1	An updated evaluation of the global mean Land Surface Air
2	Temperature and Surface Temperature trends based on
3	CLSAT and CMST
4	Qingxiang LI ^{1#} , Wenbin Sun ¹ , Xiang YUN ² , Boyin HUANG ³ , Wenjie DONG ¹ ,
5	Xiaolan L. WANG ⁴ , Panmao ZHAI ² , Phil JONES ⁵
6	1 School of Atmospheric Sciences and Guangdong Province Key Laboratory for Climate Change
7	and Natural Disasters, SUN Yat-Sen University, Guangzhou, China
8	2 Chinese Academy of Meteorological Sciences, CMA, Beijing, China
9	3 National Centers of Environmental Information, NOAA, Asheville, USA
10	4 Climate Research Division, Environment and Climate Change Canada, Toronto, Canada
11	5 Climate Research Unit, University of East Anglia, Norwich, UK
12	# Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, and Southern
13	Laboratory of Ocean Science and Engineering (Guangdong Zhuhai), Zhuhai, China
14	
15	
16	Submitted to Climate Dynamics
17	Aug 2020
18	
19	
20	*Corresponding author:
21	
22	Dr. & Prof. Qingxiang Li
23	School of Atmospheric Sciences
24	Sun Yat-Sen University
25	Tangjiawan, Zhuhai Campus of SYSU
26	Zhuhai, China, 519082
27	Tel/Fax: 86-756-3668352
28	E-Mail: liqingx5@mail.sysu.edu.cn
29	

Abstract

32	Past versions of global surface temperature (ST) datasets have been shown to
33	have underestimated the recent warming trend over 1998-2012. This study uses a
34	newly updated global land surface air temperature and land and marine surface
35	temperature dataset, referred to as China global Land Surface Air Temperature
36	(C-LSAT) and China Merged Surface Temperature (CMST), to estimate trends in the
37	global mean ST (combining land surface air temperature and sea surface temperature
38	anomalies) with the data uncertainties being taken into account. Comparing with
39	existing datasets, the statistical significance of the global mean ST warming trend
40	during the past century (1900-2017) remains unchanged, while the recent warming
41	trend during the "hiatus" period (1998~2012) increases obviously, which is
42	statistically significant at 95% level when fitting uncertainty is considered as in
43	previous studies (including IPCC AR5) and is significant at 90% level when both
44	fitting and data uncertainties are considered. Our analysis shows that the global mean
45	ST warming trends in this short period become closer among the newly developed
46	global observational data (CMST), with remotely sensed/Buoy network infilled

47	datasets, and reanalysis data. Based on the new datasets, the warming trends of global
48	mean land SAT as derived from C-LSAT 2.0 for the period of 1979-2019, 1951-2019,
49	1900-2019 and 1850-2019 were estimated to be 0.296, 0.219, 0.119 and
50	0.081 °C/decade, respectively. The warming trends of global mean ST as derived
51	from CMST for the periods of 1998-2019, 1979-2019, 1951-2019 and 1900-2019
52	were estimated to be 0.195, 0.173, 0.145 and 0.091 °C/decade, respectively.
53	
54	Keywords: Global Mean Surface Temperature (GMST); Global Land surface air
55	temperature (GLSAT); Sea surface temperature (SST); Trends; Dataset
56	

1. Introduction

59	The latest two IPCC scientific assessment reports (IPCC, 2007, 2013) pointed
60	out that the warming of the climate system is unequivocal, The Global Mean Surface
61	Temperature (GMST) is inferred from the land surface air temperature (LSAT) and
62	sea surface temperature (SST) from in situ observations. Previous studies have shown
63	that differences in the estimates of short-term trends are still relatively large, which
64	prompted a debate within the climate community about a "hiatus" or "slowdown" in
65	the warming over the 15 years following the 1997/1998 El Niño event (Cahill et al.,
66	2015; Lewandowsky et al., 2015; Karl et al., 2015; Fyfe et al., 2016; Simmons et al.,
67	2017; Rahmstorf et al., 2017; Medhaug et al., 2017; Lewandowsky et al., 2018;
68	Risbey et al., 2018).
69	Over the past 30 years, several global LSAT datasets have been developed and
70	have continuously been improved (Jones and Wigley, 2010; Hartmann et al., 2013;
71	Hawkins and Jones, 2013). These include CRUTEM (Jones and Moberg, 2003; Jones
72	et al., 2012), GHCN (Peterson and Vose, 1997; Smith and Reynolds, 2005; Smith et
73	al., 2008; Lawrimore et al., 2011; Menne et al., 2019), GISTEMP (Hansen et al., 1999,

74	2001, 2006; Lessen et al., 2019), Berkeley Earth Surface Temperature (BEST)
75	(Muller et al., 2013). Lugina et al (2006) and the Japan Meteorological Agency (JMA)
76	also released their own datasets in recent years
77	(http://ds.data.jma.go.jp/tcc/tcc/products/gwp/temp/ann_wld.html). With the
78	continuous collection of climate data, improvements to data quality control and
79	assurance technology and to the various spatio-temporal analysis methods, the trends
80	of global/hemispheric mean LSATs have been updated by different research institutes
81	(Hartmann et al., 2013). The demand for accurately estimating the magnitude of
82	LSAT trends in monitoring climate change on global and regional scales is increasing
83	day by day (Stott and Thorne, 2010). Recently, an international effort from China Sun
84	Yat-Sen University (SYSU) and China Meteorological Administration (CMA), UK
85	University of East Anglia (UEA), Environment and Climate Change Canada (ECCC),
86	Australia Bureau of Meteorology (BOM) and USA State University of New York
87	(SUNY) Albany published a new homogenized and integrated global LSAT dataset
88	(C-LSAT), partly addresses this requirement (Xu et al., 2018).

89 Several SST data sets have also been developed by independent groups and are

90	available for study, with several of these updated monthly or more frequently. Some
91	analyses use only in situ observations, prominent examples being the Extended
92	Reconstructed SST (ERSST; Smith et al., 1996; Huang et al., 2015, 2017a), UK
93	Hadley SST version 3 and version 4 (HadSST3/4, Kennedy et al., 2011a; 2011b;
94	2019), and JMA's Centennial Observation-Based Estimates of SSTs (COBE-SST;
95	Ishii et al., 2005), COBE-SST version 2 (COBE-SST2; Hirahara et al., 2014). The
96	most recent ERSST version (ERSSTv5) and HadSST4 use newly released data
97	archives from International Comprehensive Ocean-Atmosphere Data Set (ICOADS)
98	3.0 (Freeman et al., 2017), which improves SST spatial and temporal variabilities
99	and absolute SST (Huang et al., 2017a, 2018). HadSST is used in HadCRUT and
100	Berkley Earth (BE) analysis. ERSSTv5 is used in NOAAGlobalTempv5 (Zhang et al.,
101	2019) and GISTEMP analyses.
102	IPCC's AR5 (IPCC, 2013) pointed out that, when updates have been made to all
103	three GMST datasets (Hansen et al., 2010; Morice et al., 2012; Vose et al., 2012) used
104	in AR4 (IPCC, 2007), GMSTs are in a somewhat better agreement with each other
105	over recent years. For example, HadCRUT4 now has better sampling over the

106	Northern Hemisphere high latitude land areas (Jones et al., 2012; Morice et al., 2012),
107	as comparisons with HadCRUT3 showed an underestimation of recent warming
108	(Simmons et al., 2010). Recently, scientists have concluded that differences in the
109	way that datasets handle data sparse areas such as the polar regions can result in a
110	sampling "bias" of surface air temperature (SAT), especially in the so-called "hiatus"
111	period during 1998-2012. (Cowtan and Way, 2014 and 2018; Karl et al., 2015; Huang
112	et al., 2017a; Simmons et al., 2017). Cowtan and Way (2014) developed a hybrid
113	version of global surface temperature: Satellite data were used to reconstruct an SAT
114	series in the regions that are not covered by HadCRUT4 data (about 16% of global
115	area by their evaluation, including parts of Africa and South America, so not just
116	polar regions), which increases the temperature trend from 0.046°C/decade to
117	0.119°C/decade for the period of 1997-2012. Huang et al. (2017b) interpolated data
118	from the International Arctic Buoy Observatory (IABO) data and found that the trend
119	of warming was 0.112°C/decade over the period 1998-2012, which is higher than the
120	trend in the NOAAGlobalTempv4 (formerly Merged Land and Ocean Surface
121	Temperature dataset (MLOST)) data over the same period (about 0.050 °C/decade).

122	Also Zhang et al. (2019) showed that the updated surface temperature data tends to
123	give a more consistent view of climate trends (from 0.070 °C/decade in v4 to
124	0.073 °C/decade in v5 during 1880-2018). Simmons et al. (2017) showed that the
125	infilled observational datasets agreed better with both ERA-Interim and JRA-55
126	reanalysis and provided similar global mean surface warming trends since 1979, but
127	their warming trends over 1998-2012 (0.140 and 0.090 °C/decade) were larger than
128	any of the in situ observational datasets used in IPCC 5 th Assessment Report (AR5)
129	(Hartmann et al., 2013).
130	In this paper, we used a new merged global ST dataset- China Merged Surface
131	Temperature, CMST (Yun et al., 2019; Li et al., 2020a) based on the most recently
132	published C-LSAT (Xu et al., 2018) and ERSST v5 (Huang et al., 2017a) datasets,
133	and conducted a systematic comparison of the global LSAT and ST trends during the
134	"hiatus" or "slowdown" period (1998-2012) among the existing datasets. Based on
135	these, we present a new evaluation of the global ST trends.
136	This paper is arranged as follows: the datasets and the methodology are briefly
137	introduced in section 2; the update of the C-LSAT and the trends evaluation for

138	different time scales are introduced in section 3; the analysis results are given in
139	section 4; some reasons for the differences and uncertainty assessment of global ST
140	changes are discussed in section 5, and the conclusions are presented in section 6.
141	2. Datasets and their processing methods
142	2.1 LSAT and SST datasets
143	A total of 14 data sources have been collected and integrated into the C-LSAT
144	dataset including three global (CRUTEM4, GHCN, and Berkeley SAT), three
145	regional sources and eight national sources (including homogenized datasets from
146	Australia, Canada, China, and United States). Inhomogeneities in the data series are
147	detected and adjusted for using a penalized maximal t-test (50% of all stations), then
148	the station series are converted into 5 $^\circ \times$ 5 $^\circ$ latitude by longitude grids data (for
149	complete details see Xu et al., 2018). The C-LSAT version used in this paper includes
150	the update described in Yun et al. (2019) and Li et al. (2020a), and will be detailed
151	described in section 3. The newly updated China global Land Surface Air
152	Temperature dataset (C-LSAT-2.0) is available at
153	https://doi.pangaea.de/10.1594/PANGAEA.919574.

154	In this paper, several other LSAT datasets including Climatic Research Unit
155	(CRU) CRUTEM4, NOAA Global Historical Climate Network dataset (GHCN) v3,
156	Berkeley SAT and NASA GISTEMPv3 (all were downloaded in the first half of 2018
157	when the start of drafting this paper began, and most of the datasets have been
158	updated during these two years) are also used to calculate/compare global LSAT
159	trends. For consistency, the time periods for all the datasets have been set to Jan 1900
160	to Dec 2017 (since section 4). For CRUTEM4, we use the latest version CRUTEM4.6.
161	GISTEMP has two versions with different degrees of spatial smoothing: 250km and
162	1200km. GISTEMP (1200km) starts in 1880 and GISTEMP (250km) starts in 1902.
163	GHCNv3 has the same resolution as C-LSAT and CRUTEM4, and Berkeley SAT is
164	at $1^{\circ \times 1^{\circ}}$ latitude by longitude resolution, which has been interpolated using Kriging
165	methods.
166	Of the SST datasets mentioned in section 1, two (HadSST and ERSST) have
167	been used to merge with LSAT to develop global ST datasets to assess global surface
168	warming trends. ERSSTv5 (Huang et al., 2017a) uses new data sets from ICOADS
169	Release 3.0 SST (Freeman et al., 2017), measurements from Argo floats down to 5

170	meters depth, and Hadley Centre Ice-SST version 2 (HadISST2) (Titchner and Rayner,
171	2013) ice concentrations. ERSSTv5 has improved SST spatial and temporal
172	variability and absolute SST. HadSST3 is an ensemble dataset, the median of the 100
173	ensembles of HadSST3 is adopted to calculate the SST trends. For comparison, both
174	of the two SST datasets have been used to merge with C-LSAT, respectively, in this
175	paper.
176	2.2 Global ST datasets
177	After systematic comparisons, CMST was developed based on the C-LSAT and
178	ERSSTv5 (Yun et al., 2019; Li et al., 2020a) and used to calculate long-term trends of
179	GMST, similar to what was undertaken in Vose et al. (2012). The C-LSAT and
180	ERSSTv5 are merged as follows: The monthly SSTs on $2^{\circ}x2^{\circ}$ grids and LSATs on
181	5°x5° grids are both first interpolated to 1°x1° grid, which is distributed in four grids
182	of 1°x1° for SSTs and in 25 grids of 1°x1° for LSATs, and then box-averaged to 5°x5°
183	deg grids according to the ratio between ocean and land areas for each individual grid
184	box (Yun et al., 2019). The newly China global Merged Surface Temperature dataset
185	(CMST) is available at https://doi.pangaea.de/10.1594/PANGAEA.919662.

186	The GMST series are calculated as follows: LSAT and SST anomalies are
187	calculated relative to the reference period 1961-1990, and only those stations/grids
188	with at least 15 years of values during 1961-1990 are calculated. The gridding of the
189	land surface air temperature anomalies is undertaken by averaging all values within 5 $^\circ$
190	\times 5 ° grids (Jones and Moberg, 2003; Xu et al., 2018). Regional (North Hemisphere,
191	South Hemisphere, and Tropics) series are calculated in the same way.
192	Four other global observation-based ST datasets including HadCRUT4,
193	NOAAGlobalTempv4, Berkeley Earth (BE), and GISS v3 (downloaded in the first
194	half of 2018) are also analyzed in this paper (each with time periods set to Jan 1900 to
195	Dec 2017). Of these, BE provided two versions of merged global ST datasets, which
196	differ in how the sea ice is treated. In the first version (BE1), temperature anomalies
197	in the presence of sea ice are extrapolated from land-surface air temperature
198	anomalies. In the second version (BE2), the anomalies are extrapolated from
199	sea-surface water temperature anomalies (usually collected from open water areas
200	near the periphery of the sea ice). It should be noted that all the global ST datasets
201	have been updated since the publication of IPCC AR5, so the trends may be different

202	from those published there, even if the version numbers have not been changed. For
203	example, HadCRUT4 used an earlier version of CRUTEM4 in AR5, but
204	CRUTEM4.6 at present; MLOST has been replaced by NOAAGlobalTempv4 since
205	2015, and also GISS has been updated several times on its use of SST datasets
206	(currently, it uses ERSSTv5) and its uncertainty model (Lenssen et al., 2019).
207	Two other global ST analyses for shorter periods are also used in this paper. They
208	are the comprehensively analyzed ECMWF ERA5 (Hersbach et al., 2020) and
209	HadCRUT4 hybrid (Cowtan and Way, 2014). ERA5 provides a 2m temperature
210	product from optimal-interpolation analyses of screen-level observations, using
211	background fields provided by their main 4D-Var data assimilation schemes (with
212	more observational data input along with CMIP5 greenhouse gases, volcanic
213	eruptions, SST and sea-ice cover as the model input). In this study, we also used the
214	ERA5 analysis fields over the land and the background fields over the oceans
215	(https://climate.copernicus.eu/climate-bulletin-about-data-and-analysis) (Hersbach et
216	al., 2020). The HadCRUT4 hybrid is the HadCRUT4 infilled using data from the
217	University of Alabama in Huntsville (UAH) satellite data. Here, we use the median of

218	the ensembles from HadCRUT4 as in Cowtan and Way (2014). Both of these two
219	datasets cover the period from January 1979 to December 2017.
220	2.3 Estimation of trend and its uncertainty
221	The fitting uncertainty arises because there are many and various combinations
222	of trend and noise that could have combined to give the observed series. Usually, the
223	95% confidence interval, expressed as $\beta \pm \delta$ for trend estimate β in this study,
224	corresponds to the range of trends that have 5% or less chance of occurring by chance.
225	This is based on the assumption that the annual temperature samples are
226	approximately Gaussian distributed, but sample size also matters: The smaller the
227	sample size, the more challenging it is to obtain good accuracy for trend estimates.
228	Estimates of trend over a shorter period (like the period 1998-2012, in this paper) are
229	thus more challenging. Similar to IPCC (2013), the long-term trend of global GMST
230	and GMSAT and its significance under the 95% level (~1.96 sigma) are calculated by
231	using the method of Restricted Maximum Likelihood Regression (REML, Diggle et
232	al., 1994). The REML method is the basic method used to calculate climate change
233	trend since IPCC TAR. Having the autocorrelation of temperature series been

234	considered, it is more insensitive to extreme values than ordinary least squares.
235	Therefore, it is more suitable to be used as a calculation method of climate change
236	trend, especially for climate elements with autocorrelation such as temperature. So the
237	trends and its uncertainties are mostly estimated based on REML (Tables 1-4).
238	However, recent studies (Cahill et al., 2015; Rahmstorf et al., 2017) state that
239	almost every treatment of the significance of "hiatus" trends, including the IPCC
240	reports, was based on an uncertainty method without consideration of part of the data
241	uncertainties (the autocorrelation of the residual of linear fitting has not been
242	considered) and has overestimated the significance of the change in trend. Although
243	the existing global LSAT, SST datasets have generally been thought reliable, the
244	uncertainties in global and regional ST during the past 100 years still attracts attention
245	in recent studies (Brohan et al., 2006; Li et al., 2010; Kennedy et al., 2011a, b; Morice
246	et al., 2012; Hartmann et al., 2013; Kennedy, 2014; Karl et al., 2015; Huang et al.,
247	2015; 2017a; Li et al., 2017). According to Brohan et al. (2006) and Kennedy et al.
248	(2011a; 2011b), uncertainties in the LSAT and SST are divided into 3 types: (1)
249	station error (measurement error), (2) sampling error, and (3) bias error. Of these, the

250	bias error is the most important at long-term and large scales and is the most clearly
251	expressed in long-term trends in the global average for SST. Sampling errors are the
252	most important at regional scales especially for the regions with relatively sparse
253	observations (Li et al., 2020b; Li and Yang, 2019).
254	To compare with the significance of the GMST trends, in this study we estimated
255	the data uncertainty using the spread of linear trends estimated from the time series
256	that is perturbed by its standard deviation (STD) (Figure 1), following the similar
257	approach of Karl et al. (2015) : (1) a time series is detrended; (2) the STD of the
258	detrended time series is calculated; (3) a random temperature perturbation is selected
259	based on a Gaussian distribution with zero mean and STD in (2); (4) a 1000-member
260	ensemble time series is generated; (5) linear trend and its fitting uncertainty is
261	calculated for all 1000 members; (6) the STD of the trend is defined as the data
262	uncertainty, and the ensemble averaged fitting uncertainty is defined as the final
263	fitting uncertainty; (7) the total uncertainty is defined as the root square mean of the
264	data uncertainty and final fitting uncertainty. This provides an ensemble approach for
265	evaluating the total uncertainties and the significance of the GMST trend. The results

are given in Table 5.

3. Update of C-LSAT and its uncertainties evaluation

268	3.1 Interannual variation of LSAT anomaly and its uncertainty
269	Much progress has been made in the uncertainties estimation of the observational
270	datasets (Brohan et al., 2006; Folland et al., 2001; Li et al., 2010; 2020a; Wang et al.,
271	2014; Kent et al., 2017; Menne et al., 2018; Huang et al., 2019; Lesson et al., 2019).
272	The model produced by the Brohan et al. (2006) and Li et al. (2010) is used in this
273	article. In this model uncertainties in the land data are divided into three types: (1) the
274	uncertainties of individual station anomalies (station error); (2) the uncertainties in a
275	grid box mean caused by estimating the mean from a small number of point values
276	(sampling error); and (3) the uncertainties in large-scale temperatures caused by
277	systematic changes in measurement methods (bias error). The total uncertainties value
278	for any grid box can be obtained by adding the square root of the three errors.
279	Figure 2 shows the GLSAT anomaly and its 95% uncertainty range arising from
280	station error, sampling error, bias error, and spatial coverage errors, and a comparison
281	with the best estimate. It can be seen in the figure that the sampling error and station

282	error have become smaller with time, and have remained stable after the 1950s. The
283	greater uncertainty of the series in the first 50 years comes from insufficient data
284	coverage; and the temperature series shows significantly larger inter-annual
285	variability in the 50 years before the 20th century, due to the scarcity of station
286	distribution. Inter-annual variability becomes much smaller after 1900, which is
287	somewhat similar to China (Li et al., 2010; Li et al., 2017). The only difference is that
288	the uncertainty of GLSAT is smaller than the regional scale average (Li et al., 2020b).
289	The GLSAT was mainly dominated by fluctuations from 1850s to the late 1970s.
290	The series reached an extreme value (anomaly 0.18 $^{\circ}$ C) in 1878, and then sharply
291	decreased during the middle and late 1880s, after which, it rose to the late 1930s by
292	fluctuations, and reached another extreme value (anomaly 0.26 $^\circ$ C) in 1938 . The
293	series then experienced a relatively cooling period to the mid-1960s, and then entered
294	a continuously rapid warming period when it reached a new extreme value (anomaly
295	1.40 $^{\circ}$ C) in 2016. It slightly declined in recent years, but remained high with the
296	fourth (2017, anomaly 1.18 ° C), sixth place (2018, anomaly 0.96 ° C) and third place
297	(2019, anomaly 1.24 $^{\circ}$ C) since 1850s. If we calculate the difference between the

298	GLSAT anomalies in the last 10 years and those for the pre-industrial period
299	(represented by the 1850-1900 averages), the number is 1.52 $^\circ$ C (about 1.40 $^\circ$ C for
300	the last 20 years). That is, the GLSAT has now risen close to 1.5 $^\circ$ C from the
301	pre-industrial period.
302	Judging from the 95% uncertainty range the GLSAT series (the inset of Figure
303	2a), the annual uncertainties were greater than 0.2 $^\circ$ C during the period of 1850 -
304	1880, after which they dropped to 0.15 $^{\circ}$ C and below during the period of 1881-1900;
305	and after 1901 they dropped to 0.1 $^\circ$ C and below reaching their lowest value of about
306	0.07 $^{\circ}$ C after 1951. This result is very close to GISSTEMP, GHCN4, Bekeley SAT,
307	and CRUTEM4 (Lesson et al., 2019), which also shows that the current accuracy is
308	broadly similar among the existing GLSAT datasets in describing the GLSAT change
309	(Li et al., 2020a).
310	3.2 Long-term trends of GLSAT and their uncertainties
311	The long-term trend of GLSAT anomaly from 1850 to 2019 and the 95%
312	uncertainties range were calculated for several periods (Table 1). Regardless of

313 whether only the fitting uncertainty is considered, or the fitting and data uncertainty

314	are fully considered, the trends of LSAT changes in 1850-2019, 1901-2019,
315	1951-2019, 1979-2019 and 1998-2019 all significantly positive at 5% level, with the
316	linear trends of 0.081 \pm 0.014, 0.119 \pm 0.023, 0.219 \pm 0.042, 0.296 \pm 0.077, and 0.234
317	\pm 0.198 $^{\circ}$ C per decade, respectively. Among these, since 1979, the surface air
318	temperature has risen close to 0.3 $^{\circ}$ C every 10 years, which is the period of fastest
319	warming since the record began in the middle of the 19th century.
320	4. Comparison and evaluation on the global LSAT and ST trends
321	4.1 Comparisons on global LSAT and ST trends since 1998
322	4.1.1 Global LSAT changes
323	Xu et al. (2018) showed that C-LSAT obtained similar SAT trends to those in
324	CRUTEM4 and GHCNv3 in continental areas for the period 1900-2014 (with faster
325	warming rates in Asia and slower in Africa and Antarctica (1951-2014)) (Tables 5 and
326	6 in their paper). Figure 2 shows the distribution of the linear trends for SAT in all the
327	grid boxes for the six datasets: C-LSAT, CRUTEM4.6, GHCNv3, GISTEMPv3
328	(200km and 1200km) and Berkeley SAT. GISTEMP and Berkeley SATs use similar
329	station distributions to GHCNv3. It is worth mentioning that there are some strong

330	spatial variations of some neighboring grid boxes for the shorter-term periods (Figure
331	3a), which is also occasionally found in other datasets (Figure 3 b-d), due to the
332	different lengths of the data series in several grid boxes (Xu et al., 2018). Obviously,
333	C-LSAT has the greatest coverage in comparison with other datasets especially in the
334	higher latitude regions (Arctic and Antarctic) and the Tropics (30°S-30°N) (Figure 3;
335	Xu et al., 2018 and Yun et al., 2019), except for GISTEMP (1200km smoothing) and
336	Berkeley SAT due to spatial smoothing and infilling. C- LSAT includes more than
337	1,000 station data series in the Arctic (60°N-90°N), which is much more than used
338	CRUTEM4 and GHCNv3/GISTEMPv3 (but no more data in the Antarctic) during
339	1998-2012 (Figures 2a-f). Figure 4 shows the annual mean LSAT anomaly series for
340	C-LSAT, CRUTEM4, and GHCNv3 in the Arctic (land area in 60-90°N) and at global
341	scales in all 5 datasets during 1998-2012 (1998-2017). In the Arctic, the linear trends
342	of LSAT are calculated for different datasets as follows: 0.747, 0.798, and
343	0.559°C/decade, respectively (Figure 4a). The former two are much larger than the
344	latter one, which agrees well with Cowtan and Way (2014) and Huang et al. (2017b).
345	We also notice that the linear trend of LSAT has been changed to 0.080 $^{\circ}C$ /decade for

GHCNv4, which further shows the trend in this region was underestimated for
GHCNv3 (0.052 °C/decade, Table 2).

At the global scale, the linear trends for LSAT are calculated for C-LSAT1.3, 348 349 CRUTEM4.6, GHCNv3, GISTEMPv3, and BEST, respectively (Table 2). The global LSAT trends in GHCNv3 and Berkeley SAT are the smallest and the largest, 350 351 respectively, which is related to the higher anomalies during 1998 to 2002 for GHCNv3 and for 2007 to 2012 for Berkeley SAT analysis. Only the trend in C-LSAT 352 is significant at the 5% level. GISTEMPv3 shows lower anomalies during the whole 353 354 15-year period (Figure 4b). Further, the trends of the 6 global mean LSATs for the different periods of 355 1998-2017, 1979-2017, 1951-2017, and 1900-2017 have been calculated and shown 356 357 in Table 2. The trends for 1998-2017 are all significant at the 5% level. The LSAT trend from C-LSAT is higher than those derived from CRUTEM4.6, GHCNv3, and 358 GISTEMPv3, but similar to that from Berkeley since 1998. The differences in the 359 360 warming trends among all the datasets become smaller with the extension of the time 361 scales.

362 4.1.2 Global ST changes

363	Of all the global ST datasets used in this paper, CMST, GISS and
364	NOAAGlobalTemp use ERSST (CMST and GISSv3 use ERSSTv5, and
365	NOAAGlobalTempv3 uses ERSSTv4, but the newly released NOAAGlobalTempv4
366	uses ERSSTv5 at present), HadCRUT4 and BE use 100 ensembles of HadSST3 (in
367	this paper, we use the median of the 100 ensembles). Figure 5 shows the distribution
368	of the linear trends of GMSTs in the period of 1998-2012 averaged over all available
369	grid boxes in the six observational datasets and the other two datasets (HadCRUT
370	Hybrid and ERA5). The main characteristics of the GMST trends are very similar to
371	each other: Cooling trends are mostly found in East Asia (West Pacific Ocean),
372	western North America including the northeastern North Pacific and the South Pacific
373	Warming trends are more significant in the high latitudes of the Northern Hemisphere.
374	It should be noted that ST changes during the short-term period (1998-) have more
375	differences than those during the longer periods (1900-, 1951- and 1979-). The latter
376	show almost consistent warming trends at global scales (IPCC, 2007; 2013, also
377	shown in Figure 9 of Xu et al. (2018).

378	Figure 6 shows the 6 observational global annual mean ST anomalies series,
379	ERA5 ST series and HadCRUT Hybrid (with UAH) ST series over 1998-2012
380	(1998-2017) (all are relative to 1981-2010 averages). The linear trends of global ST
381	are calculated for each dataset. They are 0.091, 0.055, 0.084, 0.071, 0.110, 0.079,
382	0.140, and 0.120°C/decade, respectively, in CMST, HadCRUT4,
383	NOAAGlobalTempv3, GISSv3 (1200km), BE1, BE2, ERA5, and HadCRUT Hybrid
384	(Table 3). Of these, HadCRUT4, GISSv3, BE2, and NOAAGlobalTempv3 (all the
385	existing observational datasets) have similar warming trends, but lower than those
386	during 1900-2017 and still insignificant at the 5% level. In contrast, ERA5,
387	HadCRUT Hybrid and BE1 have much larger warming trends than others. BE1 has
388	larger trends than BE2 because its temperature anomalies over the sea-ice area are
389	extrapolated from land-surface air temperature anomalies (instead of the nearby
390	sea-surface water temperature anomalies in BE2). Simmons et al. (2017) showed that
391	the recent reanalysis (ERA-Interim: 0.140°C/decade, and JMA-55: 0.090°C/decade)
392	exploited the richness of the observing system that has been in place over recent
393	decades and extended the data coverage spatially. In this paper, our calculation

394	indicates that the warming trends in the recently released ERA5 (Hersbach et al., 2020)
395	were 0.140 ± 0.112 °C /decade (the same as with Simmons et al. (2017) using
396	ERA-Interim) over the periods 1998-2012. This is slightly larger than that in CMST
397	analysis (0.091±0.088°C/decade). Therefore, it is clear that the global "warming
398	hiatus" trend is only a statistical artifact over this period of time, as Lewandowsky et
399	al. (2015) and Cowtan et al. (2018) pointed out. Although Medhaug et al. (2017) and
400	other studies pointed out that there was subduction of heat into the oceans during the
401	period 1998-2012. From the current study, this heat subduction does not lead the
402	"slowdown" of global warming rate.
402 403	"slowdown" of global warming rate. Further, the CMST analyses show that the global ST warming rate for the period
402 403 404	"slowdown" of global warming rate. Further, the CMST analyses show that the global ST warming rate for the period 1998-2017 is 0.190°C/decade, which is a little larger than that over 1979-2017, much
402 403 404 405	"slowdown" of global warming rate. Further, the CMST analyses show that the global ST warming rate for the period 1998-2017 is 0.190°C/decade, which is a little larger than that over 1979-2017, much larger than that over 1951-2017 (0.133°C/decade), and more than double the rate over
402 403 404 405 406	 "slowdown" of global warming rate. Further, the CMST analyses show that the global ST warming rate for the period 1998-2017 is 0.190°C/decade, which is a little larger than that over 1979-2017, much larger than that over 1951-2017 (0.133°C/decade), and more than double the rate over 1900-2017 (0.086°C/decade) (Table 3). The most recent two years still continue to be
 402 403 404 405 406 407 	"slowdown" of global warming rate. Further, the CMST analyses show that the global ST warming rate for the period 1998-2017 is 0.190°C/decade, which is a little larger than that over 1979-2017, much larger than that over 1951-2017 (0.133°C/decade), and more than double the rate over 1900-2017 (0.086°C/decade) (Table 3). The most recent two years still continue to be warm years (2018 is the 5 th warmest years, and 2019 is the 3rd warmest year), so the
 402 403 404 405 406 407 408 	"slowdown" of global warming rate. Further, the CMST analyses show that the global ST warming rate for the period 1998-2017 is 0.190°C/decade, which is a little larger than that over 1979-2017, much larger than that over 1951-2017 (0.133°C/decade), and more than double the rate over 1900-2017 (0.086°C/decade) (Table 3). The most recent two years still continue to be warm years (2018 is the 5 th warmest years, and 2019 is the 3rd warmest year), so the global ST warming rate for the period since 1998 (i.e. (1998 to 2019) would scarcely

4.2 Evaluation on Global and Hemispheric ST changes from CMST since 20th
411 Century

412 4.2.1 Global Mean ST changes

According to IPCC AR5, GMST has increased since the late 19th century. Each 413 of the past four decades has been significantly warmer than all the previous decades 414 in the instrumental record, and the first and second decades of the 21st century have 415 been the warmest two. For LSAT, Xu et al. (2018) discussed that the long-term trends 416 for 1900-2014 evaluated from C-LSAT, CRUTEM4 and GHCNv3 are very close to 417 418 each other. For Global ST change since 1880, IPCC AR5 listed 3 existing global observational datasets (HadCRUT4, NOAAGlobalTempv3 and GISSv3) and gave 419 linear trends of 0.062 ± 0.012 , 0.064 ± 0.015 and $0.065 \pm 0.015^{\circ}$ C/decade, 420 respectively, for global mean ST changes over the period 1880-2012. Although the 421 422 1998-2017 warming trend is significantly higher in C-LSAT than all the other existing observational datasets except for Bekerley SAT, which uses a different gridding 423 method, the global LSAT warming trends from C-LSAT over 1900-2017 are similar to 424 CRUTEM4.6, GHCNv3 (also see the Figures 7, 8 in Xu et al. (2018)), GISTEMPv3, 425

426	and Berkeley SAT analysis (Table 2). The global ST warming trends for 1900-2017
427	are also similar to each other for CMST, HadCRUT4, NOAAGlobalTemp, GISSv3,
428	BE1 and BE2 (Table 3).
429	Further, we compared the GMST series derived from CMST with those derived
430	from five other datasets during 1900-2017 and found that all the datasets agree well
431	with each other on the surface temperature changes at the global scale in the past
432	century, and the differences mainly exist at smaller spatial or temporal scales (Figure
433	7). Recently, we have confirmed that the consistency of the current GLSAT and
434	GMST warming trends after 1880 is further strengthened (Li et al., 2020a).
435	Figure 8 shows the global, hemispheric and tropical-belty (30°S to 30°N) mean
436	ST series based on CMST over the period of 1900-2019. Although with some spatial
437	and temporal variability of local ST, CMST showed similar decadal and long-term
438	changes to previous studies: the global mean ST experiences rapid warming during
439	two periods: from 1910s to mid-1940s and from mid-1970s to present. The linear
440	trends for global and regional ST change for different time periods are given in Table
441	4 and Table5. From Table 5, the estimated warming trends for global mean ST over

- 442 1900-2019 and 1951-2019 are 0.091°C/decade and 0.145°C/decade, respectively.
- 443 4.2.2 Hemispheric and Tropical Belt ST changes
- Figures 8b-d show the Hemispheric and Tropical Belt ST changes during 444 445 1900-2019 based on CMST, with linear trends and their 95% uncertainties listed in Table 4. We noticed that for the NH and Tropics regions, the linear trends are 446 447 continually increasing for the periods of 1900-2019, 1951-2019, 1979-2019, and 1998-2019, which shows the totally opposite results to what might be expected from 448 the term "warming hiatus" over 1998-2012. Exceptions happen in the SH (the linear 449 450 trends and their 95% confidence intervals are 0.077±0.006, 0.113±0.011, 0.079±0.022, and 0.125±0.055°C/decade for the period 1900-2019, 1951-2019, 1979-2019, and 451 1998-2019, respectively), which could be related to the recent cooling trends in the 452 453 South Pacific region with lower warming rates over the Southern Hemisphere Oceans. 454 It should be noted that the warming trend is greater (but with larger uncertainty) in the tropics than at global scales during the recent 20 years, which is different from that for 455 longer term periods. The reason for the different warming trends between the tropics 456 and global surface could be related to the relatively strong El Niño-Southern 457

458	Oscillation events in recent years (Trenberth et al., 2002; Zhai et al., 2015). Table 3
459	also shows that the differences between the warming rates in the NH and SH were
460	getting larger during the last century. That is, the warming in NH and the Tropics is
461	faster than that in the SH, which may change the balance of surface atmospheric
462	energy (Peterson et al., 2011). This also shows that HadCRUT Hybrid possibly
463	overestimating the warming trends since 1998 from the comparisons with CMST and
464	other observational datasets (Figure 5 and their Figure 2 in Cowtan and Way (2014)),
465	especially in the Southern Hemisphere.
466	5. Discussions
466 467	5. Discussions5.1 Differences due to data processing methods
466 467 468	5. Discussions5.1 Differences due to data processing methodsAll the datasets discussed above can be divided into two types: the first type is
466 467 468 469	 5. Discussions 5.1 Differences due to data processing methods All the datasets discussed above can be divided into two types: the first type is observational datasets without interpolation (or interpolated with small scanning)
466 467 468 469 470	 5. Discussions 5.1 Differences due to data processing methods All the datasets discussed above can be divided into two types: the first type is observational datasets without interpolation (or interpolated with small scanning radius), which includes C-LSAT (CMST), CRUTEM (HadCRUT4), GHCNv3
466 467 468 469 470 471	 5. Discussions 5.1 Differences due to data processing methods All the datasets discussed above can be divided into two types: the first type is observational datasets without interpolation (or interpolated with small scanning radius), which includes C-LSAT (CMST), CRUTEM (HadCRUT4), GHCNv3 (NOAAGlobalTempv3), and GISTEMPv3-250km (GISS-250km). The other type
466 467 468 469 470 471 472	 5. Discussions 5.1 Differences due to data processing methods All the datasets discussed above can be divided into two types: the first type is observational datasets without interpolation (or interpolated with small scanning radius), which includes C-LSAT (CMST), CRUTEM (HadCRUT4), GHCNv3 (NOAAGlobalTempv3), and GISTEMPv3-250km (GISS-250km). The other type includes all the interpolated/infilled datasets (Berkeley Earth (BE1, BE2), and

474	and reanalysis datasets (e.g., ERA5). It needs to be noted that GHCNv3
475	(NOAAGlobalTempv3) and GISTEMP-250km (GISSv3-250km) indeed contain a
476	certain degree of interpolation, but the scanning radius of interpolation is small, which
477	is insufficient to fill the grids of all missing data over large blank areas.
478	Cowtan and Way (2014) pointed out that the incomplete global coverage is a
479	potential source of bias in global temperature reconstructions if the temperatures in
480	the unsampled regions are not uniformly distributed over the planet's surface. The
481	different interpolation/infilling (Kriging, UAH hybrid, IABO, Reanalysis, etc.) always
482	leads to different results (see their Table 3). In this paper, although there are no direct
483	relationships between the warming trends and interpolation methods, the trends are
484	spatially relatively larger in GISSv3-1200km than those in GISSv3-250km (Figures
485	2d and 2e), but the trends are similar in GISTEMPv3-250km when compared with in
486	GISTEMPv3-1200km.
487	A large difference is also seen between BE1 and BE2 (Table 3). This shows that
488	the infilling of the temperature anomalies over the sea-ice region with land-surface air
489	temperature anomalies increases the warming trends during recent decades

490	(1979-2017, 1998-2012 and 1998-2017). But it is interesting that the infilling
491	decreases the trends during the longer periods (1900-2017; 1951-2017). This
492	difference may be due to that some of the SAT data used in the infilling have been
493	observed only during recent decades; these short ice SAT series increase the recent
494	warming trends with better spatial sampling but were excluded when calculating
495	long-term trends. This infilling possibly brings some inhomogeneities into the
496	global/regional mean ST changes (and using UAH satellite data hybrid procedure
497	would have a similar issue) as Xu et al. (2018) discussed. Therefore, the
498	reconstruction of the long-term ST series in high latitudes is still open for discussion
499	(Karl et al., 2015; Huang et al., 2017b).
500	Our study indicates that the difference of C-LSAT from CRUTEM, GHCNv3,
501	and GISTEMPv3-250km results from the fact that the number of used stations in Asia,
502	Arctic, Africa, and South America is much higher in C-LSAT than GHCNv3 but only
503	slightly higher than CRUTEM4 for the entire analysis period. But the station densities
504	in the latter 3 regions are still relatively low (figure 6 in Xu et al. (2018)). The
505	differences among Global ST datasets are more complicated, but CMST obtains

507	from ERA5, and closer to other reconstruction results with satellites.
508	5.2 The impact of SST analysis to the global mean ST trends
509	Measurements of SST have been made for more than 200 years for a wide variety
510	of purposes. More complicated uncertainty quantification methods have been

slightly larger trends than those from existing observational datasets, similar to those

- 511 proposed for historic SST datasets than those with LSAT datasets (Kennedy, 2014,
- 512 Kent et al., 2017; Huang et al., 2016, 2019). Previous studies pointed out that
- 513 different SST analyses may be the main contributor of the inconsistencies of global
- 514 STs (Simmons et al., 2017). Here we find similar features by analyzing the results of
- the global merged ST changes using ERSST5 and the median of the ensemble of
- 516 HadSST3 (Figure 9). The result shows that the CMST (Merge1, C-LSAT+ERSSTv5)
- 517 is colder than Merge2 (C-LSAT + median of HadSST3) during 1920s -1970s, and
- 518 from 2000s to present, but the long-term trends for different merging methods (for the
- 519 period of 1900-2017) remain similar. These results are very similar to the differences
- 520 between the HadSST3 and ERSSTv4 described in Figure 9a of Huang et al. (2016).
- 521 There are some differences, however, in the trends over the longer time periods since

522	1900, which is related to the SSTs being higher in HadSST3 than ERSSTv5 due to
523	higher ship SST bias corrections in the 1880s–1940s and 1950s–1960s as indicated in
524	Huang et al. (2016).
525	The linear trends and their 95% uncertainty ranges for global ST series based on
526	the two different merged datasets are listed in Table 5. It is interesting that the
527	warming trends in CMST are all larger than those in Merge2 in different periods
528	except for the period of 1979-2017. This is obvious because the ST anomalies in each
529	start year (1900, 1951 and 1998) are lower than those in the Merge2 series. That is, if
530	we choose other start years (for example, 1979, 1981 etc.), the results could alter the
531	opposite way. Although there are some differences in the global mean ST trends
532	during the period of 1998-2012 between the two merges, the significances of the
533	trends are quite similar. In addition, we noticed that the differences between the
534	merging methods are not more than the 95% of the linear trends fitting uncertainty
535	range.
536	5.3 Significance when considering both the data and fitting uncertainties
537	Note that the trend uncertainties given in the Tables 1-4 are only the fitting

538	uncertainties. An ensemble approach has been adopted to better describe complex
539	temporal and spatial interdependencies of measurement and bias uncertainties and to
540	allow these correlated uncertainties to be taken into account when the time series is
541	perturbed by data uncertainty in HadCRUT4 (Morice et al., 2012). Correlated errors
542	in the station series are quantified by running the homogenization algorithm as an
543	ensemble in GHCNv4 (Menne et al., 2018). The uncertainties from both C-LSAT and
544	ERSSTv5 are evaluated, respectively, and then these two are combined into the total
545	uncertainties of CMST (Li et al., 2020a).
546	After the data uncertainties are propagated into the uncertainty of trend
547	calculation, the significance of the GMST trends for different scales mostly remains
548	the same, except for the trend for the period of 1998-2012, which has changed from
549	0.091±0.088°C/decade (significant) when only trend fitting uncertainty is included to
550	0.091 ± 0.094 °C/decade (insignificant at the 95% level but significant at the 90% level)
551	when the fitting and data uncertainties are also included (Table 5). This shows that the
552	traditional evaluation on the uncertainties indeed overestimated the significance of
553	trends of 1998-2012, in agreement with the previous studies (Cahill et al., 2015;

554	Rahmstorf et al., 2017). This trend is slightly larger than those derived from existing
555	observational datasets in HadCRUT4, NOAAGlobalTemp, GISSv3 (1200), and BE2
556	(Berkeley dataset with SST in Polar Region) respectively. It is closer to that from
557	ERA5, Karl et al. (2015), and the other reconstruction data sets with satellite and
558	other kinds of observations (Cowtan and Way, 2014; Huang et al., 2017a).
559	6. Conclusion
560	The recently released C-LSAT dataset, with more stations at higher latitudes and
561	improved data quality at sub-continental scales, shows broad consistency with the
562	recent analyses of recent global LSAT changes. The trends of global mean land SAT
563	as derived from C-LSAT2.0 for the period of 1979-2019, 1951-2019, 1900-2019 and
564	1850-2019 were estimated to be 0.296, 0.219, 0.119 and 0.081 °C/decade,
565	respectively.
566	When this data was merged with ERSSTv5, we have produced the new merged
567	global ST dataset, CMST (Yun et al., 2019; Li et al., 2020a). The updated results
568	show that the significance of the global ST warming trend over the past century
569	(1900-2017) remains the same as previous estimates, and that the recent warming

570	trend since 1998 increases slightly and is statistically significant. Using the new
571	dataset CMST, the trend of global mean STs over the period 1998-2012 was estimated
572	to be a little higher than that of other existing datasets and more significant: It is 0.091
573	\pm 0.094°C/decade when both the fitting and data uncertainties were considered, and
574	$0.091 \pm 0.088^{\circ} \text{C/decade}$ when only the fitting uncertainty was considered as in the
575	AR5 IPCC report. This suggests that the recent temperature changes (including those
576	record warm years at the end of the series) have likely brought the debate about the
577	"warming hiatus" to an end. This is opposite to the previous understanding as
578	described in IPCC AR5 and many other studies (but the AR5 does include a brief
579	discussion on the uncertainty of trend in B.1 of the Summary for Policy Makers)
580	(IPCC, 2013b).
581	Using these new datasets, we have presented an updated evaluation of global and
582	hemispheric ST changes since 1900. When both the fitting and data uncertainties were
583	considered, the warming trends of global mean STs for the periods 1900-2019,
584	1951-2019, 1979-2019, and 1998-2019 are estimated to be 0.091 \pm 0.011, 0.145 \pm

585 0.019, 0.173 \pm 0.033, and 0.194 \pm 0.083 °C/decade, respectively (0.091 ± 0.008 ,

586 0.145 \pm 0.014, 0.173 \pm 0.026 and 0.195 \pm 0.063 °C/decade when only the fitting 587 uncertainty was considered).

588	The introduction of newly adjusted sea surface temperature (SST) data (Karl et
589	al., 2015), with record-setting extreme global temperature for the recent six years
590	(2014-2019), makes the formulation of the "warming hiatus" gradually fade away.
591	The newly released C-LSAT and CMST datasets support these results by increasing
592	the warming trends during the period 1998-2012 (and of 1998-2017) than those in the
593	previous versions of other existing observational datasets. However, more consistent
594	trends have been found from the datasets when applying sampling bias correction
595	using satellites, SAT observation in buoys, and reanalysis, which need to be more
596	comprehensively validated in future with more new observations and improved
597	reanalysis.

598

599 Acknowledgment

600 This study is supported by the Natural Science Foundation of China (Grant: 41975105), the
601 National Key R&D Program of China (Grant: 2018YFC1507705; 2017YFC1502301). And thanks

602	Dr. Geert van Oldenborgh from Royal Netherlands Meteorological Institute (KNMI) for providing
603	several global SAT/ST datasets on Climate Explorer website (http://climexp.knmi.nl/) for
604	calculating the temperature change trends in this paper.
605	
606	Reference
607	Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD. (2006) Uncertainty estimates in regional and global
608	observed temperature changes: A new dataset from 1850. J. Geophys. Res. 111: D12106, doi:
609	10.1029/2005JD006548.
610	Cahill N, S Rahmstorf and A Parnell, (2015) Change points of global temperature Environ. Res. Lett. 10
611	084002, doi:10.1088/1748-9326/10/8/084002
612	Cowtan, K. & Way R. G. (2014) Coverage bias in the HadCRUT4 temperature series and its impact on
613	recent temperature trends, Quarterly Journal of Royal Meteorological Society, 140, 1935-1944.
614	doi:10.1002/qj.2297
615	Cowtan K, P Jacobs, P Thorne et al, (2018) Statistical analysis of coverage error in simple global
616	temperature estimators, Dynamics and Statistics of the Climate System, 1-18
617	doi:10.1093/climsys/dzy003

618	Dee D. P., Uppala S. M., Simmons A. J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.
619	A., Balsamo G., Bauer P., Bechtold P., Beljaars A. C. M., van de Berg L., Bidlot J., Bormann N.,
620	Delsol C., Dragani R., Fuentes M., Geer A. J., Haimberger L., Healy S. B., Hersbach H., H'olm E.
621	V., Isaksen L., K°allberg P., K"ohler M., Matricardi M., McNally A. P., Monge-Sanz B. M.,
622	Morcrette J. J., Park B. K., Peubey C., de Rosnay P., Tavolato C., Th'epaut J. N., Vitart F. (2011)
623	The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J.
624	R. Meteorol. Soc. 137: 553–597, doi: 10.1002/qj.828.
625	Diggle P J, Liang K Y, Zeger S L. (1994) Analysis of Longitudinal Data. Oxford University Press.
626	Freeman, E., and Coauthors, (2017) ICOADS Release 3.0: A major update to the historical marine
627	climate record. International J. Climatology, 37, 2211–2232, DOI: 10.1002/joc.4775.
628	Folland, C.K., and Coauthors, 2001: Observed climate variability and change. Climate Change 2001:
629	The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 99–181.
630	Fyfe JC, Meehl GA, England MH, Mann ME, Santer BD, Flato GM, Hawkins E, Gillett NP, Xie S-P,
631	Kosaka Y, Swart NC. (2016) Making sense of the early-2000s warming slowdown. Nat. Clim.
632	Change 6: 224–228, doi: 10.1038/nclimate2938.

633 Hansen J, Ruedy R, Glascoe J et al. (1999), GISS analysis of surface temperature change. J. Geophys.

- 634 Res., 104: 30997-31022.
- Hansen J, Ruedy R, Sato M et al. (2001), A closer look at United States and global surface temperature
- 636 change. J. Geophys. Res., 106: 23947-23963.
- 637 Hansen, J., M. Sato, R. Ruedy, K. Lo, D. W. Lea, and M. Medina Elizade (2006), Global temperature
- 638 change, Proc. Natl. Acad. Sci. U. S. A., 103, 14, 288–293, doi:10.1073/pnas.0606291103
- Hansen J, R Ruedy, M Sato, K Lo (2010), Global surface temperature change, Reviews Of
- 640 Geophysics, 48 (4), RG404:1-29, DOI: 10.1029/2010RG000345
- Hartmann, D. L. In: Climate Change (2013) The Physical Science Basis. (eds Stocker, T. F. et al.), Ch. 2
- 642 (Cambridge University Press, Cambridge, 2013).
- 643 Hawkins E D and Jones P D, (2013) Notes and Correspondence On increasing global temperatures: 75
- 644 years after Callendar, Q. J. R. Meteorol. Soc. 139: 1961–1963
- 645 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. (2020). The
- 646 ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological
- 647 Society. doi:10.1002/qj.3803
- 648 Hirahara, S., M. Ishii, and Y. Fukuda, (2014) Centennial-scale sea surface temperature analysis and its
- 649 uncertainty. J. Climate, 27, 57–75, doi:10.1175/JCLI-D-12-00837.1.

- 650 Huang B, MJ Menne, T Boyer, E Freeman, et al, (2019) Uncertainty estimates for sea surface
- 651 temperature and land surface air temperature in NOAAGlobalTemp version 5, J. Climate, doi : 652 10.1175/CLI-D-19-0395.1, in press. 653 Huang, B., P. W. Thorne, T. M. Smith, W. Liu, J. Lawrimore, V. F. Banzon, H.-M. Zhang, T. C. Peterson, 654 and M. Menne, (2016) Further exploring and quantifying uncertainties for Extended Reconstructed 655 Sea Surface Temperature (ERSST) version 4 (v4). J. Climate, 29, 3119-3142, DOI: 656 10.1175/JCLI-D-15-0430.1. 657 Huang, B., W. Angel, T. Boyer, L. Cheng, G. Chepurin, E. Freeman, C. Liu, and H.-M. Zhang, (2018) 658 Evaluating SST analyses with independent ocean profile observations. J. Climate, 31, 5015-5030, 659 doi:10.1175/jcli-d-17-0824.1. 660 Huang, B., P. Thorne, V. Banzon, T. Boyer, G. Chepurin, J. Lawrimore, M. Menne, T. Smith, R. Vose, 661 and H. Zhang, (2017a) Extended Reconstructed Sea Surface Temperature version 5 (ERSSTv5): 662 Upgrades, Validations, Intercomparisons. J. Climate. 30. 8179-8205, and 663 doi:10.1175/JCLI-D-16-0836.1.
- Huang, J., Zhang, X., Zhang, Q., et al. (2017b) Recently Amplified Arctic Warming Has Contributed
- to a Continual Global Warming Trend , Nature Climate Change, 7, 875–879.

666 doi:10.1038/s41558-017-0009-5.

667	IPCC. 2007. Climate Change (2007) The Physical Science Basis. Contribution of Working Group I to the
668	Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S, Qin D,
669	Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. (eds.): 996 pp. Cambridge
670	University Press: Cambridge, UK and New York, NY.
671	IPCC. 2013a. Climate Change (2013) The Physical Science Basis. Contribution of Working Group I to
672	the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker TF, Qin D,
673	Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM. (eds.): 1535
674	pp. Cambridge University Press: Cambridge, UK and New York, NY.
675	IPCC, 2013b. Summary for Policymakers. In: Climate Change (2013) The Physical Science Basis.
676	Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on
677	Climate Change [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A.
678	Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United
679	Kingdom and New York, NY, USA
680	Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, (2005) Objective analyses of sea-surface
681	temperature and marine meteorological variables for the 20th century using ICOADS and the Kobe

- 682 Collection. Int. J. Climatol., 25, 865–879, doi:10.1002/joc.1169.
- 583 Jones P. D., L. David, T. J. Osborn, C. Harpham, M. Salmon, and C. P. Morice (2012), Hemispheric and
- 684 large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J
- 685 Geophys Res-Atmos, 117, doi:10.1029/2011JD017139.
- 586 Jones, P. D., and T. M. L. Wigley (2010), Estimation of global temperature trends: What's important and
- 687 what isn't, Clim. Change, 100(1), 59–69.
- 588 Jones P. D., Moberg A. (2003) Hemispheric and large-scale surface air temperature variations: an
- 689 extensive revision and an update to 2001, J Climate, 16:206–223
- 690 Karl T.R., Arguez A., Huang B., Lawrimore J.H., McMahon J.R., Menne M.J., Peterson T.C., Vose R.S.,
- 691 Zhang H.M. (2015) Possible artifacts of data biases in the recent global surface warming hiatus.
- 692 Science,348: 1469–1472. doi:10.1126/science.aaa5632
- 693 Kennedy, J. J., N. A. Rayner, R. O. Smith, D. E. Parker, and M. Saunby, (2011a) Reassessing biases and
- 694 other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases
- and homogenization. Journal of Geophysical Research-Atmospheres, 116, D14104,
- 696 doi:10.1029/2010JD015220
- 697 Kennedy, J. J., N. A. Rayner, R. O. Smith, M. Saunby, and D. E. Parker (2011b) Reassessing biases and

698	other uncertainties in sea surface temperature observations since 1850, part 1: Measurement and
699	sampling uncertainties. J. Geophys. Res., 116. D14103, doi:10.1029/2010JD015218
700	Kennedy, J. J. (2014) A review of uncertainty in in situ measurements and data sets of sea surface
701	temperature, Rev. Geophys., 52, 1–32, doi:10.1002/2013RG000434.
702	Kennedy, J. J., Rayner, N. A., Atkinson, C. P., & Killick, R. E. (2019) An ensemble data set of sea-
703	surface temperature change from 1850: the Met Office Hadley Centre HadSST.4.0.0.0 data set.
704	Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2018JD029867
705	Kent, E. C., Kennedy, J. J., Smith, T. M., Hirahara, S., Huang, B., Kaplan, A., Parker, D. E., Atkinson, C.
706	P., Berry, D. I., Carella, G., Fukuda, Y., Ishii, M., Jones, P. D., Lindgren, F., Merchant, C. J.,
707	Morak-Bozzo, S., Rayner, N. A., Venema, V., Yasui, S., Zhang, H-M. (2017) A call for new
708	approaches to quantifying biases in observations of sea-surface temperature. Bulletin of the
709	American Meteorological Society, 98, 1601-1616, doi:10.1175/BAMS-D-15-00251.1
710	Lawrimore J. H., M. J. Menne, B. E. Gleason, C. N. Williams, D. B. Wuertz, R. S. Vose, and J. Rennie
711	(2011) An overview of the Global Historical Climatology Network monthly mean temperature data
712	set, version 3. Journal of Geophysical Research-Atmospheres, 116, doi:10.1029/2011jd016187.
713	Lenssen, N., G. Schmidt, J. Hansen, M. Menne, A. Persin, R. Ruedy, and D. Zyss, (2019) Improvements

- in the GISTEMP uncertainty model. Journal of Geophysical Research-Atmospheres, 124, 12,
- 715 6307-6326, doi:10.1029/2018JD029522.
- 716 Lewandowsky S., K Cowtan., J. Risbey, et al. (2018) The 'pause' in global warming in historical context:
- 717 (II). Comparing models to observations. Envion. Res. Lett., 13, 123007,
- 718 https://doi.org/10.1088/1748-9326/aaf372.
- Lewandowsky S., J. Risbey, and N. Oreskes (2016) The "pause" in global warming: Turning a routine
- fluctuation into a problem for science. Bull. Amer. Meteor. Soc., 97, 723-733,
- 721 doi:10.1175/BAMS-D-14-00106.1.
- Li Q. and Y. Yang, (2019) Comments on "Comparing the current and early 20th century warm periods in
- 723 China" by Soon W., R. Connolly, M. Connolly et al., Earth-Science Reviews, 198, 102886,
- 724 https://doi.org/10.1016/j.earscirev.2019.102886
- Li Q., Zhang L., Xu W. et al. (2017) Comparisons of time series of annual mean surface air temperature
- for China since the 1900s: Observation, Model simulation and extended reanalysis. Bull. Amer.
- 727 Meteor. Soc., 98 (4):699-711, doi: 10.1175/BAMS-D-16-0092.1
- Li Q., S. Yang, W. Xu, X. L. Wang, P. Jones, D. Parker, L. Zhou, Y. Feng, and Y. Gao (2015) China
- experiencing the recent warming hiatus, Geophys. Res. Lett., 42, doi:10.1002/2014GL062773.

- 730 Li Q., W. Dong, W. Li, X. Gao, P. Jones, J. Kennedy and D. Parker (2010) Assessment of the
- 731 uncertainties in temperature change in China during the last century. Chin. Sci. Bull., 55,
 732 1974-1982, doi: 10.1007/s11434-010-3209-1.

Li Q, Sun W, Huang B, Dong W, Wang X, Zhai P and P. Jones. (2020a) Consistency of global warming

- 734 trends strengthened since 1880s, Science Bulletin, accepted.
- 735 Li Q., W. Dong and P. Jones (2020b) Continental Scale Surface Air Temperature Variations: An
- 736 Experience Derived from China Region Practice, Earth-Science Reviews, 200, 998,
- 737 https://doi.org/10.1016/j.earscirev.2019.102998.

- 738 Lugina, K. M., P. Y. Groisman, K. Y. Vinnikov, V. V. Koknaeva, and N. A. Sperandkaya (2006), Monthly
- surface air temperature time series area-averaged over the 30-degree latitudinal belts of the globe,
- 740 1881-2005, in Trends: A Compendium of Data on Global Change [online],
- 741 doi:10.3334/CDIAC/cli.003, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. Of
- 742 Energy, Oak Ridge, Tenn. (Available at http://cdiac.ornl.gov/trends/temp/lugina/lugina.html)
- 743
 Medhaug
 I,
 Stolpe
 M,
 Fischer
 E
 et
 al.

 744
 (2017) Reconciling controversies about the 'global warming hiatus,
 Nature,
 545:
 41-47.
- 745 DOI:10.1038/nature22315.

- 746 Morice, C. P., J. J. Kennedy, N. A. Rayner, and P. D. Jones (2012) Quantifying uncertainties in global and
- regional temperature change using an ensemble of observational estimates: The HadCRUT4
 dataset, J. Geophys. Res., 117, D08101, doi:10.1029/2011JD017187.
- 749 Menne J. M., C. N. Williams, B. E. Gleason, et al. (2018) The Global Historical Climatology Network
- 750 Monthly Temperature Dataset, Version 4, J Climate, 31 (24): 9835–9854.
- 751 https://doi.org/10.1175/JCLI-D-18-0094.1
- 752 Muller, R. A., J. Curry, D. Groom, R. Jacobsen, S. Perlmutter, R. Rohde, A. Rosenfeld, C. Wickham, and
- J. Wurtele (2013) Decadal variations in the global atmospheric land temperatures, J. Geophys. Res.
- 754 Atmos., 118, doi:10.1002/jgrd.50458.
- 755 Peterson T.C., and R.S. Vose (1997) An overview of the Global Historical Climatology Network
- temperature database. Bulletin of the American Meteorological Society, 78, 2837-2849.
- 757 Peterson T. C., Willett K. M., Thorne P. C. (2011) Observed changes in surface atmospheric energy over
- 758 land. Geophys. Res. Lett. 38: L16707, doi:10.1029/2011GL048442.
- Rahmstorf S, G Foster and N Cahill (2017) Global temperature evolution: recent trends and some pitfalls.
- 760 Environ. Res. Lett., 12 054001, https://doi.org/10.1088/1748-9326/aa6825
- 761 Rayner, N. A., P. Brohan, D. E. Parker, C. K. Folland, J. J. Kennedy, M. Vanicek, T. J. Ansell, and S. F. B.

- 762 Tett (2006) Improved analyses of changes and uncertainties in sea-surface temperature measured
- 763 in-situ since the mid-nineteenth century, J. Clim., 19, 446 469.
- 764 Risbey J., S. Lewandowsky, K Cowtan., et al. (2018), A fluctuation in surface temperature in historical
- 765 context: reassessment and retrospective on the evidence. Envion. Res. Lett., 13, 123008,
- 766 https://doi.org/10.1088/1748-9326/aaf342.
- Rohde R., Muller, R. A., Jacobsen, R., et al. (2013), A new estimate of the average earth surface land
- temperature spanning 1753 to 2011. Geoinfor Geostat: An Overview. doi:10.4172/gigs.1000101.
- 769 Simmons, A.J., Berrisford, P., Dee, D.P., Hersbach, H., Hirahara, S. and Thépaut, J.N. (2017) A
- reassessment of temperature variations and trends from global reanalyses and monthly surface
- climatological datasets. Quarterly Journal of the Royal Meteorological Society, 143: 101-119,. doi:
- 772 https://doi.org/10.1002/qj.2949
- 573 Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP. (2010). Low-frequency variations in surface
- atmospheric humidity, temperature and precipitation: Inferences from reanalyses and monthly
- gridded observational datasets. J. Geophys. Res. 115: D01110, doi: 10.1029/2009JD012442.
- 576 Stott, P.A. & Thorne, P.W. (2010) How best to log local temperatures? Nature, 465:158-159.
- 777 Smith, T., R. W. Reynolds, R. E. Livezey, and D. C. Stokes (1996) Reconstruction of historical sea

surface temperatures using empirical orthogonal functions. J. Climate, 9, 1403–1420, doi:10.1175/

- 779 1520-0442(1996)009,1403: ROHSST.2.0.CO;2.
- 780 Smith, T. M., and R. W. Reynolds (2005) A global merged land-air-sea surface temperature
- reconstruction based on historical observations (1880-1997), J. Clim., 18, 2021-2036,
- 782 doi:10.1175/JCLI3362.1.
- 783 Smith, T., R. W. Reynolds, T. C. Peterson, and J. Lawrimore (2008) Improvements to NOAA's historical
- merged land-ocean surface temperature analysis (1880-2006). J. Climate, 21, 2283-2296,
- 785 doi:10.1175/2007JCLI2100.1
- 786 Titchner, H. A., and N. A. Rayner (2014) The Met Office Hadley Centre sea ice and sea surface
- temperature data set, version 2: 1. Sea ice concentrations, J. Geophys. Res. Atmos., 119, 2864-2889,
- 788 doi: 10.1002/2013JD020316.
- 789 Trenberth K. T., P. Stepaniak, and S. Worley (2002) Evolution of El Niño
- -Southern Oscillation and global atmospheric surface temperatures, J. Geophys. Res. 107, D8,
- 791 4065, 10.1029/2000JD000298
- Vose, R. S., et al. (2012) NOAA's Merged Land-Ocean Surface Temperature Analysis. Bulletin of the
- American Meteorological Society, doi:10.1175/BAMS-D-11-00241.1.

- Xu W., Q. Li, P. D. Jones, X. L. Wang, et al. (2018) A new integrated and homogenized global monthly
- and surface air temperature dataset for the period since 1900, Clim. Dynamics, 50:2513-2536,
- 796 10.1007/s00382-017-3755-1.
- 797 Yun, X., Huang, B., Cheng, J., Xu, W., Qiao, S., and Li, Q. (2019) A new merge of global surface
- temperature datasets since the start of the 20th Century, Earth Syst. Sci. Data, 11, 1629–1643,
- 799 https://doi.org/10.5194/essd-11-1629-2019
- 800 Zhai P., Yu. R., Guo Y., Li Q., Ren X., Wang Y., Xu W., Liu Y., Ding Y. (2016) The strong El Niño in
- 801 2015/2016 and its dominant impacts on global and China's climate. J. Meteorol. Res., 74(3): 309–
- 802 321. doi:10.11676/qxxb2016.049
- 803 Zhang, H.-M., J. H. Lawrimore, B. Huang, M. J. Menne, X. Yin, A. SÃ; nchez-Lugo, B. E. Gleason, R.
- 804 Vose, D. Arndt, J. J. Rennie, and C. N. Williams, (2019) Updated temperature data give a sharper
- 805 view of climate trends. EOS, 100, doi:10.1029/2019E0128229.

807 List of Tables

808

809 Table 1. Long-term trends and uncertainty of global land temperature over the indicated periods (°

810 C / 10a)

- 811 Table 2. Century-scale trends in global LSAT change from different datasets (°C / decade)
- 812 Table 3. Century-scale trends in annual global ST change from different datasets (°C / decade)
- 813 Table 4. Century-scale trends in global, Hemispheric and Tropical Belt ST change (°C / decade)
- 814 Table 5. GMST change trends (different uncertainties evaluation) with different SST datasets (°C /
- 815 decade)

817 Table1 Long-term trends and uncertainty of global land temperature over the indicated periods (°
 818 C / 10a)

	I	Warming periods				
	Period -	1850-2019	1901-2019	1951-2019	1979-2019	
	Trend	0.081±0.014	0.119±0.023	0.219±0.042	0.296±0.077	
9						

Table 2. Century-scale trends in global LSAT change from different datasets (°C / decade)

	1900-2017	1951-2017	1979-2017	1998-2017	1998-2012
C-LSAT	0.100±0.012	0.188±0.024	0.274±0.040	0.247±0.098	0.120±0.120
CRUTEM4.6	0.101±0.012	0.192±0.024	0.279 ± 0.042	0.236±0.110	0.106±0.138
GHCNv3	0.103±0.014	0.207±0.026	0.280 ± 0.044	0.224±0.112	0.052±0.118
GISTEMPv3 (250)	—	0.195±0.026	0.272 ± 0.046	0.241±0.108	0.090±0.122
GISTEMPv3 (1200)	0.098±0.010	0.185±0.020	0.227±0.036	0.203±0.098	0.093±0.120
Berkeley SAT	0.106±0.014	0.194±0.026	0.285 ± 0.048	0.246±0.114	0.161±0.164

Table 3. Century-scale trends in annual global ST change from different datasets (°C / decade)

	1900-2017	1951-2017	1979-2017	1998-2017	1998-2012
CMST	0.086±0.008	0.133±0.014	0.164±0.026	0.190±0.072	0.091±0.088
HadCRUT4	0.079 ± 0.008	0.120±0.016	0.174±0.026	0.147 ± 0.074	0.055±0.094
NOAAGlobalTemp	0.085 ± 0.008	0.138±0.014	0.165±0.024	0.175±0.066	0.084 ± 0.080
GISSv3 (250)	0.078 ± 0.006	0.121 ± 0.014	0.151±0.024	0.134±0.066	0.036±0.080
GISSv3 (1200)	0.086 ± 0.008	0.136±0.014	0.177±0.026	0.154±0.072	0.071±0.094
BE1	0.082 ± 0.006	0.116±0.016	0.188 ± 0.028	0.183±0.074	0.110±0.102
BE2	0.090 ± 0.008	0.130±0.016	0.166±0.026	0.163±0.070	0.079 ± 0.094
ERA5	—	—	0.180±0.032	0.223±0.086	0.140±0.112
HadCRUT Hybrid	—	—	0.189±0.026	0.183±0.070	0.120±0.098

Table 4. Century-scale trends in global, Hemispheric and Tropical Belt ST change ($^{\circ}C$ / decade)

	1900-2019	1951-2019	1979-2019	1998-2019	1998-2012
NH	0.099±0.011	0.165±0.022	0.248±0.036	0.258±0.086	0.134±0.102
SH	0.077 ± 0.006	0.113±0.011	0.079 ± 0.020	0.125±0.055	0.041 ± 0.098
Tropical Belt	0.081±0.009	0.130±0.018	0.147±0.034	0.186±0.098	0.072±0.165

833 Table 5. GMST change trends (different uncertainties evaluation) with different SST datasets ($^{\circ}C$ /

834 decade)

	Uncertainties	1900-2019	1951-2019	1979-2019	1998-2019	1998-2012
Merge1	Fitting	0.091 ± 0.008	0.145 ± 0.014	0.173±0.026	0.195±0.063	0.091 ± 0.088
(CMST)	Fitting+data	0.091 ± 0.011	0.145±0.019	0.173±0.033	0.194±0.083	0.091 ± 0.094
	Fitting	0.089±0.010	0.141 ± 0.019	$0.209{\pm}0.031$	0.182 ± 0.074	0.069±0.106
Merge2	Fitting+data	0.089±0.012	0.140±0.025	0.208±0.035	0.182 ± 0.094	0.069±0.115

838 List of Figures

- 839 Figure 1 The flowchart of the approach of calculating data uncertainty.
- 840 Figure 2 The GLSAT anomaly series and its 95% confidence uncertainty range (a: GLSAT with
- 841 the error ranges); b: GLSAT series without the error ranges. The anomaly is relative to the
- 842 1961-1990 period.
- 843 Figure 3 Distribution of the linear trends of SAT in all grid boxes for different datasets (a. C-LSAT;
- b. CRUTEM4.6; c. GHCNv3; d. GISTEMPv3 (250km); e. GISTEMPv3 (1200km); f.
- 845 Berkeley SAT. Unit: 0.1 °C/decade)
- Figure 4 Annual mean LSAT anomalies (°C) and the linear trends during 1998–2012 (2017) in
- Arctic (a) and in Globe (b) (relative to 1961-1990)
- 848 Figure 5 The distribution of the linear trends of ST in all grid boxes during 1998-2012 for different
- datasets (a. CMST; b. HadCRUT4; c. NOAAGlobalTemp; d. BE1; e. BE2; f. GISSv3 (1200);
- g. GISSv3 (250); h. HadCRUT Hybrid; i. ERA5. Unit: 0.1 °C/decade)
- 851 Figure 6 Global mean ST anomalies (°C) during 1998–2012 for 8 different datasets (the anomalies
- 852 of ERA5/HadCRUT Hybrid (dashed lines) are relative to 1979-1990, the rest are relative to
- 853 1961-1990)
- Figure 7 Comparisons of the global mean ST change series between CMST and other 5 existingdatasets.
- Figure 8 Gobal (a), North Hemispheric (b), South Hemispheric (c) and Tropics (d) annual mean
- 857 ST anomalies (°C) during 1900-2017 in CMST (the dashed line are linear trends)
- 858 Figure 9 Comparisons of global mean ST change merged with ERSSTv5 and median of HadSST3
- (a. ST change series; b. the differences)

Figure 2 The GLSAT anomaly series and its 95% confidence uncertainty range (a: GLSAT with the error ranges); b: GLSAT series without the error ranges. The anomaly is relative to the 1961-1990 period. The inset in the upper panel shows the uncertainty ranges from different types of errors; and the inset in the lower panel shows the time series of the total error range.

1998-2012

Figure 3 Distribution of the linear trends of SAT in all grid boxes for different datasets (a. C-LSAT; 871 872 b. CRUTEM4.6; c. GHCNv3; d. GISTEMPv3 (250km); e. GISTEMPv3 (1200km); f.

- 873 Berkeley SAT. Unit: 0.1 °C/decade)
- 874

1.5

0.5

n

-0.5

1.5

180°W

(d)

(g)

(h)

(i)

882 Figure 5 The distribution of the linear trends of ST in all grid boxes during 1998-2012 for different

- datasets (a. CMST; b. HadCRUTEM4; c. NOAAGlobalTemp; d. BE1; e. BE2; f. GISS (1200); g.
- 884 GISS (250); h. HadCRUT Hybrid; i. ERA5. Unit: 0.1 °C/decade)
- 885
- 886

Figure 8 Global (a), North Hemispheric (b), South Hemispheric (c) and Tropical Belt (d) annual
mean ST anomalies (°C) during 1900-2017 in CMST (the dashed lines are linear trends)

Figure 9 Comparisons of global mean ST change merged with ERSSTv5 and median of HadSST3
(a. ST change series; b. the differences)