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Abstract

Trust is a typical relationship in social network, which in group decision making problems relates to

the inner relationship among experts. To obtain a complete trust relationship of a networked group of

experts, firstly, a novel knowledge coverage-based trust propagation operator is proposed to estimate

the trust relationship between pairs of unknown experts. The novelty of this trust propagation opera-

tor resides in its account of the domain knowledge coverage of experts. Desirable properties regarding

boundary conditions, generalisation and knowledge coverage absorption are studied. The comparison

with existing operators of boundary conditions shows the rationality of the proposed operator. Next,

a knowledge coverage-based multi-paths trust propagation model for constructing complete trust net-

work is investigated. The proposed approach aggregates all trust paths to collect all trust information

and penalise trust decay. Secondly, a trust order induced recommendation mechanism is proposed by

combining subjective and objective weights. Thus, experts can accept consensus recommendations by

subjective and objective trust. This recommendation mechanism allows the inconsistent experts to ac-

cept the advices they trust. The validity and rationality of the proposed recommendation mechanism

is mathematically proved, and a numerical example is utilised to illustrate the calculation process of

the proposed method.

Keywords: Group decision making, Social network analysis, Recommendation mechanism, Trust

propagation, Knowledge coverage

1. Introduction

Since experts in decision panels come from different areas, they may have different knowledge

backgrounds, which will lead to conflict and inconsistency of group opinions [1–3]. The independent

moderator usually requires a certain minimum consensus to ensure the rationality of decision made

by a panel [4]. Therefore, how to reach such a minimum group consensus is a key research topic in

multiple criteria group decision-making (MCGDM).
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Interactive mechanisms for group consensus have been proposed to make the decision process more

intelligent by automatically triggering inconsistent decision opinions detection and recommendation

mechanisms [5–8]. However, the common idea of these interactive mechanisms relies in the forced

acceptance by the inconsistent experts of the recommendations based on the average preference of

the other experts in the group [9], which in practice has been argued to be an unreasonable approach

because it neglects completely the trust relationships between experts, which can provide a practical

and rational support for group consensus [10, 11].

Social networks, such as Twitter (http://www.twitter.com/), show that users accept advices that

come from individuals they trust during [12]. In group decision situations, the inconsistent experts

tend to accept the advice based on the opinions of other experts they trust [13, 14]. Liu et al. [15]

proposed a recommendation mechanism for reaching group consensus that involved measuring the trust

degree between pairs of experts. In contrast to the interactive mechanisms referred to above, trust

induced recommendation mechanisms enhance the self-esteem of the inconsistency experts because

they are provided advice from the experts they trust, which can be unforcedly accepted. However,

the existing trust relationship based recommendations mechanisms refer to objective trust only, i.e.

a trust measure based on the similarity degree of decision opinions. Since subjective trust is an

essential part of trust relationships, it should also play an important role in the recommendation

mechanism. Thus, a recommendation mechanism induced by both objective and subjective trust will

be a more rational approach to reaching group consensus. This is the aim of this this study, and a

trust order induced consensus reaching mechanism is proposed, where the induced weight vector is

obtained via the aggregation of both subjective weight vector, obtained from the trust network of the

group of experts, and objective weight vector, obtained from the consensus degree of experts’ decision

matrices.

Trust propagation is a practical method for solving the data sparsity of trust networks [16]. Indeed,

some experts may not have a direct trust relationship with other experts in the network but they may

have several indirect trust relationship with such experts via trusted third party (TTP) [17–19]. The

assumption of trust propagating through such indirect paths has been used to build approaches to

estimate the unknown direct trust relationship between experts and, subsequently, to obtain a complete

trust network [1, 20]. Trust relationship is a kind of expert’s subjective opinion. On the other hand,

the decision result is very likely to rely on the domain knowledge degree of experts [21]. The effect of

knowledge degree on group decision results has been increasingly acknowledged by researchers [22, 23],

with some researchers noticing that knowledge degree even affects the confidence of decision-makers

[24–26]. The trust relation with low knowledge in the trust propagation process may lead to a debatable

evaluation of trust degree for unknown experts, and decrease the accuracy of decision results. It is

reasonable to claim that a knowledge degree is key in constructing a trust network and the decision-

making problem based on it. However, existing studies of trust propagation operators do not consider
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the knowledge degree. In real life, people trust others with a degree which is not a 0-1 variable

of total ‘trust or distrust’, but with reacher ranges that could lead to the following four concepts:

trust, distrust, hesitancy and conflict [27]. To account for knowledge degree, this study proposes a

concept of knowledge coverage (KC) to quantify the domain knowledge degree of experts. Based on

the KC concept, this study proposes a knowledge coverage-based trust propagation operator. Then,

for avoiding losing useful trust information [28, 29], a knowledge coverage-based multi-paths trust

propagation model is developed on the basis of a KC based trust propagation operator to aggregate

trust information of multiple trust paths that, at the same time, penalises the longer paths that lead

to higher trust decay.

This rest of the paper is set out as follows: Section 2 introduces the required concepts and modelling

associated to an incomplete trust social network. The basic expression of a trust relationship is

introduced; definitions of trust score space, trust functions, and its associated knowledge deficit are also

presented. It also recall the existent t-norm and uninorm based trust propagation operators. Section 3

introduces the novel concept of knowledge coverage, proposes a ranking method of trust functions, and

elaborate on the development of a knowledge coverage-based trust propagation operator is developed.

Subsequently, its desirable propositions are investigated. A knowledge coverage-based multi-paths

trust propagation model is proposed to estimate unknown trust relationships and to obtain a complete

trust network. Section 3 also proposes a novel trust order induced consensus reaching mechanism to

reach the group consensus, which is driven by an induced weight vector derived from both subjective

trust degrees and objective trust degrees. Section 4 focuses on the selection process to obtain the final

consensus based decision. Conclusions are drawn in section 5. Besides, along the paper a numerical

example of cloud services selection is used to illustrate the proposed method computation process.

2. Preliminaries

2.1. Trust social network

Social network analysis (SNA) is a widely used method that focuses on the relationship between

members in social networks. Trust is a representative relationship in social networks. There are three

general representations of SNA:

• Graph – social networks can be represented by nodes and edges with directions (Fig.1).

• Algebraic – social network can be described by listing the relationship between pairs of mem-

bers in the social networks. The graphic representation of the social network in Fig.1 can be

algebraically represented as:

E1RE2 E1RE3 E1RE4 E2RE4 E2RE5 E3RE2 E4RE3 E4RE5 E5RE1 E5RE3
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Figure 1: Graphic representation of a social network

• Sociometric: use ”1” and ”0” to represent ”have” and ”don’t have” for a two-way relationship,

respectively. The relationship in Fig.1 can be represent as:

0 1 1 1 0

0 0 0 1 1

0 1 0 0 0

0 0 1 0 1

1 0 1 0 0


The above representations of a social network show only the existence (1) or lack of (0) relationship

between any two nodes. In practical situations, social members’ relationship strengths are not all

equally weighted. In particular, when the strength of relationship is related to the concept of ‘trust’,

the network is referred to a trust network [30].

2.2. Trust score space and ranking method

Definition 1 (Trust score space). A trust score space can be defined as:

TSS =
(

[0, 1]2,≤td,≤k,¬
)

(1)

where [0, 1]2 is a bilattice trust score; ≤td is the trust-distrust ordering; ≤k is the knowledge ordering;

and ¬ is a negation operator, satisfying the following properties:

• (t1, d1)≤td (t2, d2) iff t1 ≤ t2 and d1 ≥ d2

• (t1, d1)≤k (t2, d2) iff t1 ≤ t2 and d1 ≤ d2

• ¬ (t1, d1) = (d1, t1) for all(t1, d1) and (t2, d2) in [0, 1]2

Definition 2 (Trust function). An element of a trust score space, (t, d) ∈ [0, 1]2, with t represent-

ing a trust degree, and d a distrust degree, is called a trust function and it is denoted as TF = (t, d).
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Figure 2: Trust propagation

Definition 3 (Knowledge deficit). The knowledge deficit of a trust function (t, d) ∈ [0, 1]2 is

kd = (1− t− d)2 (2)

Based on the concept of knowledge deficit, the following types of information are discriminated:

a) Incomplete knowledge iff t+ d < 1.

b) Inconsistent knowledge iff t+ d > 1.

c) Perfect knowledge iff t+ d = 1.

Fig.1 represents an incomplete network, i.e. a network lacking trust relationships between some

of its nodes. Thus, for such pairs of nodes, their trust values are unknown, which is a universal

phenomenon [31] as most networks are incomplete. Therefore, estimating the trust relationship from

an individual/organisation to an unknown individual/organisation is a significant question in SNA.

Existing studies have developed trust propagation methods for unlinked individuals/organisations via

trusted third party (TTP) having direct trust to each other as as Fig.2 shows [32, 33]. Victor et al.

[30] argued that the opinions of trusted people are easier to accept, while opinions from a distrusted

or unknown third party could be ignored, which was used to developed a trust propagation operator

based on t-norms.

Definition 4 (T-norm propagation operator). A t-norm, T , based propagation operator of trust

functions TF1 = (t1, d1) and TF2 = (t2, d2) is

Pv ((t1, d1) , (t2, d2)) = (T (t1, t2) , T (t1, d2)) (3)

Wu et al. [20] developed a trust propagation operator based on uninorm that addressed drawbacks

associated to Victor’s trust propagation operators assumption of trust and distrust being considered

independent.
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Definition 5 (Uninorm trust propagation operator). A uninorm, U , based propagation oper-

ator of trust functions TF1 = (t1, d1) and TF2 = (t2, d2) is

PU ((t1, d1) , (t2, d2)) = (U (t1, t2) , U (t1, d2)) (4)

3. Knowledge coverage-based multi-paths trust propagation method

The above two types of trust propagation operators, which are valid propagating trust, ignore

concept of knowledge coverage in trust relationships. In addition, both propagation operators are

based on the shortest path rule, which means that they ignore the trust information in the rest

trust paths that are not utilised. In addition, the trust decay is not accounted for [34, 35]. This

study investigates a knowledge coverage-based multi-paths trust propagation model on the basis of a

knowledge coverage based trust propagation operator to aggregate trust information of multiple trust

paths that, at the same time, penalises the longer paths that lead to higher trust decay.

Knowledge deficit can be viewed as a negative degree. Knowledge coverage, as the negation of

knowledge deficit, is therefore a positive degree.

Definition 6 (Knowledge coverage). Given a trust function (t, d) ∈ [0, 1]2, the value

kc = 1− (1− t− d)2 (5)

Is known as its knowledge coverage.

A trust function with kc = 1 ( ⇐⇒ t + d = 1) has a complete knowledge coverage; while a trust

function with kc = 0 ( ⇐⇒ t + d = 0 ∨ t + d = 2 ⇐⇒ (t, d) ∈ {(0, 0), (1, 10}) has no knowledge

coverage. Inspired by the correlation coefficient proposed by Gerstenkorn and Manko [36], this study

proposes a definition of positive trust score, which calculates the correlation coefficient between a trust

function and perfect trust function (TF ∗ = (1, 0)) to rank trust functions.

Definition 7 (Positive trust score). The positive trust score (PTS) of a trust functions is

PTS(t, d)=


t√

t2 + d2
, if (t, d) 6= (0, 0)

0 , if (t, d) = (0, 0)
(6)

Definition 8 (Ranking method). Let TF1 = (t1, d1) and TF2 = (t2, d2) be two trust functions;

PTS1 and PTS2 their positive trust score; and kc1 and kc2 their knowledge coverage, respectively.

TF1 < TF2 ⇐⇒ [PTS1 < PTS2] ∨ [PTS1 = PTS2 ∧ kc1 < kc2].

where ∨ is the logical OR; ∧ is the logical AND.

The above ranking method makes the comparison of decision opinions expressed by trust functions

feasible. The positive trust score and knowledge coverage degree are used to establish the ordering

TFs, which will be exploited later at the advice generation within the consensus interaction mecha-

nism.
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3.1. Knowledge coverage-based trust propagation operator

The above t-norm and uninorm based trust propagation operators treat trust values with different

knowledge deficit equally. This study proposes a knowledge coverage-based trust propagation operator

that retains the conflicting information while , at the same time, implementing the knowledge coverage

of experts.

Notice that, in practical situations, if expert E1 fully distrust expert E2 (TF12 = (0, 1)) while,

at the same time, the knowledge coverage of expert E2 on expert E3 is maximum/complete, i.e.,

kc23 = 1, then the propagation result of how much E1 trust E2 would result in TF13 = (0, 1). The

same result would be expected when expert E2 fully distrust expert E3 while, at the same time, the

knowledge coverage of expert E1 on expert E2 is the complete. Thus, the knowledge coverage-based

trust propagation operator proposed in this study is defined below:

Definition 9 (Knowledge coverage-based trust propagation operator). Let TF1 = (t1, d1)

and TF2 = (t2, d2) be two trust functions, and and kc1 and kc2 their knowledge coverage, respec-

tively. The knowledge coverage-based trust propagation operator is

Pkc (TF1, TF2) = Pkc ((t1, d1) , (t2, d2))

=


(0, 1) , if TF1 = (0, 1) ∧ kc2 = 1

(0, 1) , if TF2 = (0, 1) ∧ kc1 = 1

(U (T (kc1, t1) , T (kc2, t2)) , U (T (kc1, t1) , T (kc2, d2))) , otherwise.

(7)

where U is a uninorm and T is a t-norm.

For the case of being U the cross ratio uninorm and T the product t-norm, the expression of the

knowledge coverage-based trust propagation operator is:

Pkc (TF1, TF2) = Pkc ((t1, d1) , (t2, d2))

=


(0, 1) , if TF1 = (0, 1) ∧ kc2 = 1

(0, 1) , if TF2 = (0, 1) ∧ kc1 = 1(
t1kc1t2kc2

t1kc1t2kc2+(1−t1kc1)(1−t2kc2) ,
t1kc1d2kc2

t1kc1d2kc2+(1−t1kc1)(1−d2kc2)

)
, otherwise.

(8)

The knowledge coverage-based trust propagation operator is non-commutative and non-associative.

However, the knowledge coverage-based trust propagation operator has the following properties.

Property 1 (Boundary values). The values of the knowledge coverage-based trust propagation op-

erator with trust function inputs in the set {(0, 0), (0, 1), (1, 0), (1, 1)} are in Table 1. In other words,

the knowledge coverage-based trust propagation operator verifies the symmetry (commutativity) prop-

erty in the extreme boundary points of the domain [0, 1]2.

Property 1 is not verified by the trust propagation operator PU as Table 2 proves. It is noticed,

though, that both trust propagation operators coincide when both boundary trust function inputs have
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Table 1: Pkc boundary values

(0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,0) (0,0) (0,0)

(0,1) (0,0) (0,1) (0,1) (0,0)

(1,0) (0,0) (0,1) (1,0) (0,0)

(1,1) (0,0) (0,0) (0,0) (0,0)

Table 2: PU boundary values

(0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,1) (0,0) (0,0)

(0,1) (0,1) (0,1) (0,1) (0,1)

(1,0) (0,0) (0,1) (1,0) (1,1)

(1,1) (0,0) (0,1) (1,0) (1,1)

full knowledge coverage. The reason for this resides in that the knowledge coverage-based trust propa-

gation operator does not penalise trust information that is perfect information (see Property 2 below),

while the opposite happens if the information is not perfect and the results obtained with PU differ

from those obtained with PU . Also, from Table 2, it is obvious that PU ((1, 0) , x) =PU ((1, 1) , x), which

evidences that this uninorm trust propagation operator cannot reflect the difference of distrust degrees

of the first input trust function in this cases, which is not an issue for the knowledge coverage-based

trust propagation operator. Therefore, the boundary values comparative shows that the proposed

trust propagation operator Pkc effectively penalises knowledge deficit, while trust information with

high knowledge coverage can be retained by the knowledge coverage-based trust propagation operator,

which makes the propagation result more reasonable.

Property 2 (Generalisation). If TF1 = (t1, d1) and TF2 = (t2, d2) are trust functions with com-

plete knowledge coverage, i.e. kc1 = kc2 = 1, then

Pkc ((t1, d1) , (t2, d2)) = PU ((t1, d1) , (t2, d2)) .

Proof.

Pkc ((t1, d1) , (t2, d2)) = (U (T (kc1, t1) , T (kc2, t2)) , U (T (kc1, t1) , T (kc2, d2)))

= (U (T (1, t1) , T (1, t2)) , U (T (1, t1) , T (1, d2)))

= (U (t1, t2) , U (t1, d2))

= PU ((t1, d1) , (t2, d2))

Property 3 (Knowledge coverage absorption). When one of the input trust functions of the

knowledge coverage-based trust propagation operator has no knowledge coverage then the result of

the trust propagation operator is the trust function with no knowledge coverage (0, 0).

Pkc ((1, 1) , (t, d)) = Pkc ((t, d), (1, 1)) = Pkc ((0, 0) , (t, d)) = Pkc ((t, d), (0, 0)) = (0, 0) ∀(t, d) ∈ [0, 1]2

Proof. Obvious.
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The trust propagation model can be represented as a directed weighted graph since the trust

relationship is asymmetric [37]; however, the order in which the trust propagation is computed in

a given indirect path involving three or more TTPs will affect the final trust estimation between

nodes not directly connected in the graph. Thus, a rule needs to be set prior to such computation

in practice. This study applies the sequential left-to-right direction of the indirect path connecting

nodes not directly connected in the graph as show as Fig.3.

Figure 3: Knowledge coverage-based trust propagation of left-to-right direction

Comparative example 1. Let TF1 = (0.1, 0), TF2 = (0.6, 0.9), TF3 = (0.5, 0.9), and TF4 =

(0.5, 0.8) be four trust functions. Utilising the knowledge coverage-based trust propagation opera-

tor Pkc, the following propagation results are obtained:

Pkc12 = Pkc (TF1, TF2) = (0.273, 0.500) ;

Pkc23 = Pkc (TF2, TF3) = (0.545, 0.931) ;

Pkc34 = Pkc (TF3, TF4) = (0.500, 0.800) .

Based on Definition 8, the following ranking order isobtained: Pkc34 < Pkc23 < Pkc12.

The results using the uninorm trust propagation operator PU are:

PU12 = PU (TF1, TF2) = (0.005, 0.008) ;

PU23 = PU (TF2, TF3) = (0.146, 0.335) ;

PU34 = PU (TF3, TF4) = (0.070, 0.119) .

In this case it is PU34 < PU12 < PU23 (based on Definition 8).

The ranking ordering of the propagated trust functions obtained with Pkc and PU are different.

Yang and Chiclana [38] proved that different order relations imply the inconsistency of different meth-

ods. Clearly, the change of distance will lead to inconsistency ranking with previous used distance. If

knowledge coverage is considered a derivative of trust and distrust degrees, then there would be no

reason why the propagation operator should be calculated using (t, d) rather than (t, kc). Hence, the

present inconsistency validates our idea that the knowledge coverage is significant.
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3.2. Knowledge coverage-based trust propagation model

The existing propagation models rely on one single indirect linking path between unconnected

nodes. In fact, the shortest indirect paths is used to assure that trust decay in the propagation is

minimised [1, 20]. However, some important trust information may be lost in discarding the other

longer indirect linking paths if present. In addition, the shortest length indirect path is assumed to

be unique. If this is not the case, then the random choice of one of the shortest indirect paths is not

persuasive. The alternative approach is to make use of all existent indirect paths, which implies that

trust decay is also taken into consideration. This is the approach taken in this study to develop a

multi-path weighted arithmetic averaging propagation model.

Definition 10 (Knowledge coverage-based multi-paths trust propagation model). Lets as-

sume that {P1,P2, . . .Pn} is the set of trust relationship, obtained with via the knowledge coverage-

based trust propagation operator (7), associated to the set of n indirect linking paths between two

unconnected experts. The final trust relationship between the experts is given by

P̄ =

n∑
i=1

γiPi (9)

where

γi =
1

ki ·
n∑
j=1

(
1

kj

)
is the weight value used to penalise the trust decay Pi associated to the length ki of the indirect path

i ∈ {1, . . . , n}.

Example 1. A company wants to choose the most appropriate cloud service supplier. To make

the decision result more reasonable, they asked a group of five experts {E1, E2, E3, E4, E5} for their

opinion. The group of experts is assumed to have the incomplete trust sociometric TR of Fig 1, with

trust functions given below:

TR =



E1 E2 E3 E4 E5

E1 − − (0.6, 0.1) − (0.8, 0.1)

E2 (0.8, 0.5) − − (0.7, 0.5) −

E3 − (0.7, 0.2) − (0.5, 0.2) −

E4 (0.8, 0.3) − − − (0.6, 0.3)

E5 − (0.7, 0.2) (0.3, 0.1) − −


.

To obtain the complete trust network, It is necessary to get all possible indirect paths between un-

connected experts and their respective lengths:

• Paths from E1 to E2: L1
12 : E1 → E3 → E2; L2

12 : E1 → E5 → E2; L3
12 : E1 → E5 → E3 → E2;

L4
12 : E1 → E3 → E4 → E5 → E2.
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• Paths from E1 to E4: L1
14 : E1 → E3 → E4; L2

14 : E1 → E3 → E2 → E4; L3
14 : E1 → E5 →

E3 → E4; L4
14 : E1 → E5 → E2 → E4; L5

14 : E1 → E5 → E3 → E2 → E4.

• Paths from E2 to E3: L1
23 : E2 → E1 → E3; L2

23 : E2 → E1 → E5 → E3; L3
23 : E2 → E4 →

E1 → E3; L4
23 : E2 → E4 → E5 → E3; L5

23 : E2 → E4 → E1 → E5 → E3.

• Paths from E2 to E5: L1
25 : E2 → E1 → E5; L2

25 : E2 → E4 → E5; L3
25 : E2 → E4 → E1 → E5;

L4
25 : E2 → E1 → E3 → E4 → E5.

• Paths from E3 to E1: L1
31 : E3 → E2 → E1; L2

31 : E3 → E4 → E1; L3
31 : E3 → E2 → E4 → E1;

L4
31 : E3 → E4 → E5 → E2 → E1.

• Paths from E3 to E5: L1
35 : E3 → E4 → E5; L2

35 : E3 → E2 → E4 → E5; L3
35 : E3 → E2 →

E1 → E5; L4
35 : E3 → E4 → E1 → E5; L5

35 : E3 → E2 → E4 → E1 → E5.

• Paths from E4 to E2: L1
42 : E4 → E5 → E2; L2

42 : E4 → E5 → E3 → E2; L3
42 : E4 → E1 →

E3 → E2; L4
42 : E4 → E1 → E5 → E2; L5

42 : E4 → E1 → E5 → E3 → E2.

• Paths from E4 to E3: L1
43 : E4 → E5 → E3; L2

43 : E4 → E1 → E3; L3
43 : E4 → E1 → E5 → E3;

L4
43 : E4 → E5 → E2 → E1 → E3.

• Paths from E5 to E1: L1
51 : E5 → E2 → E1; L2

51 : E5 → E2 → E4 → E1; L3
51 : E5 → E3 →

E2 → E1; L4
51 : E5 → E3 → E4 → E1; L5

51 : E5 → E3 → E2 → E4 → E1.

• Paths from E5 to E4: L1
54 : E5 → E2 → E4; L2

54 : E5 → E3 → E4; L3
54 : E5 → E3 → E2 → E4;

L4
54 : E5 → E2 → E1 → E3 → E4.

To illustrate the multi-path weighted arithmetic averaging propagation model, the propagation from

E1 to E2 is elaborated using the knowledge coverage-based trust propagation operator (8):

PL1
12

((0.6, 0.1) , (0.7, 0.2)) = (0.55, 0.14) ;

PL2
12

((0.8, 0.1) , (0.8, 0.5)) = (0.81, 0.36) ;

PL3
12

((0.8, 0.1) , (0.3, 0.1) (0.7, 0.2)) = (0.15, 0.02) ;

PL4
12

((0.6, 0.1) , (0.5, 0.2) (0.6, 0.3) (0.8, 0.5)) = (0.04, 0.01) .

From (9), the final trust relationship of E1 to E2 is:

P̄12 = (0.46, 0.16) .

Similarly, all missing trust degree in the incomplete trust sociometric TR are computed, resulting in
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the following complete trust sociometric TC as:

TC =



E1 E2 E3 E4 E5

E1 − (0.46, 0.16) (0.60, 0.10) (0.32, 0.20) (0.80, 0.10)

E2 (0.80, 0.50) − (0.38, 0.10) (0.70, 0.50) (0.62, 0.18)

E3 (0.58, 0.28) (0.70, 0.20) − (0.50, 0.20) (0.62, 0.17)

E4 (0.80, 0.30) (0.53, 0.20) (0.41, 0.11) − (0.60, 0.30)

E5 (0.35, 0.20) (0.70, 0.20) (0.30, 0.10) (0.28, 0.19) −


.

4. A trust order induced consensus reaching mechanism for group decision making

After constructing the completed trust network of experts, a group decision including a group

consensus process becomes possible. Herrera-Viedma et al. [5] proposed a three-dimensional soft

consensus approach for measures consensus, which is widely applied in consensus reaching processes.

Once the consensus degrees of all experts have reached the minimum acceptable consensus threshold

for the group, the selection process would be activated. In most situations, some experts do not reach

the minimum acceptable consensus threshold at first. Therefore, inconsistent opinions detection and

recommendation mechanism have been developed to generate advice to help the inconsistent experts

increase their consensus. Existing research about recommendation mechanisms apply the average

acceptance method, which is based on the unreasonable forced acceptance by the inconsistent expert

of the recommendation they receive [15]. It is unreasonable because the inconsistent experts may have

strong feelings about loosing their independence by changing their opinions for the solely benefit of

reaching consensus without any other justification to support the validity of such recommendations.

The construction of a trust relationship network provides support for addressing this issue because,

in practical situations, experts acceptance of advice has a positive correlation with the trust degree of

the experts from whom the advice comes from.

Inspired by this, a subjective and objective trust ordered recommendation mechanism is proposed

to generate advice based not only on an objective weight vector, obtained from the consensus degree of

experts’ decision matrices, but also on a subjective weight vector, obtained from the trust relationship

between experts. The decision-making processes based on the subject and objective trust ordered

recommendation mechanism can be show as Fig.4.

4.1. The consensus degree measurement method with trust functions

Consensus degree of expert eh on elements level. The pairwise consensus levels of experts eh

and ek on the alternative xi and attribute cj is computed as:

CEij

(
eh, ek

)
= 1−

(∣∣∣thij − tkij∣∣∣+ ∣∣∣dhij − dkij∣∣∣)
2

(10)
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Figure 4: A trust order induced recommendation mechanism for SN-GDM

The consensus degree of expert Eh with the decision group on the alternative xi and attribute

cj is:

ACEhij =
1

l − 1

l∑
h6=k,k=1

CEij

(
eh, ek

)
(11)

Consensus degree of expert eh on alternatives level. The pairwise consensus levels of experts

eh and ek on the alternative xi is computed as:

CAi

(
eh, ek

)
=

1

n

n∑
j=1

1−

∣∣∣thij − tkij∣∣∣+
∣∣∣dhij − dkij∣∣∣

2

 (12)

The consensus degree of expert Eh with the decision group on the alternative xi is:

ACAhi =
1

l − 1

l∑
h6=k,k=1

CAi

(
eh, ek

)
(13)

Consensus degree of expert eh on decision matrix. The pairwise consensus levels of experts eh

and ek on the decision matrix is computed as:

CD
(
eh, ek

)
=

1

m · n

m∑
i=1

n∑
j=1

1−

∣∣∣thij − tkij∣∣∣+
∣∣∣dhij − dkij∣∣∣

2

 (14)
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The bigger this pairwise consensus degree is, the more trust there is between these two experts.

The consensus degree of expert Eh with the decision group on the decision matrix is:

ACDh =
1

l − 1

l∑
h6=k,k=1

CD
(
eh, ek

)
(15)

The bigger the ACDh is, the higher the consensus of the expert is.

Practically, it is rare to reach perfect consensus (ϑ = 1) in group decision making situations. Mean-

while, group consensus usually requires ‘most of’/‘as many as possible’ experts to reach consensus.

Therefore, the minimum consensus threshold value should verify ϑ ∈ [0.5, 1) . Once ACDh ≥ ϑ∀h,

the consensus interactive process ends and the selection process is stimulated.

Example 2. (Example 1 continuation) The cloud service selection involves four alternatives,

Ai = {A1, A2, A3, A4}, and four criteria, ci = {c1, c2, c3, c4}, are employed: security, cost, usability

and performance, with associated weight vector w = (0.36, 0.24, 0.18, 0.22)T . WE are assuming the

following five decision matrixes of experts:

R1 =


(0.3, 0.5) (0.2, 0.7) (0.5, 0.4) (0.2, 0.3)

(0.6, 0.6) (0.3, 0.4) (0.5, 0.5) (0.3, 0.6)

(0.2, 0.7) (0.5, 0.6) (0.6, 0.5) (0.2, 0.6)

(0.5, 0.8) (0.4, 0.4) (0.6, 0.6) (0.4, 0.8)



R2 =


(0.3, 0.4) (0.2, 0.7) (0.7, 0.4) (0.5, 0.6)

(0.4, 0.6) (0.5, 0.5) (0.5, 0.4) (0.4, 0.5)

(0.4, 0.5) (0.4, 0.8) (0.2, 0.6) (0.5, 0.5)

(0.6, 0.5) (0.5, 0.3) (0.3, 0.8) (0.6, 0.7)



R3 =


(0.3, 0.6) (0.3, 0.8) (0.5, 0.6) (0.3, 0.7)

(0.5, 0.6) (0.6, 0.3) (0.4, 0.4) (0.5, 0.6)

(0.3, 0.4) (0.6, 0.7) (0.3, 0.6) (0.4, 0.5)

(0.3, 0.6) (0.4, 0.5) (0.5, 0.4) (0.5, 0.6)



R4 =


(0.5, 0.4) (0.4, 0.5) (0.6, 0.5) (0.4, 0.5)

(0.3, 0.5) (0.2, 0.4) (0.6, 0.5) (0.5, 0.4)

(0.6, 0.7) (0.4, 0.7) (0.4, 0.7) (0.3, 0.7)

(0.5, 0.7) (0.4, 0.6) (0.4, 0.8) (0.5, 0.6)



R5 =


(0.6, 0.3) (0.5, 0.5) (0.7, 0.6) (0.6, 0.5)

(0.7, 0.2) (0.6, 0.2) (0.3, 0.9) (0.5, 0.4)

(0.6, 0.6) (0.7, 0.8) (0.9, 0.7) (0.8, 0.5)

(0.8, 0.5) (0.6, 0.8) (0.2, 0.8) (0.7, 0.5)


The following consensus values are obtained:
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Consensus degree of expert eh on elements level.

ACE1
ij=


0.875 0.863 0.875 0.738

0.850 0.838 0.875 0.850

0.788 0.863 0.775 0.800

0.813 0.863 0.775 0.813



ACE2
ij=


0.888 0.863 0.875 0.838

0.850 0.825 0.863 0.900

0.838 0.875 0.788 0.850

0.838 0.813 0.838 0.875



ACE3
ij=


0.838 0.838 0.875 0.800

0.863 0.838 0.850 0.900

0.788 0.888 0.825 0.863

0.788 0.875 0.738 0.900



ACE4
ij=


0.863 0.838 0.900 0.863

0.800 0.800 0.838 0.900

0.813 0.888 0.825 0.800

0.850 0.863 0.850 0.900



ACE5
ij=


0.788 0.800 0.875 0.813

0.688 0.800 0.675 0.900

0.825 0.838 0.688 0.738

0.763 0.738 0.800 0.813


Consensus degree of expert eh on alternatives level.

ACA1
i=(0.838, 0.853, 0.806, 0.816)T ;

ACA2
i=(0.866, 0.859, 0.838, 0.841)T ;

ACA3
i=(0.838, 0.863, 0.841, 0.825)T ;

ACA4
i=(0.866, 0.834, 0.831, 0.866)T ;

ACA5
i=(0.819, 0.766, 0.772, 0.778)T .

Consensus degree of expert eh on decision matrix.

ACD1 = 0.828;ACD2 = 0.851;ACD3 = 0.841;ACD4 = 0.849;ACD5 = 0.784.

Assuming the minimum consensus degree for the company of ϑ = 0.8, then expert e5 will be asked to

revise his/her inconsistent trust decision opinions.
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4.2. Subjective and objective trust ordered recommendation mechanism

The subjective and objective trust ordered recommendation mechanism involves three steps: (1)

Identifying the decision opinions to be revised; (2) Obtaining the subjective and objective trust rela-

tionship of experts; and (3) Generating the subjective and objective trust order based recommended

advice.

4.2.1. Identifying the decision opinions need to be revised

For identifying the decision opinions to be revised, a three-level identification method was intro-

duced to locate the trust decision opinions that contribute less to group consensus [5].

Level 1. Identify experts with consensus degrees below the minimum threshold value ϑ:

EXPCH =
{
h|ACDh < ϑ

}
.

Let p = l−#EXPCH be the number of experts with consensus degrees not below the minimum

threshold value ϑ. For convenience, this set of experts will be denoted as {et|t = 1, . . . , ep}, and

will refer to a the set of consistent experts.

Level 2. For experts in EXPCH, their alternatives with consensus below ϑ are identified:

ALT =
{

(h, i)|h ∈ EXPCH ∧ACAhi < ϑ
}
.

Level 3. Finally, the set of trust decision opinions to be revised is:

APS =
{

(h, i, j)| (h, i) ∈ ALT ∧ACEhij < ϑ
}
.

Example 3. (Example 2 continuation) The set of trust decision opinions to be revised is APS =

{(5, 2, 1) , (5, 2, 3) , (5, 3, 3) , (5, 3, 4) , (5, 4, 1) , (5, 4, 2)}

4.2.2. Obtaining the subjective and objective trust relationship of experts

Objective trust relationship refers to the trust relationship derived from the experts’s decision

opinions, while subjective trust relationship refers to the trust relationship derived derived from the

completed trust sociometric relationship between the experts. Both subjective and objective trust

relationship of experts need to be obtained for generating advice.

Definition 11 (Objective trust degree (OTD)). The pairwise objective trust degree between

experts eh and ek is their consensus degree on the decision matrix level:

OTDhk = CD
(
eh, ek

)
(16)
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Expert eh (h ∈ EXPCH) is associated the following objective trust weight value towards the consis-

tent expert et:

µth =
OTDht

p∑
t=1

OTDht

. (17)

If the trust sociometric matrix TC between experts is incomplete, then the proposed knowledge

coverage-based multi-paths trust propagation model is applied to complete it.

Definition 12 (Subjective trust degree (STD)). The pairwise subjective trust degree between

experts eh and ek is

STDhk = TC

(
eh, ek

)
(18)

As per (6), the positive trust score of STDhk is denoted by PTShk. Then expert eh (h ∈ EXPCH)

can be associated the following subjective trust weight value towards consistent expert et:

νth =
PTSht

p∑
t=1

PTSht
. (19)

Based on the objective and subjective trust weight vectors, this study proposes the following

definition of collective trust induced values.

Definition 13 (The collective trust induced values (CT)). The collective trust induced value

of inconsistent expert eh with respect to the consistent expert et is:

CT th = (1− ϕ) · µth + ϕ · νth, ∀t = 1, 2, . . . , p (20)

where ϕ ∈ [0, 1] is a parameter that controls subjective and objective degrees.

Example 4. (Example 3 continuation) As per (14), we have:

OTD =



− 0.853 0.866 0.859 0.734

0.853 − 0.875 0.869 0.806

0.866 0.875 − 0.850 0.775

0.859 0.869 0.850 − 0.819

0.734 0.806 0.775 0.819 −


The objective trust weight vector of expert e5 towards the other consistent experts is:

µt5 = (0.234, 0.257, 0.247, 0.261) .

As per Example 1, the subjective trust weight vector of expert e5 towards the other consistent experts

is:

νt5 = (0.241, 0.267, 0.263, 0.230) .
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With ϕ = 0.5, the trust induced values of expert e5 towards the other consistent experts is:

CT t5 = (0.238, 0.262, 0.255, 0.245) .

4.2.3. Generating the subjective and objective trust order based recommended advice

Existing advice generating methods over-prioritised the objective trust relations, i.e. the trust

relation obtained from the consensus level of the decision opinions. However, expert may have a higher

subjective trust degree towards other experts from previous personal experiences. For modelling this

behaviour, a subjective and objective trust order-based advice generating method is proposed based

on the induced ordered weighted averaging (IOWA) operator proposed by Yager and Filev [39].

For any (h, i, j) ∈ ASP , inconsistent expert eh will be provided with the following trust ordered

based personalised advice:

“According to your trust relationship, you are recommended to change your evaluation for

alternative xi under attribute cj, r
h
ij =

(
thij , d

h
ij

)
, to the value rrhij =

(
rthij , rd

h
ij

)
,”

where

rrhij =
(
rthij , rd

h
ij

)
=
(

(1− δ) · thij + δt∆ij , (1− δ) · dhij + δd∆
ij

)
(21)

where δ ∈ [0, 1] is a parameter to control the personalised advice degree, and
(
t∆ij , d

∆
ij

)
are computed

via a coverage-trust IOWA (CT-IOWA) operator:

Definition 14. The CT-IOWA aggregated result from a set a set
{
TF tij

∣∣∣TF tij =
(
ttij , d

t
ij

)}
(t = 1, . . . , p)

of decision opinions is

CT − IOWAwt

(〈
CT 1

h , TF
1
ij

〉
, . . . ,

〈
CT ph , TF

p
ij

〉)
=

(
p∑
t=1

ξtt
σ(t)
ij ,

p∑
t=1

ξtd
σ(t)
ij

)
(22)

with σ(t) is the permutation of (t = 1, . . . , p) such that CT
σ(t)
h ≥ CT σ(t+1)

h , and

ξt = Q

(
T (t)

T (p)

)
−Q

(
T (t− 1)

T (p)

)
(23)

where Q is the membership function of a linguistic quantifier used to represent a soft majority concept

such as ‘most of’ with Q(r) = r2, and T (t) = CT
σ(1)
h + . . .+ CT

σ(t)
h (t = 1, . . . , p).

Example 5. (Example 4 continuation) With the parameter value δ = 0.5, the subjective and

objective trust order based recommended advice for expert e5 are:

According to your trust relationship, you are recommended to change your evaluation for

• alternative x2 under attribute c1 to the value (0.566, 0.392)
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• alternative x2 under attribute c3 to the value (0.397, 0.665)

• alternative x3 under attribute c3 to the value (0.603, 0.651)

• alternative x3 under attribute c4 to the value (0.604, 0.523)

• alternative x4 under attribute c1 to the value (0.654, 0.546)

• alternative x4 under attribute c2 to the value (0.525, 0.601)

4.2.4. Second round for reaching consensus

Once the personalised recommendations have been generated and accepted, the second-round

process of trust ordered consensus interaction mechanism will be adopted to check whether the group

decision opinion of all experts reaches consensus. If it reaches the group consensus, then the selection

process will be triggered; otherwise, a further consensus interactive mechanism is needed.

Example 6. (Example 5 continuation) After accepting the trust based recommendations, the

new experts consensus degrees are (using the same ϕi = 0.5):

ACD1′ = 0.841;ACD2′ = 0.863;ACD3′ = 0.854;ACD4′ = 0.862;ACD5′ = 0.834.

The below shows that the final average consensus degree ACD5′ calculated with different subjective

and objective parameters ϕi will increase. Indeed, the final average consensus degree ACD5′ with

different parameter values ϕi = {0, 0.2, 0.4, 0.6, 0.8, 1, 0.5} are provided in Table 3, which shows that

in all cases is higher than before the feedback process.

Table 3: ACD5′ of different parameters ϕi

ϕi 0 0.2 0.4 0.6 0.8 1 0.5

ACD5′ 0.8328 0.8335 0.8337 0.8337 08337 08337 08337

5. Selection process

One the group consensus has been reached, the selection process is triggered. The individual

decision opinions are aggregated with a weighted arithmetic averaging (WAA), whose weights are the

final average consensus degrees of experts ωh = ACDh/
∑l

k=1ACD
k (h = 1, . . . , l)., to derive the

collective decision matrix:

r̄ij =
l∑

h=1

ωhrhij (24)

If the criteria weight vector is cj (j = 1, . . . , n), then the alternatives final evaluations will be:

Ãi =

n∑
j=1

wj r̄ij (25)
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Finally, based on Definition 8, the ranking of alternatives is derived.

Example 7. (Example 6 continuation) Based on the final average consensus degree of experts,

the collective decision matrix can be calculated as:

r̄ij =



c1 c2 c3 c4

A1 (0.360, 0.438) (0.279, 0.669) (0.625, 0.473) (0.424, 0.579)

A2 (0.446, 0.564) (0.472, 0.405) (0.485, 0.454) (0.432, 0.527)

A3 (0.408, 0.523) (0.481, 0.743) (0.338, 0.608) (0.428, 0.543)

A4 (0.540, 0.583) (0.466, 0.424) (0.376, 0.692) (0.554, 0.658)


As the criteria weight vector is wj = (0.36, 0.24, 0.18, 0.22)T , the final assessment of alternatives are:

Ã1 = (0.402, 0.531) ; Ã2 = (0.454, 0.498) ; Ã3 = (0.417, 0.596) ; Ã4 = (0.496, 0.581) .

Based Definition 8, the ranking of alternatives is: Ã2 � Ã4 � Ã1 � Ã3.

6. Conclusion

A novel trust ordered recommendation mechanism for SN-GDM with multi-paths knowledge

coverage-based propagation has been proposed. This SN-GDM method has the following advantages:

1) The concept of knowledge coverage and a new ranking method of trust functions have been proposed

in this study. As the degree of knowledge coverage shows the credibility of trust information, the

results of the proposed knowledge coverage-based trust propagation are considered reasonable.

2) Among the properties of the proposed knowledge coverage-based trust propagation operator, based

on uninorm and t-norm, are: boundary conditions are more reasonable than the ones of existing

trust propagation operators; it generalises the previous uninorm trust propagation operator when

trust information has perfect knowledge.

3) A knowledge coverage-based multi-paths trust propagation model based on weighted arithmetic

averaging (WAA) operator has been developed. Compared with the existing multi-path trust

propagation model, the proposed model has the advantage of avoiding ignoring trust information

due to the implementation of all trust paths and the penalisation of path’s trust decay.

4) A trust order induced consensus reaching mechanism for GDM is developed in this study. In this

mechanism, subjective trust degrees are from experts’ completed trust sociometric, while objective

trust degrees are derived from their consensus degree. A trust order induced recommendation

mechanism is proposed by combining subjective and objective weights. This recommendation

mechanism allows the inconsistent experts to accept the advices they trust, making it reasonable

and feasible in practice.
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