
Small-World Network Models and Their
Average Path Length

by

Samah M.Osman Taha

Thesis presented in fulfilment of the requirements for the
degree of Master of Science in Mathematics at Stellenbosch

University

Department of Mathematical Sciences,
Faculty of Science,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Supervisors: Prof. J.W. Sanders
Dr. D. Ralaivaosaona

plt
Typewritten Text

plt
Typewritten Text

plt
Typewritten Text

plt
Typewritten Text

plt
Typewritten Text

plt
Typewritten Text
          December 2014

plt
Typewritten Text



Declaration

By submitting this thesis electronically, I declare that the entirety of the work
contained therein is my own, original work, that I am the owner of the copy-
right thereof (unless to the extent explicitly otherwise stated) and that I have
not previously in its entirety or in part submitted it for obtaining any qualifi-
cation.

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . .
Samah Taha

2014/4/8Date: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Copyright © 2014 Stellenbosch University
All rights reserved.

ii

Stellenbosch University  http://scholar.sun.ac.za



Abstract

Small-World Network Models and Their Average Path
Length

Samah Taha
Department of Mathematical Sciences,

University of Stellenbosch,
Private Bag X1, Matieland 7602, South Africa.

Thesis:
April 2014

Socially-based networks are of particular interest amongst the variety of com-
munication networks arising in reality. They are distinguished by having small
average path length and high clustering coefficient, and so are examples of
small-world networks. This thesis studies both real examples and theoreti-
cal models of small-world networks, with particular attention to average path
length.

Existing models of small-world networks, due to Watts and Strogatz (1998)
and Newman and Watts (1999a), impose boundary conditions on a one di-
mensional lattice, and rewire links locally and probabilistically in the former
or probabilistically adding extra links in the latter. These models are in-
vestigated and compared with real-world networks. We consider a model in
which randomness is provided by the Erdős-Rényi random network models su-
perposed on a deterministic one dimensional structured network. We reason
about this model using tools and results from random graph theory.

Given a disordered network C(n, p) formed by adding links randomly with
probability p to a one dimensional network C(n). We improve the analytical
result regarding the average path length by showing that the onset of small-
world behaviour occurs if pn is bounded away from zero. Furthermore, we
show that when pn tends to zero, C(n, p) is no longer small-world. We display
that the average path length in this case approaches infinity with the network
order. We deduce that at least εn (where ε is a constant bigger than zero)
random links should be added to a one dimensional lattice to ensure average
path length of order log n.
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Tesis:
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Sosiaal-baseerde netwerke is van besondere belang onder die verskeidenheid
kommunikasie netwerke. Hulle word onderskei deur ’n klein gemiddelde skei-
dingsafstand en hoë samedrommingskoëffisiënt, en is voorbeelde van klein-
wêreld netwerke. Hierdie verhandeling bestudeer beide werklike voorbeelde en
teoretiese modelle van klein-wêreld netwerke, met besondere aandag op die
gemiddelde padlengte.

Bestaande modelle van klein-wêreld netwerke, te danke aan Watts en Stro-
gatz (1998) en Newman en Watts (1999a), voeg randvoorwaardes by tot een-
dimensionele roosters, en herbedraad nedwerkskakels gebaseer op lokale ken-
nis in die eerste geval en voeg willekeurig ekstra netwerkskakels in die tweede.
Hierdie modelle word ondersoek en vergelyk met werklike-wêreld netwerke.
Ons oorweeg ’n prosedure waarin willekeurigheid verskaf word deur die Erdös-
Renyi toevalsnetwerk modelle wat op ’n een-dimensionele deterministiese gest-
ruktureerde netwerk geimposeer word. Ons redeneer oor hierdie modelle deur
gebruik te maak van gereedskap en resultate toevalsgrafieke teorie.

Gegewe ’n wanordelike netwerk wat gevorm word deur skakels willekeurig
met waarskynlikheid p tot ‘n een-dimensionele netwerk C(n) toe te voeg, ver-
beter ons die analitiese resultaat ten opsigte van die gemiddelde padlengte deur
te wys dat die aanvang van klein-wêreld gedrag voorkom wanneer pn weg van
nul begrens is. Verder toon ons dat, wanneer pn neig na nul, C(n, p) nie meer
klein-wêreld is nie. Ons toon dat die gemiddelde padlengte in hierdie geval na
oneindigheid streef saam met die netwerk groote. Ons lei af dat ten minste εn
(waar εn n konstante groter as nul is) ewekansige skakels bygevoeg moet word
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by ’n een-dimensionele rooster om ‘n gemiddelde padlengte van orde log n te
verseker.
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Chapter 1

Introduction

This chapter briefly introduces small-world networks, specifies our research
question, presents the related work, summarizes the contribution, and finally
gives a summary of the content of the thesis.

1.1 Small-World Network
Complex networks are everywhere; they are present in every aspect of our life,
and emerge in a wide range of disciplines in nature and social science. Com-
plex networks, in fact, are all systems of either physical (real) and/or logical
(virtual) connected components. They are thus considered complex because
of their non-trivial structure which is often called their topology (Jamakovic,
2008). Understanding the topological properties of real-world networks and
being able to model them gives us the proper knowledge that is required to
understand how the components interact and enables us to predict the over-
all network performance. Small average path length and high transitivity are
two properties that are present in most real-world networks. The standard
random network model possesses only the small average path length property.
On the contrary, regular network models have high transitivity. Watts and
Strogatz (1998) combined these two properties in one network model called
Small-world networks by analogy with the social psychologist Milgram’s
experiment, popularly known as six degrees of separation.

1.2 Research question
So, small-world properties, short average path length and high transitivity,
have been observed in real-world networks. Models of small-world networks
combine structured topology represented by one dimensional lattice networks
with periodic boundary conditions, i.e., the lattices form a ring. Each vertex
is connected to its 2k nearest neighbours, k in each side. This structured
topology has high transitivity which is order independent and depends only

1
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CHAPTER 1. INTRODUCTION 2

on k. It is quantified by the clustering coefficient cc. The average path length
in this structure is not short, i.e., the average path length scales linearly with
the network order. Randomness can be added to structured base networks
to reduce the average path length so that it scales logarithmically with the
network order. In the literature of small-world models, there are many methods
to add such randomness. Our method is to superpose regular base networks
and the Erdős-Rényi random network.

Our research question is then: Given a disordered network C(n, p) formed
by adding links randomly with probability p to a one dimensional network
C(n), what is the average minimum value of p such that the disordered net-
work, C(n, p), is a small-world network? That is, what is the average minimum
number of extra random links that can be added to a one dimensional lattice
such that the average path length is small. This is equivalent to determin-
ing the threshold of the onset of small-world behaviour of a one dimensional
lattice.

1.3 Related Work
Although the origin of the study of network can be traced back to Leonard
Euler’s mathematical solution of the Köningsberg bridge problem in 1735, re-
search in complex networks has expanded broadly in recent years, supported
largely by massive real-world data and the availability of powerful computa-
tional analysis techniques which makes examining large-scale real-world net-
work structure possible. The discovery of the structure of the internet (Falout-
sos et al., 1999), the structure of scientific collaboration (Newman, 2001c,a,b;
Barabási et al., 2002), and more recently the Facebook network (Backstrom
et al., 2012; Ugander et al., 2011) are good examples of large-scale real-world
networks which have been examined recently. Furthermore, in the modelling
of networks, the growing observation that real-world networks do not follow
the standard Erdős-Rényi random network model has motivated research in
proposing other models. The Watts and Strogatz (1998) observation of small
average path length and high clustering in social networks leads to small-world
networks and the Barabási and Albert (1999) observation of hubs in the world
wide web networks leads to scale-free networks.

This thesis contributes to modelling complex networks, in particular, small-
world networks. For a general view of the structure of complex networks we
recommend the extensive review (Albert and Barabási, 2002). It reviews the
recent advances in the field of complex networks focusing on the statistical me-
chanics of network topology and dynamics as well as covering random network,
small-world and scale-free network models. In addition, (Newman, 2003b) re-
views the same three models as well as models of network growth and pref-
erential attachment. Lastly, Newman (2010)’s book is a good reference for
network science in general.
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CHAPTER 1. INTRODUCTION 3

Answering our research question (mentioned in Section 1.2) requires under-
standing a random network’s structure since small-world networks are exam-
ples of random networks which mimic empirically observed features in social
networks. Then, we investigate the small-world network model as defined by
its specific properties. Finally, we examine the cross-over phenomenon where
the scale of the average path length in structured networks changes from being
linear to logarithmic with the network order. We first survey and discuss the
closely related work in those areas.

One of the first quantitative studies of the structure of social networks was
given in (Milgram, 1967) by attempting to measure the social-size of the world.
The conjecture that was investigated is that in the world of more than 6 billion
people, while everyone personally knows only a relatively small sample of the
total population, and this small sample is mostly highly connected among
each other, everyone in the world is, nonetheless, connected by only a few
steps to every one else. Milgram (1967) concluded that, despite the sparsity
and the homophily in the structure of the human social network, most of the
population is within six degrees of connections from any given stranger. This
phenomenon has been labelled “six degrees of separation”, a phrase which has
since then passed to popular folklore. That number six is not very accurate.
However, the general result is that two randomly chosen human beings are
connected by a surprisingly short chain of intermediate acquaintances.

One could attempt to explain this by modelling social networks as sparse
random networks. Chung and Lu (2001) studied the diameter of a random
network R(n, p) for various ranges of p close to the phase transition point for
connectivity. They prove that the diameter of R(n, p) is almost surely equal
to the diameter of its giant component, i.e., O(log n), if np > 3.6.

Although a random network does possess a small average path length,
it lacks network clustering, which is an essential property of social networks
and many other real-world networks. A network is said to have clustering if
the probability of two vertices being connected by a link is higher when the
vertices in question have a common neighbour. On the contrary, in random
networks the probability of two vertices being connected by an link is, by
definition, independent of any other connections. That is, the probability of
two vertices being directly connected when they have a common neighbour is
the same as the probability of being directly connected when they do not have
a common neighbour. Newman (2003a) discussed random networks as model
of real-world networks and reviewed some recent work on the generalization of
the random network aimed at correcting random network shortcomings as a
model of real-world networks. He concluded that if clustering is introduced in
random networks, then any analytical approach becomes significantly harder.
Moreover, only a few approximate analytic results for this type of network are
known.

The small-world problem is somehow related to a class of problems re-
garding the study of extremal diameter alteration, i.e., the possible change of
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CHAPTER 1. INTRODUCTION 4

diameter in a network where links are added or deleted. The study of the
extremal diameter alteration was initiated in (Chung and Garey, 1984) where
the diameter for altered networks after adding t links was studied. Among
other results, they showed that if t links are added to an n-cycle, then the
least possible diameter of the resulting network for large n was essentially n

t+2

when t is even and n
t+1

when it is odd. This bound was obtained after adding
links in specific way, i.e., the links are not randomly added. A similar work in
(Bollobás and Chung, 1988) studied how small the diameter can be made by
adding a random matching to an n-cycle. They showed that this construction
has diameter about log2 n. These kinds of study partially discuss the small-
world problem but do not contribute to the literature of small-world network
since the constructions are different and the intention was not a social network
model.

Watts and Strogatz (1998) realized that the small-world phenomenon is not
a coincidence and the distinctive combination of high clustering with short path
length cannot be captured by the traditional random network models or even
by a regular network models. Watts and Strogatz (1998) reconciles those two
properties that at first may appear to be contradictory on one network and
then call it a small-world network by analogy with the small-world phenomenon
(Milgram, 1967). They proposed a specific construction of small-world model
by randomly rewiring the links of a “periodic” one dimensional lattice, i.e., a
ring. Rewiring means shifting one end of the links and attaching it to a ran-
domly chosen vertex with probability p. With p varying, the model’s structural
properties can be considered through the two key characteristics: the average
path length, l̄(p), and the clustering coefficient, cc(p). Small-world networks
lie in the intermediate region between p = 0, when the network is still regular,
and p = 1, when the network is similar to a random network. Watts and
Strogatz (1998) concluded that there is a substantial range of values of p in
which the value of l̄ is small while the values of cc are still high; this range is
where the small-world networks lie.

Because of the difficulties of the mathematical treatment of the rewiring
process, Newman andWatts (1999a) proposed a variation of theWatts-Strogatz
model where extra links, often called short-cuts, are added instead of rewiring
the original links in the base network. The Newman and Watts (1999a) model
is equivalent to the original model where the average number of the rewiring
links in the Watts and Strogatz (1998) model is equal to the average number
of the extra links in the Newman and Watts (1999a) model which is nkp,
where each vertex in the ring has degree 2k. The pioneering work in (Watts
and Strogatz, 1998) triggered an avalanche of research on the properties of
small-world networks, though most results are based on Newman and Watts
(1999a) variation. As our interest in this thesis is the average path length l̄,
in the following we will discuss the closely related work regarding to l̄.

Newman (2003b) stated that there is no exact solution for the value of l̄,
but a number of partial exact results are known, including scaling forms as well
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CHAPTER 1. INTRODUCTION 5

as some approximation of behaviour as a function of the models’s parameter.
When p is close to zero, the network is large-world, i.e., l̄ scales linearly with
the network order; by contrast, a small-world network is characterized by the
logarithmic scaling of l̄, which happens for larger p. Barthélémy and Amaral
(1999) study the cross-over from large- to small-world and conjectured that
l̄ satisfies the scaling form l(n, p) = nf( n

n∗), where n
∗ diverges as n∗ ∼ p−τ

and defines the cross-over. Based on numerical simulations Barthélémy and
Amaral (1999) calculated that τ = 2/3. However, simple physical arguments
in (Barrat, 1999) obtained that τ cannot be less than one. Newman and
Watts (1999a) used an asymptotically exact real-space re-normalization group,
together with the analytical argument in (Barrat and Weigt, 2000), to show
that the exact value of τ is one. This implies that the cross-over occurs at fixed
n when p ∼ 1

n1/τ . The notation ∼ used for the onset of small-world behaviour
is ambiguous. It actually means limn→∞

log p
logn

= −1
τ
, then τ = 1. This result

leaves the threshold area large where we can decide if the network is small-
world or not, the result indicates that when τ > 1 the network is small-world
and when τ < 1 the network is not small-world, otherwise we can not decide.

Regarding the scaling function f(x), a mean field-treatment is given in
(Newman et al., 2000) to show that f(x) = 1

2
√
x2+2x

tan−1
√

x
x+2

. Newman
and Watts (1999b) calculated the form of the scaling function to fifth order in
the short-cut density using a series expansion and to third order using Padé
approximants. Making any further progress has proved difficult. Dorogovtsev
and Mendes (2000) presented an exact description of a crossover between the
two different regimes of simple small-world networks where there are no short-
cuts, but instead random vertices are connected to a single central extra vertex
or hub. Newman (2000) provides a short review of small-world models.

In addition to the small-word studies, a new accurate result of the diameter
was obtained by Flaxman and Frieze (2004), providing a network withO(log n)
diameter. The result holds for a strongly connected directed network with
bounded degree that is perturbed by adding a random network R(n, ε

n
) where

ε is a constant and ε > 0. The resulting network denoted by D is a network
formed by taking the union of the links of base directed network with bound
degree network D′ and random network R(n, ε/n). Although the motivation
of this result is not the restriction of a social network and does not guarantee
the high transitivity in the network, the construction is close to small-world
network in the sense that its diameter is of logarithmic order. The result of the
diameter is general such that it can be applied to small-world network models.

1.4 Contribution
As we have mentioned in Section 1.3, the threshold value of onset of small-
world behaviour has been determined as, limn→∞

log p
logn

= −1
τ
. This result leaves

a wide range of p values where we cannot decide whether the network is small
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CHAPTER 1. INTRODUCTION 6

or not, i.e., when τ = 1. In this work, we use Erdős-Rényi random networks
which have the advantage of being analytically solvable in many of their aver-
age properties and being one of the oldest and best studied network models,
to construct a solvable small-world network model. Using random network
structure R(n, p) when np is bounded away from zero, we narrow the thresh-
old to be p = ε

n
where ε is a constant ε > 0, and we construct a small-world

network with diameter O(log n) which bounds the average path length below
by O(log n). In addition, we study the random network structure when pn
tends to zero , and we use the result to study average path length of small-
world models. We show that in this case l̄ > O(log n), i.e., the network is
not small-world. We deduce that at least εn where ε is a constant and ε > 0
random links should be added to a one dimensional lattice to ensure average
path length of order log n.

In addition to the analytical work, we conduct an empirical study of the
scientific collaboration, citation and Facebook social network data by analysing
their average path lengths, clustering and degree distributions. The results
show the unsuitability of random networks as models of real-world networks,
as they do a poor job of capturing real-world network properties like the high
clustering and the scale-free degree distribution. In addition, we simulate
Watts and Strogatz (1998) and Newman and Watts (1999a) models of small-
world networks to confirm the results and to compare their properties with
real-world network properties. Small-world network models do a good job in
capturing real-world network properties but they do not have the scale-free
degree distribution. However, it should be noted that the models were never
intended to mimic real-world degree distribution.

1.5 Thesis Organization
This thesis organized as follows:

The second chapter introduces the foundations on which the other chapters
are based. Particularly, it introduces random network models and investigates
their properties compared with three examples of real-world networks.

The third chapter defines small-world properties and studies Watts and
Strogatz (1998) and Newman and Watts (1999a) models of small-world net-
work, with particular attention to average path length. The properties of
small-world network are also comparable with real-world networks.

The fourth chapter considers a small-world model provided by the Erdős-
Rényi random network, superposed on a deterministic structured network to
provide new results regarding average path length of small-world network mod-
els.

Finally, the fifth chapter summarizes our thesis and presents the conclusion
and further direction of research.
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Chapter 2

Foundation

Traditionally, complex networks have been modelled as random networks. As
complex network science has become a focus of attention and continues to grow
in importance and popularity (because of the availability of the empirical stud-
ies of real-world networks), other models of networks have been developed in
order to bridge the gap between random networks and real-world networks.
This chapter introduces random networks and presents an empirical study of
some real-world networks to make visible the unsuitability of random net-
work in modelling real-world networks. Before giving the formal description of
random network models, we concisely present the basics of graph theory and
complex network terminologies.

2.1 Introducing Graphs
In this section we will recall the basics of graph theory that are necessary for
a basic understanding of this thesis. There are a variety of books studying
graph theory from different viewpoints; this section relies on (Bollobás, 1998).

A graph G is a pair (V,E) where V (G) is a set whose elements are called
vertices, and E(G) is a set of pairs (u, v) called edges or links, where u, v ∈ V .
The cardinality of V is called the graph’s order and is denoted by |V |. Unless
stated otherwise, in this work we use the notation n ≡ |V |. A pair (u, u) ∈ E
is called a loop. Multiple edges occur when more than one edge is connected
with the same vertices. In this case the graph is said to be multi-graph. If
we distinguish (u, v) and (v, u), then the graph is said to be directed (and
all its edges are directed); otherwise the graph is undirected. Most graphs in
this thesis are undirected graphs, and thus the term graph refers to simple
undirected graphs unless we state otherwise. Note that there are

(
n
2

)
possible

links in a simple undirected graph. A graph where all possible edges are present
is called a complete graph and denoted by Kn. The neighbourhood of vertex
v is the set Nv of all vertices u such that (v, u) ∈ E(G). The degree of vertex
v, denoted by deg(v), is the cardinality of Nv, i.e., |Nv|.

7
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CHAPTER 2. FOUNDATION 8

2.2 Complex Networks Properties
Understanding complex networks becomes a fundamental problem in graph
theory. What does it mean for two large graphs to be similar to each other,
when they may differ in obvious ways such as their numbers of vertices? There
are many types of networks (social, biological, economic, physical, technolog-
ical, etc.), whose details vary widely, but they have similar structural and
growth phenomena. For this reason, it is natural to consider the network as a
sequence of graphs with order tending to infinity and ask whether these graphs
converge to any meaningful limit.

Studying real-word complex networks using graph theory techniques is sim-
ple, yet powerful, because it treats complex networks from different fields using
the same mathematical tools and methods. Moreover, complex networks are
difficult to visualize and describe. To be able to compare networks and clas-
sify them according to the properties that they display, this section introduces
important and robust metrics that are used to characterize and provide mean-
ingful insight into the structure of complex networks. There are a variety of
books introducing complex networks and studying them from different view-
points. We have chosen to rely on (Van Steen, 2010) and (Jackson, 2010).

2.2.1 The Average Path Length and The Diameter

A path P is a finite sequence of edges which connects a sequence of vertices,
and it forms its own network of the form V (P ) = {v0, v2, . . . , vl} and E(P ) =
{(v0, v1), (v1, v2), ...(vl−1, vl)}. The path length l = (v0, vl) is |E(P )|. The
network is called connected if there is a path between any two vertices. If the
network is not connected, the isolated parts individually comprise connected
components, and the “unique” largest component with O(n) vertices usually
called the giant component, In other words for each n there is a connected
subset C(n) of G(n) in the network G = G(n) satisfying |C(n)| = O(n) in
the usual sense that eventually supn|G(n)|/n,∞. So, a connected network has
only one connected component.

Since the network might have many paths of different length between vi
and vj, we reserve the notation l to refer to the shortest path length between
vi and vj. For brevity we say path length instead of shortest path length. If
there is no path between the vertices, we say the path length is infinite.

Definition 2.1. Let G(n) be a connected network and let l̄(u) be the average
path length from vertex u to other vertices in G(n):

l̄(u) =
1

n− 1

∑
v∈V,v 6=u

l(u, v).
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CHAPTER 2. FOUNDATION 9

The average path length of the network, l̄(G), is defined as

l̄(G) =
1

n

∑
u∈V

l̄(u)

=
1

n

∑
u∈V

(
1

n− 1

∑
v∈V

l(u, v)

)

=
1

n(n− 1)

∑
u,v∈V

l(u, v) (2.2.1)

The diameter of a network G is the length of the longest path,

diam(G) = max{l(u, v)|u, v ∈ V (G)}.

Notice that these definitions apply to undirected as well as directed networks.
Although the diameter gives useful information by indicating the length of the
longest path in the network and also provides an upper bound for the average
path length, it is not very powerful in distinguishing networks meaningfully.
However, the average path length does, and it will come up as a quantity of
interest in this work frequently. In the case when the network is not con-
nected, the diameter and the average path length are computed for the largest
component in the network.

2.2.2 Transitivity or Clustering Coefficient

A common property of social and many other complex networks is transitivity.
In the context of social networks this means that the probability between
people to be friends is not equal; two people with a mutual friend are more
likely to be friends than any two people chosen at random, i.e., there is a high
density of triangles in the networks. This tendency to cluster is quantified
by the clustering coefficient, which can be interpreted as the probability that
two randomly chosen vertices are connected given that they have a common
neighbour. Formally, the clustering coefficient, cc, of a network G(n) is defined
as follows (Watts and Strogatz, 1998):

cc ≡ cc(G) =
1

n

∑
v∈V

cc(v), (2.2.2)

where cc(v) is the local clustering coefficient of vertex v and is defined as
follows: suppose that vertex v has kv neighbours. For kv = 0 or 1 the local
clustering coefficient, cc(v), is defined to be zero. When kv ≥ 2, then there are
kv(kv−1)

2
possible undirected links among the neighbours of v. We define cc(v)

as the ratio between the actual existent links to all possible links for vertex v..
Let Nv be the set of neighbours of v and kv ≥ 2. Then

cc(v) =
2|E ∩ (Nv ×Nv)|

kv(kv − 1)
. (2.2.3)
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CHAPTER 2. FOUNDATION 10

The clustering coefficient is equal to 1 for a network where any pair of vertices
are linked, i.e., complete network, and it is equal to 0 in trees.

Figure 2.1 shows an example of the global clustering coefficient, using the
formula in (2.2.2)

cc(v1) = 0, cc(v2) = 1, cc(v3) = 1, and cc(v4) = 1,

then,

cc(G) =
1

4
{0 + 1 + 1 + 1} =

3

4
.

Figure 2.1: The clustering coefficient of the above network is 3/4.

2.2.3 The Degree Distribution

Since not all vertices in the network have the same degree, the average degree
of a network G(n) measures how many edges are in set E compared with the
number of vertices in set V . This quantity is given by:

deg(G) =
1

n

∑
v∈V

deg(v). (2.2.4)

The spread of vertex degree k is given by its distribution over the whole network
which is denoted by Pk.

Directed networks have two different degrees for each vertex: the in-degree
and the out-degree, which are respectively the number of edges in-going and
out-going at the vertex in question. Therefore, there are two different degree
distributions in a directed network, the in-degree and out-degree distributions.

2.3 Random Network
Traditionally, networks with complex topology and unknown organizing prin-
ciple are considered to be random; i.e., networks in which the edges are ran-
domly distributed. Historically, these were founded and greatly detailed by
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CHAPTER 2. FOUNDATION 11

Erdős and Rényi (1960), and an in-depth review of the field is available in
the classic book of Bollobás (2001), as well as in Janson et al. (2011). In the
20th century, random network theory has become more statistical and algo-
rithmic and a particularly rich effort has been dedicated to random networks
as one of the earliest theoretical models of real-world networks. In the follow-
ing we briefly describe the aspects of random network theory that are of direct
relevance to our work.

2.3.1 Random Network Models

Among several models of random networks, there are two basically equivalent
models, and both are formed in the simple model by Erdős and Rényi (1960).
Mainly, these models only differ in the way the sample space is chosen (or the
way the edges are chosen). This section is confined to those two models.

Definition 2.2. Let V be the vertex set, i.e., the vertices are labelled, and a
real number p, 0 ≤ p ≤ 1. The binomial random network denoted by R(n, p) is
constructed by connecting each pair of vertices with probability p independently

P((vi, vj) ∈ E) = p,

for vi, vj ∈ V . Therefore, all such networks with n vertices and |E| links have
equal probability of

p|E| (1− p)(
n
2)−|E|.

Placing the links between each pair of vertices in a binomial random net-
works can be seen as a result of a coin flipping, i.e.,

(
n
2

)
flips in total, with

probability of success (drawing an edge) equal to p. This model is often used
in the field of complex networks where it is assumed that the links in the real-
world occur randomly. The main advantage of this model is the independence
of the presence of links, but the drawback is that the number of edges is not
fixed which makes this model hard to analyse and enumerate.

The number of the edges in a binomial random network varies according
to the binomial distribution with expectation p

(
n
2

)
. If we impose the condition

that |E(R(n, p))| = M , then a uniform space exists and this leads us to the
other random networks model; the uniform random network model.

Definition 2.3. Let V be the vertex set and an integer M , 0 ≤M ≤
(
n
2

)
, the

uniform random network, denoted by R(n,M), is defined by taking the sample
space as the family of all networks on the vertex set V (n) with exactlyM edges.
Equivalently, all networks with n vertices and M links have equal probability
of

1
/((n

2

)
M

)
.
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This model is closely related to enumerative combinatorics, which deals
with the number of ways that certain patterns can be formed.

These two basic models of random networks are in many cases asymptot-
ically equivalent. This equivalence indicates that in a large majority of cases
the properties of random networks R(n, p) and R(n,M) are very similar pro-
vided that M ∼

(
n
2

)
p and the investigated property is a monotone property.

The details appear in (Bollobás, 2001, p. 14-17).

Remark 2.4. The abbreviation, a.a.s, meaning asymptotically almost surely,
as well as, w.h.p, meaning with high probability both are used to denote an
event that holds with probability tending to 1 as n→∞.

2.3.2 Random Networks Evolution

Imagine a random network as an organism which grows with time. It is born
as a set of n isolated vertices and develops by successively adding edges at
random. Our objective in this section is to study the global structure of random
networks at different stages. A brief intuitive and imprecise description with
no details of the fundamental results of random networks evolution is given
by answering the following questions: given a specific probability p, how do
the connected components look and what is their order? Random network
evolution has been studied generously in (Bollobás, 2001, p. 96-159). Theorem
2.5 summarizes random network evolution.

Theorem 2.5. Consider a random network R ∈ R(n, p) where p = ε
n
for some

constant ε. Then:

1. If ε < 1, then a.a.s, most of the components in the network are isolated
trees and the largest component of R(n, p) has order O(log n).

2. If ε > 1, then a.a.s, R(n, p) has a unique giant component of order O(n).
All other components of order O(log n).

3. If ε = 1, then a.a.s, R(n, p) has a component of order O(n2/3).

2.3.3 Random Networks Properties

Random graphs are considered one of the earliest theoretical network models.
This section relies on (Albert and Barabási, 2002) to summarize the properties
of random networks as they are defined in Section 2.2.

Degree Distribution

As we have mentioned earlier, the average number of edges in a R(n, p) random
network with n vertices is n(n−1)

2
p. Since the edges occur randomly, most of
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the vertices have the same degree which is close to the average degree. The
average degree in the binomial random networks is defined as follows:

z =
n(n− 1)p

n
= (n− 1)p ∼ np, as n→∞.

The degree distribution in a R(n, p) random network is binomial by definition.
Pk denotes the probability that the degree of a randomly chosen vertex is k,
i.e., p(deg = k), and thus,

Pk =

(
n− 1

k

)
pk(1− p)n−1−k.

In the limit when np ∼ z where z is a constant, this becomes

Pk =
zke−z

k!
,

which is the Poisson distribution.

Clustering Coefficient

Recall that a network is said to show clustering if the probability of two ver-
tices being connected by an edge is higher when the vertices have a mutual
neighbour. On the other hand, the probability of edge occurrence in Erdős-
Rényi random networks are by definition independent. Therefore, Erdős- Rényi
random networks have low clustering coefficient.

In a R(n, p) random network, the probability that two neighbours of a
given vertex is connected is p. Therefore, we expect

cc = p.

The Diameter and The Average Path Length

A random network is likely to be spread out as the probability of two vertices
to be connected is independent of any other nodal connections. If the average
degree of a random network is z, with large probability the number of vertices
at a distance l from a given vertex is not much smaller than zl. Then, equating
this with n, one obtains:

zdiam = n

diam =
ln(n)

ln(z)
.

This means that a random network tends to have a small diameter as its
diameter scales logarithmically with n. Projecting this to social networks, if a
random person A knows z people on average, and each of A’s friends also has
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z friends, then A has about z2 second friends. Extending this argument, in l
steps A can reach zl acquaintances. Note that if every person has 100 direct
friends, person A can reach most of the population in the world in 5 steps (the
world population in 2014= 7.155 billion). This logic does not hold for social
networks where the acquaintances tend to overlap.

A variety of studies have investigated the diameter of random networks see
(Chung and Lu, 2001; Bollobás, 1981). A general conclusion is that for most
values of p, almost all random networks with the same n and p have precisely
the same diameter usually concentrated around

diam =
ln(n)

ln(z)
.

Fronczak et al. (2004) confirmed the observations that the average path
length for Erdős- Rényi random networks scales logarithmically with n,

l̄ ∼ ln(n).

2.4 Touching upon Real-World Networks
One motivation for the study of complex networks has been the need to un-
derstand real-world networks. Understanding and visualizing the structure of
real-world networks stimulates their empirical study. In this section we study
briefly three classes of real-world networks: scientific collaboration network,
the citation network and social network, e.g., Facebook. Beyond a description
of the data set, we shall focus on three important measures of a network’s
topology as we have discussed in Section 2.2: average path length, clustering
coefficient and degree distribution.

2.4.1 Going from Scientific Collaboration network

In the scientific collaboration networks the vertices are scientists and two sci-
entists are connected if they have at least one joint publication. One of the first
studies that investigated the properties of the scientific collaboration network
was done by Newman (2001c,a,b) and investigated four different networks.
Table 2.1 gives a summary of some of the results of (Newman, 2001c).

Looking at Table 2.1, we can see that despite the fact that the networks of
interest of Newman (2001c) are large, they have a small average path length
and high clustering, meaning that two scientists are much more likely to col-
laborate if they have a third common collaborator. Newman (2001c) found
that the degree distribution of the scientific collaboration network is well fitted
by power-law forms with an exponential cut-off, i.e, Pz ∼ z−τe−z/zc , where τ
and kc are constants, and z is the number of collaborators. Fits to this form
are shown as the solid lines in Figure 2.2.
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MEDLINE Los Alamos SPIRES NCSTRL

Total number of authors 1,520,251 52,909 56,627 11,994

Collaborators/ author 18.1 9.7 173 3.59

clustering coefficient cc 0.066 0.43 0.726 0.496

average path length l̄ 4.6 5.9 4.0 9.7

Table 2.1: The analysis results for different collaboration network (Newman,
2001c). MEDLINE: papers on biomedical research; Los Alamos: preprints in theo-
retical physics; SPIRES: papers and preprints in high energy physics and NCSTRL:
preprints in computer science. The analysis is done during a five years period 1995-
1999.

Figure 2.2: The degree distribution of a scientific collaboration done by (Newman,
2001c).

A similar study was done in (Barabási et al., 2002) where the interest was
more in the evolution of scientific collaborations. The electronic database that
is used contained all relevant journals in mathematics and neuroscience for an
eight year period (1991-98).

In this section we investigate the Arxiv ASTRO-PH (Astrophysics cate-
gory) collaboration network. The data was provided from the Stanford large
network dataset Collection’s site1 and it covers papers in the period from
January 1993 to April 2003. Table 2.2 gives a summary of the results of in-
vestigating the properties of the Astrophysics collaboration network. Figure
2.3 shows the degree distribution. A link between two scientists represents
collaboration regardless of the number of papers. Table 2.2 shows that the

1http://snap.stanford.edu/data/
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Astrophysics collaboration network possesses high clustering as well as a small
average path length compared to the order of the network. Figure 2.3 shows
that the resulting distribution of the network closely follows a scale free degree
distribution which mathematically means that the degree distribution follows
a power-law, i.e., Pz = z−τ , where τ is a constant exponent. In a scale-free
network we find that some vertices, which are called “hub”, have many more
connections than others; this can be explained in the case of the scientific col-
laboration network as the majority of the scientists have a few collaborators
while very few have many collaborators.

Number of vertices 17903

Number of edges 197031

Average degree 22.01

Maximum degree 504

Clustering coefficient 0.6328

Average path length 4.19

The diameter 14

Table 2.2: Summary of the analysis of Astro physics collaboration network.

Figure 2.3: The degree distribution of Astro physics collaboration network in the
period from January 1993 to April 2003.

Furthermore, Erdős numbers have been a part of the folklore of mathe-
maticians throughout the world for many years. The Erdős number describes
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the collaborative distance between a person and the mathematician Erdős as
measured by authorship of mathematical papers. The idea was created by
the mathematician’s friends as an honour to his enormous contributions in
mathematics. The collaboration network for Erdős numbers is mostly based
on information of the American Mathematical Society’s mathematical reviews
of July, 2004. It contains 401,000 different authors as its vertices and 676,00
edges. The links between two vertices represent the existence of collaboration.
The average path length of the Erdős collaboration network is 4.65 and the
diameter is 13. More information is provided in the Erdős number’s project
site. 2

2.4.2 ...Over The Citation Network

Another complex real-world network is formed by the citation of scientific
publications. The networks here are directed, the vertices are published papers
and a directed edge represents a reference to a previously published paper.
Redner (2004); Vázquez (2001) studied the degree distribution of the citation
network of papers in Physical Review between 1975-1994.

In this section we investigate the properties of the Arxiv HEP-PH (high en-
ergy physics phenomenology) citation network. The data is provided from the
Stanford large network dataset Collection’s site which covers all the citations
in the period from January 1993 to April 2003. Table 2.2 gives a summary of
the properties of the high energy physics citation network. Figure 2.4 shows
the in-degree and out-degree distributions.

(a) In-degree distribution (b) Out-degree distribution

Figure 2.4: The degree distribution of the high energy physics citation network in
the period of 1993-2003.

Table 2.3 and Figure 2.4 show that the results are similar to the one in
the collaboration network, although it shows a larger value for average path

2http://www.oakland.edu/enp/
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Number of vertices 12711

Number of edges 139981

Average in-degree 11.01

Average out-degree 11.01

Maximum in-degree 377

Maximum out-degree 322

Clustering coefficient 0.28

Average path length 14.4

The diameter 49

Table 2.3: Summary of the analysis of the high energy physics citation network in
the period of 1993-2003.

length but it still has a logarithmic scale. The result shows that the citation
network has small l̄ and a high cc with scale-free distribution.

2.4.3 To Facebook

Facebook is one of the online social network services. It is considered to be the
largest social network ever analysed containing ≈ 721 million active users and
≈ 69 billion friendship links. Backstrom et al. (2012); Ugander et al. (2011)
investigated the Facebook networks and computed numerous features of the
network. In particular, they examined the path length distribution and also
some interesting geographic subgraphs by observing the evolution of the Face-
book over time. They analysed the entire Facebook network (fb), the USA
subgraph (us), the Italian subgraph (it), the Swedish (se) subgraph, and the
combination of the Italian and Swedish network (itse). In the latter case, they
were specifically checking whether combining two regional but distant net-
works could significantly change the average distance, in the same spirit as in
Milgram’s original experiment which was performed in different regions. Back-
strom et al. (2012); Ugander et al. (2011) reported that the whole Facebook
network is within four degrees of separation. The result of (Backstrom et al.,
2012) regarding the path length in the Facebook network is depicted in Figure
2.5. Figure 2.5(a) shows that the average path length in the regional networks
concentrates around four while the average path length of whole Facebook
network is concentrated around five. On the other hand, Figure 2.5(b) shows
the fast growth of the Facebook network through a quick decrease in the av-
erage path length, which appears to be stabilizing now. Moreover, although
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the order of the (se) network is much less than the (it) network (see Table
2.4), however, they have similar values for the average path length, 3.89 and
3.90 respectively (see table 2.5) which indicates that the average path length
is indeed dependent on the geographical closeness of users, more than on the
actual order of the network. This is confirmed by the higher average path
length of the (itse) network which has a larger value of l̄.

(a) The distribution of the path length. (b) The average path length.

Figure 2.5: Backstrom et al. (2012)’ result regarding the path length of Facebook
network 2012.

it se itse us fb

2012 8.3 1.2 9.7 68.5 344.9

Table 2.4: The size in G-bytes of different Facebook networks in 2012 (Ugander
et al., 2011).

it se itse us fb

2012 3.89 3.90 4.16 4.32 4.74

Table 2.5: The average path length of different Facebook network in 2012 (Ugander
et al., 2011).

(Ugander et al., 2011) investigated the clustering coefficient of the Facebook
network. As shown in Figure 2.6(a), the clustering coefficient of the Facebook
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network is very large essentially independent of the degree of the vertices.
They demonstrated that, as in Figure 2.6(b), the degree distribution is nearly
monotonically decreasing, except for a small deviation near 20 friends due to
the Facebook strategy to encourage people with few friends to gain more until
they reach 20 friends. The distribution shows a clear cutoff at 5000 friends
which is also a limit imposed by Facebook on the number of friends at the
time of measurement.

(a) Clustering (b) Degree distribution

Figure 2.6: The clustering coefficient and the degree distribution of Facebook
network (Ugander et al., 2011).

In this section we investigate Facebook data collected from the Mynetwork
application in Facebook3. The data collected represent the friendship of one
active user and his/her friendships. Table 2.6 summarises the result of our
analysis. Facebook sub-network has a large clustering coefficient and a small
average path length. Figure 2.7 shows the degree distribution of our Facebook
data. We can see that the degree distribution in our case does not agree with
the degree distribution of the whole Facebook data shown in Figure 2.6(b);
this difference may be expected as our sample of data is for a single example
case.

2.4.4 Random Networks Suitability

In this section we compare the properties of the random network of order
n with our results for the collaboration network, the citation network and
the Facebook social network , particularly regarding the degree distribution,
average path length and clustering coefficient. We choose the value of p in the
random network such that the random network has the same average degree

3https://www.facebook.com/MyFnetwork.
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Number of vertices 7532

Number of edges 62079

Average degree 16.4

Maximum degree 207

Clustering coefficient 0.4733

Average path length 5.908

The diameter 16

Table 2.6: Summary of the analysis of Facebook data collected from Mynetwork
application in 2013. The data represents one active user’s friendship and his/her
friendships.

Figure 2.7: The degree distribution of the Facebook data collected fromMyNetwork
application in 2013. The data represents one active user friendship.

as the network in question. See comparison in Table 2.7 as well as in Figure
3.10 for degree distribution.

Network |V | E Erand z l̄ l̄rand cc ccrand

Collaboration network 17903 197031 196353 22.0195 4.194 3.5165 0.6328 0.00118

Citation network 12711 139981 140117 22.0 14.494 3.387 0.2848 0.00183

Facebook network 7532 62079 61841 16.484 5.90 3.51 0.473 0.00212

Table 2.7: Comparison between Random networks and real-world networks.
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(a) Collaboration vs. Ran-
dom network

(b) Citation in-degree vs.
Random network

(c) Citation out-degree vs.
Random network

Figure 2.8: Comparison between Random networks and real-world networks re-
garding the degree distribution.

As Table 2.7 and Figure 3.10 show, random networks display good agree-
ment with real-world networks regarding average path length. On the other
hand, random networks possess very low clustering coefficients compared with
real-world networks. Moreover, real-world networks show scale-free degree dis-
tribution, which is in opposition to random networks, which possess binomial
degree distribution.

2.5 Conclusion
In this chapter three topics have been discussed. Firstly, we introduced com-
plex network terminologies by defining three important properties that are
used to characterize complex networks. We then described random networks
and their properties. Finally, we investigated three examples of real-world net-
works and compared their properties with random networks. The comparison
showed that Erdős and Rényi random networks do a poor job as a model of
real-world networks.

The three metrics in question are: the average path length, the clustering
coefficient and the degree distribution. The importance of these quantities
has been emphasised by empirical studies of real-world networks which have
recently revived network modelling and resulted in an enormous number of
studies in network science. First, random networks: despite the fact that their
properties deviate from real-world networks, random networks are still widely
used in many fields and serve as a standard for many modelling and empir-
ical studies. In addition there are many studies devoted to overcoming the
shortcoming of random networks as a model of real-world networks; see (New-
man, 2003a; Newman et al., 2002). Second, stimulated by the high clustering
property observed in real-world networks, a class of models called small-world
models has been proposed which interpolate between the high clustering reg-
ular lattices and random networks (Watts and Strogatz, 1998). Finally, the
discovery of the power-law degree distribution has led to the construction of
various scale-free models (Barabási and Albert, 1999) (not part of this study).
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Our study in this thesis contributes to small-world network models by using
the theory of random networks, as we shall see in the following chapters.
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Chapter 3

Small-World Networks

Empirical studies of many large-scale real-world networks such as social net-
works, the internet, biological networks, etc. have shown that most real-world
networks have common properties: their order is large, links are globally
sparse, they have a high degree of local transitivity, and despite the last three
properties (bigness, sparsity, and transitivity) they have a small characteris-
tic path length, i.e., their path length grows slowly with their order. In 1989
Duncan Watts and Steven Strogatz realized that the distinctive combination
of high transitivity and small path length cannot be captured by the tradi-
tional random network models, which possess small path lengths on average
but lack transitivity. On the other hand, a completely ordered lattice “regular
network” lacks small characteristic path length, i.e., its path length grows lin-
early with the system order. Watts and Strogatz (1998) combined those two
properties that appear to be contradictory into one model, which is referred
to as small-world network model by analogy with the small-world experiment
(Milgram, 1967). Their paper “Collective dynamics of ‘small-world’ networks”
was published in Nature June 1998 and ranks at 6 among highly cited pa-
pers in Physics. This paper has garnered 2,700 citations between January 1,
1998 and August 31, 2008. This chapter presents small-world networks: their
structure and definition, models and properties. The objective is to go beyond
the empirical studies presented in Chapter 2 and to show that the small-world
network phenomenon is not coincidence. The main results studied have been
confirmed by numerical simulation as well.

3.1 Structure and Definition
The term small-world network is used frequently to refer to the Watts (2004)’
model, which was originally based on random perturbations of a regular lattice.
A small-world network is characterized by “small” average path length, l̄, and
“ high”clustering coefficient, cc. More elegantly, it is a network which is highly
clustered and in which the average path length increases sufficiently slowly as

24
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the number of vertices n increases. Usually the average path length of a small-
world network must be comparable to the average path length in a random
network (O(log n)).

The words “small” and “high” have not been precisely quantified in the
Watts and Strogatz (1998) definition, which emphasizes the two most impor-
tant properties of small-world network: the average path length l̄ and the
clustering coefficient cc. Although small-world networks are well studied, the
precise definition is controversial. In the study of small-world networks, most
of the attention has been dedicated to computing l̄. This study is no excep-
tion. Defining small-world networks in terms of limiting l̄ is a shortcoming
since not every network with small l̄ can be seen as a small-world network.
Bear in mind that we use the expression “small-world effect” to describe any
network with a small average path length l̄. Even a regular lattice can have
the two properties of small-world; high clustering and small l̄, if the degree is
not bounded yet. In addition, restricting the definition of small-world network
to the specific construction of Watts-Strogatz model cannot answer the ques-
tion whether a given network is small-world or not unless we have a precise
definition of small-world network.

We conclude that a precise definition of small-world networks is somewhat
baroque. It is not confined by the average path length l̄ or even by the Watts
and Strogatz (1998) construction. For further discussion on this point see
Examples 3.2, 3.3 and 3.4.

Cont and Tanimura (2007) proposed an intrinsic definition of small-world
networks based on the scaling properties of the network. Their definition
is more reasonable than the intuitive one by Watts and Strogatz (1998). It
does not rely on an underlying lattice nor on any particular construction and
includes most properties of small-world networks.

Definition 3.1. Let G(n) be a network, G(n) is said to be small-world if the
following three conditions are satisfied:

• Degree property: O(log n) is an upper scaling bound of the average
degree;

1

n

∑
0≤i<n

deg(i) = O(log n).

• Clustering property: The clustering coefficient cc(G(n)) is bounded
away from zero;

∃ ε > 0 .∀n : N+. cc(G(n)) > ε

• Path length property: O(log n) is an upper bound for the characteristic
path length;

l̄(G(n)) = O(log n) and diam(G(n)) = O(log n)
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The definition of Cont and Tanimura (2007) is the closest one existing in
the literature to our view of a small-world network.

Example 3.2. It is known that the average path length of a random network
scales logarithmically with the system order. Is a random network considered
a small-world network?
Solution. According to Definition 3.1, the answer is no. We know that the
clustering coefficient of the random network is cc = p, and if for example
1
n
≤ p ≤ logn

n
, the clustering property of small-world networks is violated since

the value of cc is not bounded away from zero. Rather it tends to zero as n
approaches infinity.

Example 3.3. Consider a regular network, with high clustering and diameter
bounded by a constant. Is such a network a small-world network?
Solution. To satisfy the condition of the diameter mentioned in the exam-
ple, such a regular network must have an average degree of linear order, i.e.,
¯deg(G) = O(n) which violates the degree property of small-world network ac-
cording to Definition 3.1.

Example 3.4. A complete network has the minimum value of l̄ and the max-
imum value of cc. Is it a small-world network?
Solution: No, complete networks violate the degree property of small-world
networks according to Definition 3.1.

3.2 Small-World Network Models
The small-world network model refers to the construction of a network that
meets the properties discussed in Section 3.1. Although small-world networks
have been a subject of considerable research, models discussed in literature
most often refer to the original one by Watts and Strogatz (1998) which de-
pends on a specific scheme of rewiring links in one dimensional lattices. An-
other model by Newman and Watts (1999a) is where links are added to the
lattice instead of rewiring the original links. The Newman and Watts (1999a)
model is equivalent to the original model in which the same average number
of the rewiring links are added. Therefore, the model has the same properties
and behaviour. This section studies both models, investigates their proper-
ties analytically and by simulation and compares it to the empirical results of
Chapter 2.

3.2.1 Watts-Strogatz: The Rewired model of
Small-World

The construction of Watts and Strogatz (1998) has been discussed in (Watts
and Strogatz, 1998). Van Steen (2010) explains the construction of Watts and
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Strogatz (1998), which we present briefly here.
Watts and Strogatz construction (Van Steen, 2010): Consider a set
of n vertices and positive number number k > 0. In order to ensure the
degree property in Definition 3.1 in the network, choose n and k such that
n� k � log(n)� 1.

1. The structured base network: Order the n vertices into a ring and
connect each vertex to its first k left-hand (clockwise) neighbours and
to its k right-hand (counter-clockwise) neighbours. This procedure will
construct a network in which each vertex has degree 2k.

2. The randomness: With probability p replace each link (v1, v2) with a
link (v1, vi), where vi is a randomly chosen vertex other than v1 and any
neighbour of v1.

The resulting network is called theWatts and Strogatz (1998) network,WS(n, k, p).
This construction allows us to interpolate between regularity (p = 0) and a
random network (p = 1) and to study the intermediate region 0 < p < 1 of the
disordered networks. The Watts and Strogatz (1998) construction is depicted
in Figure 3.1.

(a) p = 0 (b) 0 < p < 1 (c) p = 1

Figure 3.1: The Watts and Strogatz (1998) small-world network model in which
the crossover from a regular lattice to a random network is realized. When p is small,
the network is close to the original regular lattice; for large enough p the network is
similar to a random network.

The Watts and Strogatz (1998) result, which was based on numerical sim-
ulation, revealed that, with small probability p of rewiring, the clustering
coefficient of the network is still nearly the same as that of the original regular
lattice, and the average path length drops quickly to the order of the one in
random networks. This result is vitally important since it implies that there is
a broad interval of p over which the average path length is almost as small as
the one in random networks, yet the clustering coefficient is much bigger than
that of a random network. We confirm this result by numerical simulation
when we examine the properties of the small-world network models in Section
3.3. We summarize the Watts and Strogatz (1998) result in Conjecture 3.5.
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Conjecture 3.5 (Watts and Strogatz (1998)). There exists a class
of networks that are highly clustered yet whose average path length
scales as in Erdős-Rényi random networks. These networks are
called small-world networks by analogy with the small-world exper-
iment (Milgram, 1967).

3.2.2 Newman-Watts: Extra links model of small-world

The rewiring procedure in the Watts and Strogatz (1998) model can disconnect
the network. In addition, the fact that only one end of each chosen link is
rewired, not both, and self-loop and multiple links are not possible, makes it
hard to enumerate or average over the networks. Hence, the original model of
Watts and Strogatz (1998) is difficult to treat analytically. For that reason, the
original model of Watts and Strogatz (1998) has been modified by Newman
and Watts (1999a). In this variation of the model no links are rewired; rather
extra links, often called short-cuts, are added between pairs of vertices chosen
randomly; the parameter p governs the density of these short-cuts. To keep
the equivalence between this variation and the original Watts and Strogatz
(1998) model, each vertex chooses 2k vertices at random, and short-cuts are
established with each one of the 2k vertices with probability p. Therefore the
total number of links added to the network by using this procedure is nkp. This
way of constructing a network with small-world properties leaves the original
lattice intact. The Newman and Watts (1999a) construction is depicted in
Figure 3.2.
The structured base network: The same as Watts and Strogatz (1998)
model explained in Section 3.2.1.
The randomness: add nkp extra random short-cuts.

We examine both models in this chapter, yet the Newman and Watts
(1999a) construction is our preference due to its ability to be treated ana-
lytically.

(a) p = 0 (b) 0 < p < 1 (c) p = 1

Figure 3.2: Newman and Watts (1999a) Small-World network model, where the
small-world network is realized in the intermediate region where 0 < p < 1.
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As we can see from Figure 3.2, this version of the model no longer becomes
similar to a random network, even with p = 1; rather it becomes a random
network on top of the original lattice. However, this turns out not to be a
significant problem since most of the interest in the model lies in the limit of
large n and small p, where these two models are equivalent. This will become
clear when we discuss the properties of the models in Section 3.3. The term
Small-world model refers to both cases, although the reader should bear in
mind that there are two slightly different constructions of small-world models.

3.3 Small-World Network Properties
The network models that we discussed in the last section have trigged a lot
of attention. Many results have been derived for them, and many of their
properties have been explored numerically and analytically. In the following,
we will summarize the main results regarding the properties of the small-world
network models, with particular attention to the average path property, as it
is our main concern in this thesis. The results have been also confirmed by
simulation in this section.

3.3.1 Degree Distribution

In the Watts and Strogatz (1998) model, for p = 0 each vertex has degree 2k.
On the other hand a non-zero value of p introduces disorder into the network,
in the form of a non-uniform degree distribution, while maintaining a fixed
average degree 2k. The degree distribution of the rewiring model has been
computed in (Barrat and Weigt, 2000) as

Pj =

min(j−k,k)∑
n=0

(
k

n

)
(1− p)npk−n (pk)j−k−n

(j − k − n)!
e−pk,

For the Newman and Watts (1999a) model, the degree distribution has
been computed in (Newman, 2003b). Every vertex has degree 2k on the un-
derlying regular lattice plus a binomially distributed number of links. Hence
the degree distribution Pj is

Pj =

(
n

j − 2k

)(
2kp

n

)j−2k(
1− 2kp

n

)n−j+2k

.

Figures 3.3 shows the degree distributions of the Watts and Strogatz (1998)
and Newman and Watts (1999a) models. We can see that the distributions of
degree in both models are quite similar. With increasing p the degree distri-
bution goes far from the uniform distribution of the lattice. The distribution
has an unusual peaked shape, which is significantly different from the em-
pirical degree distribution seen in Chapter 2. Thus, the small-world models
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do not meet the property of the degree distribution that has been observed
in real-world networks. However, the model was never intended to mimic a
real-world degree distribution, but rather it mimics the clustering coefficient
and the average path length properties of real-world networks. This has been
another direction of research in the science of networks started simultaneously
with the small-world networks: degree distribution in real-world networks; the
pioneering work was by Barabási and Albert (1999).

(a) p = 2−3 (b) p = 2−1 (c) p = 1

(d) p = 2−3 (e) p = 2−1 (f) p = 1

Figure 3.3: The degree distribution of Watts and Strogatz (1998) model on the
top and Newman and Watts (1999a) on the bottom, when n = 1000 and k = 4
with different values of p as shown in the caption. The result is averaged over 10
realizations.

3.3.2 Transitivity or Clustering Coefficient

One of the most important properties of social networks which is also useful
in other real-world networks, is transitivity: the likelihood for two neighbours
of a given vertex to be neighbours of one another. In a social network, two
of your friends are far more likely to be friends of one another than any two
people chosen at random from the population. This feature distinguishes social
networks from random networks, where all people have the same probability to
be friends of one another. Transitivity is a local quantity, and it is quantified
by the clustering coefficient as defined in Equation (2.2.3) and (??).

For the rewiring model of Watts and Strogatz (1998), and starting with a
regular lattice when p = 0 we have cc(0) = (3k−3)

(4k−2)
. When p > 0 two neighbours

of a given vertex i that were connected at p = 0 are still neighbours of vertex
i and connected by a link with probability (1− p)3, since there are three links
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which need to be intact to maintain the clustering coefficient. Hence, the
clustering coefficient given by Barrat and Weigt (2000) is

cc(p) =
3(k − 1)

2(2k − 1)
(1− p)3.

In the Newman and Watts (1999a) model where extra links are added, the
clustering coefficient has been calculated in (Newman, 2003b) as

cc(p) =
3(k − 1)

2(2k − 1) + 4kp(p+ 2)
.

As we have explained earlier, the construction allows small-world models
to exist for a wide range of values of p, since there is a wide range of values of
p that do not change much the clustering coefficient of the network. To view
this feature, we have examined a range of small-world networks in both models
in Figure 3.4 varying p from very small to relatively large. We compute the
clustering coefficient cc(p), and normalize it by cc(0). Likewise, we compute
the average path lengths l̄, again normalized by dividing by the average path
length in case p = 0. Figure 3.4 shows that, with increasing p, the average path
length drops rapidly, but the clustering coefficient remains relatively high. We
notice also that the clustering coefficient of the Newman and Watts (1999a)
in Figure 3.4(d) model is slightly different from the behaviour of Watts and
Strogatz (1998) model in Figure 3.4(b). The difference is more pronounced
when we do not take the logarithmic scale as in Figures 3.4(a) and 3.4(c). The
drop in the clustering coefficient curve in Newman and Watts (1999a) model
happens more slowly than the one in Watts and Strogatz (1998) model.

3.3.3 Average Path Length

This section focuses on our main concern, the non-local quantity of a network:
the average path length, i.e., the average of the minimum number of links
between two vertices. We denoted this quantity by l̄ and it is defined in
Equation (2.2.1).

Watts and Strogatz (1998) showed by numerical simulation that l̄ decreases
very rapidly as p increases, and it is comparable to the one in random networks
as soon as p 6= 0. This result is confirmed by our simulation as Figures 3.4
shows. Also, Figure 3.5 shows, for a random network with n = 1000 and
k = 10, the average path length is about l̄ ≈ 3.2. For the Watts and Strogatz
(1998) model, the average path length is only slightly greater, l̄ ≈ 3.6, when
the rewiring probability p = 0.25, compared with l̄ = 50 when p = 0 for the
network with no rewired links at all. Even for p = 0.0156, l̄ = 7.4, which is
twice as large as the value for the random networks. The results are averaged
over 10 realizations for the randomness. This shows that with fixed n, there is
a critical range of p in which a small increase in p results in a dramatic drop
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(a) Without log scale. (b) Log scale.

(c) Without log scale. (d) With log scale.

Figure 3.4: The clustering coefficient and average path length in the Watts and
Strogatz (1998) model, on the top, and Newman and Watts (1999a) model, on the
bottom, for increasing values of p. The result is averaged over 10 realizations. Notice
that there is a substantial range of values of p in which the value of l̄ is low while the
value of cc is high. The logarithmic horizontal scale in 3.4(b) and 3.4(d) has been
used to resolve the rapid drop in l̄.

in l̄ and consequently changes the model from being large-world where l̄ scales
linearly with n to small-world where l̄ scales logarithmically with n. The same
applies to the Newman and Watts (1999a) model.

This sudden change of behaviour of the models from large to small-world
has been confirmed by simulation as well as some analytic work which is dis-
cussed in the followings.

Figure 3.6 shows examples of path length distribution in small-world mod-
els. We can see that for very small values of p, the curve is close to a uniform
distribution where the base structure does not change from being regular;
where we can easily guess that such network is not a small-world. However,
as p increases the curve becomes more peaked and skewed left as Figure 3.6(c)
shows.

In the following, we shall review some of the important results regarding
the average path length. The notation ∼ used in the following means: if
f(n) ∼ g(n), then limn→∞

log(f(n))
log(g(n))

= 1.
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(a) Watts-Strogatz model. (b) Newman-Watts model.

Figure 3.5: The average path length in small-world models with fixed n = 100
and k = 10. A small change of p can make a huge drop in the average path length
curve and it becomes comparable to the average path length in random network.
The result is averaged over 10 realizations.

(a) p = 2−9 (b) p = 2−7 (c) p = 2−4

(d) p = 2−9 (e) p = 2−7 (f) p = 2−4

Figure 3.6: The average path length distribution in Watts and Strogatz (1998)
model on the top and Newman and Watts (1999a) model on the bottom. The curve
becomes more and more peaked and skewed left as p grows. The result is averaged
over 10 realizations.

Cross-Over Phenomena in small-world networks models

We have seen that with n fixed, l̄ decreases rapidly as soon as p is not zero,
and there is a critical range of p in which the change from large-world to small-
world takes place. Now, we investigate whether the change from large-world
to small-world occurs by a transition at a certain finite critical value of p, or
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if there is a cross-over phenomenon at any finite value of n, with transition
occurring only at p = 0. This question was first posed in (Barthélémy and
Amaral, 1999). We investigate this question by numerical simulation to study
the behaviour of l̄(n, p) varying n and p as in Figure 3.7. We use values of n=
100, 250, 500 and 1000, with different values of p, averaging over 10 realizations
for each value of p. It is clear that as n becomes larger, the drop in the curve
of l̄(n, p) occurs for smaller values of p, showing that there is no finite critical
values of p that can be determined for all n. This is an indication of the
cross-over phenomenon of the small-world network model which first has been
investigated by numerical simulation in (Barthélémy and Amaral, 1999) and
which we are going to discuss in more detail.

(a) Watts-Strogatz model (b) Newman-Watts model

Figure 3.7: The average path length l(n, p) normalized by l̄(n, 0) versus p, for k = 4
and n = 100, 250, 500 and 1000: the drop in the curve occurs at lower values of p as
n grows.

Barthélémy and Amaral (1999) test the hypothesis that the appearance
of small world behaviour is a cross-over phenomenon which depends both on
network order n and the degree of disorder p. That is, for any value of p, there
is a cross-over order n∗(p) below which the network is a large-world and above
which it is small-world, i.e., the transition between two regimes takes place at
some intermediate system order n = n∗. They conjectured that the average
path length l̄ of the network obeys the scaling form

l̄(n, p) = nf
( n
n∗

)
, (3.3.1)

where f(x) is a universal scaling function

f(x) ∼

 constant : for x� 1

log x : for x� 1
(3.3.2)
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and
f(u� 1) ∼ u, and f(u� 1) ∼ lnu. (3.3.3)

Naively, one would expect to see small-world behaviour when the expected
number of the rewired or the extra links is much greater than one, that is
pnk � 1, and the network will be in the large-world regime when pnk � 1.
The reason for that is one would expect the average path length to decrease
when some links are successfully rewired. Hence the cross-over should occur
for n ∗ p = O(1), which implies that

n∗ ∼ p−τ (3.3.4)

with τ = 1. This result relies on the fact that the crossover from large to small
worlds is obtained with only a small but finite fraction of rewired links.

On the basis of numerical results, Barthélémy and Amaral (1999) further
conjectured that τ = 2

3
. Using a simple physical argument, Barrat (1999)

disproved the estimated τ = 2
3
. He assumed that τ < 1, then taking α such

that τ < α < 1, according to Equation (3.3.1) and using the scaling function
as defined in (3.3.3) he obtained

l(n, n−1/α) ∼ nτ/αf(n1−τ/α) ∼ nτ/α ln(n1−τ/α),

since τ/α < 1 and n1−τ/α � 1 for large n. However, the average number of
rewired or extra links in this case is equal kn1− 1

α , which goes to zero for large
n. The immediate conclusion is that a change in the behaviour of l̄ (from
l̄ ∼ n to l̄ ∼ nτ/α ln(n)) could occur by the rewiring or adding a vanishing
number of links! This is physically not valid, showing that, with the initial
assumption, n∗ ∼ p−τ , the τ cannot be lower than 1.

After Barthélémy and Amaral (1999) had been alerted to the possibility
of an error in their estimate of τ , they performed a new calculation using a
different algorithm that allowed them to study the system with a bigger order
up to 5500, since the reason for the incorrect numerical result was the small
order, 1000, which was too small to show the true scaling behaviour.

Re-normalization Group Analysis

We have seen earlier, the characteristic path length n∗ diverges according to
n∗ ∼ p−τ . Barrat (1999) has shown using a simple physical argument that τ
can not be less than 1. Newman and Watts (1999a) have improved the esti-
mation of n∗ using an asymptotically exact real-space re-normalization group
analysis as well as numerical simulations, and have shown that τ is exactly one.
In theoretical physics, the re-normalization group refers to a mathematical ap-
paratus that allows systematic investigation of the changes of a physical sys-
tem as viewed at different distance scales (Wiki01, 2013). Newman and Watts
(1999a) have studied the small-world network model using re-normalization
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group analysis; they calculated the scaling forms and the single critical expo-
nent describing the behaviour of the model in the critical region using Equa-
tions (3.3.1), (3.3.2) and (3.3.4) from (Barthélémy and Amaral, 1999), which
proved to be correct.

Assuming that in the critical region n∗ has the form of Equation (3.3.4),
with the value of τ in unknown, then Equation (3.3.1) can be written as

l̄ = nf(pτn). (3.3.5)

We consider the real-space re-normalization group transformation as follows:
when k = 1, adjacent vertices in a small-world network are blocked to cre-
ate a one-dimensional lattice of half as many vertices, i.e., the lattice order
is assumed to be even, yet the transformation works for any order. Two ver-
tices are connected on the renormalized network if any of the vertices in the
original network was connected to any of them including the short-cuts. The
transformation is shown in Figure 3.8 for a lattice of order n = 24.

Figure 3.8: Re-normalization transformation for k = 1. From (Newman and Watts,
1999a).

The number of short-cuts on the lattice is conserved under the transfor-
mation, so the fundamental parameters n and p are re-normalized according
to

n′ =
n

2
, p′ = 2p. (3.3.6)

Since the probability of finding a short-cut between any two vertices i and j
is independent of i and j both before and after re-normalization, the transfor-
mation generates all possible configurations of short-cuts on the renormalized
lattice with the correct probability. In addition, the geometry of the shortest
path between any two points is unchanged under the transformation. How-
ever, the length of the path is, on average, halved along those portions of the
path which run around the perimeter of the ring, and remains the same along
the short-cuts. For large n and small p, the portion of the length along the
short-cuts tends to zero and so can be neglected. Thus

l′ =
l

2
. (3.3.7)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 3. SMALL-WORLD NETWORKS 37

Using the relation in Equation (3.3.5) for n′, p′ and l′, then substituting defi-
nitions from Equations (3.3.6) and (3.3.7) leads to

l̄′ = n′f(p′τn′)

l̄

2
=
n

2
f
(

(2p)τ
n

2

)
l̄ = nf

(
2τ−1pτn

)
(3.3.8)

Finally, comparing the relations in Equations (3.3.5) and (3.3.8), equality de-
mands that 2τ − 1 = 1, so that τ = 1.

For k > 1, Newman and Watts (1999a) defined a slightly different re-
normalization group as follows: different vertices in a group of order k are
grouped, as shown in Figure 3.3.3 for n = 24 with k = 3. Again the number
of short-cuts is preserved under the transformation which gives the following
re-normalization equations for the parameters:

n′ = n/k, p′ = k2p, k′ = 1, l′ = l. (3.3.9)

Figure 3.9: Re-normalization transformation for k = 3. From (Newman and Watts,
1999a).

Note that in the limit of large n and small p, l̄ is not affected at all since the
number of vertices along the path joining two distant vertices is reduced by a
factor k, but the number of vertices that can be traversed in one step is reduced
by the same factor and the two cancel out. For the same reasons as before, this
transformation is exact in the limit of large n and small p. This transformation
can be used to turn any network with k > 1 into a corresponding network
with k = 1, which can then be treated using the arguments given before. We
conclude that the correct value of the exponent τ is one. For all values of k
and by substituting Equation (3.3.9) into Equation (3.3.1), the small-world
network must satisfy the scaling form

l =
n

k
f(pkn). (3.3.10)

This form holds under re-normalization for n′ � 1 and p′ � 1 which implies
that n/k � 1 and k2p � 1. The first of these conditions is trivial. The
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second condition is necessary to ensure that the average path travelled along
short-cuts in the network is small compared to the path travelled around the
perimeter of the ring.

Probabilistic Method

In this section we shall discuss the contribution (Flaxman and Frieze, 2004)
which is very close to small-world networks and obtains a new result differ-
ent from what we discussed in Section 3.3.3 but with a motivation other than
social networks. The central observation of this paper is that if εn random
links are added to any strongly connected directed networks with bounded
degree then the resulting network has diameter O(log n). The construction of
O(log n) directed networks in (Flaxman and Frieze, 2004) satisfies the prop-
erties of small-world networks discussed in Section 3.1 and is quite similar to
our construction of small-world networks which we shall discuss in Chapter 4.
Their result holds for a strongly connected directed network D′ with degree
O(nε/100) that is perturbed by adding a random directed network R ∼ Dn,ε/n.
Here R ∼ D means R is distributed according to distribution D (there is no
connection between this notation and the asymptotic equality defined later),
and Dn,p is the distribution of directed network of order n where each possible
link appears independently with probability p. The notation D = D′ + R
means that D is the network formed by taking the union of the links of D′ and
R, and the vertex sets are the same.

Theorem 3.6. Let ε be a positive constant with ε ≤ 1, let 4 = nε/100 and let
D′ be a strongly connected n-vertex directed network with in-degree and out-
degree at most 4. Let D = D′+R where R ∼ Dn,ε/n Then with high probability
the diameter of D is at most 100ε−1 log n.

Proof. We sketch the proof which can be found in (Flaxman and Frieze, 2004).
The idea of the proof is to show that with high probability D contains short
paths of special form, alternating between some links from D′ and random
links from R. They use a similar approach to (Bollobás and Chung, 1988)
where sets of vertices are grouped if they are within distance d = 5ε−1 in the
base network D′. Since the network is directed in this case, the direction of
the links is considered. Then random links from R are found to link between
these groups. Vertices are called useful and the created set denoted by U if it
is not within distance d of any vertex which is previously placed in any set.
Algorithm 3.3.3 explains the procedure of creating the sets of vertices denoted
by Si and Ti. The notation Nd

+(S) denotes the set of vertices reachable in
D′ in at most d steps starting from some vertex of S, Nd

−(S) denotes the set
of vertices from which some vertex of S is reachable in at most d steps in D′,
and Nd(S) = Nd

+(S) + Nd
−(S). Finally let l = dlog2 ne. Using probabilistic

analysis we can see that when the algorithm GenerateSets halts we have

P(|Si| ≤ n2/3 or |Tj| ≤ n2/3) = o(n−2),
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Algorithm 1 Procedure GenerateSets [(s, t)]-path P
S0 :=first 32ε−1 log n vertices of P
T0 :=last 32ε−1 log n vertices of P
U := V \Nd(S0 ∪ T0)
i = 0
j = 0

while (|Si| ≤ n2/3 and i ≤ l) or (|Tj| ≤ n2/3 and j ≤ l) do
if |Si| ≤ n2/3 and i ≤ l then

Si+1 := ∅
for ∀s′ ∈ Si do

if |Si+1| ≤ n2/3 and there exists s′′ ∈ U such that (s′, s
′′
) ∈ R

then
Si+1 := Si+1 ∪N+

d ({s′′})
U := U \Nd(Si+1)

end if
end for
i : i+ 1

end if
if |Tj| ≤ n2/3 and j ≤ l then

Tj+1 = ∅
for ∀t′ ∈ Tj do

if |Tj+1| ≤ n2/3 and there exists t′′ ∈ U such that (t
′′
, t′) ∈ R

then
Tj+1 := Tj+1 ∪N−d ({t′′})
U := U \Nd(Tj+1)

end if
end for
j := j + 1

end if
end while

this implies that with high probability GenerateSets halts when l = dlog2 ne.
Now, to finish the short path from s to t, random links of R between Si and
Tj are generated,

P((R ∩ (Si × Tj) = φ)|(|Si| ≤ n2/3 ∧ |Tj| ≤ n2/3)) ≤ o(n−2).

Putting all the pieces together, we have an (s, t)-path consisting of a path
of length at most 32ε−1 log n, followed by at most 2l paths in D of length
at most d + 1 joined by links from R and finishing with a path of length at
most 32ε−1 log n, for a total length which is less than 100ε−1 log n as numerical
calculation shows. Since there are only n(n− 1) choices for (s, t) the theorem
follows by the union bound.
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3.4 Conclusion
In this chapter, three constructions of small-world models have been studied.
The first two are the most popular and they are equivalent: Watts-Strogatz
and Newman-Watts small-world network models. Regarding the average path
length l̄, our main interest in this thesis, the cross-over from large-world to
small-world occurs with fixed n at p ∼ n−1/τ . The onset of small-world be-
haviour occurs if

lim
n→∞

log p

log n
=
−1

τ
, then τ = 1.

This result leaves the threshold area large, where we can decide whether the
network in this area is small-world or not. Note that the network is a small-
world when τ > 1, and large-world when τ < 1, otherwise we can not decide.

Although these models are probably generic for many large, sparse networks
found in nature, they are not realistic representations of real-world networks
since they depend on the lattice structure as base network to construct small-
world network models. In addition, they do not have the scale-free degree
distribution observed in real-world networks. Table 3.1 compares the (Newman
and Watts, 1999a) model with the empirical results of real-world networks.

Network |V | E ENW z p zNW l̄ l̄NW cc ccNW

Collaboration network 17903 197031 197052 22.01 0.00055 22.01 4.192 26.58 0.63 0.71

Citation network 12711 139981 140793 22.02 0.007 22.15 14.4 7.92 0.28 0.7

Facebook network 7532 62079 60340 16.48 0.001 16.0 5.91 20.9 0.47 0.698

Table 3.1: Comparison between Random networks and real-world networks.

(a) Collaboration vs.
Newman-Watts network

(b) Citation in-degree vs.
Newman-Watts network

(c) Citation out-degree vs.
Newman-Watts network

Figure 3.10: Comparison between Newman and Watts (1999a) and real-world
networks regarding the degree distribution.

(Flaxman and Frieze, 2004) is the third construction we have discussed in
this chapter. Although, this construction is more reasonable since it does not
depend on lattice structure, this construction is not made as a social-network
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model, hence, does not guarantee the high transitivity observed in small-world
networks. They obtain a directed network with diameter O(log n) when p = ε

n
.

The question remains: is it possible to obtain better results regarding the
average path length l̄ for small-world network models?
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Chapter 4

Average Path Length in
Small-World Networks

As we have seen, models of small-world networks combine structured base
topology and randomness represented by probabilistically rewiring of links as
in Watts and Strogatz (1998) model, or probabilistically adding extra links
between each pair of vertices of the base structure as in (Newman and Watts,
1999a). In this chapter we consider a model in which randomness is provided
by the Erdős-Rényi random network model. In contrast with most other com-
plex network models where the analytical solution is hardly possible, the Erdős-
Rényi random network model is one of the oldest and best studied network
models, and possesses a considerable advantage of being analytically solvable
in many of its average properties. We propose a solvable small-world model
in Section 4.1. In addition, this chapter shows the vitally important role of
random network evolution and structure in obtaining theoretical results for
small-world networks regarding its average path length.

This chapter is divided into two parts: In the first one we construct a small-
world network with diameter O(log n), and we show that this happens when
pn is bounded away from zero, i.e., ∃ ε > 0 . ∀n : N+.pn > ε. The threshold of
the giant component in a random network is the main tool used to obtain this
result. In the second part we show that εn is the minimum average number
of links that should be added to a one dimensional lattice so that the average
path length has a logarithmic scale. We explain the behaviour of l̄ when pn
tends to zero and show that in this case l̄ > ω(n) log n as n→∞, where ω(n)
is a function ω(n)→∞ . We rely on the structure of random networks when
pn→ 0 to obtain this result.

4.1 Small-world Networks
In this section, we construct a solvable model of small-world networks based on
Erdős-Rényi random networks, which allow us to develop mathematical tools

42
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to treat small-world networks analytically using results of random network
theory.

Assume a one dimensional lattice C(n) with vertices {vi|0 ≤ i < n}
and with consecutive vertices adjacent, and an Erdős-Rényi random network
R(n, p) with vertices {ri|0 ≤ i < n}. We superpose the two networks by
identifying their vertices using a matching operation

M : R(n, p)→ C(n)

which is one of the n! bijection from V (C(n)) to V (R(n, p)). The bijection
function M is used to update the structure of the lattice C(n) to give the dis-
ordered network C(n, p) with the same vertices, i.e. (V (C(n, p)) = V (C(n))),
but enhanced edges

E(C(n, p)) = E(C(n))∪{(M(u),M(v)) ∈ V (C(n))×V (C(n))|(u, v) ∈ E(R(n, p))}.

Note that, we use the term “disordered network” instead of small-world
network, because small-world network is quantified by the logarithmic scale of
the average path length, which is dependent on the value of p of the random
network. In the subsequent sections we will show that the disordered network
C(n, p) is a small-world network when pn is bounded away form zero. On
the contrary, when pn tends to zero the network C(n, p) does not have the
logarithmic scale of the average path length, hence, it is not a small-world
network yet.

4.2 The diameter of small-world networks
In this section we show that when pn is bounded away from zero, the diameter
of C(n, p) is bounded above by O(log n). Our method is to use the threshold
of the giant component of the random network R(n, p).

We use “Vinogradov” notation: f(n) � g(n), which means there exist a
constant c > 0 such that f(n) > cg(n) as n→∞.

In the following proof we use a simple case when the base network is a
cycle. The result will be generalized for the ring later.

Lemma 4.1. For a constant δ > 0, if δn vertices are deleted uniformly at
random from the cycle C(n), then the maximum arc length left is at most k
with probability at least 1− ne−δk.

Proof. If S is an arc of length k − 1 in the cycle, then we have

P(S is uncut) = (1− δ)k.

The event “the arc S is uncut” means that all the k vertices of S are left. Since
there are exactly n such arcs in C(n), then by the union bound and using the
inequality 1− x ≤ e−x we have

P ( at least one arc of length k − 1 uncut) ≤ n(1− δ)k ≤ ne−δk
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Hence, the probability that there is no arc of length k − 1 left is

P(no arc of length k − 1) ≥ 1− ne−δk.

which proves the lemma.

The following theorem shows that O(log n) is an upper bound for small-
world networks C(n, p) when np is bounded away from zero.

Theorem 4.2. For a constant ε > 0,

diam
(
C(n, ε

n
)
)

= O(log n).

Proof. Consider C(n, p) as defined in Section 4.1 using the random network
R(n, ε

n
) where ε > 0.

Consider the case when ε > 1. Recalling from Section 2.3.2 a.a.s, R(n, p)
has a unique giant component of order n and diameter O(log n). Conditioning
the fact that the random network R(n, p) has this property w.h.p., denote the
giant component of R(n, p) by C1 and assume that |C1| = δn. According to
the definition of the model in 4.1 the vertices of the giant component of the
random network are uniformly distributed on the cycle. Using Lemma 4.1 for
k = 2

δ
log n, we deduce that with probability at least 1− 1

n
every arc of length

more than 2
δ

log n contains at least a vertex of C1.
Now, for any pair of vertices u and v in the cycle, we can find vertices u′

and v′ in C1 such that d(u, u′) and d(v, v′) are both at most 2
δ

log n. Since
the diameter of C1 is at most of order log n, we deduce that the diameter of
C(n, ε

n
) is also of order at most log n.

If ε ≤ 1, then we partition the cycle into arcs of k vertices where k is a
fixed positive integer with

k >
1

ε
. (4.2.1)

Note that in this grouping we assume that n is divisible by k. If n is not
divisible by k then we would have one arc of order at most k − 1, and our
argument remains valid even if one vertex in the C(n) behaves differently
from the other vertices provided that n is large enough.

We can think of these arcs as vertices of a cycle of order n
k
. We say that

two arcs are adjacent if there is at least one edge connecting them. So this
model is reduced to C(N, q) with

N =
n

k
and q = 1−

(
1− ε

n

)k2
∼ εk

N
.

Thus, since εk > 1, we can apply the same argument as before to deduce that
in this case the diameter is also of order at most log n, which completes the
proof.
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4.3 The Average Path Length
We have seen in Section 4.2 when pn is bounded away from zero, we have
O(log n) as an upper bound for the diameter, which also bounds the average
path length l̄ below by O(log n). In this section, we answer our research
question mentioned in Section 1.2 and show that εn is the average minimum
number of extra random links that can be added to a one dimensional lattice
such that the average path length scales logarithmically with the network
order. We study the average path length l̄(C(n, p)) when pn tends to zero and
we show that the network is not a small-world, i.e., the average path length is
not of logarithmic order. We make use of the random network structure when
pn tends to zero to derive our result.

4.4 Random Network Structure
In this section we study the structure of the random network R(n, ε

n
) on the

assumption that
ε� n−δ, for all δ > 0. (4.4.1)

The other cases have been already covered in the literature as discussed in
Chapter 3.

As we have seen in Section 2.3.2, asymptotically almost surely when pn
tends to zero, most of the components of random networks are trees and the
largest component of R(n, p) has order O(log n). Assuming that R(n, p) has
this property, let Nk be the number of the tree components of R(n, p) of order
k ≥ 1 and IS is a random variable such that

IS =

 1 if S is the vertex set of a tree component in R(n, p) and |S| = k

0 otherwise.

Then
Nk =

∑
S⊆V (R(n,p)),|S|=k

IS, (4.4.2)

and
E(Nk) =

∑
S⊆V (R(n,p)),|S|=k

E(IS). (4.4.3)
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Also,

Nk
2 =

 ∑
S⊆V (R(n,p)),|S|=k

IS

2

=
∑

S⊆V (R(n,p)),|S|=k

IS
2 +

∑
|S1|=k,|S2|=k
and S1 6=S2

IS1IS2

= Nk +
∑

|S1|=k,|S2|=k
and S1 6=S2

IS1IS2 . (4.4.4)

Therefore,
E(Nk

2) = E(Nk) +
∑

|S1|=k,|S2|=k
andS1 6=S2

E(IS1IS2). (4.4.5)

Lemma 4.3. W.h.p.
N1 = n+O(εn)

Proof. The expected number N1 of trees of order one (i.e., isolated vertices in
R(n, p)) is

E(N1) = n(1− p)n−1.

So, using the binomial theorem,

E(N1) = n+O(εn). (4.4.6)

Given that S1, S2 ∈ V (R(n, p)), such that S1 6= S2,

P(S1 and S2 are isolted vertices in R(n, p)) = (1− p)2(n−1)−1.

Hence, using Equation (4.4.5) for k = 1 and

E(N1
2) = E(N1) + n(n− 1)(1− p)2(n−1)−1.

The variance, V ar(N1), is

V ar(N1) = E(N1
2)− E(N1)2

= E(N1) + n(n− 1)(1− p)2(n−1)−1 − n2(1− p)2(n−1)

= E(N1) + n(1− p)2(n−1)−1[(n− 1)− n(1− p)]
= E(N1) + n(1− p)2(n−1)−1[np− 1]

= E(N1)− n(1− p)2(n−1)−1 + n2p(1− p)2n−1,

since p = ε
n
,

V ar(N1) = n+O(εn)− (n+O(εn)) +O(εn)

= O(εn). (4.4.7)

Stellenbosch University  http://scholar.sun.ac.za



CHAPTER 4. AVERAGE PATH LENGTH IN SMALL-WORLD NETWORKS47

By Chebyshev’s inequality for any real number t > 0, we obtain

P
(
|N1 − E(N1)| > t

√
V ar(N1)

)
≤ 1

t2
. (4.4.8)

Using the variance value in Equation (4.4.7), and letting t = n1/4
√

logn
, there exists

a constant c1 such that

P
(
|N1 − E(N1)| > n1/4

√
c1εn

log n

)
≤ log n

n1/2
.

Thus,

P
(
|N1 − E(N1)| ≤ n1/4

√
c1εn

log n

)
> 1− log n

n1/2
.

Hence, N1 is concentrated around its mean, i.e.,

N1 = E(N1) +O(n1/4

√
εn

log n
)

w.h.p. By the condition on ε in (4.4.1) and the estimated value of E(N1) in
(4.4.6) we have, w.h.p.,

N1 = n+O(εn). (4.4.9)

Lemma 4.4. a) For k = 2, w.h.p.

Nk = O(εn)

b) For k ≥ 3

i) if E(Nk) ≥
√
n, then w.h.p.

Nk < 2E(Nk)

ii) if E(Nk) <
√
n, then w.h.p.

Nk < n
1
4E(Nk).

Proof. In a manner similar to the proof of Lemma 4.3. For any S ⊆ V (R(n, p))
such that |S| = k and k ≥ 2

P (S is the vertex set of a tree component in R(n, p) and |S| = k) =

kk−2 pk−1 (1− p)(
k
2)−(k−1)+k(n−k),

where kk−2 represents Cayley’s formula of the number of trees on k labelled
vertices (Harris et al., 2009, p. 43-45), pk−1 means that k − 1 links should be
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present in the tree and (1− p)(
k
2)−(k−1)+k(n−k) for the tree to be an isolated

connected component. Hence,

E(Nk) =

(
n

k

)
kk−2 pk−1 (1− p)(

k
2)−(k−1)+k(n−k). (4.4.10)

Using Equation (4.4.5) for given S1 and S2 such that |S1| = k, |S2| = k and
S1 6= S2. If S1 ∩ S2 6= ∅, then

P(S1 and S2 are the vertex set of a tree components on R(n, p) of order k) = 0.

If S1 ∩ S2 = ∅ then

P(S1 and S2 are the vertex set of a tree component on R(n, p) of order k) =

k2(k−2)p2(k−1)(1− p)2(k2)−2(k−1)+2k(n−k)−k2 .

Hence,

E(Nk
2) =

(
n

k, k

)
k2(k−2) p2(k−1) (1− p)2(k2)−2(k−1)+2k(n−k)−k2 + E(Nk)

= E(Nk)
2

((
n
k,k

)
(1− p)−k

2(
n
k

)2 + E(Nk)
−1

)

= E(Nk)
2

(
((n− k)!)2

(n− 2k)!n!
(1− p)−k

2

+ E(Nk)
−1

)

= E(Nk)
2

(
(1− p)−k

2
k−1∏
j=0

(1− k

n− j
) + E(Nk)

−1

)

= E(Nk)
2

(
1 +O

(
k2

n
+ E(Nk)

−1

))
. (4.4.11)

For k = 2, by substituting k = 2 in Equation (4.4.10), the number of the
trees of order two, i.e., isolated edge in the network, is

E(N2) =

(
n

2

)
p(1− p)2(n−2) = Θ(εn). (4.4.12)

Using the formula of E(Nk
2) in Equation (4.4.11), we get

E(N2
2) = (E(N2))2

(
1 +O

(
1

n
+

1

εn

))
,

and

V ar(N2) = E(N2)2

(
1 +O

(
1

εn

))
− E(N2)2 (4.4.13)

= E(N2)2O
(

1

εn

)
. (4.4.14)
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Using Chebyshev’s inequality, for any real number t > 0

P(Nk ≥ tE(Nk)) ≤
V ar(Nk)

(t− 1)2E(Nk)
2 .

Setting t = 2 and using the variance of N2 in Equation (4.4.13), there exists a
constant c2 such that

P (N2 ≥ 2E(N2)) ≤ c2

εn
,

which means that
P (N2 < 2E(N2)) > 1− c2

εn
,

using the expectation of N2 in Equation (4.4.12) which implies that w.h.p

N2 < 2E(N2) = Θ(εn). (4.4.15)

For all k ≥ 3, using Stirling’s approximation (Mitzenmacher and Upfal,
2005), which states that

log(n!) = n log n− n+
1

2
log n+O(1),

then

log

(
n

k

)
= k log n− k log k + k − 1

2
log k +O(1)

log(kk−2) = k log k − 2 log k

log(pk−1) = (k − 1) log ε− k log n+ log n as p =
ε

n

log (1− p)(
k
2)−(k−1)+k(n−k) = −εk +O(1)

Note that all those asymptotic estimates only hold when k = O
√
n, which is

the case here. Putting all pieces together on Equation (4.4.10) leads to

logE(Nk) = log n+ k(1− ε) + (k − 1) log ε− 5

2
log k +O(1)

= log n+ (k − 1)(1− ε+ log ε)− 5

2
log k +O(1).

Since (1− ε) is absorbed in O(1),

E(Nk) = Θ
( n

k5/2
e(k−1)(1−ε+log ε)

)
. (4.4.16)

Knowing that 1− ε+ log ε ∼ log ε as ε→ 0,

1− ε+ log ε ≤ 1

2
log ε− 1,
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(k − 1)(1− ε+ log ε) ≤ k − 1

2
log ε+ 1− k ≤ log ε− k + 1. (4.4.17)

Therefore, we can use Equation (4.4.17) in Equation (4.4.16) to obtain

E(Nk) = O
( εn

k5/2
e−k
)
. (4.4.18)

Using Chebyshev’s inequality, for any real number t > 0

P(Nk ≥ tE(Nk)) ≤
V ar(Nk)

(t− 1)2E(Nk)
2 , (4.4.19)

then, substituting the value of E(Nk
2) in Equation (4.4.11)

V ar(Nk) = E(Nk)
2

(
1 +O

(
k2

n
+ E(Nk)

−1

))
− E(Nk)

2. (4.4.20)

Using the variance in Equation (4.4.20) into Equation (4.4.19) we obtain

P(Nk ≥ tE(Nk)) ≤
O(k

2

n
+ E(Nk)

−1)

(t− 1)2 . (4.4.21)

Consider the case where
n

k5/2
e(k−1)(1−ε+log ε) ≥

√
n.

Setting t = 2, using the above assumption and by substituting the value of
E(Nk) in Equation (4.4.16) into the probability in Equation (4.4.21), we obtain

P(Nk ≥ 2E(Nk))�
1√
n
. (4.4.22)

Then, w.h.p.
Nk < 2E(Nk). (4.4.23)

Otherwise, we do the same by setting t = n
1
4 to obtain

P(Nk ≥ n
1
4E(Nk))�

1√
n
, (4.4.24)

Nk < n1/4E(Nk) (4.4.25)

w.h.p., i.e, 1− 1√
n
.

After estimating the number of tree components in a random network
R(n, p) when np tends to zero in the last two lemmas, now we need to es-
timate the average order of the component of a random vertex, e(R(n, p)).
Toward that end, we define

e(R(n, p)) =
∑

v∈V (R(n,p))

|C(v)|
n

, (4.4.26)
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where C(v) is the connected component of R(n, p) containing v. Given that
the number of tree component in R(n, p) is Nk and the order of the largest
component is K log n where K > 0

e(R(n, p)) =

K logn∑
k=1

kP(|C(v)| = k)

=

K logn∑
k=1

k

(
kNk

n

)

=

K logn∑
k=1

k2Nk

n
(4.4.27)

Note that, the average order of the component of a random vertex is different
from the normal averaging. The average order of the component in (4.4.27),
estimates the order of the component of a random vertex. The standard aver-
aging estimates the order of the component in the whole network. See Figure
4.1.

Figure 4.1: The difference between the average order of the component in (4.4.27)
and the standard averaging. The formula in (4.4.27) estimates the average order of
the component of the random vertex of this random network by 3+3+3+1+2+2

6 = 2.3
while the standard averaging estimates the order of the component by 3+1+2

3 = 2.

Lemma 4.5. The average order of the component of a random vertex in
R(n, ε

n
) w.h.p. satisfies

e(R(n, p)) ≤ 1 + c1ε,

for some c1 > 0, where ε satisfies (4.4.1).

Proof. Using the definition of the average order of the component of a random
vertex in R(n, p) given in Equation (4.4.27)

e(R(n, p)) =
N1

n
+

K logn∑
k=2

k2Nk

n
,

by substituting the value of N1 in Lemma 4.3, we obtain

e(R(n, p)) = 1 +O(ε) +

K logn∑
k=2

k2Nk

n
. (4.4.28)
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If k ≥ 2 satisfies the first case in Equation (4.4.23) then

k2Nk

n
<

2k2E(Nk)

n
.

By substituting the value of E(Nk) in Equation (4.4.18)

k2Nk

n
< O

(
εe−k√
k

)
(4.4.29)

with probability at least 1 − 1√
n
. By the union bound all such k satisfy the

above inequalities with probability at least 1 − O( logn√
n

). Similarly the second
case in Equation (4.4.24)

k2Nk

n
<

2k2n1/4E(Nk)

n
= O

(
(log n)2

n3/4

)
(4.4.30)

with probability at least 1 − 1√
n
. By the union bound all k ≥ 2 satisfy the

above inequalities with probability at least 1−O( logn√
n

).
Applying the union bound again,

e(R(n, p)) = 1 +O

(
ε
∑
k≥2

e−k√
k

+
(log n)3

n3/4

)
,

with probability 1−O( logn√
n

).

4.5 Random Process
Random processes are most often used to investigate theoretical questions
about random networks. In this section we will investigate the random process
of constructing the small-world network model explained in Section 4.1.

We use the term “identified vertex” if the vertex has been superposed to
a vertex from the random network R(n, p), otherwise it is not an identified
vertex.

Step 0: All the vertices are not identified yet. Choose a random vertex v0 from
the cycle C(n); and we say v0 is open vertex.

Step 1: Choose a random vertex w from the random network R(n, p), identify
w with v0 which has been chosen at step 0. If vertex w has other vertices
in its component then identify them with randomly chosen vertices from
the cycle. The vertices that have been identified are closed vertices.
The neighbours of the closed vertices which have not been identified yet
are open vertices now.
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Step 2: Restart the process with the open vertices in step 1.

The process continues this way and ends when all vertices have been iden-
tified as closed vertices. The resulting network at the end of the process is
C(n, p) which generates a disordered network according to the model in 4.1.
The vertex v0 that is picked at random at step 0 will not affect the structure
of the generated network C(n, p), however it plays a very important role in
our analytical derivation.

Figure 4.2 explains the random process of generating disordered network
C(n, p) with n = 20. At step 0 all vertices are not identified yet and there
is only one open vertex. On the right hand side we have the random network
created with specific p. At step 1 , the component that contains 3 vertices
is picked, a chosen vertex of this component is identified and superposed on
the first open vertex that was chosen in step 0. Then, two random vertices in
the cycle are identified and superposed on the two vertices from the random
network. These newly identified vertices are classified as closed vertices and
have the color black. Their neighbours will become open vertices and have color
white. The vertices with gray color are not yet identified and also not open
yet. The process is repeated starting from the open vertices. The process halts
when all vertices are classified as closed. Unless all open vertices generated
at step k are finished, we do not consider vertices generated at step k + 1. It
should be noted that the process in Figure 4.2 is not random, it is made to
clarify our explanation.

As we have seen, at any step k there are two categories of vertices: the
set of open vertices denoted by Xk and the set of closed vertices denoted by
Tk. Therefore, the set of the identified vertices, Dk, is the union of the closed
vertices until step k. The union of all open vertices until step k, is denoted by
Sk.

Sk = X1 ∪X2 · · · ∪Xk. (4.5.1)

The set of all the vertices at distance at most k from v in C(n, p) is denoted
by Rk:

Rk = {w ∈ C(n, p) : l(v, w) ≤ k}. (4.5.2)

Lemma 4.6 compares Sk with Rk in the disordered network C(n, p), and shows
that Sk contains all the vertices at distance at most k from v0 in C(n, p).

Lemma 4.6. At any step k
Rk ⊆ Sk.

Proof. Using induction. At step 0, R0 = {v0}, so R0 ⊆ S0. Now, assume
that for some k, Rk ⊆ Sk is true. Let w ∈ Rk+1, i.e., l(v0, w) ≤ k + 1, which
means that there exists w′ ∈ Rk such that w is adjacent to w′ in C(n, p). Since
w′ ∈ Rk, by the induction hypothesis w′ ∈ Sk; which means that w′ was open
at a step j ≤ k of the process starting at v. Since w′ is adjacent to w in
C(n, p), then w is open at step j + 1, and j + 1 ≤ k + 1. Hence, w ∈ Sk+1
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Figure 4.2: The random process of constructing small-world network as it is ex-
plained in the text.

Let A be an arbitrary positive number (may depend on n) and let

p(A, n) := P
(
l̄(C(n, p)) ≤ A log n

)
.

Lemma 4.7. For a random vertex v ∈ V (C(n, p))

P
(
|R4A logn(v)| ≥ n− 1

2

)
≥ 1

2
p(A, n).

Proof. Given the event
l̄(C(n, p)) ≤ A log n.

By definition in (2.2.1), we have

1

n

∑
v∈V (C(n,p))

l̄(v) ≤ A log n.
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This implies that
1

n

∑
v∈V (C(n,p))
l̄(v)≥2A logn

l̄(v) ≤ A log n,

and
1

n

∑
v∈V (C(n,p))
l̄(v)≥2A logn

l̄(v) ≥ 2A log n

n

∑
v∈V (C(n,p))
l̄(v)≥2A logn

1.

Hence, ∑
v∈V (C(n,p))
l̄(v)≥2A logn

1 ≤ n

2
.

So, there are at least n
2
vertices in C(n, p) with the property l̄(v) < 2A log n.

For such a vertex, using definition in (2.2.1) again we have

1

n− 1

∑
w 6=v

w∈V (C(n,p))

l(v, w) < 2A log n.

And so,

4A log n

n− 1

∑
w 6=v

w∈V (C(n,p))
l(v,w)≥4A logn

1 ≤ 1

n− 1

∑
w 6=v

w∈V (C(n,p))

l(v, w) < 2A log n.

Hence, there are at least n−1
2

vertices in C(n, p) with w 6= v and l(v, w) <
4A log n, i.e.,

|R4A logn(v)| ≥ n− 1

2
.

This shows that for a random vertex v in C(n, p)

P
(
|R4A logn(v)| ≥ n− 1

2

∣∣∣∣ l̄(C(n, p)) ≤ A log n

)
≥ 1

2
.

The proof is completed by noting that

P
(
|R4A logn(v)| ≥ n− 1

2

∣∣∣∣ l̄(C(n, p)) ≤ A log n

)
≤

P(|R4A logn(v)| ≥ n−1
4

)

P(l̄(C(n, p)) ≤ A log n)

=
P(|R4A logn(v)| ≥ n−1

4
)

p(A, n)
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4.6 Early Evolution of The Random Tree
Process

In this section we shall study the random tree process at its early stage, i.e.,
when k ≥ 2 and Sk is still small. More precisely, we will study the random
tree process conditioned by

Sk ≤ n1−δ, (4.6.1)

for an arbitrary integer k when δ > 0 is a small fixed real number. Lemma 4.8
gives the average order of the component at step k. The remaining network
at the early stage for a given k is denoted Rk(n, p). Hence, the average order
of the component of a random vertex in Rk(n, p) is

e(Rk(n, p)) =
∑

v∈V (Rk(n,p))

|c(v)|
n−O(n1−δ)

. (4.6.2)

Lemma 4.8. For any k > 0

|e(R(n, p))− e(Rk(n, p))| = O(n−δ log n).

Proof.

|e(R(n, p))− e(Rk(n, p))| =

∣∣∣∣∣∣
∑

v∈V (R(n,p))

|c(v)|
n
−

∑
v∈V (Rk(n,p))

|c(v)|
n−O(n1−δ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
 ∑
v∈V (Rk)

|c(v)|
n

+
∑

v∈V (R)/V (Rk)

|c(v)|
n

− ∑
v∈V (Rk)

|c(v)|
n−O(n1−δ)

∣∣∣∣∣∣∑
v∈V (Rk)

|c(v)|
(

1

n
− 1

n−O(n1−δ)

)
+

∑
v∈V (R)/V (Rk)

|c(v)|
n

assuming that at step k, n1−δ component has order of log n then

|e(R(n, p))− e(Rk(n, p))| =
∑

v∈V (Rk)

|c(v)|
n

(
1− 1

1−O(n−δ)

)
︸ ︷︷ ︸

= O(n−δ) by using geometric power series

+O
(
n1−δ log n

n

)

= O(n−δ log n) +O(n−δ log n)

= O(n−δ log n).

Lemma 4.9 gives an upper bound for the probability of the growth of Sl
defined in formula (4.5.1).
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Lemma 4.9. For any positive integer l and any positive real number t, define
f(ε) := log(1+c2ε), then we have an upper bound on the conditional probability

P(|Sl| > let+(l−1)f(ε)+log |X1|||Sl−1| ≤ n1−δ) ≤ l exp

(
−c3

t2

l(log log)2

)
,

for some constant c > 0.

Proof. Assume that we are in the early evolution of the random tree process
by conditioning on (4.6.1), i.e., |Sl−1| ≤ n1−δ. For k ≤ l − 1, using Lemma
4.8, each open vertex at step k will have e(R(n, p)) + O(n−δ log n) vertices
in its component on average. We have an upper bound for the conditional
expectation

E(|Xk+1| | |Xk|) ≤ 2|Xk|(e(R(n, p)) +O(n−δ log n))− |Xk| ≤ |Xk|(1 + c2ε).

This is because the new vertices from the component will produce at most two
open vertices at step k + 1, and each open vertex at step k will produce at
most one open vertex at step k + 1. By using Lemma 4.5, the above upper
bound for the conditional expectation holds.

Let
Yk := log |Xk|. (4.6.3)

Then

E(Yk+1|Yk) = E(log |Xk+1| | |Xk|)
≤ log(E(|Xk+1| | |Xk|))
≤ log(|Xk|(1 + c2ε))

≤ Yk + log(1 + c2ε).

Let
Zk := Yk − kf(ε). (4.6.4)

Then

E(Zk+1|Zk) = E(Yk+1 − (k + 1)f(ε)|Yk)
≤ Yk + f(ε)− (k + 1)f(ε)

≤ Yk − kf(ε)

≤ Zk,

which implies that the sequence (Zk)k≥1 is a supermartingales (Mitzenmacher
and Upfal, 2005, p. 295-313).

Furthermore, because the largest component is of order more than K log n
and each open vertex in step k will have at most K log n closed neighbours,
each generates two open vertices. This leads to

|Xk+1|
|Xk|

� 2 log n. (4.6.5)
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Using Equation (4.6.4) we obtain

|Zk+1 − Zk| = |Yk+1 − (k + 1)f(ε)− (Yk − kf(ε))|
= |Yk+1 − Yk − f(ε)|.

Using Equation (4.6.3),

|Zk+1 − Zk| = | log |Xk+1| − log |Xk|+ f(ε)|

≤
∣∣∣∣log
|Xk+1|
|Xk|

∣∣∣∣+ |f(ε)|.

Therefore, using Equation (4.6.5) we obtain

|Zk+1 − Zk| � log log n. (4.6.6)

Applying the Azuma-Hoeffding inequality for supermartingale (Mitzen-
macher and Upfal, 2005, p. 295-313), we obtain for any positive real number
t,

P(Zl − Z1 > t) ≤ exp

(
−c3

t2

l(log log n)2

)
. (4.6.7)

Using the definition of Zk in Equation (4.6.4), and then substituting from
Equation (4.6.3) leads to

Zl − Z1 = Yl − lf(ε)− Y1 + f(ε))

= Yl − (l − 1)f(ε)− Y1

= log |Xl| − (l − 1)f(ε)− log |X1|. (4.6.8)

Thus, Zl − Z1 > t is equivalent to

log |Xl| − (l − 1)f(ε)− log |X1| > t

|Xl| > et+(l−1)f(ε)+log |X1|. (4.6.9)

Coming back to the Azuma-Hoeffding inequality in Equation (4.6.7) and using
the result of the derivation in Equations (4.6.8) and (4.6.9) implies that

P(|Xl| > et+(l−1)f(ε)+log |X1|||Sl−1| ≤ n1−δ) ≤ exp

(
−c3

t2

l(log log n)2

)
.

Recall the definition of Sl from Equation (4.5.1), i.e., Sl =
∑l

j=0Xl. Then,
using the union bound we obtain

P(|Sl| > let+(l−1)f(ε)+log |X1|||Sl−1| ≤ n1−δ) ≤ l exp

(
−c3

t2

l(log log n)2

)
.
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4.7 The result
This section states our result regarding the average path length of small-world
networks. It gives an upper and lower bound for the average path length and
shows that the disordered network C(n, p) is a small world network when pn is
bounded away from zero where the average path length in this case is bounded
above by O(log n). Otherwise, C(n, p) does not have an average path length
of logarithmic order.

Theorem 4.10. Let C(n, p) be a network formed by adding edges randomly
with probability p to the cycle C(n).

a) If pn is bounded away from zero then

l̄(C(n, p)) = O(log n).

b) If pn → 0 then there is a function ω(n) → ∞ such that, w.h.p. the
average path length of the network C(n, p) satisfies

l̄(C(n, p)) > ω(n) log n.

Proof. a) From Theorem 4.2, the diameter of C(n, p) is O(log n), which
gives an upper bound for the average path length. So

l̄(C(n, p)) = O(log n).

b) Let A be an arbitrary positive number depending on n, and define p(A, n)
to be

p(A, n) := P(l̄(C(n, p)) ≤ A log n).

Using Lemma 4.7,

P
(
|R4A logn(v)| ≥ n− 1

2

)
≥ 1

2
p(A, n).

Let k0 = 4A log n. Using Lemma 4.6

P
(
|Sk0(v)| ≥ 1

2
(n− 1)

)
≥ P

(
|R4A logn(v)| ≥ n− 1

2

)
≥ 1

2
p(A, n).

(4.7.1)
Now we choose A such that the following holds as n→∞

A→∞, f(ε)A→ 0 and
log n

A(log log n)2 �
√

log n.
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For every k ≤ k0 and t = tk such that

ket+(k−1)f(ε)+log |X1| = n1−δ

we have
tk � log n.

By applying Lemma 4.9, then, uniformly for k ≤ k0,

P
(
|Sk| > n1−δ||Sk−1| ≤ n1−δ) ≤ k exp

(
−c1

(log n)2

k(log log n)2

)
.

Since k ≤ k0 = 4A log n, then

P
(
|Sk| > n1−δ∣∣|Sk−1| ≤ n1−δ) ≤ k exp

(
−c2

log n

A(log log n)2

)
.

Therefore,

P
(
|Sk| > n1−δ) =P

(
|Sk| > n1−δ||Sk−1| ≤ n1−δ)P (|Sk−1| ≤ n1−δ)+ P

(
|Sk−1| > n1−δ)

≤ exp

(
−c2

log n

A(log log n)2

)
+ P

(
|Sk−1| > n1−δ) .

Iterating the above recurrence we obtain

P
(
|Sk0| > n1−δ) ≤ k0 exp

(
−c2

log n

A(log log n)2

)
� A log n exp

(
−c3

√
log n

)
.

Finally, using Equation (4.7.1), we obtain

p(A, n)� A log n exp
(
−c3

√
log n

)
→ 0,

as n→∞.

Earlier we derived our result regarding the average path length when the
base network is a cycle (i.e, each vertex has degree 2). This result can be
generalized when k > 1 as follows; We group adjacent vertices in groups of
order k. Two vertices are connected in the resulting network if any of the
original vertices in each group was connected to any of the original in the
other. This includes short-cut connections. Notice that the number of the
short-cuts is preserved in this grouping process. Therefore, the parameters of
the resulting network are:

n′ =
n

k
, p′ = k2p, k′ = 1, l′ = l.

Figure 4.7 shows the grouping technique when k = 4. (A similar grouping is
done in (Newman and Watts, 1999a)).
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Figure 4.3: The grouping technique when k > 1 to obtain a generalized small world
result.

4.8 Conclusion
We have started this thesis by asking this question: what is the average min-
imum number of extra random links that can be added to a one dimensional
lattice such that the average path length is small ? In this chapter we have
answered this question by showing that at least εn (where ε is a constant big-
ger than zero) random links should be added to a one dimensional lattice to
ensure average path length of order log n.
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Chapter 5

Conclusion and Future work

5.1 Conclusion
One of the main concerns of network science is to study and model real-world
networks through mathematical abstraction that captures some key realistic
features. The three metrics studied in this thesis are: clustering coefficient,
cc, degree distribution and average path length, l̄. The importance of these
quantities has been first defined and emphasised by empirical studies of real-
world networks in Chapter 2. Our real interest lies in the third metric because
the first two metrics are always easy to compute analytically.

Stimulated by the high clustering and small average path length observed
in real-world networks, small-world models have been proposed to interpolate
between high clustering regular lattices and random networks (Watts and Stro-
gatz, 1998). This thesis presents a combination of analytical results, empirical
work and simulations regarding small-world network models and their average
path length.

Models of small-world network combine structured topology very often rep-
resented by a periodic one dimensional lattice, and randomness represented in
different ways. Firstly, rewiring the links in the base structured network with
probability p; this was the original construction of small-world network pro-
posed by Watts and Strogatz (1998). Secondly, adding extra links on top of the
base network with probability p; this construction was proposed by Newman
and Watts (1999a) to overcome the difficulties regarding the analytical treat-
ment of the original model. The properties of both models are investigated
by numerical simulation and compared with empirical results obtained from
real-world networks. Both models have small average path length, and high
clustering coefficient in a good agreement with the empirical study of real-
world networks. However, they lack the scale-free degree distribution observed
in real-world networks.

The average path length has been computed analytically for the model
Newman and Watts (1999a) model methods from statistical physics and ana-

62
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lytical methods including scaling forms in (Newman and Watts, 1999a; Barrat
and Weigt, 2000). Following these methods, the onset of small world phenom-
ena where l̄ scales logarithmically with n occurs if

lim
n→∞

log p

log n
=
−1

τ
, then τ = 1.

Making any further progress using those methods has proved difficult.
Despite the fact that the empirical study in Chapter 2 shows that the

properties of random networks deviate from real-world networks (specifically
the clustering coefficient and the degree distribution), we have used a random
network as a mathematical tool to model and study small-world networks.
Indeed, our task is not only to study and design a model that meets small-
world properties, but also to impose and develop mathematical tools to study
small-world networks. For that reason, we have represented randomness in
small-world models by Erdős-Rényi random network models which we impose
on a base structured network. Our construction allows us to reason about
small-world networks using tools and results from random graph theory. We
have improved the analytical result regarding the average path length and we
have shown that the onset of small-world behaviour occurs if

p =
ε

n
, ε > 0.

Furthermore, we have shown that when p = ε
n
and ε → 0 the disordered

network is no longer small-world since l̄→∞ as n→∞.
Using random graph theory has proved to be a good mathematical tool to

reason analytically about small-world networks and it can be used to overcome
some drawbacks of small-world models which we shall briefly mention in the
subsequent section.

5.2 Future Work
Although we have constructed small-world models that are analytically solv-
able, knowing that the best studied case by far is the one dimensional lattice
based network, our result of the average path length is obtained for that case
also. However, we believe our small-world models can be built on lattices of
any dimension and we can derive the same result regarding the average path
length.

Small-world models are sadly missing two related properties of real-world
networks: the first one is the degree distribution. We have shown that small-
world network models do not have the scale-free degree distribution observed
in real-world networks. Although small-world models were never intended to
mimic real-world networks in terms of degree distribution, the distribution of
the extra links on the lattices are important for routing to be efficient and easy
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in spite of a lack of global knowledge of the network structure. Searching using
local information in small-world networks was realised by Kleinberg (2000). He
observed that the small-world experiments of Milgram (1967) not only demon-
strate the small average path length between arbitrary pairs of vertices, but
also individuals operating with purely local information are capable of finding
these paths. Kleinberg (2000) proposed a decentralized mechanism to navi-
gate the underling network without knowledge of the global structure of the
network where the underlying network is a d-dimensional lattice and random
links are added where the probability pij of two vertices being connected is

pij ∝ d(i, j)−α,

where d(i, j) is the lattice distance from vertex i and vertex j. A short path of
polylogarithmic expected length can be found using a local greedy algorithm
only when α = 2 and there is no such algorithm in the original small-world
models where α = 0. Some open research questions in the navigable small-
word have been indicated in (Kleinberg, 2006). Following our methods in this
work, we can address the navigability of small-world network by using random
graphs with specific degree distributions instead of the standard Erdős-Rényi
random graph.

Additionally, all small-world models we have investigated including Klein-
berg (2000)’s model of navigable small-world networks rely on lattice structure
as a base, to guarantee connectivity and high clustering in the former and to
provide a distance metric that is independent of the network distance in the
latter (Watts, 2004). Certainly, social networks and most real-world networks
are not built on a lattice. The question arises, are we able to find a better
representation of the base network to model social networks?

Stellenbosch University  http://scholar.sun.ac.za



Bibliography

Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Reviews of modern physics, vol. 74, no. 1, p. 47.

Backstrom, L., Boldi, P., Rosa, M., Ugander, J. and Vigna, S. (2012). Four degrees
of separation. In: Proceedings of the 3rd Annual ACM Web Science Conference,
pp. 33–42. ACM.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks.
science, vol. 286, no. 5439, pp. 509–512.

Barabási, A.-L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A. and Vicsek, T. (2002).
Evolution of the social network of scientific collaborations. Physica A: Statistical
Mechanics and its Applications, vol. 311, no. 3, pp. 590–614.

Barrat, A. (1999). Comment on“small-world networks: Evidence for a crossover
picture”. arXiv preprint cond-mat/9903323.

Barrat, A. and Weigt, M. (2000). On the properties of small-world network mod-
els. The European Physical Journal B-Condensed Matter and Complex Systems,
vol. 13, no. 3, pp. 547–560.

Barthélémy, M. and Amaral, L.A.N. (1999). Small-world networks: Evidence for a
crossover picture. Physical Review Letters, vol. 82, no. 15, p. 3180.

Bollobás, B. (1981). The diameter of random graphs. Transactions of the American
Mathematical Society, vol. 267, no. 1, pp. 41–52.

Bollobás, B. (1998). Modern Graph Theory. Graduate texts in mathematics. U.S.
Government Printing Office. ISBN 9780387984889.

Bollobás, B. (2001). Random Graphs. Cambridge Studies in Advanced Mathematics.
Cambridge University Press. ISBN 9780521797221.
Available at: http://books.google.co.za/books?id=o9WecWgilzYC

Bollobás, B. and Chung, F.R.K. (1988). The diameter of a cycle plus a random
matching. SIAM Journal on discrete mathematics, vol. 1, no. 3, pp. 328–333.

Chung, F. and Garey, M. (1984). Diameter bounds for altered graphs. Journal of
Graph Theory, vol. 8, no. 4, pp. 511–534.

65

Stellenbosch University  http://scholar.sun.ac.za



BIBLIOGRAPHY 66

Chung, F. and Lu, L. (2001). The diameter of sparse random graphs. Advances in
Applied Mathematics, vol. 26, no. 4, pp. 257–279.

Cont, R. and Tanimura, E. (2007). Small world graphs: characterization and alter-
native constructions.

Dorogovtsev, S.N. and Mendes, J.F.F. (2000). Exactly solvable small-world network.
EPL (Europhysics Letters), vol. 50, no. 1, p. 1.

Erdős, P. and Rényi, A. (1960). On the evolution of random graphs. Publ. Math.
Inst. Hungar. Acad. Sci, vol. 5, pp. 17–61.

Faloutsos, M., Faloutsos, P. and Faloutsos, C. (1999). On power-law relationships of
the internet topology. In: ACM SIGCOMM Computer Communication Review,
vol. 29, pp. 251–262. ACM.

Flaxman, A.D. and Frieze, A.M. (2004). The diameter of randomly perturbed di-
graphs and some applications. In: Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, pp. 345–356. Springer.

Fronczak, A., Fronczak, P. and Hołyst, J.A. (2004). Average path length in random
networks. Physical Review E, vol. 70, no. 5, p. 056110.

Harris, J., Hirst, J. and Mossinghoff, M. (2009). Combinatorics and Graph Theory.
Undergraduate Texts in Mathematics. Springer. ISBN 9780387797113.
Available at: http://books.google.co.za/books?id=DfcQaZKUVLwC

Jackson, M. (2010). Social and Economic Networks. Princeton University Press.
Princeton University Press. ISBN 9780691148205.
Available at: http://books.google.co.za/books?id=bJbuD2XH1_oC

Jamakovic, A. (2008). Characterization of complex networks: application to robust-
ness analysis.

Janson, S., Luczak, T. and Rucinski, A. (2011). Random Graphs. Wiley Series in
Discrete Mathematics and Optimization. Wiley. ISBN 9781118030967.
Available at: http://books.google.co.za/books?id=RjnqVoB4VmUC

Kleinberg, J. (2000). The small-world phenomenon: an algorithm perspective. In:
Proceedings of the thirty-second annual ACM symposium on Theory of computing,
pp. 163–170. ACM.

Kleinberg, J. (2006). Complex networks and decentralized search algorithms. In:
Proceedings oh the International Congress of Mathematicians: Madrid, August
22-30, 2006: invited lectures, pp. 1019–1044.

Milgram, S. (1967). The small world problem. Psychology today, vol. 2, no. 1, pp.
60–67.

Stellenbosch University  http://scholar.sun.ac.za



BIBLIOGRAPHY 67

Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press. ISBN
9780521835404.
Available at: http://books.google.co.za/books?id=0bAYl6d7hvkC

Newman, M. (2010). Networks: An Introduction. OUP Oxford. ISBN
9780191500701.
Available at: http://books.google.co.za/books?id=LrFaU4XCsUoC

Newman, M.E. (2000). Models of the small world. Journal of Statistical Physics,
vol. 101, no. 3-4, pp. 819–841.

Newman, M.E. (2001a). Scientific collaboration networks. i. network construction
and fundamental results. Physical review E, vol. 64, no. 1, p. 016131.

Newman, M.E. (2001b). Scientific collaboration networks. ii. shortest paths, weighted
networks, and centrality. Physical review E, vol. 64, no. 1, p. 016132.

Newman, M.E. (2001c). The structure of scientific collaboration networks. Proceed-
ings of the National Academy of Sciences, vol. 98, no. 2, pp. 404–409.

Newman, M.E. (2003a). 2 random graphs as models of networks. Handbook of graphs
and networks, p. 35.

Newman, M.E. (2003b). The structure and function of complex networks. SIAM
review, vol. 45, no. 2, pp. 167–256.

Newman, M.E., Moore, C. and Watts, D.J. (2000). Mean-field solution of the small-
world network model. Physical Review Letters, vol. 84, no. 14, p. 3201.

Newman, M.E. and Watts, D.J. (1999a). Renormalization group analysis of the
small-world network model. Physics Letters A, vol. 263, no. 4, pp. 341–346.

Newman, M.E. and Watts, D.J. (1999b). Scaling and percolation in the small-world
network model. Physical Review E, vol. 60, no. 6, p. 7332.

Newman, M.E., Watts, D.J. and Strogatz, S.H. (2002). Random graph models of
social networks. Proceedings of the National Academy of Sciences of the United
States of America, vol. 99, no. Suppl 1, pp. 2566–2572.

Redner, S. (2004). Citation statistics from more than a century of physical review.
arXiv preprint physics/0407137.

Ugander, J., Karrer, B., Backstrom, L. and Marlow, C. (2011). The anatomy of the
facebook social graph. arXiv preprint arXiv:1111.4503.

Van Steen, M. (2010). Graph Theory and Complex Networks: An Introduction.
Maarten Van Steen. ISBN 9789081540612.
Available at: http://books.google.co.za/books?id=V7bMbwAACAAJ

Vázquez, A. (2001). Statistics of citation networks. arXiv preprint cond-
mat/0105031.

Stellenbosch University  http://scholar.sun.ac.za



BIBLIOGRAPHY 68

Watts, D.J. (2004). The" new" science of networks. Annual review of sociology, pp.
243–270.

Watts, D.J. and Strogatz, S.H. (1998). Collective dynamics of âĂŸsmall-
worldâĂŹnetworks. nature, vol. 393, no. 6684, pp. 440–442.

Wiki01, 2013 (Accessed on February 2013). Re-normalization grpup analysis.
Wikipedia, the Free Encyclopedia.
Available at: http://en.wikipedia.org/wiki/Renormalization _group

Stellenbosch University  http://scholar.sun.ac.za




