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Abstract

Impact of the 138,139La Radiative Strength Functions and

Nuclear Level Densities on the Galactic Production of
138La

B. V. Kheswa

Department of Physics,

University of Stellenbosch,

Private Bag X1, Matieland 7602,

South Africa.

Dissertation: PhD (Physics)

December 2014

138La is a very long-lived and low abundant p-isotope. Most p-nuclei with

Z > 54 are thought to be produced through photodisintegration of s- and

r-process seed nuclei. However, this p-process cannot satisfactorily explain the

observed abundance of 138La, and more exotic processes, such as ⌫e + 138Ba !
138La + e� have to be considered. This ⌫-process can reproduce the observed

solar abundance of 138La, but the significance of the p-process cannot be ruled
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abstract iii

out due to very high uncertainties in its predicted reaction rates. These errors

have been discussed to be mainly due to the unavailability of the experimental

nuclear level densities and radiative strength functions of 138,139La, which are

critical ingredients for astrophysical reaction rate calculations based on the

Hauser-Feshbach approach.

Thus, nuclear physics measurements are necessary to place the nuclear proper-

ties on a strong footing, in order to make statements regarding the importance

of p- and ⌫-processes. In this research project the experimental nuclear level

densities and radiative strength functions of 138,139La were measured below

the neutron thresholds. From this new experimental data, the Maxwellian

averaged cross sections for the 137La(n, �) and 138La(n, �) reactions, at the

p-process temperature of 2.5⇥109 K, were computed with the TALYS code.

Using these reaction rates the nucleosynthesis calculations in the O/Ne-rich

layers of Type II supernovae were performed. The results imply that the stan-

dard p-process still under-produces 138La, which puts the ⌫-process on a very

strong footing as the main production process for 138La.
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Opsomming

B. V. Kheswa

Departement Fisika,

Universiteit van Stellenbosch,
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Proefskrif: PhD (Fisika)
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138La is ’n p-isotoop met ’n baie lang halfleeftyd. Daar word tans vermoed

dat p-nukiede met Z > 54 geproduseer word deur fotodisintegrasie van s-

en r-proses saadnukliede. Nogtans verklaar hierdie p-proses die waargenome

natuurlike voorkoms van 138La nie behoorlik nie, en meer eksotiese prosesse

soos byvoorbeeld ⌫e+ 138Ba ! 138La + e� moet in aanmerking geneem word.

Hierdie ⌫-proses kan die waargenome natuurlike voorkoms van 138La verklaar,

maar die belangrikheid van die p-proses kan nie afgewys word nie weens die

onsekerheid in die voorspelde reaksie snelheid. Sodanige onsekerhede word

bespreek en word hoofsaaklik toegeskryf aan die gebrek aan eksperimentele

vlakdigthede en stralings sterkefunksies van die kerne 138,139La, wat van kri-
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Opsomming v

tiese belang is vir berekeninge van astrofisiese reaksie snelhede gebaseer op die

Hauser-Feshbach benadering.

Kernfisiese metings is derhalwe noodsaaklik om die eienskappe van kerne op

’n stewige grondslag te plaas sodat uitlatings gemaak kan word omtrent die

belangrikheid van p- en ⌫-prosesse. In hierdie esperimentele navorsingsprojek is

die kern vlakdigthede en stralings sterkefunksies van 138,139La onder die neutron

reaksiedrumpels gemeet. Die nuwe gemete data maak dit moontlik om die

Maxwell-gemiddelde kansvlakke vir die 137La(n, �) en 138La(n, �) reaksies by

’n p-proses temperatuur van 2.5 x 109 K met die TALYS program te bereken.

Hierdie reaksie snelhede is daarna gebruik om berekeninge van elementvorming

in die O/Ne-ryke lae van Tipe-II supernovas te maak. Die resultate wys uit

dat die stadaard p-proses nie genoegsame 138La produseer nie, wat derhalwe

die ⌫-proses op ’n baie stewige grondslag plaas as die hoof produksie proses

vir 138La.
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Chapter 1

Introduction

After the Big Bang only nuclear reactions such as primordial nucleosynthesis,

�-decay and the annihilation process took place in the Universe due to high

temperatures (T9 ⇡ 15p
t

for time t in seconds, where T9 = 1 is equivalent to T

= 109 K) and energies (order of MeV) [1]. These produced very light isotopes

up to 7Li and resulted in an initial composition of the universe consisting

almost entirely of p, d, 3He, 4He, e�, � rays and neutrinos. After 105 years

temperatures and energies reached ⇡ 4⇥103 K and ⇡ 0.4 eV, respectively, as

the universe was expanding and cooling down [1]. At these temperatures and

energies the electrons could remain bound to nuclei creating atoms. A billion

years later stars and galaxies formed by gravitational attraction. In stars with

mass 0.1M� < M < 1.5M� processes such as triple-↵ and hydrogen burning,

which produced nuclei up to C and O, became dominant, while those stars

with mass M > 8M� underwent the ↵-burning process which resulted in the

formation of heavier nuclei up to 28Si. As the temperature increased due to

gravitational contraction, a sequence of C, O, Ne and Mg burning took place,

producing nuclei up to Fe.

During ↵-burning phases of the red giant stars where the temperature is ⇡ 1

- 3⇥108 K [2], extra neutrons in the density range of ⇡ 2 - 4⇥108 cm�3 [2] are

1
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produced through (↵, n) reactions. These are the neutrons that drive the slow

neutron capture (s)-process that synthesizes half of the observed abundance

of nuclei heavier than Fe. In contrast the rapid neutron capture (r)-process

takes place during explosive scenarios such as core collapse supernovae where

there are high neutron densities (> 1020 cm�3) and temperatures (⇡ 2 - 3⇥109

K). Once the r-process ceases these radioactive nuclei �-decay to stable nuclei

up to the actinide region. This process produces heavy neutron rich isotopes

up to U where fission begins to be more probable. Figure 1.1 illustrates the

r-process path.

Figure 1.1: Illustration of r-, rp- and p-processes paths[1].

Even though most isotopes heavier than Fe result from s- and r-processes there

are proton-rich (p)-isotopes, ranging from Se to Hg, that cannot be produced

in this fashion [3], because they are shielded from these processes by the valley

of � stability. Several other processes by which p-isotopes can be produced

are invoked. Nuclei with low-proton numbers are produced by the rapid pro-

ton capture (rp)-process in high-temperature and proton-rich environments,

such as found in neutron stars where high-proton densities are transfered from
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Figure 1.2: The contribution of s-, r- and p-processes on solar abundances [1].

the companion star to the neutron star. However this synthesis is limited to

nuclei with Z  54 due to the SnSbTe cycle [4] where ↵-decay terminates

the rp-process. Thus the photodisintegration (p)-process that occurs in the

O/Ne-rich layers of core-collapse supernovae remains the main source to cre-

ate heavier p-isotopes. Above Te, p-nuclei are synthesized in three ways: i)

through destruction of their neutron richer isotopes by successions of (�, n)

reactions, ii) through photodisintegration reactions such as (�, p) and (�,↵)

reactions and iii) through �-decay of nuclei produced in the p-process. The

paths of the rp- and p-processes are also demonstrated in figure 1.1. Figure 1.2

shows the contribution of s-, r- and p-processes on solar system abundances.

1.1 Physics Motivation and Objectives

The p-process can explain the abundance of most heavy p-nuclei. The odd-odd

neutron-deficient 138La is very long-lived (half-life of ⇡ 100 Gyr) but one of
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the least abundant (⇡ 0.1% natural abundance) nuclei in the solar system and

the p-process cannot satisfactorily explain its observed solar abundance. This

is demonstrated by figure 1.3 where 138La is calculated to be under-produced

by more than a factor of 10.

Figure 1.3: The p-abundance expressed by means of a normalized overproduction
factor, hF i/F0, as function of mass number A computed by Ref. [3] (open squares)
and Ref. [5] (black squares), using different sets of nuclear reaction rates. The
⌫-processes were not included in these calculations.

Hence, more exotic reactions such as neutrino (⌫) processes have been pro-

posed to explain its synthesis [6, 7]. These reactions can explain the observed

solar abundance of 138La through ⌫e + 138Ba ! e� + 138La (see figure 1.4 for il-

lustration). Nevertheless, the significance of the p-process cannot be ruled out

due to the limited knowledge and uncertainties of nuclear properties entering

the 138La production, such as the nuclear level densities (NLD) and radiative

strength function, (RSF) [3]. Although, these are critical ingredients of the

Hauser-Feshbach formalism [8] on which the astrophysical reaction rate calcu-

lations are based, they have never been measured below the neutron binding

Stellenbosch University  http://scholar.sun.ac.za



Chapter 1 5

energy for 138La and below 6 MeV for 139La [9] which is the significant � ray

energy region for the synthesis of 138La. It has been even pointed out in Ref.

[3] that the errors related to these nuclear properties can amount to a factor

of ⇡ 2 for 139La(�, n)138La and 138La(�, n)137La (production and destruction

of 138La) at the relevant p-process peak temperature T9 ⇡ 2.5.

Figure 1.4: The p-abundance obtained with neutrino luminosities L⌫ [1051 ergs
s�1] = (3, 4, 16) (circles) and (30, 40, 160) (triangles) for (⌫e, ⌫̄e, ⌫x), and without
(squares) ⌫ interaction [3].

Nuclear cosmochronometers are also of great interest in nucleosynthesis stud-

ies. They are used to measure ages of nucleosynthesis processes and hence

stellar ages. For example U, which was suggested by Rutherford as a potential

chronometer, has been used to estimate the stellar age [10]. In total there are

six known very long-lived nuclear chronometers with half-life on the order of

Gyr namely 238U, 40K, 232Th, 87Rb, 187Re and 176Lu [7]. These chronometers

can only be used to measure ages of s- and r-processes, but there is no nuclear

cosmochronometer for ⌫-processes. However, if 138La is synthesized in the ⌫-
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process, its long half-life of ⇡ 100 Gyr may be used to estimate the elapsed

time from its creation to the present time.

Clearly the nuclear physics parameters (NLD and RSF) and their uncertainties

must be carefully measured to be able to confidently use the results in model

calculations and to unambiguously investigate the importance of the p-process

and / or ⌫e-process as the main process for the production of 138La.

The objectives of this thesis are the following: i) measure the RSF and NLD

of 138,139La using the 139La(3He, 3He�)139La and 139La(3He, ↵)138La reactions

with the so-called Oslo Method, ii) calculate the 137La(n, �) and 138La(n, �)

cross-sections using the newly measured RSF and NLD obtained with Hartree-

Fock-Bogoliubov (HFB) + Combinatorial model [11] as input parameters, iii)

determine the corresponding astrophysical Maxwellian-average cross-sections

at the p-process temperature and investigate their impact on 138La p-process

production and destruction, iv) address the astrophysical implications regard-

ing p- and ⌫e-processes.
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Theory and Literature Review

2.1 Oslo Method

The Olso Method is a model dependent experimental technique, based on

the Brink hypothesis, for the simultaneous extraction of radiative strength

function, RSF, and nuclear level density, NLD. This method was developed

by the nuclear physics group at the University of Oslo in the 1980s and has

received plenty of global recognition in the field of nuclear physics and nuclear

astrophysics. It consists of three major steps: 1) unfolding of the continuum �

ray spectrum, 2) extraction of the primary � ray matrix and 3) simultaneous

extraction of the RSF and NLD. These major steps are discussed below. The

detailed review of this method is provided in Refs. [12, 13].

2.1.1 Unfolding of a continuum � ray spectrum

A statistical � ray spectrum is a broad energy distribution with � ray energy

peaks which are closely spaced and unresolvable with the currently available

experimental resolution. This spectrum consists of contributions from different

processes in which � rays interact with matter. These are photoelectric effects,

pair production and Compton scattering and all have different energy depen-

7
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dences. To obtain a true full energy spectrum an experimentally observed

� ray spectrum has to be properly unfolded to eliminate contributions from

pair production and Compton scattering. This is achieved using the Compton

subtraction method which makes use of the experimentally measured response

functions, R(E,E�), where E is the energy deposited by the � ray with an

initial energy of E�.

2.1.2 Detector Response Matrix

Ideally, R(E,E�) must be experimentally established for all possible E� but

this is impractical. As a result, R(E,E�) can only be measured for a finite

number of � ray transitions. By interpolating between the spectra of those

transitions, R(E,E�) for all possible E� can be determined. In the case of

the NaI(Tl) (Sodium Iodide doped with Thallium) detectors (referred to as

the CACTUS array see chapter 3) ten R(E,E�) of monoenergetic � rays were

measured in the energy region of 122 - 15110 keV [14]. The full energy, double

escape, single escape and annihilation peaks have been removed from these

response functions due to the following reasons:

(i) To simplify the interpolation between response functions since the positions

and intensities have different energy dependence.

(ii) To be able to easily create a new response matrix with the appropriate

energy resolution, in cases where the actual experimental resolution differs

from the resolution of the observed response functions.

(iii) To be able to smooth the components of the spectrum with different energy

resolutions (see section 2.1.4).

The interpolated full energy, single escape, double escape and annihilation

peaks can be obtained by fitting the Gaussian function at interpolated E�.
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The observed Compton background spectra of different E� differ in dynamical

range (see figure 2.1). Hence, the interpolation is performed between channels

that correspond to the same � ray Compton scattering angle ✓ as illustrated

in figure 2.1.

Figure 2.1: Interpolation of the Compton part from measured response functions
c1 and c2 [14].

The counts of the interpolated Compton background at a given ✓ are calculated

using [14]

c(E) =

✓
dE

d✓

◆�1

E
�

 
c1(E1)

✓
dE

d✓

◆

E
�1

+
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E�2 � E�1

!

⇥
 
c2(E2)

✓
dE

d✓

◆

E
�2

� c1(E1)

✓
dE

d✓

◆

E
�1

!
,

(2.1)
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where E�, E�1, E�2 are centroids of the full energy peaks of the interpolated

spectrum and reference spectra. The corresponding energies that the electrons

deposit in the detector due to Compton scattering at angle ✓ are denoted by E,

E1 and E2. The quantities
�
dE
d✓

�
E

�

,
�
dE
d✓

�
E

�1
and

�
dE
d✓

�
E

�2
take into account the

fact that the detected energy of a Compton scattered � ray strongly depends

on ✓ and � ray energy.

In the E� region of 0 - Eb.sc, where Eb.sc is the backscattering energy, a spectrum

is dominated by background events such as X rays. Therefore, in this region the

interpolation is performed between the same channel numbers. In the energy

region above the Compton edge the Compton spectrum shows few counts and

therefore this region should also be interpolated. The interpolation in this

region is also performed between the same channel numbers.

2.1.3 The Folding Iteration Method

The Compton subtraction method requires an unfolded � ray spectrum, u,

as a starting point. The unfolded spectrum is obtained using the difference

approach of the folding iteration method which allows u to be obtained using

[14],

f = Ru (2.2)

where f and R represent the folded � ray spectrum and response matrix of

the CACTUS array, respectively.

This means that more improved trial spectra u can be obtained, folded and

compared to the observed spectrum r. The entries of R are response functions,

Rij, at channel i for E� that corresponds to channel j. The folding iteration

method consists of the following steps:
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i) The observed spectrum r is used as a first trial spectrum: u0 = r

ii) u0 is folded using equation (2.2) giving f 0

iii) The next trial function, u1, is calculated from u1 = u0 + (r � f 0)

iv) u1 is folded according to equation (2.2) to obtain f 1

v) Use this f 1 to calculate the next trial spectrum u2 from u2 = u1 + (r� f 1)

The procedure is repeated until f i ⇡ r where i is the number of iterations

which is typically 10 - 30.

2.1.4 The Compton Subtraction Method

Once the unfolded spectrum u is obtained, it can be used to produce a much

less fluctuating unfolded spectrum using the Compton subtraction method

[14]. This method begins by defining a new spectrum,

v(i) = pf (i)u(i) + w(i) (2.3)

which represents the observed spectrum minus Compton contribution. The

first term pf (i)u(i) represents the full energy contribution at channel number

i and probability, pf , that an event corresponds to the full energy peak can

be obtained from Ref. [14]. The second term w(i) = us(i � i511) + ud(i �

i1022) + ua(i511) includes the contribution from single escape, double escape

and annihilation processes, respectively. These contributions are expressed as

us(i� i511) = ps(i)u(i) (2.4)
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ud(i� i1022) = pd(i)u(i) (2.5)

ua(i511) =
X

i

pa(i)u(i) (2.6)

where i511 and i1022 are channels with E� = 511 keV and 1022 keV, respectively.

The probabilities ps, pd and pa, that an event belongs to a single escape or

double escape or annihilation peak are taken from Ref. [14].

The ua spectrum has all its counts in channel i511 and has to be smoothed with

a resolution of 1.0 FWHM (full width at half maximum) to obtain the energy

resolution of the experimentally observed spectrum [14]. The energy resolution

of us, pf (i)u(i) and ud spectra are determined by the energy resolutions of the

observed spectrum, 1.0 FWHM, and the response matrix, 0.5 FWHM, yielding
p
1.02 � 0.52 FWHM = 0.87 FWHM. Hence, these spectra are smoothed with

additional 0.5 FWHM to obtain a spectrum with the observed resolution of

1.0 FWHM.

The Compton background spectrum, c(i), is then extracted by subtracting the

new spectrum v(i) from the observed r(i) and this yields

c(i) = r(i)� v(i). (2.7)

The counts of this spectrum strongly fluctuate from channel to channel because

it depends on the fluctuating unfolded spectrum u. This needs to be corrected

since the Compton background is supposed to be a slow varying function of E�.

Hence it is smoothed using the resolution of 1.0 FWHM [14]. The replacement
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of c(i) by csmoothed(i) and substitution of equation (2.3) into equation (2.7)

results in,

u(i) =
1

pf
[r(i)� csmoothed(i)� w(i)] (2.8)

which is the new and less fluctuating unfolded � ray spectrum. Once the

unfolded spectrum has been obtained it should be corrected for the energy

dependent � ray total detection efficiency, ✏tot(i), which is also multiplied by

the efficiency due to the discriminator threshold. Thus the true unfolded � ray

spectrum, utrue(i), is given by

utrue(i) =
u(i)

✏tot(i)
. (2.9)

This is a spectrum from which a matrix of excitation energy, Ex, vs primary �

rays is constructed. Figure 2.2 shows examples of unfolded spectra, u, obtained

using a Compton subtraction method, corresponding raw � ray spectra, r, and

Compton background spectra, c, obtained using equation (2.7).

2.1.5 The First Generation Method

The first generation method is an iterative procedure which is used to extract

an Ex vs primary � ray matrix from an unfolded Ex vs � ray matrix. It is based

on the assumption that states populated through the first � ray transitions

have the same decay properties as states populated directly in the particle

reaction at that excitation energy.

The unfolded Ex vs � ray matrix is divided into excitation energy bins of

about 200 keV width depending on the experimental energy resolution. The

first generation � ray spectrum of each Ex bin is estimated by [15]
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Figure 2.2: The raw (r), Compton (c) and unfolded (u) spectra of 152Eu and 162Dy.
This figure is modified from Ref. [14].

hi = fi � gi (2.10)

where fi is a � ray spectrum of excitation energy bin i and gi is a weighted

sum of all spectra of the excitation bins j < i that is

gi =
X

allj<i

nijwijfj. (2.11)

The coefficients nij are correction factors for the different cross-sections of

populating levels in bin i and underlying levels in bin j. They are determined

in such a way that the product of the total area of each spectrum fi and nij

yields the same number of cascades. This is achieved using the multiplicity

normalization method that was discussed in Ref. [16] and hence
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nij =
hMjiAi

hMiiAj

(2.12)

where hMji and Aj are the average multiplicity of � ray in bin j and the total

number of counts of spectrum fj, respectively. The average multiplicity of �

rays can be determined from [13],

hMji =
Ej

x

hE�i
(2.13)

where Ej
x and hE�i are excitation energy of bin j and average � ray energy

of the � ray spectrum fj. The weighting function wij is the probability of

decay from bin i to bin j and
P

j wij = 1. Hence, the distribution of wij is

the same as hi that is unfolded with the response function of the CACTUS

multi-detector array. This close relationship between wij and hi is used to

determine them simultaneously through the following fast converging iterative

procedure:

i) Define the trial function wij, it can be an unfolded spectrum fi or a constant

function

ii) Use wij from step i) to calculate hi

iii) Transform hi to wij, i.e. give hi the same energy calibration as wij and

normalize the area hi to 1

iv) If the current wij ⇡ previous wij then convergence is achieved, which takes

typically 10 - 30 iterations

v) Otherwise start from step ii)
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In cases when Mi is well determined an area consistency check can be applied

to equation (2.10) so that the area of the first generation matrix is A(hi) =

A(fi)�↵A(gi), where the correction factor ↵, which is close to unity, is given by

↵ =
⇣
1� 1

M
i

⌘
A(f

i

)
A(g

i

) . This factor is useful in cases where there is an improper

choice of the weighting function. Figure 2.3 illustrates the first generation

method. The typical primary � ray matrix that is extracted with the above

method is shown in figure 2.4 together with its corresponding unfolded matrix

obtained using the unfolding procedure discussed in the previous section.

Figure 2.3: Extraction of the first generation matrix [15].

2.1.6 Extraction of Radiative Strength Function and

Nuclear Level Density

According to Fermi’s Golden Rule the decay probability, �if , between every

initial state i and final state f is proportional to the transition matrix ele-

ment, |hf |H 0|ii|2, and the level density at the final state, ⇢(Ef ) [17]. That is

�if = 2⇡
h̄
|hf |H 0|ii|2⇢(Ef ). Further, the primary � ray matrix is proportional to

the decay probability of emitting a � ray of energy E�. The assumption that

the residual nucleus reaches a compound-like state before � ray emission means
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Figure 2.4: The unfolded and first generation matrices of 50V [13].

that the relative probability for decay into any specific set of final states is in-

dependent of how the compound nucleus was formed [18]. Hence an equivalent

decay probability expression for the primary � ray matrix can be written as

P (Ei, E�) / ⇢(Ef )Tif , where Tif is the � ray transmission coefficient for the �

decay from state i to state f [12, 13]. The Brink hypothesis states that a giant

electric dipole resonance (GEDR) can be built on every excited state and its

properties do not depend on the temperature of the nuclear state on which it

is built [19]. Assuming that the Brink hypothesis is valid and generalizing it to

any type of collective excitation means that the � ray transmission coefficient

does not dependent on the properties of the initial and final states. It only

depends on the � ray energy E�. As a result Tif can be replaced by T (E�).

Therefore, a first generation matrix can be factorized as [12]:

P (Ex, E�) / ⇢(Ef )T (E�) (2.14)

where T (E�) and ⇢(Ef ) are the � ray transmission coefficient and level density

at Ef = Ex � E�, respectively. It should the emphasized that this relation is

only applicable at high excitation energy since it only holds for compound
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states with higher degrees of freedom. The T (E�) and ⇢(Ef ) are extracted

by fitting theoretical first generation matrices Pth(Ex, E�) to the experimental

P (Ex, E�) and by minimizing

�2 =
1

N

X

E
x

X

E
�

(Pth(Ex, E�)� P (Ex, E�))

�P (Ex, E�)
(2.15)

where N and �P (Ex, E�) are the degrees of freedom and the uncertainty in

the primary matrix according to the iterative procedure presented in Ref. [12]

and

Pth(Ex, E�) =
⇢(Ef )T (E�)P

E
�

⇢(Ef )T (E�)
. (2.16)

Figure 2.5 shows an example of a fitted and factorized region of P (Ex, E�) and

corresponding Pth(Ex, E�).

Figure 2.5: Example of a fitted region of a P (Ex, E�) (a) and corresponding
Pth(Ex, E�) (b) [13].
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Once the ⇢(Ef ) and T (E�) have been extracted, infinitely many solutions of

P (Ex, E�) can be found of the form

⇢̃(Ef ) = A⇢(Ef )e
↵E

f (2.17)

T̃ (E�) = BT (E�)e
↵E

� . (2.18)

The ↵ parameter is the common slope between ⇢̃(Ef ) and T̃ (E�) and A and

B are normalization parameters. The parameters ↵ and A are obtained by

normalizing ⇢̃ to ⇢(Sn) and the level density of known discrete states, where

Sn is the neutron separation energy. Note that, for simplicity, in the remainder

of this thesis the notations T and ⇢ are used instead of T̃ and ⇢̃. The ⇢(Sn)

can be calculated from [13]

⇢(Sn) =
2�2

D0(JT + 1)e[�(J
T

+1)2/2�2] + e(�J2
T

/2�2)JT

(2.19)

where �, D0, JT are a spin cut-off parameter, average neutron resonance spac-

ing and spin of a target nucleus in (n, �) reactions, respectively. The average

neutron resonance spacing and JT can be obtained from Refs. [20, 21], respec-

tively. The spin cut-off parameter is obtained from the back-shifted Fermi gas

formula (see section 2.2.1).

The absolute normalization parameter B is calculated from the experimental

average total radiative width h��(Sn, JT , ⇡T )i according to [13],
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h��(Sn, JT ± 1

2
, ⇡T )i =

D0

4⇡

Z S
n

0

dE�T (E�)⇢(Sn � E�)

⇥
1X

J=�1

g(Sn � E�, JT ± 1

2
+ J)

(2.20)

where JT , ⇡T are the spin and parity of the target nucleus in the (n, �) reac-

tions, and ⇢(Sn � E�) is the experimental level density. The spin distribution

is defined as [13]

g(Ex, J) =
2J + 1

2�2
e(�(J

T

+1)2/2�2), (2.21)

and normalized to
P

J g(Ex, J) ⇡ 1. The typical spin distribution that has

been used in the method is shown in figure 2.6. In this figure the solid lines

were calculated with equation (2.21) while the open squares were predicted

with the Combinatorial Bardeen-Cooper-Schrieffer (BCS) model [22], for the
119Sn(3He, ↵�)118Sn reaction.

The � ray transmission coefficient and radiative strength function are related

according to

TXL(E�) = 2⇡E2L+1
� fXL(E�). (2.22)

Assuming that the statistical decay is dominated by E1 and M1 transitions

means that

T (E�) = TE1(E�) + TM1(E�), (2.23)

and the radiative strength function, f(E�), is given by
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Figure 2.6: Spin distribution used for 118Sn for different Ex [23].

f(E�) = fE1(E�) + fM1(E�) =
T (E�)

2⇡E3
�

. (2.24)

This also implies that the ↵ parameter is the common slope between ⇢(Ef )

and f(E�).

Figures 2.7 and 2.8 show the typical nuclear level densities, transmission co-

efficients and radiative strength functions that have been obtained using the

Oslo method. In figure 2.7 (upper panel) the open square at ⇡ 7.7 MeV is

the ⇢(Sn) calculated using equation (2.19). The dotted line is the interpola-

tion between ⇢(Sn) and experimental data using the back-shifted Fermi gas

model (see section 2.2.1). The solid line at low energies is the level density of
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known discrete states. The two sets of vertical arrows show the regions where

a �2 minimization is performed between the density of discrete states and the

interpolated level density. In the lower panel the solid line represents the ex-

trapolation of T (E�) and the vertical arrows show the two regions where the

�2 minimization has been performed between the experimental data and the

extrapolation. The f(E�) in figure 2.8 was extracted by factorizing P (Ex, E�)

in three different excitation energy regions. It is interesting to note that the

shape of the f(E�) is independent of the Ex region. This feature strongly

supports the Brink hypothesis.

Figure 2.7: Nuclear level density and transmission coefficient of 164Dy [24].
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Figure 2.8: Radiative strength function of 164Dy in three regions of excitation
energy[13].

2.2 Nuclear Level Density

A nucleus can be excited to numerous higher energy quantum states. At low

excitation energies, Ex, the nuclear excited states display a discrete spectrum.

The number and widths of these levels increase as the excitation energy ap-

proaches the neutron separation energy Sn. These excited states eventually

overlap creating a quasicontinuum (see figure 2.9 for illustration), which is

impossible to resolve with the present experimental detection resolution. The

Ex at which the quasicontinuum begins depends on the mass of the nucleus,

A. At such high energies the nuclear levels are described using nuclear level

density models that define it as a function of Ex, and spin and parity, J⇡.

These models predict the level density as an exponential function of Ex which

is consistent with a cumulated discrete level histogram showing a level density

integral up to a specified excitation energy as a function of Ex. The observed
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weak mean-spacing of s-wave resonances, D0, in neutron resonance experi-

ments is an indication of the existence of up to 109 levels per few MeV, which

also confirms the exponential increase in the number of quantum states.

Figure 2.9: The nuclear level density as function of excitation energy. This figure
has been modified from Ref. [12].

There are various nuclear level density models in the literature that may be

used for practical applications. However, this thesis will only focus on those
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that have been found applicable to this research project and these are discussed

below.

2.2.1 Back-Shifted Fermi Gas Model

In 1965 Gilbert and Cameron proposed a back-shifted Fermi gas (BSFG) model

for nuclear level density which can be used when there is no experimental

information known about the nucleus in question [25]. They suggested that

for high energies the density of levels with spin and parity, J⇡, at Ex is given

by

⇢(Ex, J
⇡) =

(2J + 1)e(�(J+ 1
2 )

2/2�2)

2
p
2⇡�3

p
⇡

12

e(2
p
aU)

a
1
4U

5
4

(2.25)

which is integrated over all possible J⇡ and yields the density of levels for all

J⇡ at a given Ex

⇢(Ex) =

p
⇡

12

e(2
p
aU)

a
1
4U

5
4

1p
2⇡�

. (2.26)

where U , �2 are back-shifted excitation energy and spin cut-off parameter,

respectively, and are given by

U = Ex � E1 (2.27)

�2 = 0.0888A
2
3

p
a(Sn � E1). (2.28)

The level density parameter a and back-shift parameter E1 can be obtained
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from Ref. [26]. The parameter a can also be calculated from total shell cor-

rections as follows

a

A
= 0.00917S + 0.142 (2.29)

and

a

A
= 0.00917S + 0.120 (2.30)

where A and S are the nuclear mass and total shell correction, respectively,

and S can be obtained from Ref [25]. Equation (2.29) is for spherical nuclei

while (2.30) is for deformed nuclei.

In 2009 Egidy and Bucurescu proposed that a spin cut-off parameter as a

function of A and Ex for the BSFG model can also be calculated with [26]:

�2 = 0.391A0.675(Ex � 0.5Pa0)0.312 (2.31)

where Pa0 is the deuteron pairing energy.

2.2.2 Constant Temperature Model

The constant temperature (CT) model assumes a nearly constant nuclear tem-

perature at Ex < 10 MeV [25]. Hence the density of levels of all J⇡ in this Ex

region can be defined by:

⇢(Ex) =
1

T
e

E

x

�E0
T (2.32)
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where T and E0 are the nuclear temperature and the energy-shift parameter,

respectively. These two parameters can be calculated according to Ref. [26]:

E0 = �1.004 + 0.5Pa0 (2.33)

and

T =
1

A
2
3 (0.0597 + 0.00198S 0)

(2.34)

S 0 = S + 0.5Pa0. (2.35)

The values of Pa0 and shell correction, S, can be obtained from Ref [26].

2.2.3 Overview of HFB + Combinatorial Model

The Hartree-Fock-Bogoliubov (HFB) + Combinatorial Model is a microscopic

combinatorial approach that is used to calculate an energy-, spin- and parity-

dependent nuclear level density [11]. It is implemented in the TALYS code

[8] where the level density as function of spin, for several stable and unstable

nuclei, are tabulated up to excitation energy of 200 MeV. The name HFB +

Combinatorial model is derived from the fact that this Combinatorial approach

is based on the nuclear structure properties obtained within the Hartree-Fock-

Bogoliubov model. It uses the HFB single particle level scheme to compute

incoherent particle-hole (ph) state densities, ⇢ph(Ex,M, ⇡), as a function of Ex,

spin projection M on the intrinsic symmetry axis of the nucleus, and the parity

⇡. Once the incoherent state densities have been determined, the collective

effects such as rotational and vibrational enhancement and the disappearance
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of deformation effects at high Ex are accounted for. The detailed discussion

of this method can be obtained from Refs. [11, 27].

To estimate ⇢(Ex) the following basic nuclear structure properties must be

known: single-particle energies, "ki , pairing strength, �ki , for each level, quadrupole

deformation, �2, and deformation energy, Edef [11, 27]. These parameters can

be derived from HFB calculations using a given effective nucleon-nucleus in-

teraction. It is also important to note that the s-wave spacings at Sn are too

pairing-dependent and the poor description of pairing interactions in the HFB

calculation may cause large discrepancies in ⇢(Ex) predictions. Therefore, to

obtain reliable and accurate estimates the interaction field must be properly

considered.

This model has also been recently compared [11] with experimental data, in

particular to the s- and p-wave neutron resonance spacing obtained from Ref.

[20]. The ratios of the theoretical resonance spacing, Dth, calculated with HFB

+ Combinatorial to the experimental s- and p-wave resonance spacing, Dexp,

are displayed in figure 2.10. This comparison shows that generally resonance

spacing are predicted within a factor of 2.

Further, the predicted number of levels is compared with experimental data of

light, medium and heavy mass nuclei. As shown in figure 2.11 it gives satisfac-

tory agreement at low Ex. However, it was pointed out that for accurate and

reliable estimations of cross-sections and many other nuclear physics applica-

tions, the ⇢(Ex) calculated with this model has to be renormalized to both the

experimental levels at low Ex and neutron resonance spacing at Sn according

to Ref. [11]

⇢(Ex, J
⇡)renorm = e�

p
E

x

�� ⇥ ⇢(Ex � �, J⇡), (2.36)
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Figure 2.10: Comparison of HFB + Combinatorial Model with experimental s-
and p-wave resonance spacings [11].

where the energy shift � is extracted from the analysis of the cumulative num-

ber of levels and � from the experimental s-wave neutron resonance spacing.

These values are tabulated in Ref. [11] for the mass regions A = 24 to 204.

Additionally, in the HFB + Combinatorial Model ⇢(Ex) can be used to calcu-

late the reaction cross-sections within the Hauser-Feshbach formalism in the

TALYS program [8]. For instance, this procedure has been used to calcu-

late the 89Y(n, �)90Y cross-section which compares well to the experimental

cross-section (see figure 2.12) [11]. These results show that the HFB + Com-

binatorial calculated ⇢(Ex) reproduces the experimental data better after it

has been renormalized.

2.3 Radiative Strength Function

The radiative strength function, fXL(E�), is a distribution of average reduced

widths for transitions of a given multipole type XL between states of energies
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Figure 2.11: Cumulative number of observed levels (red line) and HFB + Combi-
natorial Model calculations (black line) as a function of Ex [11].

Ei and Ef , as a function of E� = Ei �Ef where Ei > Ef [28]. The transition

between Ei and Ef can occur in two ways. These are the photoabsorption from

a low energy state (which is normally the ground state) to a range of excited

states, and decay from an interval of excited states to a range of lower energy
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Figure 2.12: cross-section of the 89Y(n, �)90Y reaction obtained with (red line) and
without (black line) normalization of ⇢(Ex) compared to experimental data [11].

states. Hence fJ
ifXL(E�) " and fJ

ifXL(E�) # can be used to differentiate be-

tween the strength functions for photoexcitation and � ray decay, respectively.

However, the focus of this research is restricted to fJ
ifXL(E�) #. Therefore

fJ
ifXL(E�) will be used instead of fJ

ifXL(E�) # and only the strength function

corresponding to � ray decay will be discussed.
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The strength function for decay of excited states with spin J within a unit

energy interval at fixed Ei to a lower energy state at Ef , by emitting a � ray

of multipole XL and energy E� is defined as [28]

fJ
ifXL(E�) =

⇢J⇡(Ei)�̄J
�ifXL

E2L+1
�

, (2.37)

where �̄J
�ifXL is the average partial radiative width for transitions between

level i of spin J and state f , and ⇢J(Ei) is the level density of spin J states

at excitation Ei. The average �̄J
�ifXL is taken over a larger number of levels of

the same spin and parity at Ei.

There are various types of theoretical models that can be used to describe

fJ
ifXL(E�) for � rays of a given multipole type resulting from a given mode

of excitation. These will be referred to as Resonance Models and are briefly

discussed below together with their corresponding modes of excitation. For

simplicity f(E�) will be used instead of fJ
ifXL(E�) in the remainder of this

thesis.

2.4 Resonances of the Radiative Strength

Function

Before discussing the Resonance Models it is important to review various reso-

nances that are usually observed as part of the total strength function, because

the models are based on these resonances.

2.4.1 Giant Electric Dipole Resonance

The giant electric dipole resonance (GEDR) results from the isovector, �T =

1, collective mode of nuclear excitation with high frequency and small ampli-
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tude [29]. In this mode the protons and neutrons vibrate out of phase as it

is illustrated in figure 2.13. This is a very broad resonance with a width of 2

- 7 MeV and located at high mean energies of 14 -22 MeV depending on the

mass of the nucleus [30]. It is due to the extra energy required to separate the

proton and neutron distributions.

Figure 2.13: The GEDR nuclear excitation modes.

2.4.2 The Giant Magnetic Dipole Resonance

The Giant Magnetic Dipole Resonance (GMDR) is due to the spin-flip collec-

tive excitation which is divided into two modes of excitation namely, isoscalar

and isovector modes [29]. In the isoscalar mode nucleons with spin " oscillate

against those with spin #. In the isovector mode protons with spin " oscillate

against neutrons with spin # and vice versa (see the illustration in figure 2.14).

Figure 2.14: The isoscalar (left panel) and isovector (right panel) spin-flip modes
of nuclear excitation.
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2.4.3 Pygmy Resonance

In addition to the GEDR resonance there is another E1 resonance which is lo-

cated at noticeably lower energies compared to the GEDR [31]. This is called

the pygmy resonance and is observed only in nuclei with neutron excess. It has

been explained to be due to the oscillation of the neutron skin against a sym-

metric proton-neutron core with isospin T = 0 (see figure 2.15 for illustration).

However, it is not clear yet if this experimentally observed resonance is due to

this kind of collective excitation or single-particle effects. It is still impossible

with available experimental techniques to comprehensively study the nature

of pygmy resonances. Therefore, the origin of this low energy E1 resonance is

still subject of theoretical modelling. A recent review of the pygmy resonance

can be found in Ref. [32].

Figure 2.15: Pygmy dipole collective excitation.

2.4.4 Scissors Resonance

The Scissors resonance is a M1 collective excitation that is located at low en-

ergies around 3 MeV and is only observed in deformed nuclei [33]. In this

collective excitation the protons and neutrons, and hence their angular mo-

menta, oscillate against each other following a similar movement as a pair of

scissors. This is illustrated in figure 2.16 below.
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Figure 2.16: Scissors modes.

2.4.5 Resonance Models for E1 Resonance

The original Brink approach suggests that the GEDR can be described us-

ing the standard Lorentzian (SLO) function with an energy and temperature

independent width [34]:

fSLO
E1 = 8.68X10�8 �0E��2

0

(E2
� � E2

0)
2 + E2

��
2
0

(2.38)

where the Lorentzian parameters �0, �2
0 and E2

0 are the peak cross-section,

GEDR width and centroid energy, respectively. This description of the GEDR

overestimates the experimental strength function at and below Sn. Hence

the Lorentzian (LO) function with the energy dependent width, �(E�), was

proposed and is written as [34]

fLO
E1 = 8.68X10�8 �0E��0�(E�)

(E2
� � E2

0)
2 + E2

��
2
0

. (2.39)

The dependence of �(E�) on E� is due to spreading of particle-hole states

into two hole and two particle states. In addition to the E� dependence, the

temperature dependence of the width was introduced and is given by [34]:

Stellenbosch University  http://scholar.sun.ac.za



Chapter 2 36

�(E�, T ) = �0

E2
� + 4⇡2T 2

E2
0

. (2.40)

The nuclear temperature, T =

r⇣
S
n

�E
�

a

⌘
, where Sn and a are the neutron

separation energy and the BSFG level density parameter respectively, accounts

for the temperature of a state on which the GEDR is built.

Although the LO function was improved by including the temperature and �

ray energy dependent width, it was still failing to describe the electric dipole

operator in the limit of zero E� [34]. Hence the generalized Lorentzian (GLO)

function, which overcomes this problem, was proposed and reads as:

fGLO
E1 = 8.68X10�8�0�0


E��(E�, T )

(E2
� � E2

0)
2 + E2

��
2
0

+ 0.7
�(E� = 0, T )

E3
0

�
. (2.41)

The GLO reproduces the experimental f(E�) reasonably well for target nuclei

in the mass region of A ⇠ 55 � 197. However, it underestimates the experi-

mental f(E�) for strongly deformed nuclei in the mass region A ⇠ 150 � 175

by up to a factor of 4 [35]. The enhanced generalized Lorentzian (EGLO) is

therefore used to describe the GEDR of deformed nuclei in the mass region of

A ⇠ 150� 175, since it reproduces the experimental data.

The only difference between the EGLO and GLO functions is that the width

of the GEDR in the EGLO function is enhanced. This width is given by the

following empirical equation [35]:

�(E�, T ) = k0 + (1� k0)

✓
E� � ✏0
E0 � ✏0

◆
�0

E2
0

(E2
� + 4⇡2T 2) (2.42)
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where the enhancement k0 is a purely empirical expression which depends on

the mass of the target nucleus. For the constant ✏0 = 4.5 MeV, k0 is 1 for

A < 148 and 1 + 0.09(A� 148)2e(�0.180(A�148)) for A � 148.

2.4.6 Resonance Model for M1 Resonance

The strength function of a spin-flip resonance is described using the SLO, that

is equation (2.38), with a temperature and energy independent width. The

Lorentzian parameters in this case are �0 = 4 MeV, E0 = 41A� 1
3 and �0 is

adjusted to fE1/fM1 = 0.0588A0.878 [20].

2.5 Low-Energy Enhancement

In addition to the GEDR, GMDR, pygmy and scissors resonances there is a

low-energy enhancement (up-bend) in f(E�). This feature has been observed

in the medium mass nuclei such as (44,45Sc [22], 50,51V [36], 44,45,46Ti [37, 38, 39],
56,57Fe [40, 41], 93�98Mo [42]), using the Oslo Method. This is illustrated in

figure 2.17. It should also be emphasized that this up-bend does not imply

the use of an inappropriate slope of f(E�), which is verified by comparing the

measured strength function to photo-neutron data, obtained from the litera-

ture. This comparison is illustrated in figures 2.17 and 2.18. Clearly the f(E�)

of 56Fe and 116�119Sn show a good agreement with the tail of the GEDR in

the respective figures. Refs. [43, 23] argued that there is a possibility that the

low-energy enhancement is only found in the mass region A  106 (see figures

2.18 and 2.19).

This low-energy enhancement generally provoked debates about whether it is a

real feature or if it is due to systematic errors in the Oslo Method. However, its

existence has been recently confirmed by Ref. [44] using a completely different

experimental setup and analysis technique which, unlike the Olso Method,
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Figure 2.17: Radiative strength functions of 56Fe obtained using (3He, ↵�) and (p,
p�) reactions and compared with the GEDR data [41].

is model-independent and is based on particle-�-� coincidence measurements.

These measurements were performed at the 88-Inch cyclotron of the Lawrence

Berkeley National Laboratory, and the excited 95Mo isotopes were produced

through 94Mo(d, p�) 95Mo reaction with a beam energy of 11 MeV.

In this method the f(E�) can be extracted for statistical � rays deexciting a

compound nucleus to well resolved discrete states of same J⇡. In the experi-

mental data of Ref. [44] 3 pairs of discrete levels with respective J⇡ = 1
2

+
, 72

+

and 9
2

+ and seven discrete states with J⇡ = 3
2

+ were utilized to extract f(E�)

of the primary transitions deexciting the nucleus from excitation energies of 3,

4, 5, 6 and 7 MeV. The results are shown in figure 2.20. They were also com-

pared to data obtained using the Oslo Method in (3He, ↵) reaction [42]. The

solid curve is a quadratic fit to f(E�) of Ref. [42] while the dotted curves give

the lower and upper error limits to the fit. The absolute normalization of the

Ref. [44] results were obtained using �2 minimizations between the quadratic
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Figure 2.18: Radiative strength functions of 116�119Sn obtained using (3He, ↵�)
and (3He, 3He�) reactions and compared with GEDR photo-neutron data [23].

fit and the f(E�) for each Ei.

The physical origin of this new feature of the radiative strength function has

been a mystery for many years and is still a subject of interest in theoretical nu-

clear physics. So far there have been two attempts [45, 46] that yield different

explanations for the origin of the low-energy enhancement. The first theoreti-

cal work predicts that it is due to M1 transitions generated by the reorientation

of the spins of high-j neutron and proton orbits [45]. This was accomplished

using shell model calculations of M1 transition strengths in 94�96Mo which

reproduced the up-bend [45]. Some of the results from these calculations are

shown in figure 2.21. The (�, n) and (3He, 3He’) data were taken from Refs.

[42, 47] and the E1 strength is fEGLO fitted on the experimental data. Due
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Figure 2.19: Radiative strength functions of Cd isotopes obtained using (3He, ↵�)
and (3He, 3He�) reactions [43].

to the limitation of the shell model this approach cannot be used to verify the

observed absence of the low-energy enhancement in heavier systems.

The second theoretical approach [46] predicts that the up-bend is due to tran-

sitions from the single-particle quasicontinuum to continuum states, which

occurs at nuclear temperatures of the order of MeV resulting in E1 transi-

tions. The E1 radiative strength function was calculated within the thermal

continuum quasiparticle random phase approximation (TCQRPA) at finite

temperatures, and compared to experimental data from Refs. [23, 42, 48, 49].
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Figure 2.20: Comparison between the 95Mo radiative strength function of Refs.
[42, 44].

Figure 2.21: Experimental and theoretical radiative strength function of 94Mo [45].
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In contrast to the shell model calculation, this theoretical approach can be

used even in heavier mass regions. Thus, it does not only reproduce the low-

energy enhancement of Mo isotopes but also its absence in heavier isotopes.

This is illustrated in figures 2.22 and 2.23.

Figure 2.22: The theoretical radiative strength function of 94Mo compared with
experimental data [46].

Although the theoretical approaches predict different mechanisms for the ori-

gin of the low-energy enhancement, they both suggest that it is of dipole

nature. However, this does not rule out the possibility of having strong col-

lective transitions, such as vibrational (E3) or rotational (E2) transitions in

the quasicontinuum, causing an enhancement of the f(E�) at low energies. A

recent work [41] suggests the up-bend to be predominantly dipole in nature.

To reach this conclusion an experiment using the 56Fe(p, p�)56Fe reaction was

performed at the Oslo cyclotron laboratory. The primary � ray matrices were

extracted from p-� coincidence events for the � ray detection angular range of
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.

Figure 2.23: The theoretical radiative strength function of 122Sn compared with
experimental data [46].

✓lab = 37.4 � 142.6�. These matrices were gated in the narrow energy region

E� = 2.5 � 2.7 MeV and Ex = 7.4 � 7.9 MeV where the low-energy enhance-

ment is observed. Thus the intensity of � ray transitions in this region was

plotted as a function of angle (see figure 2.24). This angular distribution of

the intensity was fitted with angular distribution functions of the form [41]

W (✓) = A0 + A2P2(cos✓) + A4P4(cos✓), (2.43)

where Pk(cos✓) is a Legendre polynomial of degree k.

In figure 2.24 this theoretical fit is shown with the blue line assuming pure

dipole transitions confirming the dipole nature of the low-energy enhancement.
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Figure 2.24: Angular distribution of the primary � ray matrix gated in the energy
region corresponding to the up-bend [41].

2.5.1 Impact of the Low-Energy Enhancement on

Astrophysical Reaction Rates

An interesting feature of the up-bend in the f(E�) is its significant impact on

astrophysical reaction rates, especially on the neutron-rich isotopes. This has

been demonstrated by the Maxwellian-average neutron capture, (n, �), rates

h�vi, for entire isotopic chains of Mo, Fe and Cd up to the neutron drip line [48]

at T = 109 K, the temperature at which r-process nucleosynthesis takes place.

These predictions suggest that the influence of the low-energy enhancement

becomes more significant as the neutron number increases, and can increase

the r-process reaction rates up to 2 orders of magnitude (see figures 2.25 and

2.26). This is due to the exponential increase in the level density as function

of excitation energy, leading to a greater role in the significance of the up-bend

portion of the f(E�) linking the capture states to the high level density near
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the neutron separation energy.

Figure 2.25: Maxwellian-average reaction rates when the low-energy enhancement
is not included [48].

Figure 2.26: Maxwellian-average reaction rates with the low-energy enhancement
included [48].
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2.5.2 Impact of the Pygmy Resonance on

Nucleosynthesis

In addition to the low-energy enhancement, the effect of the E1 pygmy reso-

nance on r-process nucleosynthesis has been investigated [50]. This was per-

formed using the non-equilibrium canonical model [51] in which a full reaction

network is solved for a given set of parameters. These are neutron density in

an astrophysical site, Nn, its temperature, T , and the period of the neutron

irradiation, ⌧irr. Figure 2.27 illustrates the predicted r-abundance with and

without the pygmy resonance at T = 109 K, Nn = 1020 cm�3 and ⌧irr = 2.4 s.

It can be seen from figure 2.27 that the consideration of only the giant dipole

resonance (blue curve) mostly produces the nuclei in the mass region A ⇡ 90 -

110. As soon as the pygmy is included the predicted r-abundance decreases by

up to 2 orders of magnitude in this mass region, and is enhanced by up to the

same order of magnitude in the A ⇡ 130 mass region (green curve). Clearly

the pygmy resonance has a significant impact on r-process nucleosynthesis.

Figure 2.27: r-abundance distributions (blue and green curves). The red curve is
the solar abundance distribution. [52].
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2.6 Astrophysical Reaction Rates and

p-Abundance Calculations

The astrophysical reaction (such as (n, �)) rates are calculated, using the sta-

tistical emission model Hauser-Feshbach (HF) which is implemented in the

TALYS reaction code [8, 53]. Basically, TALYS is a publicly available com-

puter program which is used to simulate nuclear reactions that involve � rays,

neutrons, protons, deuteron, tritons, helions, and ↵ particles, in the energy

range of 1 keV - 200 MeV. The HF Model takes into account that 1) in the

stellar interior the compound nucleus (CN) can be formed in different states

with different J⇡, and 2) the formation of the CN is possible only if the nuclear

level density in the CN, at Ex corresponding the projectile incident energy, is

sufficiently high. It therefore allows for the calculation of the capture reac-

tion cross-sections, �E
x , for a CN produced in states with specific Ex and J⇡

according to

�E
x = Dcomp⇡�2

X

J,⇧

(2J + 1)

(2s+ 1)(2Iµ + 1)
⇥
X

j,l,j0,l0

�(↵)�(↵0)

⇥
hT J

↵lj(Ea)ihT J
↵0l0j0(Ea0)iP

↵00,l00,j00
�⇡(↵00)hT J

↵00l00j00(Ea00)i
W J

↵lj↵0l0j0

(2.44)

where j, l, s, ⇡, Ea represent the projectile angular and orbital momentum,

spin, parity and energy. The variables with a prime correspond to the ejectile.

The symbols J and ⇧ are the spin and parity of a compound system. In this

equation � is the relative motion wave length, T the transmission coefficient, W

the width fluctuation correction factor and Dcomp the depletion factor which is

calculated according to Ref. [53]. The function �⇡(↵) is unity if (�1)l⇡⇧µ = ⇧,

and zero otherwise. The quantities Iµ and ⇧µ are the spin and parity of a

target nucleus, while all those with double prime correspond to the decay of
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the residual nucleus to lower energy states.

The calculation of the transmission coefficient requires the following param-

eters which are therefore ingredients for the HF approach: the ground- and

excited-state properties (masses, deformation, matter densities, excited state

Ex and J⇡), nuclear level density, radiative strength function, optical model

potential and fission properties. Further, in the stellar interior the thermo-

dynamic equilibrium holds locally to a good approximation. Hence, the en-

ergies of target nuclei and projectiles, as well as their relative energies, obey

a Maxwell-Boltzmann distribution of energies corresponding to a tempera-

ture, T , at that location. Therefore the astrophysical reaction rates, h�vi,

are obtained by integrating �E
x over the Maxwell-Boltzmann distribution at

a given T according to Ref. [53]. According to the detailed balance theorem,

if a compound system AXZ is formed through A�1XZ + n �!A XZ + � and
A+1XZ + � �!A XZ + n then

|h�(A�1)n|H|�(A)�i|2 = |h�(A+1)�|H|�(A)ni|2, (2.45)

where |h�(A�1)n|H|�(A)�i| and |h�(A+1)�|H|�(A)ni| are the transition matrix el-

ements for the first and second reactions, respectively. This implies that the

(n, �) cross-section will be equal to the (�, n) cross-section [54].

The synthesis of p-nuclei can be investigated using the parametrized explosion

model [3, 55]. This enables the calculation of p-abundances resulting from

nuclear reactions taking place in the exploding of O/Ne-rich layers of Type II

supernovae. The input parameters for this model are: temperature and density

profile of O/Ne-rich layers, initial abundances of s-process seed nuclei and

rates of all reactions involved in the reaction network. The reaction network

involves 2500 stable and neutron deficient nuclei with Z  84 [3]. These nuclei
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are linked together by all possible reactions: (n, �), (n, p), (n,↵), (p,↵), (p, �),

(↵, �) and their photodisintegrations: (�, n), (�, p) and (�,↵). In fact the rates

of these reactions can be obtained using the HF approach as discussed above.

The resulting abundance of each p-nucleus i produced through this nuclear

reaction network is then represented by its mean overproduction factor

hFii =
hXii
Xi,�

, (2.46)

where Xi,� is its solar mass fraction and

hXii =
1

Mp

X

n�1

(Xi,n +Xi,n�1)(Mn �Mn�1)

2
, (2.47)

where Xi,n is the mass fraction of isotope i at mass coordinate Mn, and Mp

is the total mass of all O/Ne-rich layers. The comparison of the computed

abundance with the solar abundance is achieved using the ratio hF
i

i
F0

where

F0 = 1
35

P
i

hFii is the measure of global p-nuclei enrichment in the p-process

layers. This ratio would be unity for all i if the calculated abundances were

exactly solar. Furthermore it has been shown in Ref. [3] that hF
i

i
F0

⇡ 1 for 138Ce

which is one of the p-nuclei and neighbor to 138La. Therefore, this comparison

can be done using hFii/F (138Ce) instead.
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Experimental Details

The 139La(3He, X), where X refers to 3He and ↵ particles, experiment was con-

ducted at the Cyclotron Laboratory of the University of Oslo (OCL) for seven

days. The target was manufactured at iThemba LABS (see section 3.5) with

a thickness of 2.5 mg/cm2. The beam energy and intensity were 38 MeV and

⇡ 0.4 - 0.7 pnA, respectively. The particle-� coincident events were detected

using the SiRi and CACTUS arrays. The details of the Oslo cyclotron, SiRi

and CACTUS arrays are given below. The additional experiment, 28Si(3He,

X), was also conducted for calibration purposes.

3.1 Overview of the Oslo Cyclotron Laboratory

At OCL, a M-35 Scanditronix cyclotron delivers pulsed light-ion beams at

the typical frequency of ⇠ 15.3 MHz for 38 MeV 3He ions. The schematic

layout of the beam line in the laboratory is shown in figure 3.1. The beam

from the cyclotron is collimated and focused using slits, S1 and quadrapole

magnet Q1. It proceeds to the 90� analysing magnet where it is bent through

90� to the experimental hall. The beam energy resolution after the analysing

magnet is ⇠ 60 keV. It is further collimated by slits S2, S3 and S4 and focused

50
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Figure 3.1: Schematic Layout of the OCL [15].

by quadrapole magnets Q2 and Q3 to the target chamber. This chamber is

located at the center of the cylindrical frame that holds the CACTUS array.

The typical diameter of the beam when it reaches the target is ⇡ 1- 2 mm.

The SiRi array which is used for charged particle detection is located under

vacuum within the target chamber.

3.2 The SiRi Array

The SiRi (silicon ring) array was used to detect charged ejectiles from the

reaction such as ↵ and 3He particles. It also allows for the discrimination of

different charged ejectiles such as protons, deuterons, 3He and ↵, due to their

differences in mass and energy loss through the silicon detectors. The array

consists of 8 trapezoidal shaped �E � E telescope detectors which form a

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3 52

ring (see figure 3.2) around the target. The �E and E are ⇡ 130 and 1550

µm thick Si detectors, respectively [56]. The �E detectors are positioned a

few mm in front of the E detectors. Figure 3.3 illustrates the position of the

�E � E telescope with respect to the beam axis and target.

Figure 3.2: SiRi particle telescope modules [56].

Figure 3.3: Position of the Si particle-telescope with respect to beam axis and
target [56].
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Each �E detector is segmented into 8 strips (see figure 3.4) which makes a

total of 64 �E �E sub-particle-telescopes. The segmentation reduces pile-up

events, which are rejected in the E detector shared by �E pads by requiring

that only one �E pad fires.

Figure 3.4: Layout of the front of one �E detector [56].

Each telescope covers a mean scattering angle ✓ between 40� and 54� in steps

of 2� (equivalent to 1.7 mm) per pad. The energy resolution, for the present

work, of the entire SiRi array is ⇡ 260 keV which was determined from the

FWHM of the 3He elastic peak of 38 MeV. In front of the 8 telescope modules

there is a cone of 10.5 µm thick aluminum foil (see figure 3.3) that shields the

�E � E telescopes from � electrons, which are ejected from the target atoms

when bombarded by the beam particles.

3.3 CACTUS Array

The CACTUS multi-detector array was used to detect � rays that were in

coincidence with charged particles. The name CACTUS originates from its

resemblance to a cactus tree. This array comprises 26 NaI(Tl) (Sodium Iodide
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doped with Thallium) detectors with crystal dimensions of 5" x 5" each [57].

The NaI(Tl) detectors are mounted on a spherical frame (see figure 3.5) and

located 22 cm away from the target. Each NaI(Tl) crystal is equipped with

a conical 10 cm thick lead collimator of 7 cm diameter at the front surface of

the NaI detector. Hence the array covers a solid angle of 17 % of 4⇡ sr. It has

a total efficiency and energy resolution of ⇡ 14.1 % and ⇡ 7 % FWHM for a

1332 keV transition. In front of each NaI(Tl) detector, a 2 mm thick copper

absorber suppresses X rays. Each NaI(Tl) detector is surrounded by 3 mm

thick lead sheets to avoid cross-talk between adjacent detectors.

Figure 3.5: The CACTUS array of OCL [15].

3.4 Electronics

At OCL the first stage of the electronic chain is placed in the experimental

hall very close to the detector setup. In particular, a multichannel power

supply system (CAEN SY2527 Universal Multichannel Power Supply System)

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3 55

is connected to the photomultipliers of the 26 NaI(Tl) detectors of CACTUS.

This system is very stable and includes a CPU and Front Panel Section which

can be interfaced to the desktop computer in the acquisition room. In this way

the high voltage for each detector can be remotely monitored and set without

the need to access the experimental hall. The HV applied to the NaI(Tl)

photomultipliers range between 700 and 800 V. The SiRi silicon telescopes are

biased with 30 V (�E detectors) and 350 V (E detectors) provided by four

Mesytec MHV-4 modules (4 channel 400 V high precision bias supply units).

These electronic units are also remotely controlled from the acquisition room.

The signals generated from the eight 8-fold segmented �E detectors are sent to

four Mesytec MPR-16 16-channel preamplifier modules. The signals from the

eight E detectors are all processed by an additional Mesytec MPR-16 module.

All the preamplifiers have sensitivities adapted to the expected energy deposits

in the front and back detectors. The primary function of the preamplifiers is

to extract the signal from the detectors without significantly degrading the

intrinsic signal-to-noise ratio and drive it to the amplifiers situated in the data

acquisition room. These preamplifiers are located very close to the scattering

chamber, that contains the SiRi array, to reduce cable-induced noise.

The �E and E signals are then transferred to the data acquisition room, as

differential signals to the Mesytec STM-16 modules including both spectro-

scopic amplifiers and timing-filter amplifiers, and also leading-edge discrimi-

nators. Figure 3.6 illustrates the electronics located in the data acquisition

room. The signals of the NaI(Tl) detectors are also split into two STM-16

modules. Each of these modules gives a logical OR output of all the channels

and which are finally summed up through the Fan in Fan out module. The

OR of all the NaI(Tl) and all the SiRi E detectors are sent to a discriminator

module, where the width of the NIM signal can be adjusted and a threshold is

set for the input signal such that an output is generated. Wide OR signals en-
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sure that they overlap when sent to the coincidence unit. The NaI(Tl) signals

are delayed by ⇡ 522 ns to ensure that the silicon detector signals are used

as a start signal in the Time to Digital Converter (TDC) module to acquire

only � rays emitted together with the charged particles. In this experiment

only the particle events are given as input trigger on the Amplitude to Digital

Converter (ADC), where the a gate of 3 µs is provided by the Gate Generator.

Figure 3.6: Block diagram for electronics in the data acquisition room of OCL.

3.5 Manufacturing of 139La targets

The natural La target, with 99.9 % enrichment of 139La, was manufactured

under inert atmosphere inside a glove box. This atmosphere was achieved by

removal of water and air using a mechanical pump and argon gas (inert) was

used to vent the glove box. The target was rolled using mechanical rolling

as La is ductile and allows the deformation process easily; this procedure

was repeated until the desired thickness of 2.5 mg/cm2 was reached. Targets
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were transported in a glass container with silica gel and filled with argon gas

to reduce water content which negatively affects La material that oxidizes

rapidly when in contact with air. They were stored and transported in this

condition for a period of 24 hours, maintaining their shinny slivery colour

before use. Targets transported under vacuum and argon without silica gel

oxidized. Figure 3.7 shows some of these targets.

Figure 3.7: 139La target on the frame (a) and sealed container (b) containing argon
gas.
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Data Analysis and Results

4.1 Calibration of the SiRi Array

The calibration of the �E�E detectors was achieved using the SiRi kinematic

calculator [58]. This calculator is used to compute particle energies which are

expected to be deposited by charged ejectiles at various scattering angles of

the SiRi array. It is based on the Bethe-Bloch formula [59] and it includes

energy loss corrections of the charged particles in the target and the � electron

aluminum foil (see figure 3.3) spanned across the front face of the �E detectors.

The calculated �E�E plot of the 139La(3He, X) experiment, at 38 MeV beam

energy, obtained using the SiRi calculator is shown in figure 4.1. This plot is

for the innermost �E � E ring, at 40� with respect to the beam axis, and

similar plots were obtained for other rings. The corresponding experimental

�E � E plots before calibration are shown in figure 4.2. Figure 4.1 clearly

reveals the energy distributions for all five charged particles (protons, deutrons,

tritons, 3He and ↵) detected in the SiRi particle telescopes. However, this is

not straightforward identify in figure 4.2 because the particle telescopes had

not been calibrated yet.

58
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Figure 4.1: Calculated �E�E plot of the inner most ring obtained using the SiRi
kinematic calculator.

Figure 4.2: �E � E plots for the 139La(3He, X) reaction before calibration.

In fact there are 64 experimental �E � E plots corresponding to 64 �E � E

telescope detectors. However, the outermost ring consisting of 8 telescopes was
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excluded due to technical problems which were experienced during the calibra-

tion. Hence 56 experimental �E � E plots were fitted to their corresponding

calculated �E � E plots and calibrated. An experimental �E � E plot, of

the 56 �E � E telescopes, after calibration is shown in figure 4.3 and clearly

reveals the energy distributions for different charged particles.

Figure 4.3: �E � E plots for the 139La(3He, X) reaction after calibration.

In addition to the calibration of the particle telescopes for the 139La(3He, X)

experiment, these were also calibrated for the 28Si(3He, X) experiment. This

was achieved following the same procedure as explained above. Figure 4.4

shows the corresponding calibrated experimental �E�E plot. This calibration

was performed in order to obtain the excitation energy, Ex, spectrum on which

well resolved � ray peaks could be gated and used to calibrate the � ray spectra.
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Figure 4.4: The calibrated �E � E plots for the 28Si(3He, X) experiment.

4.2 Excitation Energies of 138,139La

The 139La(3He, X) experiment opened various reaction channels as seen in

figure 4.3. Of particular interest to this research were the 139La(3He, ↵�)138La

and 139La(3He, 3He�)139La reactions. As a result the desired reactions and

random events were reduced by gating on either ↵ or 3He particles through a

"banana" gate (see figures 6.1 and 6.2 in the appendix).

The measured energies of the ↵ and 3He particles were converted to Ex for

the 138La and 139La nuclei produced in the 139La(3He, ↵�)138La and 139La(3He,
3He�)139La reactions, respectively, using the kinematics and Q-values of the

reactions. Figures 4.5 and 4.6 show the constructed Ex spectra of both nuclei.

4.3 Calibration of the CACTUS Array

The �E�E plot in figure 4.4 was used to gate on the ↵ particles to eliminate

all other unwanted reactions and focus only on the 28Si(3He, ↵�)27Si reaction

channel, following the same procedure discussed in the previous section. The

energies of these ↵ particles were also converted into Ex of 27Si to construct
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Figure 4.5: The excitation energy spectrum, without � ray coincidence requirement,
for 138La. Sn indicates the location of neutron separation energy.

Figure 4.6: The excitation energy spectrum, without � ray coincidence requirement,
for 139La. Sn indicates the location of neutron separation energy.

an excitation energy spectrum of 27Si (see figure 4.7).

By gating on the Ex = 3540.2 keV state (see figure 4.7) and extracting the

� ray spectra for all 26 NaI(Tl) detectors, the two well resolved � ray peaks
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Figure 4.7: The excitation energy spectrum of 27Si constructed from ↵ energies
without � ray coincidence requirements.

corresponding to the 780.9 keV and 2759.1 keV � ray transitions originating

from this state in 27Si were obtained (see figure 4.8). Other particle gates

do not yield well enough resolved � ray transitions. The linear calibration of

� ray spectra for each NaI(Tl) detector was achieved using these two � ray

transitions. The calibrated � ray spectrum, of all detectors combined, showing

the 780.9 keV and 2759.1 keV peaks is given in figure 4.8.

4.4 Time Calibration

During the detection of particle � ray coincidence events the SiRi array trig-

gers a start signal, while the CATCUS array triggers the corresponding stop

signal in the TDC modules. However, the rise time of those signals depends

on the signal amplitudes. The high-energy events have shorter rise times com-

pared to low-energy events. This means that the high-energy signals will cross

the discriminator threshold earlier in time than the low-energy signals. This

effect is the so-called walk with the implication that high-energy events will

be detected as if they occurred before the low-energy events, even if they oc-
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Figure 4.8: The calibrated � ray energy spectrum of 27Si obtained with the Ex

gate on the 3.5 MeV state for all NaI(Tl) detectors in the CACTUS array.

curred at the same time. This is illustrated by the energy-time matrix in figure

4.9 gated on 3He. A similar matrix was obtained for the 139La(3He, ↵�)138La

reaction (see figure 6.3 in the appendix).

Figure 4.9: The energy-time matrix of the CACTUS array for the 139La(3He,
3He�)139La reaction.

The correction of the walk effect is achieved by fitting the function of the form,
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t(x) = a+
b

x+ c
+ dx+ 200 (4.1)

where t(x) and x are channels corresponding to time and � ray energy, respec-

tively, to the energy-time matrices and obtain the values of the coefficients a, b,

c and d for the energy-time matrix. These coefficients are then used to correct

for walk, aligning the time peaks of all coincidence events. The prompt peaks

are all positioned at channel ⇡ 200 which is represented by the offset value

of equation (4.1). The energy-time matrix, for 139La, after this correction is

shown in figure 4.10. For 138La this matrix is displayed in the appendix (see

figure 6.4). These matrices are specifically for NaI(Tl) detectors but similar

matrices were obtained also for the silicon detectors using the same walk cor-

rection method. The corresponding time spectra are shown in figures 4.11 and

4.12.

Figure 4.10: The energy-time matrix from the 139La(3He, 3He’�)139La reaction
after walk correction for the CACTUS array.
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Figure 4.11: The projection of figure 4.10 on the time-axis after time calibration.
t1 and t2 corresponds to the time gate used to reduce random events.

Figure 4.12: The projection of figure 6.4 on the time-axis after time calibration.
t1 and t2 corresponds to the time gate used to reduce random events.
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4.5 Particle � ray Coincidence Matrices

The particle � ray coincidence events were extracted for both reactions of

interest by gating on either 3He or ↵ particles, and the corresponding time

prompt peak (see figures 4.11, 4.12, 6.1 and 6.2). Each time gate, t2 � t1, is

20 channels wide which is equivalent to ⇡ 50 ns, since the OCL RF (radio

frequency) frequency of 15.3 MHz gives 65.36 ns time between beam pulses

for the 38 MeV 3He beam. From these events the Ex vs E� matrices were

generated using the constructed Ex and calibrated E� data, and gating on the

respective prompt time peaks (t2 � t1 ⇡ 50 ns). These matrices are shown in

figures 4.13 and 4.14. The 45� diagonal lines on these matrices signify that no

� ray can exist which is emitted from a state with energy less than the energy

of that � ray. The counts start decreasing at ⇡ Sn, as expected, because

beyond this energy the nuclei emit both neutrons and � rays. This channel

competes with the one where only gamma rays are emitted, and the emission

of a neutron with a low-energy � ray is more probable than the emission of a

single higher-energy � ray. These clear features in the matrices further confirm

good calibration of both the SiRi and CACTUS arrays.

Figure 4.13: The Ex vs E� matrix of 138La. The horizontal red line indicates the
neutron separation energy, Sn.
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Figure 4.14: The Ex vs E� matrix of 139La. The neutron separation energy, Sn, is
indicated by the horizontal red line.

Further, the � ray spectra of both nuclei were unfolded using the unfolding

iterative method discussed in section 2.1.1. The respective raw and unfolded

� ray spectra are shown in figures 4.15 and 4.16.

4.6 Primary � ray Matrices

From the unfolded � ray spectra the unfolded Ex vs E� matrices were con-

structed and used to generate the primary � ray matrices for both nuclei, using

the first generation iterative procedure which is discussed in section 2.1.5. The

first generation matrices of 138La and 139La are shown in figure 4.17. From

these matrices the nuclear level densities and radiative strength functions of

the 138La and 139La nuclei were extracted. The first generation matrix of 139La

reveals a valley of no data (see figure 4.17 (b)) which corresponds to the 1043.1

keV gap (see Ref. [21]) between the first- and second-excited states of 139La.

In the same figure two vertical regions corresponding to E� ⇡ 1 and 1.7 MeV

are visible which are characterized by lower statistics due to over-subtraction

of discrete and strong � ray transitions during the generation of P (Ex, E�).

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4 69

Figure 4.15: The raw (a) and unfolded (b) � ray spectra for 138La corresponding
to Ex  7.1 MeV.

4.7 Radiative Strength Functions and Nuclear

Level Densities

The f(E�) and ⇢(Ex) were extracted by following the method discussed in

section 2.1.6. The �2 minimization between P (Ex, E�) and Pth(Ex, E�) was

performed in the energy regions of E� � 1 MeV and 3.5 MeV  Ex  7.1
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Figure 4.16: The raw (a) and unfolded (b) � ray spectra of 139La for Ex  8.5
MeV.

MeV for 138La, and E� � 1.7 MeV and 3.5 MeV  Ex  8.5 MeV for 139La,

to exclude the non-statistical excitation energy regions. The fitted regions of

the experimental primary � ray matrices, P (Ex, E�), of 138La and 139La and
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Figure 4.17: The primary � ray matrices for 138La (a) and 139La (b).

the corresponding theoretical primary � ray matrices, Pth(Ex, E�), are shown

in figures 4.18 and 4.19. Overall, for both nuclei the Pth(Ex, E�) appear very

similar to P (Ex, E�) providing confidence about the Pth(Ex, E�) used.
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Figure 4.18: The fitted region of the P (Ex, E�) (a) and corresponding Pth(Ex, E�)
(b) for 138La.

The resulting ⇢(Ex) and f(E�) are shown in figures 4.20 and 4.21 for both La

isotopes. The solid line at low energies is the nuclear level density of known

discrete states while the dotted line is the interpolated nuclear level density

using the CT model (equation 2.32). The sets of vertical arrows at low and

high energies in figure 4.20 show the regions where the experimental ⇢(Ex) was

normalized to the level density of known discrete states and the interpolated

level density, respectively.

In the case of 139La, ⇢(Sn) = 2.9±0.6⇥105 MeV�1, was used for normalization

and was calculated from the experimental average neutron resonance level
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Figure 4.19: The fitted region of the P (Ex, E�) (a) and corresponding Pth(Ex, E�)
(b) for 139La.

spacing, D0 (see Table 4.1), using the HFB + Combinatorial model (see section

2.2.3). This value is in excellent agreement with ⇢(Sn) = 2.5±0.6⇥105 MeV�1

from the back-shifted Fermi gas approach discussed in section 2.2.1. The

absolute normalization parameter B is calculated using equation (2.20). The

D0 and h��(Sn, JT , ⇡T )i, are average values and were obtained from [20, 60].

However, for 138La there are neither D0 nor h��(Sn, JT , ⇡T )i experimental

values available in the literature. Therefore, the value of h��(Sn, JT , ⇡T )i was

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4 74

 (MeV)xE
0 1 2 3 4 5 6 7 8

)-1
) (

M
eV

x
 (Eρ

Le
ve

l d
en

sit
y 

10

210

310

410

510

610

 Oslo data 
 Known levels 
Constant temperature model 

 (see text) ρ Estimated 

La138

 (MeV)xE
0 1 2 3 4 5 6 7 8 9

)-1
) (

M
eV

x
 (Eρ

Le
ve

l d
en

sit
y 

1

10

210

310

410

510

610
 Oslo data 
 Known levels 
 Constant temperature model

 from HFB + combinatorialρ 

La139

Figure 4.20: The measured nuclear level densities of both nuclei.

estimated from a spline fit as implemented in the TALYS reaction code [8],

while the ⇢(Sn) value was extracted by normalizing ⇢(Ex) of 138La with the
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Figure 4.21: Radiative strength functions of both nuclei.

requirement of having the same slope as ⇢(Ex) in 139La. It is expected that

⇢(Ex) of neighboring isotopes have the same slope as it is observed in other

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4 76

nuclear species [43, 61, 62]. This is illustrated in figure 4.22 for 138,139La. The

resulting value for ⇢(Sn) is then used to calculate D0 for 138La with equation

(2.19). The parameters which were used for the normalization of ⇢(Ex) and

f(E�) are summarized in Table 4.1.
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Figure 4.22: The nuclear level densities of 138La and 139La.

Table 4.1: Parameters used for the normalization of ⇢(Ex) and f(E�) in 138,139La.

Isotope � D0 (eV) ⇢(Sn) (105MeV�1) h��(Sn)i (meV)
138La 6.9±0.7a 20.0±4.4b 7.1±1.9b 71.0±13.6b
139La 5.5±0.6a 31.8±7.0c 2.9±0.6a 95.0±18.2c

a Calculated with the HFB + Combinatorial model.
b Estimated values (see text for details).
c Average value from Refs. [20, 60].

Figure 4.23 shows the f(E�) of both nuclei of interest together with data

extracted from the 139La(�, n) and 139La(�, x) cross-sections, taken from [63,

64] for comparison. The f(E�) of 138La has the same slope, ↵, as f(E�) of
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Figure 4.23: Comparison of f(E�) with photoneutron cross-section data. "Res1",
"Res2", and "Res3" indicate the fits to the individual resonance structures.

139La due to the normalization of the ⇢(Ex) of 138La as discussed above, and

the fact that for each nucleus the ⇢(Ex) and f(E�) have the same value of ↵

(see section 2.1.6). The giant electric dipole resonance (GEDR) of 139La at

E� ⇡ 15.6 MeV was fitted with an enhanced generalized Lorentzian function,

fEGLO (see section 2.4.5), with a constant nuclear temperature, Tf = 0.1

MeV, which was considered as a free parameter. The excess strengths at E� ⇡

11.4 ("Res3" in figure 4.23) and 9.9 MeV ("Res2" in figure 4.23) were fitted

with the standard Lorentzian function, fSLO (see section 2.4.5), respectively.

In addition, an enhancement in the strength of 139La at E� ⇡ 6.4 MeV is

observed and labelled as "Res1". In figure 4.23 this resonance is described

using the fSLO. Therefore, the total fitting function is given by f(E�) =

fSLO
Res1(E�) + fSLO

Res2(E�) + fSLO
Res3(E�) + fEGLO

GEDR(E�). The Lorentzian parameters

used in this fit are listed in Table 4.2. For the GEDR the parameters were

somewhat increased from Ref. [20] to obtain the best fit to the experimental

data, while for other resonances they were directly determined from the fit

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4 78

to the data. Overall, the present data exhibit very good agreement with the

extrapolated tail of the GEDR data of Ref. [63, 64]. The total fitting function

is not fitted to the f(E�) of 138La measured in the present work, but f(E�) of
138La is included in figure 4.23 for comparison.

Table 4.2: Lorentzian parameters used for the fit to the experimental data, where
E0, �0 and �0 are the centroid energies, cross-sections and widths of the resonances.

Resonance E0 (MeV) �0 (mb) �0 (MeV)
Res1 6.4 2.9 1.3
Res2 9.9 15 1.6
Res3 11.4 15 1.4

GEDR 15.6a 336 5.6a

a Modified from Ref. [20] (see text for details).
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Discussion

5.1 Radiative Strength Function and Nuclear

Level Density

The f(E�) of the 138,139La nuclei show several interesting and unexpected fea-

tures, 1) the pronounced low-energy enhancement in the f(E�) of 138La at

E�  1.7 MeV, 2) a small resonance in f(E�) of 139La at E� ⇡ 6.4 MeV, and

3) a plateau behaviour between 2 and 4 MeV for both La isotopes.

The low-energy enhancement, discussed in detail in section 2.5, has been ob-

served, using the Oslo Method (see section 2.1) which the same technique

used in the present work, in all light to medium mass isotopes (44,45Sc [22],
50,51V [36], 44,45,46Ti [37, 38, 39], 56,57Fe [41], 93�98Mo [42]) with the possible

transitional region reported in 106,107Cd [43]. The existence of the low-energy

enhancement has been independently confirmed for 95Mo using a different ex-

perimental setup and extraction technique reported in Ref. [44]. Moreover,

if the up-bend is a statistical feature it has to be independent of Ex. In the

present work, the f(E�) of 138La was extracted from two different Ex regions,

3.5 MeV  Ex 5 MeV and 5 MeV  Ex  7.1 MeV. The low-energy en-

79
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Figure 5.1: Radiative strength function of 138La extracted from two different re-
gions of Ex.

hancement is clearly visible in both cases, in fact the overall f(E�) for both

Ex regions is very similar (see figure 5.1). This suggests that the up-bend is

indeed independent of the Ex region, within which the first-generation matrix

is factorized, and supports the validity of the Brink hypothesis. The unex-

pected appearance of the enhancement in 138La also suggests that this feature

is not confined to specific mass regions as assumed prior to this work but may

be found across the nuclear chart.

No conclusive theoretical results exist which can reproduce or explain these

experimental observations although different models have suggested that the

low-energy enhancement may be due to: 1) a reorientation of the spins of

high-j neutron and proton orbits producing M1 transitions [45], and 2) tran-

sitions within the single-particle continuum producing E1 radiation [46]. It is

intriguing to note that 138La is located within a predicted region of magnetic
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rotation (at Z = 57 and N = 81, see figure 5.2) [65] which is consistent with

the theoretical approach 1).

Figure 5.2: Magnetic rotation in different mass regions. The predicted regions are
enclosed by solid lines [65].

The observation of the resonance at 6.4 MeV and labeled "RES1" in figure 4.23

is in excellent agreement with a previous 139La(�, �0) measurement reported in

Ref. [9] (see figure 5.3, the red solid circles). Its origin has been discussed to

be an E1 pygmy resonance.

The measured ⇢(Ex) for both La nuclei are in decent agreement with the ones

calculated with the HFB + Combinatorial Model (see figure 5.4). For 138La

the agreement is excellent while for 139La the experimental ⇢(Ex) is somewhat

larger than the calculated ⇢(Ex) between 1.25 and 3.8 MeV. It can be noticed

from figure 4.22 that these measured ⇢(Ex) have very similar slopes, but the
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Figure 5.3: cross-section of 139La measured in the 139La(�, �0) experiment (black
and red data) [9]. The (�, n) data were measured by Ref. [47] (green data) and Ref.
[63] (blue data).

⇢(Ex) of 138La is higher compared to ⇢(Ex) of 139La. This is an expected

feature since 138La is an odd-odd nucleus which gives it an extra degree of

freedom.

It will be interesting to explore the existence of the low-energy enhancement

across the nuclear chart. Further, the low-energy enhancement has been only

measured using stable beams and targets, but many r-process calculations rely

on the extrapolation of these data. Measurements of the f(E�) and ⇢(Ex) for

neutron-rich nuclei at radioactive ion beam facilities are desirable to investigate

if the up-bend persists towards the neutron-drip line.
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Figure 5.4: Comparison of the HFB + Combinatorial model and experimental
nuclear level density.

5.2 Astrophysical Neutron Capture

cross-section Calculations

To estimate the 137,138La radiative neutron capture cross-sections and the cor-

responding reverse photoneutron emission rates of astrophysical interest, sta-

tistical model calculations were carried out using the TALYS code as discussed

in section 2.6. Some of the principal ingredients of these calculations are f(E�)

and ⇢(Ex). As far as the strength function is concerned, the new experimental
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results are now considered and entered directly in the TALYS calculation of

the electromagnetic transmission coefficients. Indeed, the present experiment

provides a direct measurement of the f(E�) up to Sn. For incident neutron

energies, typically below 1 MeV, it is found that the energy window giving rise

to the dominant contribution to the neutron capture cross-section corresponds

to photon energies of ⇡ 3 to 7 MeV (see figure 5.5), i.e. energies at which the

f(E�) have now been determined experimentally (figure 4.23). The ⇢(Ex) also

plays an important role in the calculation of the radiative capture cross-section.

By default, the calculations use the ⇢(Ex) of the HFB + Combinatorial model,

normalized to the experimental cumulative number of low-lying states, as well

as the s-wave resonance spacings (with their corresponding error bars) at Sn

(see Table 4.1). The calculated nuclear level densities are in general agreement

with the experimental ones (see figure 5.4).

The final neutron capture cross-sections, �(En), including the uncertainties

affecting the f(E�) and the ⇢(Ex) (Table 4.1), are given in figure 5.6. The

uncertainties of the f(E�) were modified from those shown in figure 4.23 with

the upper error bars obtained by replacing D0 by D0 � �D0 and h�(Sn)i

by h�(Sn)i + h��(Sn)i during normalization of f(E�). The lower error bars

of the f(E�)s were obtained by replacing D0 by D0 + �D0 and h�(Sn)i by

h�(Sn)i � h��(Sn)i. This modification is necessary because the error bars

obtained with the Oslo Method do not include the uncertainties of the D0

and h�(Sn)i, which significantly contribute to the error bars. For 138La the

new uncertainties in f(E�) are +52
�34% at E� = 7.2 MeV and gradually decreas-

ing to +15
�17% at E� = 1.0 MeV, while for 139La the ranges are +69

�39% at E� =

8.6 MeV and decreasing to +15
�15% at E� = 1.7 MeV. This is illustrated in fig-

ure 5.7 which shows the corresponding error bands and the observed f(E�).

The corresponding astrophysical Maxwellian-averaged cross-sections amount

to h�i = 366 ± 126 mb and 116± 44 mb for 137La(n, �)138La at the s-process
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Figure 5.5: Population of 138La (upper panel) and 139La (lower panel), after binary
� emission, through the (n, �) reaction calculated with the TALYS code.

thermal energy of kT = 30 keV (i.e. a temperature of T = 3.5 ⇥ 108 K)

and at the p-process energy of 215 keV (T = 2.5 ⇥ 109 K), respectively. For
138La(n, �)139La, the obtained values are 618 ± 174 mb and 54 ± 20 mb at
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Figure 5.6: 137La(n, �)138La (dashed line) and 138La(n, �)139La (solid line) cross-
sections as a function of neutron energy.

T = 3.5⇥ 108 K and 2.5⇥ 109 K, respectively.
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uncertainties into account, and corresponding measured f(E�).
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5.3 138La Galactic Production

The newly calculated 138La(n, �)139La cross-section at T = 3.5 ⇥ 108 K is

about 45% larger than the theoretical value compiled in Ref. [66]. At the

p-process temperature T = 2.5 ⇥ 109 K (215 keV), the Maxwellian-averaged

cross-sections (MACS) of 116± 44 mb and 54± 20 are close (within less than

15%) to the values of 123 mb and 62 mb derived in Ref. [3] for 137La and
138La, respectively. On the basis of detailed balance relations, the calculated

MACS correspond to 139La(�, n)138La reaction rates that are smaller than the

destructive 138La(�, n)137La rates. Therefore, from these derived cross-sections

it can be deduced [3] that the synthesis of 138La through photodisintegration

processes cannot be efficient enough to account for the observed abundance.

There are various plausible astrophysical sites for the p-process to take place

that have been suggested. These include pre-supernova phases of massive stars

and Type Ib/Ic supernovae stages following the loss of their hydrogen envelope

prior to the explosion [67]. However, the O/Ne-rich layer of Type II supernova

is the most promising and quantitatively studied site [3, 67, 5], because i) the

minimum temperature of ⇡ 1.5⇥109 K is required for the photodisintegration

process to take place, ii) this temperature must not exceed 3.5⇥109 K to

prevent strong photoerosion of heavy nuclei and iii) it is also mandatory to

freeze-out the p-process on a short enough time scale on the order of 1 second.

These conditions are well satisfied in the deep O/Ne-rich layers of massive

(typically 25M�) stars exploding as Type II supernova.

To investigate the impact of these new reaction rates (see section 5.2) on the
138La p-process production, nucleosynthesis calculations in the O/Ne-rich lay-

ers of Type II supernovae for a solar metallicity star of 25M� were performed,

in the absence of neutrino nucleosynthesis. The model used is discussed in

section 2.6 (more details on the nucleosynthesis can be found in Refs. [3, 68];

Stellenbosch University  http://scholar.sun.ac.za



Chapter 5 89

note, however, that theoretical rates are determined here using the TALYS

code [8, 53]). The resulting overproduction factors (with respect to the solar

abundances) in the 0.75M� p-process layers are shown in figure 5.8, where the

upper and lower limits on the 138La abundance are obtained with the reaction

rates from this work (figure 5.6). This newly calculated mean overproduction

factor (see figure 5.8) shows that 138La remains underproduced by a factor of

about 10 with respect to the neighbouring p-nucleus 138Ce. The determina-

tion of the reaction rates with the improved statistical parameters therefore

shows that 138La cannot be produced by photoreactions during the standard

p-process. These results put the ⌫-process (⌫e + 138Ba ! e� + 138La) as the

dominant production process for 138La on a very strong footing.
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Figure 5.8: p-nuclide overproduction factors hF i in the 0.75M� p-process layers of
a 25M� Type II supernova, as a function of the mass number A.

The synthesis of 138La in the ⌫-process is thought to be taking place in the

O/Ne-rich layers of core-collapse supernovae when all flavors of neutrinos,
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emerging from the proto-neutron stars, flow through this layer [69]. Figure 5.9

illustrates the different layers of a massive star. The synthesis of 138La through

⌫-induced reactions was suggested by S.E. Woosley et al. [6]. The first quan-

titative analysis of the production of this p-isotope through ⌫-reactions, in the

O/Ne-rich layers of core-collapse supernovae of 25M� stars, was performed by

S. Goriely et al. [3] (see figure 1.4). The 138La solar abundance was found to

be produced by the charged-current and neutral-current reactions, 138Ba(⌫e,

e�)138La and 139La (⌫x, ⌫ 0
xn)138La where x = ⌧ and µ, respectively.

Figure 5.9: Schematic layout of onion-skin of a massive star (M > 8M�) at the
end of its evolution [71].

However, the 139La (⌫x, ⌫ 0
xn)138La reaction was found to be insignificant com-

pared to the 138Ba(⌫e, e�)138La reaction. This was later confirmed (see figure

5.10) by A. Heger et al. [70] using improved cross-sections based on random

phase approximation calculations. The estimated cross-sections for ⌫e-capture

on 138Ba and ⌫x neutron knockout by 139La are on the order of 10�14 mb at

neutrino temperatures, T⌫ , of 4 and 6 MeV, respectively [3, 70]. Furthermore,

the cross-section for 138Ba(⌫e, e�)138La has been recently improved on the

basis of experimental Gamow-Teller strength distribution in 138La and con-

firmed to be on the order of 10�14 mb [72]. In fact, the improved cross-section,

7.4⇥10�14 mb, for 138Ba(⌫e, e�)138La is in excellent agreement with 7.5⇥10�14

mb estimated by Ref. [3]. The results from Ref. [72] further confirm that the
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charged-current interaction is needed to explain the 138La solar abundance and

that T⌫ = 4 MeV is sufficient.

Figure 5.10: Production of 138La in the supernova of a 25 M� star. The produc-
tion without neutrinos, with charged-current reaction 138Ba(⌫e, e�)138La, with the
neutral current reaction 139La (⌫x, ⌫ 0xn)138La and both reactions are denoted by no
⌫, char., neut. and all ⌫, respectively [70].

It is desirable to directly measure the cross-sections for the 138Ba(⌫e, e�)138La

and 139La (⌫x, ⌫ 0
xn)138La reactions in order to confirm the quantitative argu-

ment of Ref. [3]. This would be accomplished by exposing 138Ba and 139La

to neutrino environments similar to the one existing in O/Ne-rich layers of

core-collapse supernovae. However, challenges of artificially generating ⌫ en-

vironments with the required flux on earth, combined with the very small an-
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ticipated cross-sections make a direct measurement impractical with currently

available technologies.
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Summary and Conclusions

The origin of the rare earth p-nucleus 138La has been an open question for a long

time. In particular uncertainty exists whether this p-isotope is synthesized by

photodisintegration of s- and r-seed nuclei or in the ⌫e-process. The nucleosyn-

thesis calculations performed by S. Goriely et al. [3] show that the observed

solar abundance of this nucleus cannot be accounted for through the p-process

but is reproduced by invoking the ⌫e + 138Ba ! e� + 138La reaction, which

takes place in the O/Ne-rich layers of core-collapse supernovae. The 138La

underproduction in the p-process could still not be confirmed with certainty,

due to the unavailability of experimental f(E�) and ⇢(Ex) data for 138,139La,

which are critical ingredients to Hauser-Feshbach calculations on which the
138La production and destruction rates are based.

These statistical parameters have now been successfully measured for the first

time, below Sn, for 138La and below 6 MeV excitation energy for 139La, using

the 139La(3He, ↵�) and 139La(3He, 3He�) reactions. The Oslo Method used for

the data analysis utilizes detected particle-� coincidence events. The charged

particles were detected using the SiRi array, while the � rays in coincidence

with these charged ejectiles were detected using the CACTUS array. The
138La(n, �)139La and 137La(n, �)138La cross-sections of 54 ± 20 and 116 ± 44

93
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mb, corresponding astrophysical MACS at the p-process temperature, T9 =

2.5, have been calculated. These calculations were performed with the TALYS

reaction code, using the experimentally measured f(E�) and ⇢(Ex) calculated

within the HFB + Combinatorial model and compared to experimental data.

These MACS were used to calculate the abundance of 138La within astro-

physical reaction network calculations and their impact on the 138La p-process

production has been investigated.

These nucleosynthesis calculations show that even with the newly measured

properties, 138La cannot be sufficiently produced by photodisintegration of s-

and r-process seed nuclei in O/Ne-rich layers of Type II supernovae. It is

therefore concluded that the results of the present work put the ⌫e capture

on 138Ba on a very strong footing as the dominant production process for the

neutron-deficient 138La nucleus.

Future measurements of the f(E�) and ⇢(Ex) in particular for neutron-rich

nuclei are necessary to understand the existence of the low-energy enhance-

ment. Direct ⌫-process measurement are desirable but impractical with today’s

technology.
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Appendix

Figure 6.1: The �E�E plot for the 139La(3He, X) experiment gated on ↵ particles.

Figure 6.2: The �E � E plot for the 139La(3He, X) experiment gated on 3He.
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Figure 6.3: The energy-time matrix for the 139La(3He, ↵�)138La reaction of the
CACTUS array.

Figure 6.4: The energy-time matrix from the 139La(3He, ↵�)138La reaction after
walk correction for the CACTUS array.
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