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ABSTRACT
The unsteady axisymmetric problem of a liquid drop impacting onto a rigid vibrating substrate is studied. Initially, the drop is spherical and
touches the flat substrate at a single point. Then, the substrate starts to move toward the drop and vibrate with a small amplitude and high
frequency. The early stage of the impact is studied by using the potential flow theory and the Wagner approach in dimensionless variables.
The effect of the substrate vibration on the drop impact is described by a single parameter. It is shown that the vibration of the substrate leads
to oscillations of the pressure in the contact region. The low-pressure zone periodically appears in the wetted part of the substrate. The low-
pressure zone can approach the contact line, which may lead to ventilation with separation of the liquid from the substrate. The magnitude
of the low pressure grows in time. The acceleration of the contact line oscillates with time, leading to splashing of the droplet with the local
increase of the thickness of the spray jet sheet at a distance from the contact line. The phase shift of the substrate vibration with respect to the
impact instant is not studied. Splashing can be produced only by a forced vibration of the substrate. The impact onto an elastically supported
rigid plate does not produce splashing. The obtained results and the theoretical model of the initial stage of drop impact are valid for certain
ranges of parameters of the problem.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0033409., s

I. INTRODUCTION

Liquid drop impact onto a rigid or elastic substrate and the
subsequent splashing is a fascinating phenomenon that is still dif-
ficult to describe and to understand [see Rein (1993) and Yarin
(2006)]. Splashing occurs when a droplet hits a substrate and does
not spread on the substrate smoothly but produces small droplets
and jets, which scatter from the substrate. Splashing depends on the
liquid of the droplet, velocity of impact, size of the droplet, proper-
ties of the substrate, and presence of a gas around the droplet. It is
challenging to predict splashing and to reveal the dominant under-
lying mechanisms. Splashing is important in many industrial and
environmental fields, ranging from microfluidics to agriculture. In
some applications, such as fuel combustion, splashing is beneficial,
while in others, it has adverse effects, such as pesticide delivery onto
plant leaves, where splashing should be minimized. Splashing is dif-
ficult to study, either experimentally, theoretically, or numerically.
The splashing behavior is set at very early times after, or possibly just

before, impact, far before the actual splash occurs [see Pepper et al.
(2008)]. Splashing can be suppressed by using elastic membranes
with controlled (reduced) tension (Courbin et al., 2006). The prob-
lem of drop impact on elastic and compliant surfaces is still under
investigation (Chen, 2005). Drop impact onto an elastic plate with
high flexural rigidity may induce or trigger high-frequency vibration
of the plate leading to vibration of the drop, its splashing, and even
atomization (James et al., 2003 and Pegg et al., 2018). The problem of
wave impact onto elastic structures was intensively studied in marine
and offshore hydrodynamics [see Faltinsen (2000), Korobkin (1998),
Korobkin et al. (2008), and Korobkin and Khabakhpasheva (2006)]
with the focus on stresses in the structures and the hydrodynamic
loads.

The dynamic behavior of a sessile droplet sitting on a vibrat-
ing elastic plate was investigated by Tsai et al. (2015). The char-
acteristics of the droplet oscillation were studied experimentally
by using two high-speed cameras recording side and top views
synchronously. Theoretical dynamic shapes of the droplet and
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FIG. 1. Initial position of the droplet before impact.

frequencies of its oscillations were compared with those measured
in the experiments, and different regimes of the droplet oscillations
were explained. Moreover, the circular patterns of the elastic plate
vibrations were visualized. The radii of the nodal lines on the plate as
functions of the frequency of the external forcing were well predicted
by a theoretical model. A droplet placed at a nodal line oscillates
due to the pitch motion of the plate at this line but not due to the
plate vertical vibration that is negligible at the nodal line. A droplet
located either outside or inside the nodal lines behaves differently,
resulting in potential depinning of the contact line due to the gra-
dient of the plate deflection. The contact line is either stationary or
moves periodically in time depending on the plate frequency and its
amplitude.

Pegg et al. (2018) studied an early stage of a spherical liquid
drop impact onto a rigid substrate with a small built-in elastic cir-
cular plate. The impact forced the elastic plate to vibrate, which
changed the expansion rate of the wetted part of the substrate and
the parameters of the spray sheet that emanates from the periphery
of the wetted region. As a result, the velocity of the spray sheet oscil-
lated, leading to breaking the sheet with consequent splashing and
lifting the liquid in the sheet from the substrate. This type of splash-
ing happens in the inertia-dominated regime, when surface tension,
the viscosity of the liquid, gravity, and the presence of gas in the place
of the impact play minor roles.

The present study of a liquid drop impact on a vibrating rigid
plate is related to both the problem of drop impact on an elas-
tic substrate and the problem of a sessile droplet on a vibrating
plate (Fig. 1). Forced vibration of the plate can produce a layer of
cavitating liquid near the impact region if the frequency of the
plate vibration is high enough. Such a cavitating layer significantly

changes spreading and possible splashing of the droplet. It is pos-
sible that the liquid starts to cavitate near the impact region even
before the drop touches the substrate due the presence of air between
the droplet and the substrate. The presence of air is not taken into
account in this study, which could correspond to the impact inside a
chamber without a gas in it. Zones of low pressures on the vibrat-
ing plate and oscillation of the expanding contact line may also
enhance splashing and could prevent wetting of the substrate. The
present study is focused on the early stage of the impact, dura-
tion of which is comparable with the period of the plate vibration.
The radius of the wetted part of the plate is much smaller than
the droplet radius during this stage. The large-time behavior of a
droplet impacting a vibrating substrate was studied experimentally
by James et al. (2003) and numerically by Moradi et al. (2020). We
are concerned with the initial stage and conditions of droplet impact,
where the impact effects and vibrations effects are comparable. The
axisymmetric problem of liquid drop impact is investigated under
the assumption of large Reynolds and Weber numbers by using
methods of asymptotic analysis.

II. FORMULATION OF THE PROBLEM
Initially, the drop is spherical with radius R. The plate touches

the free surface of the droplet at a single point taken as the origin
of the cylindrical coordinate system r, z. It is convenient to invert
the problem and consider the plate impact onto the droplet [see
Fig. 2(a) for the initial configuration and Fig. 2(b) for the sketch of
the axisymmetric flow just after the impact] with an oscillating veloc-
ity −V − aω cos(ωt), where V is the mean velocity of the plate, a is
the amplitude of the plate vibration, and ω is the frequency of the
vibration. The current position of the plate is given by the equation
z = −[Vt + a sin(ωt)] [see Fig. 2(b)]. Surface tension, viscosity of
the liquid, and gravity play minor roles during the early stage of the
impact. During this stage of impact, the flow region is approximately
divided into the main region, the jet root region at the periphery
of the wetted part of the vibrating plate, and the jet sheet itself
[see Fig. 2(c)]. The flow in the main region is studied by using the
potential flow theory and the Wagner approach [see Wagner (1932),
Korobkin and Pukhnachov (1988), and Howison et al. (1991)].

In this approach, the flow near the impact place is governed by
Laplace’s equation for the velocity potential φ(r, z, t) with the main
flow region being approximated by the lower half-space,

∇
2φ = 0 (z < 0). (1)

The boundary conditions in the contact region and on the free sur-
face of the droplet are linearized and imposed at the initial position

FIG. 2. Sketch of the plate impact onto the droplet. (a) Initial configuration. (b) Deformation of the drop during the impact. (c) Asymptotic decomposition of the flow region.
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of the plate, z = 0 [see Howison et al. (1991)]. The dynamic condition
on the free surface reads

φ(r, 0, t) = 0 (z = 0, r > Rc(t)), (2)

and the linearized boundary condition in the wetted part of the plate
is

∂φ
∂z
= −V − aω cos(ωt) (z = 0, r < Rc(t)), (3)

where the mean velocity of the plate V and the amplitude of the
velocity of the plate vibration, aω, are assumed to be of the same
order. The velocity potential is required to decay in the far field,

φ→ 0 (z2 + r2
→∞), (4)

which means that the flow induced by impact is localized near the
impact place.

The radius of the contact region, Rc(t), is unknown in advance
and should be determined as part of the solution. It is defined as
the radius of the line on the free surface, where the tangent to the
free surface is normal to the surface of the plate [see Fig. 2(b)]. The
shape of the free surface of the droplet is determined approximately
by using the linearized kinematic boundary condition, where z = 0
and r > Rc(t). Within the Wagner theory, the radius Rc(t) is obtained
from the condition that the deformed free surface of the droplet at
time t intersects the current position of the plate at r = Rc(t). This
additional condition is known as the Wagner condition.

Dimensionless variables are used below, where 1/ω is the time
scale, V is the velocity scale, and V/ω is the displacement scale. The
length scale, L =

√
RV/ω, is obtained by estimating the radius of the

contact region from the geometrical consideration without account
for deformation of the droplet during the early stage [see Pegg et al.
(2018)]. If the length scale L is much smaller than the radius of the
droplet R, then one can approximate the flow region by the half-
space z < 0, and if it is much greater than the displacement scale,
then one can approximately impose the boundary conditions at the
initial position of the plate, z = 0, as in (2) and (3), when the param-
eter ε = L/R =

√
V/(ωR) is small. The problem is studied under

the condition that the velocity of the plate vibration, aω, is of the
same order but smaller than the mean velocity of the plate V. This
condition introduces a parameter of the problem, μ = aω/V, where
0 < μ < 1, a = ε2μR, and ε ≪ 1. The dimensionless velocity poten-
tial φ̃(r̃, z̃, τ) is introduced by φ(r, z, t) = VLφ̃(r̃, z̃, τ), where VL is
the scale of the velocity potential and r = Lr̃, z = Lz̃, and τ = ωt.
Dimensionless variables are denoted with tilde. The dimensionless
radius of the wetted part of the plate is rc(τ) = Rc(t)/L. The posi-
tion of the plate in the dimensionless variables is described by the
equation z̃ = −εh(τ), where h(τ) = τ + μ sin τ. The dimensionless
hydrodynamic pressure is given by the linearized Bernoulli equation
p̃(r̃, z̃, τ) = −∂φ̃/∂τ with the pressure scale ρV2/ε, where ρ is the
liquid density. Tilde is dropped below.

III. PRESSURE DISTRIBUTION
The formulated problem is equivalent to that of a rigid

paraboloid, z = ε(r2/2 − h(τ)), entering the liquid half-space, z < 0,
at the oscillating speed h′(τ). The latter problem was solved in Sec. 7

of Korobkin and Scolan (2006). The velocity potential in the contact
region, z = 0, r < rc(τ), is given by

φ(r, 0, τ) = −
2
π
h′(τ)

√
r2
c (τ) − r2, rc(τ) =

√
3h(τ). (5)

The pressure distribution in the contact region reads

p(r, 0, τ) =
2
π

G(r, τ)
√
r2
c (τ) − r2

,

G(r, τ) = −μ sin τ(r2
c (τ) − r

2
) +

3
2
(1 + μ cos τ)2.

(6)

The obtained pressure distribution shows that the pressure
in the contact region is always positive close to the contact line,
r = rc(τ), and also everywhere in the contact region when sin τ < 0.
When sin τ > 0, the function G(r, τ) is a monotonic function of r with
its minimum value at r = 0, G(0, τ) = −3μ(τ + μ sin τ) + sin τ + 3/2(1
+ μ cos τ)2. If G(0, τ) < 0, there is a region r < r0(τ), r0(τ) < rc(τ),
where the pressure is negative (below the atmospheric pressure) and
the liquid may cavitate.

The pressure p(r, 0, τ) at the center of the contact region,
r = 0, is shown in Fig. 3(a) for different values of the parameter μ.
The pressure is singular at the impact instant,

p(0, 0, τ) ∼
√

3
π
(1 + μ)

3
2

√
τ

(τ → 0).

The pressure oscillates with time. The pressure magnitude grows as
O(
√
τ), and it is larger for larger μ. The pressure is well approxi-

mated by

p(0, 0, τ) ≈ pas(0, 0, τ) = −
2
√

3
π

μ
√
τ sin τ (7)

after two periods of the plate vibration, τ > 4π [see Fig. 3(b)]. The
regions of negative pressure in the contact region are shadowed
in the plane (τ, μ) [see Fig. 3(c)]. The zone of negative pressure
appears earlier for high-frequency oscillations (large μ) than for
small frequencies.

The hydrodynamic force F(t) acting on the vibrating plate due
to the drop impact is given by F(t) = F0(t)N(τ), where

F0(t) = 2ρV2
(3R)3/2√Vt (8)

is the force acting on the stationary plate and the factor

N(τ) =
√

1 + μ
sin τ
τ
(1 +

1
6
μ2 + 2μ cos τ −

2
3
μτ sin τ

+
5
6
μ2 cos(2τ)) (9)

describes the effect of the plate vibration on the hydrodynamic loads.
The function N(τ)/μ is shown in Fig. 3(d) for μ = 0.4, 0.7, and 1
together with its large-time asymptotics,

1
μ
Nas(τ) =

2
3
τ sin τ. (10)

It is seen that N(τ) oscillates with the amplitude, which grows
linearly in time.
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FIG. 3. (a) Pressures p(0, 0, τ) at the center of the wetted area for μ = 0.4 (green line), 0.7 (black line), and 1 (red line) as functions of the dimensionless time τ. (b) Pressures
p(0, 0, τ)/μ for μ = 0.4, 0.7, and 1 and the asymptotic pressure pas(0, 0, τ)/μ (blue line). (c) The regions of the plane (τ, μ), where the pressure p(0, 0, τ) is negative. (d) The
functions N(τ)/μ for μ = 0.4, 0.7, 1, and Nas(τ)/μ (blue line).

The liquid cavitates in the impact region [see Fig. 3(a)] if the
total dimensional pressure patm + ρV2ε−1p(0, 0, τ) at the center of the
impact region drops down to the vapor pressure pcav. For room tem-
perature and water droplets, we have pcav ≈ 3 kPa and patm ≈ 0.1 MPa.
The pressure scale for impact velocity V = 2 m/s, ρ = 1000 kg/m3,
and ε = 0.1 is 40 kPa. The total pressure drops to the vapor pressure
then when p(0, 0, τ) < −2.4. Figure 3(a) shows that the liquid cavi-
tates, in particular, for μ = 0.7 during the second period of the plate
vibration. Note that the droplet does not bounce from the plate but
continues to spread on the vibrating plate trapping the region of cav-
itating liquid. The conditions of the present calculations, V = 2 m/s,
μ = 0.7, and ε = 0.1, for a droplet of water of radius R = 1 mm imply
the amplitude of the plate vibration a = 7 ⋅ 10−6 m and frequency
ω = 2 ⋅ 105 s−1.

The present approach is valid for ϵ≪ 1, which means that the
droplet displacement during the period of the plate vibration, V/ω,
is much smaller than the radius of the droplet, and 0 < aω/V < 1,
which implies that the velocity of the plate vibration is of order of
the impact velocity but does not exceed it. These conditions require
a small amplitude of the plate vibration at a high frequency. See
more details about the validity ranges of the present model in the
Conclusion. According to Rayleigh’s formula, the lowest oscillation
frequency of the droplet of water of radius R = 1 mm and surface ten-
sion σ = 0.0728 N/m is equal to 763 Hz, which is two orders below
the frequency range of this study. Therefore, we do not expect the
resonance phenomenon when the frequency of the plate vibration is
close to a natural frequency of the droplet.

IV. EVOLUTION OF THE SPRAY JET
The Wagner solution of the impact problem (1)–(4) is not valid

close to the contact line, r = rc(τ), where it predicts the square-
root singular flow velocity and the pressure. Within the asymptotic
theory of impact, a jet root region is introduced at the periph-
ery of the wetted part of the rigid surface [see Pegg et al. (2018)].
The flow in the jet root region is quasi-stationary and nonlinear.
The axisymmetric spray sheet is ejected from the jet root region in
the radial direction with the dimensional velocity 2Rc

′(t) and dimen-
sional thickness hj0(t) = U2

(t)Rc(t)/[2πR2
c,t(t)] [see Oliver (2002),

Korobkin (1997), and Scolan and Korobkin (2003)], where U = V
+ aω cos(ωt) is the velocity of impact including the velocity of the
plate vibration. In the dimensionless variables, the jet speed is equal
to

V
ε

√
3 h′(τ)
√
h(τ)

, (11)

and the jet thickness is given by

hj0(τ) = Lε2 2
√

3π
h3/2
(τ). (12)

The spray jet caused by the drop impact is very thin, which makes
it possible to neglect the hydrodynamic pressure in the jet at lead-
ing order as ε → 0. The continuity equation for the spray sheet in
the axisymmetric case was asymptotically integrated in Korobkin
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(1997). The solution in the parametric form is

r = rc(T)[
h′(T)
h(T)

(τ − T) + 1], rc(T) =
√

3h(T), (13)

hj(r, τ) = hj0(T)
RRRRRRRRRRR

1−2
r′′c (T)
r′c(T)

(τ−T)
RRRRRRRRRRR

−1 RRRRRRRRRRR

1+2
r′c(T)
rc(T)

(τ−T)
RRRRRRRRRRR

−1

, (14)

where T is the parameter equal to the dimensionless time at which a
liquid particle enters the jet, T < τ. In formula (14), always rc′(T) > 0,
but the dimensionless acceleration, r′′c (T), of the contact line can be
either negative or positive. Initially, where 0 < T < π, the acceleration
r′′c (T) is negative, and the thickness of the jet head, where 0 < τ < π,
is bounded. If r′′c (T̂) > 0 later at a certain T̂, then hj(r, τ) → ∞ as
τ → τc(T̂) [see (14)], where

τc(T̂) = T̂ +
r′c(T̂)

2r′′c (T̂)
. (15)

The minimum value of the function τc(T̂), where T̂ ≥ π, defines
the time instant τc∗ and the corresponding time Tc∗, when the spray
sheet thickness hj(r, τ) becomes unbounded for the first time within
the present asymptotic model of liquid drop impact. This blow-up
occurs at r = rc∗, where

rc∗ = rc(Tc∗)[1 +
[r′c(Tc∗)]2

rc(Tc∗) r′′c (Tc∗)
]. (16)

In our problem,

r′′c (T)
r′c(T)

=
2hh′′ − (h′)2

2hh′(T)
, h(T) = T + μ sinT,

which predicts positive accelerations of the contact line when

−2μ sinT >
(1 + μ cosT)2

T + μ sinT
. (17)

The regions in the plane (T, μ), where inequality (17) is satisfied, are
shadowed in Fig. 4(a). The place on the spray sheet, rc∗(μ), where
the jet thickness becomes unbounded for the first time and the time,
τc∗(μ), when it happens, calculated using (15) for π < T < 10π, is
shown in Fig. 4(b). For small frequencies (small μ), the jet blows up
far from the contact region. For 0.2 < μ < 1, the jet thickness becomes
unbounded within the first three periods of the plate oscillations.
The discontinuous behavior of the function τc∗(μ), where 0 < μ
< 0.2, is explained by Figs. 4(c) and 4(d), where the functions rc∗(μ)
and τc∗(μ) are shown separately for the intervals π < Tc∗ < 2π,
3π < Tc∗ < 4π, and 5π < Tc∗ < 6π.

The evolution of the dimensionless jet thickness hj(r, τ), which
is given by (14), just before its first blow-up is shown in Fig. 5(a) for
μ = 0.5. The scale of the jet thickness is Lε2 [see (12)]. The thickness
of the spray jet increases beyond all bounds at a dimensionless dis-
tance of rc∗ = 3.9 from the impact place, which produces a vertical
splashing jet of corona type in this axisymmetric case. The evolution
of the maximum thicknesses of the spray sheet as functions of time
for several values of μ = aω/V is presented in Fig. 5(b). The blow-up
of the jet sheet occurs later for smaller μ.

The evolution of the spray jet for μ = 0.2 is shown in Fig. 6(a).
The jet root solution, which smoothly matches the free surfaces in
the main flow region and in the jet sheet, is not shown here. Several
places with vertical jets emanated from the spray sheet may occur for
smaller μ [see Fig. 6(b) for μ = 0.05].

The plate vibration may lead to an unbounded increase of the
spray sheet thickness. This phenomenon can be associated either

FIG. 4. (a) Regions of positive accelerations of the contact line are shadowed in the plane (T, μ). (b) The radial distance rc∗(μ) (blue line) and the time τc∗(μ) (red line) of
blow-up. (c) The function rc∗(μ) calculated for the intervals π < T < 2π, 3π < T < 4π, and 5π < T < 6π. (d) The function τc∗(μ) = min τc(T) calculated separately for the
same intervals.
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FIG. 5. (a) The thickness of the spray sheet as a function of the radial coordinate r at different time instants for μ = 0.5 in the dimensionless variables. (b) The evolution of the
maximum thicknesses of the spray sheet as functions of time for μ = 0.4 (green line), μ = 0.5 (red line), μ = 0.6 (blue line), and μ = 0.7 (black line). The vertical lines show the
corresponding values of time τc∗ when the sheet thickness becomes unbounded.

FIG. 6. Evolution of the spray sheet shown in the dimensionless variables by blue lines. The positions of the droplet free surface in the main flow region are shown by red
lines. The black lines present the positions of the plate. (a) μ = 0.2, ε = 0.1, (τc∗ = 9.86, rc∗ = 7.88); (b) μ = 0.05, ε = 0.1, (τc∗ = 40.85, rc∗ = 14.57) [see Fig. 4(b)]. The jet
root solution, which smoothly matches the free surfaces in the main flow region and in the jet sheet, is not shown.

Phys. Fluids 32, 122109 (2020); doi: 10.1063/5.0033409 32, 122109-6

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 7. Evolution of the spray sheet in the dimensionless variables (blue lines) and
positions of the droplet free surface in the main flow region (red lines) for μ = 0.5
(τc∗ = 4.99, rc∗ = 3.9) are shown in time instants τ = τc∗ − 0.565 (lines 1),
τ = τc∗ − 0.34 (lines 2), τ = τc∗ − 0.115 (lines 3), and τ = τc∗ (lines 4).

with splashing, if the flow in the normal to the plate direction occurs
far enough from the contact region (see Fig. 6), or with air entrain-
ment by the front of the advancing jet root region and subsequent
discontinuity of the contact line velocity (see Fig. 7 for μ = 0.5),
where the splashing jet shown by line 3 impacts the main free surface
of the droplet at time τ = τc∗ − 0.115 trapping the air.

V. DROP IMPACT ON ELASTICALLY
SUPPORTED PLATE

It was shown in Sec. IV that plate vibration may lead to an
unbounded increase of the spray sheet thickness. A liquid drop
impact onto a rigid plate supported by a spring may cause vibra-
tion of the plate with a subsequent splashing or air entrainment. In
this section, it will be shown that this scenario is impossible within
the asymptotic model of drop impact employed in this study.

We consider a horizontal plate of mass m supported by a spring
of rigidity k (see Fig. 8). A liquid drop of radius R and density ρ
approaches the plate from above at speed V. The plate displacement

FIG. 8. Sketch of the drop impact on an elastically supported plate.

Zp(t) is governed by the following equation:

mZ′′p + kZp = F(t), Zp(0) = 0, Z′p(0) = 0, (18)

where F(t) is the hydrodynamic force due to the drop impact [see
Korobkin and Scolan (2006)],

F(t) =
4
3
ρ (3R)3/2 d

dt
[Z3/2

d (t)Z
′
d(t)]. (19)

Zd(t) = Vt − Zp(t) is the displacement of the drop with respect to
the moving plate. The plate [Eq. (18)] with the force (19) in the
dimensionless variables,

Zd = Azd(τ), ω0t = τ, ω0 =
√
k/m,

A = (3m/4ρ)2/3
/(3R),

reads

d
dτ
[(1 + z3/2

d )z
′
d(τ)] + zd(τ) =

τ
ν

(τ > 0),

zd(0) = 0, z′d(0) =
1
ν

,
(20)

where ν = Aω0/V. The solution zd(τ) is determined numerically. The
radius of the contact line is Rc(t) =

√
3RAzd(τ). The unbounded

growth of the spray sheet thickness is possible only if R′′c (t) > 0 at
certain t, which provides

Q(τ) =
zd(τ)τ

ν
− z2

d(τ) − 2z3/2
d (z

′
d)

2
−

1
2
(z′d)

2
> 0. (21)

The equation of the plate motion (20) was integrated in time for
different values of the parameter ν. The maximum of Q(τ), where
0 < τ < 10, as a function of ν is shown in Fig. 9 for 0 < ν < 10. It is
seen that Q(τ) is always negative. Therefore, the splashing induced
by the plate vibration cannot be observed if the plate is supported
by a spring. The minimum of the derivative zd′(τ), which is propor-
tional to the speed of the contact line, where 0 < τ < 10, as a function
of ν is also shown in Fig. 9 for 0 < ν < 10. We conclude that the plate
does not vibrate as a result of the drop impact for any rigidity of the
supporting spring.

FIG. 9. The maximum of Q(τ) and the minimum of zd
′(τ) in the interval 0 < τ < 10

as functions of the parameter ν.
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To compare our results, which were obtained for droplet
impact onto a rigid plate vibrating at a given frequencyωwith ampli-
tude a in Sec. IV, and the same droplet impacting at the same speed
V onto an elastically supported plate, as it is studied in this section,
we select the parameters of the elastically supported plate such that
the scale of the plate displacement A is equal to a and the natural
frequency ω0 is equal to ω. The conditions of calculations in Sec. IV,
ω = 2 ⋅ 10−5 s−1 and a = 7 ⋅ 10−6 m, and the equalities A = a and
ω0 = ω provide the mass of the plate m = 4.2 ⋅ 10−9 kg and the rigid-
ity of the supporting spring k = 168 N/m. Then, the time scales are
the same in both problems, 1/ω, and the parameter ν from Eqs. (20)
is equal to μ, where the parameter μ = aω/V was defined in Sec. IV.
To compare the present results with the results of Sec. IV, one should
change the sign of the parameter μ, which is equivalent to the phase
shift π of the plate vibration with respect to the impact instant. Note
that the relative speed of impact on the vibrating plate at t = 0 is
equal to V(1 + μ), but the relative speed of impact on the elastically
supported plate is equal to V. Therefore, we cannot explicitly com-
pare these two types of impacts for non-zero μ. For the stationary
plate, μ = 0. The relative speed of impact on the elastically supported
plate is decreasing with time, which could be related to negative val-
ues of μ. The results of two problems are compared in terms of the
acceleration of the contact region expansion in Fig. 10. It was shown
in Sec. IV that the acceleration of the radius of the contact line, R′′c (t),
calculated within the Wagner impact model is responsible for pos-
sible splashing. The dimensionless accelerations, R′′c (t)/[ω

√
RVω],

for the problem of forced plate vibration are equal to r′′c (τ), where
rc(τ) is given in (5),

R′′c (t)
ω
√
RVω

=

√
3

4h3/2 [2hh
′′
− (h′)2

], h(τ) = τ + μ sin τ. (22)

This acceleration is shown in Fig. 10(a) for μ = 0, 0.4, and 0.7. The
importance of phase shift in the impact problem is demonstrated by
Fig. 10(b), where μ = 0, −0.4, and −0.7, which corresponds to the
phase shift π of the plate vibration. The value μ = 0 corresponds to
the static plate without vibration. The phase shift is important during
the first period of the plate vibration, 0 < τ < 2π, but then its effect
is reduced to the change of sign of the acceleration [see also Eq. (7)].
The dimensionless accelerations,

R′′c (t)
ω
√
RVω

=

√
3ν

2z3/2
d (1 + z3/2

d )
Q(τ), (23)

for the problem of impact onto an elastically supported plate, where
A = a, ω0 = ω, and ν = μ, are shown in Fig. 10(c) for different
values of the parameter ν. It is seen that the motions of the con-
tact line with and without plate vibration are different in nature.
There are some indications of oscillation of the acceleration for 0 < τ
< 3π in Fig. 10(c), but they do not lead to positive accelerations as in
Figs. 10(a) and 10(b).

We can conclude that splashing caused by the plate vibration
may occur only if the vibration is forced. Another option for vibra-
tion induced splashing is the plate of a small radius mounted in an
otherwise rigid substrate. The latter problem was studied by Pegg
et al. (2018) for an elastic simply supported circular plate. Our con-
clusion of no-splashing for impact onto an elastically supported
plate is related only to a particular type of splashing studied in

FIG. 10. Dimensionless accelerations of the contact region expansion for droplet
impact on a stationary plate (blue line), (a) a vibrating plate with μ = 0.4 (green
line), 0.7 (black line); (b) a vibrating plate with μ = −0.4 (green line), −0.7 (black
line); and (c) an elastically supported plate with ν = 0.4 (green line), 0.7 (black
line).

Sec. IV, which is caused by plate vibration and occurs during the
early stage of the impact. We showed that the elastically supported
plate does not oscillate during the early stage for any rigidity of the
supporting spring (see the blue line in Fig. 9, which shows the rel-
ative velocity of the impact for a non-stationary plate). However,
the motion of an elastically supported plate, which is caused by the
droplet impact on it, reduces the relative speed of the impact and,
therefore, reduces splashing of the droplet [see Rein (1993), Yarin
(2006), and Howland et al. (2016) for more discussions of physics of
splashing and comparison with experimental data].

Similar splashing jets may occur in the wake behind an
elastic plate obliquely impacting onto a thin liquid layer [see
Khabakhpasheva and Korobkin (2020)]. In this two-dimensional
problem, the liquid is forced to flow from the region under the elas-
tic plate into the wake at a relatively high speed, which may oscillate
in time. If the flow from under the plate accelerates, a splashing
jet emanated from the wake can be formed. The modeling of this
splashing jet is similar to that of the present paper.

VI. CONCLUSION
It has been shown that, within the asymptotic theory of the early

stage of the droplet impact at constant speed V, the pressure in the
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contact region can be below the atmospheric pressure even for small
amplitudes a of the plate vibration [see Fig. 3(a)]. The magnitudes of
the negative pressures grow in time as the square root of time. For
relatively large amplitudes a of the plate vibration with aω/V < 1,
whereω is the frequency of the plate vibration, ventilation may occur
with the zone of negative pressures approaching the periphery of
the contact region and the air being sucked into the contact region.
The effect of the phase shift of the plate vibration with respect to the
impact instant was not taken into account in the present study. This
effect could be important for splashing. The vibration of the plate
affects the motion of the contact line between the plate and the free
surface of the droplet. If the contact line accelerates, then the time
and position of splashing are predicted by the equations of Sec. IV.
The vibration of the plate increases the hydrodynamic force acting
on the plate.

The obtained results and the employed theoretical model of
the initial stage of drop impact are valid for certain ranges of the
problem parameters. The amplitude a of the plate vibration should
be much smaller than the length scale of the problem, L. Only in
this case, the body boundary condition can be imposed approxi-
mately at the initial position of the plate, z = 0. The inequality,
a ≪ L =

√
RV/ω, provides a2ω ≪ RV and μ ≪ R/a, which is sat-

isfied in our analysis because μ < 1 and a ≪ R. The inequality μ <
1 guarantees that the contact region monotonically expands in time.
The time scale 1/ω is assumed to be larger than the acoustic time
scale, tac = R/c0, where c0 is the sound speed in the liquid. Here, tac
is equal to the time traveled by acoustic waves from the place of the
impact to the center of the drop. This condition yields ω≪ c0/R. In
the example at the end of Sec. III with a water droplet of radius 1 mm,
we have c0/R = 15 ⋅ 105 s−1, which is larger than the frequency in that
example. In addition, the impact speed V should be much smaller
than the sound speed c0 to justify the incompressible liquid model,
V≪ c0. We also require that the inequality 1/ω≪ R/V is held, which
implies that the drop displacement is much smaller than the radius
R during the initial stage, the duration of which is of the order of
O(1/ω). The incompressible and linear hydrodynamic model of this
study can be used if

V
R
≪ ω≪

c0

R
.

The liquid viscosity can be neglected if the Reynolds number
Re = RV/ν, where ν is the kinematic viscosity of the liquid, is large.
For a water droplet of radius 1 mm and impact speed 2 m/s, we find
Re = 2000. Surface tension and gravity can be neglected during the
early stage of the droplet impact onto the vibrating plate based on
similar arguments as in Pegg et al. (2018).

The process of the droplet impact onto a vibrating rigid plate
can be described by using the ideas from the water entry and exit
model of Korobkin et al. (2017). During the first half of the first
period of the plate vibration, 0 < τ < π, the relative speed of the
drop with respect to the vibrating plate decreases from V(1 + μ)
to V(1 − μ). This impact with deceleration leads to negative pres-
sures in the contact region if μ > 1/5. During this stage, the speed
Rc
′(t) of the contact line is very high and the contact line accelera-

tion is negative. During the second stage, π < τ < 2π, the relative
speed of the impact increases leading to positive loads on the plate
and acceleration of the contact line. If μ > 1/5, then this is the stage
that determines the time and place of the blow-up of the spray sheet.

During the following stages, with the duration π each in the dimen-
sionless variables, we can distinguish the stage with positive and
negative hydrodynamic loads and with positive and negative accel-
erations of the contact line. The magnitude of the loads increases in
time. The derived asymptotic solution can be used only up to the
first time instant of the spray sheet blow-up. This scenario of droplet
impact could also be observed for a stationary plate with the droplet
oscillating at a high frequency before the impact. The latter problem
has not been studied yet.

Preliminary results of this paper were presented at the 3rd
International Conference on Violent Flows (VF-2016), Osaka,
Japan, 9–11 March 2016 (Khabakhpasheva and Korobkin, 2016);
British Applied Mathematics Colloquium, Oxford, United King-
dom, 5–8 April 2016 (Korobkin and Khabakhpasheva, 2016);
and 11th European Fluid Mechanics Conference, Sevilla, 12–16
September 2016.
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