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A detailed understanding of all effects and influences on higher-order correlations is essential. At low charged multiplicity,
the effect of a non-Poissonian multiplicity distribution can significantly distort correlations. Evidently, the reference samples
with respect to which correlations are measured should yield a null result in the absence of correlations. We show how the
careful specification of desired properties necessarily leads to an average-of-multinomials reference sample. The resulting internal
cumulants and their averaging over several multiplicities fulfill all requirements of correctly taking into account non-Poissonian
multiplicity distributions as well as yielding a null result for uncorrelated fixed-N samples. Various correction factors are shown to
be approximations at best. Careful rederivation of statistical variances and covariances within the frequentist approach yields errors
for cumulants that differ from those used so far. We finally briefly discuss the implementation of the analysis through a multiple
event buffer algorithm.

1. Introduction and Motivation

The understanding of hadronic collisions is now considered
an essential baseline for ultrarelativistic heavy-ion collisions.
Given the correspondingly low final-statemultiplicities, there
are significant deviations, even for inclusive samples, from
assumptions commonly made both in the general theory
and in the definition of experimentally measured quantities
such as a non-Gaussian shape of the correlation function and
non-Poissonian multiplicity distributions. Constraints such
as energy-momentum conservation [1, 2] would also play a
role in at least some regions of phase space. Multiplicity-
class and fixed-multiplicity analysis differ increasingly from
Poissonian and inclusive distributions, and with the good
statistics now available, measurements have become accurate
enough to require proper understanding and treatment of
these assumptions and deviations, which play an ever larger
role with increasing order of correlation.

1.1. Correlations as a Function of Charged Multiplicity. There
are a number of reasons to study correlations at fixed charged
multiplicity 𝑁 or, if necessary, charged-multiplicity classes.

Firstly, the physics of multiparticle correlations will evidently
change with 𝑁, and indeed the multiplicity dependence of
various quantities such as the intercept parameter and radii
associated with Gaussian parametrisations is under constant
scrutiny [3–12]. Measurement of many observables as a
function of multiplicity class, regarded a proxy for centrality
dependence, has been routine for years. Corresponding the-
oretical considerations, for example, in the quantum optical
approach go back a long time [13]. Secondly, correlations for
fixed-𝑁 are the building blocks which are combined into
multiplicity-class and inclusive correlations [14].

However, such fixed-𝑁 correlations have been beset by
an inconsistency in that they are nonzero even when the
underlying sample is uncorrelated and do not integrate to
zero either. This has been recognised from the start [15], and
various attempts have been made to fix the problem.

Combining events from several fixed-𝑁 subsamples into
multiplicity classes does not solve these problems. To quote
an early reference [16], “Averaging over multiplicities inextri-
cably mixes the properties of the correlation mechanism with
those of the multiplicity distribution. Instead, the study of
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correlations at fixed multiplicities allows one to separate both
effects and to investigate the behaviour of correlation functions
as a function ofmultiplicity.”Under the somewhat inappropri-
ate name of “Long-Range Short-Range correlations” [15, 17],
an attempt was made to separate these multiplicity-mixing
correlations from the fixed-𝑁 correlations, but the inconsis-
tencies inherent in the underlying fixed-𝑁 correlations were
not addressed. Building on [18], we propose doing so now.

1.2. Cumulants in Multiparticle Physics. Multiparticle cumu-
lants have entered the mainstream of analysis, as shown
by the following incomplete list of topics. In principle, the
considerations presented in this paper would apply to any,
and all such cumulants to the degree that their reference
distribution deviates from a Poisson process or that the type
of particle kept fixed differs from the particle being analysed.

Integrated cumulants of multiplicity distributions have
a long history in multiparticle physics [19]. Second-order
differential cumulants, normally termed “correlation func-
tions,” have likewise been ubiquitous for decades [7] both in
charged-particles correlations [15] and in femtoscopy since
they provide information on spacetime characteristics of the
emitting sources, most recently at the LHC [10, 11, 20]. Dif-
ferential three-particle cumulants generically measure asym-
metries in source geometry and exchange amplitude phases
[21]. They also provide consistency checks [22] and a tool to
disentangle the coherence parameter from other effects [23,
24].Three-particle cumulants are also sensitive to differences
between longitudinal and transverse correlation lengths in
the Lundmodel [25]. Inclusive three-particle cumulants have
been measured, albeit with different methodologies, in, for
example, hadronic [26–29], leptonic [30–33], and nuclear
collisions [34–37]. They play a central role in direct QCD-
based calculations [38–40], in some recent theory, and in
experiment of azimuthal and jet-like correlations [41–45].
Net-charge and other charge combinations are considered
probes of the QCD phase diagram [46–48]. Cumulants of
order 4 or higher are, of course, increasingly difficult to
measure, and so early investigations were largely confined
to their scale dependence [49–52]. The large event samples
now available have, however, made feasible measurements
of fourth- and higher-order cumulants in other variables as
proposed in [13, 53–56] as, for example, recently measured by
ALICE [57]. Reviews of femtoscopy theory range from [58–
60] to more recent ones such as [8].

1.3. Outline of This Paper. It has long been obvious that
the root cause of the problems and inconsistencies set
out in Section 1.1 was the reference sample [61]. Insofar as
cumulants are concerned, the solution was outlined in [18]
as a subtraction of the reference sample cumulant from the
measured one; important pieces of the puzzle were, however,
still missing at that stage. In this paper, we clarify and extend
the basic concept of internal cumulants and consider in detail
the case of second- and third-order differential cumulants in
the invariant𝑄 = √−(𝑝

1
− 𝑝

2
)
2 for fixed chargedmultiplicity

𝑁. The method may be implemented for other variables
without much fuss.

A second cornerstone of the present paper is the recog-
nition that the 𝑛 particles which enter a correlation analysis
are usually only a subset of the 𝑁 charged pions. While in
the case of charged-particle correlations, all 𝑁 particles are
used in the analysis, Bose-Einstein correlations, for example,
would use only the 𝑛 ≡ 𝑛

+
positive pions (and, in a separate

analysis, only the 𝑛
−
= 𝑁 − 𝑛

+
negatives). In addition, there

may be reasons to restrict the analysis itself to subregions
of the total acceptance Ω in which 𝑁 was measured, as
exemplified in this paper by restriction to a “good azimuthal
region” subinterval around the beam axis, A ⊂ [0, 2𝜋],
in which detection efficiency is high. A can, however, be
reinterpreted generically as any restriction in momentum
space compared to Ω and/or as a selection such as charge
or particle species. Even when setting A = Ω, that is,
doing the femtoscopy analysis in the full acceptance, 𝑛 still
does not equal 𝑁 but fluctuates around 𝑁/2. The trivial
observation that 𝑛 ̸=𝑁 fundamentally changes the analysis:
identical-particle correlations at fixed 𝑁 and charged-particle
correlations at fixed𝑁 require different definitions.

As we will show, ad hoc prescriptions such as simply
inserting prefactors or implementing eventmixing using only
events of the same𝑁 do alleviate the effect of the overall non-
Poissonian multiplicity distribution in part but fail to remove
them completely. The same issues will, of course, arise in any
other correlation type of, for example, nonidentical particles
or net charge correlations. The formalism set out here can
be easily extended to such cases. A refined version of the
abovementioned Long-Range-Short-Range method, which
we term “Averaged-Internal” cumulants, will be presented in
Section 5. Along the way, we document in Section 2 extended
versions of the particle counters [62, 63] which we need as
the basis for correlation studies and in Section 4 demonstrate
from first principles that statistical errors for cumulants used
so far have captured only some of the terms and with partly
incorrect prefactors. Section 6 outlines the implementation
of event mixing for fixed-𝑁 analysis. While experimental
results will be published elsewhere, preliminary results in
Figures 2 and 3 show that, in third and even in second order,
corrections due to proper treatment of fixed-𝑁 reference
samples can be large.

2. Raw Data, Counters, and Densities

2.1. Raw Data. The starting point for experimental correla-
tion analysis is the inclusive sample S, made up of E events
𝑎 = 1, . . . ,E. Each event consists of a varying number of final-
state elementary particles and photons; for our purposes, we
consider only the 𝑁(𝑎) charged pions of event 𝑎 in Ω, the
maximal acceptance region used. Each pion 𝑖 = 1, . . . , 𝑁(𝑎)

is characterised by a data vector (P𝑎
𝑖
, s𝑎
𝑖
, e𝑎
𝑖
) containing its

measured information, including the three components of
its momentum, P𝑎

𝑖
= (𝑝

𝑎

𝑖𝑥
, 𝑝

𝑎

𝑖𝑦
, 𝑝

𝑎

𝑖𝑧
) or (𝑦𝑎

𝑖
, 𝜙

𝑎

𝑖
, 𝑝

𝑎

𝑡𝑖
), while its

discrete attributes such as mass and charge are captured in
a data vector s𝑎

𝑖
of discrete values; for the moment, we will

consider only the charge, s𝑎
𝑖
→ 𝑐

𝑎

𝑖
. From the sample’s raw

data, we can immediately find derived quantities such as
the total charged multiplicity 𝑁(𝑎) and the total transverse
energy, and such derived quantities are hence considered
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part of the raw data. The list of particle attributes should be
augmented by an error vector e𝑎

𝑖
containing themeasurement

errors for each track, but we will not consider detector
resolution errors here. In summary, the inclusive data sample
is fully described in terms ofS = {P𝑎, s𝑎}E

𝑎=1
consisting of lists

of vectors in continuous and discrete spaces

P𝑎 = {P𝑎
1
,P𝑎

2
, . . . ,P𝑎

𝑁(𝑎)
} , s𝑎 = {s𝑎

1
, s𝑎
2
, . . . , s𝑎

𝑁(𝑎)
} . (1)

2.2. Data after Conditioning and Cuts. For a particular
analysis, the inclusive sample is invariably subdivided and
modified through “conditioning,” the statistics terminology
for semiinclusive or triggered analysis. From the total sample
of events, a subsample is selected according to some restric-
tion or precondition. In our case, this conditioning proceeds
in the following steps.
(i) Conditioning into Fixed-N Subsamples. For the fixed-
multiplicity analyses that form the subject of this paper, S
is subdivided into a set of fixed-𝑁 subsamples S

𝑁
, each of

which contains only events 𝑎 whose measured multiplicity
𝑁(𝑎) is equal to the constant𝑁 characterisingS

𝑁
= {P𝑎, s𝑎 |

𝛿(𝑁,𝑁(𝑎))}, 𝑁 = 0, 1, 2, . . . We use the vertical bar | here
and everywhere in the usual sense of “conditioning” whereby
the events in sample S

𝑁
must satisfy the condition that

their charged multiplicity must equal the specified constant
𝑁, denoted in this case by the Kronecker delta 𝛿(𝑁,𝑁(𝑎)).
Quantities to the right of the vertical bar are generally
considered known and fixed, while quantities to the left of
the bar are variable or unknown.The number of events inS

𝑁

equals the 𝛿-restricted sum over the inclusive sample,

E
𝑁
=

E

∑

𝑎=1

𝛿 (𝑁,𝑁 (𝑎)) ,

∞

∑

𝑁=0

E
𝑁
= E. (2)

The usual multiplicity distribution is the list of relative
frequencies,

1

R
𝑁
=
E
𝑁

E
,

∞

∑

𝑁=0

R
𝑁
= 1. (3)

While desirable, it is not easy tomeasure the total multiplicity
of final-state charged pions, a quantity which approximately
tracks the variation in the physics. Choosing charged pions
measuredwithin themaximal detector acceptance𝑁 = 𝑁(Ω)

as marker is in any case only an approximation because
it excludes charged particles outside the primary cuts and
also ignores final-state particles other than charged pions.
Nevertheless, we expect 𝑁 to be a reasonable measure of
the multiplicity dependence of the physics. Alternatively, the
multiplicity density in pseudorapidity at central rapidities
𝑑𝑁/𝑑𝜂 can be used as a model-dependent proxy for𝑁.
(ii) Azimuthal Cut. While 𝑁(𝑎) is the charged multiplicity
measured inΩ, there is no a priori reason why the correlation
analysis itself may not be conducted within a restricted part
A ⊂ Ω of momentum space within which the actual analysis
is done. In the case of the UA1 detector from which the data
used in the examples below was drawn,A refers to azimuthal
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Figure 1: Conditional normalised multiplicity distribution (relative
frequency) of the number of positive pions 𝑛 in restricted azimuthal
region A = {20

∘
≤ |𝜙| ≤ 160

∘
} for, respectively, fixed charged

multiplicity𝑁 = 3, 5, 10, 20, 30, 40, and 50, for the UA1 dataset used
in [65]. In accordance with (6), ⟨𝑛⟩

𝑁
≃ 0.39𝑁.

regions within which measurement efficiency was high, and
pions found in the low-efficiency azimuthal regions were
excluded. Correspondingly, themultiplicity 𝑛(𝑎)which enters
the correlation analysis itself differs from𝑁(𝑎) and will, for a
given fixed-𝑁, fluctuate with relative frequency

R
𝑛𝑁

=
E
𝑛𝑁

E
𝑁

for each fixed 𝑁 = 1, 2, . . . , (4)

where E
𝑛𝑁

is the number of events for which 𝑁(𝑎) = 𝑁

and 𝑛(𝑎) = 𝑛. The outcome space for 𝑛(𝑎) will depend on
its definition; in the present case where only positive (or only
negative) pions within A are used in the analysis, it will be
[0, 1, . . . , 𝑁] so that the relative frequency is normalised by

𝑁

∑

𝑛=0

R
𝑛𝑁

= 1 ∀𝑁 = 1, 2, . . . . (5)

With approximate charge conservation 𝑛
+
≃ 𝑛

−
, we expect

the fixed-𝑁 average for positive (or negative) pions in A to
hover around

⟨𝑛⟩
𝑁
≃
𝑁

2

volume of A
volume of Ω

. (6)

An example of the resulting relative frequencies (conditional
normalised multiplicity distributions) is shown in Figure 1.
Since 𝑛 ≤ 𝑁, these conditional multiplicity distributions
are almost always sub-Poissonian, that is, narrower than a
Poisson distribution with the same ⟨𝑛⟩

𝑁
would be.

(iii) Generalisation. While in this paper the analysis will be
carried out for the 𝑛(𝑎) positive pions of event 𝑎 falling into
A, the same formalism obviously applies to negative pions
and may equally refer to any other particles such as kaons,
baryons, and photons, in any combination which depends on
𝑁. There is no a priori connection between the definitions of
𝑁 and 𝑛.
(iv) Identical-Particle versus Multispecies Analysis. While we
do not develop the formalism for correlations between two or
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Figure 2: (a) Correction factors 𝐹
2𝑁

= ⟨𝑛(𝑛 − 1)⟩
𝑁
/⟨𝑛⟩

2

𝑁
(red squares) and 𝐹

3𝑁
= ⟨𝑛(𝑛 − 1)(𝑛 − 2)⟩

𝑁
/⟨𝑛⟩

3

𝑁
(blue circles) as defined in (57) as

well as 𝐺
3𝑁

(green triangles) of (70), for the UA1 dataset used in [65]. (b) Inverse factors as used in the normalisation of internal cumulants
(74)-(75) and (83)-(84).
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Figure 3: Comparison, for the sameUA1 data and cuts, of (1/𝐹
2𝑁
) −

1 (red filled squares), (1/𝐹
3𝑁
) − 1 (blue filled circles), and both

averages over 𝑛 for fixed𝑁, with prefactors [𝑁2
/𝑁(𝑁 − 1)] − 1 (red

open squares) and [𝑁
3
/𝑁(𝑁 − 1)(𝑁 − 2)] − 1 (blue open circles).

The Poissonian limit is represented by zero on the 𝑦-axis; that is,
100 times the 𝑦-scale represents the percentage deviation from the
Poissonian limit.

three particles of different species or charge, themethodology
developed here can be easily modified to deal with such
cases. For example, positive-negative pion combinations and
“charge balance correlations” [64] can be handled by inserting
delta functions 𝛿(𝑐, 𝑐𝑎

𝑖
), where 𝑐 is the desired charge and 𝑐

𝑎

𝑖

the measured charge of track 𝑖 in event 𝑎, into the definitions
of the counters in Section 2.3.

2.3. Counters and Densities for Fixed𝑁. This section is based
on an old formalism [53, 62, 63] which must, however, be
updated to accommodate the issues being considered here.
The basic building block of correlation analysis is the counter;

it is a particular projection of the raw data particularly suited
to the construction of histograms. Eventwise counters 𝜌 for a
given event 𝑎 are averaged to give sample counters 𝜌.

We take the simple case where event 𝑎 contains 𝑁(𝑎)

tracks with three-momenta P𝑎 = {P𝑎
1
, . . . ,P𝑎

𝑁(𝑎)
}, no discrete

attributes s and no further cuts or selection. For each point
p
1
in momentum space, only that particle 𝑖 (if any) whose

momentum P𝑎
𝑖
happens to coincide with p is to be counted,

𝜌 (p
1
| P𝑎) =

𝑁(𝑎)

∑

𝑖=1

𝛿 (p
1
− Pa

𝑖
) . (7)

Such counters always appear under an integral over some
region of the P space, so that the delta functions fulfill the
purpose of counting those particles falling within that region.
Alternatively, one can consider the delta functions here and
below to represent small nonoverlapping intervals around
the specified momenta.The integral over the full momentum
space Ω yields

∫
Ω

𝑑p
1
𝜌 (p

1
| P𝑎) = 𝑁 (𝑎) , (8)

while an integral over some subspace or binΩ
𝑏
⊂ Ωwill yield

the number of particles of event 𝑎 in binΩ
𝑏
.The second-order

eventwise counter for event 𝑎 is2

𝜌 (p
1
, p

2
| P𝑎) =

𝑁(𝑎)

∑

𝑖 ̸= 𝑗=1

𝛿 (p
1
− P𝑎

𝑖
) 𝛿 (p

2
− P𝑎

𝑗
) , (9)

with the inequality 𝑖 ̸= 𝑗 ensuring that a single particle is not
counted as a “pair.” The counter integrates to

∫
Ω

𝑑p
1
𝑑p

2
𝜌 (p

1
, p

2
| P𝑎) = 𝑁 (𝑎) (𝑁 (𝑎) − 1) = 𝑁(𝑎)

2
,

(10)

using the falling factorial notation

𝑁
𝑟
= 𝑁 (𝑁 − 1) ⋅ ⋅ ⋅ (𝑁 − 𝑟 + 1) 𝑟 = 1, 2, . . . , (11)
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as contrasted to the rising factorial (Pochhammer symbol)
𝑁
𝑟
= 𝑁(𝑁 + 1) ⋅ ⋅ ⋅ (𝑁 + 𝑟 − 1). The single-particle counter

is a projection of 𝜌(p
1
, p

2
| P𝑎) because

∫
Ω

𝑑p
2
𝜌 (p

1
, p

2
| P𝑎) = [𝑁 (𝑎) − 1] 𝜌 (p1 | P

𝑎
) . (12)

The most general eventwise counter which enters the exclu-
sive cross-section for events with charged multiplicity𝑁(𝑎)

𝜌 (p
1
, p

2
, . . . , p

𝑁(𝑎)
| P𝑎)

=

𝑁(𝑎)

∑

𝑖
1
̸= 𝑖
2
̸= ⋅⋅⋅ ̸= 𝑖
𝑁(𝑎)

=1

𝑁(𝑎)

∏

𝑑=1

𝛿 (pd − P𝑎
𝑖
𝑑

)

(13)

fully describes the event, including any and all correlations
between its particles. It integrates to the factorial of the event
multiplicity

∫
Ω

𝑑p
1
𝑑p

2
⋅ ⋅ ⋅ 𝑑p

𝑁(𝑎)
𝜌 (p

1
, p

2
, . . . , p

𝑁(𝑎)
| P𝑎) = 𝑁 (𝑎)! (14)

and contains all counters of lower order by projection. An
𝑟th-order counter 𝜌(p

1
, p

2
, . . . , p

𝑟
| P𝑎) is zero whenever

there are more observation points than particles being
observed, 𝑟 > 𝑁(𝑎).3

To distinguish eventwise counters for nonfixed-𝑁 from
eventwise counters for fixed 𝑁, we define the separate
eventwise counter for fixed 𝑁 by specifying an additional
Kronecker delta,

𝜌 (p
1
, . . . , p

𝑟
| P𝑎, 𝑁)

= 𝛿 (𝑁,𝑁 (𝑎))

𝑁

∑

𝑖
1
̸= ⋅⋅⋅ ̸= 𝑖
𝑟

∏

𝑑

𝛿 (p
𝑑
− P𝑎

𝑖
𝑑

)

𝑟 = 1, 2, . . . , 𝑁.

(15)

While the counters and densities defined above and
below are clearly frame dependent, it is easy to define
corresponding Lorentz-invariant versions by supplementing
each delta function in 3 momenta with the corresponding
energy; thus (7) would become, for example,

𝜌 (p
1
| P𝑎) =

𝑁(𝑎)

∑

𝑖=1

𝐸 (p
1
) 𝛿 (p

1
− P𝑎

𝑖
) , (16)

with 𝐸(p
1
) = 𝐸

1
= √p2

1
+ 𝑚2 the on-shell energy, and in

general

𝜌 (p
1
, p

2
, . . . , p

𝑟
| P𝑎)

=

𝑁(𝑎)

∑

𝑖
1
̸= 𝑖
2
̸= ⋅⋅⋅ ̸= 𝑖
𝑟
=1

𝑁(𝑎)

∏

𝑑=1

𝐸
𝑑
𝛿 (p

𝑑
− P𝑎

𝑖
𝑑

)

𝑟 = 1, . . . , 𝑁 (𝑎) ,

𝜌 (p
1
, . . . , p

𝑟
| P𝑎, 𝑁)

= 𝛿 (𝑁,𝑁 (𝑎))

𝑁

∑

𝑖
1
̸= ⋅⋅⋅ ̸= 𝑖
𝑟

∏

𝑑

𝐸
𝑑
𝛿 (p

𝑑
− P𝑎

𝑖
𝑑

)

𝑟 = 1, . . . , 𝑁,

(17)

which are manifestly invariant. Because such counters and
densities are, however, always integrated over some Ω

𝑏
by

∏
𝑑
(𝑑p

𝑑
/𝐸

𝑑
), the additional factors𝐸

𝑑
always cancel and play

no role on this level of analysis andwill be ignored for the time
being. The bin boundaries of Ω

𝑏
do, however, remain frame

dependent.
Charge-, spin-, or species-specific counters are defined in

the same way, that is, by supplying appropriate Kronecker
deltas to the counters; for example, the particle counter for
pions with charge 𝑐

1
at p

1
for fixed𝑁 is

𝜌 (p
1
| 𝑐
1
,P𝑎, 𝑁) = 𝛿 (𝑁,𝑁 (𝑎))

𝑁(𝑎)

∑

𝑖=1

𝛿 (𝑐
1
, 𝑐
𝑎

𝑖
) 𝛿 (p

1
− P𝑎

𝑖
) ,

(18)

while the two-particle counter for charge combination (𝑐
1
, 𝑐
2
)

at momenta (p
1
, p

2
) for any𝑁 is, for example,

𝜌 (p
1
, p

2
| 𝑐
1
, 𝑐
2
,P𝑎)

=

𝑁(𝑎)

∑

𝑖,𝑗=1

𝛿 (𝑐
1
, 𝑐
𝑎

𝑖
) 𝛿 (p

1
− P𝑎

𝑖
) 𝛿 (𝑐

2
, 𝑐
𝑎

𝑗
) 𝛿 (p

2
− P𝑎

𝑗
) .

(19)

In contrast to (18), charge counters rather than particle
counters would be

𝜌
𝑐
(p

1
| 𝑐
1
,P𝑎) =

𝑁(𝑎)

∑

𝑖=1

𝑐
1
𝛿 (𝑐

1
, 𝑐
𝑎

𝑖
) 𝛿 (p

1
− P𝑎

𝑖
) , (20)

so that 𝜌
𝑐
(p
1
| +1,P𝑎) + 𝜌

𝑐
(p
1
| −1,P𝑎) represents the net

charge of event 𝑎 at p
1
. The two-particle counter for charges

(𝑐
1
, 𝑐
2
) at momenta (p

1
, p

2
) is

𝜌
𝑐
1
𝑐
2 ≡ 𝜌

𝑐
(p

1
, p

2
| 𝑐
1
, 𝑐
2
,P𝑎)

=

𝑁(𝑎)

∑

𝑖,𝑗=1

𝑐
1
𝛿 (𝑐

1
, 𝑐
𝑎

𝑖
) 𝛿 (p

1
− P𝑎

𝑖
) 𝑐
2
𝛿 (𝑐

2
, 𝑐
𝑎

𝑗
) 𝛿 (p

2
− P𝑎

𝑗
) ,

(21)

and “charge flow” correlations can be constructed from this
(for rapidities (𝑦, 𝑦) in the case of [66]) such as

Φ(𝑦, 𝑦

) = −⟨∑

𝑖 ̸= 𝑗

𝑐
𝑎

𝑖
𝑐
𝑎

𝑗
𝛿 (𝑦 − 𝑌

𝑎

𝑖
) 𝛿 (𝑦


− 𝑌

𝑎

𝑗
)⟩ , (22)

which can be expressed asΦ = ⟨𝜌
+−
+𝜌

+−
−𝜌

++
−𝜌

−−
⟩ and the

related “charge balance functions” described in for example
[46].
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Returning to the fixed-𝑁 case, eventwise counters will
usually be combined with similar events to form event
averages. The simplest average is the fixed-𝑁 density for the
subsample of fixed S

𝑁
,

𝜌 (p
1
| S

𝑁
) =

1

E
𝑁

∑

𝑎

𝜌 (p
1
| P𝑎, 𝑁) , (23)

with the Kronecker delta in (15) ensuring that only events
in S

𝑁
are considered, so we need not further specify the

individual terms or limits of the 𝑎-sum. Using (2), it is
immediately clear that

∫
Ω

𝑑p
1
𝜌 (p

1
| S

𝑁
) = 𝑁 (24)

compared to the integral over the corresponding eventwise
counter

∫
Ω

𝑑p 𝜌 (p | P𝑎, 𝑁) = 𝑁 𝛿 (𝑁,𝑁 (𝑎)) (25)

and to the integral (8); similarly

∫
Ω

𝑑p
1
⋅ ⋅ ⋅ 𝑑p

𝑟
𝜌 (p

1
, . . . , p

𝑟
| S

𝑁
)

= 𝑁 (𝑁 − 1) ⋅ ⋅ ⋅ (𝑁 − 𝑟 + 1) = 𝑁
𝑟
.

(26)

The inclusive averaged density 𝜌(p
1
| S) is the weighted

average over all𝑁 of the fixed-𝑁 averages,

𝜌 (p
1
| S) =

∞

∑

𝑁=1

R
𝑁
𝜌 (p

1
| S

𝑁
) . (27)

Using (3), (15), and (23), this can be written as

𝜌 (p
1
| S) =

1

E
∑

𝑎

∑

𝑖

𝛿 (p
1
− P𝑎

𝑖
) , (28)

and for general 𝑟 = 1, 2, . . .

𝜌 (p
1
, . . . , p

𝑟
| S) =

∞

∑

𝑁=𝑟

R
𝑁
𝜌 (p

1
, . . . , p

𝑟
| S

𝑁
)

=
1

E
∑

𝑎

∑

𝑖
1
̸= ⋅⋅⋅ ̸= 𝑖
𝑟

𝑟

∏

𝑑=1

𝛿 (p
𝑑
− P𝑎

𝑖
𝑑

) ,

(29)

keeping in mind that 𝜌(p
1
, . . . , p

𝑟
| S

𝑁
) will be zero

whenever 𝑁(𝑎) < 𝑟. The integral of any 𝑟th-order inclusive
averaged density is the 𝑟th-order factorial moment of the
multiplicity distribution,

∫
Ω

𝑑p
1
⋅ ⋅ ⋅ 𝑑p

𝑟
𝜌 (p

1
, . . . , p

𝑟
| S) =

∞

∑

𝑁=𝑟

R
𝑁
𝑁
𝑟
= ⟨𝑁

𝑟
⟩ ,

(30)

with simple angle brackets denoting inclusive averaging.
The averaged counters are of course directly related to the

traditional definitions in terms of cross-sections. If L is the
integrated luminosity of incoming particles, the topological

cross-section is 𝜎
𝑁

= E
𝑁
/L, the inelastic cross-section

is 𝜎
𝐼

= E/L, and the inclusive cross-section is 𝜎incl =

∑
𝑁
𝑁𝜎

𝑁
= ⟨𝑁⟩ 𝜎

𝐼
while the relative frequency (multiplicity

distribution) can be written as usual as R
𝑁

= 𝜎
𝑁
/𝜎

𝐼
.

The relation between the differential cross sections and our
counters is

𝜌incl (p1, . . . , p𝑁) = 𝜌 (p
1
, . . . , p

𝑁
| S) =

1

𝜎
𝐼

𝑑
3𝑁
𝜎incl

𝑑p
1
⋅ ⋅ ⋅ 𝑑p

𝑁

,

𝜌 (p
1
, . . . , p

𝑁
| S

𝑁
) =

1

𝜎
𝑁

𝑑
3𝑁
𝜎excl

𝑑p
1
⋅ ⋅ ⋅ 𝑑p

𝑁

,

(31)

and so as usual inclusive and exclusive densities are related by
[14]

𝜌 (p
1
, . . . , p

𝑁
| S)

=

∞

∑

𝑁=𝑟

R
𝑁

(𝑁 − 𝑟)!
∫ 𝜌 (p

1
, . . . , p

𝑁
| S

𝑁
) 𝑑p

𝑟+1
⋅ ⋅ ⋅ 𝑑p

𝑁
,

(32)

while the semi-inclusive cross sections and counters follow
by the usual projections.

2.4. Counters and Densities for Fixed (𝑁, 𝑛). Our choice of
a basic counter is motivated by the experimental situation
set out in Section 1: we wish to work in event subsamples of
fixed total chargedmultiplicity𝑁(𝑎) in the entiremomentum
spaceΩ but do the differential correlation analysis using only
those pions 𝑛 which fall into the restricted space A and of
a particular charge +1 or −1. This requires the use of “sub-
subsamples” for which both𝑁 and 𝑛 are kept fixed,

S
𝑛𝑁

= {P𝑎,with 𝑎 constrained by 𝛿 (𝑛, 𝑛
+
(𝑎))𝛿 (𝑁,𝑁(𝑎))} ,

(33)

with 𝑛
+
(𝑎) being the number of positive pions of event 𝑎 in

A, and eventwise sub-subsample counters

𝜌 (p
1
, . . . , p

𝑟
| 𝑛,𝑁,P𝑎)

= 𝛿 (𝑛, 𝑛
+
(𝑎)) 𝛿 (𝑁,𝑁 (𝑎))

×

𝑛

∑

𝑖
1
̸= ⋅⋅⋅ ̸= 𝑖
𝑟
=1

𝛿 (p
1
− P𝑎

𝑖
1

) ⋅ ⋅ ⋅ 𝛿 (p
𝑟
− P𝑎

𝑖
𝑟

) .

(34)

As in (2), the number of events in a sub-subsample E
𝑛𝑁

=

∑
𝑎
𝛿(𝑛, 𝑛

+
(𝑎)) 𝛿(𝑁,𝑁(𝑎)) enters the relevant event averages

𝜌 (p
1
, . . . , p

𝑟
| S

𝑛𝑁
) =

1

E
𝑛𝑁

∑

𝑎

𝜌 (p
1
, . . . , p

𝑟
| 𝑛,𝑁,P𝑎) ,

(35)

where once again the double Kronecker deltas in (34) ensure
selection of events inS

𝑛𝑁
only. Integrals of the counters over
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the good-azimuth regionA yield, for the eventwise andS
𝑛𝑁

-
averaged counters,

∫
A

𝑑p
1
⋅ ⋅ ⋅ 𝑑p

𝑟
𝜌 (p

1
, . . . , p

𝑟
| 𝑛,𝑁,P𝑎)

= 𝑛
𝑟
𝛿 (𝑛, 𝑛

+
(𝑎)) 𝛿 (𝑁,𝑁 (𝑎)) ,

∫
A

𝑑p
1
⋅ ⋅ ⋅ 𝑑p

𝑟
𝜌 (p

1
, . . . , p

𝑟
| S

𝑛𝑁
) = 𝑛

𝑟
.

(36)

Bearing in mind that observation points p
1
, p

2
, . . . refer to

positive pions inAonly, the event-averaged counters for fixed
𝑁 but any 𝑛 are given by the average weighted in terms of the
relative frequencyR

𝑛𝑁
= E

𝑛𝑁
/E

𝑁
,

𝜌 (p
1
, . . . , p

𝑟
| S

𝑁
) =

𝑁

∑

𝑛=𝑟

R
𝑛𝑁
𝜌 (p

1
, . . . , p

𝑟
| S

𝑛𝑁
)

= ⟨𝜌 (p
1
, . . . , p

𝑟
| S

𝑛𝑁
)⟩
𝑁
,

(37)

for 𝑟 = 1, 2, 3, . . ., which integrate to

∫
A

𝑑p
1
⋅ ⋅ ⋅ 𝑑p

𝑟
𝜌 (p

1
, . . . , p

𝑟
| S

𝑁
) = ⟨𝑛

𝑟
⟩
𝑁
. (38)

3. Construction of Correlation Quantities

3.1. Criteria. Correlation measurements of any sort are only
meaningful if a reference baseline signifying “independence”
or “lack of correlation” is defined quantitatively; indeed,many
different kinds of correlations may be defined and measured
on the samedata, depending onwhich particular physical and
mathematical scenario is considered to be known or trivial
and taken to be the baseline [61]. In our case, we require the
reference distribution to have the following properties.

(1) The number of charged pions in all phase space𝑁 is an
important parameter as a measure of possibly different
physics, but only the 𝑛 positive pions in A are to be
considered in the differential analysis.

(2) For a given (𝑁, 𝑛), themomenta of the reference density
𝜌
ref
(p
1
, . . . , p

𝑟
| S

𝑛𝑁
) should be mutually independent

for any order 1 ≤ 𝑟 ≤ 𝑛. This and the previous
requirement imply that the reference should be a 𝑛
multinomial distributed over continuous momentum
space; see Section 3.2.1.

(3) Given fixed 𝑁, the reference density 𝜌ref(p
1
, . . . , p

𝑟
|

S
𝑁
) must reproduce the 𝑛-multiplicity structure of the

sub-subsamples S
𝑛𝑁

as embodied in R
𝑛𝑁

. As set out
further in Section 3.2.2, this translates into an average
of multinomials,

𝜌
ref
(p

1
, . . . , p

𝑟
| S

𝑁
) =

𝑁

∑

𝑛=𝑟

R
𝑛𝑁

𝜌
mult

(p
1
, . . . , p

𝑟
| 𝛼,S

𝑛𝑁
)

= ⟨𝜌
mult

(p
1
, . . . , p

𝑟
| 𝛼,S

𝑛𝑁
)⟩

𝑁
.

(39)

(4) The reference density should reproduce the measured
one-particle density in momentum space. This can in
principle be satisfied by three different expressions for
the multinomial’s parameters 𝛼: see Section 3.2.3.

(5) Measures of correlation must reduce to zero even
on a differential basis whenever the data is, in fact,
uncorrelated. While this may seem self-evident, this
requirement is often ignored or not satisfied in the
literature. We address the resulting proper baseline
through the use of internal cumulants in Section 3.3.

(6) The measure of correlation should be insensitive to the
one-particle distribution. This is addressed as usual by
normalisation; see Section 3.3.

3.2. The Reference Distribution

3.2.1.Multinomials in Discrete and Continuous Spaces. Before
(39) can be developed further, it is necessary to take a detour
into discrete outcome spaces before tackling the continuous
outcome space defined by p and P𝑎. The reason is that
multinomial distributions for continuous arguments p can be
written only as a limit of the discrete precursor.

Let there be binsΩ
𝑏
, 𝑏 = 1, . . . , 𝐵with the corresponding

set of Bernoulli probabilities 𝛼 = {𝛼(𝑏)}
𝐵

𝑏=1
of a single particle

falling into bin Ω
𝑏
, normalised by ∑

𝑏
𝛼(𝑏) = 1. Independent

tossing of 𝑛 particles into these bins results in themultinomial
for the bin counts n = {𝑛

𝑏
}
𝐵

𝑏=1
,

𝑝 (n | 𝛼, 𝑛) = 𝑛!

𝐵

∏

𝑏=1

𝛼(𝑏)
𝑛
𝑏

𝑛
𝑏
!
, (40)

with normalisation

∑

𝑈(n)
𝑝 (n | 𝛼, 𝑛) = 1, (41)

where the sum must be taken over the “universal set”

𝑈 (n) = {n | 𝑛
𝑏
≥ 0; ∑

𝑏

𝑛
𝑏
= 𝑛} . (42)

The multivariate factorial moment generating function
(FMGF) for this multinomial for the set of source parameters
𝜆 = {𝜆(𝑏)}

𝐵

𝑏=1
can be solved in closed form,

𝑄
mult

(𝜆 | 𝛼, 𝑛) = ∑

𝑈

𝑝 (n | 𝛼, 𝑛)∏

𝑏

(1 − 𝜆 (𝑏))
𝑛
𝑏

= [1 −∑

𝑏

𝜆 (𝑏) 𝛼 (𝑏)]

𝑛

.

(43)

The FMGF 𝑄(𝜆) can generally be used to find multivariate
factorial moments 𝜌(𝑏

𝑖
1

, 𝑏
𝑖
2

, . . . , 𝑏
𝑖
𝑟

) and factorial cumulants
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𝜅(𝑏
𝑖
1

, 𝑏
𝑖
2

, . . . , 𝑏
𝑖
𝑟

) for any selection of bins (𝑏
𝑖
1

, 𝑏
𝑖
2

, . . . , 𝑏
𝑖
𝑟

) ∈

(1, . . . , 𝐵), including repeated indices, by differentiation

𝜌 (𝑏
𝑖
1

, 𝑏
𝑖
2

, . . . , 𝑏
𝑖
𝑟

) =
(−1)

𝑟
𝜕
𝑟
𝑄 (𝜆)

𝜕𝜆 (𝑏
𝑖
1

) 𝜕𝜆 (𝑏
𝑖
2

) ⋅ ⋅ ⋅ 𝜕𝜆 (𝑏
𝑖
𝑟

)

𝜆=0

,

𝜅 (𝑏
𝑖
1

, 𝑏
𝑖
2

, . . . , 𝑏
𝑖
𝑟

) =
(−1)

𝑟
𝜕
𝑟 ln𝑄 (𝜆)

𝜕𝜆 (𝑏
𝑖
1

) 𝜕𝜆 (𝑏
𝑖
2

) ⋅ ⋅ ⋅ 𝜕𝜆 (𝑏
𝑖
𝑟

)

𝜆=0

.

(44)

For the multinomial case (43), the factorial moments and
cumulants are therefore

𝜌
mult

(𝑏
𝑖
1

, 𝑏
𝑖
2

, . . . , 𝑏
𝑖
𝑟

| 𝛼, 𝑛) = 𝑛
𝑟

𝑟

∏

𝑑=1

𝛼 (𝑖
𝑑
) ∀𝑟 ≤ 𝑛,

𝜅
mult

(𝑏
𝑖
1

, 𝑏
𝑖
2

, . . . , 𝑏
𝑖
𝑟

| 𝛼, 𝑛) = (−1)
𝑟−1

(𝑟 − 1)! ⋅ 𝑛

𝑟

∏

𝑑=1

𝛼 (𝑖
𝑑
) .

(45)

The multinomial for variable p in continuous outcome space
R is derived by keeping 𝑛 constant while taking the limit
𝐵 → ∞ with bin sizes tending to zero and changing to a
Bernoulli probability density 𝛼(𝑏) → 𝑑p𝛼(p) normalised
by ∫

A
𝑑p𝛼(p) = 1. The result is the point process where

the probability for the count 𝑛(p) in the infinitesimal “bin”
around anyp to be larger than 1 becomes negligible; that is, we
have at most one particle at a given p. While the multinomial
probability itself can be written only as a limit, the FMGF can
be written analytically as the functional [67]

𝑄
mult

[𝜆 (p) | 𝛼 (p) , 𝑛] = [1 − ∫
A

𝑑p 𝜆 (p) 𝛼 (p)]
𝑛

. (46)

Factorial moments and factorial cumulants are found gener-
ically from functional derivatives [14]

𝜌(p
𝑖
1

, p
𝑖
2

, . . . , p
𝑖
𝑟

) =
(−1)

𝑟
𝛿
𝑟
𝑄 [𝜆 (p)]

𝛿𝜆 (p
𝑖
1

) 𝛿𝜆 (p
𝑖
2

) ⋅ ⋅ ⋅ 𝛿𝜆 (p
𝑖
𝑟

)

𝜆(p)=0

,

𝜅(p
𝑖
1

, p
𝑖
2

, . . . , p
𝑖
𝑟

) =
(−1)

𝑟
𝛿
𝑟 ln𝑄 [𝜆 (p)]

𝛿𝜆 (p
𝑖
1

) 𝛿𝜆 (p
𝑖
2

) ⋅ ⋅ ⋅ 𝛿𝜆 (p
𝑖
𝑟

)

𝜆(p)=0

,

(47)

which for the multinomial𝑄[𝜆(p)] = 𝑄
mult

[𝜆(p) | 𝛼(p), 𝑛] of
(46) yield

𝜌
mult

(p
𝑖
1

, p
𝑖
2

, . . . , p
𝑖
𝑟

| 𝛼 (p) , 𝑛) = 𝑛
𝑟

𝑟

∏

𝑘=1

𝛼 (p
𝑖
𝑘

) ,

1 ≤ 𝑟 ≤ 𝑛,

(48)

𝜅
mult

(p
𝑖
1

, p
𝑖
2

, . . . , p
𝑖
𝑟

| 𝛼 (p) , 𝑛)

= (−1)
𝑟−1

(𝑟 − 1)! ⋅ 𝑛

𝑟

∏

𝑘=1

𝛼 (p
𝑖
𝑘

) .

(49)

3.2.2. Multinomial Reference for Fixed𝑁. Applying the above
general case to our reference distribution (39), we must
rewrite (46) to make provision for the fact that 𝛼 may in
general depend not only on𝑁 but also on 𝑛,

𝑄
mult

[𝜆 (p) | 𝛼 (p | S
𝑛𝑁
)] = [1 − ∫𝑑p 𝜆 (p) 𝛼 (p | S

𝑛𝑁
)]

𝑛

.

(50)

Inserting (50) into (39), we find the FMGF for the reference
distribution of subsample S

𝑁
to be

𝑄
ref
[𝜆 (p) | 𝛼 (p) ,S

𝑁
]

= ∑

𝑛

R
𝑛𝑁

𝑄
mult

[𝜆 (p) | 𝛼 (p | S
𝑛𝑁
) ]

= ⟨[1 − ∫𝑑p𝜆 (p) 𝛼 (p | S
𝑛𝑁
)]

𝑛

⟩

𝑁

.

(51)

Using (48), the reference factorial moments are therefore

𝜌
ref
(p

1
, p

2
, . . . , p

𝑟
| S

𝑁
) = ⟨𝑛

𝑟

𝑟

∏

𝑘=1

𝛼 (p
𝑘
| S

𝑛𝑁
)⟩

𝑁

,

∀𝑟 ≤ 𝑛,

(52)

with corresponding expressions for the reference factorial
cumulants.

3.2.3. Reproducing the One-Particle Distribution. The set of
functions 𝛼(p | S

𝑛𝑁
) are as yet undetermined, apart from the

general constraints 𝛼(p | S
𝑛𝑁
) ≥ 0 and ∫

A
𝑑p 𝛼(p | S

𝑛𝑁
) =

1. In multinomials of all kinds, the Bernoulli probabilities
𝛼 are fixed parameters and therefore are the conveyers of
whatever remains constant in the outcomeswhile the detailed
outcomes fluctuate as statistical outcomes do. The “field”
𝛼(p | S

𝑛𝑁
) can and must therefore be seen as the quantity

encompassing the “physics” of the one-particle distributions,
which, in the absence of additional external information, is
embodied by our experimental data sample: the experimental
densities 𝜌(p

1
, . . . , p

𝑁
| S

𝑁
) “are” the physics, including all

correlations, and their first-order projections 𝜌(p
1
| S

𝑁
)

“are” the one-particle physics. The question immediately
arises whether 𝛼(p | S

𝑛𝑁
) should be fixed by 𝜌(p | S

𝑛𝑁
)

or the 𝑛-average 𝜌(p | S
𝑁
) = ⟨𝜌(p | S

𝑛𝑁
)⟩
𝑁
. Three possible

choices come to mind.

(1) It is tempting to define it in terms of the density for
each sub-subsample S

𝑛𝑁
,

𝛼 (p | S
𝑛𝑁
) =

𝜌 (p | S
𝑛𝑁
)

𝑛
∀ (𝑁, 𝑛) , (53)

which is correctly normalised since ∫𝑑p 𝜌(p |

S
𝑛𝑁
) = 𝑛. As this choice would attribute physical

significance to 𝑛, it would be appropriate whenever 𝑛
is associated with additionally measured experimen-
tal information. If, however, 𝑛 fluctuates randomly
from event to event based in part on unmeasured or
unmeasurable properties such as an event’s azimuthal
orientation, use of (53) makes no sense.
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If 𝑛 is deemed physically relevant, correlations in
terms of 𝜌(p

1
, . . . , p

𝑟
| S

𝑛𝑁
) of (35) may be feasible,

conditional on the availability of a sufficient number
of eventsE

𝑛𝑁
. Where sample sizes do not permit this,

one could nevertheless attempt to measure what have
historically been termed “short-range correlations”
but in this case not in the traditional sense of fixed-𝑁
correlations versus inclusive ones but rather of fixed-
𝑛-fixed-𝑁 correlations versus fluctuating-𝑛-fixed-𝑁
correlations. See Section 3.6.

(2) A second choice

𝛼 (p | S
𝑛𝑁
) = ⟨

𝜌 (p | S
𝑛𝑁
)

𝑛
⟩

𝑁

(54)

would be properly normalised but fails to satisfy
the crucial relations (71)–(73) below and is hence
discarded.

(3) While remaining open-minded towards Choice 1, we
therefore choose the third possibility, the ratio of the
average density divided by the average, all for fixed𝑁,

𝛼 (p | S
𝑛𝑁
) =

⟨𝜌 (p | S
𝑛𝑁
)⟩
𝑁

⟨𝑛⟩𝑁

=
𝜌 (p | S

𝑁
)

⟨𝑛⟩𝑁

, (55)

which would be appropriate for samples where E
𝑛𝑁

is too small or physical significance can be attributed
only to 𝑁 but not to 𝑛. According to (38), it is also
correctly normalised and ensures that the Bernoulli
parameters are the same for all events inS

𝑁
, indepen-

dent of 𝑛. Substituting this into (52), the differential
reference factorial moments orders become

𝜌
ref
(p

1
, p

2
, . . . , p

𝑟
| S

𝑁
) =

⟨𝑛
𝑟
⟩
𝑁

⟨𝑛⟩
𝑟

𝑁

𝑟

∏

𝑑=1

𝜌 (p
𝑑
| S

𝑁
)

= 𝐹
𝑟𝑁

𝑟

∏

𝑑=1

𝜌 (p
𝑑
| S

𝑁
) ,

(56)

where we identify the prefactor as the normalised
factorial moments of the 𝑛-multiplicity distribution
for given𝑁,

𝐹
𝑟𝑁

=
⟨𝑛

𝑟
⟩
𝑁

⟨𝑛⟩
𝑟

𝑁

, (57)

while the generating functional (51) becomes (see also
[13])

𝑄
ref
[𝜆 (p) | 𝛼 (p) ,S

𝑁
]

= ⟨[1 − ∫𝑑p 𝜆(p)
𝜌 (p | S

𝑁
)

⟨𝑛⟩𝑁

]

𝑛

⟩

𝑁

.

(58)

Taking functional derivatives of the logarithm of (58), the
first-, second-, and third-order cumulants of the reference
density are

𝜅
ref
(p

1
| S

𝑁
) = 𝜌

ref
(p

1
| S

𝑁
) = 𝜌 (p

1
| S

𝑁
) ,

𝜅
ref
(p

1
, p

2
| S

𝑁
) = 𝜌

ref
(p

1
, p

2
| S

𝑁
)

− 𝜌 (p
1
| S

𝑁
) 𝜌 (p

1
| S

𝑁
)

(59)

= (

⟨𝑛
2
⟩
𝑁

⟨𝑛⟩
2

𝑁

− 1)𝜌 (p
1
| S

𝑁
)

× 𝜌 (p
2
| S

𝑁
) ,

(60)

𝜅
ref
(p

1
, p

2
, p

3
| S

𝑁
)

= 𝜌
ref
(p

1
, p

2
, p

3
| S

𝑁
)

− [3] 𝜌
ref
(p

1
, p

2
| S

𝑁
) 𝜌 (p

3
| S

𝑁
)

+ 2𝜌 (p
1
| S

𝑁
) 𝜌 (p

2
| S

𝑁
) 𝜌 (p

3
| S

𝑁
)

(61)

= (

⟨𝑛
3
⟩
𝑁

⟨𝑛⟩
3

𝑁

− 3

⟨𝑛
2
⟩
𝑁

⟨𝑛⟩
2

𝑁

+ 2)

× 𝜌 (p
1
| S

𝑁
) 𝜌 (p

2
| S

𝑁
) 𝜌 (p

3
| S

𝑁
) ,

(62)

where the square bracket [3] indicates the number of distinct
permutations whichmust be taken into account.The terms in
the rounded brackets are readily recognised as the normalised
factorial cumulants of the 𝑛 distribution for a given fixed𝑁

𝐾
𝑟𝑁

=
1

⟨𝑛⟩
𝑟

𝑁

(−𝜕)
𝑟

𝜕Λ𝑟
ln(

𝑁

∑

𝑛=0

R
𝑛𝑁

(1 − Λ)
n
)

Λ=0

, (63)

and so generalisation to arbitrary orders is immediate,

𝜅
ref
(p

1
, . . . , p

𝑟
| S

𝑁
) = 𝐾

𝑟𝑁

𝑟

∏

𝑘=1

𝜌 (p
𝑘
| S

𝑁
) . (64)

This can be proven generally by defining the functional
Λ[𝜆(p)] = ∫ 𝑑p 𝜆(p) 𝜌(p | S

𝑁
)/⟨𝑛⟩

𝑁
which has only a first

nonzero functional derivative 𝛿Λ/𝛿𝜆(p
1
) = 𝜌(p | S

𝑁
)/⟨𝑛⟩

𝑁

and the multiplicity generating function Z(Λ | S
𝑁
) =

∑
𝑛
R

𝑛𝑁
(1 − Λ)

𝑛, in terms of which 𝑄ref
[𝜆] = Z[Λ[𝜆]].

3.3. Internal Cumulants for Fixed S
𝑁
. Equation (64) shows

that the differential cumulants of the reference distribution
are directly proportional to the integrated cumulants 𝐾

𝑟𝑁
of

𝑛, which are zero only if R
𝑛𝑁

is Poissonian. For fixed 𝑁,
neither the integrated cumulants𝐾

𝑟𝑁
nor the differential ones

are zero. While this has long been recognised in the literature
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[15], the inevitable consequence was not drawn; namely, that
“Poissonian” cumulants for fixed𝑁

𝜅 (p
1
, p

2
| S

𝑁
) = 𝜌 (p

1
, p

2
| S

𝑁
)

− 𝜌 (p
1
| S

𝑁
) 𝜌 (p

2
| S

𝑁
) ,

(65)

𝜅 (p
1
, p

2
, p

3
| S

𝑁
) = 𝜌 (p

1
, p

2
, p

3
| S

𝑁
)

− [3] 𝜌 (p1, p2 | S𝑁
) 𝜌 (p

3
| S

𝑁
)

+ 2𝜌(p
1
| S

𝑁
) 𝜌(p

2
| S

𝑁
) 𝜌(p

3
| S

𝑁
) ,

(66)

and so forth cannot possibly represent true correlations
because they are nonzero even when the momenta are fully
independent. It is known that the theory of cumulants needs
improvement on a fundamental level which reaches well
beyond the scope of this paper [68, 69], but those difficulties
are irrelevant here. A first step which does address the above
concerns was taken in [18], where it was shown very generally
on the basis of generating functionals that correlations for
samples of fixed 𝑁 are best measured using the internal
cumulants 𝜅𝐼, which are defined as the differences between
the measured and the reference cumulants of the same order

𝜅
𝐼
(p

1
, . . . , p

𝑟
| S

𝑁
) = 𝜅 (p

1
, . . . , p

𝑟
| S

𝑁
)

− 𝜅
ref
(p

1
, . . . , p

𝑟
| S

𝑁
) .

(67)

For our averaged-multinomial reference case, the internal
cumulants of second and third-orders are given by the
differences between (65) and (60) and between (66) and (62),
resulting in

𝜅
𝐼
(p

1
, p

2
| S

𝑁
)

= 𝜌 (p
1
, p

2
| S

𝑁
) − 𝐹

2𝑁
𝜌 (p

1
| S

𝑁
) 𝜌 (p

1
| S

𝑁
) ,

(68)

𝜅
𝐼
(p

1
, p

2
, p

3
| S

𝑁
)

= 𝜌 (p
1
, p

2
, p

3
| S

𝑁
)

− [3] 𝜌 (p1, p2 | S𝑁
) 𝜌 (p

3
| S

𝑁
)

+ 𝐺
3𝑁
𝜌 (p

1
| S

𝑁
) 𝜌 (p

2
| S

𝑁
) 𝜌 (p

3
| S

𝑁
) ,

(69)

with

𝐺
3𝑁

= 3𝐹
2𝑁

− 𝐹
3𝑁

= 3
⟨𝑛 (𝑛 − 1)⟩

𝑁

⟨𝑛⟩
2

𝑁

−
⟨𝑛 (𝑛 − 1) (𝑛 − 2)⟩

𝑁

⟨𝑛⟩
3

𝑁

,

(70)

and so on for higher orders. These internal cumulants are
identically zero if and when the measured densities for fixed
S
𝑛𝑁

are multinomials since then from (56)

𝜌 (p
1
, p

2
| S

𝑁
) → 𝜌

ref
(p

1
, p

2
| S

𝑁
)

= 𝐹
2𝑁
𝜌 (p

1
| S

𝑁
) 𝜌 (p

2
| S

𝑁
) ,

(71)

so that 𝜅𝐼(p
1
, p

2
| S

𝑁
) → 0 whenever the data is multino-

mial, while

𝜌 (p
1
, p

2
, p

3
| S

𝑁
)

→ 𝐹
3𝑁
𝜌 (p

1
| S

𝑁
) 𝜌 (p

2
| S

𝑁
) 𝜌 (p

3
| S

𝑁
)

(72)

ensures that 𝜅𝐼(p
1
, p

2
, p

3
| S

𝑁
) → 0 in the same case.

On another level, the internal cumulants always integrate to
zero over the full good-azimuth space A, irrespective of the
presence of correlations,

∫
A

𝑑p
1
𝑑p

2
𝜅
𝐼
(p

1
, p

2
| S

𝑁
)

= ∫
A

𝑑p
1
𝑑p

2
𝑑p

3
𝜅
𝐼
(p

1
, p

2
, p

3
| S

𝑁
) = 0,

(73)

and so on for all orders. Both properties will remain valid
after transformation from three-momentum to invariant
four-momentum differences in Section 3.4. In the case of
Poissonian statistics, 𝐹

𝑟𝑁
= 1 for all 𝑟, so that the above

internal cumulants revert to their usual definitions.
As stated in Section 3.1, the measured correlations may in

addition be made insensitive to the one-particle distribution
through normalisation. As set out in [18], such normalisation
is achieved for fixed𝑁 by dividing the internal cumulants by
the corresponding reference distribution density, which for
the case at hand is given by (56). This leads to the second-
order normalised internal cumulant

𝐾
𝐼
(p

1
, p

2
| S

𝑁
) =

1

𝐹
2𝑁

𝜌 (p
1
, p

2
| S

𝑁
)

𝜌 (p
1
| S

𝑁
) 𝜌 (p

2
| S

𝑁
)
− 1, (74)

while in third-order we get

𝐾
𝐼
(p

1
, p

2
, p

3
| S

𝑁
)

=
1

𝐹
3𝑁

× (
𝜌(p

1
, p

2
, p

3
| S

𝑁
)−[3] 𝜌(p1, p2 | S𝑁

) 𝜌(p
3
| S

𝑁
)

𝜌 (p
1
| S

𝑁
) 𝜌 (p

2
| S

𝑁
) 𝜌 (p

3
| S

𝑁
)

)

+ 3
𝐹
2𝑁

𝐹
3𝑁

− 1.

(75)

3.4. Correlation Integrals for Momentum Differences. In fem-
toscopy, correlations are mostly expressed in terms of pair
variables K = (1/2)(p

1
+ p

2
) and difference q = p

1
− p

2

or the invariant four-momenta [70] 𝑄 = √−(𝑝
1
− 𝑝

2
)
2
=

√(p
1
− p

2
)
2
− (𝐸

1
− 𝐸

2
)
2 where the energies are on-shell,

𝐸
𝑟
= √p2

𝑟
+ 𝑚2. As shown in [53], the formulation of event-

wise counters as sums and products of Dirac delta functions
makes it easy to change variables. Writing 𝜌

𝑟𝑁
(p
1
, . . . , p

𝑟
)

as shorthand for 𝜌(p
1
, . . . , p

𝑟
| S

𝑁
) and so forth, the

second-order unnormalised internal cumulant in terms of
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𝑄 is, for example, found from the identity ∫𝑑𝑄 𝜅
𝐼

2𝑁
(𝑄) =

∫ d𝑄∫
A
𝑑p

1
𝑑p

2
𝜅
𝐼

2𝑁
(p
1
, p

2
)𝛿(𝑄 − √(p

1
− p

2
)
2
− (𝐸

1
− 𝐸

2
)
2
)

to be

𝜅
𝐼

2𝑁
(𝑄) = ⟨∑

𝑖 ̸= 𝑗

𝛿 (𝑄 − 𝑄
𝑎𝑎

𝑖𝑗
)⟩

𝑁𝑎

− 𝐹
2𝑁
⟨⟨∑

𝑖,𝑗

𝛿 (𝑄 − 𝑄
𝑎𝑏

𝑖𝑗
)⟩

𝑁𝑏

⟩

𝑁𝑎

= 𝜌
2𝑁

(𝑄) − 𝐹
2𝑁

𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄) ,

(76)

where the counters in the second line are defined by the
terms in the first, while 𝑄𝑎𝑎

𝑖𝑗
= [−(𝑃

𝑎

𝑖
− 𝑃

𝑎

𝑗
)
2
]
1/2 and 𝑄

𝑎𝑏

𝑖𝑗
=

[−(𝑃
𝑎

𝑖
− 𝑃

𝑏

𝑗
)
2
]
1/2 are four-momentum differences between

sibling pairs 𝑎𝑎 and event mixing pairs 𝑎𝑏, respectively. It is
easy to show that ∫∞

0
𝑑𝑄 𝜌

2𝑁
(𝑄) = ⟨𝑛

2
⟩
𝑁
and ∫∞

0
𝑑𝑄 𝜌

1𝑁
⊗

𝜌
1𝑁
(𝑄) = ⟨𝑛⟩

2

𝑁
and hence, as before, ∫∞

0
𝑑𝑄 𝜅

𝐼

2𝑁
(𝑄) = 0,

which will be true for any correlation whatsoever.The double
event averages in the product term

𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄) = ⟨⟨∑

𝑖,𝑗

𝛿 (𝑄 − 𝑄
𝑎𝑏

𝑖𝑗
)⟩

𝑁𝑏

⟩

𝑁𝑎

(77)

are the theoretical foundations of eventmixing [53]; the inner
𝑏-average is usually shortened to a smaller “moving average
tail” subsample of S

𝑁
.

In third-order, the “GHP average” invariant is defined as
the average of three two-momentum differences over all pairs
(with or without the√3),

𝑄
𝑎
=

√−(𝑝
1
− 𝑝

2
)
2

− (𝑝
2
− 𝑝

3
)
2

− (𝑝
3
− 𝑝

1
)
2

√3
,

(78)

and it is related to the invariant mass of three pions
𝑀

3
= (𝑝

1
+ 𝑝

2
+ 𝑝

3
)
2 by 𝑄

𝑎

2
= (1/3)𝑀

2

3
− 𝑚

2.
Other “topologies” such as the “GHP max” 𝑄

𝑚
=

√max[−(𝑝
1
− 𝑝

2
)
2
, −(𝑝

2
− 𝑝

3
)
2
, −(𝑝

3
− 𝑝

1
)
2
] can also

be employed. For large multiplicities, the “Star” topology
may be preferred [71], but we will not pursue it here. For the
GHP average, the third internal cumulant is given by

𝜅
𝐼

3𝑁
(𝑄

𝑎
) = ⟨ ∑

𝑖 ̸= 𝑗 ̸= 𝑘

𝛿 (𝑄
𝑎
− 𝑄

𝑎𝑎𝑎

𝑖𝑘𝑗
)⟩

𝑁𝑎

− 3⟨⟨∑

𝑖 ̸= 𝑗

∑

𝑘

𝛿 (𝑄
𝑎
− 𝑄

𝑎𝑎𝑏

𝑖𝑗𝑘
)⟩

𝑁𝑏

⟩

𝑁𝑎

+ 𝐺
3𝑁
⟨⟨⟨∑

𝑖,𝑗,𝑘

𝛿 (𝑄
𝑎
− 𝑄

𝑎𝑏𝑐

𝑖𝑗𝑘
)⟩

𝑁𝑐

⟩

𝑁𝑏

⟩

𝑁𝑎

,

(79)

with 𝑄
𝑎𝑏𝑐

𝑖𝑗𝑘
= √(1/3)[−(𝑃

𝑎

𝑖
− 𝑃

𝑏

𝑗
)
2
− (𝑃

𝑏

𝑗
− 𝑃

𝑐

𝑘
)
2
− (𝑃

𝑐

𝑘
− 𝑃

𝑎

𝑖
)
2
]

and similarly for 𝑄𝑎𝑎𝑎

𝑖𝑘𝑗
and 𝑄

𝑎𝑎𝑏

𝑖𝑘𝑗
. Second- and third-order

cumulants are normalised by, respectively,

𝐹
2𝑁
𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄) = 𝐹
2𝑁
⟨⟨∑

𝑖,𝑗

𝛿 (𝑄 − 𝑄
𝑎𝑏

𝑖𝑗
)⟩

𝑁𝑏

⟩

𝑁𝑎

,

𝐹
3𝑁
𝜌
1𝑁

⊗ 𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄
𝑎
)

= 𝐹
3𝑁
⟨⟨⟨∑

𝑖,𝑗,𝑘

𝛿 (𝑄
𝑎
− 𝑄

𝑎𝑏𝑐

𝑖𝑗𝑘
)⟩

𝑁𝑐

⟩

𝑁𝑏

⟩

𝑁𝑎

.

(80)

After transforming from momenta to 𝑄, the formulae of
Section 3.3 become

𝜅
𝐼

2𝑁
(𝑄) = 𝜌

2𝑁
(𝑄) − 𝐹

2𝑁
𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄) , (81)

𝜅
𝐼

3𝑁
(𝑄

𝑎
) = 𝜌

3𝑁
(𝑄

𝑎
) − [3] 𝜌2𝑁 ⊗ 𝜌

1𝑁
(𝑄

𝑎
)

+ 𝐺
3𝑁
𝜌
1𝑁

⊗ 𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄
𝑎
) ,

(82)

while the normalised cumulants of Section 3.3 become

𝐾
𝐼

2
(𝑄 | S

𝑁
) =

𝜌
2𝑁

(𝑄)

𝐹
2𝑁
𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄)
− 1, (83)

𝐾
𝐼

3
(𝑄

𝑎
| S

𝑁
) =

𝜌
3𝑁

(𝑄
𝑎
) − [3] 𝜌2𝑁 ⊗ 𝜌

1𝑁
(𝑄

𝑎
)

𝐹
3𝑁
𝜌
1𝑁

⊗ 𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄
𝑎
)

+ 3
𝐹
2𝑁

𝐹
3𝑁

− 1.

(84)

3.5. Effect of Fixed-𝑁 Correction Factors. To get a feeling
for the size of the corrections involved, we measured the
correction factors 𝐹

𝑟𝑁
and 𝐺

3𝑁
with the same UA1 dataset

and the same cuts as in Figure 1. As shown in Figure 2,
the consequence of the clearly sub-Poissonian multiplicity
distributions shown in Figure 1 is that these factors are
significantly less than 1, in contrast to the usual factorial
moments of the charged multiplicity distribution which are
super-Poissonian with factors exceeding 1. For very low
multiplicities 𝑁 < 10, normalised internal cumulants are
hence larger than their Poissonian counterparts but converge
to them with increasing 𝑁. Nevertheless, up to 𝑁 ≃ 30

corrections ofmore than 5% for𝐾𝐼

2
andmore than 20% for𝐾𝐼

3

compared to their uncorrected counterparts can be expected.
By contrast, the additive correction 𝐺

3𝑁
does not deviate

much from the Poissonian limit of 2 except for very small𝑁.
By contrast, unnormalised internal cumulants (81) and (82)
are far less sensitive to the multinomial correction.

It is of interest to zoom in on the approach to the
Poissonian limit of 1 and to compare these corrections to
the equivalent charged-multiplicity-based ones, which for the
case of fixed𝑁, would be just𝑁(𝑁−1)/𝑁

2 and𝑁(𝑁−1)(𝑁−

2)/𝑁
3. In Figure 3, the Poissonian limit corresponds to zero

on the 𝑦-axis. It is clear that the fixed-𝑁 factors go some
way to correct for the fixed-𝑁 conditioning; the gap between
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them is approximately determined by ⟨𝑛𝑟⟩
𝑁
/𝑁

𝑟, that is, by
the exact definition and outcome space for 𝑛.

3.6. Eliminating Fluctuations in 𝑛. We return briefly to the
first choice in Section 3.2.3, that is, 𝛼(p | S

𝑛𝑁
) = 𝜌(p |

S
𝑛𝑁
)/𝑛 which would permit different physics for each (𝑁, 𝑛)

combination. If we were willing and able to do analyses for
each S

𝑛𝑁
, we would use the fixed-(𝑁, 𝑛) equivalent of (68)

and (69) derived from 𝜅
ref
(p
1
, . . . , p

𝑟
| S

𝑛𝑁
) = (−1)

𝑟−1
(𝑟 −

1)!𝑛∏
𝑟

𝑘=1
𝜌(p

𝑘
| S

𝑛𝑁
),

𝜅
𝐼
(p

1
, p

2
| S

𝑛𝑁
) = 𝜌 (p

1
, p

2
| S

𝑛𝑁
)

− (1 −
1

𝑛
) 𝜌 (p

1
| S

𝑛𝑁
) 𝜌 (p

2
| S

𝑛𝑁
) ,

𝜅
𝐼
(p

1
, p

2
, p

3
| S

𝑛𝑁
)

= 𝜌 (p
1
, p

2
, p

3
| S

𝑛𝑁
)

− [3] 𝜌 (p1, p2 | S𝑛𝑁
) 𝜌 (p

3
| S

𝑛𝑁
)

+ 2 (1 −
1

𝑛2
) 𝜌 (p

1
| S

𝑛𝑁
)

× 𝜌 (p
2
| S

𝑛𝑁
) 𝜌 (p

3
| S

𝑛𝑁
) ,

(85)

and normalise by 𝜌
ref
(p
1
, . . . , p

𝑟
| S

𝑛𝑁
) =

(𝑛
𝑟
/𝑛

𝑟
)∏

𝑟

𝑘=1
𝜌(p

𝑘
| S

𝑛𝑁
). Where that is not possible, we

can still average over the above to form “Averaged Internal”
(AI) correlations (see Section 5), but in this case averaging
over 𝑛 for fixed𝑁,

𝜅
SRC

(p
1
, p

2
| S

𝑁
) = ⟨𝜅

𝐼
(p

1
, p

2
| S

𝑛𝑁
)⟩

𝑁
,

𝜅
SRC

(p
1
, p

2
, p

3
| S

𝑁
) = ⟨𝜅

𝐼
(p

1
, p

2
, p

3
| S

𝑁
)⟩

𝑁
,

(86)

and normalise if necessary by the moment 𝜌SRC(p
1
, . . . , p

𝑟
|

S
𝑁
) = ⟨(𝑛

𝑟
/𝑛

𝑟
)∏

𝑟

𝑘=1
𝜌(p

𝑘
| S

𝑛𝑁
)⟩
𝑁
. Given that this involves

products of moments in the sub-subsample S
𝑛𝑁

, event mix-
ing would have to be restricted to the same sub-subsamples
also, for example

⟨(1 −
1

𝑛
) 𝜌 (p

1
| S

𝑛𝑁
) 𝜌 (p

2
| S

𝑛𝑁
)⟩

𝑁

=

𝑁

∑

𝑛=2

E
𝑛𝑁

E
𝑁

(1 −
1

𝑛
)

1

(E
𝑛𝑁
)
2

× ∑

𝑎,𝑏∈S
𝑛𝑁

𝜌 (p
1
| 𝑛,𝑁,P𝑎) 𝜌 (p

2
| 𝑛,𝑁,P𝑏) .

(87)

The transformation to pair variables works in the same way
as in previous sections.

4. Statistical Errors

While the various versions of internal cumulants constructed
above may all be relevant at some point, we concentrate on

finding expressions for experimental standard errors for the
unnormalised and normalised internal cumulants of (81)–
(84). This turns out to be more subtle than merely applying a
generic root-mean-square prescription. We will show in this
section that standard errors implemented thus far may have
been underestimated even in the standard two-particle case.

The calculations performed in this section belong to the
“frequentist” view of probability; a proper Bayesian analysis,
which can be expected to rest on more solid foundations,
is beyond the scope of this paper. The two viewpoints can
reasonably be expected to yield similar results in the limit of
large bin contents and sample sizes.

In this section, we often simplify notation by writing
𝜌
𝑟
(𝑄 | S

𝑁
) → 𝜌

𝑟𝑁
and 𝜌

1
⊗ 𝜌

1
(𝑄 | S

𝑁
) → 𝜌

2

1𝑁
and so

forth, since the formulae apply to samples and variables of
any kind.

4.1. Propagation of Statistical Errors. Because cumulants can
be measured only through the moments that enter their def-
initions, the first task is to identify which moment variances
and covariances are needed. By means of standard error
propagation [68], we find the sample variances for second-
order internal cumulants of (81) and (83) to be

var (𝜅𝐼
2
(𝑄 | S

𝑁
))

= var (𝜌
2𝑁

− 𝐹
2𝑁
𝜌
2

1𝑁
)

= var (𝜌
2𝑁
) + 𝐹

2

2𝑁
var (𝜌2

1𝑁
) − 2 𝐹

2𝑁
cov (𝜌

2𝑁
, 𝜌

2

1𝑁
) ,

(88)

var (𝐾𝐼

2
(𝑄 | S

𝑁
))

= var( 1

𝐹
2𝑁

𝜌
2𝑁

𝜌
2

1𝑁

− 1)

(89)

= [
1

𝐹
2𝑁

𝜌
2𝑁

𝜌
2

1𝑁

]

2

× [
var (𝜌

2𝑁
)

𝜌
2

2𝑁

+

var (𝜌2
1𝑁
)

𝜌
4

1𝑁

− 2

cov (𝜌
2𝑁
, 𝜌

2

1𝑁
)

𝜌
2𝑁

⋅ 𝜌
2

1𝑁

] ,

(90)

under the assumption that var(𝐹
2𝑁
) is much smaller than the

other variances, so that𝐹
2𝑁

can be treated as a constant; this is
the case if there are many bins for𝑄. Similarly, from (69), the
variance of the unnormalised internal cumulant is, assuming
𝐺
3
of (70) to be constant,

var (𝜅𝐼
3
(𝑄

𝑎
| S

𝑁
))

= var [𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁

+ 𝐺
3
𝜌
3

1𝑁
]

(91)

= var (𝜌
3𝑁
) + 9var (𝜌

2𝑁
𝜌
1𝑁
) + 𝐺

2

3
var (𝜌3

1𝑁
)

− 6 cov (𝜌
3𝑁
, 𝜌
2𝑁
𝜌
1𝑁
) + 2𝐺

3
cov (𝜌

3𝑁
, 𝜌

3

1𝑁
)

− 6𝐺
3
cov (𝜌

2𝑁
𝜌
1𝑁
, 𝜌

3

1𝑁
) ,

(92)
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while the normalised version has variance (again assuming
var(𝐺

3
) ≪ var𝜌

𝑟
)

var (𝐾𝐼

3
(𝑄

𝑎
| S

𝑁
))

= var[
𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁

+ 𝐺
3
𝜌
3

1𝑁

𝐹
3𝑁
𝜌
3

1𝑁

]

=
1

𝐹
2

3𝑁

var[
𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁

𝜌
3

1𝑁

+ 𝐺
3
]

(93)

= [
𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁

𝐹
3𝑁
𝜌
3

1𝑁

]

2

× [
var (𝜌

3𝑁
− 3𝜌

2𝑁
𝜌
1𝑁
)

(𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁
)
2

+

var (𝜌3
1𝑁
)

𝜌
6

1𝑁

−

2 cov (𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁
, 𝜌

3

1𝑁
)

(𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁
) 𝜌

3

1𝑁

]

= [
𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁

𝐹
3𝑁
𝜌
3

1𝑁

]

2

× [
var (𝜌

3𝑁
) + 9var (𝜌

2𝑁
𝜌
1𝑁
) − 6 cov (𝜌

3𝑁
, 𝜌
2𝑁
𝜌
1𝑁
)

(𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁
)
2

+

var (𝜌3
1𝑁
)

𝜌
6

1𝑁

+

6 cov (𝜌
2𝑁
𝜌
1𝑁
, 𝜌

3

1𝑁
) − 2 cov (𝜌

3𝑁
, 𝜌

3

1𝑁
)

(𝜌
3𝑁

− 3𝜌
2𝑁
𝜌
1𝑁
) 𝜌

3

1𝑁

] .

(94)

The unnormalised cumulants (81) and (82) and their vari-
ances (88) and (92) require knowledge of the multiplicity
factorialmoments𝐹

2𝑁
, 𝐹

3𝑁
, so that the individual termsmust

be accumulated until the entire sample has been analysed. By
contrast, the normalised cumulants (83) and (84) and their
variances (90) and (94) contain the multiplicity moments
only as prefactors.

4.2. Expectation Values of Counters. While we will not make
direct use of the results in this section, it is nevertheless useful
briefly to consider what we might mean by an “expectation
value of experimental counters and densities.” For any scalar
function 𝑓(p) of the momenta, the theoretical expectation
value 𝐸[𝑓] is defined as the integral over the entire outcome
space Ω of 𝑓 weighted by a “parent distribution” 𝑃(p), an
abstract entity supposedly containing everything there is to
know on this level,

𝐸 [𝑓 (p)] = ∫
Ω

𝑑p𝑃 (p) 𝑓 (p) . (95)

Purely theoretical concepts such as 𝑃(p) and 𝐸[𝑓] should
be given little or no room in a strongly experimentally-
oriented study. In calculating standard errors on counters

below, we will, however, make use of the exact factorisation
that expectation values provide whenever two variables 𝑥, 𝑦
are statistically independent, 𝐸[𝑥𝑦] = ∫ 𝑑𝑥 𝑑𝑦𝑃(𝑥, 𝑦) 𝑥𝑦 =

𝐸[𝑥]𝐸[𝑦].
Expectation values for pairwise variables such as the

four-momentum difference 𝑄 we are considering here must
be based on the underlying physics. We can deduce some
properties of the parent distribution based on the usual
definition of the femtoscopic correlation function:

𝐶
2
(𝑄) ≡ 𝐾

2
(𝑄) + 1 =

𝜌
sibling
2

(𝑄)

𝜌
reference
2

(𝑄)
=

⟨𝜌 (𝑄
𝑎𝑎
)⟩

⟨⟨𝜌 (𝑄𝑎𝑏)⟩⟩
, (96)

which is a function of two entirely different quantities: the
four-momentum differences 𝑄

𝑎𝑎 of “sibling” tracks taken
from the same event 𝑎 and one constructed from the mixed-
event sample using tracks from different events, written as
𝑄
𝑎𝑏, 𝑄𝑏𝑐, and so forth. For second-order correlations, the

parent distribution is therefore necessarily a two-variable
probability4 𝑃(𝑄

𝑎𝑎
, 𝑄

𝑏𝑐
) which, depending on whether the

cases 𝑏 = 𝑎 and 𝑐 = 𝑎 occur, may or may not factorise into
“sibling” and “mixed” marginal probabilities

𝑃 (𝑄
𝑎𝑎
, 𝑄

𝑏𝑐
) = 𝑃

𝑠
(𝑄

𝑎𝑎
) 𝑃

𝑚
(𝑄

𝑏𝑐
) iff 𝑎 ̸= 𝑏 ̸= 𝑐, (97)

but (unless 𝑎 = 𝑏 = 𝑐), the marginals will always be

𝑃
𝑠
(𝑄

𝑎𝑎
) = ∫𝑑𝑄

𝑏𝑐
𝑃 (𝑄

𝑎𝑎
, 𝑄

𝑏𝑐
) ,

𝑃
𝑚
(𝑄

𝑏𝑐
) = ∫𝑑𝑄

𝑎𝑎
𝑃 (𝑄

𝑎𝑎
, 𝑄

𝑏𝑐
) .

(98)

The shapes of 𝑃
𝑠
(𝑄) and 𝑃

𝑚
(𝑄) must necessarily be different

since it is precisely this difference that leads to a nontrivial
signal in (96). In terms of this joint probability, we can
write expectation values of eventwise counters (separately for
inclusive, fixed-𝑁, or fixed-𝑛 cases) as

𝐸 [𝜌 (𝑄
𝑎𝑎
)] = ∫

Ω

𝑑𝑄
𝑎𝑎
𝑑𝑄

𝑏𝑐
𝑃 (𝑄

𝑎𝑎
, 𝑄

𝑏𝑐
) 𝜌

𝑎𝑎

= ∑

𝑖 ̸= 𝑗

∫
Ω

𝑑𝑄
𝑎𝑎
𝑃
𝑠
(𝑄

𝑎𝑎
) 𝛿 (𝑄

𝑎𝑎
− 𝑄

𝑎𝑎

𝑖𝑗
)

= ∑

𝑖 ̸= 𝑗

𝑃
𝑠
(𝑄

𝑎𝑎

𝑖𝑗
) ,

𝐸 [𝜌 (𝑄
𝑏𝑐
)] = ∫

Ω

𝑑𝑄
𝑎𝑎
𝑑𝑄

𝑏𝑐
𝑃 (𝑄

𝑎𝑎
, 𝑄

𝑏𝑐
) 𝜌

𝑏𝑐

= ∑

𝑖,𝑗

∫
Ω

𝑑Q𝑏𝑐
𝑃
𝑚
(𝑄

𝑏𝑐
) 𝛿 (𝑄

𝑏𝑐
− 𝑄

𝑏𝑐

𝑖𝑗
)

= ∑

𝑖,𝑗

𝑃
𝑚
(𝑄

𝑏𝑐

𝑖𝑗
) .

(99)
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Later, we will meet expectation values for cases such as 𝑎 = 𝑐,

𝐸 [𝜌 (𝑄
𝑎𝑎
) 𝜌 (𝑄

𝑎𝑏
)] = ∑

𝑖 ̸= 𝑗

∑

𝑘,ℓ

∫
Ω

𝑑𝑄
𝑎𝑎
𝑑𝑄

𝑎𝑏
𝑃 (𝑄

𝑎𝑎
, 𝑄

𝑎𝑏
)

×𝛿 (𝑄
𝑎𝑎
−𝑄

𝑎𝑎

𝑖𝑗
)𝛿 (𝑄

𝑎𝑏
−𝑄

𝑎𝑏

𝑘ℓ
)

= ∑

𝑖 ̸= 𝑗

∑

𝑘,ℓ

𝑃 (𝑄
𝑎𝑎

𝑖𝑗
, 𝑄

𝑎𝑏

𝑘ℓ
) ,

(100)

which definitely do not factorise. The above expressions can
be simplified because we know that the parent distribution is
not a function of the individual track indices 𝑖, 𝑗, 𝑘, and ℓ

𝑃 (𝑄
𝑎𝑎

𝑖𝑗
, 𝑄

𝑏𝑐

𝑘ℓ
) = 𝑃 (𝑄

𝑎𝑎
, 𝑄

𝑏𝑐
) ∀𝑖, 𝑗, 𝑘, ℓ (101)

and similarly 𝑃
𝑠
(𝑄

𝑎𝑎

𝑖𝑗
) = 𝑃

𝑠
(𝑄

𝑎𝑎
) and 𝑃

𝑚
(𝑄

𝑏𝑐

𝑘ℓ
) = 𝑃

𝑚
(𝑄

𝑏𝑐
). For

the event-averaged counters, this results in

𝐸 [𝜌
𝑎𝑎
(𝑄)] = ⟨𝑛

2

𝑎
⟩
N
𝑃
𝑠
(𝑄

𝑎𝑎
) ,

𝐸 [𝜌
𝑏𝑐
(𝑄)] = ⟨𝑛

𝑏
⟩
𝑁
⟨𝑛

𝑐
⟩
𝑁
𝑃
𝑚
(𝑄

𝑏𝑐
) ,

(102)

or in terms of the notation of Section 3.4,

𝐸 [𝜌
2𝑁

(𝑄)] = ⟨𝑛
2
⟩
𝑁
𝑃
𝑠
(𝑄

𝑎𝑎
) ,

𝐸 [𝜌
1𝑁

⊗ 𝜌
1𝑁

(𝑄)] = ⟨𝑛⟩
2

𝑁
𝑃
𝑚
(𝑄

𝑏𝑐
) .

(103)

As mentioned, we do not need the factorisation (97) of
𝑃(𝑄

𝑎𝑎
, 𝑄

𝑏𝑐
) as long as we keep careful track of the equal-

event-indices cases.Whenever 𝑎 ̸= 𝑏 or 𝑎 ̸= 𝑐, independence of
the events ensures that expectation values of products of any
functions𝑓(𝑄𝑎𝑎

) and𝑔(𝑄𝑎𝑏
) of the pair variables do factorise,

𝐸 [𝑓 (𝑄
𝑎𝑎
) 𝑔 (𝑄

𝑎𝑏
)] = 𝐸 [𝑓 (𝑄

𝑎𝑎
)] 𝐸 [𝑔 (𝑄

𝑎𝑏
)] 𝑎 ̸= 𝑏.

(104)

For third-order correlations, the parent distribution is a
function of three different variables 𝑄

𝑎𝑎𝑎, 𝑄𝑏𝑏𝑐, and 𝑄
𝑑𝑒𝑓

containing, respectively, three, two, or one track from the
same event, and corresponding considerations regarding
equal and unequal event indices apply there, too.

4.3. Statistical Error Calculation from First Principles. It was
shown in Section 4.2 that expectation valueswould havewell-
definedmeanings in terms of underlying parent distributions
and their marginals if their parent distributions were known,
which, however, they are not.We are therefore forced to revert
from expectation values 𝐸[⋅] to sample averages ⟨⋅⟩ after
completing a calculation. The real use of such expectation
values in frequentist statistics has been in the form of a
gedankenexperiment which we now reproduce from Kendall
[68]. Let 𝑥 be any generic eventwise counter or any other
eventwise statistic. Since the formulae in this section remain
true for inclusive and fixed-𝑁 samples, we omit any notation

related to𝑁 in this derivation. In this simplified notation, the
well-known standard error of the sample mean ⟨𝑥⟩ is given
by (simplifying E − 1 → E)

𝜎 (⟨𝑥⟩) = √var (⟨𝑥⟩) = √
1

E
[⟨𝑥2⟩ − ⟨𝑥⟩

2
], (105)

which follows from the combinatorics of equal and unequal
event indices by the above artificial use of expectation values,
reverting from expectation values 𝐸[⋅] to sample means ⟨⋅⟩ in
the last step:

var (⟨𝑥⟩) = 𝐸 [⟨𝑥⟩
2
] − 𝐸[⟨𝑥⟩]

2

=
1

E2
∑

𝑎,𝑏

[𝐸 [𝑥
𝑎
𝑥
𝑏
] − 𝐸 [𝑥

𝑎
] 𝐸 [𝑥

𝑏
]]

(106)

=
1

E2
∑

𝑎=𝑏

[𝐸 [𝑥
𝑎
𝑥
𝑏
] − 𝐸 [𝑥

𝑎
] 𝐸 [𝑥

𝑏
]]

+
1

E2
∑

𝑎 ̸= 𝑏

[𝐸 [𝑥
𝑎
] 𝐸 [𝑥

𝑏
] − 𝐸 [𝑥

𝑎
] 𝐸 [𝑥

𝑏
]]

=
1

E2
∑

𝑎

[𝐸 [𝑥
2
]−𝐸[𝑥]

2
]+0 =

1

E
[⟨𝑥

2
⟩ − ⟨𝑥⟩

2
] ,

(107)

where we have used the fact that 𝐸[𝑥
𝑎
𝑥
𝑏
] = 𝐸[𝑥

𝑎
]𝐸[𝑥

𝑏
] for

all 𝑎 ̸= 𝑏 and assumed that all 𝑥 are identically distributed,
𝐸[𝑥

𝑎
] = 𝐸[𝑥] for all 𝑎. Equality or inequality of event indices

is thus crucial. We will follow the same approach below,
keeping careful track of equal and unequal event indices,
factorising expectation values for unequal event indices, and
reverting to sample means in the last step.

4.4. Variances and Covariances for Multiple Event Averages

4.4.1. Statistical Errors for Second-Order Cumulants. Accord-
ing to (88)–(94), we must handle variances and covariances
of products of several event averages. To derive these, we will
use the following shortened notation: letting 𝛿𝑎𝑏

𝑖𝑗
≡ 𝛿(𝑄−𝑄

𝑎𝑏

𝑖𝑗
)

and so forth, then 𝜌
𝑎𝑎

= ∑
𝑖 ̸= 𝑗

𝛿(𝑄 − 𝑄
𝑎𝑎

𝑖𝑗
) = ∑

𝑖 ̸= 𝑗
𝛿
𝑎𝑎

𝑖𝑗
is the

eventwise pair counter for event 𝑎, while 𝜌
𝑏𝑐

= ∑
𝑖,𝑗
𝛿(𝑄 −

𝑄
𝑏𝑐

𝑖𝑗
) = ∑

𝑖,𝑗
𝛿
𝑏𝑐

𝑖𝑗
is the mixed-event counter of events 𝑏 and

𝑐 (with 𝑏 ̸= 𝑐 ̸= 𝑎 assumed), so that 𝜌
2
(𝑄) = ⟨𝜌

𝑎𝑎
⟩
𝑎
while

𝜌
1
⊗𝜌

1
(𝑄) = ⟨𝜌

𝑎𝑏
⟩
𝑎𝑏
is a double event average. We reserve the

event index 𝑎 for the “sibling” event whose correlations are
currently being analysed and use indices 𝑏, 𝑐, . . . , 𝑡, 𝑢, V, 𝑤, . . .
for events entering the event-mixing parts.5 All quantities are
assumed to be measured within a particular subsample S

𝑁
,

but we omit the 𝑁-subscript and the argument. The event-
index subscripts such as ⟨⋅⟩

𝑏𝑐
above are included or omitted

depending on whether they convey relevant information on
the specific averaging.
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In this notation, the method that led to (107) reads

var (𝜌
2
) = var (⟨𝜌

𝑎𝑎
⟩
𝑎
)

=
1

E2
∑

𝑎,𝑏

[𝐸 (𝜌
𝑎𝑎
𝜌
𝑏𝑏
) − 𝐸 (𝜌

𝑎𝑎
) 𝐸 (𝜌

𝑏𝑏
)]

=
1

E
[⟨(𝜌

𝑎𝑎
)
2

⟩ − ⟨𝜌
𝑎𝑎
⟩
2

] .

(108)

The same method of disentangling the combinatorics of
equal and unequal event indices is applied consistently to
all variances and covariances below. The 𝜌2

1
term in second-

order cumulants has variance

var (𝜌
1
⊗ 𝜌

1
) = var (⟨𝜌

𝑏𝑐
⟩
𝑏𝑐
)

=
1

(E2)
2
∑

𝑏 ̸= 𝑐

∑

𝑑 ̸= 𝑒

[𝐸 (𝜌
𝑏𝑐
𝜌
𝑑𝑒
) − 𝐸 (𝜌

𝑏𝑐
) 𝐸 (𝜌

𝑑𝑒
)] .

(109)

The case 𝑏 ̸= 𝑐 ̸= 𝑑 ̸= 𝑒 yields zero, but the cases 𝑏 = 𝑑 ̸= 𝑐 ̸= 𝑒

and three other equivalent combinations yield

var (𝜌
1
⊗ 𝜌

1
) =

4E3

(E2)
2
[𝐸 [𝜌

𝑏𝑐
𝜌
𝑏𝑒
] − 𝐸 [𝜌

𝑏𝑐
] 𝐸 [𝜌

𝑏𝑒
]]

→
4E3

(E2)
2
[⟨𝜌

𝑏𝑐
𝜌
𝑏𝑒
⟩
𝑏𝑐e − ⟨𝜌

𝑏𝑐
⟩ ⟨𝜌

𝑏𝑒
⟩]

→
4

E
[⟨𝜌

𝑏𝑐
𝜌
𝑏𝑒
⟩ − (𝜌

1
⊗ 𝜌

1
)
2

] ,

(110)

where in the second step we reverted 𝐸[⋅] → ⟨⋅⟩ and in the
third6 assumed E ≫ 1. Note that the requirement 𝑏 ̸= 𝑐 ̸= 𝑒

implies that ⟨𝜌
𝑏𝑐
𝜌
𝑏𝑒
⟩
𝑏𝑐𝑒

= ⟨⟨∑
𝑖 ̸= 𝑗

𝛿
𝑏𝑐

𝑖𝑗
⟩
𝑐
⟨∑

𝑘 ̸= 𝑙
𝛿
𝑏𝑒

𝑘ℓ
⟩
𝑒
⟩
𝑏
cannot

be simplified to the square of a single counter ⟨⟨∑
𝑖 ̸= 𝑗

𝛿
𝑏𝑐

𝑖𝑗
⟩
2

𝑐
⟩
𝑏
:

the event mixing involves three different events, not two.
Secondly, the combinations of two equalities 𝑏 = 𝑑 ̸= 𝑐 = 𝑒

and 𝑏 = 𝑒 ̸= 𝑐 = 𝑑 in (109) yield another term of order E−2,

2

E2
[⟨𝜌

𝑏𝑑
𝜌
𝑏𝑑
⟩
𝑏𝑑
− (𝜌

1
⊗ 𝜌

1
)
2

] , (111)

which we can safely neglect when ⟨𝑛
2
⟩/E ≪ 1 except when

there are few bins or large multiplicities even in small bins.
It is worth emphasising that the extra factor 4 which appears
in (110) arises from the same method that has been used for
decades to justify use of (105). We find, by the same method,
that the covariance between 𝜌

2
and 𝜌

1
⊗ 𝜌

1
is given by

cov (𝜌
2
, 𝜌
1
⊗ 𝜌

1
) = cov (⟨𝜌

𝑑𝑑
⟩ , ⟨𝜌

𝑏𝑐
⟩)

=
1

EE2
∑

𝑑

∑

𝑏 ̸= 𝑐

[𝐸 (𝜌
𝑑𝑑
𝜌
𝑏𝑐
)−𝐸 (𝜌

𝑑𝑑
) 𝐸 (𝜌

𝑏𝑐
)]

=
2

E
[⟨𝜌

𝑑𝑑
𝜌
𝑑𝑏
⟩ − ⟨𝜌

𝑑𝑑
⟩ ⟨𝜌

𝑑𝑐
⟩]

=
2

E
[⟨𝜌

𝑑𝑑
𝜌
𝑑𝑐
⟩ − (𝜌

2
) (𝜌

1
⊗ 𝜌

1
)] ,

(112)

so that we must, in addition, accumulate, for every event 𝑑,
the product of the counters

𝜌
𝑑𝑑
𝜌
𝑑𝑐
= ∑

𝑖 ̸= 𝑗

𝛿
𝑑𝑑

𝑖𝑗
∑

𝑘

⟨∑

ℓ

𝛿
𝑑𝑐

𝑘ℓ
⟩

𝑐

. (113)

Note that there is no restriction on track indices 𝑘 ̸= 𝑖 or
𝑘 ̸= 𝑗 in the 𝑑-event, meaning that events with 𝑛(𝑎) = 2

contribute to this counter which would otherwise not be the
case. Combining these, we find, to leading order in E−1 and
renaming mixed-event indices,

var (𝜅𝐼
2
) =

1

E
{⟨(𝜌

𝑎𝑎
− 2𝐹

2𝑁
𝜌
𝑎𝑐
) (𝜌

𝑎𝑎
− 2𝐹

2𝑁
𝜌
𝑎𝑑
)⟩
𝑎

−(𝜌
2
− 2𝐹

2𝑁
𝜌
1
⊗ 𝜌

1
)
2

} ,

(114)

with all event indices strictly unequal and 𝑐- and 𝑑 event
averages understood where appropriate.7 Contrasting this
with the traditional way to calculate the same variance,

var (𝜅𝐼
2
) =

1

E
{ ⟨(𝜌

𝑎𝑎
− 𝐹

2𝑁
𝜌
𝑎𝑐
) (𝜌

𝑎𝑎
− 𝐹

2𝑁
𝜌
𝑎𝑑
)⟩

−(𝜌
2
− 𝐹

2𝑁
𝜌
1
⊗ 𝜌

1
)
2

} ,

(115)

it is clear that in previous analyses the two possible ways to
set 𝑎 equal to 𝑏 or 𝑐 were overlooked, while normal (non-
internal) cumulants also omit the 𝐹

2𝑁
.

4.4.2. Statistical Errors for Third-Order Cumulants. In third-
order, we will need 𝛿

𝑎𝑏𝑐

𝑖𝑗𝑘
≡ 𝛿(𝑄

𝑎
− 𝑄

𝑎𝑏𝑐

𝑖𝑗𝑘
) and similar

quantities and the notation for counters 𝜌
𝑎𝑎𝑎

, 𝜌
𝑎𝑎𝑏

, and 𝜌
𝑎𝑏𝑐

corresponding to the event averages 𝜌
3
(𝑄

𝑎
) = ⟨𝜌

𝑎𝑎𝑎
⟩, 𝜌

2
⊗

𝜌
1
(𝑄

𝑎
) = ⟨𝜌

𝑎𝑎𝑏
⟩, and 𝜌

1
⊗ 𝜌

1
⊗ 𝜌

1
(𝑄

𝑎
) = ⟨𝜌

𝑎𝑏𝑐
⟩, respectively.

Clearly, 𝑎 ̸= 𝑏 ̸= 𝑐must hold in the third-order case.We obtain
for the necessary third-order quantities (shuffling and/or
renaming indices if necessary)

var (𝜌
3
) =

1

E
[⟨(𝜌

𝑎𝑎𝑎
)
2

⟩
𝑎
− 𝜌

2

3
]

cov (𝜌
3
, 𝜌
2
⊗ 𝜌

1
)

=
1

EE2
∑

𝑟

∑

𝑠 ̸= 𝑡

[𝐸 (𝜌
𝑟𝑟𝑟
𝜌
𝑠𝑠𝑡
) − 𝐸 (𝜌

𝑟𝑟𝑟
) 𝐸 (𝜌

𝑠𝑠𝑡
)]

=
1

E
[⟨𝜌

𝑟𝑟𝑟
𝜌
𝑟𝑟𝑠
⟩ + ⟨𝜌

𝑟𝑟𝑟
𝜌
𝑟𝑠𝑠
⟩ − 2𝜌

3
(𝜌
2
⊗ 𝜌

1
)] ,

(116)

with 𝜌
𝑟𝑟𝑟
𝜌
𝑟𝑟𝑠

= ∑
𝑖 ̸= 𝑗 ̸= 𝑘

𝛿
𝑟𝑟𝑟

𝑖𝑗𝑘
∑
ℓ ̸=𝑚

⟨∑
𝑛
𝛿
𝑟𝑟𝑠

ℓ𝑚𝑛
⟩
𝑠
and 𝜌

𝑟𝑟𝑟
𝜌
𝑟𝑠𝑠

=

∑
𝑖 ̸= 𝑗 ̸= 𝑘

𝛿
𝑟𝑟𝑟

𝑖𝑗𝑘
∑
ℓ
⟨∑

𝑚 ̸= 𝑛
𝛿
𝑟𝑠𝑠

ℓ𝑚𝑛
⟩
𝑠
. The remaining variances and

covariances needed for third-order correlations with GHP
topology are, after renaming of indices,

var (𝜌
2
⊗ 𝜌

1
)

=
E3

(E2)
2
∑

𝑔 ̸= 𝑒

∑

𝑐 ̸= 𝑑

[𝐸 (𝜌
𝑔𝑔𝑒

𝜌
𝑐𝑐𝑑
) − 𝐸 (𝜌

𝑔𝑔𝑒
) 𝐸 (𝜌

𝑐𝑐𝑑
)]



16 Advances in High Energy Physics

=
E3

(E2)
2
[⟨𝜌

𝑔𝑔𝑑
[𝜌
𝑔𝑔𝑐

+ 𝜌
𝑔𝑐𝑐

+ 𝜌
𝑑𝑑𝑐

+ 𝜌
𝑑𝑐𝑐
]⟩

−4(𝜌
2
⊗ 𝜌

1
)
2

] ,

(117)

while we neglect

1

E2
[𝜌
𝑔𝑔𝑐

𝜌
𝑔𝑔𝑐

+ 𝜌
𝑔𝑔𝑐

𝜌
𝑔𝑐𝑐

− 2(𝜌
2
⊗ 𝜌

1
)
2

] . (118)

The next term is simpler,

cov (𝜌
3
, 𝜌

3

1
)

=
1

EE3
∑

𝑡

∑

𝑢 ̸= V ̸= 𝑤

[𝐸 (𝜌
𝑡𝑡𝑡
𝜌
𝑢V𝑤) −𝐸 (𝜌𝑡𝑡𝑡) 𝐸 (𝜌𝑢V𝑤)]

=
3

E
[⟨𝜌

𝑡𝑡𝑡
𝜌
𝑡𝑢V⟩ − 𝜌

3
𝜌
3

1
] ,

(119)

but the following is not,

cov (𝜌
2
⊗ 𝜌

1
, 𝜌

3

1
)

=
1

E2E3
∑

𝑢 ̸= V

∑

𝑥 ̸= 𝑦 ̸= 𝑧

[𝐸 (𝜌
𝑢𝑢V𝜌𝑥𝑦𝑧) − 𝐸 (𝜌

𝑢𝑢V) 𝐸 (𝜌𝑥𝑦𝑧)]

=
3E4

E2E3
[⟨𝜌

𝑤𝑤𝑥
𝜌
𝑤𝑦𝑧

⟩ + ⟨𝜌
𝑤𝑥𝑥

𝜌
𝑤𝑦𝑧

⟩ − 2 (𝜌
2
𝜌
1
) (𝜌

3

1
)]

+
6

E2
[⟨𝜌

𝑤𝑤𝑥
𝜌
𝑤𝑥𝑦

⟩ − (𝜌
2
𝜌
1
) (𝜌

3

1
)] ,

(120)

and the large number of combinations makes the variance of
𝜌
3

1
particularly complicated,

var (𝜌
1
⊗ 𝜌

1
⊗ 𝜌

1
)

=
1

(E3)
2

∑

𝑑 ̸= 𝑒 ̸= ℎ

∑

𝑏 ̸= 𝑝 ̸= 𝑞

[𝐸 (𝜌
𝑑𝑒ℎ

𝜌
𝑏𝑝𝑞

) − 𝐸 (𝜌
𝑑𝑒ℎ

) 𝐸 (𝜌
𝑏𝑝𝑞

)]

=
9E5

(E3)
2
[⟨𝜌

𝑏𝑒ℎ
𝜌
𝑏𝑝𝑞

⟩ − (𝜌
3

1
) (𝜌

3

1
)]

+
18E4

(E3)
2
[⟨𝜌

𝑏𝑒ℎ
𝜌
𝑏𝑒𝑞
⟩ − (𝜌

3

1
) (𝜌

3

1
)]

+
6

E3
[⟨𝜌

𝑏𝑒ℎ
𝜌
𝑏𝑒ℎ
⟩ − (𝜌

3

1
) (𝜌

3

1
)] .

(121)

For large E, the leading order terms will usually dominate,
so that we can neglect the subleading terms.8 To leading

order, we therefore obtain after substitution in (91) and again
omitting brackets for non-𝑎 event averages

var (𝜅𝐼
3
) =

1

E
{⟨𝜌

2

𝑎𝑎𝑎
+ 9𝜌

𝑎𝑎𝑏
(𝜌
𝑎𝑎𝑐

+ 𝜌
𝑎𝑐𝑐

+ 𝜌
𝑏𝑏𝑐

+ 𝜌
𝑏𝑐𝑐
)

+ 9𝐺
2

3
𝜌
𝑎𝑎𝑎

(𝜌
𝑎𝑏𝑐
𝜌
𝑎𝑑𝑒

) − 6𝜌
𝑎𝑎𝑎

(𝜌
𝑎𝑎𝑏

+ 𝜌
𝑎𝑏𝑏

)
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𝜌
𝑎𝑎𝑏
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𝑎𝑐𝑑

+ 𝜌
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) ⟩

𝑎
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2

3
+ 36(𝜌

2
⊗ 𝜌

1
)
2

+ 9𝐺
2

3
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3

1
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2
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3
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2
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1
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3
𝜌
3
(𝜌
1
)
3

−36𝐺
2

3
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2
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1
) (𝜌

1
)
3

]} ,

=
1

E
{⟨(𝜌

𝑎𝑎𝑎
− 3𝜌

𝑎𝑎𝑏
− 3𝜌

𝑎𝑏𝑏
+ 3𝐺

3
𝜌
𝑎𝑏𝑐
)
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𝑎𝑎𝑎

− 3𝜌
𝑎𝑎𝑑

− 3𝜌
𝑎𝑑𝑑

+ 3𝐺
3
𝜌
𝑎𝑑𝑒
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𝑎

− [𝜌
3
− 6𝜌

2
⊗ 𝜌

1
+ 3𝐺

3
(𝜌
1
)
3
]
2

} .

(122)

While the factorised form is again instructive, it cannot be
calculated in this form within the 𝑎-loop in the analysis since
the𝐺

3𝑁
constants are known only on completion of the entire

sample analysis. Rather, the full palette of product counters
𝜌𝜌 has to be accumulated and averaged and combined only
in the final phase of the analysis.

5. Averaged Internal Cumulants

As 𝑁 is only an approximation for the true total event
multiplicity anyway, and for cases of small sample statistics, it
may be necessary or desirable to group subsamples of fixed𝑁
into multiplicity classes𝑁 ∈ [𝐴, 𝐵]. It is important, however,
not to simply lump all events within this multiplicity class
into a single “half-inclusive” subsample, because, as has long
been known [15], that results in terms entering the cumulants
which arise solely to “multiplicity mixing” (MM) of events of
different 𝑁. Given the arbitrary choice of [𝐴, 𝐵], such MM
correlations are spurious and avoided in favour of “Averaged-
Internal” (AI) correlations9 defined as follows. Using the
renormalised multiplicity distribution

R


𝑁
=

R
𝑁

∑
𝐵

𝑁=𝐴
R

𝑁

=
E
𝑁

∑
𝐵

𝑁=𝐴
E
𝑁

, (123)

the AI unnormalised cumulants, reference distributions, and
normalised AI cumulants are

𝜅
AI
2
(𝑄 | S

𝐴𝐵
) =

𝐵

∑

𝑁=𝐴

R


𝑁
𝜅
𝐼

2
(𝑄 | S

𝑁
) , (124)

𝜌
1
⊗ 𝜌

1
(𝑄 | S

𝐴𝐵
) =

𝐵

∑

𝑁=𝐴

R


𝑁
𝐹
2𝑁

𝜌
1
⊗ 𝜌

1
(𝑄 | S

𝑁
) , (125)
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𝐾
AI
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) =
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)

𝜌
1
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1
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=
∑
𝐵

𝑁=𝐴
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𝜌
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𝑁
)
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𝑁
𝐹
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𝜌
1
⊗ 𝜌

1
(𝑄 | S

𝑁
)

− 1.

(126)

Note that the correction factors 𝐹
2𝑁
, which are normalised

factorial moments of 𝑛 for fixed 𝑁, are part of the summed
normalisations.10 In third-order, we have correspondingly

𝜅
AI
3
(𝑄

𝑎
| S

𝐴𝐵
) =

𝐵
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) , (127)

𝜌
1
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⊗ 𝜌

1
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𝑎
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𝐴𝐵
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=

𝐵
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𝐹
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𝜌
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1
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(𝑄

𝑎
| S

𝑁
) ,

(128)

𝐾
AI
3
(𝑄

𝑎
| S

𝐴𝐵
) =

𝜅
AI
3
(𝑄

𝑎
| S

𝐴𝐵
)

𝜌
1
⊗ 𝜌

1
⊗ 𝜌

1
(𝑄

𝑎
| S

𝐴𝐵
)
. (129)

Note also that (128) holds for the normalisation only and not
for the last term in 𝜅𝐼

3
, which is (3𝐹

2𝑁
−𝐹

3𝑁
)𝜌
1
⊗𝜌

1
⊗𝜌

1
—but

that is already taken care of in the formula (69) for 𝜅𝐼
3
itself.

Expressions for an inclusive (all-𝑁) multiplicity summation
of internal cumulants are obtained from the above by setting
𝐴 = 0 and 𝐵 = ∞. The AI (Averaged Internal) correlations
(124) and (127) represent refined versions of what has tra-
ditionally been termed “Short-Range Correlations,” differing
from the original formulae [15, 17] by the𝐹

2𝑁
and𝐺

3𝑁
factors,

respectively. This was originally pointed out in [18] but only
for multinomials in𝑁.

Regarding variances and standard errors for AI corre-
lations, we first note that, since subsamples S

𝑁
are strictly

mutually independent, a variance over the [𝐴, 𝐵] range is
simply the weighted sum of the corresponding fixed-𝑁
variances. From (124) and (129), we have for all orders 𝑟

𝜅
AI
𝑟
(𝑄 | S

𝐴𝐵
) =

𝐵

∑

𝑁=𝐴

R


𝑁
𝜅
𝐼

𝑟
(𝑄 | S

𝑁
) 𝑟 = 2, 3, . . . , (130)

and given the independence of any functions 𝑓 and 𝑔 of
different multiplicity subsamples, 𝐸[𝑓(S

𝑁
) ⋅ 𝑔(S

𝑁
)] =

𝐸[𝑓(S
𝑁
)] ⋅ 𝐸[𝑔(S

𝑁
)] for all𝑁 ̸=𝑁

, we conclude that
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)] , (131)
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(132)

cov [𝜅AI
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(133)

which are known functions in terms of Sections 4.4.1 and
4.4.2, while for the normalised cumulants in [𝐴, 𝐵], covari-
ances between numerator and denominator are (omitting the
𝑄)
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(134)

so that the normalised range cumulants have variances
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(135)

and standard errors are given by11

𝜎 (𝐾
AI
𝑟
(S

𝐴𝐵
)) = √var (𝐾AI

𝑟
(𝑄 | S

𝐴𝐵
)). (136)

6. Event Mixing Algorithms

“Event mixing” [72] is widely used to simulate uncorrelated
or semicorrelated quantities such as 𝜌3

1
and 𝜌

2
⊗ 𝜌

1
. The

idea has always been to use the experimental sample at
hand to simulate the baseline of independence referred to
in Section 3.1 in such a way that criteria 2 (independence
of momenta), 4 (reproducing the one-particle momentum
space distribution), and 6 (normalisation) are all addressed
simultaneously. Ideally, all effects bar the desired correlation
are elegantly removed in this way.

For the internal cumulants and their variances and
covariances derived above, event mixing requires keeping
track of counters of all orders in each of the subsamples
S
𝑁
. A count of event indices in Section 4 shows that in a

brute-force calculation we would need, for each subsample,
a minimum of five independent event averages or 𝑂(E5

)

event combinations; furthermore, caution would advise not
to use the same event in calculating related counters, so
that selection and use of more than five events in mixing
are advisable. The resulting excessive number of full event
averages, mixing every (sub) sample event with every other
one, is therefore not feasible.
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If the order of events in the sample is random, themultiple
event averages can be simplified by the use of the following
multiple event buffer algorithm.

(1) A single overall event loop equivalent to the event
index 𝑎 runs over the entire inclusive sample S. A
given event 𝑎 will have a multiplicity 𝑁 = 𝑁(𝑎), so
for that particular 𝑎 correlation analysis for subsample
S
𝑁
is advanced by one event while the others remain

dormant.12 In this way, 𝑎, which always refers to
the sibling event, runs over all E

𝑁
events of every

subsample S
𝑁
. There is no need to either explicitly

sort the inclusive sample into subsamples or to run
multiple jobs for fixed𝑁.

(2) The firstE
𝐵
events13 of a givenmultiplicity𝑁 are used

solely to fill up the buffer without doing any analysis.
Once a given buffer has been filled, event mixing
analysis proceeds for that subsample as follows.

(a) A newly read 𝑎-event is assigned to the 𝑁 =

𝑁(𝑎) buffer, the earliest event in that buffer is
discarded, and sums for averages entering 𝐹

2𝑁

and 𝐹
3𝑁

as well as the sibling counters 𝜌
𝑎𝑎
, 𝜌

𝑎𝑎
,

(𝜌
𝑎𝑎
)
2, and (𝜌

𝑎𝑎𝑎
)
2 are updated.

(b) Event combinations for mixed-event counters
are built up by picking any one of the E

𝐵
− 1

other events in that buffer and calling it 𝑏, there-
after picking any one of the remaining E

𝐵
− 2

events in the buffer, calling it 𝑐 and so on. While
for third-order, only five events (including the
sibling event) are needed to construct all the
counters required; in practice it is better to use
different mixing events for different counters to
root out even traces of unwanted correlations
between different mixing counters.The random
selection of events rather than tracks for mixing
is necessary to ensure that more than one track
per event can be used as required for counters of
Sections 3 and 4 such as 𝜌

𝑏𝑏𝑐
.

(c) For a given event set 𝑏, 𝑐, 𝑑, . . ., themixing coun-
ters are incremented using all possible combina-
tions of the 𝑛

𝑎
tracks in event 𝑎 together with all

the 𝑛
𝑏
, 𝑛
𝑐
, . . . tracks in the selected events 𝑏, 𝑐, . . .

mixing events. For example, 𝜌
𝑏𝑏𝑐

would use all
possible 𝑛

𝑏
(𝑛
𝑏
− 1) pairs of 𝑏-tracks14 together

with all possible 𝑛
𝑐
single 𝑐-tracks. The mixing

of all tracks of a given event rather than just
selected ones ensures that the fluctuations in 𝑛

for given fixed𝑁 are automatically contained in
the counters.

(d) For constant 𝑎, the process of selecting events
𝑏, 𝑐, . . . is repeated𝐶mix = 10–100 times to reduce
the statistical errors, avoiding events that have
been used in previous selections. Efficiency can
be maximised by tuning of both the number
of events E

𝐵
stored in each buffer and by the

number of resamples 𝐶mix.

(3) Once the entire sample has been processed via the 𝑎-
event loop, the 𝑏- 𝑐- 𝑑-event averages are normalised
by 𝐶mix(E𝑁

− E
𝐵
), while the primary 𝑎-average is

normalised by (E
𝑁
−E

𝐵
).

(4) Unnormalised and normalised correlation quantities,
their standard errors, and correction factors are
constructed by appropriate combinations of averaged
counters.

(5) Results from fixed-𝑁 subsamples can then be com-
bined into AI correlations over partial ranges of𝑁 or
the entire inclusive sample at the end of the event loop
using the methods outlined in Section 5.

7. Discussion and Conclusions

(1) Correlations are only defined properly if the null case or
reference distribution is defined on the same level of sophis-
tication as the correlation itself. Translated into statistics,
the six criteria set out in Section 3.1 for a reference sample
for correlations at fixed charged multiplicity 𝑁 lead straight
to the definition of the reference sample as the average of
multinomials given in (51), weighted by the conditional mul-
tiplicity distribution R

𝑛𝑁
. Assigning Bernoulli probabilities

𝛼(p | S
𝑛𝑁
) = ⟨𝜌(p | S

𝑛𝑁
)⟩
𝑁
/⟨𝑛⟩

𝑁
yields the reference

density (56) and generating functional (58).
(2) From the theorem that internal cumulants are given

by the difference betweenmeasured and reference cumulants,
we obtain normalised and unnormalised internal cumulants
which satisfy every stated criterion for proper correlations for
fixed-𝑁 samples.

(3) We have highlighted the distinction between 𝑛, the
particles entering the correlation analysis itself, and 𝑁,
the particles determining the event selection criterion for
a particular semi-inclusive subsample. Various correction
factors are shown to be fair to good approximations of these
exact results in some cases but far off the mark in others.
Surprisingly, normalised cumulants are far more sensitive
to these corrections, through the normalisation prefactor,
than their unnormalised counterparts. To belabour the point,
for any variables (𝑥

1
, 𝑥

2
), different definitions for correction

factor 1/𝐹 for fixed-𝑁 correlations of positive pions,

𝐾
2
(𝑥

1
, 𝑥

2
| S

𝑁
) =

1

𝐹

𝜌 (𝑥
1
, 𝑥

2
| S

𝑁
)

𝜌 (𝑥
1
| S

𝑁
) 𝜌 (𝑥

2
| S

𝑁
)
− 1, (137)

can be very important at low multiplicities, with 𝐹 = 1

(Poisson) being the worst approximation, 𝐹 = 𝑁(𝑁 − 1)/𝑁
2

being a fair one, and ⟨𝑛(𝑛 − 1)⟩
𝑁
/⟨𝑛⟩

2

𝑁
being the best.

For inclusive correlations, correction factors such as
⟨𝑛⟩

2
/⟨𝑛(𝑛 − 1)⟩incl were proposed early on in [73, 74] in an

approach based on probabilities rather than densities. Refer-
ence [75] specifically calls the inclusion of these correction
factors meaningless because the theory then requires that
the emission function be identically zero. We note that the
argument in all those references relates to inclusive samples,
while for the samples of fixed 𝑁 considered in this paper
the prefactor, which is an average of 𝑛 at fixed 𝑁, is a
necessity. Either way, the arbitrariness of the use or nonuse
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of the prefactor has been eliminated here based solely on
considerations related to the reference distribution.

(4)The problem posed in this paper, namely, the relation
between charged multiplicity on the one hand and corre-
lations based on the conditional 𝑛-distribution R

𝑛𝑁
has

attracted little attention in the literature. Indeed, almost all
theoretical work on multipion correlations, as for example
summarised in [76], starts from the projection of final-state
events, with all their different particle species, onto the single-
species subspace of either 𝑛

+
(positive pions) or 𝑛

−
(negative

pions) correlations, to the exclusion of the other charge.
It would be interesting to see a combined theory for both
𝑛
+
and 𝑛

−
, which would encompass all the work done so far

plus correlations between unlike-sign pions and, of course,
the issue raised by us here.

(5) As shown in Figures 2 and 3, correction factors for
third-order are larger than the second-order ones. For higher
𝑟th-order correlations, the effect of using a fixed-𝑁 subsam-
ple is suppressed by approximately 1/⟨𝑛𝑟−1⟩

𝑁
for unnormal-

ised cumulants but actually worsens for normalised cumu-
lants due to the normalisation prefactors ⟨𝑛⟩

𝑟

𝑁
/⟨𝑛

𝑟
⟩
𝑁

for
small 𝑛.The importance of accurate correction of normalised
quantities therefore rises with order of correlation.

(6) The difference between Poissonian and internal
cumulants is largest at small multiplicities 𝑛. The mixed-
multinomial prescription will therefore be required for any
correlation analysis involving small 𝑛, independently of the
magnitude of 𝑁. Apart from the usual suspects of leptonic,
hadronic, and low-energy collisions, the low-𝑛 case occurs
both for very restricted phase space (such as in spectrometer
experiments) and for correlations of rare particles such as
kaons and baryons, even for large𝑁.

(7) Since 𝑛 fluctuates according to the conditional mul-
tiplicity distribution R

𝑛𝑁
, the degree to which fixed-𝑁

correlations differ from inclusive ones is strongly coupled
to the character of R

𝑛𝑁
. In general, R

𝑛𝑁
is sub-Poissonian

and so 𝐹
𝑟𝑁

falls below the Poisson limit of 1. The correction
from fixed-𝑁 Poissonian to internal normalised cumulants is
hence upward, not downward as in the case of multiplicity-
mixing corrections.

(8) While not the main subject of the present paper,
some light is cast on the relationship between three levels
of correlation, namely, correlations inherent in the overall
multiplicity distribution, multiplicity-mixing correlations,
and the true internal correlations for fixed 𝑁. Each of these
can and should be treated separately. The averaged-internal
correlations of Section 5 are a compromise solution which
may be useful both for physics reasons and for small datasets.

(9) The fixed-𝑁 corrections discussed here are separate
and complementary to other important effects at low mul-
tiplicity. References [76, 77] highlight, for example, possible
effects of “residual correlations” resulting from projecting
from multipion to two-pion correlations.

Energy-momentum conservation would also play a role.
Borghini [78, 79] has, for example, calculated the effect of
momentum conservation for normalised two- and three-
particle cumulants in momenta and p

𝑡
. However, the sad-

dlepoint method used applies to the large-𝑁 limit, and

the results cannot be directly applied to the low-𝑁 (and hence
low-𝑛) samples under discussion here. Indeed, momentum
conservation will be near-irrelevant for cases of large 𝑁 and
small 𝑛 as discussed above, but the small-𝑛 corrections of
this paper will remain important. For the specific case of
like-sign pion femtoscopy, the fact that only 𝑛 ∼ A𝑁/2Ω

out of the 𝑁 charged pions are used and that momentum
conservation constraints include all other final-state particles
both imply that momentum conservation constraints may
be less important than the internal-cumulant correction
introduced here.

For the specific choice of correlation variables 𝑄 and 𝑄
𝑎

for two- and three-particle cumulants, the contribution of
momentum conservation to cumulants at small 𝑄 will be
small since the counts will be dominated by pairs at small
(Δ𝜙, Δ𝑦) and intermediate (𝑝

𝑡1
, 𝑝

𝑡2
). As pointed out by [1],

momentum conservation exerts the greatest influence at large
pair or triplet momenta and hence mostly at large𝑄, where it
may lead to moments and cumulants which do not converge
to a constant as presupposed in most fits. The ad hoc method
of multiplying fit parametrisations by a prefactor 1 + 𝑐𝑄 with
𝑐 a free parameter does not adequately address the problem.

Regarding the multiplicity dependence of the influence
of energy-momentum conservation, [2] calculates the effect
of energy-momentum conservation on single-particle differ-
ential observables and finds significant systematic effects. No
doubt this must also be the case formultiparticle observables,
although as we have pointed out above, the effect of conserva-
tion laws will be diluted by the fact that fewer than half of the
final-state particles of any given event are actually used in the
present analysis. Detailed investigations are beyond the scope
of this paper.

(10) We have also recalculated statistical errors for
products of event averages starting from the original pre-
scription which forms the basis of frequentist statistical
error calculations. Compared to conventional statistical error
calculations, new prefactors appear in our calculations — see
for example (110) and the results in Section 4.4.2—which have
surprisingly been missed so far.

(11) We note that the present formalism is still in the
frequentist statistics mindset, which may be inaccurate for
low multiplicities and should be supplanted by a proper
Bayesian analysis. The final word has certainly not been
spoken about correlation analysis of small-𝑛 datasets.
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Endnotes

1. These event ratios are not probabilities in the strict sense;
in the frequentist definition of probability, the two are
equal only in the limit E → ∞. We therefore avoid the
use of the symbol 𝑃

𝑁
for such and similar data ratios.

2. Pairs are ordered, for example, a particular pair is
counted twice. Unordered pair counting is possible but
unnecessarily complicates sum limits.
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3. A counter of order𝑁(𝑎) can be made to behave like one
of order𝑁(𝑎) + 1 by defining an additional dummy data
point P

𝑁(𝑎)+1
which lies outside the normal domain Ω,

but we will not pursue this here.
4. We could argue that there are three different variables

𝑄
𝑎𝑎, 𝑄𝑎𝑏, and 𝑄

𝑏𝑐, where the last two differ in the
sense that 𝑄𝑎𝑏 contains a track from the “current” event
while 𝑄𝑏𝑐 does not. As shown below, this distinction is
unnecessary as long as we keep careful track of possible
occurrences of equal event indices.

5. While it is irrelevant whether event 𝑎 is included or
excluded in theoretical calculations of event mixing,
it should never be used in actual implementations of
mixing.

6. Due to the factorisation of the expectation values earlier
on, the fact that index 𝑏 appears in two separate sample
averages does not prevent us from replacing ⟨𝜌

𝑏𝑐
⟩ and

⟨𝜌
𝑏𝑒
⟩ by (𝜌

1
⊗ 𝜌

1
)
2.

7. While this factorised form is instructive, it cannot be
used directly since 𝐹

2𝑁
can be determined only on

completion of the entire sample analysis. Each of the
counter products in (114) must hence be implemented
separately.

8. If and when large bins are used and the sixth power of
the measured positive-pion multiplicity becomes com-
parable to E, subleading terms will have to be included.
This requirement is less trivial than it may sound, since
for subsamples of fixed multiplicity 𝑁, the number of
eventsE

𝑁
ismuch smaller thanE, while of course 𝑛may

be substantial when 𝑁 is large. For UA1, E
𝑁
= 𝑂(10

4
)

while E = 𝑂(10
6
).

9. Historically, this issue was discussed under the name
“Short-Range Correlations” and “Long-Range Correla-
tions” [15]. Since current usage of the term “Short-
Range Correlations” refers to correlations over small
scales in momentum space, we rather define them more
accurately as “Averaged Internal” (AI) correlations and
“Multiplicity-Mixing” (MM) correlations, noting also
that the correction factors in (124)–(129) do not appear
in the earlier literature.

10. An expression with a correction factor outside the sums
such as

𝐾
2
=

⟨𝑛⟩
2

⟨𝑛 (𝑛 − 1)⟩
⋅

∑
𝑁
R

𝑁
𝜅
𝐼

2
(𝑄 | S

𝑁
)

∑
𝑁
R

𝑁
𝜌
1
⊗ 𝜌

1
(𝑄 | S

𝑁
)

(138)

is inconsistent with AI correlation averaging if the
single-particle spectra or some other physical effect
change significantly within the range [𝐴, 𝐵]. We also
note that the above differs from the formula used in
[65] for second-order correlations in q. In the present
notation, the cumulant used in [65] reads

𝐾
2
(q) =

∑
𝑁
R

𝑁
𝜌
2
(q | S

𝑁
)

∑
𝑁
R

𝑁
((𝑁 − 1) /𝑁) 𝜌

1
⊗ 𝜌

1
(q | S

𝑁
)
− 1,

(139)

that is a correction for an𝑁-multinomial rather than the
weighted sum of 𝑛-multinomials used in (124)–(126).

11. One might expect 𝜎(𝐾AI
𝑟
(S

𝐴𝐵
)) to include a prefac-

tor of the sort seen in (105) that is something like
√[var(𝐾AI

𝑟
(𝑄 | S

𝐴𝐵
)]/[𝐵 − 𝐴], but this would be incor-

rect.The reason in that the formulae (131)–(133) for range
𝐴𝐵 can be considered as an average, so that we can apply
themethods of Section 4.3 to obtain the same results. For
example, considering 𝜅AI

2
(𝑄 | S

𝐴𝐵
) ≡ 𝜅

2
of (124) as an

average and writing 𝜅𝐼
2
(𝑄 | S

𝑁
) ≡ 𝜅

2𝑁
, the variance on

this average is

var [𝜅
2
] = 𝐸 [(𝜅

2
)
2

] − 𝐸[𝜅
2
]
2

= 𝐸[(∑

𝑁

R


𝑁
𝜅
2𝑁
) ⋅ (∑

𝑁


R


𝑁
𝜅2𝑁)]

− 𝐸[(∑

𝑁

R


𝑁
𝜅
2𝑁
)]𝐸[(∑

𝑁


R


𝑁
𝜅2𝑁)]

= ∑

𝑁=𝑁


(R


𝑁
)
2

(𝐸 [𝜅
2

2𝑁
] − 𝐸[𝜅

𝐼

2
(𝑄 | S

𝑁
)]
2

)

= ∑

𝑁

(R


𝑁
)
2

var (𝜅
2𝑁
) ,

(140)

which is identical with (131).Therefore, division by 𝐵−𝐴
is incorrect.

12. Inevitably, there are very few events in the high-
multiplicity tail of the entire sample. These must be
treated separately, for example, by putting all events with
𝑁 greater than some threshold into a single buffer.

13. The number of events in a buffer E
𝐵
is usually kept the

same for each buffer.
14. As in the definition of the counters, each pair is counted

twice: these are ordered pairs.
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[23] I. V. Andreev, M. Plümer, and R. M. Weiner, “Quantum-
statistical space-time approach to Bose-Einstein correlations
and multiplicity distributions,” International Journal of Modern
Physics A, vol. 8, no. 26, pp. 4577–4625, 1993.
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