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Carryover effects of long‑distance 
avian migration are weaker 
than effects of breeding 
environment in a partially 
migratory bird
Claire Buchan1*, James J. Gilroy1, Inês Catry1,2,3, Javier Bustamante4, Alina D. Marca1, 
Philip W. Atkinson5, Juan Miguel González6 & Aldina M. A. Franco1

Migration may expose individuals to a wide range of increasing anthropogenic threats. In addition 
to direct mortality effects, this exposure may influence post‑migratory reproductive fitness. Partial 
migration—where a population comprises migrants and residents—represents a powerful opportunity 
to explore carryover effects of migration. Studies of partial migration in birds typically examine 
short‑distance systems; here we studied an unusual system where residents breed in mixed colonies 
alongside long‑distance trans‑Saharan migrants (lesser kestrels (Falco naumanni) in Spain). Combining 
geolocator data, stable isotope analysis and resighting data, we examined the effects of this stark 
difference in migratory strategy on body condition, breeding phenology and breeding success. We 
monitored four colonies in two regions of southern Spain for five consecutive years (2014–2018), 
yielding 1962 captures, determining migratory strategy for 141 adult bird‑years. Despite a 3000‑km 
difference in distance travelled, we find no effect of strategy on breeding parameters. We find weak 
evidence for a short‑term negative carryover effect of migration on body condition, but this was only 
apparent in the breeding region with lower primary productivity. Our results indicate that carryover 
effects of even highly divergent migratory strategies may be minimal relative to effects of conditions 
experienced on breeding grounds.

Migration represents a significant seasonal undertaking with potential for strong carryover  effects1,2. Envi-
ronmental conditions during spring migration can influence arrival time and body condition at the breeding 
grounds, with consequences for subsequent breeding success. Poor body condition following migration can lead 
to reduced resource investment in  reproduction3, or later arrival on breeding grounds due to less time-efficient 
 migration4. Breeding success is generally lower for later breeding  attempts5, via (likely interacting) mechanisms 
relating to seasonal deterioration in conditions, correlates of individual quality, and lost opportunity for addi-
tional breeding  attempts6. Climatic conditions experienced in the  winter7 and while on  migration8 can influence 
breeding phenology, while stresses experienced on spring staging grounds has been linked to subsequent lower 
breeding  success9.

Given the potential for migratory carryover effects to be cumulative, between-individual differences in the 
magnitude of carryover effects might be expected in populations where individuals differ markedly in migra-
tory behaviour. Migratory routes, distances and timings can vary significantly within  populations10, sometimes 
leading to significant variation in  survival11. Such differences may also apply to non-lethal carryover effects; 
larger migratory distances have been linked to later arrival on breeding  grounds12 and lower breeding  success13. 
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Large differences in the magnitude of migratory movement within a population may therefore be expected to 
precipitate significant differences in subsequent fitness.

Partial migration, where migrant and non-migrant individuals exist within the same  population14,15, provides 
a powerful natural experiment to explore these carryover effects, by comparing fitness parameters of migrants 
and  residents16. Although parity in fitness under both strategies is necessary for the evolutionary maintenance 
of partial  migration14 (especially if migratory strategy is  heritable17), it is hypothesised that this balance is main-
tained through trade-offs where migratory costs that reduce fitness in one parameter (survival or breeding suc-
cess) are compensated by higher fitness in  another14,18. For instance, residents may suffer higher energetic costs 
of enduring colder climates and lower food availability, but enjoy higher reproductive success due to early access 
to breeding  resources19,20. We may therefore expect to see differences in carryover effects between migrants and 
residents across different fitness components.

Anthropogenic change may also be influencing fitness differences within long-distance partially migra-
tory populations. Migratory individuals can face greater exposure to threats (e.g. land-use change, extreme 
climatic events, novel infrastructure) than residents, which may interact and accumulate along migratory 
 routes21,22. Simultaneously, climate warming and accompanying decreases in seasonality—at least in the north-
ern  hemisphere23—may favour  residency24. Increasingly clement wintering conditions may also create pheno-
logical mismatches that disproportionately affect longer-distance  migrants25. If anthropogenic change leads to 
a breakdown in the parity of fitness between migrants and residents it could lead to rapid changes in migra-
tory behaviour, potentially ultimately leading to the disappearance of  migration26. In light of the potential for 
cumulative carryover effects to manifest in the subsequent breeding season, we might expect long-distance 
migrants in partially migratory populations to be in worse condition than residents, breeding later and with 
lower reproductive fitness.

Most studies of within-population partial migration in birds are in short-distance  systems16. Here we examine 
carryover effects in an unusual example of long-distance partial migration (lesser kestrels, Falco naumanni), 
where non-migratory individuals are fully resident in the Spanish breeding grounds throughout the year, while 
migrants undertake a c. 3000-km trans-Saharan migration, such that individuals may be exposed to very different 
costs between the two strategies. We combine geolocator tracking, ring-resighting and stable isotope analysis to 
determine migratory strategies of individuals, and examine effects on body condition and breeding parameters. 
We hypothesise that stark differences in migratory strategy will lead to measurable differences in each of these 
parameters, reflecting the contrasting winter conditions experienced. We additionally compare the strengths of 
these differences relative to colony-specific differences in breeding environment.

Results
Determining strategies. We were able to determine the migratory strategy (migrant or resident) of 116 
individuals across 151 bird-years (90 residents, 61 migrants—see Supplementary Table S1). Of these, 107 indi-
viduals were adults, yielding 141 bird-years (81 residents, 60 migrants), which we carried forward to subsequent 
analyses (Supplementary Fig. S1). Contrary to previous  findings27, we found no evidence for residents being 
disproportionately male, with approximately balanced sex ratios in both residents (44 males, 37 females) and 
migrants (27 males, 33 females). Of 25 adult individuals (59 bird-years) for which we determined migratory 
strategy in multiple years (17 individuals for two years, seven for three years and one for four years), 21 main-
tained a consistent migratory strategy, three individuals switched from migrants to residents, and one individual 
switched from being a resident to being a migrant.

Adult body condition. Analysis of year-round condition values showed no enduring effect of migratory 
strategy, but did show an effect of study area (the two colony locations), indicating that birds at Cádiz were con-
sistently in better condition than those at Seville (Fig. 1a).

For condition values measured during the pre-incubation period (see Fig. 3), the most parsimonious model 
retained the interaction between migratory strategy and study area (Fig. 1b), indicating higher condition in 
residents compared to migrants in Seville. However, a post-hoc multiple comparisons test was not significant 
(p = 0.09), suggesting uncertainty around this effect (Supplementary Table S2). Regardless of strategy, birds at 
Cádiz were in better condition than those in Seville during the pre-incubation period (p < 0.01, Fig. 1b, Sup-
plementary Table S2).

Breeding success. The most parsimonious model for breeding phenology (first egg date) retained study 
area as the sole predictor, with lesser kestrels at Cádiz nesting later than at Seville (Fig. 1c). First egg date in 
turn was the sole important predictor of clutch size, with clutch sizes decreasing over the course of the season 
(Fig. 1d). Study area was the only predictor in the best model for mean clutch chick condition, with Seville birds 
having chicks in lower condition than those at Cádiz (Fig. 1e). For all remaining productivity analyses (number 
of fledglings, nest outcome, fledging probability), the null models were the most parsimonious.

The final models of each analysis are summarised in Supplementary Table S3.

Discussion
We found no evidence for carryover effects of long-distance migration on phenology, reproductive success 
or year-round body condition. We identified differences in adult body condition, breeding phenology, clutch 
size and chick condition between study areas, and weak evidence for short-term carryover effects of migratory 
strategy on body condition in one study area, with residents in better condition than migrants during the pre-
incubation period.



3

Vol.:(0123456789)

Scientific Reports |          (2021) 11:935  | https://doi.org/10.1038/s41598-020-80341-x

www.nature.com/scientificreports/

Figure 1.  Effects of migratory strategy, breeding site area and breeding phenology on fitness parameters, 
according to the final model for each analysis. (a,b) Relative year-round and pre-incubation condition of adult 
lesser kestrels captured in the two study areas. Migratory strategy of individual was not an important predictor 
of year-round condition, but was an important predictor of pre-incubation condition. (c) Breeding phenology 
(scaled first egg date) of lesser kestrel clutches in the two study areas. (d) Lesser kestrel clutch size did not vary 
with study area, but decreased over the season. (e) Chick condition from lesser kestrel clutches in the two study 
areas. Migratory strategy of clutch parent was not an important predictor of breeding phenology, clutch size or 
chick condition. Points with error bars (Figures a-c and e) or solid line with surrounding dashed lines (Figure d) 
represent model-predicted means and associated 95% confidence intervals. All continuous variables were scaled 
and centred via z-score transformation.
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Breeding phenology was similar between migrants and residents, contrary to other studies reporting an 
association between earlier-breeding and shorter migratory  distances13,28,29. Migrant lesser kestrels typically 
return by mid-February30, significantly earlier than the start of the breeding season (mid-April), which varies 
depending on the emergence dates of large invertebrate  prey31. Residents therefore do not necessarily experience 
breeding-suitable conditions any earlier than migrants in this species, meaning both strategies may yield similar 
opportunities to assess the optimal time to commence breeding.

Despite the stark differences in migratory strategy, we also found no significant differences between migrants 
and residents in clutch size, number of fledglings, nest outcome, fledging probability or chick condition. This 
may in part be explained by sampling limitations, as we were able to determine the migratory strategy of both 
parents in only a few cases, and were therefore only able to examine the association between a clutch and the 
strategy of one parent (see “Methods”). As there is no evidence for phenological differences between migrants 
and residents, nor observed evidence for assortative mating (of ten known-strategy pairs, three were mixed-
strategy), it is possible that carryover effects in these clutches were moderated by a counterbalancing effect of 
migrant-resident pairs. Carryover effects of migratory strategy on breeding parameters have elsewhere been 
shown to be strongest where there is a multiplicative effect of matched-strategy  pairs32. Alternatively, carryover 
effects of migratory strategy may only manifest later in the season; we did not, for instance, assess post-fledging 
condition or survival. It may also be the case that, where migratory strategy influences reproductive fitness, it 
does so to such an extent that individuals simply forego breeding (or do not survive to breed), and are therefore 
not detected or included in the breeding analysis. Finally, that we do not detect an effect of migratory strategy 
on productivity may simply indicate that both migrants and residents face different but approximately balanced 
fitness  costs14 associated with winter experience (trans-Saharan migration versus enduring harsh winters), ulti-
mately resulting in equal allocation of resources to reproduction.

Variation in breeding phenology was, to some extent, explained by study area, with birds in Cádiz breeding 
later than those in Seville (raw mean ± SD first egg date: Cádiz: 28 April ± 10, Seville: 17 April ± 10). Local habitat 
conditions may play an important role in determining lesser kestrel breeding  phenology31. The Normalized Dif-
ference Vegetation Index (NDVI), considered indicative of food availability for  insectivores33, was consistently 
higher in Cádiz than in Seville, and peaked later there (Fig. 2). If NDVI correlates with invertebrate abundance, 
the later NDVI peak at Cádiz could explain the delayed breeding at that site. This aligns with the patterns 
observed in nineteen Palaearctic migrant  species2, where conditions on breeding grounds have a greater effect 
on breeding phenology than wintering conditions.

Figure 2.  Change in relative primary productivity (scaled NDVI) across the calendar year in the two study 
areas. We used data from Terra  MODIS66 and CORINE Land Cover  201267 to extract NDVI values (2014–2018) 
for each 250-m2 pixel classified as suitable foraging habitat (Supplementary Table S4) within a 3-km radius 
of each  colony68. We used GAMMs to model NDVI against date smoothed with penalised regression splines, 
interacting with colony area, with pixel ID as a random effect. The interactions between date and the two levels 
of study area were significant in the model (p < 0.0001).
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Although our results suggest breeding phenology to be the main driver of variation in clutch size—with 
broods getting smaller over the breeding season, as is commonly found in avian  populations5—the relationship 
between breeding phenology and colony area means it is difficult to tease apart the extent to which clutch size is 
driven by breeding phenology or effects of local breeding conditions. Number of fledglings, nest outcome and 
probability of fledging were all similar between the two study areas, but chick condition was slightly higher in 
Cádiz than in Seville (raw mean ± SD chick condition (mass/P8): Cádiz: 2.93 ± 1.10, Seville: 1.86 ± 0.59). Adult 
individuals in Cádiz also showed better year-round body condition, regardless of migratory strategy, again 
highlighting the importance of local breeding-site conditions for individual fitness.

We found some statistical support for an effect of migratory strategy on pre-incubation body condition, with 
resident individuals showing better relative body condition than migrants in the Seville area (Fig. 1b). This may 
suggest a short-lived carryover effect, with long-distance migration being more costly than residency during 
the studied period. We might expect this result if migration is a conditional  strategy19,20 where only high-quality 
individuals are able to endure winter north of the Sahara (e.g. 34). This pattern also aligns with the theory that 
ongoing environmental change may be disproportionately detrimental to long-distance migrants, increasing 
relative costs. While not affecting subsequent breeding success, this short-lived carryover effect could plausibly 
influence survival, with some low-condition migrants not surviving to the subsequent breeding  season11,35.

No differences were found in year-round body condition between migrants and residents, potentially sug-
gesting that any short-lived carryover effect is counterbalanced by the energetic pressures of reproduction, or 
buffered by increased food availability during the breeding season. Elsewhere, spring migratory conditions have 
been found to compensate for the carryover effects of winter conditions on post-winter body condition, with no 
subsequent effects on breeding  success36.

It is notable that the potential effect of migratory strategy on pre-incubation adult body condition appeared 
relevant only in Seville, and not Cádiz, indicating that conditions at the breeding site may override migratory 
carryover effects. Conditions on breeding grounds have elsewhere been linked to differential manifestations 
of carryover  effects9,37; if migration has a greater negative effect on body condition than residency, it is feasible 
that migrants breeding in more productive habitats recover their condition more quickly upon arrival than 
individuals in poorer habitats.

Regional differences in the effect of migratory strategy on pre-incubation condition could also arise if there 
were strong migratory connectivity at this scale, such that migrants from Seville had a distinct and more costly 
migratory experience than migrants from Cádiz. However, given the proximity of the two areas, strong connec-
tivity seems unlikely. In 2007, a single roost of over 28,000 lesser kestrels was observed in Senegal, representing 
30–50% of the western European  population38, and geolocator studies from elsewhere in Iberia indicate a high 
degree of spatial aggregation in  winter30,39. Finally, we might expect regional variation in the effects of migratory 
strategy if partial migration is both condition- and density-dependent19, with different mechanisms underpin-
ning migration and residency in the two  areas40,41.

Sample size limitations may have influenced our overall power to detect carryover effects of migratory strat-
egy, although our main finding—that breeding site effects are of greater relevance to fitness than migratory 
strategy—concerns the relative magnitude of effects, rather than their absolute size. Carryover effects of strategy 
on breeding may be buffered in broods with mixed-strategy parents, something we were unable to analyse. That 
we were only able to assess the effect of migratory strategy of one clutch-parent may have undermined our capac-
ity to detect carryover effects on breeding parameters. We did not examine survival, recruitment or population 
trends—strong effects of migratory behaviour on fitness could therefore be concealed if they operate largely on 
survival parameters rather than reproductive success. Similarly, knock-on effects of reproductive effort and body 
condition may only be reflected in subsequent mortality. Measuring survival in conjunction with post-fledging 
survival and/or recruitment would shed further light on population-level effects of migratory variability.

Conclusions
Despite marked differences in the wintering experiences of migrant and resident lesser kestrels, carryover effects 
of migratory strategy were limited and idiosyncratic, with conditions on the breeding grounds being of greater 
relevance for adult and chick body condition. We hypothesised that anthropogenic change could be having a 
disproportionate effect on migrants, and thereby disrupting the balance in fitness benefits of each strategy. We 
found little evidence to support this, suggesting that costs of migration associated with exposure to anthro-
pogenic impacts may be counterbalanced by costs experienced by resident individuals, such as variability in 
winter conditions. This apparent parity of fitness between the two strategies is in accordance with theory on 
the evolutionary stability of partially migratory  populations14. Detailed information on adult survival and chick 
recruitment may facilitate more comprehensive understanding of the interactions between migratory strategies, 
breeding conditions and demographic effects.

Methods
Ethics statement. All bird handling and fieldwork protocols were conducted according to the relevant 
national and institutional regulations on animal welfare, and were approved by the Junta de Andalucía: Direc-
ción General de Gestión del Medio Natural y Espacios Protegidos (Ntra. Ref: 2016107300003028/IRM/MDGC/
mes) and the University of East Anglia Animal Welfare and Ethical Review Board.

Study system. The lesser kestrel is a small, colonial  raptor42, breeding largely in abandoned agricultural 
structures or in  towns43, with a largely insectivorous  diet44. We studied four colonies in two regions of Andalu-
cía, southern Spain: three in the province of Seville, breeding in abandoned agricultural buildings on the border 



6

Vol:.(1234567890)

Scientific Reports |          (2021) 11:935  | https://doi.org/10.1038/s41598-020-80341-x

www.nature.com/scientificreports/

between Doñana National Park and surrounding arable farmland in the Guadalquivir basin (37°05′N 6°19′W), 
and a fourth in the province of Cádiz, breeding in a church tower in Los Barrios town (36°11′N 5°30′W).

Monitoring breeding phenology and success. We monitored breeding parameters in 2014–2018 
(Seville colonies) and 2014–2017 (Cádiz colony), visiting colonies weekly to monitor all accessible cavities and 
collect data on nesting phenology, clutch size and fledging success (number of chicks aged > 20 days per nest); 
chicks were also ringed and measured prior to fledging. First egg dates were either observed directly or back-
calculated as 32  days prior to the first hatch  date45. Our data indicate that wing growth of lesser kestrels is 
linear between the ages of 14 and 30 days, with non-linear growth likely to occur after day 30 (Supplementary 
Figure S2, see  also46,47). If neither first egg date nor first hatch date were directly observed (n = 17 clutches), we 
therefore estimated these using a linear mixed-effects model of wing chord measurements against known-ages 
of chicks measured in 2018 (n = 96, marginal  R2 = 0.89) (see Supplementary Figure S2). We deemed a nest suc-
cessful if at least one bird reached an age greater than 20 days.

Determining migratory strategies. We used a combination of wintering observations, geolocator data, 
and feather isotope analysis to determine individual strategies (migrant or resident). At each colony, we captured 
adults via opportunistic captures during nest visits, mist-netting close to roost sites, spring-traps baited with 
insect or small mammal prey, and nocturnal visits to colonies. All individuals were colour-ringed, aged and 
sexed according to plumage features. We measured mass, wing chord and eighth descendant primary (P8) length 
at each capture, and collected a c. 1  cm2 section of vane from the trailing edge of the winter-grown ninth or tenth 
primary (P9/P10) feather of each adult bird once per calendar year for isotope analysis. We classified migratory 
strategies of each individual in each year (henceforth ‘bird-years’), and related these strategies to metrics of body 
condition and breeding success in the following season.

Direct observations. Colonies were visited weekly during the winter (Nov–Jan) from 2013 to 2018 to identify 
residents through resightings. Any individual detected in Seville or Cádiz between 01 November and 15 January 
was considered a resident bird-year for the breeding season immediately following (date thresholds represent a 
two-week buffer around our earliest observations of known migratory individuals). Additionally, one bird was a 
confirmed migrant from an opportunistic resighting in Senegal in 2017.

Geolocators. We deployed 36 geolocators (British Antarctic Survey model Mk14, 1.5 g, attached on Teflon har-
nesses as back mounts) during the 2014 and 2015 breeding seasons, of which 16 were subsequently recovered 
and 13 provided adequate data. Geolocators were pre- and post-calibrated for 7 days, and analysed using the 
‘FLightR’ package  following48,49. Individual twilights were excluded if light–dark transitions were erratic 2 h 
either side of the twilight. Individuals were assumed to be resident if they showed no fixes south of 36°N between 
01 November and 15 January, and migratory if they showed at least two fixes south of 23°N within that period.

Feather isotopes. We used δ13C values (ratios of the stable isotopes 13C to 12C) of winter-grown flight feathers 
P9/1050 to identify migrant individuals (see Supplementary Information: Isotope analysis methods). As some 
individuals moult P9/P10 prior to  migration51,52, birds with an Iberian isotopic signature (lower δ13C values) for 
winter-grown feathers cannot be assumed to be resident, as they could have moulted the feather on the breeding 
grounds prior to migrating. We therefore only used isotope values to identify migrants, not residents.

We analysed δ13C values from the feathers of 276 bird-years, to which we added isotope data from an addi-
tional 128 bird-years collected from other colonies in the same region (37°21′N 5°13′W). We classified any 
feather with a δ13C value higher than − 20 ‰ to come from a migrant individual, deeming a δ13C value of − 20 
‰ a conservative buffer around the clustering of lower δ13C values representing feathers grown on the breeding 
grounds, and excluding all known residents (Supplementary Fig. S3). This cut-off also aligns with the δ13C feather 
isoscape for Africa created by Hobson and  colleagues53. We expect at least 70% individuals in the study popula-
tions to be  migratory27,54, and this conservative cut-off likely excludes a number of migrants from our analysis, 
but as we were not assessing prevalence of strategies, we analysed only those individuals we could confidently 
classify as long-distance migrants. We also undertook a sensitivity analysis of the -20 ‰ cut-off value, running 
all analyses on two additional datasets, with isotope-defined migratory status created according to either a more 
conservative or less conservative δ13C cut-off (± 0.5 ‰). Altering this value did not change our results for any 
analyses, indicating the results reported are robust to variations in this threshold—see Supplementary Materials: 
Isotope sensitivity analyses.

Condition metrics. To estimate adult condition at capture, we divided mass by P8 length to distinguish 
dynamic body condition from structural  size55. We then developed an index of bird condition relative to the 
population average, controlling for sex and stage of the annual cycle, using generalised additive mixed-effect 
models (GAMMs) with penalised regression splines, adding bird identity as a random effect to account for 
recaptures (n = 566 captures across all years of data—Fig. 3). We took the residuals from these models as our 
index of body condition relative to the population-wide mean condition for individuals of that sex at that date. 
We created GAMMs using the package ‘gamm4′56, with default selection of smoothing parameters.

For chick condition, we again divided mass by P8 length to account for chicks having been measured at dif-
ferent ages, and averaged this condition across siblings to create a single mean chick condition for each brood.
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Statistical analysis. For all final analyses, we excluded data from 2018, as there was an imbalance in sam-
pling effort between the two study regions (Supplementary Fig. S1).

Adult body condition. We modelled the relationship between relative adult body condition and migratory 
strategy using GLMMs with a Gaussian distribution, including bird identity as a random effect, using the pack-
age ‘lme4′57. We also included capture date, study area and sex as fixed effects, and allowed for an interaction 
between strategy and study area (Cádiz vs. Seville) to examine whether carryover effects differed between areas. 
Because short-term carryover effects of migratory strategy might be strongest immediately after pre-breeding 
migration, we repeated the analysis using only condition measures taken prior to the peak in mean female condi-
tion (02 May, Fig. 3), corresponding with the onset of incubation—henceforth referred to as the ‘pre-incubation 
period’—considering this to represent the point after which body condition becomes more strongly affected by 
breeding effort than by the preceding winter. We conducted a post-hoc multiple comparison test on the resulting 
final model, using the package ‘multcomp’58.

Breeding parameters. We analysed the influence of migratory strategy on breeding phenology (first egg date), 
clutch size, number of fledglings, nest outcome (success or failure), fledging probability (proportion of eggs 
successfully fledged) and chick condition. Study area was included in all models. For all productivity analyses 
barring chick condition, we also considered first egg date as a fixed effect, hypothesising that phenology may 
affect productivity. For the chick condition analysis we had a relatively small sample size (n = 41, Supplementary 
Fig. S1), within which first egg date was confounded with study area, and was therefore excluded.

We analysed breeding parameters for all adults of known migratory strategy for which there was clutch data. 
For clutches where the migratory strategy of both parents was known (n = 10), one parent was excluded at random 
to avoid duplicating these clutches in the dataset (see Supplementary Fig. S1 for sample sizes). We used gener-
alised linear models with a Gaussian distribution for phenology and chick condition, and Poisson distribution 
for number of fledglings, with a log link function. For clutch size we used a Conway-Maxwell Poisson  model59 
to account for underdispersion, using automatic estimation of the under-dispersion parameter (ν)60,61. We used 
a binomial distribution with logit link function for nest outcome, and modelled fledging probability (weighted 
by clutch size) using a quasibinomial distribution—to handle overdispersion (pertinent for binomial models 
using proportion data)— and logit link function.

In all instances, we followed a model-theoretic  approach62, creating a subset of reduced models from each 
global model, then ranking these by Akaike’s Information Criterion adjusted for small sample size (AICc) to 
determine the best-fitting models, using the package ‘MuMIn’63. We used quasi-AICc (QAICc) values for the 

Figure 3.  Relative body condition (scaled mass/P8 length) of adult lesser kestrels caught throughout the year. 
Black lines indicate model-predicted mean condition, dashed line indicates associated standard error. Colours 
indicate migratory strategy during the winter preceding the breeding season in the calendar year of capture. 
Captures occurring prior to the date indicated by the dotted line (May 01) were used in the pre-incubation 
condition analysis.
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fledging probability analysis, as AIC values cannot be calculated for models with quasi-distributions. Where 
we had multiple competitive models (within Δ2 (Q)AICc units of the highest-ranked model), we selected the 
model with the fewest parameters within the Δ2 subset as our final  model62, as model-averaging is not feasible 
for model sets including interaction  terms64.

We scaled and centred all continuous variables via Z-score transformations, and carried out all analyses in 
R version 3.5.065.

Data availability
The data underpinning these analyses and the relevant R code are included in the Supplementary Information.
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