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Summary

� Plant populations persist under recurrent fire via resprouting from surviving tissues (re-

sprouters) or seedling recruitment (seeders). Woody species are inherently slow maturing,

meaning that seeders are confined to infrequent fire regimes. However, for grasses, which

mature faster, the relationships between persistence strategy and fire regime remain

unknown.
� Globally, we analysed associations between fire regimes experienced by hundreds of grass

species and their persistence strategy, within a phylogenetic context. We also tested whether

persistence strategies are associated with morphological and physiological traits.
� Resprouters were associated with less frequent fire than seeders. Whilst modal fire frequen-

cies were similar (fire return interval of 4–6 yr), seeders were restricted to regions with more

frequent fire than resprouters, suggesting that greater competition with long-lived resprouters

restricts seeder recruitment and survival when fire is rare. Resprouting was associated with

lower leaf N, higher C : N ratios and the presence of belowground buds, but was unrelated to

photosynthetic pathway.
� Differences between the life histories of grasses and woody species led to a contrasting

prevalence of seeders and resprouters in relation to fire frequency. Rapid sexual maturation in

grasses means that seeder distributions, relative to fire regime, are determined by competitive

ability and recruitment, rather than time to reproductive maturity.

Introduction

Plant species persist in fire-prone environments via two broad
strategies: resprouting from surviving tissue or recruiting from
seedbanks (Bond & Midgley, 2001; Pausas et al., 2004). The rel-
ative benefit of these two strategies (‘resprouter’ vs ‘seeder’) varies
with fire regime, resulting in patterns of persistence strategies
along gradients of fire frequency and intensity, as seen in several
woody fire-prone taxa (Keeley, 1986; Bellingham & Sparrow,
2000; Pausas, 2001; Knox & Morrison, 2005; Clarke & Dorji,
2008; Vilà-Cabrera et al., 2008; Pausas & Keeley, 2014). How-
ever, for grasses, a globally important plant family whose distri-
bution and success are closely linked to fire (Bond et al., 2005;
Keeley & Rundel, 2005; Scheiter et al., 2012; Linder et al.,
2018), the relationship between persistence strategy and fire
regime has not been explored.

Fire regimes vary spatially and temporally (Gill, 1975; Belcher
et al., 2010; Archibald et al., 2013; Keeley & Syphard, 2016)
with fire frequency and intensity two fire regime characteristics
relevant to understanding strategies of plant growth and

persistence. Fire frequency limits potential periods of plant
growth, and therefore resources available to put into organs that
may aid resprouting, such as rhizomes. Intensity relates to tem-
peratures experienced, and the potential impact on plant mortal-
ity and reproductive success (Moreno & Oechel, 1991; Wade,
1993; McCaw et al., 1997). Fire intensity and frequency are
interdependent, as long fire return periods enable the develop-
ment of significant fuel loads, potentially resulting in high-inten-
sity fires (Bond & van Wilgen, 1996; Archibald et al., 2013).
Hence, plant persistence strategies tend to sort along gradients of
frequency and intensity (Box 1 panels a and b; Keeley, 1986;
Bellingham & Sparrow, 2000; Knox & Morrison, 2005; Pausas
& Keeley, 2014). These patterns have been explained by life his-
tory theory via the principle of resource allocation (Keeley &
Keeley, 1977; Bond & Midgley, 2001), which posits that plants
balance the allocation of limited resources among growth, main-
tenance and reproduction (Silvertown & Charlesworth, 2001).
Seeders maximise fitness by allocating relatively more resources
than resprouters to fast growth and early reproduction to increase
the likelihood of reaching reproductive maturity before the next
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fire. By contrast, resprouters maximise fitness by allocating rela-
tively more resources to nonstructural carbohydrate stores and
protective structures that will increase the likelihood of survival
post fire (Bellingham & Sparrow, 2000).

Fire has played a major role in the historical and contemporary
success of the grasses (Keeley & Rundel, 2005; Scheiter et al.,
2012; Linder et al., 2018). Large areas of the tropics and subtrop-
ics are maintained as grasslands and savannas by fire, despite the
climatic potential to support forest (Bond et al., 2005; Beckage
et al., 2011). Grasses, in turn, fuel the most frequent fire regimes
and the majority of fires on Earth (Mouillot & Field, 2005).
There is growing interest in how fire influences and is influenced
by grasses (Ripley et al., 2015; Simpson et al., 2016; Wragg et al.,
2018; Russell et al., 2019; Simpson et al., 2019). Grasses persist
through fire by germinating from soil-stored seed banks or by
resprouting from buds (Bond & van Wilgen, 1996). However,
how resprouter and seeder grasses sort along gradients of fire fre-
quency and intensity remains untested. Yet, it is important in
understanding the consequences of stark differences in life histo-
ries that likely underpin relationships between fire regimes and
persistence strategies (Pausas, 2001; Box 1 panels c and d).

The plant traits associated with seeder and resprouter strategies
of fire-prone woody species are well studied (Paula & Pausas,
2006; Vivian & Cary, 2012), but remain poorly understood in
grasses. The C4 photosynthetic pathway, which has evolved mul-
tiple times independently in grasses (Grass Phylogeny Working
Group II, 2012) and is highly efficient in warm, high-light envi-
ronments, such as fire-prone grasslands (Tix & Charvat, 2005;
Ratnam et al., 2011), may be important to grass resprouting abil-
ity (see Table 1 for specific predictions). A recent study by Moore
et al. (2019) found that post-fire survival across 52 perennial
grasses was associated with C4 photosynthesis. Likewise, the posi-
tioning of resprouting buds is also expected to be crucial (Pausas
& Paula, 2020). Buds below the soil surface (rhizomes) are likely
better protected from heat than those at the soil surface (crown
resprouters or species with stolons; Table 1). Leaf traits probably
also differ between seeders and resprouters, as found in woody
fire-prone species (e.g. Paula & Pausas, 2006). Leaf traits associ-
ated with potential growth rates and resource investment, such as
specific leaf area (SLA; Forrestel et al., 2014), and nitrogen (N)-
use efficiency (associated with low leaf N content), may be
important in fire-prone, N-poor environments (Table 1; Knapp
& Medina, 1999; Long, 1999; Sage, 2004; Keeley & Rundel,
2005). Likewise, leaf traits that enhance flammability, such as a
high leaf carbon (C) : N ratio, occur in resprouting, shade-intol-
erant grasses which require frequent defoliation (Table 1; Ever-
son et al., 1988). Life history is likely to be closely linked to
resprouting ability, with perennials presumably able to resprout
but annuals not (Table 1). Whether this is strictly true, or if there
are exceptions to this trend, is unclear.

Here, we explore the global relationship between fire character-
istics (frequency and intensity) and the persistence strategies of
fire-prone grass species. We predict that patterns of resprouting
and seeding with fire characteristics in grasses will differ from
those in woody species in the ways outlined in Box 1. Based on a
priori expectations (Table 1), we also investigate how plant traits

(photosynthetic pathway, life history, bud position, SLA, leaf N
content and C : N ratio) relate to resprouting ability.

Materials and Methods

Grass species occurrences

We extracted all georeferenced and dated occurrence records (c.
18.6 M records) for Poaceae taxa from the Global Biodiversity
Information Facility (GBIF) web portal (GBIF.org (5 November
2019) GBIF Occurrence Download doi: 10.15468/dl.rckugp)
via the R statistical computing package RGBIF (Chamberlain et al.,
2020). This analysis and all statistical analyses were carried out in
the R environment (R Core Team, 2019).

Steps were taken to control the quality and suitability of occur-
rence records (Supporting Information Table S1 gives the num-
ber of records remaining after each cleaning step). Species names
were standardised against the Kew Grass Synonymy database
(Clayton et al., 2006) using the software package TAXONOME

(Kluyver & Osborne, 2013), and records were discarded if an
accepted name could not be given. Longitude and latitude data
were checked to ensure values were sensible using the COORDI-

NATECLEANER package (Zizka et al., 2019; for example removal of
invalid and nonterrestrial coordinates, duplicated records and

Table 1 Plant traits and their predicted associations with resprouting
ability in fire-prone grasses.

Trait Relationship with resprouting ability

Photosynthetic
pathway

Resprouters are more likely to be C4 than C3 (Moore
et al., 2019). C4 species are highly efficient in fire-
prone environments and may therefore have greater
stored resources to resprout (Tix & Charvat, 2005;
Ratnam et al., 2011)

Bud position Resprouters are more likely to have buds below the
soil surface (rhizome resprouters) where they are
protected from intense heat (Pausas & Paula, 2020)

Specific leaf area
(SLA)

Resprouters will have lower SLA than seeders
(Forrestel et al., 2014). High SLA will aid the rapid
growth of seeder species

Leaf nitrogen (N)
content

Resprouters will have lower leaf N contents than
seeders. Resprouters may experience fire multiple
times in their lifetime and thus low-N availability
(due to N volatilisation during fire; Reich et al.,
2001; Hernández & Hobbie, 2008). In these condi-
tions, a high N-use efficiency (low leaf N content)
may be advantageous (Wedin & Tilman, 1990;
Reich et al., 2001)

Leaf C : N ratio Resprouters will have higher leaf C : N ratios than
seeders. High leaf C : N ratio, which is linked to low
decomposition rates and the accumulation of a
highly flammable fuel load (Aerts, 1997), may be
advantageous to shade-intolerant resprouting
species in maintaining an open canopy (by aiding
the removal of standing dead and woody biomass;
Everson et al., 1988)

Life history Resprouters are more likely to be perennial than
seeders. Perennial-grass species have buds from
which to regrow, which annual species may lack

New Phytologist (2020) � 2020 The Authors

New Phytologist� 2020 New Phytologist Foundationwww.newphytologist.com

Research

New
Phytologist2



Fire intensity

Low High

Fire frequency

Low High

(a) (b)

(c) (d)

S
p

e
c
ie

s
 r

ic
h

n
e
s
s

Box 1 Relationships for woody species.

The predicted relationships between persistence strategy and fire characteristics for fire-prone woody taxa (a and b; solid line in (a) from Bellingham
& Sparrow, 2000) and grass taxa (c and d). Solid lines represent the distribution of resprouter species and dashed lines represent seeder species. Fire
characteristics are frequency and intensity, and the coloration of plot backgrounds represents typical differences in characteristics between fire
regimes fuelled by woody or grassy vegetation (with grass-fuelled fires being more frequent and less intense on average; Archibald et al., 2013).

Relationships for woody species

Fire frequency (a) – Woody seeders (dashed lines) are susceptible to ‘immaturity risk’ (Zedler, 1995), where intervals between fires are shorter than
the time taken to reach maturity (e.g. Pausas, 2001). Therefore, the seeder strategy becomes more viable as the interfire period increases and fire
frequency decreases. Only seeders with rapid growth and early maturation can exist in very high fire frequencies. By contrast, the cost of storage
organs to growth in low fire frequencies means that resprouting (solid lines) is more viable with increasing fire frequency (Bellingham & Sparrow,
2000). However, very high frequencies make maintaining storage organs energetically unfeasible (Vilà & Terradas, 1995; Grady & Hoffman, 2012;
Fairman et al., 2019; Day et al., 2020).
Fire intensity (b) –Woody seeders are predicted to be less susceptible to high-intensity fires than resprouters, as the seeds of many fire-prone seeder
species are protected from the heat of the fire through insulating seed-storage structures (e.g. serotinous cones from which seeds are released fol-
lowing a fire) or a layer of soil, and are thus much less vulnerable to heat-related damage than adult resprouting plants (Keeley & Fotheringham,
2000; Pausas & Keeley, 2014; Day et al., 2020). The buds of resprouters may be protected to an extent by insulating bark (for epicormic buds) or
soil (for basal buds).

Relationships for grass species

Fire frequency (c) – At low fire frequencies, grass resprouters decline because of the energetic costs of maintaining buds when fire is rare. In addi-
tion, for clump-forming resprouting species (‘crown resprouters’), the accumulation of detritus due to infrequent fire can lead to individuals becom-
ing moribund (Knapp & Seastedt, 1986), which may be fatal (Zimmerman et al., 2010). At very high fire frequencies, resprouting may decline, as
maintaining storage organs becomes less feasible, but will still be common (as resprouting grasses fuel the most frequent fire regimes on Earth;
Mouillot & Field, 2005). In contrast to woody seeders, we expect grass seeders to be largely restricted to high fire frequencies when fire return inter-
vals are short. Grasses generally have much shorter generation times than woody species, for example, members of the fire-prone grass lineage,
Andropogoneae, flower within months of germination (Estep et al., 2014). Therefore ‘immaturity risk’ is not likely to limit the distribution of grass
seeders, even when accounting for the grass-fuelled high fire frequencies. In less frequent fire regimes, we expect seeders will be outcompeted by
established resprouters (Zimmerman et al., 2008).
Fire intensity (d) – Grass-fuelled fires tend to be low intensity although there are exceptions (e.g. Spinifex (Triodia spp. dominated) grasslands of
Australia experience very hot fires; Archibald et al., 2013). Therefore, intensity may not be a relevant fire characteristic in determining the distribu-
tions of grass seeders and resprouters, as has been found for other grass traits (Trollope et al., 2002; Uys et al., 2004; Peláez et al., 2013) because it
does not represent a strong selection pressure. High fire intensities may cause mortality, particularly in resprouters.
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records within biodiversity institutions) and were accurate to at
least three decimal places, to represent the small scale over which
fire regimes change. Finally, to ensure that records represented
individuals from environments subject to ecologically relevant
fire regimes, domesticated grass species were excluded (Kluyver,
2013) and all other species’ records were checked against Kew
GrassBase distributions (Clayton et al., 2006). Records from
highly transformed landscapes, where fire regimes are altered
through changes in ignition frequency and fuel properties, were
also removed. To do this, records from protected areas were iden-
tified (using the World Protected Areas map; http://www.wdpa.
org/) and kept. Otherwise, a human influence index (HII) value
was obtained for each record (Sanderson et al., 2002), which
indicates how impacted was the landscape by human activities
(based on population density, access, land-use and infrastruc-
ture). Records with an HII value > 30 are from highly trans-
formed landscapes in terms of fire characteristics (Archibald
et al., 2013) and were excluded. Records made before 1980 were
removed (a compromise between removing records taken before
satellite-derived fire datasets began and not removing a large pro-
portion of the total records). After these cleaning steps, species
were excluded if they were sampled by < 50 unique occurrence
points.

Fire characteristics

Data from the MODIS satellite were used to characterise the fire
regime to which grasses were exposed. This is a c. 20-yr dataset,
which covers a similar time period as the GBIF location records.
Therefore, although current fire regimes might not represent the
evolutionary history of fire in that location, they do represent the
fire regime to which the species occurring there are exposed and
able to persist under.

Fire frequency Fire frequency is characterised as the median fire
return interval (FRI; the time between successive fires), with high
frequencies associated with short FRIs. The MODIS global
monthly burnt area (MCD64A1) satellite data product was used
to calculate FRI values. This provides fire data for the Earth’s sur-
face at a 500-m resolution. Utilising characteristic changes in sur-
face reflectance following a fire (e.g. charcoal/ash deposits,
vegetation loss), as well as active fire detections, the MODIS
algorithm identifies recent burn scars and provides an approxi-
mate date of burning (Giglio et al., 2009).

Dates of fire occurrence at each GBIF location during the c.
20-yr MODIS dataset (April 2000 to January 2020) were
extracted and used to quantify all interfire intervals to which each
species was exposed (after Archibald et al., 2010). A Weibull dis-
tribution was fitted to these interval data for each species using
the SURVIVAL R package (R Core Team, 2019). The first and last
fires of the MODIS dataset were open tailed (i.e. the limited
timespan of the dataset means that the interfire interval before
the first fire and after the last fire cannot be determined) and the
survival analysis allows these open-tailed intervals to be included
to maximise the information provided. Estimations of the
Weibull shape and scale parameters were determined for each

species using data from pixels that burnt at least once during the
20-yr period. The shape and scale parameters were used to deter-
mine the median FRI using the equation from Moritz et al.
(2009):

FRI¼ bðloge2Þ
1
c

where b is the scale parameter and c is the shape parameter. For
species in infrequently burnt places (i.e. where the fire return
period is much greater than the 20 yr of the MODIS dataset),
the above FRI algorithm would converge either on an unrealisti-
cally large FRI or not converge at all. We focused on species for
which fire is a major disturbance and frequent enough to act as
a selective pressure over their range, and hence we defined
whether species were ‘fire-prone’ or not. To do this, the propor-
tion of records that fell within pixels that burned, relative to the
total number of records for each species, was used. This propor-
tion was plotted against the number of species and a break-
point regression fitted to the curve (Fig. S1) using the SEG-

MENTED library in R (Muggeo, 2003). An estimated break-point
value was calculated (0.26) and species with a proportion
burned lower than this value were excluded (i.e. species that
had < 26% of their occurrence records in burnt locations were
excluded from fire frequency analyses). The impact of any spa-
tial bias in the occurrence records on the proportion burned or
the values of FRI was tested by subsetting the records such that
there was a maximum of three records per species in each 10
km2 grid cell (a grid size that represents a compromise between
the finer scale fire characteristic data and not removing a large
proportion of the occurrence records). Values of proportion
burned and FRI were highly similar between the original and
subsetted datasets (r2 = 0.99 and 0.95, respectively), suggesting
that there is no pervasive spatial bias in the original dataset.
Finally, any species with fire return intervals that were > 100 or
< 1 yr were excluded. The limitations of a 20-yr dataset mean
that the results of the survival analysis were not able to resolve
these fire regimes sufficiently.

The stringent data cleaning process and focus on frequently
burned species resulted in a dataset containing 734 fire-prone
species (samples per species range = 53–25319; median = 270),
whose distribution covers the majority of fire-prone areas, where
grasses are an important vegetation component (see Fig. S2 for
the distribution of occurrence data).

Fire intensity Values of fire radiative power (FRP), or the rate
of radiant energy released, can be obtained from satellite mea-
surements of middle infrared emission over actively burning
areas. FRP is frequently used as a proxy for fire intensity (Dwyer
et al., 2000; Archibald et al., 2013), and is available globally at
0.5° resolution from the MODIS global monthly fire location
product (MCD14ML).

FRP values, measured in megawatts per 1-km pixel, were
extracted for all active fire points over the duration of the dataset
(2002–2019) for each record. Any FRP values with a detection
confidence < 50% were discarded. Data were grouped by species,
and the 95th quantile extracted. There is typically a bias towards
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low FRP values, due to the high variation in this measurement
over the duration of a fire (Dwyer et al., 2000) and low values
during the night. The 95th quantile was therefore used, as done
elsewhere (Archibald et al., 2013), to indicate the maximum
value that a headfire could attain in a particular environment and
to avoid errors caused by outliers. The 95th quantile related
significantly (P < 0.001) with mean (r2 = 0.90) and median
(r2 = 0.75) values across all species.

Precipitation and drought

A difficulty in determining the role of fire in driving spatial pat-
terns of plant traits is that fire characteristics are often correlated
with climate. High fire frequencies typically occur in areas with
high rainfall and long dry seasons, where greater and more spa-
tially connected fuel loads are produced (Pausas & Bradstock,
2007; Pekin et al., 2011). Moreover, droughts influence the suc-
cess of different grass persistence strategies: both directly, through
causing death of perennial grasses and recruitment opportunities
for seeder grasses (O’Connor, 1995), and indirectly, through
changing the amount and the moisture content of fuels, and thus
fire regimes. Drought is therefore expected to be a strong envi-
ronmental filter (O’Connor, 1995). We used Foley’s drought
index (FDI; Foley, 1957; Fensham et al., 2009) here to account
for the influence of drought on grass persistence strategy that is
independent of fire characteristics. The FDI takes the deviations
of monthly measurements (i.e. actual rainfall for a period minus
the expected rainfall for the same period) from long-term
monthly averages and normalises it with respect to average annual
rainfall (to allow for comparison across rainfall zones). It is there-
fore a measure of drought intensity that is not directly correlated
with rainfall. To investigate drought at global scales, monthly
rainfall values at 0.5 degree scale were used following Lehmann
et al (2014). For each grid cell, the FDI was calculated for each
month of each yr as actual annual rainfall for 3 yr prior less the
expected (long-term average) rainfall for that period, divided by
the mean annual precipitation for the period 1901–2003.
Monthly values for each location record were averaged per
species.

Plant traits

Grass species’ persistence strategies through fire were collected
from a literature review, drawing upon large plant fire-response
databases (e.g. Cook et al., 2005; Crowley et al., 2007; Paula
et al., 2009), journal papers (e.g. du Toit et al., 2014; Marais
et al., 2014; Moore et al., 2019) and the grey literature (such as
Government reports regarding fire management strategies or con-
trol of invasive species). Data from sources already known to the
authors were extracted first, followed by a targeted approach for
species for which we had fire characteristic data. The latter was
achieved by using the Web of Knowledge and Google Scholar
search engines (to incorporate both the primary and grey litera-
ture) for the term ‘[species name] fire response’. We classed
species as either ‘seeders’ or ‘resprouters’ based on the response
specifically to fire and not to other disturbances, as fire not only

defoliates a plant (similar to other disturbances), but it also has
lethal effects on meristem tissues (Pausas et al., 2016).
Resprouters were defined in a number of ways depending upon
the type of data available. For categorical data, resprouting
species were defined as those where resprouting is the main post-
fire persistence strategy. In a few cases, the ability to resprout was
given in relation to fire characteristics (e.g. ‘plants will recover
from an occasional, but not annual, fire’), and these were classed
as resprouters because they showed an ability to resprout after
fire. For quantitative data, species that experienced < 30% mor-
tality when subjected to 100% leaf scorch were classed as
resprouters (sensu Crowley et al., 2007). Conversely, a species was
classified as a seeder if the main post-fire persistence strategy was
germinating from seed (which could be either from a stored soil
seedbank or from seeds dispersed into a recently burnt area), or if
plants of this species experienced > 70% mortality when sub-
jected to 100% leaf scorch. In addition, annual species for which
no response to fire could be found by searching the literature
were assumed to be seeders, unless there was evidence to the con-
trary (n = 27). The seeder/resprouter dichotomy represents the
standard way in which a species recovers from fire, but we
acknowledge that these strategies are not mutually exclusive, with
a number of species able to do both (i.e. facultative seeders;
Pausas & Keeley, 2004). The resulting dataset, consisting of 763
taxa, of which 64% of species are classed as resprouters (a similar
proportion found in other plant taxa and communities; Clarke,
2002 (71%); Clarke & Dorji, 2008 (60%)), is available via
Dryad entry doi: 10.5061/dryad.3bk3j9khn.

Data on plant traits which we thought may be associated with
the ability to resprout (Table 1) were collected from a number of
sources. Photosynthetic type was acquired from Osborne et al.
(2014), and bud position from the Kew GrassBase dataset (Clay-
ton et al., 2006). The latter involved the assignment of categories
of bud position: belowground buds (species with rhizomes) or
buds at ground-level (species with stolons or crown resprouters,
defined as caespitose species with neither rhizomes nor stolons).
Species-level leaf traits (specific leaf area (SLA), foliar N content
and foliar C : N ratio) were obtained from a dataset of 279 grass
species (Jardine et al., 2020). A principal components analysis
(using the ‘princomp’ function; R Core Team, 2019) collapsed
the variance in these three leaf traits into two axes that together
accounted for 98.7% of total variation (69.1% on dimension 1;
29.6% on dimension 2; Fig. S3). Foliar N content and C : N
ratio loaded most heavily on dimension 1, with N content being
positively correlated (r2 = 0.88; P < 0.001) and C : N ratio
being negatively correlated (r2 = 0.82, P < 0.001) with this dimen-
sion. SLA loaded heavily in dimension 2, and was positively corre-
lated with this dimension (r2 = 0.69, P < 0.001; Fig. S3).

Phylogeny To account for evolutionary relationships among
grass species, we used a completely sampled, dated Bayesian phy-
logeny of grasses that incorporates 11 297 grass taxa (Forrestel,
2015) and combined molecular and taxonomic data following
the methods of Jetz et al. (2012) and Thomas et al. (2013). A
maximum clade credibility tree was inferred from the resulting
distribution of trees using MRBAYES (Ronquist et al., 2012), and
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subset to include species in our study (available via Dryad entry
doi: 10.5061/dryad.3bk3j9khn).

Data analysis

The relationships between grass persistence strategy and fire char-
acteristics (frequency and intensity) were analysed using phyloge-
netic logistic regression (Ives & Garland, 2010) implemented in
the PHYLOLM package in R (Ho & Ane, 2014). The response vari-
able was persistence strategy, coded as either 0 (seeder species) or
1 (resprouter species). Either fire frequency or fire intensity was
selected as an explanatory variable. The drought index, FDI, was
not highly correlated with either fire frequency (Pearson’s pro-
duct moment correlation coefficient = 0.05) or intensity (corre-
lation coefficient = 0.43) and so was included as an additional
explanatory variable. Any significant interaction terms between
the explanatory variables were included in the final models. Fire
frequency and intensity values were log-transformed to improve
normality. The ‘Logistic_MPLE’ (Maximised Penalised Likeli-
hood) method was used, and all analyses were performed with 10
000 bootstrap replicates. Sample sizes are given in Table S2.

To determine how plant traits (photosynthetic pathway, bud
position, life history, leaf trait PCA axis one and two) associate

with persistence strategy, phylogenetic binary logistic regressions
were fitted (as above) with persistence strategy as the response
variable and each plant trait in turn selected as the explanatory
variable (see Table S2 for sample sizes).

Relationships between fire frequency, fire intensity and
drought were determined using phylogenetic generalised least
squares with the ‘pgls’ function in the CAPER package (Orme et al.,
2018).

In these analyses we used species-level data. We recognise that
some species show large variability in their traits (e.g. Moreira
et al., 2012), and in the environmental conditions they can per-
sist in, but we could not account for within-species variability
because the trait data and the location data did not coincide.

Results

Grass persistence strategy relationships with fire
characteristics

Both seeders and resprouters can persist in high fire frequencies
(i.e. short FRIs; Fig. 1a; modal FRIs: 4.4 yr for seeders and 5.7
yr for resprouters). However, seeders are excluded when fire is
infrequent whereas resprouters can tolerate a range of fire

0.00

0.03

0.06

0.09

0.12

01020304050

Median fire return interval (yr)

D
e
n
s
it
y

0.000

0.005

0.010

0 100 200

Fire radiative power (MW)

Persistence

strategy

Resprouter

Seeder

0.0

0.1

0.2

0.3

0.4

0.5

−4 −2 0 2

Leaf economic spectrum traits PCA axis 1

D
e
n
s
it
y

0.00

0.25

0.50

0.75

1.00

Resprouter Seeder

Mode of persistence

P
ro

p
o
rt

io
n

Bud 

position

Crown

Rhizome

Stolon

D
e
n
s
it
y

(a) (b)

(c) (d)

Fig. 1 Fire characteristics and plant traits associated with persistence strategy in fire-prone grass species. (a) Seeders are associated with more frequent fire
(i.e. shorter fire return intervals), and (b) lower intensity fire than resprouters (intensity values are 95th percentile of fire radiative power). (c) Resprouters
have lower values for leaf trait PCA axis one than seeders (i.e. lower values of leaf N content and higher leaf C : N ratio). (d) A higher proportion of
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frequencies. This difference means that resprouters are associated
with significantly longer FRIs than seeders (coefficient = 0.84,
bootstrapped 95% confidence interval (CI): 0.53–1.20; n = 332,
P < 0.001). The median FRIs for resprouters is 8.1 yr (standard
deviation (SD): 15.5 yr) in contrast with 5.7 yr for seeders (SD:
7.5 yr; Figs 1a, 2a). This effect was over and above the significant
relationship between drought and grass persistence strategy, with
resprouters associated with a lower intensity multiannual drought
(coefficient = 1.30 (95% CI: 0.42–2.15); P = 0.007) than seed-
ers. Resprouting was the predominant persistence strategy across
the range of fire frequencies (Fig. 2a). There was no significant
interaction between fire frequency and drought, providing evi-
dence that these environmental factors are independently associ-
ated with grass persistence strategy.

Grass seeders typically experience lower intensity fire than grass
resprouters (coefficient = 1.05; 95% CI: 0.87–1.30, n = 550,
P < 0.001; Figs 1b, 2b). The mean 95th percentile of FRP was
75.1MW (SD: 35.2 MW) for seeders and 90.3 MW (SD: 40.8
MW) for resprouters. Again, there was also a significant associa-
tion between drought and grass persistence strategy that was inde-
pendent of fire (coefficient = 1.61 (95% CI: 0.94–2.30),
P < 0.001).

Fire characteristics

Fire-prone grasses experience a range of fire frequencies (FRI
range: 1.0–94.1 yr; Fig. 3). The species-level median FRI is 6.9
yr, which fits closely with the estimated global mean value for
tropical grasslands and savannas (e.g. 6.5 yr for the period
1900–2000; Mouillot & Field, 2005). Species average fire inten-
sity values ranged from 20–267 MW (median = 85 MW) per 1
km pixel (Fig. 3). These values are considered ‘low’ to ‘medium’
fire intensities (category 1 or 2 sensu Ichoku et al., 2008), which

is consistent with what is expected from grass-fuelled surface fires
(Archibald et al., 2013).

As predicted, fire frequency and intensity are inversely corre-
lated, such that grass species that experience more frequent fire,
also experience lower intensity fire (F1,491 = 82.2, P < 0.001,
r2 = 0.14; Fig. S4). Intense droughts are associated with the
occurrence of very intense fire (F1,548 = 128.5, P < 0.001,
r2 = 0.19; Table 2; Fig. S4), and there is some evidence that
extreme droughts are also less likely to co-occur with frequent fire
regimes (F1,330 = 9.91, P = 0.002, r2 = 0.03; Table 2; Fig. S4).

Plant traits associated with persistence strategy

As predicted, resprouting ability is strongly related to life history
(coefficient = 4.61, bootstrapped 95% CI from 4.01 to 5.28,
n = 728, P < 0.001) with the majority of resprouters being
perennials (97%) and the majority of seeders being annual species
(76%). There are exceptions, however, with 14 annual species
able to resprout after fire (e.g. Panicum verrucosum, Agrostis
venusta and Oplismenus hirtellus) and 60 perennials persisting
through fire only as seeds (e.g. Digitaria diffusa, Paspalum
conjugatum, Enneapogon lindleyanus; full list available via Dryad
entry doi: 10.5061/dryad.3bk3j9khn). The resprouter strategy
was unrelated to photosynthetic pathway (coefficient = 0.21
(95% CI: −0.17 to 0.58), n = 597, P = 0.31), with 61% of C3

species and 63% of C4 species being resprouters. In terms of bud
position, resprouters were more likely to have rhizomes (i.e.
underground buds) than seeders (30% vs 4%, respectively; coeffi-
cient = 2.22 (95% CI: 1.41–3.19), n = 561, P < 0.001) but
did not differ in the proportions of other bud positions (P >

0.05; Fig. 1d).
Resprouters and seeders differed in their leaf traits relating to

N content and C : N ratio (PCA dimension one; coefficient =
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Fig. 2 The proportion of resprouting grass species increases as fire frequency goes down (a) and fire intensity (b) goes up. The dashed line is the
relationship as predicted by phylogenetic logistic regression with the effect of drought accounted for. Both fire characteristics are log-transformed to
improve normality of the data. Jittered points show the distribution of seeder (orange points) and resprouter (grey points) species. Black points are mean
proportion values for data binned by fire characteristic values with each bin representing one log-transformed unit (e.g. in (a), logged fire return intervals
are divided into the following bins: 0–1, 1–2, 2–3, 3–4, 4–5). Error bars represent the standard error of the mean for the binned data. The x-axis in (a) is
reversed so that high fire frequencies (short fire return intervals) are to the right.
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−0.62 (95% CI: −1.13 to −0.21), n = 114, P = 0.007) but not
SLA (PCA dimension two; coefficient = −0.02 (95% CI: −0.54
to 0.61), n = 114, P = 0.91). Specifically, resprouters were asso-
ciated with lower leaf N content and higher C : N ratio than
seeders (median PCA dimension one scores: 0.04 (resprouter) vs
1.44 (seeder); Fig. 1c).

Discussion

Grasses differ substantially from fire-prone woody species in the
sorting of persistence strategies along fire gradients, emphasising
the need to develop theory and understanding about plant–fire
relationships among diverse life forms that have different patterns

of growth, fecundity and resource allocation (Pausas, 2001). The
variable patterns between woody and grassy species persistence
strategies related to fire frequency suggests diverse processes shape
different fire-prone ecosystems. Whilst ‘immaturity risk’ likely
excludes woody seeder species from regions with frequent fire,
this was not the case for grasses. Grass seeders are associated with
higher relative fire frequencies than grassy resprouters, suggesting
that, despite FRIs as short as 1 yr, sexual maturity is reached
between fires. The precocious embryo of grass seed, in which
root, shoot and haustorial structure are already differentiated
(Gibson, 2009), has been credited with the rapid establishment
and development of grasses (Linder et al., 2018), with individuals
being able to flower in as little as 6 wk (Cope et al., 2009). Seeder
establishment is likely limited by high resprouter densities, as the
size and storage reserves of resprouters enable rapid occupation of
space after fire (Keeley, 1986; Myerscough et al., 1995; Pausas &
Keeley, 2014). Consistent with this are observations that
resprouter grasses can reach considerable ages within grasslands
(e.g. the lifespan of North American resprouting grasses can
exceed 30 yr; Lauenroth & Adler, 2008), with seed recruitment
rare (Defossé et al., 1997; Milton & Dean, 2000; Zimmerman
et al., 2008). By contrast, under very high fire frequencies,
resprouting may become energetically inviable, and seeders can
dominate, such as in northern Australian savannas dominated by
annual Sorghum species (Miles, 2003). Our results are consistent
with the ‘gap-dependent’ model which has been used to explain
patterns of persistence strategy in some woody species (Keeley
et al., 2016; but see Cowling et al., 2018). How the lifetime
reproductive effort of grass seeders and resprouters differs is
unclear. Data from Mediterranean shrubs suggest that seeders are
smaller seeded than resprouters (Verdú, 2000), and so might pro-
duce more seeds in a limited number of reproductive events.
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Table 2 Associations of plant persistence strategy (coded either as 0 for
seeders or 1 for resprouters) with two fire characteristics, median fire
return interval (a measure of frequency; a) and 95th quantile of fire
radiative power (a measure of intensity, b), and drought, across fire-prone
grass species (n = 332 in a; n = 550 in b).

(a) Estimate (bootstrapped 95% CI) Z value P-value†

Intercept 0.37 (−0.72 to 1.41) 0.62 0.52
Fire frequency 0.84 (0.53–1.20) 4.84 <0.001

Drought§ 1.29 (0.42–2.15) 2.71 0.006

(b)
Intercept −2.30 (−2.89 to −1.79) −2.53 0.011
Fire intensity 1.05 (0.87–1.30) 4.43 <0.001

Drought§ 1.61 (0.94–2.30) 3.91 <0.001

†Significant model terms (P < 0.05) are in bold.
§Drought is characterised by the rainfall deficit standardised by mean
annual precipitation (Foley’s drought index; Foley, 1957), with more
negative values representing more extreme drought.
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Grassy resprouters peaked at fire frequencies of c. 5 yr return
intervals (Fig. 1a), in contrast with woody resprouters typically
restricted to fire frequencies of 5–25 yr return intervals in shrub-
lands and woodlands (Le Maitre & Midgley, 1992). For grass
resprouters, tolerance of frequent fire is enabled by resprouting
from basal meristems. Further, crown resprouters typical in pro-
ductive ecosystems require regular removal of standing dead
biomass to prevent them becoming moribund through self-shad-
ing (Everson et al., 1988; Zimmerman et al., 2010) where litter
build-up can result in the death of resprouting grasses (Knapp &
Seastedt, 1986). Interestingly, although perennial grasses persist
at defoliation frequencies of more than 1 yr (Danckwerts & Nel,
1989; Danckwerts, 1993), we found that as in woody plants, very
high fire frequencies are correlated with fewer resprouters. It is
worth noting that both mammalian grazing and fire typify grassy
ecosystems, and whilst we focus on fire, grazing also likely shapes
the patterns reported here, with resprouters associated with heav-
ily grazed environments (Solofondranohatra et al., 2020), and
where heavy grazing excludes fire (Archibald & Hempson, 2016).
In Africa, the intensity of mammalian grazing peaks at lower
rainfall values (670 mm MAP) in contrast with the peak of fire
frequency at 990 mm MAP (Archibald & Hempson, 2016). As
expected, both grass seeder and resprouter species decline under
low fire frequencies (although species not considered ‘fire-prone’,
because their records primarily occurred in areas unburnt for >
20 yr, were excluded from our analyses), presumably because
woody-plant life forms, correlated with lower fire frequencies,
dominate landscapes. Consistent with this are abundant observa-
tions of forest encroachment into grass-dominated areas upon fire
suppression (e.g. Hoffmann et al., 2012).

Differences in fire intensities between grass and woody-plant
fuelled fires may explain their contrasting patterns in persistence
strategies. Grass-fuelled fires are typically lower intensity than
those fuelled by woody species, with temperatures less than
200°C (cf. c. 400°C for fires in shrublands/forests; Bailey &
Anderson, 1980), due to the low fuel loads of fine vegetation.
These differences in fire intensity suggest that grass resprouters
may be less vulnerable to heat-induced mortality than woody
resprouters. We found that grass resprouters were associated with
higher fire intensities than seeders, the opposite pattern to woody
species (e.g. Day et al., 2020; although many woody resprouting
species can survive and thrive in high-intensity crown fires
regimes, see Pausas & Keeley, 2017 and references within). The
rapid combustion of grass fuels (Simpson et al., 2016), and resul-
tant low heat residence time, in combination with the cooler fire
temperatures, means that resprouting grasses often survive after
their aboveground biomass is scorched. Likewise, grass seeds can
survive grassland fire temperatures (Gashaw & Michelsen, 2002),
or disperse into recently burnt areas using anemochory, epizoo-
chory or autochory (Ernst et al., 1992). Indeed, evidence relating
to other grass traits suggests that fire intensity is not an especially
strong selection pressure on grasses (Trollope et al., 2002; Uys
et al., 2004; Peláez et al., 2013). The association between
resprouting and high-intensity fire may result from the ability of
resprouters to accumulate more biomass than seeders between
fires (e.g. fuel loads in perennial-grass- vs annual-grass-dominated

Australian savannas: c. 200 vs 50–100 g m2; Lacey et al., 1982),
because they can produce more biomass in a period of time and
also have longer intervals between fires. Resprouters may there-
fore be causing more intense fires rather than being better
adapted to surviving them.

Drought was related to grass persistence strategies indepen-
dently of fire. Studies of woody plants show that resprouters and
seeders use alternative regulatory strategies with respect to water
status, and are thus affected by water limitation differently
(McDowell et al., 2008; Pausas et al., 2016). Resprouters tend to
be ‘dehydration avoiders’, which tightly regulate their water sta-
tus through drought, using strict stomatal control, deep roots
and a high-water storage capacity. By contrast, seeders tend to be
‘dehydration tolerators’, which allow their water status to greatly
decline through drought because they have shallow roots, weak
stomatal control and a limited ability to store water (Clarke &
Knox, 2002; Meentemeyer & Moody, 2002; Pausas & Brad-
stock, 2007; Keeley et al., 2012). They do however avoid injury
and are able to continue gas exchange through a water deficit (un-
like drought avoiders), providing drought is not too intense.
Long droughts are expected to be problematic for drought-avoid-
ing resprouter species, due to the carbon deficits that arise from
protracted stomatal closure, resulting in respiratory demands not
being met (Plaut et al., 2012). The association of grass
resprouters with less intense droughts found here is consistent
with these findings from woody species. Studies comparing the
rooting depths and plant-water physiology of annual and peren-
nial grasses (as proxies for seeder and resprouter species; Schenk
& Jackson, 2002; Vaughn et al., 2011) further support this dif-
ferentiation of persistence strategy by drought regime. Therefore
including drought helped us to explain some of the outliers in
our dataset: whilst most seeders are associated with very frequent
fire, some seeder species are associated with infrequent fire (20+
yr FRI; Fig. 1a) such as Cenchrus prieurii and Vulpia
microstachys. These species are found in drought-prone environ-
ments and the reseeding strategy is probably an adaptation to
recovery from extreme drought, rather than infrequent fire
(Burkill, 1985).

We found no evidence of significant spatial bias in our dataset,
although temporal bias cannot be excluded. If sampling of a
species is temporarily constrained (such as a resprouter that ini-
tially dominates, but after successive frequent fire is outcompeted
by a seeder), it may falsely be recorded as absent. Changes in fire
frequency can alter the composition and abundance of resprout-
ing grass species (Forrestel et al., 2014) but how the abundance
of grass seeders/resprouters relates to fire frequency remains
unknown. In a study of Mediterranean shrubland communities
(which include several grasses), the relative abundance of
resprouters (vs seeders) increases with fire frequency, whilst the
actual abundance of both resprouters and seeders decreases (Vilà-
Cabrera et al., 2008).

We found that the ability to resprout post-fire was not signifi-
cantly associated with either C3 or C4 photosynthetic pathways,
matching previous work using a smaller sample (Pausas & Paula,
2020). As in that work, we found that bud position was indeed
related to resprouting ability, with a significantly higher
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proportion of resprouting species having buds belowground in
the form of rhizomes as predicted. Resprouting from the crown
was the most common strategy overall in fire-prone grasses, sug-
gesting that the tightly packed leaf bases of caespitose grasses
effectively protect buds from intense heat (or that buds may be
positioned below the soil surface, as in some Andropogoneae
species) and stolons are rare, possibly because of the high vulnera-
bility of their buds to fire (above, at, or just below the soil sur-
face). As expected, life history was strongly related to resprouting
ability, but interestingly there are exceptions with seeder perenni-
als and disturbance-tolerant annuals. This latter group was a mix-
ture of C3 and C4 species, and had crown buds (where we had
data). The ecological and environmental causes of these ‘excep-
tions’ could be an interesting line of study.

Leaf traits relating to N content, but not SLA, were signifi-
cantly associated with persistence strategy, with resprouters
having lower leaf N contents and higher C : N ratios. Due to
its low temperature of volatilisation in comparison with other
macronutrients (Neary et al., 1999), N is selectively lost during
fires resulting in typically N-poor soils (Vitousek & Howarth,
1991; Pellegrini et al., 2015). As resprouters may experience
fires and low-N conditions multiple times during their lives,
high N-use efficiency may be under selective pressure, resulting
in their lower leaf N contents in comparison with seeders (as
has also been found Mediterranean-climate woody species;
Paula & Pausas, 2006; but see Vivian & Cary, 2012). How-
ever, these differences could also reflect differences in resource
uptake, such that seeders and resprouters segregate along the
leaf economics spectrum, with seeders adopting a more
resource acquisitive strategy (associated with rapid growth, high
photosynthetic rates, short leaf-life spans and low investment
in leaf structure; Wright et al., 2004) than resprouters. In
addition, differences in drought regimes experienced by seeder
and resprouter species could explain this variation in leaf N.
Species growing in drier sites, like grass seeders, often show
higher leaf N content (Reich et al., 1999; Wright et al., 2001,
2005), possibly because greater investment in N-rich photosyn-
thetic machinery may permit higher photosynthetic rates for a
given stomatal conductance (Wright et al., 2001). The high
C : N ratio of grass resprouters enhances their flammability,
by reducing decomposition and allowing an accumulation of
biomass (Simpson et al., 2016). The growth and survival of
these species may be enhanced by high flammability, which
aids the removal of standing dead and woody biomass (Ever-
son et al., 1988; Zimmerman et al., 2010).

Fire and drought regimes are changing worldwide. Climate
change and human activity have greatly altered global fire, and
significantly led to the suppression of fire in grassy environments
(Andela et al., 2017). Increasing temperatures and vapour pres-
sure deficit means that many areas currently affected by drought
will become more arid, and rainfall variability will increase
(IPCC, 2014). How these multiple, changing factors will com-
bine to impact grass species distributions is unclear (Settele et al.,
2014), although our results suggest grass species responses will
depend upon their persistence strategy.
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Luna B, Moreno J m, Rodrigo A et al. 2009. Fire-related traits for plant

species of the Mediterranean Basin. Ecology 90: 1420.
Paula S, Pausas JG. 2006. Leaf traits and resprouting ability in the Mediterranean

basin. Functional Ecology 20: 941–994.
Pausas JG. 2001. Resprouting vs seeding – a Mediterranean perspective. Oikos
94: 193–194.

Pausas JG, Bradstock RA. 2007. Fire persistence traits of plants along a

productivity and disturbance gradient in mediterranean shrublands of south-

east Australia. Global Ecology and Biogeography 16: 330–340.
Pausas JG, Bradstock RA, Keith DA, Keeley JE. 2004. Plant functional traits in

relation to fire in crown-fire ecosystems. Ecology 85: 1085–1100.
Pausas JG, Keeley JE. 2014. Evolutionary ecology of resprouting and seeding in

fire-prone ecosystems. New Phytologist 204: 55–65.
Pausas JG, Keeley JE. 2017. Epicormic resprouting in fire-prone ecosystems.

Trends in Plant Science 22: 1008–1015.
Pausas JG, Paula S. 2020. Grasses and fire: the importance of hiding buds. New
Phytologist 226: 957–959.

Pausas JG, Pratt RB, Keeley JE, Jacobsen AL, Ramirez AR, Vilagrosa A, Paula S,

Kaneakua-Pia IN, Davis SD. 2016. Towards understanding resprouting at the

global scale. New Phytologist 209: 945–954.
Pekin BK, Wittkuhn RS, Boer MM, Macfarlane C, Grierson PF. 2011. Plant

functional traits along environmental gradients in seasonally dry and fire-prone

ecosystem. Journal of Vegetation Science 22: 1009–1020.
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