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Abstract

Time domain ptychography

D. Spangenberg

Department of Physics,
Stellenbosch University,

Private Bag X1, Matieland 7602, South Africa.

Dissertation: PhD

January 2015

In this work we investigate a new method to measure the electric field of ultrafast laser
pulses by extending a known measurement technique, ptychography, in the spatial do-
main to the time domain which we call time domain ptychography. The technique re-
quires the measurement of intensity spectra at different time delays of an unknown tem-
poral object and a known probe pulse. We show for the first time by measurement and
calculation that this technique can be applied with excellent results to recover both the
amplitude and phase of a temporal object. This technique has several advantages, such
as fast convergence, the resolution is limited by the usable measured spectral bandwidth
and the recovered phase has no sign ambiguity. We then extend the technique to pulse
characterization where the probe is derived form the temporal object by filtering meaning
the probe pulse is also unknown, but the spectrum of the probe pulse must be the same
as the spectrum of the temporal object before filtering. We modify the reconstruction
algorithm, now called ptychographic iterative reconstruction algorithm for time domain
pulses (PIRANA), in order to also reconstruct the probe and we show for the first time
that temporal objects, a.k.a laser pulses, can be reconstructed with this new modality.
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Uittreksel

Tyd gebieds tigografie

(“Time domain ptychography”)

D. Spangenberg

Departement Fisika,
Stellenbosch Universiteit,

Privaatsak X1, Matieland 7602, Suid Afrika.

Proefskrif: PhD

Januarie 2015

In hierdie werk het ons ’n nuwe metode ondersoek om die elektriese veld van ’n
ultravinnige laser puls te meet deur ’n bekende meettegniek wat gebruik word in die
ruimtelike gebied, tigografie, aan te pas vir gebruik in die tyd gebied genaamd tyd gebied
tigografie. Die tegniek vereis die meting van ’n reeks intensiteit spektra by verskillende
tyd intervalle van ’n onbekende ‘tyd voorwerp’ en ’n bekende monster puls. Ons wys vir
die eerste keer deur meting en numeriese berekening dat hierdie tegniek toegepas kan
word met uitstekende resultate, om die amplitude en fase van ’n ‘tyd voorwerp’ te meet.
Hierdie tegniek het verskeie voordele, die iteratiewe proses is vinnig, die resolusie van
die tegniek word bepaal deur die spektrale bandwydte gemeet en die fase van die ‘tyd
voorwerp’ word met die korrekte teken gerekonstrueer. Ons het hierdie tegniek uitgebrei
na puls karakterisering waar die monster pulse afgelei word, deur ’n bekende filter te
gebruik, van die onbekende ‘tyd voorwerp’ nl. die inset puls. Ons het die iteratiewe
algoritme wat die ‘tyd voorwerp’ rekonstrueer aangepas om ook die monster puls te vind
en ons wys dat ons hierdie metode suksesvol kan gebruik om laser pulse te karakteriseer.
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1

Introduction

As stated by Bradley and New [1] Developments in basic physics are almost always related to
advances in measurement techniques. In this work a known phase recovery technique for
high frequency electromagnetic radiation, optical and shorter wavelengths, in the spatial
domain is extended to the time domain for the first time and demonstrated at optical
wavelengths with excellent results. The technique is further extended to the field of op-
tical pulse characterization again with excellent results. All experiments were done on
a new pulse shaping device with the required versatility for the purpose. Parts of this
dissertation have been submitted for publication or have been published in [2–4].

Direct measurement of an optical electric field is not possible as no detector is fast
enough, instead the resultant intensity of the radiation is recorded with the drawback that
all phase information is lost. The key challenge is to reconstruct the phase of the measured
wave and several solutions to this so-called phase problem have been demonstrated [5–14].

One of the most robust spatial techniques to recover the lost phase information is pty-
chography. Ptychography is essentially a lens-less imaging method. The concept of pty-
chography is related to the solution of the phase problem in crystallography as proposed
by Hoppe [15]. It was first demonstrated at optical wavelengths [16], but its scientific
impact is expected to be largest at X-ray wavelengths, especially after the commissioning
of high brightness coherent X-ray sources. So far, X-ray ptychography has been success-
fully applied in reconstructing real space objects of up to three spatial dimensions and a
spatial resolution down to 16 nm has been demonstrated [17]. In ptychography the real
space image of an object is reconstructed iteratively from a series of far-field diffraction
patterns. Each pattern is recorded after either moving the object or the coherent illumina-
tion beam in a plane perpendicular to the propagation direction of the illumination beam.
The transverse shift of the illumination beam is smaller than its spatial support, so that
subsequent patterns result from different, but overlapping regions of the real space object.
This ensures that the phase can be extracted. Moreover, the redundant information from
overlapping regions helps to improve the convergence of the iterative algorithms. The
spatial resolution is limited by the positioning accuracy, the stability of the entire set-up,
and by the angular range of scattered wave-vectors that can be recorded with a sufficiently
high signal-to-noise ratio.

In this dissertation, as mentioned earlier, the known spatial phase and amplitude mea-
surement technique known as ptychography is extended to the temporal domain for the
first time. As in the spatial analogue, the exit field is formally described by the prod-
uct of the signal in time, more aptly referred to as the temporal ‘object’, and the probe
pulse. Time domain ptychography then yields information on the temporal ‘object’ on

1
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CHAPTER 1. INTRODUCTION 2

time scales much shorter than the duration of the probe pulse, a known limitation of stan-
dard pump probe measurement schemes. Working in this modality requires operation in
one-dimensional space, namely time/frequency. In general, the one-dimensional phase
retrieval problem is ambiguous and different solutions may result in the same far-field
intensity measurement. In the framework of ptychography, however, the uniqueness of
the solution in one and two dimensions is warranted as long as the illumination pattern
is known [18].

In order to evaluate the feasibility of time domain ptychography and the subsequent
pulse characterization technique based on time domain ptychography a new pulse shap-
ing set-up capable of shaping two or more beams independently is implemented based
on the device by Hornung et al. [19]. The pulse shaping set-up was developed to satisfy
the need to temporally shape each of two or more identical beams individually. This
control allows one to do a wide variety of measurements with the advantage that one
can compare measurements with theoretical calculation since the input pulse shapes can
be programmed at will and thus are known. In the experiments the generated temporal
pulses are multiplied, through exploitation of the properties of a non-linear material, and
the resultant intensity spectrum recorded with a spectrometer. Emphasis is placed on the
fact that an intensity spectrum contains no phase information and therefore the task is to
recover the spectral phase.

As a first step we demonstrate that the ptychographic scheme is able to reconstruct
an unknown temporal ‘object’ uniform in space but varying with time by recovery of the
spectral phase. The temporal ‘object’ is illuminated with a sequence of partially overlap-
ping, time-delayed coherent probe pulses and for each time delay a far-field diffraction
pattern, i.e. wavelength resolved intensity spectrum, is recorded. With the pulse shaping
set-up one beam is used to generate an arbitrary temporal ‘object’ and the other beam
a time delayed probe pulse which is multiplied in a beta-bariumborate (BBO) crystal,
through the process of sum frequency generation, to produce the output as an intensity
spectrogram which is recorded with a spectrometer. The process is repeated for all time
delays and the resultant output is recorded as an intensity spectrogram, containing an
intensity spectrum for each time delay, and used as the input to the iterative algorithm
to reconstruct the temporal ‘object’ by recovery of the phase information. Since the tem-
poral ‘object’ is realised by a known transfer function the reconstruction can readily be
compared to theoretical calculation. The resulting measurements and comparisons show
excellent agreement clearly demonstrating that time domain ptychography can be used
to recover the phase of temporal ‘objects’ if the condition that the measured spectra is the
result of a product of the temporal ‘object’ and a known probe pulse is met.

Pulse characterization is a natural extension of time domain ptychography as the pulse
itself could be viewed as the temporal ‘object’. A lot of work has been done in the field of
pulse characterization. Since the discovery of mode-locking and ultrashort laser pulses,
characterization of these pulses has been an imminent task as no known detector was,
and still is, fast enough to measure such ultrashort pulses directly. In 1967 Weber [20]
showed that an autocorrelation scheme together with a nonlinear process can be employed
to estimate the pulse duration, such arrangement is now classified as a second order
background-free intensity autocorrelation measurement. About 20 years later, Diels et al.
[21] introduced the second order background-free interferometric auto-correlation method
with the aim to not only estimate the pulse duration but to fully characterize the electric
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CHAPTER 1. INTRODUCTION 3

field of ultrashort laser pulses, e.g. its spectral amplitude and phase. In the subsequent
years several further ingenious schemes have been proposed and demonstrated, such as
FROG [22, 23], STRUT [24], SPIDER [25], PICASO [26], MIIPS [27], SEA TADPOLE [28],
shaper assisted FROG/STRUT [29] and many variations thereof. Mostly these modalities
were first demonstrated at optical wavelengths but were later transferred to other spectral
regions ranging from the MIR to the X-ray regime.

In order to use time domain ptychography to do pulse characterization the additional
constraint that the phase of the probe pulse is also unknown has to be resolved. The
phase of the probe is unknown since the probe is generated from the pulse itself in a split
beam geometry by application of a known transfer function to one arm of the system. To
recover the phase of the probe, the reconstruction algorithm starts with an initial guess of
a flat phase which is then updated with the recovered phase every so often. During our
measurements we mimic a split beam geometry with the transfer function to generate the
probe implemented in one arm. This is done by applying the same transfer function to
both beams before additionally applying the transfer function specific to the generation
of the probe pulse. Again an intensity spectrogram is recorded in the same manner as for
normal time domain ptychography above for the chosen temporal pulse shape and the re-
sultant probe pulse. The resultant spectrogram is fed into the time domain ptychography
pulse reconstruction algorithm. The reconstructions of time domain ptychographic pulse
reconstruction is compared to a well known pulse characterization technique namely sec-
ond harmonic generation frequency resolved optical gating (SHG-FROG) as the optical
set-up for these are very similar. The versatility of our pulse shaper allowed us to use
it to do SHG-FROG measurements by recording a spectrogram of an autocorrelation of
the desired temporal pulse shape for analysis. Excellent agreement of recovered spec-
tral phase was found while time domain ptychographic pulse reconstruction showed no
sign ambiguity which is a known issue in SHG-FROG due to the symmetric nature of the
autocorrelation used as an input to the SHG-FROG reconstruction algorithm.

The rest of this dissertation is organised as follows:

• In Chapter 2 the theoretical foundation which underlies temporal pulse shaping as
well as ptychography is treated.

• In Chapter 3 an in-depth discussion of how the phase only 2D SLM can be utilised
to apply complex phase and amplitude transfer functions is described.

• In Chapter 4 the double beam independent temporal pulse shaper used in all the
subsequent experiments is treated.

• In Chapter 5 the proof of principle experiment showing that time domain ptychog-
raphy is possible is treated.

• In Chapter 6 we show how time domain ptychography can be extended to do pulse
characterization.

• in Chapter 7 we conclude and discuss future work.
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2

Theory

In this chapter we look at the relevant theory behind the experimental work done which
lays the foundation for the methods used to shape light both in space and time after which
the theory relevant to the temporal analogue of ptychography is discussed.

Understanding of the spatial and temporal behaviour of light is necessary in order to
understand how one can use optics in specific geometries in order to modify this high
angular frequency (for visible light in the order of 2.7 to 4.8 rad/fs) electromagnetic radi-
ation as no electronic devices are fast enough to do so accurately. The wavelike behaviour
of light is explained and how, after some reasonable approximations are made, through
Fourier optics one can calculate the spatial field after propagating through optical sys-
tems. The shaping of light is then extended to the temporal domain by explanation of
how exploitation of the dispersive properties of gratings can be utilised to do so. Then the
second order polarization of materials is discussed as it is critical to the measurement of
our signals. Finally extending ptychography to the temporal domain is explained along
with the measurement and reconstruction procedures.

2.1 Light as electromagnetic radiation

Here the treatment of light within the framework of Fourier optics is explained by start-
ing with a general description of light as a waves of electromagnetic radiation with the
coupling of the electric and magnetic fields as described by Maxwell’s equations. This
is followed by a description of the polarization and propagation of light through trans-
parent media. Finally the specific case of a lens within the Fourier optical framework is
underlined since it plays an important role in temporal pulse shaping.

Light behaves like a wave where both the electric E and the magnetic H fields can be
expressed in the form of the time independent wave equation, known as the Helmholtz
equation, as (

∇2 + k2
)

E = 0 (2.1.1)(
∇2 + k2

)
H = 0 (2.1.2)

with the wavenumber k = 2π/λ if the medium of propagation is simple, i.e. linear, ho-
mogeneous and isotropic [30–32]. The transverse nature of light waves mean that the
electric and magnetic fields oscillates orthogonally to the direction of their propagation.
This oscillation of the electric and magnetic fields can then be decomposed into two per-
pendicular components which can have different phase with respect to each other. This

4
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CHAPTER 2. THEORY 5

difference in phase between the perpendicular transverse components of the electric and
magnetic field is what gives light its polarization property. Also the propagation velocity
of a specific wavelength of light is dependent on the medium through which it propa-
gates. In vacuum the propagation velocity is the speed of light c. The refractive index n is
used to describe the wavelength dependent ratio of propagation velocity in a medium vm

to vacuum c as n = c/vm. The refractive index is a material property and as such some
materials have a refractive index which is dependent on the polarization of incident light.
This is mainly related to the ordering of the molecular structure in the material, i.e. the
material has a uni-axial anisotropic molecular arrangement. Such a material is said to be
birefringent [33]. A ray analogy is used to describe the change in direction of a wavefront
crossing a refractive index boundary by Snell’s law,

n1 sin θ1 = n2 sin θ2 (2.1.3)

where a ray is taken as a line perpendicular to the wavefront, n1 and n2 is the refractive
index before and after the refractive boundary respectively and θ1 and θ2 is the angle of
the ray and a line normal to the surface where the ray is incident at the refractive index
boundary. Lastly not all light incident at the refractive boundary propagates further in
the medium, some is reflected at an opposite angle with the normal to the surface. Often
in practice optics are coated to minimize reflections. The amount of light that enters and
that is reflected by a medium can be calculated with the Fresnel equations,

r⊥ = −ni cos θi − nt cos θt

ni cos θi + nt cos θt
(2.1.4)

r‖ = +
nt cos θi − ni cos θt

ni cos θt + nt cos θi
(2.1.5)

t⊥ = +
2ni cos θi

ni cos θi + nt cos θt
(2.1.6)

t‖ = +
2ni cos θi

ni cos θt + nt cos θi
(2.1.7)

where n again is the refractive index, r and t refers to the reflected and transmitted light
respectively, the subscripts i and t refers the the incident and transmitted light respectively,
the subscripts ⊥ and ‖ refers to the perpendicular and parallel components of the electric
field respectively and θ the ray angles with respect to the surface normal. It can be
seen that if layers are added in order to minimize the difference between θi and θt the
reflected light will be minimized. This in combination with constructive and destructive
interference from the different layers is in principle how anti-reflection coatings work. For
more details see Hecht [33].

The theory thus far allows one to break a known wavefront into infinitesimal pieces
and propagate each piece through vacuum and transparent materials with curved surfaces
taking the coupling of the E and the H fields into account which is a rather involved and
complicated calculation. Fortunately work done by Silver [34] shows that under certain
conditions one can view the E field as a scalar component thereby ignoring the coupling
imposed by Maxwell’s equations. The conditions under which this simplification is valid,
referred to as the scalar conditions, are as follows: (1) the diffracting aperture is large with
respect to the wavelength of the incident light and (2) the diffracted fields are not observed
close to the aperture.
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CHAPTER 2. THEORY 6

The body of Fourier optics arises by making a number of assumptions to solve the
complicated integrations that one encounters while solving a geometry with the propa-
gation theory of light under the scalar conditions, most prominent of which is the small
angle approximation. Here only relevant results from the theory are mentioned. The
reader is referred to Goodman [30] for a thorough treatment of the subject.

In the Fourier optics regime the Fourier transform can be applied to find accurate solu-
tions applicable to a wide variety of optical problems hence the name Fourier optics. Two
approaches exist in this regime to solving problems with a standard input output geome-
try illustrated in Fig. 2.1 (a) for no obstruction and (b) when an obstruction is present. The

Figure 2.1: (a) Optical geometry without an optical element and (b) with an optical element.

two approaches are the Huygens-Fresnel principle and the angular spectrum method. The
Huygens-Fresnel principle arose from the description of wavefront propagation by Huy-
gens in 1678 by stating that the next wavefront would consist of the sum of wavelets with
like radius each originating at equidistant points on the previous wavefront, Fresnel then
amended this theory by applying the wave nature of light allowing for interference. Us-
ing the Huygens-Fresnel principle entails integrating the input field for each point on the
output field while adapting the phase and intensity according to the distance between the
current point and all points at the input plane. The angular spectrum method arises from
linear time invariant theory and entail using the Fourier transform to calculate the angular
spectrum of an input field which is then multiplied with the relevant transfer functions
in order to account for the effects of propagation and optical elements after which the
result is inverse Fourier transformed to find the field at the desired output plane. In the
derived theory, when the optical system includes lenses, the assumption is made that the
field propagates at small angles which allows for a number of approximations to be valid,
further simplifying the expressions used in Fourier optical theory. Although this seems
like a very limiting condition when lenses are concerned, as the angles can easily be larger
than strictly required by the small angle approximation, one has to realise that the small
angle can be considered with respect to the natural wavefront shape of the lens which
greatly relaxes the condition for light originating at the focal plane of said lens.

An interesting effect occurs in optical systems in the far field i.e. for very big z
(z > 2D2/λ where D is the aperture width) the output field is a spatially scaled Fourier
transform of the input field. This is also true when working with lenses where the input
and output fields are spaced a focal distance from the lens in a so called 2f-geometry. In
this case we observe at the output field a Fourier transform of the input field scaled by the
focal distance of the lens. This is important in the context of this thesis as we extensively
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CHAPTER 2. THEORY 7

make use of this property of lenses in our optical design. The relation of the input and
output fields in such a geometry is given by the optical Fourier transform

Uo(xo, yo) =
A

iλ f

¨
Ui(xi, yi)e

−i 2π
λ f (xixo+yiyo)dxidyi (2.1.8)

where f is the focal length of a lens used in a simple geometry such as illustrated in Fig.
2.1 (b) with the optical element replaced by a lens and the input and the output planes
being spaced one focal distance from said lens.

Though not explicitly stated, the electric field consists of perpendicular polarization
components which can be decomposed into a chosen perpendicular axis system. The
electric field at the output of a system must be calculated along both polarization axes for
the entire input field. In the system we implemented, the two perpendicular polarization
components were in phase resulting in linear polarization simplifying calculation to only
this axis.

The treatment thus far is mainly concerned with the spatial propagation properties of
light and in the context of a Gaussian laser beam can be easily used to calculate the spatial
propagation of light.

The temporal evolution of light can be considered separately, using standard Fourier
theory as it applies to electric signals, where spatial overlap of the spectral components
exist in the framework, as above, of isotropic, linear, homogeneous materials. Of course
this implies that in order to calculate the temporal evolution of the electric field at some
point, the spatial propagation calculations have to be applied to all spectral components,
the sum of which is then used to calculate the resultant electric field in time at this posi-
tion. The procedure has to be repeated for all positions. This sounds very involved but in
practice an effort is made to ensure collinear propagation of spectral components as far as
possible and when not possible using optics to ensure a volume of spatial overlap of the
spectral components where the temporal behaviour of the light can be easily calculated
without the need to take spatial calculations into consideration.

2.2 The grating as a spectral dispersion element

Temporal pulse shaping requires one to somehow gain access to the spectral content which
make up ultrashort optical pulses. Here we explain how gratings exploit wavelength
dependent diffraction by making use of a periodic surface structure, the result being that
each spectral component will be diffracted at different angles by the grating. The same
can be achieved using prisms but here the focus is specifically on gratings as these are the
elements applied in the experimental work done.

A more concise method to find the diffraction angles of different wavelengths of light
incident on a grating is described next. Gratings are optical elements with very fine peri-
odic structures, often of the same order of magnitude as the applied wavelength of light,
therefore the coupling of the E and H fields are of consequence. Due to the functional
application of a grating, which is to disperse light with the main interest being the re-
sultant direction of the dispersed spectral components, the treatment can be simplified to
primarily determine the direction of constructive interference of the spectral components.
The coupling of the E and H fields affects only the amplitude depending on the geometry
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CHAPTER 2. THEORY 8

of the grating and can be measured if needed or calculated using finite element methods,
only in special cases can analytical solutions be found.

Let us consider a grating as a spectrally dispersive optical element. As mentioned, a
grating is a device with a periodic structure with a ruling spacing in the order of or larger
than optical wavelengths. The periodic structure results in diffraction. The angles of the
diffraction orders can be determined by deriving a relation for constructive interference
for any diffraction order mλ of the incident light,

mλ = d(sin α± sin β) (2.2.1)

from a simple geometry as illustrated in Fig. 2.2 by considering the total path length dif-
ference between equidistant points taken on consecutive rulings on the grating structure.
It can be seen that a grating will disperse the spectral components giving each component

Figure 2.2: Grating geometry showing the difference in path length for light originating at equidis-
tant points.

a unique propagation angle.
Again, if the dimensions of a grating are large in comparison to the wavelength such

that the the scalar conditions are met and the angular relation between the incident and
exit fields are small then standard Fourier optics theory could accurately be used to deter-
mine the properties of the grating. This is often the case when programmable wavefront
shaping devices such as 2D spatial light modulators are used to implement gratings. In
Chapter 3 a detailed analysis of a blazed grating when implemented on a 2D-SLM is
treated to show how one can utilise the blazed grating in order to modify the amplitude
of light diffracted into the ±1 order.

The wavelength dependent angular dispersion as described by Eq. 2.2.1 translates to
adding a linear spatial phase to the spectral components of light after incidence on a grat-
ing. If one considers the one dimensional case of a spectral component with wavelength λ

as part of a beam B(x, λ) incident on a grating then one can write a spatial expression for
the spectral content with newly acquired propagation angles β(λ) which can be translated
to a spatial phase gradient tan(β(λ)) after incidence on the grating as

Bλ(x) = B(x, λ)ei tan(β(λ))x. (2.2.2)

From Eq. 2.2.2 one can see that the spectral content will propagate in different directions
allowing access to the spectrum if allowed to propagate a distance large enough such
that the spectral components spatially separate. Of course modification of the spectral
components in such a way would be impractical as the dimensions of such an optical set-
up is of impractical scale. In Section 2.3 we show how this property is properly utilised to
access the spectral content of an optical pulse in combination with lenses.
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2.3 Temporal pulse shaping

In this work temporal pulse shaping is a critical ingredient as all experiments done de-
pends on the ability to take the pulses delivered by the laser source and shape them in
the temporal domain for the specific purposes required by these experiments.

Ultra-short laser pulses are shaped using optical methods since electronic systems are
not fast enough to operate in the picosecond and femtosecond regimes as mentioned in
the introduction. As a result passive optical systems were developed, as early as 1973
[35], which utilise the dispersive properties of optical elements such as gratings or prisms
to gain access to the spectral content of optical pulses. Since then many applications
have been successfully developed using static masks at first [36, 37] later replaced by
programmable devices such as the early spatial light modulators (SLM) [38, 39] leading
up to modern day applications [40–42]. These spatial light modulators are capable of
modifying the phase and in some cases also the amplitude of the incident light, treated
in more detail in section 2.4. Here we focus on SLM based temporal pulse shaping, for a
detailed review of temporal pulse shaping devices and methods refer to Weiner [40, 41].

The modern day SLM is used in conjunction with a 4f-geometry which is an imaging
geometry with two lenses in a back-to-back 2f-geometry as illustrated in Fig. 2.3. The 4f-
geometry results in one-to-one imaging meaning the output is an exact, or as close to as is
possible, replica of the input. The first lens (L1), which is in a 2f-geometry with the input

Figure 2.3: One to one imaging with a 4f-geometry showing two back to back 2f-geometries about
(L1) and (L2) with the Fourier plane in the middle.

to the system and the Fourier plane, make up the first half of the symmetric 4f-geometry
and its function is to perform an optical Fourier transform on the light at the input of
the system according to Eq. 2.1.8 such that the angular spectrum of the light at the input
plane is imaged at the Fourier plane. The second lens (L2) which is again in a 2f-geometry
performs another optical Fourier transform this time on the electric field in the Fourier
plane with the result that the electric field at the output has a spatial phase with reversed
sign to what one would expect from an inverse Fourier transform. In practice this means
the output can be considered as an inverse Fourier transform of the electric field in the
spectral plane which is simply flipped 180◦ about the optical axis.

Access to the spectral content of the input laser pulse is gained by utilising the spectral
dispersion from a grating. If a grating is placed in a 2f-geometry with a lens it can be
shown using Fourier optics, when considering only one dimension, that for a spectral
component represented by the simple case of a Gaussian beam profile Bλ(x) with width
σ propagating away from the grating at a wavelength dependent angle βλ which can be
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translated to a spatial phase gradient tan(βλ) described by

Bλ(x) = exp
(
−x2

2σ2

)
ei tan βλx, (2.3.1)

that this spectral component will undergo an optical Fourier transform by the lens accord-
ing to Eq. 2.1.8 which will result in a field at the Fourier plane Uλ(X) given by

Uλ(X) =
A

iλ f
σ
√

2π exp
(
−σ2γ2[X− tan βλ]

2

2

)
(2.3.2)

with γ = 2π/λ f . From the result in Eq. 2.3.2, with reference to Fig. 2.3, it can be
seen that each spectral component propagating at a different angle will be focussed to a
different position at the Fourier plane of the first 2f-geometry about (L1). It should also
be noted that the size of the output beam is inversely proportional to the size of the input
beam while proportional to the wavelength and the focal length of the lens, as is expected
from a lens. Thus the spatial optical Fourier transform properties of a lens are utilised in
conjunction with a grating in order to gain access to the spectral content which makes up
the temporal pulse.

The addition of a grating at the input and output of a 4f-geometry results in what is
known as a 4f-shaper since this optical set-up allows for the modification of the spectral
content of the laser pulse at the Fourier plane which in the specific case of the 4f-shaper is
referred to as the spectral plane, illustrated in Fig. 2.4. The optical axis of the 4f-shaper is
aligned with the center of the chosen dispersive diffraction order from the grating and all
other orders are ignored. The relationship between the wavelength and the resultant an-
gles of spectral components due to the grating are described in Section 2.2 and determined
by Eq. 2.2.1. The resultant spectral components in the spectral plane of the 4f-shaper is,
in the case of a spherical lens a collection of small points or in the case of a cylindrical
lens a collection of thin lines. The density of the spectral components which makes up
an optical pulse is generally very high such that the spot size of the lens is too big to re-
solve the individual spectral components. Instead the spectrum is seen as smeared out in
the spectral plane. The spectral resolving power of the system is determined by the clos-
est resolvable spectral components as determined by the overlap of their focal spots at the
spectral plane after a Fourier optical transform, by the lens, of the product of the illumina-
tion beam with the grating itself. In a pulse shaper the spectral resolution determines the
temporal window within which temporal pulse shaping can be done (calculated for our
set-up in Appendix A.1). Light from the spectral plane is inverse Fourier transformed at
the output plane by the second lens and a flipped output grating which results in collinear
recombination of the spectral content, if the spatial effects of the transfer function applied
in the spectral plane is ignored.

The description of the operation of the 4f-shaper thus far assumed that application of
spectral transfer functions in the spectral plane does not alter the propagation direction
of the light. In practice the spatial propagation direction of the light incident on some
position at the spectral plane is modified according the gradient of the phase applied at
the spectral position. This is known as spatio-temporal coupling. In Fig. 2.5 a simple ex-
ample of an applied linear phase gradient is illustrated. Theory to predict spatio-temporal
coupling exists [43] and methods that allow for compensation along the entire length of
the beam path exist with moderate degrees of success [44, 45]. In all cases where a small
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Figure 2.4: The 4f-shaper showing the placement of the gratings which disperses the spectral content
indicated by three example components and how they are focussed at the spectral plane.

volume of the sample is to be examined, it is good enough to only have spatial overlap
of the spectral components at a single position, an interaction volume, in the beam. This
overlap region is achieved by a lens in a 2f-geometry which collects the parallel light
from the grating at the output of the 4f-shaper and focuses it through a common spot
such that all the spectral components overlap spatially in the focus of the lens. Thus a

Figure 2.5: A 4f-shaper with a glass wedge at the spectral plane, which mimics a linear phase
gradient, to demonstrate spatio-temporal coupling.

method to temporally shape light despite spatio-temporal coupling is given if only valid
in a interaction volume at the focus of a lens in a 2f-geometry after the 4f-shaper [46].

Standard Fourier relations which applies to the temporal evolution of an electric field
can be used to describe the resultant modification to temporal pulses when complex val-
ued spectral transfer functions are applied in the spectral plane of a 4f-shaper, namely the
Fourier transform and the inverse Fourier transform given by

f (t) =
1

2π

∞̂

−∞

F(ω)eiωtdω (2.3.3)

F(ω) =

∞̂

−∞

f (t)e−iωtdt. (2.3.4)

These relations give great versatility in modification of the temporal pulses with well
known relationships between the spectral and temporal plane which one can utilise to
temporally shape pulses. Application of a transfer function to a pulse implies multipli-
cation of the spectrum of the pulse with the spectral transfer function and is realised in
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practice simply by illumination of a device or phase mask with the spectrum of the pulse
by inserting the device or phase mask in a 4f-shaper. Programmable devices which can
modify the phase and amplitude of the incident spectral components exist. These devices
are discussed in the next section.

2.4 The spatial light modulator

A device capable of modifying the phase and amplitude of incident light is required
in order to apply spectral transfer functions by placement of the device in the spectral
plane of a 4f-shaper. The spatial light modulator (SLM) is such a device. Here we give a
description of the operation of these devices.

The functioning of a SLM is based on the utilisation of nematic liquid crystals. These
nematic liquid crystals are birefringent consisting of grain like particles as illustrated in
Fig. 2.6 (a). When a voltage is applied across the contact layer the crystals will try to align
themselves to the electric field as illustrated in Fig. 2.6 (b), according to the strength of
the applied electric field along an axis referred to as the extraordinary axis. The refractive
index along the extraordinary axis seen by the light with polarization along this axis
is modified according to the degree of tilt of the grain like particles. In this way the
optical path length of light propagating along the extraordinary axis of the nematic liquid
crystal pixel cell can be adjusted by changing the voltage across the pixel. The phase
difference along the extraordinary axis resulting from the application of a voltage across
the contacts can be measured and a typical response curve of voltage versus phase shift
is shown in Fig. 2.6 (c). A SLM consists of a 1D or a 2D array of individually controllable
nematic liquid crystal pixels depending on the device. The discrete phase control of the
incident light allows one to apply discreet wave-front functions. It is clear from the above

Figure 2.6: Illustration of a section view of a LC crystal. In (a) the no voltage is applied to the
surface contacts, in (b) the effect of applying a voltage to the contacts is shown and in (c) a typical
phase versus voltage curve is shown. (Image from Weiner [41])

description that SLMs can only modify the phase of the incident light. Amplitude shaping
of the incident light is realised in different ways by 1D and 2D models of SLMs. In the
1D SLM, two back to back 1D arrays of nematic liquid crystals are used to modify the
incoming light which has linear polarization at 45◦ with respect to the extraordinary axis
of the nematic liquid crystal cells. Each of the back to back arrays are therefore capable
of varying the degree of elliptical polarization which in combination with a polariser to
select a specific polarisation at the output enables amplitude modification of the incident
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light. In this work we used only 2D SLMs and as such the reader is referred to Weiner
[40, 41] for an in depth discussion of the operation of a 1D SLM. Amplitude shaping with
a 2D phase only SLM, within the context of the 4f-shaper where each vertical line of the 2D
SLM acts as a one dimensional SLM for the incident spectral component, is done through
the implementation of blazed gratings and is discussed in detail in Chapter 3.

The theory discussed thus far allows for the temporal shaping of laser pulses by com-
bination of a 4f-shaper with a SLM. A critical requirement of ptychography and many
pulse characterization methodologies is the ability to multiply temporal pulses. In the
next section we will describe how non-linear optical materials allow us to do just that.

2.5 Non linear materials

The response of atoms and molecules to electromagnetic fields is approximately linear for
small electric fields. However, when the electric field becomes very large the response
becomes non-linear. This is a very useful property as these materials can be used in a
specific geometry to multiply electromagnetic signals in time as will be explained below.
It is exactly this property which is exploited in order to analyse the electric field by mea-
surement of the resultant spectrum to be analysed by any of a number of phase recovery
techniques. Here the focus is specifically on the mechanism by which the multiplication
of two electric signals comes about.

The non-linear material response is what makes the multiplication of optical elec-
tromagnetic signals possible. A simplified description of the polarisation response of a
material is given by,

P = ε0

(
χ(1)E + χ(2)E2 + ...

)
, (2.5.1)

where χ(1) and χ(2) is a first and second rank tensor etc. and the resultant polarization
is a matrix. The multiplication of the signals comes about as a result of the material
polarization response and as such the input polarization of the electric field plays a role.
In all examples below the input polarization of the electric field is linear and the same
in the cases where two are electric fields are used, thus for the purpose of highlighting
how signal multiplication comes about we write the electric fields as scalar components
noting that through the tensor product the resultant polarization of the output would be
perpendicular to the input polarization.

Second harmonic generation (SHG), sum frequency generation (SFG) and difference
frequency generation (DFG) arise due to the second order polarization response χ(2) of
the material being non-zero. Only materials that lack inversion symmetry can exhibit
second order non-linear effects. For the rest of the discussion we only consider the linear
and second order polarization.

SHG occurs when the electric field is multiplied by itself as a result of the polarization
response of the material as given by Eq. 2.5.1 and this usually occurs when the the
incident electric fields are collinear. In the case of SHG, the electric field is described by
E = A cos(ωt − k · z) with the k in the direction of z such that we can view the dot
product k · z = k · z which when substituted into Eq. 2.5.1 gives

P = ε0

[
χ(1)A cos ωt +

1
2

χ(2)A2[1 + cos(2ωt− 2k · z)] + ...
]

(2.5.2)
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from which the second order electric field generated with perpendicular polarization to
the input field can be written as

ESHG = A2 cos(2ωt− k2 · z) (2.5.3)

where 2k = k2 = n22ω/c with n2 the refractive index seen by the frequency 2ω. It is
clear that the argument of the first order polarization and the second order polarization
will only be in phase if the refractive index seen by ω and 2ω are the same which is not
ordinarily the case as refractive index varies with wavelength. If the refractive indices
mismatch and as a result the second order electric field and the second order polarization
become π radians out of step they will interfere destructively. The length over which the
generated second order wave becomes π radians out of step is called the coherence length
and is given by

Lcoh =
λ

4|n2 − n1|
(2.5.4)

where λ is wavelength, n1 is the refractive index seen by the frequency ω and n2 the
refractive index seen by the frequency doubled second harmonic 2ω.

In the case of SFG two electric fields, each with its own frequency ω1 and ω2, are
considered which usually propagates non-collinearly with propagation vectors k1 and k2

given by

E = A1 cos (ω1t− k1 · r) + A2 cos (ω2t− k2 · r) . (2.5.5)

The second order polarization response which results in SFG for the electric field given
by Eq. 2.5.5, when substituted into Eq. 2.5.1, is

P = ε0

[
... + χ(2)A1 A2 cos[(ω1 + ω2)t− (k1 + k2) · r] + ...

]
(2.5.6)

from which one can define a freely propagating electric field, again with polarization
perpendicular to the input polarization, with frequency ω3 = ω1 + ω2 and propagation
vector k3 = k1 + k2 given by

ESFG = A1 A2 cos(ω3t− k3 · r). (2.5.7)

In order for the electric field to remain in phase with the polarization the refractive indices
must satisfy

n1ω1 + n2ω2 = n3ω3 (2.5.8)

along the new propagation direction as given by k3.
In the case of DFG a similar situation arises which leads to Eq. 2.5.6 but instead the

waves entering the system are ω2 and ω3 in which case the polarization component giving
rise to DFG is described by

P = ε0

[
... + χ(2)A3 A2 cos[(ω3 −ω2)t− (k3 − k2) · r] + ...

]
. (2.5.9)

from which again one can define a freely propagating electric field, again with polarization
perpendicular to the input polarization, with frequency ω1 = ω3 − ω2 and propagation
vector k1 = k3 − k2 given by

EDFG = A3 A2 cos(ω1t− k1 · r). (2.5.10)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. THEORY 15

Again in order for the generated freely propagating electric field to remain in phase with
the polarization the refractive indices must satisfy

n1ω1 = n3ω3 − n2ω2 (2.5.11)

along the new propagation direction as given by k1. If the thickness of the non-linear
material is thin enough and the incident angles small enough quasi-phase matching is
achieved which greatly relaxes the phase matching conditions due to material dispersion.

In all these cases a birefringent material which lacks inversion symmetry is required to
meet the phase matching condition. Even with the correct material of course the coherence
length is limited by the total bandwidth of the incident electric field and the angles of the
incident light. For a more extensive treatment of non-linear optics the reader is referred
to New [47] and to Demtröder [48].

In the context of this work SFG is utilized extensively. We see that if the phase matching
conditions are met by using the right material such as a beta-bariumborate (BBO) crystal,
one can effectively multiply optical pulses as shown, which comes about due to the χ(2)E2

component in the material polarization as shown in the simple two spectral component
example in Eq 2.5.7. In our case the phase matching conditions are more relaxed as we
use a thin crystal and illuminate it at shallow angles resulting in so quasi-phase matching
whith adequate performance for our purposes. The phase matching conditions and the
intensity response of the non-linear material limits us to a small interaction volume. For-
tunately the same solution which is implemented to solve the problem of spatio temporal
coupling, Section 2.3, meets these additional constraints namely the placement of a lens
in a 2f-geometry after the 4f-shaper.

With the ability to multiply signals in time, coupled with the ability to temporally
shape optical pulses, we are able to demonstrate time domain ptychography which will
be discussed in the next section.

2.6 Time domain ptychography

Time domain ptychography is a natural extension of ptychography. Ptychography as men-
tioned is a lens-less imaging technique which can be used to determine both amplitude
and phase of an illuminated object. As such ptychography requires the recording of a far
field diffraction pattern, In(X, Y), of some object, o(x, y), illuminated by a known probe
beam at a known position p(x− x1, y− y1), as described by the relation,

In(X, Y) = |F {o(x, y)p(x− x1, y− y1)}|2 (2.6.1)

where the operator F refers to the Fourier transform. The object is illuminated at several
positions by translating either the object or the illumination source in a plane perpendic-
ular to the beam and in each case a far field diffraction pattern is recorded. It has to be
noted that the strength of this modality is that the size of the illuminating beam is much
larger than the smallest recoverable feature of the object. The phase information is lost
in the intensity measurements of the far field diffraction patterns but can be recovered
by using said diffraction measurements as an input to the ptychographic iterative engine
(PIE) [49].

One can find an analogy to ptychography when working with a pulsed laser source
in the temporal domain (Time domain ptychography). The beam position is similar to a

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 2. THEORY 16

temporally delayed probe, P(t− ∆t), and the far field diffraction pattern is equivalent to
a recorded spectrum, In(ω), resulting from the product of a temporal probe at the time
delay with a temporal object, O(t), as expressed by

In(ω) = |F {O(t)P(t− ∆t)}|2 . (2.6.2)

Multiplication of the time delayed probe pulses with the temporal object is often referred
to as probing the temporal object. A data set recorded by probing the temporal object
at different time delays tn each time recording the phase less intensity spectrum as a
collection of intensity spectra S(ω, tn), referred to as an intensity spectrogram, can then
be fed into the ptychographic reconstruction algorithm modified for application in one
dimensional operation space, which we refer to as the time domain ptychographic recon-
struction engine (TD-PIE). It is only important that the temporal position of the probe is
known and for the probe pulse to overlap in time to some extent with the probe pulse of
another measurement for every intensity spectrum recorded in order to use the TD-PIE.
The requirement of temporal overlap of the probe pulses determines the size of the time
step needed between measurements. The resolution of the reconstructed measurement
is determined by the spectral window instead of the step size between measurements
and the temporal window is determined by the spectral resolution as determined by the
Fourier relationship between time and frequency. Typically the recordings are equidistant
in time spaced ∆t apart such that tn+1 = tn + ∆t to cover a temporal range starting at
t1 = tstart and ending at tN = tstart + N∆t as is the case for experiments done in this
work. The collection of the data is illustrated in Fig. 2.7 as obtained in a cross-correlation
fashion. A temporal object indicated by the solid line (this can be a programmed temporal

Figure 2.7: Illustration graphically depicting the measurement of an intensity spectrogram, inlay at
the top, by multiplication of a probe at different time delays indicated by the dashed lines with a
temporal object indicated by the solid line as an example of a time domain ptychography measure-
ment.

object function as in our case or a material response function which is activated by some
mechanism) is multiplied by the probe pulse, indicated by the dotted lines, at different
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temporal delays and the intensity spectrum of the resultant multiplication is recorded for
each time delay in a what is referred to as an intensity spectrogram shown at the top.

As with ptychography, where the illuminating beam can be much larger than the
smallest resolvable feature of the object, so too it will be shown in the temporal analogue,
that the probe pulse can be much longer than the smallest resolvable temporal feature of
the temporal object. In contrast with classic pump probe measurement techniques where
the resolution is limited by the probe pulse duration, in time domain ptychography the
resolution is limited by the bandwidth of the spectrometer. In practice this limit will be
determined by the range of the spectrum where there is sufficient signal to noise ratio.

The reconstruction algorithm works as follows. Once an intensity spectrogram is
recorded by multiplication of a temporal object at different time delays with the tem-
poral probe pulse, the recorded intensity spectrogram is fed into the TD-PIE illustrated in
Fig. 2.8. The algorithm starts by estimating an arbitrary choice of object function. An exit

Figure 2.8: Illustration of the functioning of the reconstruction algorithm. The measured intensity
spectrogram, inlay at the top left, is used to update the guess of the spectrum for each time delay tn
sequentially repeated j times to produce the reconstructed temporal pulse inlay at the top right.

field is then calculated by taking the product of the object function On(t) and the known
probe function at a specific time delay P(t− tn),

G(t, tn) = On(t) P(t− tn). (2.6.3)
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An updated exit field is then calculated in the spectral domain G′(ω, tn) by taking the
square root of the measured spectral amplitude In(ω, tn) and the spectral phase of the
exit field

G′(ω, tn) =
√

In(ω, tn) exp (∠F {G(t, tn)}) (2.6.4)

and inverse Fourier transformed back to the time domain to find the updated exit field in
time G′(t, tn). The difference between the current exit field and the updated exit field is
then used to correct the object function

On+1(t) = On(t) + β U(t− tn)

×[G′n(t, tn)− Gn(t, tn)] (2.6.5)

with the weight or window function

U(t) =
|P(t)|

max(|P(t)|)
P∗(t)

|P(t)|2 + α
(2.6.6)

where the constants α and β are bounded by α < 1 and β ∈ ]0 . . . 1]. This is done
sequentially for each of the whole numbered n = 1..N time delays of the probe pulse
after which the procedure can be repeated using the calculated object function O(t) as the
starting seed for the next loop j.

In order to prove time domain ptychography, a temporal object as well as a probe
pulse is required. Ideally we want to have control over both the temporal object and
the probe pulse such that we are able to evaluate the efficacy of the proposed modality.
We implemented a multi-beam temporal pulse shaper, described in Chapter 4, capable
of generating two identical laser pulse beams and temporally shaping them to realise
different temporal objects and probe pulses. In the next chapter we will look in detail
how a 2D SLM can be used to apply complex valued spectral transfer functions.
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Pulse shaping with a phase only 2D SLM

Current 2D SLMs are only capable of phase modulation, however pulse shaping by modi-
fication of spectral amplitude and phase is possible using a 2D-SLM in a 4f-shaper config-
uration by utilizing blazed gratings [42]. Also, such a set-up could be easily extended to
shape multiple beams [19] treated in the next chapter. Most recently we have shown [4] in
the spatial domain that when a 2D SLM is used to implement a phase and basic amplitude
mask the phase behaviour in the ± 1 diffraction orders is ideal irrespective of wavelength.
Here we explain how a 2D SLM can be used to realise phase and amplitude transfer func-
tions, underlining the detail of the effect of combination of phase and amplitude shaping
and the required phase compensation that results.

3.1 Transfer functions with a 2D SLM

In order to apply a complex valued transfer function on a 2D-SLM placed in the spectral
plane of a 4f-shaper one needs to be able to modify both the amplitude and phase of
the spectral components incident on the device. Conceptually phase modification can
be easily understood as the 2D-SLM has the ability to directly modify the phase of the
incident light, modification of the amplitude however is not so obvious. Here we show
that both amplitude and phase modulation of the spectrum of light can be achieved with
a phase only 2D SLM by utilizing the properties of gratings, more specifically blazed
gratings [19, 42]. First a conceptual explanation is given of how a sequence of blazed
gratings can be used to apply a spectral transfer function after which a more rigorous
mathematical treatment follows.

To conceptually understand how blazed gratings are used to realise a spectral transfer
function a simplified example is given where a 2D-SLM is placed in the spectral plane of
a 4f-shaper and the incident light source has only three spectral components, red, green
and blue illustrated in Fig. 3.1. Each spectral component is focussed by a cylindrical
lens as part of the 4f-shaper only in the horizontal plane resulting in an elliptical spectral
slice which is incident on a vertical section of the 2D-SLM encoded with a blazed grating.
The position of spectral components vary along the horizontal axis and are determined
by the spectral dispersion angle due to the grating at input of the 4f-shaper, thus the
horizontal axis is indicated by ω. To each spectral component the blazed grating where
it is incident looks as if it is infinitely wide as shown in the section view on a-a. The
diffraction from said grating will propagate mainly in the +1 diffraction order depending
on the efficiency of the blazed grating. If the rest of the optical set-up is aligned along
the direction of this diffraction order such that all other diffraction orders can be ignored,

19
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Figure 3.1: Application of blazed gratings in the vertical direction to modify spectral content. Three
example wavelengths represented by different colours are shown on exaggerated blazed gratings to
illustrate the principle of utilizing blazed gratings.

then one can see how amplitude modulation can be achieved by altering the amplitude of
the programmed blazed grating, hence its efficiency, as illustrated in Fig. 3.2 (a). As such
an amplitude of zero would mean all light is reflected into the zero order and a phase
amplitude of 2π for the specific spectral component means, in the ideal case, all light
propagates in the direction of the +1 diffraction order. Phase modification is illustrated
conceptually in Fig. 3.2 (b) where two consecutive spectral components which fall on two
separate blazed gratings represented by the brown and the green lines show the constant
phase difference between them ∆φ as a result of a translation of one of these two gratings
with respect to the other.

Figure 3.2: Blazed grating used to do (a) amplitude modulation, by decreasing the amplitude of
the blaze grating, and (b) phase modulation, by introducing a lateral shift relative to another blazed
grating. The resultant modification is observed in the ±1 diffraction orders.

Now let us look at a more mathematically rigorous treatment. We have shown, in
the spatial regime, that the application of blazed gratings on a 2D-SLM to selectively
divert light from areas on the 2D-SLM where specific phase functions are applied into
the ±1 diffraction orders results in ideal phase behaviour for a broadband source [4]
despite collinear illumination of the 2D-SLM. Here we extrapolate on the expression we
derived Spangenberg et al. [4] for blazed gratings in order to apply the result to a 2D-
SLM used in a 4f-shaper configuration. If the applied periodicity of the blazed grating is
much larger than the wavelength of the incident light and the angles are small we can use
standard Fourier optic theory to treat the blazed phase grating illustrated in Fig. 3.3. A
mathematical expression can be written for an infinitely extending blazed grating as the
windowed selection of a linear phase convolved with a comb as,

g (x) =

[
ei θ

p xrect
(

2
p

x
)]

~
∞

∑
n=−∞

δ (x− x0 − np)
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Figure 3.3: Cross-section of a linear phase gradient with pitch p wrapped around a phase maximum
of θ translated relative to the zero position by x0

where from Fig. 3.3, the position of the blazed grating x0 is defined relative to zero, the
amplitude of the blazed grating implemented as a phase function is given by θ, the pitch
of the grating is given by p and n is an integer representing the duplicated blazed sections.
This expression can be simplified using standard Fourier relations by taking the Fourier
transform of Eq. 3.1.1 and simplifying,

G (X) = 2π

[
δ

(
X− θ

p

)
~ sinc

( p
2

X
)]
×

∞

∑
n=−∞

δ

(
X− 2πn

p

)
× e−iXx0

= 2π sinc
(

p
2

[
X− θ

p

])
×

∞

∑
n=−∞

δ

(
X− 2πn

p

)
e−iXx0

= 2π
∞

∑
n=−∞

sinc
(

p
2

[
2πn

p
− θ

p

])
δ

(
X− 2πn

p

)
e−i 2πn

p x0

= 2π
∞

∑
n=−∞

sinc
(

π

[
n− θ

2π

])
δ

(
X− 2πn

p

)
e−i2πn x0

p (3.1.1)

where X is the co-ordinate in transformed space and x is the co-ordinate in normal space,
and then taking the inverse Fourier transform to find

g (x) =
∞

∑
n=−∞

sinc
(

π

[
n− θ

2π

])
ei 2πn

p x e−i2πn x0
p , (3.1.2)

which is an elegant expression of a blazed grating as a sum of weighted infinitely extend-
ing linear phase functions where the parameter n now represent diffraction orders.

The expression derived in Eq. 3.1.2 is clearly separable into key components namely
amplitude, phase and propagation direction which makes it very easy to calculate masks
to represent transfer functions. Only the ±1 diffraction orders of the masks are generally
utilized in practice therefore let us consider the case where n = ±1. The amplitude scaling
factor which is only dependent on the blaze grating phase amplitude θ is given by

S(θ) = sinc
(

π

[
±1− θ

2π

])
, (3.1.3)

the relative phase shift dependent on the ratio of the relative starting position x0 and the
pitch p of the blazed grating is given by

∆φ(x0) = e∓i2π
x0
p (3.1.4)

and the directional wave front with the angle inversely proportional to the pitch p is given
by

D(p) = e±i 2π
p x. (3.1.5)
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The derived equation does not consider the total optical path length change. This
comes about due to the decreased phase height of the blazed grating. If one considers
this decrease in phase height as a physical decrease in the phase height of the blazed
grating then the light must travel an extra distance outside of the grating through air with
a lower refractive index causing a decrease in optical path length which in turn results
in a decrease in phase. In practice the physical length stays the same but the index of
refraction changes which results in the same effect.

Compensation for this effect can be easily done by adding a constant amount of phase
equal to the area of phase lost due to the decreased phase amplitude. This compensation
results in shifting the blaze up such that it pivots about the centre point of the full blaze
as illustrated in Fig. 3.4. To prove this consider: if we assume the difference in phase to

Figure 3.4: Illustration of an enlarged view of a single blazed ruling with additional lines to aid
in the derivation of the required phase adjustment when the amplitude of the blazed grating is
adjusted.

be directly related to the difference in area which results from decreasing the amplitude
of the blazed grating then we can easily use the geometry in Fig. 3.4, which shows an
enlarged illustration of a single blazed grating ruling as the triangle AREACBH, to derive
an expression to correct for the introduced phase error. Given a triangle AREAHBC and an
arbitrary point is chosen between B and C called E to construct triangle AREAHBE ,which
represents the required modified blazed grating section with the required blaze amplitude
indicated by BE, then one can describe the difference in area by triangle AREAHEC which
represents the phase error introduced due to the decrease of the amplitude of the blazed
grating. In order to compensate for this lost phase one must add it by shifting line HE par-
allel vertically upwards creating a new line GF which forms a parallelogram AREAHEFG.
The area of parallelogram AREAHEFG must be equal to the triangle AREAHEC which rep-
resents the phase error for which one wants to compensate. If the intersection at point
D between line HC and line GF is chosen such that it is in the middle of line HC, which
intuitively makes sense as one can see that the phase lost in AREADCF would be gained
in AREADHG, then the lines GD and DF would also be equal in length because point D
is a cross point on two lines bounded by parallel lines. Thus the triangles AREADCF and
AREADHG are equivalent because the sides DH = DC, DG = DF and ∠GDH = ∠FDC and
one can state that the parallelogram AREAHEFG = AREAHEC. Defining the required phase
amplitude BE in terms of the maximum phase amplitude BC as BE = θA where BC = θ
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with 0 ≤ A ≤ 1 then one can write

AREAHEFG = AREAHEC

=
1
2

p(BC− BE)

=
1
2

pθ(1− A) (3.1.6)

which gives the phase error. Normalising the calculated phase error in Eq. 3.1.6 to the
pitch of the grating one can write an expression for the phase error per unit pitch φerr as

φerr =
1
2

θ(1− A). (3.1.7)

The result is very useful since it implies that the phase compensation due to modification
of the amplitude can be easily done as it is relative to the actual maximum amplitude
used in implementing the blazed grating, as such its functioning is not sensitive to perfect
calibration. If the device is optimised for efficiency in the first order then the amplitude of
the blazed grating is θ = 2π and Eq. 3.1.7 can be written in the more recognizable form
[50] as,

φerr = π(1− A). (3.1.8)

Here we have shown how phase and amplitude shaping can be done using a phase
only 2D-SLM. In the next chapter we will describe a multi-beam temporal shaper where
the 2D-SLM is utilised to apply spectral transfer functions using blazed gratings as de-
scribed in this chapter to apply amplitude and phase modulation to the spectrum of the
input pulses.
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Multi-beam temporal pulse shaper

We designed a scalable multi-beam shaper where a SLM at the input of a 4f-shaper is
loaded with a phase mask which diffracts the incoming beam thereby generating multi-
ple beams. The implemented set-up is unique in that it does not require the light to be
focussed on the diffracting phase mask which opens up the potential to also do spatial
shaping of the beam however this was not done in this work. The experimental set-up
was configured to enable the use of two beams, each of which can be individually shaped
in time in order to have full control over the experimental parameters for ease of com-
parison to theoretical calculation. We refer to this set-up as the double beam temporal
shaper (DUBTESP)1. The experimental measurements required in order to examine the
various phase recovery modalities require cross-correlation of the generated pulses. For
this purpose the second order non-linear response of a beta-bariumborate (BBO) crystal
is utilised to multiply the two pulses with each other through the process of sum fre-
quency generation (SFG). The resultant intensity spectrum can then be recorded with a
spectrometer.

4.1 Optical set-up

The experimental set-up illustrated in Fig. 4.1 uses a binary holographic grating loaded on
the 2D SLM (S1) to generate two divergent beams, each beam goes through the 4f-shaper
and is incident on a separate area on a 2D SLM (S2). On each area on (S2) the required
transfer function is encoded as explained in Chapter 3 using a sequence of blazed gratings.
The periodicity of the chosen gratings on (S2) matches the periodicity of the holographic
grating on (S1). This matched SLM grating pair is encoded with blaze angles chosen
on each respective shaper area such that the output energy is optimized for the parallel
propagating +1 and -1 diffraction orders after incidence on (S2). The output of the system,
as determined by the applied transfer functions to generate the probe P(t) and the object
O(t) pulse, is focused by a lens in a 2f-geometry with respect to the output of the shaper
and the BBO crystal, into the BBO crystal which is positioned in the volume of spatial
overlap of the spectral components such that spatio-temporal coupling can be ignored.
The resultant output after multiplication of the two signals in the BBO crystal through
the process of sum frequency generation is collected by a spectrometer which records the
intensity spectrum.

1The spelling is chosen to be difficult to pronounce in the spirit of all things difficult to pronounce such as
ptychography, pterodactyl, pituitary etc. Another argument could be ‘Large hadron collider’, ‘All your base are
belong to us’ and ‘This is gentleman’.

24
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Figure 4.1: (a) Schematic of the experimental set-up showing how the first 2D-SLM (S1) is used
to generate two beams each of which is individually temporally shaped on the second 2D-SLM
(S2) to generate two output pulses, a temporal object O(t) and a probe pulse P(t). (b) Inlay of the
optical set-up where the multiplication of the temporal object and the probe in a BBO crystal by
sum frequency generation is recorded by a spectrometer.

The pulse source is a 80 Mhz Ti:sapphire oscillator generating pulses of approximately
80 to 110 fs duration. Both SLMs are Holoeye 1920x1080 devices with a pixel pitch of 8 µm
and active area 15.36 mm wide by 8.64 mm high calibrated to have a linear phase response
from zero to 2π at 800 nm. The cylindrical lenses both have focal lengths of 130 mm and
the blazed gratings (G1) and (G2) are ruled with 600 lines/mm. The SLM gratings are
encoded with a periodicity of 160 µm.

The cylindrical lenses in the 4f-shaper were chosen to have a spot size in the order
of the pixel pitch for an input beam with an approximate beam diameter of 2 mm. From
Fourier relations we know that the temporal response of the set-up will be a multiplication
of the spectral focal width and the pixel pitch each considering its specific shape. We
calculated the temporal envelope due to the spectral width of the focus of the cylindrical
lens in the spectral plane to be a Gaussian with a FWHM of 6760 fs, see Appendix A.1.

The matched SLM gratings on (S1) and (S2) introduce quadratic phase in the same way
a grating pulse stretcher/compressor [51, 52] does. The quadratic phase introduced can be
readily calculated and compensated for in the programmable spectral transfer functions.
The dispersion angles due to the grating can be used to calculate the optical path lengths
for the respective spectral components after which a fit can be done to the data to extract
the temporal delay and quadratic chirp, see Appendix A.2. The resultant calculations
show that when using a grating pitch of 160 µm and propagation distance between the
gratings of 45 cm the pulse accumulates an additional negligible 8 fs2 quadratic spectral
phase.

In order to use the described double beam temporal shaper, calibration and character-
ization of the set-up is required which will be discussed in detail in the next section.

4.2 Calibration

The double beam temporal shaper (DUBTESP) we built has two main components in-
tegral to its functioning: the phase response of the SLMs and the characteristics of the
4f-shaper. The phase response of both SLMs needs to be calibrated for optimal operation
after which the 4f-shaper has to be characterized by determining the position of the spec-
tral components in the spectral plane as well as measuring the amplitude response of the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. MULTI-BEAM TEMPORAL PULSE SHAPER 26

applied blazed gratings in the spectral plane for both beams. Once this calibration and
characterization is complete the shaper can be used to optimise the pulses from the pulse
source such that experiments can be done from an optimal starting point.

4.2.1 Calibration of the SLM

The Holoeye SLM device is operated like an extra display connected to a computer. A
known calibration procedure [53]2 is followed which allows one to calibrate the device
such that intensity settings sent from the computer, in the range ]0..1], linearly maps to
an introduced phase shift of the incident light on a pixel in the range of ]0..2π] for the
calibrated wavelength.

Since the source is broadband the calibration will not be correct for all wavelengths,
conveniently though, transfer functions are implemented by the use of blazed gratings
working in the +1 and -1 diffraction orders thus phase adjustment for all spectral com-
ponents will behave ideally, therefore correctly, as explained in Chapter 3 Eq. 3.1.2. The
mismatch of the phase calibration at wavelengths other than the calibration wavelength
results in a modification to the amplitude of the different spectral components. In our ex-
periments, with a full width half maximum (FWHM) bandwidth of approximately 10 nm,
this effect is small enough to neglect. In the case of systems with a broader bandwidth
this effect can be compensated for by measurement of the amplitude response in the first
order for each spectral component when the height of the blaze is adjusted on the SLM in
the spectral plane.

4.2.2 Characterisation of the 4f-shaper

In order to characterise a 4f-shaper the spectral position in the spectral plane relative to
the SLM has to be determined and the amplitude response of the device measured. To do
these measurements we used an Avantes spectrometer, with spectral range from 200 nm
to 1100 nm and a resolution of 0.25 nm, removing the crystal and focussing the light from
the output of the 4f-shaper for each beam into the spectrometer consecutively.

Wavelength calibration for each beam was done by selecting fixed width slices from the
spectrum at the spectral plane with the SLM (S2) by the application of a transfer function
which has a transmission of zero for all wavelengths that do not fall within the range
defined by the slice and one for all wavelengths that do. The position of the slice is then
scanned across the face of the 2D-SLM and a spectrometer, placed in the relevant output
beam of the set-up, is used to measure the resultant spectrum from which the position of
the slice in wavelength is determined. The positions thus determined is then mapped to
the pixel coordinate which is known from the programmed slice on (S2). The spectrum
only illuminates about a third of the face of the 2D SLM (S2), as such there are positions
where we cannot map the spectral position to pixel position from measurement. A second
order polynomial is fitted to the measured mapping of pixel position versus wavelength
in order to extrapolate the mapping to positions on (S2) where the intensity was too low to
reliably record a measurement. The resultant fit on the measured mapping data is stored
as a look-up table for each beam which is used by the program which generates the masks
to implement transfer functions.

2Dudley [53] in Appendix A.1
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To determine the amplitude response in the respective +1 and -1 diffraction orders
for each beam incident on one half of the 2D-SLM (S2), the intensity in said diffraction
order is measured and recorded by application of identical blazed gratings across the
entire face of the 2D-SLM (S2) and varying the height of the programmed blazed gratings
from zero to one in 256 steps. Again we can assume that the variation with wavelength
of the amplitude response is small enough to neglect for our pulses with approximately
10 nm bandwidth. This simplifies calibration as the attenuation of the individual spectral
components can be ignored meaning the resultant intensity spectrogram can be integrated
for each step during the recording of the amplitude lookup table resulting in a single
function applicable to all wavelengths. The amplitude to blaze angle lookup table for
each beam is again stored in a file for use by the program which generates the masks to
implement transfer functions.

4.2.3 Calibration verification and optimization

Once the device is calibrated and characterized we can verify its correct operation in
terms of temporal and morphological modification of the input pulse by cross-correlation
measurements of selected transfer functions applied to the beams. A cross-correlation
measurement xxc requires the multiplication of a pulse x1 with another pulse x2 for all
time delays τ given by

xxc(t) =

∞̂

−∞

x1(t) · x2(t− τ)dt. (4.2.1)

The cross-correlation is realised by application of the appropriate spectral transfer func-
tions. We generate an arbitrary choice of signal x1 by multiplication of the pulse spectrum
P(Ω) by the required transfer function H(Ω),

x1(t) = F−1 {P(Ω)H(Ω)} , (4.2.2)

where Ω is calculated relative to the carrier frequency Ω = ω − ω0. The time delayed
second function is realised by multiplication of the pulse spectrum P(Ω) by a linear phase
gradient which results in a temporal shift,

x2(t, ∆t) = F−1
{

P(Ω)ei∆tΩ
}

, (4.2.3)

where Ω is calculated relative to the carrier frequency Ω = ω−ω0. The multiplication of
these signals are then realised in a BBO crystal through sum frequency generation and an
intensity spectrum is recorded as |F {xxc(t)} |2 which contains no phase information.

For these measurements the resultant output is recorded with a spectrometer covering
the range of 300 nm to 545 nm with a resolution of 0.18 nm as an intensity spectrogram
by taking a set of measurements for a range of time delays ∆t. First we investigated an
example of a phase only transfer function to verify correct operation of applied phase
transfer functions. This was done using a sinusoidal phase transfer function

H(Ω) = eiA sin(τΩ) (4.2.4)

calculated about the carrier frequency with Ω = ω − ω0. We used τ = 400 fs and A =

2.4 which results in temporal replicas spaced 400 fs apart for one beam and applying
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a range of temporal delays ∆t, from -2000 fs to 2000 fs in steps of 10 fs, to the other
beam. The measurement is illustrated in Fig 4.2 (a) where we can see excellent agreement
with the expected temporal positions of the replicas as well as excellent morphological
agreement between the measured cross-correlation and its theoretical counterpart. We
conclude from this that the developed double beam temporal shaper accurately applies
phase transfer functions. Next we applied an amplitude transfer function to verify that
the phase compensation (Chapter 3 Eq. 3.1.7) is done correctly. We chose

H(Ω) = cos(τΩ) (4.2.5)

as our amplitude transfer function with τ = 500 fs, which is a double pulse transfer
function resulting in two pulses spaced 500 fs apart. We applied the double pulse transfer
function to the one beam and again applied a range of time delays ∆t, from -1000 fs to
1000 fs in steps of 10 fs to the second pulse. Again we see excellent agreement of the
expected temporal positions of the measured double pulse and excellent morphological
agreement of the measured double pulse and its theoretical counterpart.
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Figure 4.2: (a) Cross-correlation of a pulse with temporal pulse replicas indicating correct temporal
and morphological behaviour of the shaper when a phase only spectral transfer function is applied
and (b) a cross correlation of a pulse and a double pulse indicating the phase compensation is done
correctly.

Having verified that our DUBTESP works we can optimise the pulses from the source.
First we determine the exact time zero, which might not be the same for both pulses due
to slightly different path lengths through the optical system. To do this we take a cross
correlation measurement of the unaltered pulse in one beam and a time delayed pulse in
the other and use the position of the measured maximum to update the relative time zero
of the pulse shaper in the program. Once this is done we can use any of a number of meth-
ods to determine the spectral phase of the laser pulses and apply a compensation phase
such that subsequent experiments are done from an optimal starting point with Fourier
limited pulses, i.e. pulses with a flat spectral phase. Further we determine the temporal
amplitude response of the system by measurement of the product of both pulses shifted
in time by the same time delay ∆t through application of a linear phase gradient transfer
function H1 = H2 = exp(i∆tΩ) over the temporal range of interest. This measurement is
then used to correct the amplitude of intensity spectra taken at specific time delays.
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We have implemented a unique double pulse temporal shaper and shown that it is
capable of shaping two pulses with excellent accuracy. We can now use this device in
further experiments to do a proof of principle experiment to demonstrate time domain
ptychography and pulse characterization based on time domain ptychography.
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Time domain ptychography: Proof of principle

Direct measurement of the electric field of light is not possible as no detector is fast enough
to do so. The same holds for temporal pulses on the time scale of pico- and femtoseconds
as mentioned in the introduction. In order to measure these ultrafast optical pulses the
intensity of the spectral components that make up a temporal pulse is recorded as an
intensity spectrogram. This is achieved, in brief, by separation of the spectral content onto
an array detector which broadly speaking records the intensity of each, again losing the
phase information. In this chapter we show for the first time that we can use our new
method, time domain ptychography, to reconstruct a wide variety of temporal objects by
recovery of the spectral phase.

Time domain ptychography is an extension of ptychography which is a spatial phase
recovery technique as described in Chapter 2 Section 2.6. Formally the reconstruction
algorithm requires as its input intensity spectra recorded after multiplication of a known
probe pulse with an unknown object pulse for different time delays of the probe pulse.
In order to evaluate the efficacy of the method our unique double beam temporal pulse
shaper (DUBTESP) is employed, see Chapter 4, since it allows us to apply arbitrary spec-
tral transfer functions to each of the two individual beams and record the resultant prod-
uct of the resultant pulses as an intensity spectrogram. The advantage of having control
over the pulse shape of both beams is that we can readily compare the reconstructions
from the measured phase-less intensity spectra to their theoretical counterparts.

We intend to show that time domain ptychography shares several of the measurement
advantages of its spatial counterpart. These are as follows: First, in ptychography the
size of the illuminating beam can be large in comparison to the smallest resolvable spatial
feature thus we expect, in the temporal analogue, that the length of the probe pulse can be
much longer than the shortest resolvable temporal feature. Second, in ptychography only
a few far field diffraction patterns need to be recorded by illumination of overlapping
regions on the spatial object in order to reconstruct said spatial object thus we expect,
in the temporal analogue, that the step size between subsequent temporal delays of the
probe pulse can be large as long as there are regions of temporal overlap between them.

We start by explaining how an intensity spectrogram is measured and defining the
spectral transfer functions used to generate the temporal object functions. Next we inves-
tigate how the quality of reconstruction is influenced by the time step between subsequent
spectra by a root means square difference comparison of reconstructions and finally we
investigate the influence of the reconstruction algorithm parameters, α and β, by again
looking at how the RMS difference changes with the number of iterations. Finally we

30
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show that we can reconstruct any arbitrary temporal object function with a range of probe
pulses which vary in length.

5.1 Measurement of an intensity spectrogram

In order to record an intensity spectrogram we record the resultant intensity spectrum
of the multiplication of a temporal object and a time delayed probe pulse for a series of
time delays. The temporal object is generated by the application of a selected spectral
transfer function to one of the beams, the object beam, in the DUBTESP. The probe pulse
is generated by application of the spectral slice transfer function. First we look at the
definition of the probe pulse before the transfer functions used to generate the the different
temporal object functions are discussed.

A time delayed probe pulse is generated by application of a spectral slice ∆Ω transfer
function formally defined by

Hp(Ω) =

{
e−iΩn∆t for |Ω| ≤ ∆Ω

2
0 otherwise

}
(5.1.1)

where Ω is the relative frequency defined around the carrier frequency ω0 given by Ω =

ω−ω0, n is the sample number and ∆t is the temporal distance between subsequent probe
samples. This probe pulse generated by a spectral slice we refer to as a spectral slice probe.
The sample number n starts at a whole number which can be negative for negative time
delays of the probe pulse and is incremented by one after every measurement until the
temporal sampling range is covered for N total steps. The resultant set of intensity spectra
is referred to as the measured intensity spectrogram and can be fed into the time domain
ptychography reconstruction algorithm. The transfer function given by Eq. 5.1.1 results in
a time delayed temporal function with a sinc envelope. The spectral slit transfer function
was chosen as it can easily be applied and the duration of the resultant temporal pulses
easily varied by modification of ∆Ω. Measurements of intensity spectrograms were done
for a set temporal objects for each of three probe pulse lengths. The theoretical probe
pulses are plotted in Fig. 5.1 for the chosen slit widths of 6 nm, 3 nm and 1.5 nm in
red, green and blue respectively with temporal full width half maximum durations of the
intensity of approximately 314 fs, 613 fs and 1277 fs respectively.
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Figure 5.1: Theoretical probe pulses generated by taking spectral slices of different widths nl. 6 nm,
3 nm and 1.5 nm resulting in probe pulse lengths of approximately 314 fs, 613 fs and 1277 fs
respectively .

A set of arbitrary temporal objects were generated by the application of a variety of
spectral transfer functions. These are divided into three categories in the discussion be-
low according to their properties. The categories are phase and amplitude spectral trans-
fer functions, polynomial phase spectral transfer functions and sinusoidal phase spectral

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. TIME DOMAIN PTYCHOGRAPHY: PROOF OF PRINCIPLE 32

transfer functions. In each subsequent definition the relative angular frequency Ω is de-
fined again around a carrier frequency ω0 as Ω = ω−ω0. The transfer functions used to
generate the temporal objects that belongs to the set is discussed next as well as the used
parameters relevant to the transfer function.

Two phase and amplitude spectral transfer functions were chosen, a pulse train with
exponential decay and a double pulse. The pulse train spectral transfer function is given
by

Hpulses(Ω) =
1− e−γ

1− e−γ(M+1)

M

∑
m=0

(±1)me−imΩτ−γm (5.1.2)

where γ is an exponential decay constant affecting the amplitude of the resultant pulse
replicas, the number of pulse replicas is given by M + 1 and τ is the temporal spacing
between the pulse replicas. A choice of +1 or −1 for the factor (±1)m results in a pulse
train where the subsequent envelope of the temporal replicas are all positive or alternating
in sign respectively. The alternating pulse train with exponential decay is interesting
because it resembles what one could expect to measure from a material response whereas
the non-alternating pulse train is an example of an exotic pulse shape. Both versions of
the transfer function were applied, as part of the measurement set, to generate temporal
objects with alternating (±1 → −1) and non-alternating (±1 → 1) pulse trains each with
six replicas (M + 1 = 6) with exponential decay (γ = 5) spaced 400 fs apart (τ = 400 fs).

The double pulse spectral transfer function, which as the name implies generates a
temporal object which is a double pulse, is given by

Hdbl(Ω) = cos(Ωτ) (5.1.3)

where τ specifies the temporal separation of the double pulse. The double pulse is a
typical example of a transfer function that one could apply in a temporal shaper. It is
useful, for example, to do collinear shaper assisted pulse characterization [29]. For the
measurement set we generated a double pulse temporal object made up of two replicas
spaced 500 fs apart by application of the double pulse transfer function with τ = 500 fs.

The chosen polynomial spectral transfer functions can be generated by application of
a spectral transfer function with different valued parameters where the phase contains
quadratic and higher order phase terms given by,

Hpoly(Ω) = ei(aΩ2+bΩ3+cΩ4), (5.1.4)

where an assigned value to a, b and c results in quadratic, third and fourth order spectral
phase. These high order spectral phase terms are known as chirp. The most well known
of these is quadratic phase, also known just as chirp, as it results in a linearly increas-
ing instantaneous frequency in the temporal pulse. Chirp arises due to the wavelength
dependence on propagation velocity of light through transparent materials and is com-
monly compensated for with prisms and gratings [52, 54]. Higher order chirp can also
accumulate as a pulse propagates through an optical system but is considered more exotic.
Temporal objects for the measurement set with higer order phase were generated by ap-
plication of the spectral transfer function in Eq. 5.1.4 with a = ±104 fs2 and a = ±2× 104

fs2, b = ±5× 105 fs3 and c = ±5× 106 fs4 where in each case all other parameters were
zero.
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A sinusoidal spectral phase transfer function was chosen as a phase only transfer
function which results in multiple temporal replicas of the input pulse,

Hsin(Ω) = eiA sin(Ωτ+φ) (5.1.5)

where A is amplitude, τ determines the spacing in time between the pulse replicas and φ is
just a constant phase added to the argument of the sine which acts to translate the function
with respect to the spectral axis. The sinusoidal phase transfer function effectively behaves
like a grating resulting in temporal diffraction orders i.e. pulse replicas. How many pulse
replicas are generated and their amplitudes depends on the amplitude A of the phase
grating and their spacing depends as mentioned above on the parameter τ. Temporal
objects for the measurement set was generated by setting τ = 400 fs and A = π/2,
A = 2.4 and A = π.

A total of 15 temporal objects were used in the measurement set as given above, record-
ing an intensity spectrogram for each with the three different probe pulses to have a re-
sulting measurement set of 45 intensity spectrograms. A selection of these is chosen to
show the reconstruction results in the next section.

5.2 Reconstruction of an arbitrary temporal object

Reconstruction of a selection of temporal objects measured with different length probe
pulses from the measurement set by using the time domain ptychographic reconstruction
algorithm is shown here to illustrate that we can use time domain ptychography to recon-
struct arbitrary temporal objects. The full set of reconstructions from the measurement set
can be found in Appendix B. First we discuss the general trends with respect to the choice
of the reconstruction parameters β, α and ∆t, from Chapter 2 section 2.6, after which we
illustrate these by a selected choice of examples.

5.2.1 Reconstruction parameters

The choice of the reconstruction parameters is nearly arbitrary, mainly affecting the num-
ber of iterations needed to perform a good reconstruction. The following reconstruction
trends will be highlighted with respect to the parameters used in the reconstruction al-
gorithm: there is a required degree of temporal overlap between subsequent probe pulse
measurement spectra and further, within the bounds of the time step requirement, loosely
a bigger value for β and/or the time step ∆t and/or a smaller value for α all result in
faster reconstruction of the temporal object. In order to evaluate a reconstruction we can
calculate the intensity spectrogram from the reconstructed temporal object and compare it
to the measured intensity spectrogram by taking the root mean square difference between
them.

Each reconstruction parameter plays a specific role in the reconstruction algorithm.
The temporal delay ∆t between subsequent used intensity spectra from the measured
intensity spectrogram determines the amount of overlap between subsequent measure-
ments. The different reconstruction step sizes are obtained by using only every κ’th
measurement, where κ is a positive non zero integer smaller than the total number of
intensity spectra which makes up the intensity spectrogram used. Thus the relative time
step ∆tr can be a multiple of the measurement time step ∆tm as ∆tr = κ∆tm. All time
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domain ptychography related measurements were made with a step size of ∆tm = 20 fs.
As mentioned time domain ptychography does not require a square relation in the time
frequency sampling space, the only requirement is that subsequent recorded spectra must
have a degree of overlap of the probe pulse. Since fewer spectra are used per iteration,
we calculate the relative number of iterations as Nrel = N/κ used during reconstruction.
The main role of β is as a weighting factor determining how strongly the newly calcu-
lated temporal object is applied and α determines the fall-off rate of a window centered
about the current temporal position which will be affected by the application of the newly
calculated temporal object.

To highlight the trends we selected a medium complexity temporal object and recorded
intensity spectrograms with two different length spectral slice probe pulses, 3 nm and
6 nm, which is used as the input to the reconstruction algorithm. A double pulse temporal
object was chosen which was generated by application of a co-sinusoidal spectral ampli-
tude transfer function, Eq. 5.1.3, with τ = 500 fs. In Fig. 5.2 the RMS difference between
each respective measured and reconstructed intensity spectrogram is plotted against the
relative number of iterations of the reconstruction algorithm for different values of the
reconstruction parameters ∆t, β and α.

The respective comparisons of the resultant intensity spectrogram from the 3 nm spec-
tral slice probe pulse is shown in (a), (c) and (e), and the 6 nm spectral slice probe pulse is
shown in (b), (d) and (f). In (a) and (b) we show the results when values for ∆tr of 20 fs,
100 fs, 200 fs, 300 fs and 400 fs are used. In (c) and (d) we show the results when values
for β of 0.2, 0.4, 0.6, 0.8 and 0.95 are used. Finally in (e) and (f) we show the results when
values for α of 0.01, 0.05, 0.1, 0.2, 0.3 are used. In all, with the exception of the parameter
under scrutiny, we used ∆tr = 200 fs, β = 0.4 and α = 0.1.

In Fig. 5.2 (a) it can be seen that for any choice of ∆tr a good reconstruction can be
found except for a time step of ∆tr = 20 fs which is still a reasonable reconstruction, how-
ever in (b) one can see that for a large time step ∆tr = 300 fs or 400 fs, the reconstruction
fails. This is due to there not being enough overlap between the probe pulse at subsequent
temporal positions. We also see that the reconstruction time decreases for a bigger time
step and at the same time the quality improves a small amount.

From Fig. 5.2 (c) and (d) it is clear that for a bigger choice of β the reconstruction time
decreases and also there is a small degradation of quality albeit very small.

From Fig. 5.2 (e) and (f) we see that for smaller values of α the reconstruction algorithm
is quicker to find a solution however the quality of the solution is less for the case where
α = 0.01.

From Fig. 5.2 (c), (d), (e) and (f) we again see that the convergence with number of
relative iterations is extremely fast for the chosen parameters.

Comparison of Fig. 5.2 (a), (c) and (e) with (b), (d) and (f) seems to indicate that for a
shorter probe pulse the reconstruction is faster. This effect could be related to the length of
the probe pulse but could also be related to the signal to noise ratio (SNR) as longer pulses
are lower in intensity due to the narrower band bass filter and thus the resultant measured
intensity spectrogram will have a lower SNR. Note the difference in SNR between the two
sets is an artefact of the size of the area to which the SNR is normalised and is not
indicative that that short probe pulses result in worse reconstructions. The accuracy with
which the probe pulse is modelled in the reconstruction could also play a role, if the probe
is represented inaccurately at the spectral edges of the selected slice then this effect will
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Figure 5.2: Plots of RMS errors for different values of the reconstruction parameters ∆t, β and
α against the relative number of iterations (c.f. text). The RMS plots of different values for the
time delay used between subsequent intensity spectra ∆t is shown in (a) and (b) for the intensity
spectrogram recorded with spectral probe widths of 3 nm and 6 nm respectively. The RMS plots
of different values used for the weighting factor β in reconstructions is shown in (c) and (d) for
intensity spectrograms recorded with spectral probe widths of 3 nm and 6 nm respectively. The
RMS plots of different values for α is shown in (e) and (f) for the intensity spectrogram recorded
with spectral probe widths of 3 nm and 6 nm respectively.

also play a bigger and bigger role as the spectral slice becomes narrower.
In Fig. 5.3 we plot the RMS difference between the measured and reconstructed in-

tensity spectrograms against the number of iterations for different spectral slice probes,
namely (a) 1.5 nm, (b) 3 nm and (c) 6 nm, for the case when the measured intensity
spectrogram is not pre-processed and when it is pre-processed. We used a sinusoidal
phase spectral transfer function which generally gives a good signal to noise ratio in the
measurement as an example (Eq. 5.1.5 with A = π/2 and τ = 400) to underline the
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effect of pre-processing of measured intensity spectrograms. The pre-processing involves
subtracting a basis noise level from the entire spectrogram, filtering fast oscillations and
subtracting the difference between the first spectrum and the last spectrum in the spectro-
gram. From Fig. 5.3 we can see that when the SNR decreases, as is the case for narrower
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Figure 5.3: Plots of RMS versus relative iterations (c.f. text) for filtered and unfiltered for probe
pulse widths of (a) 1.5 nm, (b) 3 nm and (c) 6 nm.

spectral slits, pre-processing improves reconstruction quality and speed.
The selected example illustrates that the choice of reconstruction parameters is arbi-

trary. As a general rule bigger time steps should be favoured albeit the time step must be
small enough such that subsequent probe pulses overlap by a sizeable amount, roughly
the overlap should not be smaller than 30%, larger values of β should be favoured mind-
ing the fact that a slight decrease in reconstruction quality results as β increases, α should
be chosen small but not too small and if the SNR is not optimal reconstructions can be
improved by pre-processing.

Based on our analysis we chose ∆tr = 200 fs, β = 0.4 and α = 0.1 for all reconstructions
performed in the next section and Appendix B.

5.2.2 Reconstruction results

Reconstruction of the various temporal objects were calculated by using the measured
intensity spectrograms as the input to the time domain ptychographic reconstruction al-
gorithm. The resultant reconstructions are shown in Figs. 5.4, 5.5 and 5.6.

In Figs. 5.4, 5.5 and 5.6, each respective figure shows an inlay of the measured intensity
spectrogram which were used as the input to the iterative reconstruction algorithm along
with an inlay of a spectrogram numerically calculated from the reconstructed temporal
object (the reconstruction recovers both the amplitude and phase of the electric field of
the temporal object) for comparison. Further the resultant reconstructed temporal object
is plotted in amplitude and phase, dashed red and blue lines respectively, along with
its theoretical counterpart, solid red and blue lines, for comparison. The same temporal
object functions are reconstructed in Figs. 5.4, 5.5 and 5.6 with the difference that the
intensity spectrograms used as input to the reconstruction algorithm were recorded with
different spectral slice probe pulses. For all sub figures in Fig. 5.4 the 6 nm spectral
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Figure 5.4: Reconstruction pulse generated by taking a 6 nm spectral slice. Alternating pulse train
shown in (a). Pulse with quadratic phase of -20000 fs2 shown in (b). Pulse with third order phase
of 500000 fs3 shown in (c). Pulse with sinusoidal phase modulation with amplitude of 2.4 shown in
(d).

slice probe was used, for all sub figures in Fig. 5.5 the 3 nm spectral slice probe was
used and for all sub figures in Fig. 5.5 the 1.5 nm spectral slice probe was used. The
temporal objects used in Figs. 5.4, 5.5 and 5.6 are, (a) an alternating pulse train with 6
replicas decaying exponentially generated with a phase and amplitude transfer function
where M = 5, γ = 5 and τ = 400 fs, (b) a chirped pulse generated with a polynomial
transfer function where a = −20000 fs2, (c) a higher order chirped pulse generated with a
third order polynomial transfer function where b = 5× 105 fs3 and (d) temporal replicas
generated with a sinusoidal spectral phase transfer function where A = 2.4 and τ = 400 fs.
All resultant reconstructions were corrected with the measured intensity response of the
DUBTESP as explained in Chapter 4. The chosen reconstruction parameters were β = 0.4,
α = 0.1 and ∆t = 200 fs in Figs. 5.4, 5.5 and 5.6. The input spectrograms used in Fig.
5.6 had to be pre-processed as the intensity of the measured signal was lower due to
the narrow width of the slit used to generate the probe pulse which resulted in noisier
measurements. In all cases the reconstruction reached a stable solution after at most 500
iterations i.e. 50 relative iterations. A complete set of reconstruction examples from our
measurement set can be found in Appendix B as stated before.

Some observations that we make from the reconstructions are: The chosen probe pulse
is generated as mentioned by choosing a spectral slit width which results in a decrease
in energy present in the probe pulse making measurements with longer probe pulses i.e.
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Figure 5.5: Reconstruction pulse generated by taking a 3 nm spectral slice. Alternating pulse train
shown in (a). Pulse with quadratic phase of -20000 fs2 shown in (b). Pulse with third order phase
of 500000 fs3 shown in (c). Pulse with sinusoidal phase modulation with amplitude of 2.4 shown in
(d).

narrower spectral slits, noisier. This is evident by comparison of the resultant reconstruc-
tions of the four temporal object functions where the input intensity spectrograms was
measured with a 6 nm, 3 nm and 1.5 nm probes in Figs. 5.4, 5.5 and 5.6 respectively. We
also note that the retrieved phase of the alternating pulse train jumps with π between
subsequent temporal replicas as expected.

In all cases agreement of reconstructed temporal objects with their theoretical counter-
part is excellent. We see that all temporal objects probed with the three probe pulses of
different length, can be reconstructed. This result is a feat in itself as it is the first time,
to our knowledge, that it has been shown that a probe pulse longer in duration than the
temporal features it is used to resolve was able to do so. This is especially a noteworthy
result in the case of the 1.5 nm temporal probe pulse as the pulse length of such a pulse
is approximately 10× the duration of the shortest temporal feature resolved.

We have shown that ptychography can be extended to the time domain and that it can
be used to reconstruct a wide variety of temporal object functions some with temporal
features 10× shorter than the probe pulse duration. We have also shown that the choice
of reconstruction parameters mainly influences the number of reconstructions with the
exception that when the time delay between subsequent probe pulses become too large,
the reconstruction fails.

We extend time domain ptychography to pulse characterization in the next chapter.
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Figure 5.6: Reconstruction pulse generated by taking a 1.5 nm spectral slice. Alternating pulse train
shown in (a). Pulse with quadratic phase of -20000 fs2 shown in (b). Pulse with third order phase
of 500000 fs3 shown in (c). Pulse with sinusoidal phase modulation with amplitude of 2.4 shown in
(d).
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Time domain ptychography: Pulse characterization

Pulse characterization in most ultrafast laser systems is done without the need of a sec-
ondary source. In most if not all cases the beam itself is used to do pulse characterization
eg. FROG [22, 23], STRUT [24], SPIDER [25], PICASO [26] and MIIPS [27]. In this chapter
we implement an updated ptychographic iterative reconstruction algorithm in order to
use time domain ptychography to characterize laser pulses using the pulses themselves.

In time domain ptychography a so called ‘temporal object’ is reconstructed from a
measured intensity spectrogram by recording the resultant spectra of a cross-correlation of
the unknown temporal object and a known probe pulse. When time domain ptychography
is employed to do pulse reconstruction the pulse can be viewed as the temporal object
and the probe can be derived from the unknown temporal object by application of a
known transfer function. As such the beam has to be split into two, where one beam
is unmodified, referred to as the temporal object beam, and the other beam is modified
by application of a spectral transfer function in order to generate a probe pulse. Neither
the amplitude or phase of this probe pulse is known, only the applied transfer function
and that it is applied to the same spectral amplitude and phase as the temporal object.
This allows us to modify the time domain ptychographic iterative engine (TD-PIE) to
estimate the amplitude and phase of the probe iteratively, thus the ptychographic iterative
reconstruction algorithm for the characterization of temporal pulses (PIRANA) is derived,
which allows for reconstruction of the temporal object.

First we describe how we used our double beam temporal shaper (DUBTESP) de-
scribed in Chapter 4, to implement the split beam geometry to measure the required
intensity spectrograms. We also explain how this optical system is similar to SHG-FROG
and how this allowed us to easily implement SHG-FROG measurements which we could
use to compare and verify the results from our PIRANA. Next we explain the modifica-
tion to the reconstruction algorithm after which we highlight some of the measurement
characteristics and advantages.

6.1 Measurement of spectrograms

Intensity spectrograms have to be measured and these phase-less measurements are then
fed to our PIRANA and the SHG-FROG in order to recover said phase, here we explain
how our DUBTESP was implemented to record the respective intensity spectrograms re-
quired for both iterative reconstruction algorithms.

In the following discussions, functions and their spectral domain representations are
implied by the argument of the function containing the temporal variable t for the tempo-

40
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ral domain and the angular frequency ω for the spectral domain, for example H(t) would
be the definition of a function in the temporal domain and H(ω) would be the same
function but represented in the spectral domain. Going from the temporal to the spec-
tral domain and back, the standard Fourier and inverse Fourier transforms are applied.
Further it is assumed that the reader knows that multiplication in the spectral domain im-
plies convolution in the temporal domain and convolution in the spectral domain implies
multiplication in the temporal domain.

The basic scheme to measure an intensity spectrogram for input into PIRANA is illus-
trated in Fig. 6.1. The unknown input pulse is divided into two replica by a beam splitter
such that one beam is transmitted and the other reflected. The reflected replica propa-
gates via a suitable arrangement of mirrors to the BBO crystal and the transmitted replica
passes a bandpass filter and is subsequently delayed in time by a suitable arrangement of
mirrors before propagating to the BBO crystal. The non-collinear propagating replicas are
focused in a non-linear (BBO) crystal and the emerging sum-frequency light is analysed
by a spectrometer. Thus, the only physical difference between the optical set-up used to

Figure 6.1: Schematic illustrating the idea of the implementation to demonstrate pulse reconstruc-
tion using time domain ptychography.

measure the intensity spectrograms for processing by our PIRANA and a standard second
harmonic FROG is the spectral bandpass filter which would be left out in a SHG-FROG
set-up.

In order to vary all parameters in the most flexible way we decided to demonstrate the
principle with our DUBTESP set-up, see Chapter 4, as it allows for individually tailoring
both replica of the incident pulse. Just as a beam splitter would result in two replicas
of the input pulse, the DUBTESP can apply the same spectral transfer function H(ω) to
pulses from the laser B(t) resulting in duplicate programmable temporal object functions
given by

E(ω) =
1√
2

B(ω)H(ω) (6.1.1)

Application of a spectral filter T(ω) in order to generate the time delayed probe pulse
P(t) in the probe arm of the DUBTESP set-up, as required by the PIRANA, is done by
further multiplication of a time delay spectral transfer function exp(i[ω−ω0]tn) with the
spectral filter and the spectral transfer function used to generate the temporal object H(ω)

as given by

P(ω) = E(ω)T(ω)ei(ω−ω0)tn (6.1.2)

where ω0 is the carrier frequency of the laser. A sequence of time delayed spectra are
recorded denoted by the integer n = 1..N to cover the temporal range required. The
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temporal range starts at t1 = tstart and ends at tN = tstart + N∆t. In the case of the SHG-
FROG measurements where no spectral filter is present in the probe arm of the set-up
only a time delay transfer function is additionally applied to the probe beam given by

P(ω) = E(ω)ei(ω−ω0)tn . (6.1.3)

Just for clarity it is emphasized again that the respective reconstruction algorithms are
employed to recover the lost phase in the measured intensity spectrograms after which it
is convenient to know what the temporal probes and objects should look like in order to
readily compare how well the reconstructed phase compares to theoretical calculation.

A selection of temporal pulses were measured in both regimes, PIRANA and SHG-
FROG, by application of the required transfer functions, the light from which are subse-
quently focused to a 100 µm thick BBO crystal where the exit field, i.e. the product field,
is produced through sum-frequency generation in our DUBTESP set-up. The resulting
spectra are centered at 400 nm and are analysed by a spectrometer covering the range of
300 nm to 545 nm with a resolution of 0.18 nm.

For the purpose of simplification of the rest of the discussion we will refer to the dif-
ferent aspects of the optical system in terms of Fig. 6.1 since it is enough to know how
we emulated this optical system with our DUBTESP set-up. As such with reference to
Fig. 6.1, the input pulse Ei(t) is seen as whatever the duplicate programmed pulse shape
is and can be considered as if incident on the beam splitter, thus Ei(t) = B(t) ~ H(t)
or Ei(ω) = H(ω)B(ω). The unaltered ‘temporal object’ is referred to as the transmitted
pulse after the beam splitter and is E(t) = 1/

√
2Ei(t). The reflected pulse as explained

is realised by application of an identical transfer function to the one which results in the
‘temporal object’ in the probe arm of the DUBTESP set-up and as such is given by E(t). In
the case of SHG-FROG a further time delay can be applied P(ω) = E(ω) exp(i[ω−ω0]tn)

to the reflected pulse or in the case of the PIRANA the transfer function of the trans-
mission filter and a time delay by application of the relevant transfer functions P(ω) =

E(ω)T(ω) exp(i[ω−ω0]tn).

6.2 Reconstruction using PIRANA

As mentioned we derived PIRANA from the TD-PIE in order to solve the additional
constraint of having to reconstruct the probe pulse as it is unknown. The modification to
the algorithm is necessary due to the probe being derived from the ’unknown’, (unknown
from the perspective of the measured intensity spectrogram), input pulse after reflection
by application of a filter. As such an extra step needs to be added to the TD-PIE in order
to also reconstruct the probe pulse. The added step updates the probe pulse with the
reconstructed spectral amplitude and phase before application of the transfer function of
the transmission filter as is illustrated in Fig. 6.2.

In order to understand how the probe pulse is updated consider: As mentioned the
input pulse Ei(t) is split into two replicas each identical to the input pulse with half
the intensity, these are the transmitted pulse and the reflected pulse both referred to as
E(t) since they are identical. The probe pulse P(t) is derived from the reflected pulse
by application of the spectral transfer function of the filter T(ω) and a temporal delay
formally described in the spectral domain by

P(ω) = E(ω)T(ω)ei(ω−ω0)tn (6.2.1)
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Figure 6.2: The addition of a step to update the probe pulse is showed which enables the pulse
reconstruction.

where ω0 is the carrier frequency of the laser. The task is to determine the unknown
electric field of the input pulse Ei(t) from an intensity spectrogram which consists of a
sequence of spectra S(ω, tn) recorded at different time delays tn of the probe pulse P(t)
by multiplication of said probe pulse with the transmitted pulse E(t).

As a starting point for the retrieval algorithm, we assume for both the initial electric
field E1(t) and the initial probe pulse P1(t) the inverse Fourier transform of the spectral
bandpass filter T(ω). In every iteration j all measured spectra n are processed. The
algorithm calculates the exit field Gn(t, tn) for a particular time delay tn of the probe
pulse Pj(t − tn) and the current estimate of the electric field En(t) of the pulse. Before
proceeding with the next iteration j we update the probe pulse according to

Pj+1(t− tn) = F−1
{

EN(ω)T(Ω)ei(ω−ω0)tn
}

. (6.2.2)

The best approximation to the actual input pulse appears typically after only a few iter-
ations j under ideal conditions i.e when high signal to noise measured intensity spectro-
grams are fed to the PIRANA.

Before performing any experiments we ran extensive simulations with the aim to iden-
tify the optimal experimental parameters, i.e. the bandpass filter, the time delay increment
∆t, and the number of spectra to record, as well as the optimal reconstruction parameters,
i.e. α and β.

We found that the bandpass filter should be centered at the carrier frequency of the
laser and its width should be less than half the bandwidth of the laser. Smaller widths
yield faster convergence, however, at the expense of signal strength. The spectral width of
the bandpass then determines the full width at half maximum of the illumination pulse,
i.e. FWHM{P(t)}. The time increment ∆t should be approximately 0.5 · FWHM{P1(t)}.
At this point it is important to note that the time delay is related to the temporal duration
of the illumination pulse and not determined by the sampling of the spectrogram, as in
the case for example of SHG-FROG. Conversely, the temporal resolution is determined
by the largest spectral side-bands which can be detected with a sufficient SNR. Spectra
should be recorded for as many time delays as signal can be detected.

The trends for α and β were found to be similar to time domain ptychography as
discussed in Chapter 5 section 5.2. In the reconstruction the choice of α is determined
mostly by the signal-to-noise ratio (SNR) and β by the illumination pulse duration and the
time delay. A suitable value for α was determined by analysing the RMS error (RMS refers
to the root mean square difference between theoretical and reconstructed spectrogram) for
sets of simulated noisy spectra as a function of α ∈ [0 . . . 1] and the SNR. For a measured
SNR of > 500, α ≈ 0.2 leads to the smallest RMS. Similarly, the value for β ≈ 0.5 was
determined by analyzing the RMS error as function of β ∈ ]0 . . . 1] and the ratio of the
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illumination pulse duration ∆t/FWHM{P(t)}. We would like to emphasize that α as
well as β can be varied within a wide range of values, the final result only changes by a
negligible amount, however, the rate of convergence may slow down.

6.3 Comparison of pulse reconstruction

Since the set-up is closely related to a SHG-FROG arrangement, we compare our results
to those obtained by a SHG-FROG. All measurements presented hereafter used the fol-
lowing parameters. The bandpass filter was programmed to have a rectangular spectral
transmission characteristic with a width of 3 nm centered at 800 nm. The delay time in-
crement of the probe pulse was ∆t = 300 fs and 11 spectra were recorded as the intensity
spectrogram for to be fed to our PIRANA and for SHG-FROG the auto-correlation was
done using temporal increments of 20 fs over the required temporal range. For the re-
construction we used β = 0.5 and α = 10−3 in the case of PIRANA and commercially
available software for the SHG-FROG reconstructions.

First we show that the respective retrieval algorithms perform adequately by calculat-
ing a spectrogram from the reconstructed pulse shapes. In order to do this we generate
a relatively complicated temporal pulse which results in temporal replicas by application
of the spectral transfer function,

H(Ω) = eiA sin(Ωτ+ϕ) (6.3.1)

defined around the carrier frequency Ω = ω − ω0. Four intensity spectrograms were
measured for input into each of the reconstructed modalities, namely SHG-FROG and
PIRANA. In all cases we used Eq. 6.3.1 with parameters A = 2.4, τ = 350 fs and
ϕ = 0, π/2, π, 3π/2. The results are shown in Fig. 6.3. In each case the measured in-
tensity spectrogram is shown with its reconstructed spectrogram below for comparison.
The top two rows shows the results for SHG-FROG and the bottom two rows shows the
results for PIRANA. In both cases excellent agreement between the reconstructed and
the measurements are seen and we note that the asymmetry of the PIRANA measure-
ments allows for visual distinction between phases with opposite sign in contrast to the
SHG-FROG results.

Next we explicitly show by analysis of a set of intensity spectrograms that our PIRANA
methodology is capable of unambiguously retrieving the sign of the phase of the pulse
in comparison to SHG-FROG which can not. This is done by application of a quadratic
phase transfer function

H(Ω) = eiaΩ2
(6.3.2)

to the input pulse, where Ω = ω − ω0. For our measured set of intensity spectrograms
we set a in Eq. 6.3.2 to values ranging from -15000 fs2 to 15000 fs2 in increments of
5000 fs2. Fig. 6.3 shows the results of recovered quadratic spectral phase by SHG-FROG
and PIRANA. While SHG-FROG results in the correct values for the quadratic spectral
phases, extracted from reconstruction, but random signs our scheme, PIRANA, recovers
both the value and the sign correctly which demonstrates the unambiguity of the spectral
sign retrieved and unambiguity of the time axis. As a side note, From Fig. 6.3 we see that
the pulse has a residual quadratic spectral phase of about a 1000 fs2.
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Figure 6.3: Comparison of measured and reconstructed spectrograms for both SHG-FROG and
PIRANA demonstrating the symmetric and asymmetric spectrograms measured for SHG-FROG
and PIRANA respectively.

Figure 6.4: Reconstructed high order chirped phase for both SHG-FROG and PIRANA, each colour
representing a reconstruction of the respective measured spectrogram, demonstrating that PIRANA
has no sign ambiguity.

Next, we analyse different combinations of second, third, and fourth order phase con-
tributions by application of the transfer function

H(Ω) = ei(φ2Ω2+φ3Ω3+φ4Ω4) (6.3.3)

defined around the carrier frequency ω0 as Ω = ω−ω0 to the input pulse with PIRANA
and SHG-FROG. The results of both retrievals are summarized in table 6.1. The second,
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third, and fourth order phases were φ2 = ±104 fs2, φ3 = ±2.5 · 105 fs3, and φ4 = ±5 ·
106 fs4, respectively. When disregarding the sign issue, we find that both, FROG and

Table 6.1: Columns 1 to 3 show the programmed second, third, and fourth order phases. The
numbers given (−1, 0 , 1) have to be multiplied by 104 fs2, 2.5 · 105 fs3, and 5 · 106 fs4 for the second,
third, and fourth order phase, respectively. Columns 4 to 6 show results of the FROG retrieval and
columns 7 to 9 results from the PIRANA scheme.

target FROG PIRANA
φ2 φ3 φ4 φ2 φ3 φ4 φ2 φ3 φ4

0 1 0 0.05 1.18 -0.18 0.05 1.15 -0.13
0 0 1 0.01 -0.09 0.97 0.02 0.07 0.84
1 0 -1 0.93 0.04 -0.90 0.90 -0.01 -0.90
1 1 -1 0.81 0.83 -0.85 0.94 1.04 -0.75

-1 -1 1 -0.90 -1.12 1.09 -1.03 -1.01 0.88
1 -1 -1 1.08 -0.83 -0.93 1.05 -0.94 -1.03

PIRANA, produce correct values for the six different combinations of φ1,2,3 tested.
Lastly we investigated a sinusoidal phase modulation to compare the extracted phase

from SHG-FROG to our reconstruction modality. In order to do this we again apply the
spectral transfer fucntion

f (ω) = eiA sin(Ωτ+ϕ), (6.3.4)

centered around the carrier frequency ω0 such that Ω = ω−ω0, to the input pulse. Four
intensity spectra were recorded for both modalities, namely SHG-FROG and PIRANA
using the parameters A = 2.4, τ = 350 fs and ϕ = 0, π/2, π, 3π/2 in the applied transfer
function Eq. 6.3.4. The respective resultant measured intensity spectrograms are fed to
the respective algorithms and the spectral phase extracted is plotted in Fig. 6.3. The top

Figure 6.5: Reconstructed phases for both (a) SHG-FROG and (b) PIRANA.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. TIME DOMAIN PTYCHOGRAPHY: PULSE CHARACTERIZATION 47

graph shows the phase extracted by SHG-FROG and the bottom graph the phase extracted
by our PIRANA methodology. We see that FROG can distinguish between a sinusoidal
(ϕ = 0) and a co-sinusoidal (ϕ = π/2) oscillation but not between two sinusoidal phase
oscillations with opposite sign (ϕ = 0 and ϕ = π). The PIRANA modality, however, can
distinguish between all four oscillatory phases.

In summary, our scheme has a number of distinct advantages. 1) In contrast to a SHG-
FROG there is no time ambiguity in the measurement, that is, not only the magnitude of a
phase modulation but also its sign can be unambiguously retrieved. 2) Only a few spectra
(on the order of 5 to 20) have to be recorded for PIRANA. 3) The small number of spectra
also results in an extremely fast convergence of the retrieval algorithm. 4) As mentioned
above the time delay increment ∆t is not related to the desired temporal resolution or
the wavelength sampling of the spectrometer, but only to the duration of P(t). The only
drawback is that the signal strength is somewhat lower because the spectral bandpass
filter in one arm lowers the intensity of the pulse.

In conclusion, we have demonstrated a new modality for ultrashort pulse reconstruc-
tion which is based on a retrieval algorithm derived from ptychography. It converges
extremely fast and reliably and can be easily extended to other non-linear processes, such
as DFG etc. Further the optical set-up is so close to SHG-FROG that one can easily con-
vert said setup to a PIRANA by inserting a transmission filter chosen as described with a
known spectral transmission response.
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Conclusion

We expanded on the analysis of the application of blazed gratings for spatial beam shaping
using 2D-SLMs to find an expression which explains how the application of a 2D-SLM in
a 4f-shaper can be realised. We then built a versatile optical set-up using 2D-SLMs which
allows us to individually tailor two beams for various measurements. Next we extended
ptychography, a spatial lens-less imaging technique, to the time domain for the first time
and have shown that the technique can be used to reconstruct, relatively quickly, arbitrary
temporal objects with a resolution dependent on the bandwidth of the spectrometer rather
than the probe pulse duration without any sign ambiguity in the recovered phase. We
then proceeded to extend the technique, for the first time, to pulse characterization using
a set-up very similar optically to a second harmonic generation frequency resolved optical
gating set-up, allowing for easy conversion from the one to the other, again showing the
extended technique is capable of quick characterization of arbitrary temporal pulse shapes
without any phase ambiguity.

In future, several possibilities exist to extend this work. The methodology is envis-
aged to be specifically valuable for a number of time-resolved pump-probe spectroscopy
schemes. Typically, an ultrashort pump pulse triggers a material response ‘object’ func-
tion which is then probed by another ultrashort probe pulse. Depending on the type of
spectroscopy the probe pulse may have a different wavelength than the pump or may
even be an extremely broad super-continuum as in transient absorption. Irrespective of
the specific type of spectroscopy, the probe pulse duration needs to be shorter than the
fastest dynamical feature to be measured. With the time domain ptychography probing
scheme the requirement of a sufficiently short probe pulse is relaxed. Moreover, the time
delays required to raster scan the material response (object function) can be orders of
magnitudes larger than in traditional pump-probe spectroscopy. This is especially useful
when probing requires ultrashort pulses in regions where they are not readily available,
for example in the UV. Another advantage, albeit more technical in nature, is that beam
delivery systems no longer need to be extremely broadband, e.g. dielectric mirrors, wave
plates etc., which are often expensive and difficult to produce. A longer probe pulse may
also generate less coherent artefacts, making data interpretation easier. For example, in
homodyne transient grating spectroscopy the generated third order polarization can be
expressed as

P (3)(~k, t) = −P(t)

∞̂

0

dt1 χ(3)(t1)
∣∣Ep(t + τ − t1)

∣∣2
with the time delay τ between the pump pulse Ep(t) forming the transient grating and the
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probe pulse P(t). Time domain ptychography would allow to reconstruct the convolution
of the pump pulse and the third order material response without the need of a short
probe pulse. If the pump pulse is known from a separate measurement or assumed to be
impulsive, the material response can be readily extracted.

Although the ptychographic reconstruction of transient phenomena in the UV, VIS,
or IR regime is of interest, the largest potential is expected to unfold in the X-ray regime.
With the emergence of spatially and temporally coherent pulsed X-ray sources the scheme
proposed here would allow for new time-resolved imaging modalities. Both optical
pump/X-ray probe and X-ray pump/X-ray probe schemes are conceivable, the latter how-
ever requires a nonlinear interaction with several X-ray photons. The shortest X-ray pulses
reported to date are 3 fs [55] which would allow time domain ptychography to reconstruct
ultrafast phenomena in the attosecond range. Most of the advantages outlined above also
apply here. Furthermore, if time domain ptychography is combined with spatial pty-
chography, the emerging concept will pave the road towards time-resolved imaging, i.e.
time-resolved imaging of aperiodic atomic-scale objects on relevant time scales. These are
femtoseconds for molecular or attoseconds for electronic dynamics and thus, well within
reach.

Further refinement of the pulse characterization ptychographic reconstruction method
could be investigated in order to simplify the optical set-up such that it could become a
simple and accurate diagnostic tool to implement in ultrashort laser labs.
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A

Mathematical derivations

A.1 Temporal envelope calculation

Consider the Fourier transform for which extensive transform pair tables exist

F(X) =

ˆ ∞

−∞
f (x)e−ixXdx (A.1.1)

and the optical Fourier transform, where fu denotes the input field at the focal plain a
distance f in front of the lens, Fv denotes the output field at the focal plane a distance f
behind the lens and C = A

iλ f ,

Fv(X) = C
ˆ ∞

−∞
fu(x)e−iγxXdx (A.1.2)

and note that the main difference is the phase scaling factor γ = 2π
λ f . By substitution of

y = γx, dx = dy
γ and x = y

γ into Eq. A.1.2

Fv(X) =
C
γ

ˆ ∞

−∞
fu

(
y
γ

)
e−iyXdy (A.1.3)

the form of the optical Fourier transform is such that existing Fourier transform tables can
be easily applied with the main difference being the function scaling factor γ.

One can use the Fourier transform pair for a scaled function

f (αu) F←→
1
|α| F

(
U
α

)
(A.1.4)

substituting α = 1
γ , U = X, u = y and x = y

γ to find an expression which can be used to
express standard Fourier transforms as optical Fourier transforms,

f (x) Fopt
←−→

CF (γX) . (A.1.5)

One can use the relation in Eq. A.1.5 to write the optical Fourier transform for a
Guassian input function,

exp
(
−x2

2σ2
x

)
Fopt
←−→

Cσx
√

2π exp
(
−σ2

x γ2X2

2

)
. (A.1.6)

We can use the spectral calibration axis to convert between spectrum and space in the
back focal plane of the lens with ω = ∆ω

∆X X rad, thus we can calculate the Gaussian width

51
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σf of any spectral component using the optical Fourier transform and then converting to
frequency. If we consider that the SLM in combination with a transfer function is given
by HTRF and the Gaussian illumination of each spectral component is given by FG then
we can write an expression for the illumination on the SLM as

F(ω) =

ˆ ∞

−∞
FG(ω−ω0)HTRF(ω0)dω0 (A.1.7)

which can be recognised as a convolution. Thus we can multiply the temporal function
FG(t) with the temporal transfer function HTRF(t). To calculate the spectral width of the
Gaussian focus in frequency we use Eq. A.1.6 and solve for the spectral Guassian width
σf,

σf =
1

γσx
· ∆ω

∆X

=
λ f

σx2π
· ∆ω

∆X
= 0.930 rad/ps

where σx = 2 mm, f = 130 mm, λ = 800 nm, ∆ω = 0.898 rad/ps and ∆X = 8 µm.
The Fourier transform could be used to get the temporal width of the spectral Gaussian
function.

σt =
1
σf

=
2π

0.930 rad/ps

= 67.6× 102 fs

A.2 Grating pair phase analysis

Here we calculate the modification of the spectral phase for the grating pair implemented
in our double beam temporal pulse shaper. The grating equation Eq. 2.2.1 can be simpli-
fied to find the propagation angle β(λ) of wavelengths for our 10 nm source with

β(λ) ≈ λ

p
(A.2.1)

where λ is the wavelength and p is the pitch of the grating and the approximation is made
that sin β ≈ β. Now the optical path of each spectral component L(λ) can be calculated for
the case where the output is aligned with the central wavelength λ0 in the first diffraction
order using

L(λ) =
D

cos λ−λ0
p

(A.2.2)

where D is the distance between the grating pair. The phase of each wavelength φ(λ) can
then calculated by dividing by the respective wavelength,

φ(λ) =
L(λ)

λ
(A.2.3)
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Figure A.1: Graph of the quadratic phase fit to extract the amount of quadratic phase introduced by
our grating pair. The calculation is indicated by the solid line and the fit is indicated by the dashed
line.

the result from which can be used to fit a polynomial to extract the spectral phase distor-
tion. The resultant plot and fit of this calculation is shown in Fig. A.1. The parameter
extracted from the polynomial fit when p =160 µm, λ0 =800 nm and D = 45 cm is as
follows: 7.97 fs2, -3.39 fs3, 1.43 fs4.
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B

Reconstructions

Here we show, in Figs. B1-9, reconstructions for various temporal object functions. In
all cases the reconstructions converged in 500 iterations with reconstruction parameters
β = 0.4, α = 0.1 and ∆t = 200 fs. In each subsequent figure the measured intensity
spectrogram is shown as an inlay at the top left and below it the intensity spectrogram
calculated from the reconstructed temporal object for comparison. The reconstructed tem-
poral object is plotted along with its phase with a red and blue dashed line respectively
and the theoretically calculated temporal object as a solid red and blue line for compari-
son.

For spectral slice probe pulses of 6 nm and 3 nm the measured intensity spectrograms
were used as is, but in the case of the 1.5 nm recordings it was necessary to apply some
filtering before using the measured intensity spectrograms as input to the time domain
ptychographic iterative engine (TD-PIE).

54
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Figure B.1: Reconstructions of temporal object functions measured by application of an amplitude
and phase spectral transfer functions probed by a 6 nm spectral slice probe, showing (a) a pulse
train with τ = 400, γ = 5 and M + 1 = 6 replicas, (b) an alternating pulse train with τ = 400, γ = 5
and M + 1 = 6 and (c) a double pulse with τ = 500.
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Figure B.2: Reconstructions of temporal object functions measured by application of a polynomial
phase spectral transfer functions probed by a 6 nm spectral slice probe, showing (a) quadratic
spectral phase with a = 104, b = 0 and c = 0, (c) quadratic spectral phase with a = −104, b = 0 and
c = 0, (c) quadratic spectral phase with a = 2× 104, b = 0 and c = 0, (d) quadratic spectral phase
with a = −2× 104, b = 0 and c = 0, (e) third order spectral phase with a = 0, b = 5× 105 and
c = 0, (f) third order spectral phase with a = 0, b = −5× 105 and c = 0, (g) fourth order spectral
phase with a = 0, b = 0 and c = 5× 106 and (h) fourth order spectral phase with a = 0, b = 0 and
c = −5× 106.
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Figure B.3: Reconstructions of temporal object functions measured by application of a sinusoidal
phase spectral transfer function probed by a 6 nm spectral slice probe, showing (a) pulse replicas
generated with A = π/2 and τ = 400 fs (b) pulse replicas generated with A = 2.4 and τ = 400 fs
and (c) pulse replicas generated with A = π and τ = 400 fs.
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Figure B.4: Reconstructions of temporal object functions measured by application of an amplitude
and phase spectral transfer functions probed by a 3 nm spectral slice probe, showing (a) a pulse
train with τ = 400, γ = 5 and M + 1 = 6 replicas, (b) an alternating pulse train with τ = 400, γ = 5
and M + 1 = 6 and (c) a double pulse with τ = 500.
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Figure B.5: Reconstructions of temporal object functions measured by application of a polynomial
phase spectral transfer function probed by a 3 nm spectral slice probe, showing (a) quadratic spectral
phase with a = 104, b = 0 and c = 0, (c) quadratic spectral phase with a = −104, b = 0 and c = 0,
(c) quadratic spectral phase with a = 2× 104, b = 0 and c = 0, (d) quadratic spectral phase with
a = −2× 104, b = 0 and c = 0, (e) third order spectral phase with a = 0, b = 5× 105 and c = 0, (f)
third order spectral phase with a = 0, b = −5× 105 and c = 0, (g) fourth order spectral phase with
a = 0, b = 0 and c = 5× 106 and (h) fourth order spectral phase with a = 0, b = 0 and c = −5× 106.
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Figure B.6: Reconstructions of temporal object functions measured by application of a sinusoidal
phase spectral transfer function probed by a 3 nm spectral slice probe, showing (a) pulse replicas
generated with A = π/2 and τ = 400 fs (b) pulse replicas generated with A = 2.4 and τ = 400 fs
and (c) pulse replicas generated with A = π and τ = 400 fs.
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Figure B.7: Reconstructions of temporal object functions measured by application of an amplitude
and phase spectral transfer functions probed by a 1.5 nm spectral slice probe, showing (a) a pulse
train with τ = 400, γ = 5 and M + 1 = 6 replicas, (b) an alternating pulse train with τ = 400, γ = 5
and M + 1 = 6 and (c) a double pulse with τ = 500.
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Figure B.8: Reconstructions of temporal object functions measured by application of a polynomial
phase spectral transfer function probed by a 1.5 nm spectral slice probe, showing (a) quadratic
spectral phase with a = 104, b = 0 and c = 0, (c) quadratic spectral phase with a = −104, b = 0 and
c = 0, (c) quadratic spectral phase with a = 2× 104, b = 0 and c = 0, (d) quadratic spectral phase
with a = −2× 104, b = 0 and c = 0, (e) third order spectral phase with a = 0, b = 5× 105 and
c = 0, (f) third order spectral phase with a = 0, b = −5× 105 and c = 0, (g) fourth order spectral
phase with a = 0, b = 0 and c = 5× 106 and (h) fourth order spectral phase with a = 0, b = 0 and
c = −5× 106.
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Figure B.9: Reconstructions of temporal object functions measured by application of a sinusoidal
phase spectral transfer function probed by a 1.5 nm spectral slice probe, showing (a) pulse replicas
generated with A = π/2 and τ = 400 fs (b) pulse replicas generated with A = 2.4 and τ = 400 fs
and (c) pulse replicas generated with A = π and τ = 400 fs.
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