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 30 

Abstract 31 

Past versions of global surface temperature (ST) datasets have been shown to 32 

have underestimated the recent warming trend over 1998-2012. This study uses a 33 

newly updated global land surface air temperature and land and marine surface 34 

temperature dataset, referred to as China global Land Surface Air Temperature 35 

(C-LSAT) and China Merged Surface Temperature (CMST), to estimate trends in the 36 

global mean ST (combining land surface air temperature and sea surface temperature 37 

anomalies) with the data uncertainties being taken into account. Comparing with 38 

existing datasets, the statistical significance of the global mean ST warming trend 39 

during the past century (1900–2017) remains unchanged, while the recent warming 40 

trend during the “hiatus” period (1998~2012) increases obviously, which is 41 

statistically significant at 95% level when fitting uncertainty is considered as in 42 

previous studies (including IPCC AR5) and is significant at 90% level when both 43 

fitting and data uncertainties are considered. Our analysis shows that the global mean 44 

ST warming trends in this short period become closer among the newly developed 45 

global observational data (CMST), with remotely sensed/Buoy network infilled 46 
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datasets, and reanalysis data. Based on the new datasets, the warming trends of global 47 

mean land SAT as derived from C-LSAT 2.0 for the period of 1979-2019, 1951-2019, 48 

1900-2019 and 1850-2019 were estimated to be 0.296, 0.219, 0.119 and 49 

0.081 °C/decade, respectively. The warming trends of global mean ST as derived 50 

from CMST for the periods of 1998-2019, 1979-2019, 1951-2019 and 1900-2019 51 

were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively. 52 

 53 

Keywords: Global Mean Surface Temperature (GMST); Global Land surface air 54 

temperature (GLSAT); Sea surface temperature (SST); Trends; Dataset 55 

 56 
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1. Introduction 58 

The latest two IPCC scientific assessment reports (IPCC, 2007, 2013) pointed 59 

out that the warming of the climate system is unequivocal, The Global Mean Surface 60 

Temperature (GMST) is inferred from the land surface air temperature (LSAT) and 61 

sea surface temperature (SST) from in situ observations. Previous studies have shown 62 

that differences in the estimates of short-term trends are still relatively large, which 63 

prompted a debate within the climate community about a “hiatus” or “slowdown” in 64 

the warming over the 15 years following the 1997/1998 El Niño event (Cahill et al., 65 

2015; Lewandowsky et al., 2015; Karl et al., 2015; Fyfe et al., 2016; Simmons et al., 66 

2017; Rahmstorf et al., 2017；Medhaug et al., 2017; Lewandowsky et al., 2018; 67 

Risbey et al., 2018).  68 

Over the past 30 years, several global LSAT datasets have been developed and 69 

have continuously been improved (Jones and Wigley, 2010; Hartmann et al., 2013; 70 

Hawkins and Jones, 2013). These include CRUTEM (Jones and Moberg, 2003; Jones 71 

et al., 2012), GHCN (Peterson and Vose, 1997; Smith and Reynolds, 2005; Smith et 72 

al., 2008; Lawrimore et al., 2011; Menne et al., 2019), GISTEMP (Hansen et al., 1999, 73 



5 

 

2001, 2006; Lessen et al., 2019), Berkeley Earth Surface Temperature (BEST) 74 

(Muller et al., 2013). Lugina et al (2006) and the Japan Meteorological Agency (JMA) 75 

also released their own datasets in recent years 76 

(http://ds.data.jma.go.jp/tcc/tcc/products/gwp/temp/ann_wld.html). With the 77 

continuous collection of climate data, improvements to data quality control and 78 

assurance technology and to the various spatio-temporal analysis methods, the trends 79 

of global/hemispheric mean LSATs have been updated by different research institutes 80 

(Hartmann et al., 2013). The demand for accurately estimating the magnitude of 81 

LSAT trends in monitoring climate change on global and regional scales is increasing 82 

day by day (Stott and Thorne, 2010). Recently, an international effort from China Sun 83 

Yat-Sen University (SYSU) and China Meteorological Administration (CMA), UK 84 

University of East Anglia (UEA), Environment and Climate Change Canada (ECCC), 85 

Australia Bureau of Meteorology (BOM) and USA State University of New York 86 

(SUNY) Albany published a new homogenized and integrated global LSAT dataset 87 

(C-LSAT), partly addresses this requirement (Xu et al., 2018).  88 

Several SST data sets have also been developed by independent groups and are 89 

http://ds.data.jma.go.jp/tcc/tcc/products/gwp/temp/ann_wld.html
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available for study, with several of these updated monthly or more frequently. Some 90 

analyses use only in situ observations, prominent examples being the Extended 91 

Reconstructed SST (ERSST; Smith et al., 1996; Huang et al., 2015, 2017a), UK 92 

Hadley SST version 3 and version 4 (HadSST3/4, Kennedy et al., 2011a; 2011b; 93 

2019), and JMA’s Centennial Observation-Based Estimates of SSTs (COBE-SST; 94 

Ishii et al., 2005), COBE-SST version 2 (COBE-SST2; Hirahara et al., 2014). The 95 

most recent ERSST version (ERSSTv5) and HadSST4 use newly released data 96 

archives from International Comprehensive Ocean-Atmosphere Data Set (ICOADS) 97 

3.0 (Freeman et al., 2017), which  improves SST spatial and temporal variabilities 98 

and absolute SST (Huang et al., 2017a, 2018). HadSST is used in HadCRUT and 99 

Berkley Earth (BE) analysis. ERSSTv5 is used in NOAAGlobalTempv5 (Zhang et al., 100 

2019) and GISTEMP analyses.  101 

IPCC’s AR5 (IPCC, 2013) pointed out that, when updates have been made to all 102 

three GMST datasets (Hansen et al., 2010; Morice et al., 2012; Vose et al., 2012) used 103 

in AR4 (IPCC, 2007), GMSTs are in a somewhat better agreement with each other 104 

over recent years. For example, HadCRUT4 now has better sampling over the 105 
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Northern Hemisphere high latitude land areas (Jones et al.,2012; Morice et al., 2012), 106 

as comparisons with HadCRUT3 showed an underestimation of recent warming 107 

(Simmons et al., 2010). Recently, scientists have concluded that differences in the 108 

way that datasets handle data sparse areas such as the polar regions can result in a 109 

sampling "bias" of surface air temperature (SAT), especially in the so-called "hiatus" 110 

period during 1998-2012. (Cowtan and Way, 2014 and 2018; Karl et al., 2015; Huang 111 

et al., 2017a; Simmons et al., 2017). Cowtan and Way (2014) developed a hybrid 112 

version of global surface temperature: Satellite data were used to reconstruct an SAT 113 

series in the regions that are not covered by HadCRUT4 data (about 16% of global 114 

area by their evaluation, including parts of Africa and South America, so not just 115 

polar regions), which increases the temperature trend from 0.046°C/decade to 116 

0.119°C/decade for the period of 1997-2012. Huang et al. (2017b) interpolated data 117 

from the International Arctic Buoy Observatory (IABO) data and found that the trend 118 

of warming was 0.112℃/decade over the period 1998-2012, which is higher than the 119 

trend in the NOAAGlobalTempv4 (formerly Merged Land and Ocean Surface 120 

Temperature dataset (MLOST)) data over the same period (about 0.050 °C/decade). 121 
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Also Zhang et al. (2019) showed that the updated surface temperature data tends to 122 

give a more consistent view of climate trends (from 0.070 °C/decade in v4 to 123 

0.073 °C/decade in v5 during 1880-2018). Simmons et al. (2017) showed that the 124 

infilled observational datasets agreed better with both ERA-Interim and JRA-55 125 

reanalysis and provided similar global mean surface warming trends since 1979, but 126 

their warming trends over 1998-2012 (0.140 and 0.090 °C/decade) were larger than 127 

any of the in situ observational datasets used in IPCC 5th Assessment Report (AR5) 128 

(Hartmann et al., 2013).  129 

In this paper, we used a new merged global ST dataset- China Merged Surface 130 

Temperature, CMST (Yun et al., 2019; Li et al., 2020a) based on the most recently 131 

published C-LSAT (Xu et al., 2018) and ERSST v5 (Huang et al., 2017a) datasets, 132 

and conducted a systematic comparison of the global LSAT and ST trends during the 133 

“hiatus” or “slowdown” period (1998-2012) among the existing datasets. Based on 134 

these, we present a new evaluation of the global ST trends.  135 

This paper is arranged as follows: the datasets and the methodology are briefly 136 

introduced in section 2; the update of the C-LSAT and the trends evaluation for 137 
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different time scales are introduced in section 3; the analysis results are given in 138 

section 4; some reasons for the differences and uncertainty assessment of global ST 139 

changes are discussed in section 5, and the conclusions are presented in section 6. 140 

2. Datasets and their processing methods 141 

2.1 LSAT and SST datasets  142 

A total of 14 data sources have been collected and integrated into the C-LSAT 143 

dataset including three global (CRUTEM4, GHCN, and Berkeley SAT), three 144 

regional sources and eight national sources (including homogenized datasets from 145 

Australia, Canada, China, and United States). Inhomogeneities in the data series are 146 

detected and adjusted for using a penalized maximal t-test (50% of all stations), then 147 

the station series are converted into 5 ° × 5 ° latitude by longitude grids data (for 148 

complete details see Xu et al., 2018). The C-LSAT version used in this paper includes 149 

the update described in Yun et al. (2019) and Li et al. (2020a), and will be detailed 150 

described in section 3. The newly updated China global Land Surface Air 151 

Temperature dataset (C-LSAT-2.0) is available at 152 

https://doi.pangaea.de/10.1594/PANGAEA.919574. 153 

https://doi.pangaea.de/10.1594/PANGAEA.919574
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In this paper, several other LSAT datasets including Climatic Research Unit 154 

(CRU) CRUTEM4, NOAA Global Historical Climate Network dataset (GHCN) v3, 155 

Berkeley SAT and NASA GISTEMPv3 (all were downloaded in the first half of 2018 156 

when the start of drafting this paper began, and most of the datasets have been 157 

updated during these two years) are also used to calculate/compare global LSAT 158 

trends. For consistency, the time periods for all the datasets have been set to Jan 1900 159 

to Dec 2017 (since section 4). For CRUTEM4, we use the latest version CRUTEM4.6. 160 

GISTEMP has two versions with different degrees of spatial smoothing: 250km and 161 

1200km. GISTEMP (1200km) starts in 1880 and GISTEMP (250km) starts in 1902. 162 

GHCNv3 has the same resolution as C-LSAT and CRUTEM4, and Berkeley SAT is 163 

at 1°×1° latitude by longitude resolution, which has been interpolated using Kriging 164 

methods.  165 

Of the SST datasets mentioned in section 1, two (HadSST and ERSST) have 166 

been used to merge with LSAT to develop global ST datasets to assess global surface 167 

warming trends. ERSSTv5 (Huang et al., 2017a) uses new data sets from ICOADS 168 

Release 3.0 SST (Freeman et al., 2017), measurements from Argo floats down to 5 169 
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meters depth, and Hadley Centre Ice-SST version 2 (HadISST2) (Titchner and Rayner, 170 

2013) ice concentrations. ERSSTv5 has improved SST spatial and temporal 171 

variability and absolute SST. HadSST3 is an ensemble dataset, the median of the 100 172 

ensembles of HadSST3 is adopted to calculate the SST trends. For comparison, both 173 

of the two SST datasets have been used to merge with C-LSAT, respectively, in this 174 

paper. 175 

2.2 Global ST datasets 176 

After systematic comparisons, CMST was developed based on the C-LSAT and 177 

ERSSTv5 (Yun et al., 2019; Li et al., 2020a) and used to calculate long-term trends of 178 

GMST, similar to what was undertaken in Vose et al. (2012). The C-LSAT and 179 

ERSSTv5 are merged as follows: The monthly SSTs on 2°x2° grids and LSATs on 180 

5°x5° grids are both first interpolated to 1°x1° grid, which is distributed in four grids 181 

of 1°x1° for SSTs and in 25 grids of 1°x1° for LSATs, and then box-averaged to 5°x5° 182 

deg grids according to the ratio between ocean and land areas for each individual grid 183 

box (Yun et al., 2019). The newly China global Merged Surface Temperature dataset 184 

(CMST) is available at https://doi.pangaea.de/10.1594/PANGAEA.919662. 185 

https://doi.pangaea.de/10.1594/PANGAEA.919662


12 

 

The GMST series are calculated as follows: LSAT and SST anomalies are 186 

calculated relative to the reference period 1961-1990, and only those stations/grids 187 

with at least 15 years of values during 1961-1990 are calculated. The gridding of the 188 

land surface air temperature anomalies is undertaken by averaging all values within 5 ° 189 

× 5 ° grids (Jones and Moberg, 2003; Xu et al., 2018). Regional (North Hemisphere, 190 

South Hemisphere, and Tropics) series are calculated in the same way. 191 

Four other global observation-based ST datasets including HadCRUT4, 192 

NOAAGlobalTempv4, Berkeley Earth (BE), and GISS v3 (downloaded in the first 193 

half of 2018) are also analyzed in this paper (each with time periods set to Jan 1900 to 194 

Dec 2017). Of these, BE provided two versions of merged global ST datasets, which 195 

differ in how the sea ice is treated. In the first version (BE1), temperature anomalies 196 

in the presence of sea ice are extrapolated from land-surface air temperature 197 

anomalies. In the second version (BE2), the anomalies are extrapolated from 198 

sea-surface water temperature anomalies (usually collected from open water areas 199 

near the periphery of the sea ice). It should be noted that all the global ST datasets 200 

have been updated since the publication of IPCC AR5, so the trends may be different 201 
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from those published there, even if the version numbers have not been changed. For 202 

example, HadCRUT4 used an earlier version of CRUTEM4 in AR5, but 203 

CRUTEM4.6 at present; MLOST has been replaced by NOAAGlobalTempv4 since 204 

2015, and also GISS has been updated several times on its use of SST datasets 205 

(currently, it uses ERSSTv5) and its uncertainty model (Lenssen et al., 2019).  206 

Two other global ST analyses for shorter periods are also used in this paper. They 207 

are the comprehensively analyzed ECMWF ERA5 (Hersbach et al., 2020) and 208 

HadCRUT4 hybrid (Cowtan and Way, 2014). ERA5 provides a 2m temperature 209 

product from optimal-interpolation analyses of screen-level observations, using 210 

background fields provided by their main 4D-Var data assimilation schemes (with 211 

more observational data input along with CMIP5 greenhouse gases, volcanic 212 

eruptions, SST and sea-ice cover as the model input). In this study, we also used the 213 

ERA5 analysis fields over the land and the background fields over the oceans 214 

(https://climate.copernicus.eu/climate-bulletin-about-data-and-analysis) (Hersbach et 215 

al., 2020). The HadCRUT4 hybrid is the HadCRUT4 infilled using data from the 216 

University of Alabama in Huntsville (UAH) satellite data. Here, we use the median of 217 

https://www.baidu.com/link?url=hmzV_m7ml4CDrWF0d_RogOjwOxtLlhntOoSSgFvE0-i&wd=&eqid=d6f0a63e0002802b000000065b657069
https://www.baidu.com/link?url=hmzV_m7ml4CDrWF0d_RogOjwOxtLlhntOoSSgFvE0-i&wd=&eqid=d6f0a63e0002802b000000065b657069
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the ensembles from HadCRUT4 as in Cowtan and Way (2014). Both of these two 218 

datasets cover the period from January 1979 to December 2017. 219 

2.3 Estimation of trend and its uncertainty 220 

The fitting uncertainty arises because there are many and various combinations 221 

of trend and noise that could have combined to give the observed series. Usually, the 222 

95% confidence interval, expressed as β ± δ for trend estimate β in this study, 223 

corresponds to the range of trends that have 5% or less chance of occurring by chance. 224 

This is based on the assumption that the annual temperature samples are 225 

approximately Gaussian distributed, but sample size also matters: The smaller the 226 

sample size, the more challenging it is to obtain good accuracy for trend estimates. 227 

Estimates of trend over a shorter period (like the period 1998-2012, in this paper) are 228 

thus more challenging. Similar to IPCC (2013), the long-term trend of global GMST 229 

and GMSAT and its significance under the 95% level (~1.96 sigma) are calculated by 230 

using the method of Restricted Maximum Likelihood Regression (REML, Diggle et 231 

al., 1994). The REML method is the basic method used to calculate climate change 232 

trend since IPCC TAR. Having the autocorrelation of temperature series been 233 
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considered, it is more insensitive to extreme values than ordinary least squares. 234 

Therefore, it is more suitable to be used as a calculation method of climate change 235 

trend, especially for climate elements with autocorrelation such as temperature. So the 236 

trends and its uncertainties are mostly estimated based on REML (Tables 1-4). 237 

However, recent studies (Cahill et al., 2015; Rahmstorf et al., 2017) state that 238 

almost every treatment of the significance of “hiatus” trends, including the IPCC 239 

reports, was based on an uncertainty method without consideration of part of the data 240 

uncertainties (the autocorrelation of the residual of linear fitting has not been 241 

considered) and has overestimated the significance of the change in trend. Although 242 

the existing global LSAT, SST datasets have generally been thought reliable, the 243 

uncertainties in global and regional ST during the past 100 years still attracts attention 244 

in recent studies (Brohan et al., 2006; Li et al., 2010; Kennedy et al., 2011a, b; Morice 245 

et al., 2012; Hartmann et al., 2013; Kennedy, 2014; Karl et al., 2015; Huang et al., 246 

2015; 2017a; Li et al., 2017). According to Brohan et al. (2006) and Kennedy et al. 247 

(2011a; 2011b), uncertainties in the LSAT and SST are divided into 3 types: (1) 248 

station error (measurement error), (2) sampling error, and (3) bias error. Of these, the 249 
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bias error is the most important at long-term and large scales and is the most clearly 250 

expressed in long-term trends in the global average for SST. Sampling errors are the 251 

most important at regional scales especially for the regions with relatively sparse 252 

observations (Li et al., 2020b; Li and Yang, 2019).  253 

To compare with the significance of the GMST trends, in this study we estimated 254 

the data uncertainty using the spread of linear trends estimated from the time series 255 

that is perturbed by its standard deviation (STD) (Figure 1), following the similar 256 

approach of Karl et al. (2015) : (1) a time series is detrended; (2) the STD of the 257 

detrended time series is calculated; (3) a random temperature perturbation is selected 258 

based on a Gaussian distribution with zero mean and STD in (2); (4) a 1000-member 259 

ensemble time series is generated; (5) linear trend and its fitting uncertainty is 260 

calculated for all 1000 members; (6) the STD of the trend is defined as the data 261 

uncertainty, and the ensemble averaged fitting uncertainty is defined as the final 262 

fitting uncertainty; (7) the total uncertainty is defined as the root square mean of the 263 

data uncertainty and final fitting uncertainty. This provides an ensemble approach for 264 

evaluating the total uncertainties and the significance of the GMST trend. The results 265 
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are given in Table 5.  266 

3. Update of C-LSAT and its uncertainties evaluation 267 

3.1 Interannual variation of LSAT anomaly and its uncertainty 268 

Much progress has been made in the uncertainties estimation of the observational 269 

datasets (Brohan et al., 2006; Folland et al., 2001; Li et al., 2010; 2020a; Wang et al., 270 

2014; Kent et al., 2017; Menne et al., 2018; Huang et al., 2019; Lesson et al., 2019) . 271 

The model produced by the Brohan et al. (2006) and Li et al. (2010) is used in this 272 

article. In this model uncertainties in the land data are divided into three types: (1) the 273 

uncertainties of individual station anomalies (station error); (2) the uncertainties in a 274 

grid box mean caused by estimating the mean from a small number of point values 275 

(sampling error); and (3) the uncertainties in large-scale temperatures caused by 276 

systematic changes in measurement methods (bias error). The total uncertainties value 277 

for any grid box can be obtained by adding the square root of the three errors. 278 

Figure 2 shows the GLSAT anomaly and its 95% uncertainty range arising from 279 

station error, sampling error, bias error, and spatial coverage errors, and a comparison 280 

with the best estimate. It can be seen in the figure that the sampling error and station 281 
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error have become smaller with time, and have remained stable after the 1950s. The 282 

greater uncertainty of the series in the first 50 years comes from insufficient data 283 

coverage; and the temperature series shows significantly larger inter-annual 284 

variability in the 50 years before the 20th century, due to the scarcity of station 285 

distribution. Inter-annual variability becomes much smaller after 1900, which is 286 

somewhat similar to China (Li et al., 2010; Li et al., 2017). The only difference is that 287 

the uncertainty of GLSAT is smaller than the regional scale average (Li et al., 2020b). 288 

The GLSAT was mainly dominated by fluctuations from 1850s to the late 1970s. 289 

The series reached an extreme value (anomaly 0.18 ° C) in 1878, and then sharply 290 

decreased during the middle and late 1880s, after which, it rose to the late 1930s by 291 

fluctuations, and reached another extreme value (anomaly 0.26 ° C) in 1938 . The 292 

series then experienced a relatively cooling period to the mid-1960s, and then entered 293 

a continuously rapid warming period when it reached a new extreme value (anomaly 294 

1.40 ° C) in 2016. It slightly declined in recent years, but remained high with the 295 

fourth (2017, anomaly 1.18 ° C), sixth place (2018, anomaly 0.96 ° C) and third place 296 

(2019, anomaly 1.24 ° C) since 1850s. If we calculate the difference between the 297 
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GLSAT anomalies in the last 10 years and those for the pre-industrial period 298 

(represented by the 1850-1900 averages), the number is 1.52 ° C (about 1.40 ° C for 299 

the last 20 years). That is, the GLSAT has now risen close to 1.5 ° C from the 300 

pre-industrial period. 301 

Judging from the 95% uncertainty range the GLSAT series (the inset of Figure 302 

2a), the annual uncertainties were greater than 0.2 ° C during the period of 1850 - 303 

1880, after which they dropped to 0.15 ° C and below during the period of 1881-1900; 304 

and after 1901 they dropped to 0.1 ° C and below reaching their lowest value of about 305 

0.07 ° C after 1951. This result is very close to GISSTEMP, GHCN4, Bekeley SAT, 306 

and CRUTEM4 (Lesson et al., 2019), which also shows that the current accuracy is 307 

broadly similar among the existing GLSAT datasets in describing the GLSAT change 308 

(Li et al., 2020a). 309 

3.2 Long-term trends of GLSAT and their uncertainties 310 

The long-term trend of GLSAT anomaly from 1850 to 2019 and the 95% 311 

uncertainties range were calculated for several periods (Table 1). Regardless of 312 

whether only the fitting uncertainty is considered, or the fitting and data uncertainty 313 
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are fully considered, the trends of LSAT changes in 1850-2019, 1901-2019, 314 

1951-2019, 1979-2019 and 1998-2019 all significantly positive at 5% level, with the 315 

linear trends of 0.081 ± 0.014, 0.119 ± 0.023, 0.219 ± 0.042, 0.296 ± 0.077, and 0.234 316 

± 0.198 ° C per decade, respectively. Among these, since 1979, the surface air 317 

temperature has risen close to 0.3 ° C every 10 years, which is the period of fastest 318 

warming since the record began in the middle of the 19th century. 319 

4. Comparison and evaluation on the global LSAT and ST trends 320 

4.1 Comparisons on global LSAT and ST trends since 1998 321 

4.1.1 Global LSAT changes 322 

Xu et al. (2018) showed that C-LSAT obtained similar SAT trends to those in 323 

CRUTEM4 and GHCNv3 in continental areas for the period 1900-2014 (with faster 324 

warming rates in Asia and slower in Africa and Antarctica (1951-2014)) (Tables 5 and 325 

6 in their paper). Figure 2 shows the distribution of the linear trends for SAT in all the 326 

grid boxes for the six datasets: C-LSAT, CRUTEM4.6, GHCNv3, GISTEMPv3 327 

(200km and 1200km) and Berkeley SAT. GISTEMP and Berkeley SATs use similar 328 

station distributions to GHCNv3. It is worth mentioning that there are some strong 329 
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spatial variations of some neighboring grid boxes for the shorter-term periods (Figure 330 

3a), which is also occasionally found in other datasets (Figure 3 b-d), due to the 331 

different lengths of the data series in several grid boxes (Xu et al., 2018). Obviously, 332 

C-LSAT has the greatest coverage in comparison with other datasets especially in the 333 

higher latitude regions (Arctic and Antarctic) and the Tropics (30°S-30°N) (Figure 3; 334 

Xu et al., 2018 and Yun et al., 2019), except for GISTEMP (1200km smoothing) and 335 

Berkeley SAT due to spatial smoothing and infilling. C- LSAT includes more than 336 

1,000 station data series in the Arctic (60°N-90°N), which is much more than used 337 

CRUTEM4 and GHCNv3/GISTEMPv3 (but no more data in the Antarctic) during 338 

1998-2012 (Figures 2a-f). Figure 4 shows the annual mean LSAT anomaly series for 339 

C-LSAT, CRUTEM4, and GHCNv3 in the Arctic (land area in 60-90°N) and at global 340 

scales in all 5 datasets during 1998-2012 (1998-2017). In the Arctic, the linear trends 341 

of LSAT are calculated for different datasets as follows: 0.747, 0.798, and 342 

0.559°C/decade, respectively (Figure 4a). The former two are much larger than the 343 

latter one, which agrees well with Cowtan and Way (2014) and Huang et al. (2017b). 344 

We also notice that the linear trend of LSAT has been changed to 0.080 °C/decade for 345 



22 

 

GHCNv4, which further shows the trend in this region was underestimated for 346 

GHCNv3 (0.052 °C/decade, Table 2).  347 

At the global scale, the linear trends for LSAT are calculated for C-LSAT1.3, 348 

CRUTEM4.6, GHCNv3, GISTEMPv3, and BEST, respectively (Table 2). The global 349 

LSAT trends in GHCNv3 and Berkeley SAT are the smallest and the largest, 350 

respectively, which is related to the higher anomalies during 1998 to 2002 for 351 

GHCNv3 and for 2007 to 2012 for Berkeley SAT analysis. Only the trend in C-LSAT 352 

is significant at the 5% level. GISTEMPv3 shows lower anomalies during the whole 353 

15-year period (Figure 4b).  354 

Further, the trends of the 6 global mean LSATs for the different periods of 355 

1998-2017, 1979-2017, 1951-2017, and 1900-2017 have been calculated and shown 356 

in Table 2. The trends for 1998-2017 are all significant at the 5% level. The LSAT 357 

trend from C-LSAT is higher than those derived from CRUTEM4.6, GHCNv3, and 358 

GISTEMPv3, but similar to that from Berkeley since 1998. The differences in the 359 

warming trends among all the datasets become smaller with the extension of the time 360 

scales. 361 
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4.1.2 Global ST changes 362 

Of all the global ST datasets used in this paper, CMST, GISS and 363 

NOAAGlobalTemp use ERSST (CMST and GISSv3 use ERSSTv5, and 364 

NOAAGlobalTempv3 uses ERSSTv4, but the newly released NOAAGlobalTempv4 365 

uses ERSSTv5 at present), HadCRUT4 and BE use 100 ensembles of HadSST3 (in 366 

this paper, we use the median of the 100 ensembles). Figure 5 shows the distribution 367 

of the linear trends of GMSTs in the period of 1998-2012 averaged over all available 368 

grid boxes in the six observational datasets and the other two datasets (HadCRUT 369 

Hybrid and ERA5). The main characteristics of the GMST trends are very similar to 370 

each other: Cooling trends are mostly found in East Asia (West Pacific Ocean), 371 

western North America including the northeastern North Pacific and the South Pacific. 372 

Warming trends are more significant in the high latitudes of the Northern Hemisphere. 373 

It should be noted that ST changes during the short-term period (1998- ) have more 374 

differences than those during the longer periods (1900-, 1951- and 1979- ). The latter 375 

show almost consistent warming trends at global scales (IPCC, 2007; 2013, also 376 

shown in Figure 9 of Xu et al. (2018).  377 
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Figure 6 shows the 6 observational global annual mean ST anomalies series, 378 

ERA5 ST series and HadCRUT Hybrid (with UAH) ST series over 1998-2012 379 

(1998-2017) (all are relative to 1981-2010 averages). The linear trends of global ST 380 

are calculated for each dataset. They are 0.091, 0.055, 0.084, 0.071, 0.110, 0.079, 381 

0.140, and 0.120°C/decade, respectively, in CMST, HadCRUT4, 382 

NOAAGlobalTempv3, GISSv3 (1200km), BE1, BE2, ERA5, and HadCRUT Hybrid 383 

(Table 3). Of these, HadCRUT4, GISSv3, BE2, and NOAAGlobalTempv3 (all the 384 

existing observational datasets) have similar warming trends, but lower than those 385 

during 1900-2017 and still insignificant at the 5% level. In contrast, ERA5, 386 

HadCRUT Hybrid and BE1 have much larger warming trends than others. BE1 has 387 

larger trends than BE2 because its temperature anomalies over the sea-ice area are 388 

extrapolated from land-surface air temperature anomalies (instead of the nearby 389 

sea-surface water temperature anomalies in BE2). Simmons et al. (2017) showed that 390 

the recent reanalysis (ERA-Interim: 0.140℃/decade, and JMA-55: 0.090℃/decade) 391 

exploited the richness of the observing system that has been in place over recent 392 

decades and extended the data coverage spatially. In this paper, our calculation 393 
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indicates that the warming trends in the recently released ERA5 (Hersbach et al., 2020) 394 

were 0.140±0.112℃ /decade (the same as with Simmons et al. (2017) using 395 

ERA-Interim) over the periods 1998-2012. This is slightly larger than that in CMST 396 

analysis (0.091±0.088℃/decade). Therefore, it is clear that the global "warming 397 

hiatus" trend is only a statistical artifact over this period of time, as Lewandowsky et 398 

al. (2015) and Cowtan et al. (2018) pointed out. Although Medhaug et al. (2017) and 399 

other studies pointed out that there was subduction of heat into the oceans during the 400 

period 1998-2012. From the current study, this heat subduction does not lead the 401 

“slowdown” of global warming rate.  402 

Further, the CMST analyses show that the global ST warming rate for the period 403 

1998-2017 is 0.190°C/decade, which is a little larger than that over 1979-2017, much 404 

larger than that over 1951-2017 (0.133°C/decade), and more than double the rate over 405 

1900-2017 (0.086°C/decade) (Table 3). The most recent two years still continue to be 406 

warm years (2018 is the 5th warmest years, and 2019 is the 3rd warmest year), so the 407 

global ST warming rate for the period since 1998 (i.e. (1998 to 2019) would scarcely 408 

alter this evaluation (Li et al., 2020a). 409 
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4.2 Evaluation on Global and Hemispheric ST changes from CMST since 20th 410 

Century  411 

4.2.1 Global Mean ST changes 412 

According to IPCC AR5, GMST has increased since the late 19th century. Each 413 

of the past four decades has been significantly warmer than all the previous decades 414 

in the instrumental record, and the first and second decades of the 21st century have 415 

been the warmest two. For LSAT, Xu et al. (2018) discussed that the long-term trends 416 

for 1900-2014 evaluated from C-LSAT, CRUTEM4 and GHCNv3 are very close to 417 

each other. For Global ST change since 1880, IPCC AR5 listed 3 existing global 418 

observational datasets (HadCRUT4, NOAAGlobalTempv3 and GISSv3) and gave 419 

linear trends of 0.062 ± 0.012, 0.064 ± 0.015 and 0.065 ± 0.015°C/decade, 420 

respectively, for global mean ST changes over the period 1880-2012. Although the 421 

1998-2017 warming trend is significantly higher in C-LSAT than all the other existing 422 

observational datasets except for Bekerley SAT, which uses a different gridding 423 

method, the global LSAT warming trends from C-LSAT over 1900-2017 are similar to 424 

CRUTEM4.6, GHCNv3 (also see the Figures 7, 8 in Xu et al. (2018)), GISTEMPv3, 425 
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and Berkeley SAT analysis (Table 2). The global ST warming trends for 1900-2017 426 

are also similar to each other for CMST, HadCRUT4, NOAAGlobalTemp, GISSv3, 427 

BE1 and BE2 (Table 3). 428 

Further, we compared the GMST series derived from CMST with those derived 429 

from five other datasets during 1900-2017 and found that all the datasets agree well 430 

with each other on the surface temperature changes at the global scale in the past 431 

century, and the differences mainly exist at smaller spatial or temporal scales (Figure 432 

7). Recently, we have confirmed that the consistency of the current GLSAT and 433 

GMST warming trends after 1880 is further strengthened (Li et al., 2020a). 434 

Figure 8 shows the global, hemispheric and tropical-belty (30°S to 30°N) mean 435 

ST series based on CMST over the period of 1900-2019. Although with some spatial 436 

and temporal variability of local ST, CMST showed similar decadal and long-term 437 

changes to previous studies: the global mean ST experiences rapid warming during 438 

two periods: from 1910s to mid-1940s and from mid-1970s to present. The linear 439 

trends for global and regional ST change for different time periods are given in Table 440 

4 and Table5. From Table 5, the estimated warming trends for global mean ST over 441 
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1900-2019 and 1951-2019 are 0.091°C/decade and 0.145°C/decade, respectively. 442 

4.2.2 Hemispheric and Tropical Belt ST changes 443 

Figures 8b-d show the Hemispheric and Tropical Belt ST changes during 444 

1900-2019 based on CMST, with linear trends and their 95% uncertainties listed in 445 

Table 4. We noticed that for the NH and Tropics regions, the linear trends are 446 

continually increasing for the periods of 1900-2019, 1951-2019, 1979-2019, and 447 

1998-2019, which shows the totally opposite results to what might be expected from 448 

the term “warming hiatus” over 1998-2012. Exceptions happen in the SH (the linear 449 

trends and their 95% confidence intervals are 0.077±0.006, 0.113±0.011, 0.079±0.022, 450 

and 0.125±0.055°C/decade for the period 1900-2019, 1951-2019, 1979-2019, and 451 

1998-2019, respectively), which could be related to the recent cooling trends in the 452 

South Pacific region with lower warming rates over the Southern Hemisphere Oceans. 453 

It should be noted that the warming trend is greater (but with larger uncertainty) in the 454 

tropics than at global scales during the recent 20 years, which is different from that for 455 

longer term periods. The reason for the different warming trends between the tropics 456 

and global surface could be related to the relatively strong El Niño-Southern 457 
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Oscillation events in recent years (Trenberth et al., 2002; Zhai et al., 2015). Table 3 458 

also shows that the differences between the warming rates in the NH and SH were 459 

getting larger during the last century. That is, the warming in NH and the Tropics is 460 

faster than that in the SH, which may change the balance of surface atmospheric 461 

energy (Peterson et al., 2011). This also shows that HadCRUT Hybrid possibly 462 

overestimating the warming trends since 1998 from the comparisons with CMST and 463 

other observational datasets (Figure 5 and their Figure 2 in Cowtan and Way (2014)), 464 

especially in the Southern Hemisphere. 465 

5. Discussions 466 

5.1 Differences due to data processing methods 467 

All the datasets discussed above can be divided into two types: the first type is 468 

observational datasets without interpolation (or interpolated with small scanning 469 

radius), which includes C-LSAT (CMST), CRUTEM (HadCRUT4), GHCNv3 470 

(NOAAGlobalTempv3), and GISTEMPv3-250km (GISS-250km). The other type 471 

includes all the interpolated/infilled datasets (Berkeley Earth (BE1, BE2), and 472 

GISTEMP-1200km (GISSv3-1200km)), infilled datasets (e.g., HadCRUT Hybrid), 473 
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and reanalysis datasets (e.g., ERA5). It needs to be noted that GHCNv3 474 

(NOAAGlobalTempv3) and GISTEMP-250km (GISSv3-250km) indeed contain a 475 

certain degree of interpolation, but the scanning radius of interpolation is small, which 476 

is insufficient to fill the grids of all missing data over large blank areas. 477 

Cowtan and Way (2014) pointed out that the incomplete global coverage is a 478 

potential source of bias in global temperature reconstructions if the temperatures in 479 

the unsampled regions are not uniformly distributed over the planet’s surface. The 480 

different interpolation/infilling (Kriging, UAH hybrid, IABO, Reanalysis, etc.) always 481 

leads to different results (see their Table 3). In this paper, although there are no direct 482 

relationships between the warming trends and interpolation methods, the trends are 483 

spatially relatively larger in GISSv3-1200km than those in GISSv3-250km (Figures 484 

2d and 2e), but the trends are similar in GISTEMPv3-250km when compared with in 485 

GISTEMPv3-1200km.  486 

A large difference is also seen between BE1 and BE2 (Table 3).  This shows that 487 

the infilling of the temperature anomalies over the sea-ice region with land-surface air 488 

temperature anomalies increases the warming trends during recent decades 489 



31 

 

(1979-2017, 1998-2012 and 1998-2017). But it is interesting that the infilling 490 

decreases the trends during the longer periods (1900-2017; 1951-2017). This 491 

difference may be due to that some of the SAT data used in the infilling have been 492 

observed only during recent decades; these short ice SAT series increase the recent 493 

warming trends with better spatial sampling but were excluded when calculating 494 

long-term trends. This infilling possibly brings some inhomogeneities into the 495 

global/regional mean ST changes (and using UAH satellite data hybrid procedure 496 

would have a similar issue) as Xu et al. (2018) discussed. Therefore, the 497 

reconstruction of the long-term ST series in high latitudes is still open for discussion 498 

(Karl et al., 2015; Huang et al., 2017b). 499 

Our study indicates that the difference of C-LSAT from CRUTEM, GHCNv3, 500 

and GISTEMPv3-250km results from the fact that the number of used stations in Asia, 501 

Arctic, Africa, and South America is much higher in C-LSAT than GHCNv3 but only 502 

slightly higher than CRUTEM4 for the entire analysis period. But the station densities 503 

in the latter 3 regions are still relatively low (figure 6 in Xu et al. (2018)). The 504 

differences among Global ST datasets are more complicated, but CMST obtains 505 



32 

 

slightly larger trends than those from existing observational datasets, similar to those 506 

from ERA5, and closer to other reconstruction results with satellites.  507 

5.2 The impact of SST analysis to the global mean ST trends 508 

Measurements of SST have been made for more than 200 years for a wide variety 509 

of purposes. More complicated uncertainty quantification methods have been 510 

proposed for historic SST datasets than those with LSAT datasets (Kennedy, 2014, 511 

Kent et al., 2017; Huang et al., 2016, 2019). Previous studies pointed out that 512 

different SST analyses may be the main contributor of the inconsistencies of global 513 

STs (Simmons et al., 2017). Here we find similar features by analyzing the results of 514 

the global merged ST changes using ERSST5 and the median of the ensemble of 515 

HadSST3 (Figure 9). The result shows that the CMST (Merge1, C-LSAT+ERSSTv5) 516 

is colder than Merge2 (C-LSAT + median of HadSST3) during 1920s -1970s, and 517 

from 2000s to present, but the long-term trends for different merging methods (for the 518 

period of 1900-2017) remain similar. These results are very similar to the differences 519 

between the HadSST3 and ERSSTv4 described in Figure 9a of Huang et al. (2016). 520 

There are some differences, however, in the trends over the longer time periods since 521 
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1900, which is related to the SSTs being higher in HadSST3 than ERSSTv5 due to 522 

higher ship SST bias corrections in the 1880s–1940s and 1950s–1960s as indicated in 523 

Huang et al. (2016).  524 

The linear trends and their 95% uncertainty ranges for global ST series based on 525 

the two different merged datasets are listed in Table 5. It is interesting that the 526 

warming trends in CMST are all larger than those in Merge2 in different periods 527 

except for the period of 1979-2017. This is obvious because the ST anomalies in each 528 

start year (1900, 1951 and 1998) are lower than those in the Merge2 series. That is, if 529 

we choose other start years (for example, 1979, 1981 etc.), the results could alter the 530 

opposite way. Although there are some differences in the global mean ST trends 531 

during the period of 1998-2012 between the two merges, the significances of the 532 

trends are quite similar. In addition, we noticed that the differences between the 533 

merging methods are not more than the 95% of the linear trends fitting uncertainty 534 

range.  535 

5.3 Significance when considering both the data and fitting uncertainties  536 

Note that the trend uncertainties given in the Tables 1-4 are only the fitting 537 
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uncertainties. An ensemble approach has been adopted to better describe complex 538 

temporal and spatial interdependencies of measurement and bias uncertainties and to 539 

allow these correlated uncertainties to be taken into account when the time series is 540 

perturbed by data uncertainty in HadCRUT4 (Morice et al., 2012). Correlated errors 541 

in the station series are quantified by running the homogenization algorithm as an 542 

ensemble in GHCNv4 (Menne et al., 2018). The uncertainties from both C-LSAT and 543 

ERSSTv5 are evaluated, respectively, and then these two are combined into the total 544 

uncertainties of CMST (Li et al., 2020a).  545 

After the data uncertainties are propagated into the uncertainty of trend 546 

calculation, the significance of the GMST trends for different scales mostly remains 547 

the same, except for the trend for the period of 1998-2012, which has changed from 548 

0.091±0.088°C/decade (significant) when only trend fitting uncertainty is included to 549 

0.091±0.094°C/decade (insignificant at the 95% level but significant at the 90% level) 550 

when the fitting and data uncertainties are also included (Table 5). This shows that the 551 

traditional evaluation on the uncertainties indeed overestimated the significance of 552 

trends of 1998-2012, in agreement with the previous studies (Cahill et al., 2015; 553 
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Rahmstorf et al., 2017). This trend is slightly larger than those derived from existing 554 

observational datasets in HadCRUT4, NOAAGlobalTemp, GISSv3 (1200), and BE2 555 

(Berkeley dataset with SST in Polar Region) respectively. It is closer to that from 556 

ERA5, Karl et al. (2015), and the other reconstruction data sets with satellite and 557 

other kinds of observations (Cowtan and Way, 2014; Huang et al., 2017a). 558 

6. Conclusion 559 

The recently released C-LSAT dataset, with more stations at higher latitudes and 560 

improved data quality at sub-continental scales, shows broad consistency with the 561 

recent analyses of recent global LSAT changes. The trends of global mean land SAT 562 

as derived from C-LSAT2.0 for the period of 1979-2019, 1951-2019, 1900-2019 and 563 

1850-2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade, 564 

respectively. 565 

When this data was merged with ERSSTv5, we have produced the new merged 566 

global ST dataset, CMST (Yun et al., 2019; Li et al., 2020a). The updated results 567 

show that the significance of the global ST warming trend over the past century 568 

(1900–2017) remains the same as previous estimates, and that the recent warming 569 
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trend since 1998 increases slightly and is statistically significant. Using the new 570 

dataset CMST, the trend of global mean STs over the period 1998-2012 was estimated 571 

to be a little higher than that of other existing datasets and more significant: It is 0.091 572 

± 0.094°C/decade when both the fitting and data uncertainties were considered, and 573 

0.091 ± 0.088°C/decade when only the fitting uncertainty was considered as in the 574 

AR5 IPCC report. This suggests that the recent temperature changes (including those 575 

record warm years at the end of the series) have likely brought the debate about the 576 

“warming hiatus” to an end. This is opposite to the previous understanding as 577 

described in IPCC AR5 and many other studies (but the AR5 does include a brief 578 

discussion on the uncertainty of trend in B.1 of the Summary for Policy Makers) 579 

(IPCC, 2013b).  580 

Using these new datasets, we have presented an updated evaluation of global and 581 

hemispheric ST changes since 1900. When both the fitting and data uncertainties were 582 

considered, the warming trends of global mean STs for the periods 1900-2019, 583 

1951-2019, 1979-2019, and 1998-2019 are estimated to be 0.091 ± 0.011, 0.145 ± 584 

0.019, 0.173 ± 0.033, and 0.194 ± 0.083 °C/decade, respectively (0.091±0.008, 585 
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0.145±0.014, 0.173±0.026 and 0.195 ± 0.063 °C/decade when only the fitting 586 

uncertainty was considered).  587 

The introduction of newly adjusted sea surface temperature (SST) data (Karl et 588 

al., 2015), with record-setting extreme global temperature for the recent six years 589 

(2014-2019), makes the formulation of the "warming hiatus" gradually fade away. 590 

The newly released C-LSAT and CMST datasets support these results by increasing 591 

the warming trends during the period 1998-2012 (and of 1998-2017) than those in the 592 

previous versions of other existing observational datasets. However, more consistent 593 

trends have been found from the datasets when applying sampling bias correction 594 

using satellites, SAT observation in buoys, and reanalysis, which need to be more 595 

comprehensively validated in future with more new observations and improved 596 

reanalysis. 597 
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Figure 2 The flowchart of the approach of calculating data uncertainty. 861 
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 863 

 864 
Figure 2 The GLSAT anomaly series and its 95% confidence uncertainty range (a: GLSAT with 865 

the error ranges); b: GLSAT series without the error ranges. The anomaly is relative to the 866 

1961-1990 period. The inset in the upper panel shows the uncertainty ranges from different 867 

types of errors; and the inset in the lower panel shows the time series of the total error range. 868 
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(f) 

Figure 3 Distribution of the linear trends of SAT in all grid boxes for different datasets (a. C-LSAT; 871 

b. CRUTEM4.6; c. GHCNv3; d. GISTEMPv3 (250km); e. GISTEMPv3 (1200km); f. 872 

Berkeley SAT. Unit: 0.1 °C/decade) 873 
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(a) 876 

 877 

(b) 878 

Figure 4 Annual mean LSAT anomalies (°C) during 1998–2012 (2017) in Arctic (a) and in Globe 879 

(b) (relative to 1961-1990) 880 
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(i) 

Figure 5 The distribution of the linear trends of ST in all grid boxes during 1998-2012 for different 882 

datasets (a. CMST; b. HadCRUTEM4; c. NOAAGlobalTemp; d. BE1; e. BE2; f. GISS (1200); g. 883 

GISS (250); h. HadCRUT Hybrid; i. ERA5. Unit: 0.1 °C/decade) 884 
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 887 

 888 

Figure 6 Global annual mean ST anomalies (°C) during 1998–2012 for 8 different datasets (the 889 

anomalies are all relative to 1981-2010) 890 
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  893 

Figure 7 Comparisons of the global mean ST change series between CMST and other 5 existing 894 

datasets. 895 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 8 Global (a), North Hemispheric (b), South Hemispheric (c) and Tropical Belt (d) annual 897 

mean ST anomalies (°C) during 1900-2017 in CMST (the dashed lines are linear trends) 898 
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(a) 

 

(b) 

Figure 9 Comparisons of global mean ST change merged with ERSSTv5 and median of HadSST3 900 

(a. ST change series; b. the differences)  901 
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