. 

Piper HM, Spahr R, Mertens S, Krutzfeldt A, Watanabe H. Microvascular endothelial cells 

from heart. In: Piper HM (editor).   Cell culture techniques in heart vessel and research.  

Springer-Verlag 1990:  158-173. 

Pirillo A, Norata GD, Catapano AL. LOX-1, OxLDL, and atherosclerosis. Mediators Inflamm 

2013; 2013: 152786. doi: 10.1155/2013/152786. 

Stellenbosch University  https://scholar.sun.ac.za



291 | P a g e  
 

Pleger ST, Harris DM, Shan C, et al. Endothelial S100A1 modulates vascular function via nitric 

oxide. Circ Res 2008; 102: 786–794.  

Poiller J, Goosens A. Oleanolic acid. Phytochemistry 2012; 77: 10-15. 

Pollock DM, Keith TL, Highsmith RF. Endothelin receptors and calcium signalling. FASEB J 

1995; 9: 1196-1204. 

Polte T, Oberle S, Schroder H. Nitric oxide protects endothelial cells from tumor necrosis 

factor-α-mediated cytoxicity: possible involvement of cyclic GMP. FEBS Letters 1997; 409: 

46-48. 

Potenza MA, Marasciulo FL, Chieppa DM, et al. Insulin resistance in spontaneously 

hypertensive rats is associated with endothelial dysfunction characterized by imbalance 

between NO and ET-1 production. Am J Physiol Heart Circ Physiol 2005; 289: H813–H822.  

Potter CM, Lundberg MH, Harrington LS, et al. Role of shear stress in endothelial cell 

morphology and expression of cyclooxygenase isoforms. Arterioscler Thromb Vasc Biol 

2011; 31: 384-391.   

Pries AR, Secomb TW, Gaehtgens P. Endothelial surface layer. Eur J Physiol 2000; 440: 653-

666. 

Privratsky JR, Tourdot BE, Newman DK, Newman PJ. The anti-inflammatory actions of 

platelet endothelial cell adhesion molecule-1 do not involve regulation of endothelial cell 

NF-KB. J Immunol 2010; 184: 3157-3163.   

Qin WD, Wei SJ, Wang XP, et al. Poly (ADP-ribose) polymerase 1 inhibition protects against 

low shear stress induced inflammation. Biochim Biophys Acta 2013; 1833: 59-68. 

Quehenberger P, Bierhaus A, Fasching P, et al. Endothelin 1 transcription is controlled by 

nuclear factor-ĸB in AGE stimulated cultured endothelial cells. Diabetes 2000; 49: 1561-

1570. 

Raij L, DeMaster EG, Jaimes EA. Cigarette smoke-induced endothelium dysfunction: role of 

superoxide anion. J Hypertens 2001; 19: 891-897. 

Rakugi H, Tabuchi Y, Nakamaru M, et al. Evidence for endothelin-1 release from resistance 

vessels of rats in response to hypoxia. Biochem Biophys Res Commun 1990; 169: 973–977. 

Ramadas RA, Ewart SL, Iwakura Y, et al. IL-36α exerts pro-inflammatory effects in the lungs 

of mice. PLoS One. 2012; 7(9):e45784. doi: 10.1371/journal.pone.0045784. 

Raman CS, Li H, Martasek P, et al. Crystal structure of constitutive endothelial nitric oxide 

synthase: a paradigm for pterin function involving a novel metal center. Cell 1998; 95: 939-

950.   

Stellenbosch University  https://scholar.sun.ac.za



292 | P a g e  
 

Rastaldo R, Pagliaro P, Capello S, Penna C, Mancardi D, Westerhof N, Losano G. Nitric oxide 

and cardiac fuction. Life Sciences 2007; 81: 779-793. 

Rastogi S, Rizwani W, Joshi B, et al. TNF-a response of vascular endothelial and vascular 

smooth muscle cells involve differential utilization of ASK1 kinase and p73. Cell Death and 

Differentiation 2012; 19: 274-283. 

Reiter CD, Teng R-J, Beckman JS. Superoxide reacts with nitric oxide to nitrate tyrosine at 

physiological pH via peroxynitrite. J Biol Chem 2000; 275: 32460-32466. 

Reitsma S, Slaaf DW, Vink H, et al. The endothelial glycocalyx: composition, functions and 

visualization. Eur J Physiol 2007; 454: 345-359. 

Resnick N, Yahav H, Shay-Salit A, et al. Fluid shear stress and the vascular endothelium: for 

better and for worse. Prog Biophys Mol Biol 2003; 81: 177-199.  

Reuter TY. Diet-induced models for obesity and type 2 diabetes. Drug Discov Today Dis 

Models 2007; 4: 3-8.  

Richardson MR, Lai X, Witzmann FA, Yoder MC. Venous and arterial endothelial proteomics: 

mining for markers and mechanisms of endothelial diversity. Expert Rev Proteomics. 2010; 

7:823-831. 

Rochette L, Lorin J, Zeller M, et al. Nitric oxide synthase inhibition and oxidative stress in 

cardiovascular diseases: possible therapeutic targets? Pharmacology & Therapeutic 2013; 

140: 239-257. 

Rodriguez-Rodriguez R, Herrera MD, De Sotomayor MA, et al. Pomace olive oil improves 

endothelial function in spontaneously hypertensive rats by increasing endothelial nitric 

oxide synthase expression. Am J Hypertens 2007; 20: 728-734. 

Rodriguez-Rodriguez R, Herrera MD, Perona JS, et al. Potential vasorelaxant effects of 

oleanolic acid and erythrodiol, two triterpenoids contained in ‘orujo’ olive oil, on rat aorta. 

Br J Nutr 2004; 92: 635-642. 

Rodriguez-Rodriguez R, Stankevicius E, Herrera MD, et al. Oleanolic acid induces relaxation 

and calcium-independent release of endothelium-derived nitric oxide. Br J Pharmacol 2008; 

155: 535-546. 

Rohra DK, Zubairi HS, Ohizumi Y. Endothelial dysfunction underlying the increased 

Contractility in aorta from older rats. Pak J Physiol 2006; 2: 8-11. 

Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115-126. 

Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-

derived relaxing factor. Am J Physiol 1986; 250: H822-H827. 

Stellenbosch University  https://scholar.sun.ac.za



293 | P a g e  
 

Ryoo S, Lemmon CA, Soucy KG, et al. Oxidized low density lipoprotein-dependent 

endothelial arginase II activation contributes to impaired nitric oxide signalling.  Circ Res 

2006; 99: 951-960. 

Saijonmaa O, Nyman T, Fyhrquist F. Downregulation of angiotensin-converting enzyme by 

tumor necrosis factor-alpha and interleukin-1beta in cultured human endothelial cells. J 

Vasc Res 2001; 38: 370-378. 

Sakurai H, Suzuki S, Kawasaki N, et al. Tumor necrosis factor-α-induced IKK phosphorylation 

of NF-kB p65 on serine 536 is mediated through the TRAF2, TRAF5 and TAK1 signaling 

pathway. J Biol Chem 2003; 278: 36916-36923. 

Salie R, Huisamen B, Lochner A. High carbohydrate and high fat diets protect the heart 

against ischaemia/reperfusion injury. Cardiovasc Diabetol 2014; 13: 109 

Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between 

autophagy and inflammasomes. Aging 2012; 4: 166-175.   

Sawamura T, Kume N, Aoyama T, et al. An endothelial receptor for oxidized low-density 

lipoprotein. Nature 1997; 386: 73-77. 

Sawant DA, Tharakan B, Wilson RL, et al. Regulation of tumor necrosis factor-α-induced 

microvascular endothelial cell hyperpermeability by recombinant B-cell lymphoma-extra 

large. J Surg Res 2013; 184: 628-637. 

Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BMW. Renin-angiotensin system and 

cardiovascular risk.  Lancet 2007; 369: 1208-1219. 

Schmitt CA, Dirsch VM. Modulation of endothelial nitric oxide by plant-derived products. 

Nitric oxide 2009; 21: 77-91.  

Schneider JG, Tilly N, Hierl T, et al. Elevated plasma endothelin-1 levels in diabetes mellitus. 

Am J Hypertens 2002; 15: 967-972. 

Schütze S, Machleidt T, Krönke M. The role of diacylglycerol and ceramide in tumor necrosis 

factor and interleukin-1 signal transduction. J Leukoc Biol 1994; 56: 533-541. 

Schwartz BG, Kloner RA. Cardiovascular implications of erectile dysfunction. Circulation 

2011; 123: e609-e611. 

Seals DR, Jablonski KL, Donato JA. Aging and vascular endothelial functions in humans. Clin 

Sci (Lond) 2011; 120: 357-375. 

Seguin F, Carvalho MA, Bastos DC, et al. The fatty acid synthase inhibitor orlistat reduces 

experimental metastases and angiogenesis in B16-F10 melanomas. Br J Cancer 2012; 107: 

977-987. 

Stellenbosch University  https://scholar.sun.ac.za



294 | P a g e  
 

Sen A, Most P, Peppel K. Induction of micro RNA-138 by proinflammatory cytokines causes 

endothelial cell dysfunction. FEBS Letters 2014; 588: 906-914. 

Senthil S, Sridevi M, Pugalendi KV. Cardioprotective effect of oleanolic acid on 

isoproterenol-induced myocardial ischemia in rats. Toxicol Pathol 2007; 35: 418-423. 

Seto SW, Lam TY, Or PM, et al. Folic acid consumption reduces resistin level and restores 

blunted acetylcholine-induced aortic relaxation in obese / diabetic mice. J Nutr Biochem 

2010; 21: 872-880.  

Seybold J, Thomas D, Witzenrath M, et al. Tumor necrosis factor-alpha-dependent 

expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 2005; 105: 

3569-3576. 

Shah AM, MacCarthy PA. Paracrine and autocrine effects of nitric oxide on myocardial 

function. Pharmacol Ther 2000; 86: 49-86.  

Shenouda SM, Widlansky ME, Chen K, et al. Altered mitochondrial dynamics contributes to 

endothelial dysfunction in diabetes mellitus. Circulation 2011; 124: 444-453. 

Shimokawa H, Yasuda S. Myocardial ischemia: Current concepts and future perspectives. 

Journal of Cardiology 2008; 52: 67-78.  

Shimokawa H, Yasutake H, Fujii K, et al. The importance of the hyperpolarizing mechanism 

increases as the vessel size decreases in endothelium-dependent relaxations in rat 

mesenteric circulation. J Cardivasc Pharmacol 1996; 28: 703-711. 

Shishehbor MH, Avile RJ, Brennan M-L, et al. Association of nitrotyrosine levels with 

cardiovascular disease and modulation by statin therapy. JAMA 2003; 289: 1679-1680. 

Siegel D, Gustafson DL, Dehn DL, et al. NAD(P)H: Quinine oxidoreductase 1: role as a 

superoxide scavenger. Mol Pharmacol 2004; 65: 1238-1247.  

Simionescu M, Gafencu A, Antohe F. Transcytosis of plasma macromolecules in endothelial 

cells: A cell biological survey. Microsc Res Tech 2002; 57: 269-288. 

Simmons GH, Padilla J, Laughli MH. Heterogeneity of endothelial cell phenotype within and 

amongst conduit vessels of the swine vasculature. Exp Physiol 2012; 97: 1074-1082.  

Smolenski A. Novel roles of cAMP / cGMP-dependent signalling in platelets. J Thromb 

Haemost 2012; 10: 167-176. 

Soderling SH, Beavo JA. Regulation of cAMP and cGMP signaling: new phosphodiesterases 

and new functions. Curr Opin Cell Biol 2000; 12: 174-179. 

Stellenbosch University  https://scholar.sun.ac.za



295 | P a g e  
 

Soeda S, Tsunoda T, Kurokawa Y, Shimeno H. Tumor necrosis factor-α-induced release of 

plasminogen activator inhibitor-1 from human umbilical vein endothelial cells: involvement 

of intracellular ceramide signaling event. Biochimica et Biophysica Acta 1998; 1448: 37-45.  

Solito R, Corti F, Chen CH, et al. Mitochondrial aldehyde dehydrogenase-2 activation 

prevents β-amyloid-induced endothelial cell dysfunction and restores angiogenesis. J Cell Sci 

2013; 126: 1952-1961. 

Somova LO, Nadar A, Rammanan P, Shode FO. Cardiovascular, antihyperlipidemic and 

antioxidant effects of oleanolic acid and ursolic acid in experimental hypertension. 

Phytomedicine 2003; 10: 115-121.  

Spiecker M, Darius H, Kaboth K, Hübner F, Liao JK. Differential regulation of endothelial cell 

adhesion molecule expression by nitric oxide donors and antioxidants. J Leukoc Biol 1998; 

63: 732-739. 

Sprague RS, Bowles EA, Hanson MS, et al. Prostacyclin analogs stimulate receptor-mediated 

cAMP synthesis and ATP release from rabbit and human erythrocytes. Microcirculation 

2008; 15: 461-471.   

Stankevicius E, Kevelaitis E, Vainorius E, et al. Role of nitric oxide and other endothelium-

derived factors. Medicina 2003; 39: 333-341. 

Steyn K. The Heart and Stroke foundation South Africa. Heart disease in South Africa: Media 

data document. MRC 2007. Availale: http://www.mrc.ac.za/chronic/heartandstroke. 

Stone JR, Collins T. The role of hydrogen peroxide in endothelial proliferative responses. 

Endothelium 2002; 9: 231-238. 

Strijdom H, Jacobs S, Hattingh S, Page C, Lochner A. Nitric oxide is higher in rat cardiac 

microvessel endothelial cells than ventricular cardiomyocytes in baseline and hypoxic 

conditions: a comparative study. FASEB J 2006; 20: 314-316. 

Strijdom H, Chamane N, Lochner A. Nitric oxide in the cardiovascular system: a simple 

molecule with complex actions. Cardiovasc J Afr 2009; 20: 303-310. 

Strijdom H, Lochner A. Cardiac endothelium: More than just a barrier! SA Heart 2009; 6: 

174-185. 

Stuehr D, Pou S, Rosen GM. Oxygen reduction by nitric oxide synthases. J Biol Chem 2001; 

276: 14533-14536. 

Stypmann J, Gläser K, Roth W, et al. Dilated cardiomyopathy in mice deficient for the 

lysosomal cysteine peptidase cathepsin L. Proc Natl Acad Sci U S A 2002; 99: 6234-6239. 

Stellenbosch University  https://scholar.sun.ac.za



296 | P a g e  
 

Sud N, Black SM. Endothelin-1 impairs nitric oxide signalling in endothelial cells through a 

PKCδ-dependent activation of STAT3 and decrease eNOS expression. DNA Cell Biol 2009; 28: 

543-553. 

Sun M, Chen M, Liu Y, et al. Cathepsin-L contributes to cardiac repair and remodelling post-

infarction. Cardiovasc Res 2011; 89: 374-383.  

Surapisitchat J, Jeon KI, Yan C, Beavo JA. Differential regulation of endothelial cell 

permeability by cGMP via phosphodiesterases 2 and 3. Circ Res 2007; 101: 811-818. 

Swiatkowska M, Szemraj J, Cierniewski CS. Induction of PAI-1 expression by tumor necrosis 

factor alpha in endothelial cells is mediated by its responsive element located in the 4G/5G 

site. FEBS J 2005; 272:5821-5831. 

Szabo C, Pacher P, Zsengeller, et al. Angiotensin II-mediated endothelial dysfunction: role of 

poly (ADP-ribose) polymerase activation. Mol Med 2004; 10: 1-6.  

Szasz T, Bomfim GF, Webb RC. The influence of perivascular adipose tissue on vascular 

homeostasis. Vascular Health and Risk Management 2013; 9: 105-116. 

Takahashi S, Mendelsohn ME. Calmodulin-dependent and –independent activation of 

endothelial nitric-oxide synthase by heat shock protein 90. J Biol Chem 2003; 278: 9339-

9344 (a). 

Takahashi S, Mendelsohn ME. Synergistic activation of endothelial nitric-oxide synthase 

(eNOS) by HSP90 and Akt. J Biol Chem 2003; 278: 30821-30827 (b). 

Teodoro T, Zhang L, Alexander T, et al. Oleanolic acid enhances insulin secretion in 

pancreatic β-cells. FEBS Lett 2008; 582: 1375-1380.  

Thorin E, Shatos MA, Shreeve SM, et al. Human vascular endothelium heterogeneity: A 

comparative study of cerebral and peripheral cultured vascular endothelial cells. Stroke 

1997; 28: 375-381. 

Thorin E, Shreeve SM. Heterogeneity of vascular endothelial cells in normal and disease 

states. Pharmacol Ther 1998; 78 (3): 155-166. 

Toda N, Okamura T. Obesity impairs vasodilatation and blood flow increases mediated by 

endothelial nitric oxide: an overview. J Clin Pharmacol 2013; 53: 1228-1239.  

Togashi H, Sakuma I, Yoshioka M, et al. A central nervous system action of nitric oxide in 

blood pressure regulation. J Pharmacol Exp Ther 1992; 262: 343-347. 

Tripal P, Bauer M, Naschberger E, et al. Unique features of different members of the human 

guanylate-binding protein family. J Interferon Cytokine Res 2007; 27: 44-52. 

Stellenbosch University  https://scholar.sun.ac.za



297 | P a g e  
 

Uchiyama T, Otani H, Okada T, et al. Nitric oxide induces caspase-dependent apoptosis and 

necrosis in neonatal rat cardiomyocytes. J Mol Cell Cardiol 2002; 34: 1049-1061.  

Usharani P, Fatima N, Muralidhar N. Effects of Phyllanthus emblica extract on endothelial 

dysfunction and biomarkers of oxidative stress in patients with type 2 diabetes mellitus: a 

randomized, double-blind, controlled study. Diabetes, Metabolic Syndrome and Obesity: 

Targets and Therapy 2013; 6: 275-284. 

Valerio A, Cardile A, Cozzi V, et al. TNF-α downregulates eNOS expression and mitochondrial 

biogenesis in fat and muscle of obese rodents. J clin Invest 2006; 116: 2791-2798.  

Van Der Loo B, Labugger R, Skepper JN, et al. Enhanced peroxynitrite formation is associated 

with vascular aging. J Exp Med 2000; 192: 1731-1743. 

VanTeefflen JW, Brands J, Stroes ES, et al. Endothelial glycocalyx: Sweet shield of blood 

vessels. Trends Cardiovasc Med 2007;17: 101-105. 

Venugopal SK, Devaraj S, Yuhuanna I, et al. Demonstration that C-reactive protein decreases 

eNOS expression and bioactivity in human aortic endothelial cells. Circulation 2002; 106: 

1439-1441. 

Versari D, Daghini E, Virdis A, et al. Endothelial dysfunction as a target for prevention of 

cardiovascular disease. Diabetes Care 2009; 32: S314-S321. 

Verstal DJ, Jeyaratnam JA. The Guanylate-Binding Proteins: emerging Insights into the 

Biochemical Properties and Functions of This Family of Large Interferon-Induced Guanosine 

Triphosphatase. J Interferon Cytokine Res 2011; 31: 89-97. 

Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB 

proteins: implications in cancer and inflammation. Trends Biochem Sci 2005; 30: 43-52. 

Vicent D, Ilany J, Kondo T, et al. The role of endothelial insulin signaling in the regulation of 

vascular tone and insulin resistance. J Clin Invest 2003; 111: 1373-1380.  

Vigne S, Palmer G, Lamacchia C, et al. IL-36R ligands are potent regulators of dendritic and T 

cells. Blood 2011; 118: 5813-5823. 

Virdis A, Schiffrin EL. Vascular inflammation: a role in vascular disease in hypertension? Curr 

Opin Nephrol Hypertens 2003; 12: 181-187. 

Vivanco F, Mas S, Darde VM, et al. Vascular proteomics. Proteomics Clin Appl 2007; 1: 1102-

1122. 

Wagner L, Hoey JG, Erdely A, et al. The nitric oxide pathway is amplified in venular vs 

arteriolar cultured rat mesenteric endothelial cells. Microvascular Research 2001; 62: 401-

409.  

Stellenbosch University  https://scholar.sun.ac.za



298 | P a g e  
 

Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ 

2003; 10: 45-65. 

Walker AE, Kaplon RE, Lucking SM, et al. Fenofibrate improves vascular endothelial function 

by reducing oxidative stress while increasing endothelial nitric oxide synthase in healthy 

normolipidemic older adults. Hypertension 2012; 60: 1517-1523. 

Wallez Y, Huber P. Endothelial adherens and tight junctions in vascular homeostasis, 

inflammation and homeostasis. Biochimica et Biophysica Acta 2008; 1778: 794-809.  

Wang JH, Redmond HP, Watson RWG, et al. Mechanisms involved in the induction of human 

endothelial cell necrosis. Cell Immunol 1996; 168: 91-99. 

Wang HU, Chen ZF, Anderson DJ. Molecular distinction and angiogenic interaction between 

embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 1998; 93: 

741-753. 

Wang L, Lim E-J, Toborek M, et al. The role of fatty acids and caveolin-1 in tumor necrosis 

factor α–induced endothelial cell activation. Metabolism Clinical and Exerimental 2008; 57: 

1328-1339.   

Wang Q, Pfeiffer GR, II Stevens T, Doerschuk CM. Lung microvascular and arterial 

endothelial cells differ in their responses to intercellular adhesion molecule-1 ligation. 

American Journal of Respiratory and Critical Care Medicine 2002; 166: 872-877. 

Warner BB, Burhans MS, Clark JC, Wispé JR. Tumor necrosis factor-alpha increases Mn-SOD 

expression: protection against oxidant injury. Am J Physiol 1991; 260: L296-L301. 

Weber C, Erl W, Weber K, et al. Increased adhesiveness of isolated monocytes to 

endothelium is prevented by vitamin C intake in smokers. Circulation 1996; 93: 1448-1492. 

Weil BR, Westby CM, Guilder GP, et al. Enhanced endothelin-1 system activity with 

overweight and obesity. Am J Physiol Heart Circ Physiol 2011; 301: H689-H695. 

Wesson De, Simoni J, Greeen DF. Reduced extracellular pH increases endothelin-1 secretion 

by human renal microvascular endothelial cells. J Clin Invest 1998; 101: 578–583. 

White AR, Ryoo S, Li D, et al. Knockdown of arginase I restores NO signaling in the 

vasculature of old rats. Hypertension 2006; 47: 245–251. 

Wong GH, Goeddell DV. Induction of manganous superoxide dismutase by tumor necrosis 

factor: possible protective mechanism. Science 1988; 242: 941-944.  

Wooten MW, Geetha T, Seibenhener ML, et al. The p62 Scaffold Regulates Nerve Growth 

Factor-induced NF-kB Activation by Influencing TRAF6 Polyubiquitination. J Biol Chem 2005; 

280: 35625-35629.  

Stellenbosch University  https://scholar.sun.ac.za



299 | P a g e  
 

Xia Z, Luo T, Liu H, et al. L-Arginine enhances nitrative stress and exacerbates tumor necrosis 

factor-a toxicity to human endothelial cells in culture: Prevention by propofol. J Cardiovasc 

Pharmacol 2010; 55: 358–367. 

Xiong Y, Yepari G, Forbitech M, et al. ARG2 impairs endothelial autophagy through 

regulation MTOR and PRKAA / AMPK signalling in advanced atherosclerosis. Autophagy 

2014; 10: 2223-2238.  

Xu B, Chibber R, Ruggerio D, et al. Impairment of vascular endothelial nitric oxide synthase 

activity by advanced glycation end products. FASEB J 2003; 17: 1289-1291. 

Xu Y-F, Wan X-L, Xu Y, et al. Reported oral administration of oleanolic acid produces 

cholestatic liver injury in mice. Molecules 2013; 18: 3060-3071. 

Yagamuchi Y, Haginaka J, Morimoto S, et al. Facilitated nitration and oxidation of LDL in 

cigarette smokers. Eur J Invest 2005; 35: 186-193. 

Yamamoto M, Okuyama M, Ma JS, et al. A cluster of interferon-γ-inducible p65 GTPases 

plays a critical role in host defence against Toxoplasma gondii. Immunity 2012; 37: 302-313.  

Yamaoka J, Kabashima K, Kawanishi M, et al. Cytotoxicity of IFN-γ and TNF-α for vascular 

endothelial cells is mediated by nitric oxide. Biochem Biophys Res Commun 2002; 291: 780-

786.  

Yan J, Tie G, Messina LM. Tetrahydrobiopterin, l-Arginine and vitamin C act synergistically to 

decrease oxidative stress, increase nitric oxide and improve blood flow after induction of 

hindlimb ischemia in the rat. Mol Med 2012; 18: 676-684.  

Yang LL, Gros R, Kabir MG, et al. Conditional cardiac overexpression of endothelin-1 induces 

inflammation and dilated cardiomyopathy in mice. Circulation 2004; 109: 255–261. 

Yang R-L, Shi Y-H, Hao G, et al. Increasing oxidative stress in human: Relation between 

malondialdehyde and atherogenic index. J Clin Biochem Nutr 2008; 43: 154-158. 

Yang Y-M, Huang A, Kaley G, Sun D. eNOS uncoupling and endothelial dysfunction in aged 

vessels. Am J Physiol 2009; 297: H1829-H1836. 

Yokoyama M. Oxidant stress and atherosclerosis. Curr Opin Pharmacol 2004; 4: 110–115. 

Yoshizumi M, Perrella MA, Burnett Jr JC, Lee ME. Tumor necrosis factor downregulates an 

endothelial nitric oxide synthase mRNA by shortening its half-life. Circ Res 1993; 73: 205-

209. 

Youle FJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science 2012; 337: 

1062-1065. 

Stellenbosch University  https://scholar.sun.ac.za



300 | P a g e  
 

Zhang C, Xu X, Potter BJ, et al. TNF-α contributes to ED in ischemia / reperfusion injury. 

Arterioscler Thromb Vasc Biol 2006; 26: 475-480. 

Zhang F, Zhang Y, Li PL. Dependence of cathepsin L-induced coronary endothelial 

dysfunction upon activation of NAD(P)H oxidase. Microvasc Res. 2009; 78: 45-50. 

Zhang H, Park Y, Wu J, et al. Role of TNF-α in vascular dysfunction. Clin Sci 2009; 116: 219-

230. 

Zhang J, DeFelice AF, Hanig JP, Colastky T. Biomarkers of endothelial cell activation serve as 

potential surrogate markers for drug-induced vascular injury. Toxicol Pathol 2010; 38: 856-

871. 

Zhou L, Wang H-F, Ren H-G, et al. Bcl-2 dependent upregulation of autophagy by 

sequestosome 1 / p62 in vitro. Acta Pharmacologica Sinica 2013; 34: 651-656.  

Zhou M, Gu L, Zhu N, et al. Transfection of a dominant-negative mutant NF-kB inhibitor 

(IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: 

interaction of IkBm and p53. Oncogene 2003; 22: 8173-8144.  

Ziegler ME, Souda P, Jin Y-P, et al. Characterization of the endothelial cell cytoskeleton 

following HLA Class I ligation. PLoS ONE 2012; 7: e29472. doi:101371/journal.pone.0029472.   

Zivkovic V, Djuric D, Turjacanin- Pantelic D, et al. The effects of cyclooxygenase and nitric 

oxide synthase inhibition on cardiodynamic parameters and coronary flow in isolated rat 

hearts. Exp Clin Cardiol 2013; 18: e102-e110. 

Zong W-X, Eldelstein LC, Chen C, et al. The prosurvival Bcl-2 homolog Bfl-1/A1 is a direct 

transcriptional target of NF-kB that blocks TNF-α-induced apoptosis. Genes Dev 1999; 13: 

382-387.   

Zotti T, Scudiero I, settembre P, et al. TRAF-6-mediated ubiquitination of Nemo requires 

P62/ Sequestosome. Molecular Immunology 2014; 58: 27-31.  

Zou M-H, Shi C, Cohen RA. Oxidation of the zinc-thiolate complex and uncoupling of 

endothelial nitric oxide synthase by peroxynitrite. J Clin Invest 2002; 109: 817-826. 

 

Stellenbosch University  https://scholar.sun.ac.za




