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Abstract

The research described herein is an investigation into the problems of obtain

ing useful clinical measurements from stereo photographs of the hum an retina 

through automation of the stereometric procedure by digital stereo matching and 

image analysis techniques. Clinical research has indicated a correlation between 

physical changes to the optic disc topography (the region on the retina where the 

optic nerve enters the eye) and the advance of eye disease such as hypertension 

and glaucoma. Stereoscopic photography of the human retina (or fundus, as it is 

called) and the subsequent measurement of the topography of the optic disc is of 

great potential clinical value as an aid in observing the pathogenesis of such 

disease, and to this end, accurate measurements of the various param eters that 

characterise the changing shape of the optic disc topography m ust be provided.

Following a survey of current clinical methods for stereoscopic measurement 

of the optic disc, fundus image data acquisition, stereo geometry, limitations of 

resolution and accuracy, and other relevant physical constraints related to 

fundus imaging are investigated. A survey of digital stereo matching algorithms 

is presented and their strengths and weaknesses are explored, specifically as 

they relate to the suitability of the algorithm for the fundus image data. The 

selection of an appropriate stereo matching algorithm is discussed, and its appli

cation to four test data sets is presented in detail.

A mathematical model of two-dimensional image formation is developed 

together with its corresponding auto-correlation function. In the presense of 

additive noise, the model is used as a tool for exploring key problems with 

respect to the stereo matching of fundus images. Specifically, measures for 

predicting correlation matching error are developed and applied. Such measures 

are shown to be of use in applications where the results of image correlation can

not be independently verified, and meaningful quantitative error measures are 

required. The application of these theoretical tools to the fundus image data 

indicate a systematic way to measure, assess and control cross-correlation error.
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Conclusions drawn from this research point the way forward for stereo 

analysis of the optic disc and highlight a number of areas which will require 

further research. The development of a fully autom ated system for diagnostic 

evaluation of the optic disc topography is discussed in  the light of the results 

obtained during this research.



Addenda

p. 19 "[[Mikleberg86]" should read "[Mikleberg86]"
p.38 "extracted from [Donaldson64]." should read "extracted from Donaldson

[Donaldson64]."
p.39 "[G ullstrandll] suggested" should read "Gullstrand [G ullstrandll] sug

gested"
p.47 "confirm stereo depth estimates." should be extended to

"confirm stereo depth estimates obtained from feature-based stereo 
matching."

p.51 "[Shields87] reported" should read "Shields [Shields87] reported"
p.52 "is th a t of [Algazi85]" should read "is th a t of Algazi [Algazi85]"
p.52 "will be to concentrated" should read "will be concentrated"
p.61 "Lens also exhibit" should read "Lenses also exhibit"
p.68 "image affects to the" should read "image affects the"
p.71 (Figure 4.5, legend)

"h sample = 3mm" should read "Sample = 3.9pm"
p.81 (Figure 4.9)

"heff 8.53 pm e.g. a t Az = 10pm" should read
”h eff 10.27 pm e.g. a t Az -  10pm"
and
"D 48.33 pm e.g. points a t Az = 10pm" should read
"D  58.18 pm e.g. points a t Az = 10pm"

p.93 "in step 1, and thus" should read "in step 2, and thus"
p. 122 "to fully covert" should read "to fully convert"
p. 132 "For D ata Set D" should read "For D ata Set C"
p. 167 "straight-forward" should read "straightforward"
p. 168 "for small values of d  and e near the correlation peak add footnote

 ̂ Each of the derived formulae have been experimentally verified by auto-correlating 
model scenes generated using equations (7.1) and (7.5) for a range of parameter values.
The approximations used in deriving C(d)  and C( d , e )  were found to be valid for small
d  and e.

p.189 "8.1c, 8.1e, and 8.1g" should read "8.1b, 8.1e, and 8.1f’
p. 193 "cross-correlation in  the" should read "auto-correlation in the"
p.203 "match results was" should read "match results were"
p.209 (Figure 8.10)

"and (b) plots the rms" should read "and (d) plots the rms"

Additional Appendix inserted containing reference [Forshaw90].
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Chapter 1 
Introduction

1.1 What is  the Optic D isc ?

The Concise Oxford English Dictionary [Allen90] defines fundus  to mean "the 

base of a hollow organ, the part furthest from the opening" and in Latin fundus 

means "bottom". Ophthalmologists use the term fundus to indicate the base or 

back of the hum an retina. At the base of the eye is a region where the optic 

nerve enters the eye called the optic nerve head. The join between the eye and 

the optic nerve forms a small surface feature called the optic disc.

Ophthalmologists believe th a t changes to the topography of the optic disc 

region to be an indication of advancing eye disease, such as glaucoma. Glaucoma 

refers to a complex of eye diseases th a t annually cause blindness in an estimated 

50,000 people in the United States and Europe. Glaucoma is associated with an 

increase in intraocular pressure which causes excavation of the optic disc. There

fore, m easurem ent of the topography of the optic disc region is fundamental to 

the clinical management of any patient suspected of glaucoma.

The terms stereo and stereoscopic are used throughout this thesis to refer to 

the visual three-dimensional effect obtained by viewing an object from two 

disparate positions.

1.2 D efinition o f the R esearch Problem

Clinical research has indicated a correlation between physical changes to the 

optic disc topography and the advance of eye disease such as hypertension and 

glaucoma. Stereoscopic photography of the human fundus and the subsequent 

measurement of the topography of the optic disc (the region where the optic 

nerve enters the back of the eye) is of great clinical value as an aid in observing 

the pathogenesis of such disease. If stereoscopic analysis is to prove valuable in 

the clinical assessment of optic disc disease, then it m ust be developed into a 

simple and relatively inexpensive technique that can provide accurate qualitative
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and quantitative measurements of the various param eters th a t characterise the 

changing shape of the optic disc topography.

The research described herein is an investigation into the problems of obtain

ing useful clinical measurements from stereo photographs of the optic disc, 

through automation of the stereometric procedure by digital stereo matching and 

image analysis techniques. Conclusions drawn from this research point the way 

forward for stereo analysis of the optic disc and highlight a number of areas 

which will require further research. The possibility of the development of a fully 

automated system for diagnostic evaluation of the optic disc topography is dis

cussed in  the light of the results obtained during this research.

1.3 C linical U se and A pplication

Fundus photography and imaging are cornerstones of modern ophthalmic 

diagnosis. Recent developments in computer imaging technology have resulted 

in many improvements in the acquisition and analysis of fundus images. The 

potential benefits of systems which might use these new techniques are 

numerous. However, relatively few commercial fundus imaging systems provide 

the type of image analysis tools which clinicians could use to aid them in the 

diagnosis and treatm ent process.

Digital image processing has been applied widely in recent years to research 

involving fundus images, and measurements of the optic disc topography were a 

main target of this type of research. However, automated analysis and measure

m ent of the optic nerve head is not a tool currently available to clinicians. Typi

cally, a skilled computer operator manually marks key regions in a fundus image 

for subsequent (semi-) automatic measurement.

The clinical value of such a tool, and the potential benefit from the ability to 

evaluate changes to the optic disc topography over time, needs to be studied. For 

example, the accuracy of the fundus imaging system and what accuracy is 

required in the subsequent image analysis to provide meaningful clinical infor

mation is unknown.
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In undertaking this research, it is intended tha t there is a move some way 

toward a fully automated system for optic nerve head analysis. By examining 

the shortcomings of the fundus imaging system, improving the image analysis 

techniques, and developing improved mathematical models with which to assess 

in vivo measurements, the research described herein provides a sound base from 

which to develop a set of useful clinical tools to aid in the process of diagnosis 

and treatm ent of optic disc disease.

1.4 B rief O verview  o f the R esearch

Chapter 2 begins by summarising the objectives of the research. In particu

lar, the clinical objectives are presented, giving a clearer picture of the purpose of 

this study. The sources of fundus image data used in this research are discussed 

together with an examination of the clinical methods for data acquisition. The 

reasons for employing digital stereo matching techniques in this application are 

presented.

In chapter 3, a historical survey of stereoscopic fundus photography is 

presented, followed by an examination of the current techniques for measure

ment of the optic disc topography from stereoscopic image pairs. The general 

problems associated with clinical measurement of the optic disc are discussed.

In chapter 4, issues such as data acquisition, stereo geometry, limitations of 

resolution and accuracy, and other relevant physical constraints are investigated. 

The problems and issues associated with both non-simultaneous and simultane

ous stereo photography of the optic disc are presented, together with an exami

nation of the ideal conditions under which either method may produce useful 

clinical results.

In chapter 5, a survey of digital stereo matching algorithms is presented and 

their strengths and weaknesses are explored, specifically as they relate to the 

performance of the algorithm on the fundus image data. The selection of a suit

able stereo algorithm is discussed, and the algorithm is examined in detail.
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In chapter 6, the stereo matching algorithm selected in chapter 5 is applied 

to the fundus image data. The experimental methods for data acquisition, image 

preprocessing and filtering, application of the stereo algorithm, and subsequent 

post-processing are presented. Some preliminary results are given together with 

an analysis of the accuracy of the procedure. This leads to a review of the limita

tions of the stereo matching algorithm and the isolation of some of the key prob

lems associated with this method.

In chapter 7, the use of mathematical modelling to investigate the structure 

of auto- and cross-correlation functions is presented. The local structure of the 

fundus image data is examined using well known image descriptors, leading to a 

functional model of image formation. Explicit formulae for the auto-correlation of 

the image model are derived in both one and two dimensions. It is shown that 

the derived formulae are useful for describing the mathematical process underly

ing image cross-correlation. A theoretical correlation error prediction tool is 

developed which provides a means by which to assess the potential accuracy of 

image correlation in the presence of additive noise. The utility of this error 

measure is dem onstrated for both one- and two-dimensional image models.

In chapter 8, the experimental verification of the theoretical models 

developed in chapter 7 is presented. Specifically, the application of the stereo 

matching algorithm (selected in chapter 5) to both synthetic and real image data 

provides experimental evidence for confidence in the utility of the theoretical 

error measure. In image matching applications where ground tru th  verification 

of correlation match results is not possible, the tools developed in chapter 7 are 

shown to reflect the expected magnitude of matching error.

Finally, in chapter 9, some conclusions are drawn from this work to point the 

way forward for stereo analysis of the optic disc. A summary of the research is 

presented together with a review of the research objectives set out in chapter 2. 

The extension of this work to provide useful clinical measurements is briefly 

addressed, highlighting a number of areas which will require further study. A 

number of suggestions for further work are presented which follow on naturally
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from this research and which may lead to a fully automated system for diagnos

tic evaluation of the optic disc topography.
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Chapter 2 
Research Objectives

2.1 Introduction

In this chapter an overview of the research is presented and the objectives of 

the research are defined. The general problem of stereoscopy of the human 

fundus is reviewed together with a discussion of the clinical objectives, the data 

acquisition and sources of data, the measurement by stereo matching of stereos

copic fundus photographs, and the methods by which the data will be modelled.

Stereoscopy of the hum an fundus and the subsequent assessment of the 

topography of the optic disc (the area where the optic nerve head enters the eye) 

is of great clinical value as an aid in observing the pathogenesis of eye disease 

such as glaucoma. Research has indicated a correlation between physical 

changes to the optic disc topography and the advance of hypertension and glau

coma ([Kottler74], [Hitchings76], [Johnson79], [Takamoto79], [Mikelberg86]).

In terest in stereoscopic fundus examination was stimulated by both the 

development of the stereoscopic fundus camera by Donaldson [Donaldson64] and 

the application of the techniques of photogrammetry to the resulting stereo pairs 

([Ffytche73], [Kottler74]). Prior to this, non-simultaneous stereo photographs 

were obtained by either changing patient fixation or by moving the camera base. 

Both methods for obtaining stereo images of the optic disc are used today, and 

although the method of non-simultaneous stereo photography is prone to error, 

there is a large volume of data tha t has been obtained in this manner and there

fore w arrants further research into the potential of fundus measurement by pho- 

togrammetric stereo matching methods.

The actual problems associated with the automatic recording of optic disc 

topography from stereo photographs (both simultaneous and non-simultaneous) 

still remain. A photogrammetrist, examing the stereoscopic pairs with opto

mechanical stereoplotting machines or using digital techniques, has no reliable 

method for calibrating the readings in terms of the physical geometry of the optic
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disc or of verifying the accuracy of the calculated topographic measurements. In 

recent years effort has been concentrated on improving the photogrammetric and 

image analysis techniques used to derive topographic information from stereo 

images ([Ffytche73], [Rosenthal77], [Caprioli87], [Shapiro87], [Varma87]). If 

stereo analysis is to prove valuable in the clinical assessment of optic disc 

disease then it must be developed into a simple and relatively inexpensive tech

nique that can provide accurate, qualitative and quantitative measurements of 

the various parameters that characterise the changing shape of the optic disc 

topography ([Algazi851, [Ling86], [Whiteside86], [Mitra87]).

Figure 2.1. A typical fundus photograph printed from a 35mm tra n 

sparency. Note there are monocular cues to surface topography.

In order to understand the difficulties associated with stereo analysis of the 

optic nerve head, some physical aspects of the problem m ust be examined. The
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constraints imposed by the camera geometry, imaging through the pupil of the 

eye, as well as the small extent of the optic disc area, present limitations to the 

accuracy to which topographic information can be extracted using photogram- 

metric techniques. It is important to quantify these limitations which ultimately 

affect decisions about the selection of stereo matching algorithms th a t can be 

used to automatically or semi-automatically compute topographic information.

2.2 C linical O bjectives

The optic disc is tha t position in the eye where the optic nerve enters the eye 

(commonly known as the blind spot) and can be viewed through the pupil by 

using an appropriate camera. Its position in the eye is slightly toward the nose 

(a left eye is shown in figure 2.2), and its shape is approximately circular with an 

average horizontal diameter of 1.75mm and an average vertical diameter of 

1.86mm (the average diameter of an eye ball is approximately 23-25mm). The 

optic disc is characterised by a slight rim around its perimeter, called the neuro- 

retinal rim, and has the general appearance of a depression or cup (see figure 

2.2). The optic cup is defined to be that portion of the optic disc beginning a t a 

predefined depth below the neuro-retinal rim (clinically defined to be 120-150|im, 

see [Mikelberg84]). The optic cup can be shallow or deep, and can range from a 

few hundred microns to one millimeter in depth. There is often a scleral ring or 

bright crescent that surrounds the optic disc, which is often confused with the 

optic disc boundary itself. It should be noted tha t the physical dimensions of the 

optic disc are not in themselves an indication of disease, th a t is, a deep cup may 

be healthy for one individual and indicate disease in another.

The clinical value of these param eters can only be appreciated in terms of 

their change over time. For example, one indicator commonly used is that of 

cup-to-disc ratio (the diam eter of the cup compared to the diameter of the disc). 

Any significant change to this ratio has been shown to indicate advancing glau

coma [[Mikelberg86]. Another example is a measurement of the neural-retinal 

rim area (a measure of the area defined by the disc and cup perimeter). This too
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Figure 2 .2 . Anatomical diagram of the h u m an  eye (from [Gray74]).

has been shown to be a good indicator of advancing glaucoma, should there be a 

large temporal variation ([Johnson79], [Takamoto79]).

Clinical measurements of this type are typically done by hand, with a skilled 

clinician observing the stereo photographs through a stereo viewer, marking the 

appropriate regions by hand, and then entering the results into a computer for 

comparison. However, reproducibility studies have shown a high degree of error 

from subjective interpretation for this type of manual photogrammetry 

([Rosenthal77], [Spaeth87], [Varma87]). Alternatively, the stereo pairs can be 

processed by semi-analytical stereoplotters controlled by a skilled photogram - 

metrist. Although the results are usually reproducible, inasmuch as photogram- 

metric measurements can be agreed by different operators, and are obtained to 

much higher accuracy, this method is very time consuming and costly. Digital 

photogrammetric methods are favoured because this removes the need for a
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skilled operator, and can often produce results far more quickly with equal accu

racy. Digital methods suffer in tha t explicit medical knowledge used by a clini

cian or photogrammetrist to aid in the measurement process does not translate 

well into mathematical heuristics tha t can be applied during automated analysis 

([Algazi85], [Nagin85a], [Nagin85b], [Shapiro87]).

The measurement of the optic disc param eters (e.g. disc boundary, cup diam

eter, neuro-retinal rim), m ust not exceed certain error thresholds for the results 

be meaningful to clinicians. It is therefore im portant to understand all sources 

of error when trying to automate the measurement process by computer.

The main clinical objective of this research is to develop a reliable method by 

which the param eters which characterise the physical shape of the optic disc can 

be extracted automatically by computer, providing a means by which changes to 

these param eters can be monitored.

2.3 Data A cquisition

2.3.1 Fundus Cameras and their Operation

Photographs of the fundus are obtained by special fundus cameras which are 

designed for optimal viewing of the retina (for example [Nordenson30], [Nor- 

ton53]). The patient’s head m ust be held in a fixed position, typically by a head 

rest, and the eye is positioned by means of a fixation light, at which the patient 

stares. This allows time for camera adjustm ent and focusing without much eye 

movement.

Although the axial length of the eye ranges from 23-25mm, the apparent 

focal length is approximately 17mm, due to the various effects of comeal curva

ture, the lens of the eye, and the aqueous nature of the organ [LeGrand80]. The 

fundus camera which is most commonly used gives a 30 degree field of view and 

a magnification of 3.4x. This gives an image distance , from lens to film plane, 

of 57.8mm, computed from the standard magnification equation (M  = d J R , 

where R  is the object distance or range). Using a 2x magnifier, the field of view
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can be halved to 15 degrees, giving an image magnification of 6.8x. The aperture 

of the camera is often fixed a t 3mm, which results in a reduced depth of field. 

The light source is projected into the eye away from the optical axis of the lens 

such th a t the reflected glare is stopped by the 3mm aperture. The photographs 

are obtained using a 35mm camera mounted along the optical path of the fundus 

camera, and the optic disc image occupies the central 10-15mm of a 35mm nega

tive.

To obtain non-simultaneous stereo photographs of the optic disc, the first 

photograph is taken with the camera shifted as far to the left while maintaining 

the 3mm aperture to lie within the pupil (the pupil is typically pharmacologically 

dilated to 6-8mm diameter). For the second photograph the patient maintains 

the same viewing fixation and the camera base is moved laterally. Now the cam

era is shifted as far to the right while staying within the limits of the pupil (see 

figure 2.3). The camera will typically need to be refocused for this view.

Problems with this method are apparent. First, the amount of camera shift 

is not easily controlled (a standard fundus camera is not designed for such con

trol) and will vary with respect to the operator, the diameter of the patient’s 

pupil, and by the patient changing fixation. An unknown stereoscopic baseline in 

itself is not an insurmountable problem, but may also be complicated by non

lateral (non-epipolar) shifts in the second image. If the patient changes fixation, 

even only slightly, non-symmetric changes to the viewing position of the second 

photograph will result. Refocus, required when the camera is moved for the 

second photograph, will also cause variations of scale with respect to the first 

photograph (across the lens of the eye there is typically a change in power of the 

peripheral optics due to spherical aberrations [ElHage73], and thus refocusing is 

required). More serious is the fact that the stereoscopic effect is directly related 

to the separation, or baseline, of the two views; thus a very small baseline can 

eliminate the stereoscopic effect almost entirely.

Although this method of obtaining stereo photographs of the optic disc is 

difficult, if not impossible, to reproduce, the current technology for stereo
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Patient’s Eye

Right View
aperture (3mm)

Optic disc

Pupil
(6-8mm)

Left view

Axial length (22-26mm)

Figure 2.3. Diagram indicating the relationship of the patient’s eye, pu

pil, and left and right camera views for the non-simultaneous stereo 

method.

matching can deal with a certain amount of variability in baseline, and the sub

tle rotation and skewing effects of non-parallel (and non-epipolar) stereo views. 

So, it is not until the limits of this procedure can be quantified th a t its apparent 

shortcomings can be assessed.

2.3.2 Camera Geom etry

A fixed stereoscopic baseline, or a t least a consistent one, can significantly 

improve the ability to recover depth to an acceptable accuracy. A consistent 

method for obtaining stereoscopic images of the optic disc would also facilitate 

comparison between image pairs, allowing for normalisation of results to some 

fixed scale. Knowledge of the camera geometry constrains the stereo matching 

process by providing a geometric relationship between the two image coordinate 

systems, and can improve the accuracy and consistency of the computed depth
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measurements.

Some limits on the camera geometry can be defined by re-examining the pho

tographic procedure. If it is assumed tha t the patient’s head does not move dur

ing the shift of the camera to obtain the second view, and tha t the same fixation 

is maintained, then the limits of camera baseline are dictated by the pupil diam

eter (assuming a lateral shift of the camera). If the 3mm aperture of the camera 

is to remain entirely within the pupil for both views, then a maximum baseline of 

approximately 5mm can be obtained if the pupil is dilated to 8mm. Assuming 

th a t some minimum stereoscopic baseline can be achieved, say 1mm, this pro

vides a range of l-5mm for the camera separation. Unfortunately, the extreme 

case of a 5mm baseline requires viewing through less than favourable portions of 

the lens of the eye. It is generally accepted that the view with least distortion is 

obtained through the central 6mm of the lens (with a 3mm aperture the ideal 

baseline is also 3mm). In practise, the patient’s head will move, fixation will not 

be maintained, and pupil diameter will vary. This means th a t the stereoscopic 

baseline of non-simultaneous fundus photographs will vary from patient to 

patient, and from photographic sitting to sitting.

Hence, another objective of this research is to ascertain whether or not reli

able stereoscopic measurements can be obtained from non-simultaneous stereo 

photographs. Given the large numbers of photographic histories that were 

obtained using this method, this is an important task.

2.4 Sources o f Data

There are several issues tha t m ust be resolved with respect to the basic 

methods for obtaining stereo photographs. Although there are numerous argu

ments against non-simultaneous stereo photographs [Donaldson64] (as they 

relate to this specific application, though not in general), it m ust be noted that a 

large volume of data has been acquired in this m anner and if a method existed 

for extracting information from this data, however crudely, it  might still be of 

clinical value. These arguments will become apparent after examining the
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physical constraints more closely in chapter 4, but here it is im portant to note 

th a t although the recent availability of simultaneous fundus cameras provides 

better quality data, long clinical photographic histories of data of this type are 

not generally available. Medical diagnosis and treatm ent of diseases like glau

coma require years of clinical evaluation, and an analysis of a complete photo

graphic history would be desirable. In the same light, it  m ust also be said that 

the constraints provided by simultaneous stereo photographs of the optic disc 

may lead to improved measures of change. The lack of photographic histories 

does not preclude the advance of stereoscopic analysis of the optic disc (see [Hix- 

son87), [Zimmerman88]).

The data used for this research were obtained from four sources.

Data Set A:

A physical model is seen as a means by which to test the stereo matching 

algorithm with a physical object of known dimensions. This approach has 

been previously employed by ophthalmologists with the development of the 

Zeiss Model Eye, which includes a crude but simple model of the optic disc, 

and has been used for purposes of calibration (see [Rosenthal80]). Although 

image data from such a model are not directly comparable to fundus image 

data, it is intended th a t use of such data will give an indicator of the accu

racy of stereoscopic measurement. A plaster model was constructed which 

consists of a hemi-spherical depression in a flat plaster surface. To give the 

surface a pattern  or texture, the model was spattered with black paint. 

Once the model was prepared, a workbench and vidicon camera were cali

brated so that images of the model could be obtained where all the geometric 

param eters were known (e.g. object distance, stereoscopic baseline, camera 

aperture). A stereo image pair of the model was digitised using this cali

brated camera arrangement, shown in figure 2.4.

Data Set B:

The Moorfields Eye Hospital, London, in conjunction with the Institute of 

Ophthalmology, University of London, has provided the time and facilities to
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photograph the author’s left eye using a standard fundus camera (figure 2.5). 

A special apparatus called a bite-bar can be mounted to the head-rest of a 

standard fundus camera system, which (as near as is possible) ensures that 

the patient’s head will be in the same position for subsequent photographs. 

In addition, a dial micrometer was mounted to the sliding base of the fundus 

camera to ensure a consistent baseline. A series of 35mm stereo photo

graphs with a 3mm baseline was obtained. This data will provide a means 

for verifying the consistency of both the photographic process and the 

methods employed for stereo measurement. It is assumed tha t other 

methods for obtaining non-simultaneous stereo photographs would have 

similar physical constraints, and would therefore produce similar results.

Data Set C:

The University of British Columbia, Vancouver, Canada, with kind permis

sion from Dr. G. R. Douglas, has provided an extensive set of stereo photo

graphs obtained using the Donaldson Stereo Fundus Camera (discussed 

further in chapter 3). The data vary in quality but provide a source of simul

taneous stereo photographs of a large set of patients (figure 2.6). The 35mm 

photographs are accompanied by patient clinical data, and therefore will be 

useful for estimating the accuracy of stereoscopic measurement. The 

Donaldson Stereo Fundus Camera has been employed in a number of studies 

on stereoscopic measurement of the optic disc, and thus results can be com

pared to those currently in the literature.

Data Set D:

The Moorfields Eye Hospital, London, in conjunction with the Institute of 

Ophthalmology, University of London, has been experimenting with the 

latest form of ophthalmic camera - the Scanning Laser Ophthalmoscope 

(SLO) [Plesch87]. The SLO scans a small laser beam across the retina and 

records the reflected light as an analogue signal (discussed further in chapter 

3). This signal can be displayed on a television monitor, recorded onto video 

tape, or digitised using an analogue-to-digital converter. Some preliminary
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digitised data have been provided in order th a t some early indication of the 

benefits of this new and highly innovative camera might be seen (figure 2.7). 

The quality of image obtained from the SLO is far better than from tradi

tional fundus cameras, and it is hoped tha t these high-quality images might 

lead to more accurate stereoscopic measurements. In this sense, the SLO 

data are intended to be used for testing purposes only.

The application of stereo matching to this comprehensive set of data will 

help to determine the utility of automated photogrammetric measurement of the 

optic disc.
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Figure 2.4. Data set A: Piaster Model stereo images.
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Figure 2.5. Data set B: Non-simultaneous stereo fundus images.
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Figure 2.6. Data set C: Donaldson stereo fundus camera images.
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Figure 2.7. Data set D: Scanning Laser Ophthalmoscope images.
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2.5 M easurem ent by S tereo  M atching

Clinical studies have indicated th a t no single measurement param eter is 

able to differentiate normal and glaucomatous optic cups (e.g. [Johnson79], 

[Mikelberg86]). Glaucomatous alterations to the optic nerve head are complex, 

involving changes in several geometric features in localised regions of the optic 

cup, including optic cup volume, area, and depth. Furthermore, measurements 

from individual patients are not comparable - a deep cup in one patient may be 

normal, whereas a deep cup in another may be an indication of hypertension or 

glaucoma. Thus it is im portant to monitor the changes to the optic nerve head 

topography over time.

There are a limited number of methods th a t might be employed in order to 

obtain topographic information about the optic disc. The size and location of the 

optic nerve head complicates the task. Data about this region of the eye m ust be 

obtained in vivoy and thus direct measurement is not possible. The eye itself is 

an extremely sensitive organ - precautions m ust be made to avoid damaging the 

retinal tissue and cells. Other methods of measurement, such as structured 

lighting [Zimmermann88], cannot generally provide the accuracy required. 

Hence, clinicians have traditionally relied on photographic data as a means by 

which to assess the condition of the optic nerve head.

Thus, it is not surprising tha t as early as 1909 ophthalmologists first began 

experimenting with stereo photographs of the optic nerve head. With the advent 

of the modern digital computer, photogrammetric techniques could be applied to 

stereo fundus photographs to automate and standardise the measurement pro

cess. However, the task is not a trivial one. The basic premise of stereoscopic 

measurement is tha t if  the location of corresponding points can be found in each 

image, information about the three-dimensional position of each point can be cal

culated (given information about the camera geometry), and thus a complete 

three-dimensional model of the original surface can be derived from stereoscopic 

views of a scene. Although this can often be a trivial task  for images in which 

the corresponding points are obvious, automatic (or even manual) stereo
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matching of the fundus data is difficult due to the complex visual structure of the 

images.

Conventional fundus photographs for the most part contain large (dark) vas

cular structures on a background of mottled grey texture; the retinal nerve fibre 

layer. The vascular structures are known to lie in and above the nerve fibre 

layer, and have a glossy or reflective appearance. The nerve fibre layer provides 

little textural information and these areas are almost homogeneous in intensity. 

The primary area of interest, the optic cup, is often saturated in intensity in a 

fundus photograph (see figure 2.1), and may provide little or no information on 

which to form corresponding stereo match points. A discussion of the methods 

used to automatically match stereo image pairs is presented in chapter 5.

Let us assume th a t a suitable method for automated stereo matching of the 

fundus data can be found. The question arises as to the accuracy required for 

useful clinical results. Current methodologies for measurement of the optic nerve 

head have obtained results with an accuracy of about 50 to 70|im in depth 

(Takamoto79], [Peli89]). If stereoscopic (photogrammetrie) measurement is to 

prove viable, what resolution image m ust be used, to what accuracy m ust the 

stereo matching algorithm perform, and what depth accuracy can be achieved? 

These questions will be addressed in chapter 4.

Therefore, another objective of this research is to assess the potential accu

racy of measurement from stereoscopic analysis of the optic disc, and to select a 

suitable stereo matching algorithm to automate the task.

2.6 Data M odels

The application of stereo matching to the fundus image data presents a 

number of problems. As the fundus images are obtained in vivo, direct measure

ment is not possible, and therefore validating the accuracy of measurements 

from stereo photogrammetric methods will be difficult; this is unlike stereoscopic 

measurement applications where the measurements can be directly validated, 

such as aerial photogrammetry. The use of physical and mathematical models to
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represent the fundus image data may provide a means to explore key problems 

with respect to stereo matching. The use of such models provides a known 

ground truth  from which it becomes easier to validate experimental results 

obtained on real data. Provided a sufficiently complex model can be developed 

which will simulate the fundus image data, stereo matching algorithms can be 

tested on the model to see how they might perform on the real fundus data. 

Conversely, given a stereo matching algorithm, the use of mathematical model

ling may provide a means by which some key param eters might be tuned so tha t 

the algorithm will perform a t its potential best for a given type of data.

The use of both physical and mathematical models will be applied in this 

research. The physical model, a large-scale plaster model of the optic nerve 

head, will be used as a ground truth model to “test” the stereo matching algo

rithm. Mathematical models will be used to explore the structure of auto- and 

cross- correlation functions, such as those often employed for stereo matching. 

This will allow predictions of the performance of a stereo matching algorithm 

which makes use of such correlation techniques. To predict the performance of a 

particular correlation algorithm from its theoretical description is extremely 

difficult, while a t the same time it is equally difficult to extrapolate performance 

m easures from experimental results. In chapter 7, explicit formulae which per

mit predictions on the performance of standard correlation algorithms (such as 

those used in stereo matching) in terms of a few easily-definable scene parame

ters are derived.

Thus, through modelling the data there are two additional research objec

tives: to use a physical model as a form of ground tru th  from which to test the 

performance of the stereo matching algorithm, and to develop a mathematical 

image model to permit valid theoretical predictions on the performance of the 

stereo matching algorithm.
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2.7 M easuring C linical Param eters

In conventional stereo photography of the fundus, a skilled clinician or 

trained observer manually processes each stereo pair, estim ating parameters 

such as cup-to-disc ratio and cup volume. Analysis is usually qualitative or at 

best semi-quantitative, and is prone to a high degree of subjective error 

([Rosenthal771, [Spaeth87]). At Moorfields Eye Hospital, London, clinicians 

observe the photographic prints through a stereo viewer and m ark the appropri

ate regions by hand. The resulting disc and cup boundaries are then entered 

into a computer using a digitising tablet, and measurements such as cup volume 

and neuro-retinal rim area can be computed.

In some commercial optic disc analysis systems, these key topographic 

features can be measured automatically [Peli89]. By replacing the 35mm camera 

normally mounted to the fundus camera with a Vidicon or CCD video camera, 

images of the fundus can be obtained for immediate processing by digital com

puter. Digital photogrammetric methods can be applied to stereo video images to 

produce results far more quickly and reliably than with manual methods. How

ever, such automated methods suffer in that expert medical knowledge used by 

clinicians during manual analysis does not translate well into mathematical 

heuristics that can be applied during automated analysis ([Algazi85], [Peli89]). 

Although some of these systems (reviewed in chapter 3) reconstruct the topogra

phy of the optic disc region, they often require operator intervention, especially in 

order to highlight the disc margin and edge of the cup. A completely automated 

system for measuring the disc topography has yet to emerge.

Thus, another objective in this research is to investigate methods for extract

ing the clinical param eters from the topographic measurements obtained from 

stereo matching the fundus image data. In this study, both automatic and 

semi-automatic methods to locate the optic disc margin will be discussed.
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2.8 Summary

In this chapter a  description of the research problem is presented and the 

following research objectives are proposed:

(1) to ascertain whether or not reliable stereoscopic measurements can 

be obtained from both non-simultaneous and simultaneous stereo pho

tographs, and to assess the data already obtained for use in this study;

(2) to study the physical constraints related to stereoscopy of the 

human fundus, and to study any potential limitations in the measure

m ent and analysis of the optic disc;

(3) to select a suitable stereo matching algorithm to automate the task;

(4) to determine the utility of automated photogrammetric measure

m ent of the optic disc by application of stereo matching to a represen

tative set of fundus data;

(5) to use a physical model as a form of ground tru th  from which to test 

the performance of the stereo matching algorithm, and to develop a 

mathematical model of the fundus image which will permit theoretical 

predictions on the performance of the stereo matching algorithm;

(6) and, to investigate methods for extracting the clinical parameters 

from the topographic measurements obtained from stereo matching 

fundus image data, providing a means by which changes to these 

param eters can be monitored.

The research objectives defined in this chapter will be reviewed again in 

chapter 9 to see how well each objective has been met, and to make suggestions 

for further research based on the results.
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Chapter 3 
Stereoscopic Fundus Photography

3.1 Introduction

In this chapter, a historical survey of stereoscopic fundus photography is 

presented. Current techniques for measurement of the optic disc from stereos

copic image pairs are discussed, and an analysis of the general problems associ

ated with measurement of the optic disc is presented.

The accurate assessment of the depth of the optic disc and the extent of 

pathological cupping has been the goal of glaucoma researchers for many years. 

Any method tha t can measure changes of the optic disc volume would prove very 

helpful to the understanding of the pathogenesis of disc cupping and would also 

serve as a useful index of the progress of glaucoma and the response to therapy. 

Interest in stereoscopic fundus photography was stimulated by the development 

of the stereoscopic fundus camera by Donaldson and the application of the tech

niques of photogramme try to the resulting image pairs [Donaldson64]. Prior to 

this, several authors had produced non-simultaneous stereo photographs, but 

this method proved too inaccurate because of the difficulty in maintaining a fixed 

stereoscopic base between separate exposures ([Bedell27], [Metzger27]). With 

the development and availability of stereoscopic fundus camera systems, simul

taneous stereophotography of the optic disc eliminated many of the errors found 

in previous forms of measurement. A number of these systems, old and new, will 

be discussed.

The problems associated with the actual measurement of disc depths from 

stereo photographs still remain. Until recently the photogrammetrist, examining 

stereoscopic pairs with opto-mechanical stereoplotting machines or using digital 

techniques, had no reliable method for calibrating the readings in terms of the 

geometry of the optic disc or of verifying the accuracy of the calculated disc cup 

volumes. In recent years the effort has been concentrated on improving the pho

togrammetric and image analysis techniques used to derive topographical
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C D

Optic Disc 

Profile
Cup Margins

Figure 3.1. Schematic diagram of the optic disc. C and D indicate optic 

disc margins; the fine C-D is the disc diameter; X/Y is the cup-disc ra

tio. The area between lines Y and X is the neuro-retinal rim area and 

the area below line X represents the cup volume (from [Mikelberg84]).

information from stereo images. A review of current methods for photogram

me try of the optic disc will be presented.

If photogrammetry (digital stereo analysis) of the optic disc is to prove valu

able in the clinical assessment of disc cupping then it m ust be developed into a 

simple and relatively inexpensive technique tha t can provide accurate quantita

tive and qualitative measurements of the various 3-dimensional parameters that 

characterise the changing shape of the optic cup.

3.2 H istory o f Non-Sim ultaneous Stereoscopic Fundus Photography

This early history was extracted from [Donaldson64].

Thomer was the first to publish stereoscopic photographs of the optic disc in 

1909 [Thomer09]. His equipment utilised the indirect ophthalmoscopic principle. 

By dividing the pupillary area in half vertically, illumination could enter one half 

of the pupil while the other half was used for the emerging rays. Using an
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ophthalmoscopic lens these rays formed an inverted image which could then be 

photographed. The second photograph was taken by inverting the apparatus, 

resulting in a stereoscopic pair. The lighting for this equipment used a kerosene 

lamp, and the stereoscopic effect was poor.

In 1915, Nordenson first reported his camera based on principles laid down 

by Gullstrand [Nordensonl5]. [G ullstrandll] suggested tha t while it was neces

sary th a t the portion of the fundus being observed m ust be illuminated, i t  was 

also necessary “that no part of the cornea or lens of the patient’s eye shall be at once in 

the region of radiation of the illumination system and also in that of the observation sys

tem”. Gullstrand also produced data from which Zeiss made the first aplanatic 

ophthalmoscopic lens. This lens eliminated many of the aberrations and thus 

made possible the excellent detail produced by the Zeiss-Nordenson camera first 

available in 1925. Although other manufacturers developed fundus cameras, it 

was the Zeiss-Nordenson camera which was used almost exclusively for many 

years.

In 1927, Nordenson proposed a method for taking stereoscopic fundus photo

graphs, similar to the techniques of Thorner [Nordenson27]. At that time, others 

also published results which displayed stereoscopic effects ([Bedell27], 

[Metzger27]). The method required taking two successive exposures in order to 

obtain a stereoscopic pair, and most commonly the Zeiss-Nordenson camera was 

used. Typically, the patient simply changed fixation slightly between exposures, 

but others advocated shifting the camera while the patient maintained the same 

fixation.

Nordenson’s method can produce good results in certain instances, but has 

several serious problems:

(1) satisfactory stereoscopic photographs cannot be obtained in patients who 

cannot fixate accurately.

(2) fixation is impossible to maintain between exposures in patients who cannot 

cooperate.
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(3) the stereoscopic effect can be poor or completely lost because of changes of 

various factors between exposures such as focus, position of the patient’s 

head, and operator misalignments.

(4) a dependable, consistent depth effect cannot be obtained in  pictures taken 

subsequently as it is difficult (indeed, almost impossible) to duplicate the 

exact degree of camera shift (stereoscopic base), patient head position, or 

fixation. Even small differences have been shown to produce large variations 

in the resulting stereoscopic effect ([Kottler74], [Johnson79]).

3.3 H is to ry  o f S im u ltan eo u s S tereoscop ic  F u n d u s  P h o to g ra p h y

As early as 1930 Nordenson reported taking simultaneous stereo photo

graphs with a specially constructed Zeiss-Nordenson camera [Nordenson30]. The 

stereoscopic effect was achieved by means of 2 small prisms in front of the cam

era lens. Undesirable distortions were caused which made the fundus image 

look convex rather than  concave when viewed stereoscopically. The resulting 

images also showed poor definition and clarity. In 1953, Norton attached a 

35mm camera to a Bausch and Lomb binocular ophthalmoscope to produce 

simultaneous stereo fundus photographs. Again, the resulting photographs 

lacked the detail of those taken monocularly, and the lack of adequate illumina

tion forced exposure times which were longer than desirable [Norton53].

Finally, in 1964, Donaldson [Donaldson64] developed a fundus camera for 

simultaneous stereo photographs, utilising the indirect opthalmoscopic principle. 

A new illumination system was developed to provide high intensity, short dura

tion flash for taking the picture, as well as low intensity rapid flashes for align

m ent and focusing. Since the development of the Donaldson camera numerous 

other systems have been built (see [Rosenthal77], [Mikelberg86], [Woon90], [Zim- 

mermann88]), but the basic principles of simultaneous stereo fundus photogra

phy remain the same. In Donaldson’s opinion, most of the problems th a t non- 

simultaneous stereo fundus photography created have effectively been eliminated 

with simultaneous stereo cameras. Subsequent pictures can be consistently
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compared since the stereoscopic base remains constant and patient fixation is no 

longer a  problem [Donalson64].

Surprisingly, there are few pubhshed examples of developments in simul

taneous stereo fundus photography. It is often the case th a t company 

confidentiality will keep useful technical reports of such systems from publica

tion. In the following section, some of the more recent systems for simultaneous 

stereo fundus photography are reviewed.

3.4 Current Technologies

With increasing sophistication in biomedical photographic techniques, techni

cians are now able to capture a picture of the optic nerve head tha t was unima

ginable ju st 20 years ago. At the same time, no m atter how improved the photo

graphs, problems associated with the photogrammetric techniques prohibit any

thing but a somewhat primitive analysis of the retinal condition. The emphasis 

has changed from image acquisition to image analysis in an effort to improve the 

accuracy of measurement.

Rodenstock Instruments have developed a system for measuring the optic 

disc topography [Bishop87]. The Rodenstock system projects a series of parallel 

vertical bands, alternating black and white, onto the optic nerve head (see figure 

3.2). From two digitised images the angles of distortion of the bands are calcu

lated from 1600 control points, providing topographical information about the 

optic disc. This system has been shown to fail on advanced glaucomatous discs, 

but has proved useful in the majority of cases [Mikelberg84]. The results of the 

optic disc measurements are produced rapidly and sequential comparisons can be 

made from previously stored digitised data. Theoretical depth sensitivity of 

12pm is quoted, however in practice has been shown be to on the order of several 

tens of microns. Reliability studies have shown the Rodenstock Analyser to be 

an excellent diagnostic tool, yielding highly reproducible results in optic disc 

measurements such as cup-to-disc ratio and neural rim area, but less reliable for 

cup volume (see [Mikelberg86, Zimmermann88]).
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HAST EE & P R O F I L E S

Figure 3.2. Photograph of a television image from the Optic Nerve 

Head Analyzer showing vertical bright stripes superimposed on an op

tic disc image and the corresponding contour lines (from [Peli89]).

PAR Microsystems uses a standard fundus camera with a stereoscopic 

attachment, interfaced with two video cameras linked to a microcomputer that 

digitises the stereo images simultaneously [Zimmermann88]. Images can be 

stored on videodisc, providing data archiving and retrieval. The images are 

correlated automatically by the system to produce the topographical information. 

The system provides no mechanism whereby subsequent images can be aligned 

or scaled to a previously stored image to facilitate comparisons between a time- 

series of images. The PAR system is in limited use and reports of its reliability 

and reproducibility have not as yet been published.

The Allergan Humphrey system, called the Retinal Analyser, consists of a 

fundus imaging system and an image analyser. The recording system can
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capture retinal images with 35mm or Polaroid film, or in video using either 

analogue or digital recording media. The menu-driven system allows recording of 

single images or stereo pairs. After rough alignment of the patient’s eye, an 

internal microprocessor automatically informs the technician when all conditions 

are favourable for recording. Two features ensure high image quality and relia

bility: a new method of illumination, and a unique automatic tracking system. 

For better image quality a CCD array camera is scanned across the eye with a 

controlled flash, and the reduction in light from tha t of standard fundus cameras 

provides better image contrast. The computer tracking system ensures con

sistent reproducibility from one image to the next by keeping the image aligned 

on the eye horizontally, vertically, and axially [Zimmermann88].

The Retinal Analyser includes a colour monitor, hard disk store, an optical 

video disc for permanent storage, a colour printer for hardcopy output, and a 

light pen for menu selection and operation. The system uses image processing 

software to chart topographical dimensions from stereo images, and creates a 

grid-mapped 3-dimensional representation of the optic disc. Another program 

measures changes over time through image differencing. Unfortunately, there 

are no publications in the literature which allow for adequate assessment of this 

system to be made with respect to its design and operation, and there are no 

performance figures other than those quoted by the manufacturer.

Laser technology has been employed in a number of medical applications, 

and ophthalmology is no exception. Lasers are being used for various types of 

eye surgery, and recently have been used for funduscopic examination with the 

development of the Scanning Laser Ophthalmoscope (SLO) [Webb87] [Hixson87]. 

The SLO’s illumination exposes the retina to only one ten-thousandth of the light 

energy required by conventional ophthalmoscopes. The need for pharmacological 

pupil dilation is eliminated, unless stereo images with baseline are needed, and 

the fluorescein doses for angiography can be greatly reduced. Videotapes of the 

fundus can be used to record the patient’s optic deterioration or improvement 

from therapy.
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Rodenstock Instrum ents is licenced to manufacture the instrument. The 

SLO projects a low-power 50-micron diameter laser beam on to the fundus 

[Plesch87], which has several clinical advantages over a standard fundus camera. 

Often, patients have other eye problems which can complicate examination of the 

optic disc. The size of the beam enables clinicians to avoid any lens opacities 

(such as cataracts) when imaging the optic disc, and thus visualisation of the 

fundus through a clouded lens can be enhanced. The system shows advantages 

in screening patients for early signs of glaucoma, visual field loss, and macular 

disease, allowing ophthalmologists to consult and review a patient’s condition in 

real time (see also [Plesch87], [Webb87], and [Woon90]). The SLO provides con- 

focal images allowing optical sectioning and in turn  tomographic reconstruction. 

A comparison of stereo versus tomographic reconstruction is currently underway 

a t the Institute of Ophthalmology. It m ust be stressed tha t the SLO has yet to 

be used by others for optic nerve head reconstruction from stereo images or by 

tomographic reconstruction. Therefore, this early example of stereo reconstruc

tion of the optic disc will be of great interest to ophthalmologists.

3.5 Optic D isc M easurem ent

A history of stereoscopic fundus photography has been presented, together 

with a review of the current technologies for stereoscopic fundus image acquisi

tion. The methodologies for measurement of the optic disc from stereo images 

are of interest, but the majority of published studies concentrate on the reprodu

cibility of the photographic techniques, rather than providing a meaningful dis

cussion of the techniques for measurement (automatic or manual). The limited 

number of articles on commercially available systems do not disclose the methods 

employed, the reasons for using the methods, or the problems encountered or 

overcome. For these reasons one m ust rely mainly on the reliability and repro

ducibility studies as an indicator of the methods currently being employed for 

reconstructing the optic disc topography from the stereo image pairs.
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3.5.1 Photogram m etric M ethods

One of the first thorough studies into the problems of photogrammetry of the 

optic disc was done a t Moorfields Eye Hospital in collaboration with the Depart

m ent of Photogrammetry, University College London, by Ffytche et al 

[Ffytche73]. Using a standard fundus camera and a device known as the Allen 

separator, stereo photographs of the optic nerve head were taken sequentially 

and then analysed in a Hilger and Watts stereo comparator. A large number of 

m anual readings were recorded from high-confidence features in the images to 

define the boundary of the optic disc. The time involved in manually processing 

each stereo pair proved too costly to be of clinical use. Kottler [Kottler74] 

applied the same principles as those used by analogue stereo plotters to produce 

a digital photogrammetric algorithm. Using a Zeiss fundus camera and the Allen 

separator, stereo photographs were obtained and digitised (at 128x128 pixel 

resolution) for analysis. Depth sensitivity of 184|im was reported, but it was 

suggested th a t this was a restriction of the digitisation resolution and th a t 92p.m 

was possible using 256x256 pixel resolution. The photogrammetric error was 

shown to be only 2-3% and the photographic error (focusing, alignment, 

radiometric differences) was 7 to 20 times greater. Processing time for an image 

pair was approximately 10 minutes, but the algorithm and required operator 

intervention were not discussed.

3.5.2 Stereo M atching M ethods

Perhaps the most interesting and relevant paper to date is that of Algazi 

[Algazi85]. Two methods for computer analysis of the optic disc are presented. 

One method uses successive monocular photographs (over a period of years) 

which are scaled, registered, and digitised with reference to the first image in the 

series. These are then displayed in rapid sequence on a television monitor, and 

changes in the optic cup appear as localised movement. This method is similar 

to th a t of stereo chronoscopy [Goldmann77]. Stereo photographs can also be 

viewed by this technique, where the right image is scaled, registered, and
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digitised with respect to the left image. A new algorithm for digital photogram

metry is presented for extracting cup depth information. Photographs were 

obtained using either a Zeiss camera (non-simultaneous), a Donaldson camera, or 

a Topcon stereo fundus camera. The resulting colour slides were then mounted 

on a light table and rotational and translational adjustments were performed by 

means of a micrometer stage. Scaling adjustments were made by altering the 

video magnification. By rapid alternation between the stored, digitised left 

image and the live video right image, the right image could be brought into align

m ent by minimising the “flicker” between the two images.

Algazi attem pted to overcome some of the sources of error th a t were 

apparent in the photographic process, such as misregistration, focusing, 

radiometric variations, photographic artifacts, and contrast range. Algazi’s algo

rithm  for stereo matching fundus images is:

(1) align and digitise the stereo pair (using the method described above);

(2) apply a radiometric correction to one of the images to bring the grey 

level variance of the two images into agreement;

(3) apply a highpass filter to both images to extract the high frequency 

information (what the author calls “skeletonisation”);

(4) apply an absolute difference algorithm to both the filtered images and 

the grey level images to form two depth maps;

(5) using a “choice” algorithm, select a consistent depth map from the two 

depth maps of (4);

(6) apply a 2-d polynomial fitting algorithm to the depth map to “fill in” 

the missing data;

The author makes some suggestions for automating the registration process. 

Although a video fundus camera system which could align the images before digi

tisation would be desirable, it would not be useful for analysing standard fundus 

photographs. Some results are shown which indicate that good quantitative 

information about the optic disc can be obtained by this method.
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A recent paper on feature-based registration of retinal images presents a 

new, fast technique for reliable image registration [Peli87]. A modification of the 

sequential similarity detection algorithm (SSD) is developed for fundus image 

registration. A 100 times speed-up is quoted over the conventional cross

correlation technique. This registration method might prove useful in conjunc

tion with the stereo matching technique proposed by Algazi [Algazi85].

A more recent study of integrating stereoscopic measurement with pho

tometric information as cues for depth is presented in [Lee91a]. The authors 

contend th a t photometric information, often termed shape from shading (see 

chapter 5), can be used to confirm stereo depth estimates. Some preliminary 

experimental results are presented for model and fundus images which show 

promise for this approach. Further work, involving a clinical assessment of this 

approach is proposed, and a new fundus camera is to be constructed which will 

meet the geometric and illumination requirements of both binocular and pho

tometric stereo. The results of Lee’s work will be of great interest in comparison 

with the research presented herein.

3.5.3 Non-Stereo M ethods

A different approach to the problem was reported in Goldmann [Gold- 

mann77]. A technique known as chronoscopy requires two photographs of the 

same eye be taken a t different times with the axis of the fundus camera at 

exactly the same position, and the cornea and disc at corresponding positions on 

the film. If the disc surface has changed in the time period between exposures, 

the observer will perceive a stereo effect when viewing through a stereoscope. 

Goldmann discusses the efficiency in detecting both axial and frontal displace

ment, indicating th a t as the resolution of the Zeiss camera is 1.6 minutes of arc, 

8pm of frontal displacement can be detected, and depth perception is approxi

mately 7x worse than frontal change. This method is manual and requires sub

jective interpretation.



48

An alternative to stereometric analysis of the optic nerve head has been pro

posed by Nagin and Schwartz [Nagin85a,b]. Pallor is the region of maximal 

colour contrast in the optic disc. The ratio of area of pallor to optic disc size was 

found to be greater in ocular hypertensive patients. The retina, disc, and area of 

pallor correspond to 3 peaks in the intensity histogram, and the valleys between 

the peaks were used as a reference in a boundary tracking program. A boundary 

tracking technique was developed to delineate the optic disc and area of pallor. 

Points were tracked sequentially along a path which corresponded to one of the 

histogram valleys, had a steep gradient value, and was consistent with neigh

bouring results. Various tracking param eters were tuned empirically on 100 

trial images. Red-filtered images were used for extracting the optic disc boun

dary, and green-filtered images were used for extracting the area of pallor. 

Operator intervention was required to guide the tracking process in difficult 

cases. The study shows the clinical significance of this type of measurement as 

an indicator of developing glaucoma.

A group a t the Electrical Engineering Department, Texas Tech, have 

presented a number of papers at the Association for Research in Vision and 

Ophthalmology (ARVO) ’86 and ’87 conferences, involving microcomputer based 

image analysis of the fundus ([Ling86], [Whiteside86], [Mitra87]). Changes in 

the nerve fibre layer are detected by comparison of sequential images in the spa

tial and spectral frequency domain. A microcomputer-based system provides 

image database facilities, interactive histogram modification, pseudo-colour map

ping, and image enhancement functions in a menu-driven environment. Algo

rithm s for image registration and image differencing were designed for detecting 

nerve fiber layer damage. Although this work does not directly relate to optic 

nerve head analysis, it is part of an effort which is devoted to finding clinical 

indicators for developing glaucoma (see also [Peli89]).

Two papers on optic disc analysis using the PAR image analyser were 

presented a t the ARVO *87 conference ([Spaeth87], [Varma87]). Spaeth et al 

conducted a study of optic disc vessel shift in glaucoma. The PAR image
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analyser was used to detect changes in the vasculature of glaucomatous discs 

and results were compared to the clinical observations of glaucoma experts. The 

PAR system was more sensitive than the clinical observation. Varma et al com

pared the results from topographic analysis of the optic disc using three different 

methods: clinical planimetry, the PAR image analyser, and the Rodenstock ana

lyser. The study showed a high correlation between all three methods of 

analysis.

3.6 R eliability  and R eproducibility

Shields [Shields89] and Peli [Peli89] give a discussion of the more recent 

developments in fundus imaging and measurement. New ophthalmic imaging 

systems, such as the Optic Nerve Head Analyser [Bishop87], the Retinal Ana

lyser [Zimmermann88], or the Scanning Laser Ophthalmoscope (SLO) [Webb87], 

offer the clinician alternatives to acquisition, storage, and evaluation of fundus 

images. Depth resolution offered by the Optic Nerve Head Analyser varied on 

repeated measurements by less than 60pm. Reproducibility of repeated meas

urem ents of disc area on 10 images using the Retinal Analyser was reported to 

vary from 0.25 to 3.3% [Peli89]. With the Retinal Analyser system, the resolu

tion on a model eye was reported to correspond to 20pm of depth, and the varia

bility of depth measurements ranged from 0.7 to 25.5%. Reports on the reprodu

cibility and reliability of measurements made using the SLO have yet to emerge. 

Interestingly, Peli [Peli89] concludes that “the clinical value of these instruments 

is still unknown, and the accuracy of these instrum ents and what accuracy is 

needed to provide meaningful clinical information are also unknown”.

An interesting comparison of the equipment which was available for stereo- 

photography of the optic disc in the late 1970’s is given by Rosenthal 

[Rosenthal77]. A clinical comparison of results from photogrammetric analysis is 

presented where the images were taken from one of three systems: the Zeiss 

fundus camera using the Allen separator (non-simultaneous); the Donaldson 

stereo fundus camera; and the Zeiss fundus camera using the twin-prism
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separator. No discussion of the photogrammetric procedure is given regarding 

image resolution, algorithms, number of points sampled, etc. It was concluded 

th a t the Donaldson camera gave the best results and depth sensitivity ranged 

from 86 to 190pm.

A number of papers indicate the reliability of disc measurements as an indi

cator of glaucomatous development ([Johnson79], [Takamoto79]). Typically the 

Donaldson camera was used and images were processed manually using a stereo- 

plotting device. In [Takamoto79], the stereoplotter was used to select reference 

points before applying a geometric transformation to align the images. After 

registration observations were made from 10 predetermined (high confidence) 

points in each image. The root-mean-square error was reported to be ±12pm 

frontally and ±19pm axially. It was not the intention of the study to reconstruct 

topographic information, but rather to determine the best photographic aperture 

and magnification tha t would give the most consistent results. A similar study 

was reported in  [Rosenthal80] in  which a Zeiss model eye was photographed 

using the Donaldson camera. Experiments were conducted to determine the 

impact of photographic and ocular variables on the photogrammetric estimates of 

a known cup depth. It was shown tha t the photogrammetric procedure tolerates 

refocusing, repositioning, and realignment of the camera, but underestimation 

and overestimation of cup depth was noted to be a function of the refractive error 

of the lens.

The availability of the Rodenstock Analyzer brought forth a number of repro

ducibility studies using the system in a clinical environment (eg. [Mikelberg84], 

[Mikelberg86], [Bishop87], [Caprioli87], [Kolli87], [Miller87], [Prince87], 

[Shapiro87]). The Rodenstock Analyzer (discussed earlier) calculates the depth 

of 1600 points with the help of microcomputer. In [Mikelberg84] (refer to figure 

3.1) a description of the techniques for extracting clinical measurements from the 

resulting depth map is presented. The optic disc boundary is determined with 

the help of a human operator who selects four points a t the horizontal and verti

cal disc margins to which the computer fits an ellipse (not all discs are
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elliptical!). The cup margin is then defined by subtracting 150pm (a clinically 

accepted value) from the defined disc, and the disc-cup ratio is computed by 

measuring the distance from the centre of the disc along a given meridian to a 

point matching the cup depth. This is repeated superiorly and inferiorly in a 

span of 50 degrees. The mean of the measurements defines the vertical disc-cup 

ratio. Neuro-retinal rim area and cup volume can be measured in a similar 

fashion. This study shows the potential of the Rodenstock Analyzer in the clini

cal environment.

[Shields87] reported a reproducibility study using the Rodenstock Analyzer. 

The key result was tha t reproducibility was found to be poor for cup volume, but 

good for disc-cup ratio and neural rim area. Subjective comparisons implied good 

reproducibility of the measurements and established the Rodenstock Analyzer as 

a clinically viable diagnostic tool.

3.7 D iscussion  and Analysis

A wide range of papers dealing with the general problem of optic nerve head 

analysis have been reviewed. The majority are presented from a medical 

viewpoint and therefore lack a great deal of technical detail about the image pro

cessing, image analysis, and photogrammetric algorithm development. It is clear 

from the literature that simultaneous stereo photographs are essential for repro

ducible results, and the predominating equipment was either the Donaldson 

fundus camera or the Rodenstock Analyzer. It is evident th a t fundus cameras 

correct for some of the refractive errors of the lens of the eye, but in an effort to 

obtain a larger stereo baseline, simultaneous stereo cameras are viewing through 

perhaps less than favourable portions of the lens, causing distortions which can

not be quantified. Moreover, even with the vast number of reproducibility stu

dies in the literature, a standard measure by which to quantify changes of the 

optic disc has yet to emerge. The problem of analysis of the optic nerve head 

appears to be in its infancy when compared to other types of ophthalmologic 

diagnosis.
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Perhaps the most interesting paper is tha t of [Algazi85], as it describes in 

some detail the digital stereo matching algorithm employed in reconstructing 

topographic information from stereo fundus images. Although some impressive 

results are shown, there are several problems with the complete algorithm. 

However, the paper presents a reasonable solution to the problem, with minor 

weaknesses in the image processing. With the automation of the alignment pro

cess (as in [Peli87]) it may be possible to automate the entire measurement pro

cess.

Lee and Brady have shown tha t by integrating binocular stereo with pho

tometric stereo, reliable estimates of disc topography can be obtained [Lee91a]. 

The authors propose a new camera which will meet both the geometric require

ments for binocular stereo and the illumination requirements for photometric 

stereo. Briefly, photometric stereo is a method by which the three-dimensional 

shape of an object is inferred from local scene irradiance. If the reflectance pro

perties of the surface are known, then local measures of surface gradient can be 

obtained (see chapter 5 for more details). The authors indicate th a t the future 

direction of their work will be to concentrated on the image acquisition (with the 

construction of a new fundus camera) and not on the image analysis. Their 

study, although of great interest, does not greatly affect the research presented 

here.

3.8 Summary

It may be useful to review some of the major stumbling blocks for stereo 

analysis of the optic disc photographs, as extracted from the literature.

(1) Image registration - both non-simultaneous and simultaneous stereo 

photographs require some registration involving scaling, rotation, and 

translation.

(2) Intensity variations - radiometric differences between the stereo pair 

require some method of adjusting the brightness and contrast of the 

two images to improve cross-correlation measures.
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(3) Focusing error - stereo fundus photographs, regardless of the type of 

camera, are often slightly out of focus, and some type of deconvolution 

may be necessary to correct for focusing errors.

(4) Lack of image detail - as noted previously, regions of non-uniform, low 

contrast texture predominate in the areas between the vascular struc

ture. The area of interest, the optic disc, is often overexposed in the 

data collected and available here, providing little or no detail of the 

optic cup, and this will present problems for stereo matching algo

rithms.

(5) Arbitrary optical distortions - photographs are taken through the lens 

of the eye with all its subtle asymmetric optical distortions. Hence, 

obtaining reliable and reproducible disparity measurements is made 

more difficult.

(6) Clinical constraints - the ultimate goal of this research would be to 

provide a clinically valuable diagnostic tool. Generally, this means 

tha t a procedure m ust be applicable to standard fundus photographs; 

it is desirable tha t historical data still of clinical significance be exam

ined, although aware that new data would be collected using the 

simultaneous method.

(7) Quantitative measures - as noted earlier, a standard measure for the 

quantification of optic disc change would be a desirable goal, and any 

progress toward such a measure would be of great value to clinicians.

The problem of topographic analysis of the optic nerve head from stereo pho

tographs is by no means solved, even by commercially available systems. There 

are a lot of interesting aspects to this problem which are addressed in the litera

ture. Although commercial systems are now becoming available which may solve 

some of the current problems, information about such systems is not easily 

obtained. It is hoped tha t this brief historical survey of stereoscopic fundus pho

tography has given some insight into the difficulties tha t may arise in the appli

cation of digital stereo matching to the fundus data.
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Chapter 4 
Physical Constraints in Stereoscopic Fundus Imaging

4.1 Introduction

In this chapter a discussion of the physical constraints in stereoscopy of the 

hum an fundus is presented. Issues such as image acquisition, camera geometry, 

image resolution, and other physical constraints are investigated.

In order to understand the difficulties associated with stereo analysis of the 

optic disc the various physical constraints of the problem m ust be examined. The 

constraints imposed by the camera geometry, imaging through the pupil of the 

eye, as well as the small extent of the optic disc area, all present limitations to 

the accuracy to which stereo information can be extracted. It is im portant to 

quantify these limitations, which ultimately define the performance of stereo 

matching algorithms tha t can be used to automatically or semi-automatically 

compute topographic information about the optic nerve head.

There are many param eters which can affect the accuracy of any measure

m ent of the optic disc. These include the size of the optic disc, the viewing dis

tance, and the stereoscopic baseline, which define depth resolution; eye move

ments, motion blur, and optical distortions, such as defocus, which produce an 

optical degradation of the image; illumination changes, such as contrast and spa

tial lighting variations, between exposures; and param eters associated with any 

electronic components. Changes in any of these param eters complicate correla

tion of the stereo pairs. It is important to define the relationship between these 

param eters in order to assess the limitations of stereoscopic depth recovery.

4.2 C linically Significant Change

It is natural to ask and to have the answers to several key questions before 

investigating the physical parameters which affect the accuracy of stereoscopic 

measurement of the optic disc:
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1) W hat is the scale of change to the topography of the optic disc th a t clinicians 

are looking for ?

2) Are there known and accepted relationships between, for example, changes 

in optic disc diameter and changes in optic cup depth ?

3) W hat constitutes a clinically ‘significant’ change ?

The answers to these questions are, unfortunately, not quantitative. Even today, 

clinicians have yet to make a quantitative selection of the aspects of structural 

change th a t will be the most useful in detecting and following the progression of 

glaucomatous damage [Shields89].

As the size and shape of the optic nerve head in any individual is governed 

by many physiological factors, absolute measurements are not of much use for 

diagnosis. To differentiate the pathological from the physiological features, the 

patient’s eyes m ust be examined periodically. If on successive examinations 

there are changes in the size of the cup or the diameter of the disc, then disease 

might be diagnosed. The diagnosis, however, is still very much subjective. Thus, 

the answer to the first question is not known.

The second question addresses the problem of how best to interpret and util

ise any measurement data which is available to clinicians. There are a t best ad 

hoc or rule-of-thumb interpretations of the types of optic disc measurements 

available today. Research work presented in the literature concerns itself mainly 

with the study of the reproducibility of a given measurement technique, and not 

with the relationships between accepted measurements and their clinical 

significance. Clinicians have yet to establish criteria to define the disc topogra

phy or other aspects of the optic nerve head tha t will allow for a clear distinction 

between normal optic nerve heads and those with developing glaucomatous dam

age [Shields89].

To answer the third question it is necessary not only to measure change, but 

also to associate with th a t change an understanding of its clinical significance. 

Throughout the literature (see chapter 3) ‘significant’ change has been defined 

only through a subjective interpretation of optic disc measurement. Worse, the
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accuracy of measurement th a t is needed to provide meaningful clinical informa

tion is still unknown [Peli89]. Because automated measurement of the optic disc 

topography is still a relatively new technique, there are few studies which pro

vide sufficient long term results from which clinicians can begin to tu rn  a heuris

tic or subjective interpretation into a more quantitative analysis of the data.

Although the scale of change tha t can be attributed clinically ‘significant’ is

not readily available, some estimate of the magnitude of change can be derived

from the data presented in the literature. For example, Algazi [Algazi85]

presents a comparison of computed topography for the same patient, with one set

of data obtained in 1974 and the other in 1978. Although the cross section of 
■0

depth is given on a relative scale, it  is shown tha t an approximate 20% change in 

the depth of the cup had taken place, and tha t this patient is known to have 

glaucomatous damage. In another example, Takamoto et al [Takamoto79] con

clude tha t changes in optic cup width of ± 2 percent and changes in optic cup 

depth of ± 6 percent can be detected using standard photogrammetric tech

niques. These percentages correspond to changes in width of approximately 

30jim and changes in depth on the order of 40pm. Takamoto does not, however, 

indicate how much change is clinically significant.

It is clear that there is no quantitative assessment of the scale of change 

th a t can be taken to be an indication of advancing glaucoma. However, it is still 

im portant to quantify the physical constraints in stereoscopic measurement of 

the optic disc so th a t lower bounds can be placed on any new clinical assess

ments tha t may emerge.

4.3 Stereo Image Geometry

In this section the concepts of stereoscopic imaging are introduced, the termi

nology is defined, and the physical constraints specific to stereoscopic fundus 

photography are discussed.



57

4.3.1 Introduction

Figure 4.1 represents two optical systems, O x and 0 2, each with a focal 

length f  in  a configuration suitable for stereoscopic imaging. The optical axes of 

both systems are parallel with a separation B  and He in the X - Z  plane (the Y  - 

axis is perpendicular to the page). The coordinate systems X i - Y i - Z i  and 

X 2~Yz~Z 2 are defined for these two optical systems respectively. Given a point 

P  with coordinates ( x , y , z )  situated in front of these two systems, the image of 

P  is located a t the horizontal coordinates jc x and x 2 in  each system respectively. 

The relative displacement of Xi  and x 2 with respect to their coordinate systems 

provides stereoscopic information about the three-dimensional coordinate of the 

point P .

B

Figure 4.1. The basic geometry of a stereo imaging system.

The geometric relationship between the coordinate systems X i~ Y  i~Z x and 

X 2- Y T-Z2 can be defined as:

-► z
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Object

Surface

(x,y.z)
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X x = X 2 + B  , Yi = Y2 , and Z 1 = Z 2 . (4.1)

If a three-dimensional coordinate system is defined relative to 0 2, which has its 

origin a t the point (X2, Y2, Z 2) = (0, 0, 0), then from similar triangles in figure 

4.1, a relationship can be defined between the image coordinates X\  and x 2i and 

an object point ( x , y , z ) as

Z  X o
x = — A  (4.2)

f

and

x -  Z + B  , (4.3)

which can be equated to yield

x 2 = * 1  + f  ^  . (4.4)
z

Equation (4.4) provides a constraint on the relationship between two points 

in the image planes. For an image point at x 2, its corresponding image point at 

x i can be inferred if the geometric variables z , f  and B  are known. Often, there 

is a known range over which z may vary, which places a constraint on the possi

ble value of x i given x 2. In systems which can be calibrated such th a t f  and B 

are known and z has a known range, the process of stereo matching (locating the 

corresponding points Xi  and x 2) can be greatly simplified by utilising the con

strain t specified by equation (4.4). Note that in this coordinate system Yx = Y2. 

This is often termed epipolar stereo to reflect the fact th a t the two optical sys

tems are vertically aligned and that there is no stereoscopic shift in the Y axis.

Equation (4.4) can be re-arranged as

2 = f  B . (4.5)
* 2 - * l

Equation (4.5) now gives a direct relationship between the distance to the object 

point P  and the difference in the image coordinate positions x  x and x 2- To deter

mine the three-dimensional coordinate (x , y , z ) of the object point P ,  image
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points Xi and * 2  m ust be determined. Given * 1  and * 2 , z  can be calculated 

using equation (4.5) (assuming f  and B  are known). The x  -coordinate can be 

obtained by substituting z into either equation (4.2) or (4.3). The y  -coordinate, 

in this case, is relative to Y \. This procedure allows us to calculate the x y-, 

and z  -coordinates of every point on an object th a t images to a point in both sys

tems 0 1 and 0 2.

4.3.2 G eom etric Optics

Figure 4.2 diagrams the geometric relationships in fundus imaging, and will 

be referred to in sections 4.4 and 4.5. In this section the various param eters 

which describe the imaging process will be defined, and their use in defining the 

depth resolution of a stereoscopic system is presented in the following two sec

tions.

Figure 4.2 indicates how an image of the optic disc is obtained in a typical 

fundus imaging configuration. A positive lens is placed in front of the eye and 

focused to form an image of the retina on the image plane. The point K  

represents an object point in the plane of best focus, which forms an image point 

k on the image plane. A nearby object point J  which lies a distance Az from the 

plane of best focus is imaged to a spot j  on the image plane. The diameter of 

the spot image j  increases as Az increases, due to blurring. The effects of blur

ring are discussed in section 4.4. Note tha t if the diameter of the image spot j  

increases to the point where it overlaps with the image point k , then j  becomes 

indistinguishable from k . The minimum distance a t which two object points are 

still distinguishable in the image plane is termed the effective lateral resolution, 

or h eff. The param eters which will determine the lateral resolution are dis

cussed in section 4.4.

Behind the imaging lens lies a stop or aperture which controls the amount of 

light reaching the image plane. The choice of the size of aperture yields a trade

off between spherical aberrations and diffraction effects. Spherical aberrations 

are caused when a beam of light parallel to the axis passes through a lens with
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Figure 4.2. The geometric relationships in fundus imaging.
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spherical surfaces, and rays passing through the outer zones of the lens come to 

a focus nearer the lens than the rays through the central zone. Consequently, 

the image is unsharp wherever the image plane is placed. This failure of the 

lens to form a point image of a point object is termed spherical aberration. 

Spherical aberration can be reduced with the use of a stop or aperture, which 

blocks the rays from the outer zones of the lens. Lens also exhibit other aberra

tions, bu t they can be neglected in the present context.

Diffraction is the name given to the phenomenon which occurs when light 

passes through any aperture. Even with an ideal aberration-free lens, the image 

of a point object is not a point, but a circle of light of finite diameter. The diame

ter of the circle is called the Airy disc. Although it is desirable to decrease the 

aperture to reduce spherical aberrations, diffraction effects increase as aperture 

decreases. As shown in section 4.4, depth of focus improves as the diameter of 

the aperture decreases. The aperture will form an aerial image on the cornea of 

the eye, and the aperture must fit within the eye’s pupil: indeed, two such aerial 

images of the aperture m ust fit within the pupil if adequate stereoscopic imaging 

is to occur. The pupil is normally pharmacologically dilated, and therefore the 

size of the aperture is limited to the size of the pupil (typically l-3mm undilated, 

6 -8 mm dilated).

The axial length of the eye can vary from 2 2  to 26mm, though the apparent 

length of the eye, due to the focal power of the eye’s lens and various other fac

tors such as comeal curvature and the aqueous nature of the eye, is assumed to 

have a focal distance of approximately 17mm [Littmann82], Light rays from a 

point on the retina which lies at the focal distance (e.g. the point K  in figure 4.2) 

will pass through the lens of the eye and emerge as parallel rays. Points on the 

retina not a t the focal distance (e.g. J  in figure 4.2) will produce either diverging 

or converging rays from the lens of the eye depending on whether they are in 

front of or behind the focal plane respectively.
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4.3.3 Physical Constraints

Figure 4.2 indicates how a single image of the optic disc can be formed on an 

image plane given a suitable optical system. In a stereoscopic imaging system, 

such as tha t diagrammed in figure 4.1, two such images m ust be taken at a finite 

separation or baseline B  to produce a stereoscopic effect. However, the finite 

diam eter of the pupil will constrain both the aperture a and the stereoscopic 

baseline B , and an optimal aperture-baseline relationship m ust be given.

As a published design of a simultaneous stereoscopic fundus camera, the 

Donaldson camera [Donaldson64] serves as a suitable example through which to 

examine the problem of obtaining two disparate images of the optic disc through 

a pupil of finite diameter (recall from chapter 2  th a t the pupil is typically phar

macologically dilated to 6 -8 mm in diameter).

projection of right 
aperture

pupil diameter 8mm

Top View

Eye
5mm3mm1mm

projection of 
light source projection of left 

aperture

Figure 4.3. The relationship between aperture, illumination source, and 

pupil diameter with the Donaldson stereoscopic fundus camera.

In both non-simultaneous and simultaneous stereoscopic fundus photogra

phy, the combined diameters of two apertures together with an illumination 

source should remain entirely within the diameter of the pupil. In the first
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Donaldson camera, for example, the apertures are fixed a t 5mm with a baseline 

separation of 9mm. With a magnification ratio of 3:1, the dimensions of the 

apertures when imaged onto the pupil are 1.7mm, with a combined width of less 

than  5mm. With limited space for the illumination source, two 3mm fight 

sources are imaged onto the pupil a t the 12 o’clock and 6  o’clock positions. Fig

ure 4.3 shows the relationship between dual aperture, illumination source, and 

pupil diameter.

It is desirable tha t the aperture of the fundus camera and the light source 

(see section 4.6) should remain entirely within the dilated pupil. This places a 

severe constraint on the size of camera aperture tha t can be used effectively. 

When two imaging systems are used, the baseline should be as large as possible 

so as to create the maximum stereoscopic effect. To maintain a large stereos

copic baseline while keeping both apertures within the pupil places a constraint 

on any stereoscopic system for imaging the optic disc. The optimal aperture- 

baseline relationship can be given as

a = P - B  (4.6)

where a is the diameter of the aperture, P  is the diameter of the pupil, and B  is 

the stereoscopic baseline. The effect of increasing the baseline B  on stereoscopic 

depth resolution is discussed in section 4.5.

4.4 Lateral R esolution

In this section the various param eters which limit the effective lateral reso

lution of an imaging system are described. The lateral resolution will directly 

affect the depth resolution of a stereoscopic system, discussed in section 4.5, and 

it is therefore im portant to quantify the many factors which may limit lateral 

resolution in stereoscopic fundus imaging.
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4.4.1 Optical D iffraction

Optical diffraction occurs because light consists of waves which are scattered 

by the edges of lenses or optical stops. It is therefore not possible, even with per

fect optical systems, to image infinitesimally small details.

Assuming a circularly symmetrical, diffraction-limited imaging system, the 

diam eter of an image point is given by the diameter between the first minima of 

its Airy disc and may be defined as:

C = 1 . 2 2  —  (4.7)
a

where,

C : diameter of the focussed image of a point object

A, : wavelength of visible light (400 - 700nm)

R  : range or object distance (for the human eye, average value 17mm)

a : aperture diameter (in fundus cameras, 2mm to 5mm)

For example, using typical values for A=500nm (yellow-green fight), R=17mm, 

and a =3mm, the diameter of an aberration-free image point of an object in the 

plane of best focus will be approximately

C = 1.22 (500nmX17mm) = 3  5 ^
(3m m )

This gives an indication of the best lateral resolution possible in the plane of best 

focus in the absence of any other limiting factors on lateral resolution (see [Jen- 

kins51], [Morton84]). The effect of diffraction on lateral resolution is denoted 

^ d i f f  •

4.4.2 D efocus Effects

It is only possible to focus an optical system sharply on one plane in space a t 

a time; if the rim of the optic disc is sharply in focus then the bottom of the optic 

cup will be partly out of focus, and vice versa. As a result, objects which fie away 

from the plane of best focus will be blurred when imaged onto the image plane 

(e.g. the object point J  in figure 4.2). From similar triangles in an object-lens-
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image diagram (see figure 4.2), the diameter of the blur circle on the image plane 

when an object point is Az pm from the in-focus distance a t range R  can be 

approximated [Morton84] by:

a Azb =
R (4.8)

where

b : lateral diameter of blur circle

a : aperture diameter

Az : out-of-focus object distance from R

R  : object distance a t the plane of best focus

For example, the aperture a of the fundus camera may be set to 3mm, the range 

R  is approximated to 17mm, and values for Az range from 100-500pm for typical 

cup depths. The diameter of the blur circle of an image point when the object

point lies, for example, Az -  1 0 0 pm from the plane of best focus would then be

6 = (3mm X100p.m) = 1?
(17mm )

The effect of defocus on lateral resolution is denoted h defoc •

4.4.3 Eye M ovement

It takes a finite time to form an image of the optic disc on film placed at the 

image plane. During th a t time, the eye being examined will undergo involuntary 

movements such as saccades, drift, and tremor. Such eye movements will blur 

the image and will cause distortion. The amount of motion blur can be estimated 

from the typical values of about 1 0  arc-minutes/second for eye drifts, and about 6  

arc-minutes/second for saccades [Pirenne67]. With photographic exposure times 

on the order 1/250 second, for example, there will be less than  2pm root-mean- 

square movement of the retina. For this reason the effect of eye movement on 

lateral resolution for the data used in this research can be neglected.

In general, when the image is formed on a medium other than film (e.g. sam

pled directly using a video camera or other recording device), the effects of eye



66

movement may not be neglected. For completeness, then, the effect of eye move

m ent on lateral resolution is denoted h m0Ve •

4.4.4 D iscrete Sam pling

The average horizontal diameter of the optic disc is approximately 1 .8 mm, 

and the average vertical diameter is approximately 1.9mm. Therefore, a typical

taken across the imaged area. On a 35mm photograph, for example, the discrete 

samples are composed of grains of silver halide crystals, and the resolution of the 

film is on the order of 500 grains per millimeter (i.e. 1000 samples horizontally 

across the optic disc at unit magnification). If the optic disc image is scanned, 

for example, using a monochrome Vidicon camera to form an analogue signal, 

and the signal is then digitised to form a discrete image, then the resolution is 

limited to tha t of the digitiser used. Digitisers with a resolution of 512x512 pic

ture elements (pixels) are readily available, though higher resolution devices 

could be used if required. More generally, the lateral resolution of a sampled 

image is given by

research has a resolution of 512x512 pixels.

When digitising an image from 35mm film, it should be noted that as image 

resolution increases the lateral resolution is limited to the film grain resolution.

image of the optic disc will cover a 2 x2 m m 2 area of the retina. If a discrete 

image of the optic disc is to be formed, then a series of discrete samples m ust be

sample
(width of the area imaged) 

(# of discrete samples)
(4.9)

For example, if a Vidicon camera is used with a digitiser at a sampling resolution 

of 512 pixels, the lateral resolution due to sampling would be

sample
2 mm = 3.9pm/sample .

512 samples

This example is given because the digitiser available for use on the data for this

In fundus camera systems which are directly connected to a digitiser, or which
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provide analogue video output (e.g. the Scanning Laser Ophthalmoscope - see 

chapter 3), the digital resolution of the device is a constraint.

The effect of sampling on lateral image resolution is denoted h 8ampie •

4.4.5 Optical D efects o f the Eye

The human eye is not a perfect imaging system; the eye itself will degrade 

the lateral resolution of the image due to the varying defects of the eye lens, the 

curvature of the cornea, and the axial length of the eye. For example, the focal 

power of the eye (the eye’s own magnification) is determined by the focal power 

of the lens of the eye and the curvature of the cornea a t the viewing position. It 

is known th a t the focal power of the eye can vary by as much as ± 2  diopters 

across the cornea [ElHage73]. When viewing the eye stereoscopically, both views 

will therefore not be subject to the same focal power (magnification) or refractive 

error.

Littm ann [Littmann82] has shown tha t even with a value for the axial 

length of the eye (determined by ultra-sound) and a measure of the corneal cur

vature (determined from keratometer readings), th a t only an estimate of the 

focal power of the eye can be made. Therefore, an average value for the focal 

power of the eye is most often used. The average or "idealised" eye is assumed 

to have a focal length of 17mm and no refractive error. Given tha t the optical 

defects for an individual’s eye are difficult to determine, the degradation of 

lateral resolution due to the optical defects of the eye will be ignored.

4.4.6 Total Lateral Resolution

To a first approximation the lateral resolution contributions are taken to be 

additive:

h ef f  =  ^ d i f f  + h defoc +  h move ^sample • ( 4 .1 0 )

Equation (4.10) gives an approximation for the effective lateral resolution of a 

single image of the optic disc. Although it is only an approximation, any other
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possible sources of degradation (e.g. spherical aberration) in lateral resolution 

can be neglected. The term effective lateral resolution is used to imply th a t there 

may be a more accurate means by which to determine the total lateral resolution.

For example, suppose an imaging system is used with an aperture a of 

3mm, the pupil is dilated to 8 mm, the focal length of the eye is taken as the 

average (R  -  17mm), and the stereoscopic baseline B , given by equation (4.6), is 

5mm. A digitiser with a sampling resolution of 512x512 pixels is used to form 

an image. For points in the image which lie in the plane of best focus,

&diff = 3.5pm ,

^ defoc = 0  (i.e. the plane of best fo c u s ) , 

h move “  0 pm (little or no eye movement) ,

and

^ sample = 3.9pm/sample .

Thus the effective lateral resolution would be 

h en  = 7.4pm .

Similarly, for object points which lie, for example, 100pm from the plane of best 

focus, there is now a degradation in lateral resolution due to blurring, and thus

^defoc = 17.65pm ,

which now yields

h eff = 25pm .

When two images are taken stereoscopically, the effective lateral resolution 

of each image affects to the resolvable depth of the stereoscopic system. In the 

following section the depth resolution of a stereoscopic system is discussed.
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4.5 D epth R esolution

In a stereoscopic system the accuracy to which the depth of an object can be 

measured is determined by the accuracy to which th a t object can be located in 

each of the stereoscopic images, and the separation or baseline between the two 

images (refer to figure 4.4).

The depth resolution of a stereoscopic system is, to a first approximation, 

defined by

_  ^eff RD = , (4.11)

where

D : resolvable depth increment a t range R  

h eff : effective lateral resolution 

R  : range or object distance

B  : camera separation or stereoscopic baseline

Figure 4.4 indicates the relationship between depth resolution, effective lateral 

resolution, object distance and camera baseline. The effective lateral resolution 

and the baseline separation have a large effect on the depth resolution of a 

stereoscopic system, as seen from equation (4.11). In this application, the object 

distance, R , is relatively constant and is beyond our control. Too small a base

line, for example, can degrade the depth resolution to the point where no accu

rate depth measurements can be made. Similarly, if  the effective lateral resolu

tion is poor (e.g. due to excessive blurring) the depth resolution will be degraded.

For example, if  the effective lateral resolution in the plane of best focus (as 

shown in section 4.4) is 7.4pm, the object distance is 17mm, and the stereoscopic 

baseline is 5mm, then the depth resolution will be

D = (7.4fim XI7mm) =
(5m m )

If the lateral resolution is degraded, due to blurring, to 25pm, then the depth 

resolution would become

D  = (25nmX17mm) = 8 5 „m ,
(5mm )
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Figure 4.4. Diagram showing the relationship between D , h ef f , R , and 

£  from equation (4.11). As h eff decreases, the image point j  becomes 

more visibly separate from k ,  improving the resolvable depth D 

between J  and K .

In this example, subtle changes in depth on the surface of an object less than 

85pm can not be detected, at least for small object details.

In the previous section the various param eters which contribute to the 

effective lateral resolution were discussed. Figures 4.5 and 4.6 plot a number of 

these param eters versus depth resolution, indicating the sensitivity of depth 

resolution to diffraction effects, optical defocus, sampling effects and stereoscopic 

baseline.

From figure 4.5 it is clear that the ability to measure depth accurately 

decreases as one moves from the plane of best focus. The depth resolution



71

D
e
P
t
h

R
e
s
0
1 
u 
t 
i 
o 
n

(um)

Figure 4.5. Graph of resolvable depth versus aperture size in  a stereos

copic system, assuming a stereoscopic baseline determined by equation 

(4.6), with a pupil diameter of 8 mm. Both h&w and /idefoc are affected 

by a change in aperture.

deteriorates (increases) in a non-linear fashion, and is dependent on the depth of 

field (the aperture of the camera) and the object distance. As the object distance 

is nearly constant (i.e. 17mm), the amount of defocus will be proportional to the 

distance from the plane of best focus. With cup depths ranging from 100 to 

500jxm (or larger) one can expect the largest degradation in lateral resolution to 

be due to optical defocus.

From figure 4.6 it is clear tha t the depth resolution of a stereoscopic system 

is not as sensitive to the sampling resolution as it is to the amount of optical 

defocus. With the types of digitisers available today, fairly high resolution digiti

sation (e.g. 1024x1024 pixel resolution) of the image should be feasible. The 

above discussion applies to depth discrimination between an in-focus point at
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Figure 4.6. Graph of resolvable depth versus sampling resolution in  a 

stereoscopic system.

range R , and an out-of-focus point at range R + tsz . In practice, as is shown in 

chapter 6 , stereo matching which uses information from more than one image 

point a t a time (i.e. template matching) can perform much better than the 

predicted depth resolution shown in figures 4.5 and 4.6. This point will be 

addressed more fully in chapter 6  in the presentation of the stereo matching 

results. In general, the surface of the optic disc is assumed to vary continuously 

in small increments of depth relative to the sampling resolution. Thus, large 

discontinuous changes in depth on the order of lOOpm, as given in the example, 

are unlikely to occur.
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4.6 Illum ination

Illumination plays an important role in the depth recovery process. Donald

son [Donaldson64] discussed the problems associated with illuminating the 

retina with sufficient light to provide good quality photographs while maintaining 

light levels which would not damage the retinal cells. The development of illumi

nation systems in fundus cameras has been a trade-off between light level and 

flash duration. The anatomy of the living eye places severe restrictions on the 

way the fundus may be illuminated and viewed. As the fundus m ust be 

illuminated and viewed through the same small aperture (the pupil), the viewing 

system m ust provide a means for avoiding reflections from the optical surfaces of 

the eye [Woon90]. Typically, Gullstrand’s principle [G ulstrandll] is applied in 

the design of fundus cameras so that the paths of the illuminating and viewing 

rays are kept separate at the pupil. In a standard fundus camera, for example, 

the light used to illuminate the fundus passes through an aperture with its cen

tre occluded, and the illuminating light passes through an outer annulus at the 

pupil (see figure 4.7). Hence, the illumination beam is kept away from the center 

of the cornea.

Comeal area free 
,of entering illumination 
and reflections

AnnulusPupil
Lens

Illumination

Figure 4.7. Diagram showing a typical fundus camera illumination sys

tem following Gullstrand’s principle.
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Relatively high levels of retinal irradiance are required by fundus cameras 

because of their low light-gathering efficiency (i.e. small aperture). If the 

illuminating and viewing areas of the pupil could be interchanged, or were it not 

a requirem ent to adhere to the Gullstrand principle, then a much higher propor

tion of the incident light could be collected to image the fundus. The efficiency of 

utilisation of light would be increased and lower levels of illumination could be 

employed [Woon90].

If the illumination is poor, the effective lateral resolution (heff described in 

section 4.4.6) will deteriorate due to the low image contrast (image points must 

be visibly separate in order to be observed stereoscopically). Variations of illumi

nation between exposures can also complicate the stereo matching process, which 

then m ust cope with the radiometric shift between the two images. For the data 

and fundus camera which are discussed in this thesis, it  will be assumed that 

these effects are minimal and can be compensated for by applying a simple 

radiometric correction to one of the images. Image pairs with large lighting vari

ations, perhaps caused by artifacts in the patient’s lens, are not considered. 

Most stereo matching algorithms are capable of dealing with moderate changes 

of illumination between the images (see chapter 5).

4.7 R elative O rientation

In the absence of any measurable constraints on the camera geometry in, for 

example, non-simultaneous stereo photography, some information about the cam

era positions can be obtained by means of a photogrammetric procedure known 

as analytic relative orientation [Wolf83]. It might be used as a method for deter

mining the orientation param eters of the two camera positions when such infor

mation is not readily available. If an estimate of the displacement of camera 0 1 

relative to camera O 2 can be found (see figure 4.1), then a geometric constraint 

on conjugate image points exists, given by equation (4.4).

Analytic relative orientation is a procedure by which the relative camera 

orientation param eters are expressed for the first (right) view in terms of the
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second (left) view. In other words, if  the left view is considered to define a coor

dinate system for observing an object, and the left camera position is a t (0 , 0 , 0 ) 

in th a t system, then the position of the right view in terms of this coordinate sys

tem is required. The right view will, of course, define its own coordinate system, 

so it  is im portant to express the position of the right view as a transformation 

from the coordinate system of the left view. This transformation will involve 

translational as well as rotational parameters.

Note tha t these positional param eters are only relative; th a t is, camera 1 

relative to camera 2. The procedure is founded in the basic photogrammetric 

equation of collinearity, where the perspective origin or viewing position, the 

image or photograph point, and the object point m ust all lie on the same line (see 

figure 4.1). If two views of the same object are obtained, as in stereo, then the 

line given by image point, lens centre and object point defined for the first cam

era m ust intersect the similar line defined for the second camera a t the object 

point. Indeed, it is this relationship from which equation (4.4) is derived.

Typically, the positional param eters of the second camera relative to the first 

camera to be determined are:

X i, Y  i, Z  x : camera baseline or translation 

co : rotation about the x-axis 

<J> : rotation about the y-axis 

k : rotation about the z-axis

and each object point will have positional parameters:

Px ,P y , Pz : object coordinates

The collinearity condition yields two equations from each image, one in x and one 

in y , giving four equations for each object point. Since there are six unknown 

positional param eters for the camera and three positional param eters for each 

object, by using at least six object points (ie. a description of the absolute location 

in space of the object points) a solution can be obtained by the least-squares 

method. Details of the least-squares method for obtaining a solution will not be 

discussed here: it is a fairly standard photogrammetric exercise (see [WolfB3]).
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To set up the solution matrix for the set of collinearity equations, initial esti

mates of the param eters are needed. The translational param eters can be ini

tialised as X i  = approximately the known baseline, Yx = 0 , and Z 1 = 0 (this sim

ple configuration is diagramed in figure 4.1). These estimates can be scaled from 

the photographs or computed from the basic parallax equation, given by equation

(4.5). The rotational param eters are typically set to 0 initially, since a parallel 

view is assumed. However, the solution is very sensitive to the initial estimates 

for the object positions. The estimates for Px and Py can be calculated from Pz.

It can be shown tha t using the parallax equation to compute initial esti

mates for the object positions is not sufficient. However, even given good initial 

estimates for the object coordinates, the highest source of error lies in the accu

racy of the match point coordinates from the two photographs or images. As 

shown in section 4.5, image points which lie in the plane of best focus have a 

finite accuracy laterally and in depth. If all match points lie in the plane of best 

focus then a small error is expected in  defining a match between the image pairs. 

This will affect the initial estimates for the object positions, and in turn  the accu

racy of the resulting orientation parameters. As it is nearly impossible to select 

all match points to lie in the plane of best focus (giving a fixed and quantifiable 

error), match points will be chosen with varying amounts of error in their dispar

ity, which will have unsatisfactory effects on the stability of the solution.

It can also be shown th a t several of the orientation param eters (eg. stereos

copic baseline vs. camera tilt) are not linearly independent, thus making a 

unique solution difficult to obtain using the least-squares method. In other 

words, the least-squares solution to a system of equations (in this case equations 

specifying the orientation of the cameras with respect to one another) cannot be 

unique if any of the variables are linearly dependent. Constraints on the solu

tion can be applied, but the solution is still not guaranteed to be unique 

([Golub83], [Ralston85]).

Analytic relative orientation requires further study before it can be used 

effectively as a means to calculate the position of the right camera view relative
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to the left camera view in non-simultaneous stereoscopic fundus photography.

4.8 N on-sim ultaneous Stereo Imaging

A number of factors that determine the ability to recover depth information 

from stereo photographs have been discussed. Perhaps the most important 

param eter is the recoverable depth D from equation (4.11). This equation is 

derived from similar triangles with a camera geometry tha t assumes two parallel 

views of the object. However, if  the change of camera position from camera 1 to 

camera 2  (right view to left view) is other than simply a lateral shift, or if the 

second camera is oriented with its axis at an angle to tha t of the first view, then 

the equation for determining the resolvable depth becomes more complicated 

(hence the need to address the procedure of relative orientation in the previous 

section).

If the photographic procedure requires non-simultaneous image acquisition 

(as for D ata Set B, discussed in chapter 2), then the amount of camera shift 

(baseline) varies with each stereo pair. The fundus camera design allows for 

shifting and rotating the camera position in order to allow for arbitrary angles 

for viewing the retina. The operator may, through unnecessary adjustment of 

the camera alignment and focus, minimise the stereoscopic effect. In addition, 

the movement of the patient’s eye between exposures (moving the camera and 

alignment for the second photograph can take up to a minute, during which time 

the patient m ust remain fixated) adds an unknown amount of shift to the 

stereoscopic baseline.

4.8.1 Depth R esolution

One set of non-simultaneous stereoscopic fundus data was available for 

study in this research; namely Data Set B. The 35mm photographs for Data Set 

B were obtained using a standard fundus camera, as outlined in chapter 2 . Fig

ure 4.8 lists the values of the geometric parameters tha t determine effective 

lateral resolution, and gives an indication of the expected depth resolution for
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D ata Set B. The digitiser available for this research has a sampling resolution of 

512x512 pixels.

Param eter Value Comment

a 3 mm set by clinician

B 3 mm set by clinician

R 17 mm (average eye) standard value

^ d i f f 3.45 pm determined by aperture

^  defoc 1.76 pm e.g. a t Az = 10pm

^  defoc 8.82 pm e.g. a t Az = 50pm

^  defoc 17.64 pm e.g. a t Az = 100pm

^  move 0  pm assuming no eye movement

^  sample 3.90 pm (512 pixel resolution) variable

^ e f f 7.35 pm at Az = 0 pm

^ e f f 9.15 pm e.g. a t Az = 10  pm

^ e f f 16.17 pm e.g. a t Az = 50  pm

^ e f f 24.99 pm e.g. a t Az = 100 pm

D 41.68 pm points in focus
D 51.85 pm e.g. points a t Az = 10pm
D 91.66 pm e.g. points a t Az = 50pm
D 141.64 pm e.g. points a t Az = 100pm

Figure 4.8. Geometric param eters for Data Set B.

4.8.2 D iscussion

The non-simultaneous photographic method for obtaining stereo pairs cannot 

provide a consistent stereoscopic baseline. This lack of a consistent stereoscopic 

baseline not only complicates the stereo matching or depth recovery process, but 

also will make accurate comparisons between successive depth measurements 

difficult ([Algazi85], [Donaldson64]). A stereo pair taken a t time t will produce 

different depth values from that of a pair taken at time t+ 1 , if  the stereoscopic
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baseline is different at time t+ 1. If the baseline is known for both stereoscopic 

pairs, this difference can be taken into account. When the baseline is not known, 

accurate comparisons of time-series stereoscopic data is not possible.

The ideal conditions for obtaining non-simultaneous stereo photographs of 

the optic disc would include:

• the patient’s head does not move, and fixation is maintained;

• the camera is shifted laterally to obtain the second view, minimising rotation 

effects, and maintaining a nearly co-planar geometry;

• camera refocus is not significant for the second view;

• a consistent stereoscopic baseline is used.

These conditions cannot be met for several reasons: 1 ) satisfactory non- 

simultaneous stereoscopic photographs cannot be obtained in patients who can

not fixate accurately, and fixation is impossible to m aintain between exposures in 

patients who cannot cooperate, 2 ) the stereoscopic effect can be poor or com

pletely lost because of changes of various factors between exposures such as 

focus, position of the patient’s head, and operator misalignments, and 3) a 

dependable, consistent depth effect cannot be obtained in photographs taken sub

sequently as it is difficult (if not impossible) to duplicate the exact degree of cam

era shift (stereoscopic base), patient head position, or fixation.

The ideal conditions for obtaining stereoscopic photographs of the optic disc

for time-series analysis via the non-simultaneous method, in short, cannot be

obtained. However, this does not preclude the use of non-simultaneous stereos

copic photographs for clinical analysis if some of the sources of error can be 

minimised or quantified. For example, in the acquisition of Data Set B (see 

chapter 2 ), the patient fixation was carefully controlled (using a bite-bar), there 

was no refocusing for the second view, and the stereoscopic baseline was care

fully monitored, minimising the error inherent in the method.
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4.9 Sim ultaneous Stereo Im aging

There are a number of benefits to be gained by utilising a fundus camera 

which can obtain simultaneous stereo images. The issues about camera 

geometry are shifted from consistent baseline, refocus, and patient movement in 

the case of non-simultaneous imaging, to a more detailed analysis of the physical 

and optical constraints in the case of simultaneous imaging. The first, and best 

known, stereoscopic fundus camera is reported by Donaldson [Donaldson64], in 

which many of the key physical and optical problems associated with simultane

ous stereo imaging of the fundus are solved.

4.9.1 D epth R esolution

Several sets of simultaneous stereoscopic fundus data were available for 

study in this research, an example of which is Data Set C. The 35mm photo

graphs for Data Set C were obtained using the Donaldson stereoscopic fundus 

camera, as outlined in  chapter 2 . Figure 4.9 lists the values of the geometric 

param eters tha t determine effective lateral resolution, and gives an indication of 

the expected depth resolution for Data Set C. The digitiser available for this

research has a sampling resolution of 512x512 pixels.
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Param eter Value Comment

a 2  mm fixed in the camera

B 3 mm fixed in the camera

R 17 mm (average eye) standard value

^ d if f 5.18 pm determined by aperture

^  defoc 1.17 pm e.g. at Az = 10pm

^  defoc 5.88 pm e.g. at Az = 50pm

^  defoc 11.76 pm e.g. at Az = 100pm

^  move 0  pm assuming no eye movement

^  sample 3.90 pm (512 pixel resolution) variable

^ e f f 9.09 pm at Az = 0 pm

h e i i 8.53 pm e.g. a t Az = 10  pm

^ e f f 14.97 pm e.g. a t Az = 50  pm

^ e f f 20.85 pm e.g. at Az = 100 pm

D 51.51 pm points in focus
D 48.33 pm e.g. points a t Az = 10pm
D 84.83 pm e.g. points a t Az = 50pm
D 118.15 pm e.g. points a t Az = 100pm

Figure 4.9. Geometric parameters for Data Set C.

4.9.2 D iscussion

From figures 4.8 and 4.9 it is clear that the expected depth resolution for the 

simultaneous stereo photographs is not much better than the expected depth 

resolution for the non-simultaneous stereo photographs. This is not surprising, 

since both methods are similarly constrained. However, the consistent stereos

copic baseline provided by simultaneous stereo will facilitate comparisons 

between successive depth measurements. This is im portant for the clinical moni

toring of the progression of eye disease such as glaucoma. In addition, since both 

left and right photographs are taken simultaneously, patient movement and 

change of fixation is not a problem, and camera refocus is not required. With a
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significant reduction in the possible sources of systematic error using simultane

ous stereoscopic fundus photography, it is likely tha t the depth measurements 

taken from Data Set C will have greater consistency than the depth measure

ments from Data Set B.

In summary, simultaneous stereoscopic fundus imaging holds much promise, 

and it is unfortunate that only a limited number of commercially available 

fundus cameras can provide this type of imaging (see chapter 3). As technical 

advances improve the means by which fundus images can be obtained (e.g. the 

Scanning Laser Ophthalmoscope [Woon90]), further work will be required to 

investigate the potential benefits of simultaneous stereoscopic fundus imaging.

4.10 Summary

In order to understand the difficulties associated with stereo photography of 

the optic disc, various physical constraints were examined. The parameters 

which ultimately define the accuracy to which topographic measurements of the 

optic disc can be made include the size of the optic disc, the stereoscopic baseline, 

eye movements, motion blur, optical defocus, and illumination variations, all of 

which have been discussed. The geometric constraints imposed on the camera 

viewing positions are determined by the camera aperture and pupil diameter. 

Two methods for obtaining stereoscopic views of the optic disc have been dis

cussed.

Non-simultaneous stereoscopic fundus images are obtained using a standard 

fundus camera, recorded on film, and then subsequently digitised. The limitation 

in image resolution is (perhaps) not the film grain, but rather the pixel resolution 

of the digitiser. Simultaneous stereoscopic fundus cameras similarly are limited 

in image resolution primarily by the digitiser. However, some commercially 

available stereoscopic fundus cameras provide both analogue and digital output, 

in addition to standard film camera mounts [Zimmermann89]. With these more 

modem fundus cameras, the maximum image resolution has been restricted by 

the manufacturer. The resolution of the digitiser available for this research is
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512x512 pixels.

The most problematic param eter in non-simultaneous stereo fundus photog

raphy, and perhaps the most important, is the camera separation or baseline. 

The basic premise of stereoscopy is tha t the baseline is sufficient to allow for 

accurate triangulation of an object position, and without sufficient baseline the 

ability to recover depth information is restricted. There are several parameters 

which are beyond the control of the clinician taking non-simultaneous stereo pho

tographs; these include patient movement and change of fixation. It is known 

th a t some patients cannot fixate accurately or for a long time, and a number of 

patients simply cannot cooperate to allow for positioning and refocusing for the 

second view. For the non-simultaneous stereo photographs used in this research, 

Data Set B, the expected depth resolution is between 40 and 190jim.

In simultaneous stereo fundus photography, optical defocus, image resolu

tion, and image contrast are of key importance. With a fixed camera baseline, 

attention moves to the potential improvements in reliable depth measurements. 

However, there is a trade-off between aperture diameter and stereoscopic base

line in order to fit centrally within the dilated pupil. Only a limited number of 

commercially available fundus cameras can provide this type of imaging (see 

chapter 3), and for this research, only a small set of simultaneous stereoscopic 

fundus photographs could be obtained. For the simultaneous Donaldson stereo 

photographs used in this research, Data Set C, the expected depth resolution is 

between 50 and 150jxm.

In conclusion, with the technology available today, one might construct an 

ideal simultaneous stereo fundus camera with a minimum depth resolution as 

follows:

Pupil diameter

Although this will vary from patient to patient, the pupil would ideally be 

dilated to a maximum of 8 mm.

Aperture

There is a limit to the amount of light that can be safely used to illuminate
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the eye without damaging vision. This, in turn, directly affects the 

m in im u m  size of aperture th a t can be used, since sufficient light to form an 

image (dependent on the detector) m ust pass through the aperture. The 

ideal camera aperture should be both small to minimise defocus effects, and 

large to minimise diffraction effects. However, the magnitude of defocus 

effects on lateral resolution are large compared to diffraction effects. To be 

consistent with what is known to be a safe level of illumination (see, for 

example, [Woon91]), and to minimise both defocus and diffraction effects, 

the aperture will be set at a value of 2 mm.

Baseline

The camera baseline should be as large as possible while maintaining both 

views centrally within the pupil. The ideal camera baseline, from equation

(4.6), is therefore 6 mm.

Lateral resolution

For an ideal system, the image will be directly digitised, and therefore the 

sampling resolution is not the limiting factor in lateral resolution. It is 

feasible to have a sampling resolution of 4096x4096 pixels. Given the above 

param eters, the effective lateral resolution will be h e^  ~ 5pm.

Depth resolution

The minimum resolvable depth of the ideal system in the plane of best 

focus would be D ~ 16fim. For points which He 100pm from the plane of 

best focus, the depth resolution would be D = 50pm.
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Chapter 5 
Stereo Matching Algorithms

5.1 Introduction

A brief overview of the basic methods for matching stereoscopic images (i.e. 

matching a pixel in one image to its corresponding pixel in  the other image, thus 

determining the relative disparity a t tha t position) is given here to introduce the 

general concepts involved in digital stereo matching. This chapter will then 

address the applicability of various stereo matching methods to the fundus image 

data. Specifically, several current algorithms based on these methods will be 

reviewed and evaluated, ultimately leading to the selection of a suitable stereo 

matching algorithm for the fundus image data.

Perhaps the most common method for stereo matching tries to identify those 

points in both images that are projections of distinct, precisely positioned local 

features on surfaces, such as edges, spots, comers, and other identifiable surface 

patterns. This will be termed feature-based stereo; see, for example [Marr76], 

[Marr79], [Grimson81], [Grimson82], [Nishihara84], [Pollard85], [Pollard87]. 

Feature-based stereo, represented in figure 5.1, is founded in the assumption 

th a t two views of the same scene will have identical projections of local features, 

provided the baseline is not excessive, and that such features occur a t surface 

discontinuities, thus demarcating a surface boundary. Matching is then per

formed between these feature primitives. This method performs well when there 

is sufficient structure in the scene to allow a reasonably dense feature map of 

uniquely identifiable features, thus avoiding a resulting disparity map whose 

data are too sparse to permit estimation of the original surface of the scene. 

This method also relies on the use of a suitable operator to extract the desired 

features, and the accuracy of the match is thus dependent on the operator’s abil

ity to locate features accurately.

A second method for stereo matching makes use of the original intensity 

information in the image pair and utilises a correlation or difference function to
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determine a measure of similarity between the two images, as shown in figure 

5.2. For a given pixel or position in  the left image, a small region surrounding 

the pixel (a matching window) is defined. The position of maximal similarity in 

the right image is determined by scanning a correlation “window” over a search 

area which encompasses the maximum possible disparity. A “match” is typically 

defined between the pixels tha t lie in the centre of each region, and odd sized 

windows are often used for simplicity. This method will be termed area-based 

stereo; see, for example [Levine73], [Bamard80], [Sutton83], [Gruen85], 

[Rosenholm87a], [Medioni85]. Area-based stereo is highly sensitive to the 

amount of information content present in the region to be matched, and can be 

param eterised by such properties as the contrast and variance of the intensity 

values. The accuracy of this method is dependent on the size of the matching 

window th a t surrounds the desired pixel, but in most cases it can produce more 

accurate results than those which are obtained using feature-based methods, due 

to the supporting effect of neighbouring pixels within the matching window.

There are a number of other methods in the literature tha t have shown some 

promise for matching stereo images. These methods are not generally used to 

obtain fine-grained (accurate) disparity information, but rather yield a coarse

grained global estimate of disparity. The technique of using optical flow , or 

instantaneous flow field, assigns to every point in an image field a two- 

dimensional “velocity” which is a measure of the point’s motion from one image 

field to the next in a sequence of images ([Ullman79], [Horn81]). Approximations 

to instantaneous flow can be computed from a sequence of discrete images, such 

as stereo images. Scheuing and Nieman [Scheuing8 6 ], for example, have applied 

this technique to stereo images and obtained an accuracy of about 95% in dispar

ity globally across the image.

Another technique is based upon the concept of distorting the entire right- 

hand image until it “matches” the left-hand image. A second or third-order func

tional m ust be defined to model the various distortions between the two images. 

This technique is generally termed elastic or rubber-sheet matching and has been
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Figure 5.1. Representation of feature-based stereo matching, whereby 

features are extracted from the original images and are matched along 

corresponding scanlines.

applied, for example, to matching a set of data to a known model [Bajcsy89]. 

Elastic matching can be applied to stereo matching by considering the left-hand 

image to be the template to which the right-hand image data m ust be matched 

[Goshtasby87]. Another class of surface measurement method is termed shape-
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Grey-level Image;

Search Window

Original Surface

Figure 5.2. Representation of area-based stereo matching, whereby im

age patches are extracted from the original images and are matched 

using a similarity measure. The left-hand template patch is scanned 

across the right-hand image and the similarity measure is applied to 

determine the position of best match.



89

from  techniques. The premise in shape-from techniques is th a t the visual cues in 

the images such as texture orientation, shading information, or photometric 

information (eg. polarised light) can be used to obtain measurements of surface 

shape (see, for example [Brzakovic8 6 ], [Lee84], [Woodham78]). One benefit of all 

these methods is that a priori information about any physical constraints can be 

included in the matching process. As the images are matched globally, any of 

the above methods could be used as the first component in a hierarchical 

approach to stereo matching.

It should be noted that feature-based (and often area-based) stereo matching 

algorithms typically require th a t the images are aligned prior to processing; th a t 

is, the images should be registered to establish a common line along the y-axis, 

such tha t disparity is constrained to the x-axis (and thus modeling image distor

tion is also similarly constrained). This constraint is not unreasonable, as it 

reduces the dimensionality of the search for determining a match, and can be 

obtained by simply using a stereo camera system tha t has been calibrated to pro

vide (nearly) epipolar views (see chapter 4), or by careful image alignment, 

perhaps from known matched points in the images (eg. fiducial marks). Due to 

camera distortions, perspective distortions and the effects of noise, no two views 

will be exactly epipolar, and therefore errors in one-dimensional matching algo

rithm s may be high. Some extensions to both matching methods have been 

developed to cope with two-dimensional search areas, and can be used when 

registration cannot be obtained prior to matching (see [Goshtasby85], [Ohta85], 

[Gruen8 6 ], [Lloyd85,86], [Eastman87], [Rosenholm87a]).

5.2 Feature-based Stereo M atching

5.2.1 Early Foundations in Com putational Stereo

In 1976, M arr and Poggio [Marr76] proposed a computational theory of the 

stereo process for the human visual system, founded in the early work of Julesz 

with random-dot stereograms [Julesz60]. Julesz demonstrated th a t two images,
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apparently consisting of random dots when viewed monocularly, may be fused to 

form patterns separated in depth when viewed stereoscopically. This is impor

tan t in th a t the problem of human stereopsis reduces to tha t of obtaining primi

tive descriptions of points to be matched from the images (in this case the primi

tives were simply dots), and solving the correspondence problem for these points.

M arr and Poggio proposed an algorithm [Marr79] which solves the stereos

copic correspondence problem. It contains five main steps: (i) the left and right 

images are each filtered with masks of four sizes tha t increase in diameter, and 

the structure of these masks can be approximated by the difference of two Gaus- 

sians with a size ratio of 1:1.75, or more commonly the Laplacian of a Gaussian 

function; (ii) zero-crossings in the filtered images are found along horizontal scan 

lines (see figure 5.3); (iii) for each m ask size, matching takes place between zero- 

crossings of the same sign (the same directional sign transition) and roughly the 

same orientation, for a range of disparities up to the width of the mask’s central 

region along corresponding scanlines; (iv) the output of the large masks can be 

used to constrain local disparity range, aiding the smaller masks to come into 

correspondence. The matching process proceeds from large disparities a t low 

resolution to small disparities a t a high resolution (as the diameter of the filter 

m ask decreases); (v) correspondence is achieved in this coarse-to-fine manner, 

and results are stored in a dynamic buffer termed the 2 -1/2 -dimensional sketch 

[Marr79].

This early foundation brings about two concepts which are fundamental to 

the feature-based method of stereo matching; the properties of uniqueness and 

continuity. Uniqueness is the assumption that an object feature corresponds to 

something that has a unique physical position, and thus each feature from each 

image can only be assigned a t most one disparity value (ie. each feature in the 

left image has only one corresponding feature in the right image). Continuity is 

the assumption tha t disparity varies smoothly almost everywhere, where only a 

small fraction of the area of the image is composed of boundaries th a t correspond 

to discontinuities in depth. Regions in the image where there is little change in
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Figure 5.3. Examples of applying the Marr-Hildreth zero-crossing 

operator to a one- and two-dimensional scene, (a) one-dimensional f  (x),

(b) Marr-Hildreth operator applied to (a) with detected zero-crossings,

(c) an example image, and (d) the detected zero-crossings of (c).

intensity correspond to surfaces, whereas sharp changes in intensity usually 

correspond to a surface marking (texture) or a change in surface position (edges).
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5.2.2 The Marr-Poggio-Grimson Algorithm

The early work of M arr and Poggio was followed with the implementation of 

the computational model for human stereo vision by Grimson [Grimson81]. To 

test and support the Marr-Poggio model, Grimson designed and implemented a 

computer algorithm based on the model and tested his algorithm on a wide range 

of stereo images. Grimson used the Laplacian of a Gaussian (LoG) filter (of vary

ing sizes) to filter the images, followed by the detection of zero-crossings to mark 

locations of significant changes in the intensity function of the original images 

(see figure 5.3), and obtained two feature-point images where each point (zero- 

crossing) is defined by its position, contrast sign (the change in sign across the 

zero-crossing), and local orientation (determined from the gradient of the zero- 

crossing contour).

Given a set of feature-point images obtained from applying filters of varying 

sizes, the matching proceeds in a coarse-to-fine m anner as outlined by M arr and 

Poggio (see [Marr79]). The matching process (refer to figure 5.4) consists of six 

steps for each size of filter:

1 . obtain zero crossing descriptions for the current filter size;

2 . align the two zero crossing descriptions by the current estimate of 

disparity (initially zero for the largest filter);

3. given the location of a zero crossing in one image, partition the region 

about the same location in the other image (along the corresponding 

scanline) into three pools, which form the areas to be searched for a 

possible matching zero crossing. These pools span a disparity range 

equal to twice the width of the central region of the LoG filter. There 

are two large convergent and divergent pools and a smaller one lying 

centrally between them;

4. assign a match to the zero crossing, using the criteria th a t the zero 

crossings come from convolutions with the same filter size, have the 

same sign, and have roughly the same orientation;
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Figure 5.4. Representation of the Marr-Poggio-Grimson algorithm. The 

stereo images are first filtered using the LoG operator, and then zero- 

crossings are extracted to form the primal sketches. The stereo 

correspondence problem is solved by matching tokens in the left and 

right primal sketches. The disparity array is built up in a coarse-to- 

fine manner, where the coarse channels control registration and help 

bring the fine channels into alignment. Depth information is deter

mined from the disparity estimates.

5. disambiguate any multiple or ambiguous matches using information 

about unambiguous matches in the local neighbourhood;

6 . store the estimated disparity for the zero crossing.

As stated above, the matching proceeds in a coarse-to-fine m anner starting with 

the largest filter size and initial disparity estimates of zero. Disparity estimates 

from the previous (larger) filter can be used for alignment (local registration) in 

step 1 , and thus local convergence is obtained through successive iterations with 

decreasing filter size (see also [Grimson85]).
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5.3 Other Feature-based M ethods

Numerous other feature-based methods have grown out of the early work of 

M arr & Poggio. Efforts were made to improve the local convergence of the 

matcher and to devise improved methods for disambiguating matches. Work by 

[Arnold80], [Nishihara84], [Grimson85], and others, explored modification of the 

types of filtering and the features which were extracted. For example, Medioni 

and Nevatia [Medioni85] used straight fine segments as opposed to individual 

zero crossings as primitives for matching. This method performs well for images 

with a large number of near vertical linear features.

Pollard, Mayhew, and Frisby [Pollard85] developed a computational model 

based on the disparity gradient, where edge primitives are matched only in the 

presence of local support for which the disparity gradient lies within a given 

band (see also [Lloyd85], [Trevidi85], and [Pollard87]). They found that by res

tricting matches to he within a disparity gradient limit, disambiguation of false 

matches could more easily be obtained.

Eastm an and Waxman [Eastman87] among others ([01sen86], [March8 8 ]) 

have applied analytic models of disparity to constrain potential feature point 

matches and obtain an overall surface reconstruction as a disparity functional, 

not ju st as estimates of disparity at isolated feature points. Ohta and Kanade 

[Ohta85] and [Lloyd86,87] have extended the search for corresponding matches 

to two dimensions by using dynamic programming heuristics to control the 

search both along corresponding scan-lines and among scan-lines, obtaining 

correspondence between edge delineated intervals. This proves useful when the 

epipolar constraint cannot be met, and some vertical disparity remains.

The fundamental principles underlying all these methods has remained 

unchanged: a spatial filter is applied to the images in order to extract those 

features which are suitable for matching; feature primitives in both the left and 

right stereo image are extracted to form feature maps; matching rules are 

applied to each feature in the left image in order to locate a matching feature in 

the right image (often involving a disambiguation or constraining process); and
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the resulting disparity is recorded. This process is the premise on which all 

feature-based methods are founded.

5.4 Area-based Stereo M atching

5.4.1 Foundations

The filtering processes used to extract primitives in feature-based stereo 

enhance (and de-emphasise) certain features in  the image, resulting in a sparse 

set of features, and thus a sparse set of disparity measurements. Often, it  is 

desirable to match and process the images in  their original format: a spatial 

array of grey levels. Area-based stereo matching uses the original intensity 

information in the two images and utilises a correlation function to determine a 

m easure of the similarity between the two images. For each small region in one 

image (centered about a specific location), the position of maximal similarity in 

the other image is determined by scanning a correlation “window” over a search 

area and applying the correlation measure a t each position. A match is defined 

a t the pixel positions th a t lie in the centre of the region or window.

Area-based matching is highly sensitive to the amount of image contrast or 

variance of the intensity values. For example, to match a region which lay across 

a boundary in the image where one half is almost entirely white, the other half 

almost entirely black, the corresponding position in the second (similar) image 

would be difficult to locate. The correlation measure would give a high score to 

any number of positions along the boundary (a correlation ridge, with no clearly 

defined maximum). This highlights one of the key param eters in area-based 

correlation: the size of the correlation window. If the window is too small, there 

may be insufficient data to locate the match. If the window is too large, there 

may be too many data, resulting in poor localisation and accuracy.

As with feature-based stereo matching, area-based stereo matching algo

rithm s typically require that the images are aligned prior to processing (i.e. the 

images should be registered to establish the epipolar lines along the y-axis).
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This constraint is not unreasonable as it reduces the dimensionality of the search 

area for determining a match. In the above example, if  the search is constrained 

to one dimension, the correlation measure would have little difficulty locating a 

match. One-dimensional searches along corresponding scanlines can provided a 

fast and effective method of stereo correlation. Area-based matching, unlike 

feature-based matching, is more easily extended to cope with two dimensional 

search areas, and is an attractive approach in applications where registration is 

difficult.

5.4.2 T em pla te  M atch ing

Template matching forms the basic principle behind area-based stereo 

matching. Template matching is a simple filtering method for detecting a partic

u lar object or feature in an image. If the attributes or appearance of an object 

are known, it can be detected in an image by using a template or subimage that 

looks ju st like the image of the object. A measure of similarity is computed to 

reflect how well the image data match the template data for each possible tem

plate location. The position which gives the maximal match score is selected as 

the location of the object in the image (assuming the sought-for object is located 

somewhere in the image).

There are a number of standard similarity measures tha t can be used to 

locate the position in the image at which the template yields the maximal match 

score. Many similarity functions have been proposed for specific applications 

(see, for example [Peli87], [Algazi85], [Badique8 8 ], and [Bajcsy89]). One such 

similarity measure between an image function f i x )  and a template t ( x ) is the 

Euclidean distance squared, which is denoted Did) ,  often called the minimum- 

error, minimum-square error or least-squares algorithm [Lee8 8 ]. The one

dimensional correlation measure is considered for simplicity, where the two- 

dimensional equivalent is readily inferred. The one-dimensional form of D i d ) is 

given by

Ml 2
Di d)  = £  I f i x  + d ) - t i x ) f  (5.1)

x = -M l 2
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(c)

Figure 5.5. Example of a scene (a), a small template (b), and (c) the 

correlation surface that results from using the similarity measure in 

equation (5.1).

Here M  represents the size of the template subimage, and d  the offset or dis

placement of the template in the image relative to some starting position. If the 

image a t position d  is an exact match of the template, then D{ d )  = 0 and would 

otherwise be > 0. This function is often expanded to extract what is called the 

cross-correlation coefficient between f  and t , given by 

M l  2
C ( d ) =  £  f ( x - d ) t ( x )  (5.2)

x = - M l  2
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This expression is the most frequently used algorithm for template matching, 

where the image and template data values are superimposed at the offset d , 

multiplied together and the products are added. The resulting sum forms an 

entry in a correlation array a t the position corresponding to the offset d.  The 

template is scanned across the image for a valid set of offsets. Figure 5.5 shows 

an example of a two-dimensional scene, a small template, and the correlation 

surface tha t results from using the similarity measure in  equation (5.1). The 

popularity of this approach manifests itself in that careful management of com

puted products a t a given offset d  allows for only a small number of new pro

ducts to be computed a t the neighbouring offset d  + 1. This is often called 

sequential similarity detection (SSD) (see [Bamea72]).

There may be several copies or near-copies of the template in the image, in 

which case there will be several minima (5.1) or maxima (5.2). Scaled or normal

ised versions of both these similarity measures exist in the literature (see, for 

example [Pratt78], [Rosenfeld82], and [Griffin90]), but the underlying principles 

are the same. Auto- and cross-correlation algorithms are discussed in more 

detail in chapter 7.

It is often noted tha t the practical advantage of the correlation measure D 

over C is tha t it  is less affected by a large offset in the average intensity value 

(the DC shift) of the image compared to th a t of the template, and it is far less 

sensitive to interm ittent bright spots or noise in the image. The correlation 

measure C can be modified to avoid the effect of DC bias by calculating the 

mean for the image and template and removing it (see, for example [Keating85] 

and [Ballard82]). However, although the normalised correlation measure is less 

sensitive to the local properties of the template and image, it  is sensitive to the 

signal-to-noise content of the image. High uncorrelated noise in the template or 

image decreases the value of the correlation. The strengths and weaknesses of 

both similarity measures are debatable, but it is usually the case tha t one 

method is better suited to a particular application.
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5.4.3 Cross-Correlation

The method of template matching assumes an idealised template sub-image 

which is to be scanned across a less than ideal (perhaps noisy) image to locate a 

m atch position. The concepts of template matching can be applied to stereo 

m atching by considering the region about a position in the left-hand image to be 

the template sub-image, and the entire right-hand image to be the scene or 

image to be scanned. In this case the template sub-image has no fixed size; the 

appropriate size of sub-image to be used as the template m ust be chosen. If the 

noise and signal characteristics of the data are known, the window (or patch size 

as it  is often called) may be optimised by using tha t information together with 

some simple statistical information about the grey-level structure of the region 

about the point in question. However, such estimates about optimal patch size 

do not consider the effects on systematic, non-statistical error such as imaging 

distortions (perspective distortion), rotation and scale differences between the 

images, all of which are commonplace in  stereoscopic image pairs.

The process of cross-correlation can be computationally very expensive, espe

cially when used for stereo matching where a large number of points need to be 

matched. For points in the left-hand image a t which a disparity measure is 

required, it is often advantageous to ensure tha t there is enough “information” in 

the template or patch, to make sure th a t the image contains enough signal to 

give a reliable correlation measure. If the image region is relatively uniform in 

intensity (slowly varying signal), the resulting correlation measure will be flat 

with no clearly defined minimum (or maximum). Moravec [Moravec77] and Bar

nard and Thompson [Bamard80] apply an inexpensive “interest” operator to the 

template region before the relatively expensive correlation, in order to determine 

the signal content of the template sub-image. Levine, O’Handley and Yagi 

[Levine73] use an adaptive correlation window, the size of which varies inversely 

with the variance of the region surrounding the point.

Cross-correlation is generally a good similarity criterion for area-based stereo 

matching. A number of techniques can be applied to increase the sensitivity of
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the similarity measure to avoid such problems as, for example, the effects of 

noise or distortion where the correct match is not the one of maximum similarity 

([Levine73], [Barnard80]). Several strategies can be used to limit the search 

area in  a cross-correlation approach. Studies in stereopsis often use a  fixed cam

era model to constrain the search to one dimension (e.g. [Levine73], [Nevatia76]). 

Alternatively a coarse-to-fine control strategy can be used; a coarse search is 

used to approximately locate the matching points, followed by successively finer 

searches to more accurately locate them ([Hoff8 6 ], [Xu87]). Finally and perhaps 

most importantly, cross-correlation formulae are easily extended to cope with the 

additional param eters th a t arise in stereo matching applications, such as per

spective distortion, rotation and scale changes (see, for example [Bajcsy82], [Cas- 

tan85], [Gruen85], and [Rosenholm87a]). The additional complexity introduced 

by m ulti-param eter searching is often most easily handled by the minimum- 

square error or least-squares algorithm, as outlined in 5.4.2.

5.5 Other Stereo M atching M ethods

There are a number of other methods for stereo matching images in the 

literature tha t are of interest. Briefly mentioned in section 5.1, two methods in 

particular, namely optical flow and elastic matching, may be applicable to the 

fundus image data and therefore will be reviewed.

Optical flow, or instantaneous flow field, attem pts to assign to every point in 

an image field a two-dimensional velocity vector which is a measure of each 

point’s “motion” from one image to the next in a sequence of images (see 

[Horn81]). This motion vector, in the case of stereo images, can be used to 

represent the disparity a t each image point. Scheuing and Niemann [Scheu- 

ing8 6 ] have developed an approach to depth determination which uses stereo 

images and a combination of the iterative computation of optical flow with a local 

correspondence criterion. In a time sequence of images, one may imagine the 

intensity value at every image point to have an associated velocity vector. The 

field of velocity vectors is called optical flow. If the left and right stereo images
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are considered as time sequence images one unit of time apart, an iterative equa

tion for computing disparity can be derived from the optical flow equations. 

Schueng and Niemann have shown th a t accurate results are obtainable, and tha t 

results can be computed in a reasonable amount of time using this approach (see 

also [Ballard82], [Nagel83]).

Elastic matching is a template matching technique whereby an entire image 

is distorted or stretched (hence elastic) until it  “matches” the template or model 

image. Bajcsy [Bajcsy82,89] has applied this technique to matching deformed 

images to a known model image for comparison and analysis. A model of the 

physical system that simulates the manual registration process is used, and by 

applying external forces the shape of the model can be changed so th a t the model 

data become more similar to the image data. The model image is distorted until 

an equilibrium state is achieved between the external forces and the (elastic) 

internal resting forces. An equilibrium state of the system corresponds to a local 

minimum of the total energy in the system, and in this case can be measured as 

the difference between the cost due to similarity between the model and the 

image, and the cost due to the deformation of the model image. A suitable cost 

function is when the cost of similarity is comparable with the cost of deformation, 

as this allows the model to be elastic enough to achieve similarity but rigid 

enough to avoid very small local distortions. Often, a second or third-order func

tional m ust be defined to represent complex distortions between the model and 

the image. Goshtasby [Goshtasby871 employed a piece-wise cubic mapping func

tion in the application of image registration. This technique could be applied to 

stereo matching by considering the left-hand image to be the model to which the 

right-hand image m ust be deformed and matched.

In summary, both the optical flow and elastic matching techniques could be 

used on the fundus image data. One benefit of these methods is tha t a priori 

information about any physical constraints can be included in the matching pro

cess, and thereby improving the accuracy of the resulting disparity measure

ments. Although these methods are not generally used to obtain fine-grained
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disparity information, such methods could be used in a hierarchical approach to 

stereo matching to provide an initial coarse-grained global estim ate of disparity.

5.6 S electin g  An Algorithm  for the Fundus Data

5.6.1 Problem s and Issues

The selection of a stereo algorithm is ultimately based on the information 

content in the images and this factor is often difficult to quantify [Toriwaki78]. 

The fundus images for the most part contain large (black) vascular structures on 

a background of mottled grey texture, the retinal nerve fibre layer. The vascular 

structures are known to he on and within the nerve fibre layer, and have a glossy 

or reflective appearance. The nerve fibre provides some texture information, but 

these areas are typically low in contrast. Oddly the primary area of interest, the 

optic cup, is often saturated in intensity in a fundus photograph, and would pro

vide little or no information.

Feature-based stereo cannot rely on information in the nerve fibre to provide 

distinct edges or features, and would therefore rely mainly on the edges along 

the veins. However, the images are initially not registered (aligned), and manual 

alignment of the photographic data sets, for example, is impractical. Two- 

dimensional searches along edge contours would add considerable complexity to 

an algorithm in order to obtain accurate results.

Area-based stereo is not without problems as well. Correlation, as pointed 

out above, will have great difficulties in areas of little image contrast and along 

boundaries between such regions. The fundus images have little contrast in 

areas of nerve fibre layer and on the veins themselves, and present boundary 

problems near and along the edges of the veins. However, the ability of area- 

based methods to be easily extended to 2 -dimensional searches, as well as the 

ability to cope with local affine distortions, makes this an attractive method pro

vided sufficient image information is present to enable accurate correlation.
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It is clear th a t feature-based stereo could provide some disparity informa

tion about the veins, given th a t the images could be registered to  reduce the 

dimensionality of the matching process. Area-based stereo may provide some 

useful disparity information in the large nerve fibre layer areas, given that 

regions of poor image contrast and/or variance are avoided or excluded. Exten

sions to the area-based stereo method can allow for arbitrary rotation and trans

lation between stereo views. Not without merit are the methods of optical flow 

and elastic matching, which could be used to obtain an initial (coarse) estimate of 

the surface shape, to be “fine-tuned” by measurements made from both feature- 

based and/or area-based matching. A hierarchical combination of methods could 

provide a dense disparity map for analysis.

When implementing an algorithm on a computer it is im portant to consider 

the computational complexity of the algorithm and its ease of implementation. 

These factors are important in determining the feasibility of implementation and 

the amount of processing time the algorithm will require to reach a  solution. 

Often, by adding some simple constraints, the complexity of the problem can be 

reduced, thereby providing greater ease of implementation and reduced computa

tion time. Present methods for stereo photography of the fundus typically pro

vide only a few constraints to aid in the stereo matching process, thereby 

increasing the complexity of the algorithm, and decreasing the probability of 

reaching an acceptable solution.

5.6.2 S electing  an Algorithm

After considering all the possible stereo matching algorithms discussed 

herein, a choice of algorithm for the fundus image data will be made, based on 

the following observations:

• The images contain a lot of small-scale texture (though often poor in con

trast), but large-scale features (ie. veins) are relatively sparse - therefore the 

algorithm must be able to cope with the large retinal nerve fibre layer 

regions in the images. Area-based algorithms are known to perform
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reasonably well even in regions which are nearly homogeneous (using large 

patches);

•  There are often significant distortions between corresponding image patches, 

and the ability to compensate for geometric and radiometric param eters in 

the matching process is important;

•  Obtaining accurate image alignment prior to processing is relatively difficult, 

and therefore algorithms which can cope with two-dimensional searches are 

preferred;

•  A relatively dense set of disparity measurements is required to accurately 

reconstruct the entire optic disc region; feature-based algorithms cannot 

meet this requirement, since typically only a sparse set of features is 

extracted for matching;

• The accuracy of the disparity measurements is important; the accuracy of 

disparity measurements using feature-based algorithms is dependent on the 

locational accuracy of the feature detector, whereas area-based algorithms 

can produce very accurate answers (often sub-pixel) since they compare the 

pixel data directly;

•  The computation time for the entire matching process must be considered; 

the algorithm m ust be made to run a t an acceptable speed, given the 

number of image points tha t m ust be matched.

In considering all of the above criteria, an area-based algorithm is selected. 

The area-based algorithm chosen is one described by Gruen [Gruen85] because it 

is claimed to achieve very high accuracy [Gruen8 6 ], and because it  incorporates 

geometric and radiometric distortions in the matching process. Rosenholm 

[Rosenholm87b] has applied this algorithm to both low and high contrast regions 

of aerial stereo photographs, and reported better than half a pixel accuracy. 

Otto and Chau [Otto89] have also applied this algorithm to satellite digital 

stereo images (SPOT images) and obtained an average accuracy of 0.3 pixel. 

Interestingly, portions of these SPOT images, and indeed some of the images 

selected by Rosenholm, have a similar appearance to the retinal nerve fibre layer
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regions of the fundus images. The good to excellent results obtained on the 

SPOT images offers promise for the application of Gruen’s algorithm to the 

fundus data. There is increasing support in the literature for algorithms of this 

type. In the next section Gruen’s algorithm is described in some detail.

5.6.3 A Least-Squares Correlation Algorithm

Gruen’s algorithm is a least-squares correlation algorithm. The algorithm 

minimises the sum-of-squared-differences between two image patches, the 

minimisation being over a set of param eters specifying how the patches are 

allowed to be distorted to obtain a match between the images. Gruen allows for 

both affine transformations between image coordinates and radiometric distor

tions between the grey-levels (see figure 5.6). The least-squares process is essen

tially a m ulti-parameter optimisation problem, which can be solved iteratively by 

making initial estimates of the parameters, linearising a set of homogeneous 

equations which model the changes to the parameters which will move in the 

direction of a local minimum, and iterating the procedure to converge on a local 

minimum. Although the correlation algorithm has been shown to accurately 

match points between two images, the initial starting values for the param eters 

need to be fairly close to the solution, typically within two or three pixels.

It is impractical to manually or automatically select estimates of the starting 

param eters for all intended match points. However, by exploiting the continuity 

of the surface being viewed, points for which a match has already been obtained 

can be used as a basis for predicting the initial param eters for neighbouring 

points. Otto and Chau [Otto89] developed a region growing algorithm which 

requires only a few initial match estimates on which Gruen’s algorithm is run. 

From these initial seed points, the location of approximate matches for neigh

bouring points can be predicted, to which Gruen’s algorithm can be applied. By 

iterating this process, a complete set of matched points can be grown out from an 

initial (small) set of seed points. The seed points can either be selected m anu

ally, taken from obvious matching features or marks in the images, or can be



Figure 5.6. The types of distortions which can be modelled by Gruen’s 

algorithm, (a) original image, (b) translation, (c) x-shear, (d) y-shear, 

(e) rotation, and (f) scaling (radiometric distortion is not shown).

generated automatically using, for example, a high-confidence, sparse stereo 

matcher such as the Barnard and Thompson algorithm [Bamard80]. Otto and 

Chau found that typically only two or three seed points are required (some points 

may fail to converge on a local minimum and must be discarded).

The basic version of Gruen’s algorithm (as described in [Gruen85]) works by 

matching image patches (typically in the range of 15x15 to 30x30 pixels) which 

are centered about the positions in the images at which a match is to be
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calculated. The left-hand patch is extracted from the left-hand image and 

rem ains constant. The right-hand patch is a distorted and resampled sub

window from the right-hand image, based on an affine transformation and a 

radiometric adjustment (applied to each pixel in the patch). Figure 5.7 

represents the spatial relationships of the parameters.

R

y
template

~  a point 
x in patch

centre of 
1 left patch

(x,y)

Left Image

y
scene

reshaped
point

centre of 
right patch

Right Image

Figure 5.7. The spatial relationships in Gruen’s algorithm.

Let L  denote the left-hand image, R  denote the right-hand image, xi be the 

position {xi J i ) in the left-hand image which is to be matched, and xr be the ini

tial starting position (xr yr ) in the right-hand image. The value a t a point x in 

the left-hand image patch is given by

L(xi + x )  (5.3)

and the corresponding point in the right-hand image patch is given by

R (xr + S x ) + rs (5.4)
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where

rs = radiometric shift param eter

S  = the transformation or shaping m atrix

S n  s 12 
s 21 s 22

The shaping matrix corresponds to an affine transformation of the points in the 

right-hand patch. This geometric distortion is equivalent to assuming tha t the 

viewed surface is approximately planar within the region visible through the 

patch. For small patch sizes, this approximation is not unreasonable. The objec

tive is to minimise the L 2 norm of the error e given as

e(x) = L(5ci + x )  -  R (xr + S x) + rs , for all x  e patch . (5.5)

In order to apply the least-squares algorithm, e be m ust linearised with 

respect to all the parameters. Linearising R (xr + S x)  with respect to x r , S , and 

rs the following is obtained,

* ( f o + s of ) + ^ o + sdR

+ dR
d y  \xr° + S°x)

Axr + As nX + As 12y 

Ayr + A s2iX + As 22y

(5.6)

where Jcr° and S °  are the initial estimates of the parameters. Completing the

dR dRlinearisation and denoting as Rx and as R v, e becomes
dx dy J

z(x) ~ L(xi + x ) - R (Xr + S ° x ) -  rs

-  R x(x? + S ° x ) (Axr + As n x + As 12y )

-  R y(xr° + S ° x ) (Ayr + A s 2Xx  + As22V) •

(5.7)

This can be rewritten as a set of homogeneous equations in vector form as
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e(*) = (£ - £ ) - R x xRx yRx Ry xRy yRy l j

Axr 
A s n
As 12 

Ayr 
As 21 

A S  22  

r„

(5.8)

for all £ e patch .

The values for L , R , R x , and Ry are taken from the positions x  in  the sampled 

patches, forming a set of over-constrained linear equations. Letting I = (L -  R ), 

A  -  (Rx xRx • • • 1), and Cc = (Axr Asn • • • rs )T , the more familiar form of the 

equation is then obtained:

1 = 1 - A & .  (5.9)

Equation (5.9) can be solved iteratively using standard least-squares techniques 

(see, for example [Golub83], [Ralston85]). Through each successive application of 

equation (5.9), the estimates of the parameters are adjusted by the A’s given by

&. When the changes to the param eters are smaller than a predetermined thres

hold, the iterations terminate and the solution is found. In this manner, the 

algorithm tracks or homes in on the position in the right-hand image (xr ) for 

which the left-hand position (jc/) has a match, for the given patch size. The 

importance of an initial estimate of the param eters which is near the correct 

solution is now apparent. If the starting estimate is too far from the correct 

solution, the algorithm may track toward an incorrect, but locally minimal, solu

tion. Detecting false matches will be addressed in the application of Gruen’s 

algorithm to the fundus data in Chapter 6 .

One interesting aspect of the algorithm is that, through linearisation of equa

tion 5.5, it becomes necessary to take the first derivative about each point in the 

right-hand patch. Consequently, the algorithm is making use of edge or high- 

contrast feature information in much the same way that feature-based algo

rithms do (many feature-based algorithm employ a first derivative operator such 

as [Canny83a,b] to extract the primitives for matching). The use of first
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derivatives elevates Gruen’s algorithm above simple template matching, and 

shows the hybrid feature-based/area-based nature of the algorithm. Further 

research is required to investigate this property more thoroughly.

Finally, note that if  the parameters applied to the right-hand patch require 

th a t samples be taken from sub-pixel locations in the right-hand image during 

resampling, the data m ust be interpolated from the original discrete set of image 

values. Gruen suggests using bilinear interpolation for sub-pixel estimates of 

image values. Such interpolation is only meaningful if some sort of correlation 

exists between pixels values. Fortunately it is often the case th a t significant 

correlation exists over a few pixels, perhaps due to image blurring or signal 

degradation. In the application of Gruen’s algorithm, which is described in 

chapter 6 , it is assumed that a meaningful estimate of sub-pixel image values 

can be made between discrete samples in the fundus image data using bilinear 

interpolation.

5.7 Summ ary

This chapter has addressed the applicability of various stereo matching 

methods to the fundus image data. Stereo matching algorithms including 

feature-based matching, area-based matching (template matching and cross

correlation), optical flow techniques, and elastic matching have been reviewed 

and evaluated. The potential problems for stereo matching algorithms specific to 

the fundus image data have been addressed, leading to a set of criteria on which 

to base the selection of an algorithm. The algorithm m ust cope with large 

regions of small-scale texture, large geometric and radiometric distortions 

between the two images, two-dimensional searches, and provide a dense set of 

accurate disparity measurements. In considering the relevant algorithms in the 

literature, an area-based algorithm based on the least-squares matching tech

nique met all the criteria. Gruen’s algorithm [Gruen85] and its extensions 

[Otto89] are described in detail. In the following chapter, the application of 

Gruen’s algorithm to the fundus image data will be reviewed.
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Chapter 6 
Application o f Stereo M atching

6.1 Introduction

In this chapter the application of a stereo matching algorithm to the fundus 

image data is presented. The implementation of the Gruen’s [Gruen85] stereo 

matching algorithm, selected for use on the fundus image data in chapter 5, is 

discussed, and a pseudo-code description of the algorithm is given. A brief 

analysis of the computational requirements of the algorithm is also presented.

Next, the experimental methods are presented, outlining the processes of 

data  acquisition, image pre-processing and filtering, stereo matching, and post

processing and subsequent representation of the disparity data. The experimen

ta l results from the application of these methods to the Data Sets A, B, C and D 

(discussed in chapter 2 ) are presented and discussed.

Finally, an analysis of the results, addressing such issues as matching error 

and accuracy, leads to a discussion on the limitations of stereo matching algo

rithm  on the fundus image data. The isolation of several key issues associated 

with not only the stereo matching algorithm but also the fundus image data, 

points the way forward for the development of useful mathematical models in 

chapter 7.

6.2 Im plem entation o f Gruen’s Algorithm

In this section the implementation of Gruen’s [Gruen85] stereo matching 

algorithm is presented. The mathematical process underlying Gruen’s algorithm 

is discussed in chapter 5, section 6.3, and here we tu rn  our attention to the com

puter implementation of the algorithm. A pseudo-code description of the algo

rithm  is presented, together with an analysis of the computational requirements.
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6.2.1 O verview  o f the Algorithm

An overview of Gruen’s stereo matching algorithm is given here to show how 

the mathematical description presented in chapter 5 is translated into a process 

which can be implemented on a computer. Gruen’s algorithm is a least-squares 

correlation algorithm which attem pts to minimise the sum of the squares of the 

differences between two image patches, the minimisation being over a set of 

param eters specifying how the patches can be transformed to obtain a match. In 

the implementation of Gruen’s algorithm presented here, the param eters are not 

ju st translational (Ac, Ay), which would specify the location of the match, but 

include the set of affine transformation param eters which allow for translation, 

scaling, shearing, and rotation of one patch with respect to the other (see chapter 

5, figure 5.5). Two radiometric parameters are also used to adjust for differences 

in illumination (radiometric) offset (rs ) and multiplicative contrast (rm) changes 

between the image patches. The addition of the multiplicative param eter 

changes the original equation (5.4) to allow for an improved model of radiometric 

difference; thus, R (rmxr + rmSx)  + rs .

The least-squares process is a multi-parameter optimisation problem which 

can be solved iteratively. Recall equation (5.8) from chapter 5, which embodies 

the mathematical process of Gruen’s algorithm in the standard least-squares 

form. A slight modification of equation (5.8) yields a form suitable for computer 

implementation.

Axr 
Asn  
As 12 

Ayr 
A s 21 
As 22 

re

e(x ) ~ L  - rmR x xrmRx yrmR x rmR y xrmR y yrmR y 1 R (6.1)

for all x g patch ,

where the values of L  and R  are taken from the vector position x in the left and 

right image patches with respect to the centre of patch coordinate positions xi
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and xr respectively. The values R x and Ry represent the first derivatives of R  a t 

the position (5tr + 5c). The param eters S n , S12, $21* and S22 form the affine 

transformation matrix, and the param eters r8 and rm represent the radiometric 

offset and contrast respectively. Note th a t the values for L  need only be 

evaluated once, and are constant for subsequent iterations. The collection of e’s 

for all £ in the patch forms a set of over-constrained linear equations which can 

be solved using m atrix methods. Expressing equation (6.1) in this form, where 

I = L , A  = (rmRx xrmRx • • • R ), and a = (Axr Asn  • • • rm)T for all x  in the 

patch, the matching equation is written as

e = I -  A  a  . (6.2)

Equation (6.2) can be solved iteratively by using standard least-squares tech

niques ([Golub83], [Ralston85]), where the solution which minimises the error e 

is obtained. One of the reasons for linearising the problem in this way, is tha t 

equation (6.2) is in the form of a Gauss-Markov estimation model. With some 

assumptions about the covariance of the errors in the final estimates of the 

parameters, this model gives a direct estimate of the standard deviations of the 

param eter estimates [Gruen85]. This “error measure” is discussed further in 

6.5.2. Through each successive application of equation (6.2), the A’s of each 

param eter are adjusted. When the changes to the param eters are less than a 

specified threshold, the solution is found. The iterative process essentially tracks 

or homes in  on the solution from a given set of starting parameters. Thus, it is 

important for the initial estimates of the param eters to be near the correct solu

tion, to avoid tracking toward an incorrect, but locally minimal solution.

To solve equation (6 .2 ) numerically, we multiply both A  and I by A T (A tran 

spose), and take the inverse of A TA . Thus,

A a  = I , (6.3)

(A r  A ) a  = A t I ,

and

a  = (A r A )_1 A T I .
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To compute the inverse (ATA  )_1 Gauss-Jordan elimination is used. Golub 

[Golub83] gives a more detailed discussion.

Initial estimates of the affine and radiometric param eters are typically

, r8 = 0 , and rm = 1 . (6.4)

These starting values are respectively, the identity m atrix (no affine transform a

tion), no radiometric offset, and a radiometric contrast ratio of unity. The initial 

values for the translational param eters xr and yr m ust be either pre-calculated 

or estim ated from a nearby match.

As it is impractical to manually select starting estimates of the translational 

param eters xr and yr for all intended match points, Otto and Chau [Otto89] 

have proposed a method by which these param eters can be estimated from 

points for which a match has already been obtained. This region-growing tech

nique is also used in the implementation of Gruen’s algorithm presented here. 

First, a  small set of seed points are manually or automatically selected. Second, 

Gruen’s algorithm is run on patches about these seed points to obtain a set of 

matched points. From this initial set of matched points, the location of approxi

mate matches for neighbouring points can be predicted, to which least-squares 

matching can be applied. As this process is iterated, a complete set of matched 

points is grown out from an initial (small) set of seed points. Otto and Chau 

found tha t typically only two or three seed points are required [Otto89]. For this 

implementation, the seed points are selected manually from obvious matching 

features or marks in the images, such as bifurcations in the retinal vasculature.

6.2.2 Pseudo-code D escription

The Gruen stereo matching algorithm [Gruen85] with the region-growing 

extensions proposed by Otto and Chau [Otto89] is described in pseudo-code in 

figure 6.1. Refer to the pseudo-code description for the following discussion.
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function Gruen

sample a patch from the left image about the point Xi 

iterate

resample a patch from the right image about the point 5cr 

calculate the first derivatives for each point in the patch 

construct the design matrix A and the vector I 
solve equation (6.2) to obtain A’s for each parameter 

update the parameters 

until A’s < threshold or maximum iterations exceeded 

initialise

input a left and right pair of stereo images 

input 1 or more approximate (seed) matches between the images 

initialise the termination conditions (thresholds and maximum iterations) 

initialise a list of matches Q to be empty

for each approximate (seed) match (5c/, 5c r) 

call function Gruen 

if Gruen converges on a solution 

store this match in Q
next seed 

matching procedure

while Q is not empty

select a match q from Q 
remove q from Q and print q 
for each "neighbour" n of q

if n is not already matched 

predict 5c r for n from q 
call function Gruen 

if Gruen converges on a solution 

store this match in Q 
next "neighbour"

Figure 6.1. A pseudo-code description of the stereo matching algorithm
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In the stereo matching algorithm, the matching procedure continues until 

the list Q is empty, and thus all potential matches th a t can be reached from the 

initial seed points are attempted. The definition of "neighbour" is a param eter 

which can be variable, depending on the desired output resolution. Typically, 

"neighbours" are defined to be points in both the x  and y  directions which are a 

given distance away (say 5 pixels). Such an implementation of the region- 

growing algorithm results in a grid-like coverage of the left-hand image, where 

the grid spacing is specified by the "neighbour" distance.

In the function Gruen, the left-hand image need only be sampled a t discrete 

image values, as this is the target image to which the right-hand template must 

be matched. The process of resampling the right-hand image, however, will be at 

coordinate positions which are not discrete values as xr varies over each itera

tion. To obtain sub-pixel values to form the right-hand patch, bilinear interpola

tion of nearby whole-numbered pixels is used. It is assumed th a t meaningful 

sub-pixel values can be estimated from the discrete image values using bilinear 

interpolation. The implications of this assumption are addressed in chapter 7.

One final note is the question of convergence. A ceiling on the maximum 

number of iterations is set in the function Gruen due to the fact th a t the algo

rithm may fail to converge on a local minimum. Such failures are not stored in 

the list of matches Q . Further, for those points which do converge to a solution 

within the maximum number of iterations, a measure of "goodness" can be 

assigned to the match. Gruen [Gruen85] proposes that the largest eigenvalue of 

the 2 x 2  matrix composed of the co-variances of the translational parameters xr 

and yr (the stereo disparity), correlates well with magnitude of the error associ

ated with the match. Otto and Chau [Otto89] employ this measure as a means 

by which to order the list of matches Q . Such an ordering results in match pred

ictions which are taken from the best match first. Match predictions which fail 

to converge may be tried again from any one of their other three "neighbour" 

points (each of which will provide a slightly different prediction).
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6.2.3 A nalysis o f  Com putational Load

In this section the computational requirements of the Gruen-Otto stereo 

matching algorithm are addressed. The amount of computer processing time is 

of importance when considering time constraints in a clinical environment. 

Therefore, we will decompose the algorithm into the types of basic operations 

th a t are likely to be executed by a microprocessor; additions, multiplications, and 

square roots. Let us assume th a t we wish to match a square patch of size M  by 

M  in the left-hand image to a patch in the right-hand image. Further, let us 

assume th a t we will allow for n param eters (e.g. in equation (6 .1 ) we have 

n = 8 ). Otto and Chau [Otto89] have determined the number of each type of 

operation for the main components of the algorithm, resulting in the following 

estimate of computational load for one iteration of equation (6 .2 ):

n 2Computation operations = (— +n+7) M 2 multiplications
2

2
+ (-—+71+13) M 2 additions 

z

3
+ (— +27i2) floating-point operations 

6

+ n square roots + housekeeping

The time to execute an addition, multiplication, or floating point operation will 

vary depending on the speed of the computer hardware used. If we assume tha t 

each type of operation will take equal time t , we can evaluate a rough estimate 

of the total computation time. For an image of size N x N, where a match is 

desired a t every p  -th pixel, and an average of i iterations is required for each 

match, the total compute time required can be estimated as:

t i N 2Total compute time = -----  —
P

(n 2+2n +2 0 ) M 2 + ( - ^ + 2 n 2+n) 
6

Using typical values for M  and n (e.g. M  -  30 and n = 8 ), and assuming the 

average time of each operation is lps, we get a rough estimate of about 45ms
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per iteration of equation (6.2). For a typical image of size 512 x 512 pixels, and 

assuming th a t we wish to obtain a match for every (say) fifth pixel (not including 

pixels near the edge of the image, where a full patch cannot be sampled), we 

m ust match 100 x 100 image points. If, on average, 3 or 4 iterations are 

required to reach a solution (Otto and Chau have shown th a t by using the 

estim ated starting param eters obtained from the region-growing method, conver

gence is usually obtained in a few iterations), then we can estimate a total com

pute time of about 25 minutes for the entire matching process. When special 

purpose computer hardware is used, or if calculations are computed in integer 

format whenever possible, this time might be reduced significantly.

6.3 E xperim ental M ethods

In this section the experimental methods for the complete process of stereo 

matching the plaster model and fundus image data are presented. This is not 

intended to be an exhaustive survey of methods for data acquisition, image pre

processing, and post-processing, but rather to outline the methods employed in 

this research, and the limitations imposed by the form in which the data are ori

ginally available.

6.3.1 Data A cquisition and Pre-processing

There are four sources of data for this research, as discussed in chapter 2. 

D ata Set A is a plaster model designed to test the accuracy of the stereo match

ing algorithm on a physical object of known dimensions, whose shape is a first- 

order approximation to the optic disc region. The images for Data Set A were 

digitised from a video camera observing the model from two separated positions 

(calibrated to simulate simultaneous stereo images, although the same camera is 

used in both positions). Data Sets B and C are provided as colour transparencies 

which m ust be digitised from a suitable video source. Data Set D, on the other 

hand, is provided as digital data, which was quantised into 256 grey levels from 

the analog output signal of the Scanning Laser Ophthalmoscope (see chapter 3)
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a t a resolution of 256 x 256 pixels (this resolution is a limitation of the equip

m ent available a t the Institute of Ophthalmology). Thus, we will concern our

selves with the methods and equipment used to digitise Data Sets A, B and C.

The method employed to obtain each digitised image for D ata Sets B and C 

consists of four main steps:

(1 ) mount the transparencies on a  light table and cover the area surrounding 

the slide with m atte black paper;

(2 ) adjust the rack-mounted vidicon camera to a height suitable for viewing the 

central 6 mm of the slide (the area of the optic disc on the slide) and focus 

the image;

(3) use the CRS-4000 framestore to digitise a set of 16, 512 x 512 pixel resolu

tion images;

(4) process the image set to reduce the effect of inherent electrical line noise in 

the system.

For step (1), a large m atte black sheet of cardboard was prepared with a 

small rectangular region, the size of 35mm transparency, cut out of the centre. 

In step (2), due the scale of the region of the transparency, a RCA TC1002 video 

camera was used with a Tarcus 4207 ( f  2.8/28mm) macro lens, to provide 

sufficient magnification. The lens aperture was set to f  5.6, which, although 

visually did not appear to yield high image contrast, reduced the amount of sig

nal saturation in the resulting image. In the fundus images, the area surround

ing the optic disc contains dark vascular structures and the central region is 

often bright by comparison. Poor choice of aperture can result in an image where 

the vascular structures are 0  in grey value, and the central region is saturated to 

255 in grey value.

In order to minimise the effects of electrical line noise and to improve the 

signal, in step (3) a series of 16 frames were digitised a t a resolution of 512 x 

512. In step (4), the resulting images were then point-wise averaged to obtain 

the final image for the Data Set. The number of frames required varies with any 

given system, and it has been determined experimentally tha t a minimum of 1 0
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images will remove 95% of additive electrical line noise in the CRS-4000 system 

used.

It is prudent to consider whether any further pre-processing is desirable at 

this stage. There are a large number of image enhancement techniques in the 

literature (e.g. noise filtering [Castleman79], bandpass filtering [Bracewell65], 

histogram modification [Ballard82], and spatial filtering [Gonzalez87]), but there 

is little quantitative justification for their use in this application. Gruen has 

shown empirically th a t the application of spatial filters prior to image matching 

can improve the match result, but the choice of filter is application (image) 

dependent [Gruen8 6 ]. A better understanding of the potential source and magni

tude of any image distortion or noise is required before any further pre

processing of the digitised fundus images can be undertaken methodically.

6.3.2 Applying Stereo M atching

Given a digitised and pre-processed pair of stereo images, a  number of algo

rithmic param eters m ust be set in order to begin the Gruen-Otto matching pro

cess. The actions required for param eter determination include:

(1 ) select a small set of seed match points to begin the matching process;

(2 ) select the match window size (the size of the image patch surrounding a 

given match point);

(3) select the termination criteria or thresholds on the changes to the param e

ters, below which the match is considered to be correct (i.e. converged);

(4) select region-growing param eters defining the matching boundaries and 

points to be attem pted within those boundaries (i.e. the neighbour spacing).

For each Data Set, a small number of seed match points were selected manu

ally by visual inspection. Given that the seed points themselves were processed 

using the algorithm, only approximate matches were required. The selection of 

the match window size shall be deferred for the moment. The termination cri

teria (the test for convergence) are a set of param eter specific thresholds, below 

which a given param eter is considered to have converged to an acceptable
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solution. When the changes to all the param eters were below their correspond

ing thresholds, the match solution was accepted. These thresholds were set such 

th a t any further iterations of the algorithm would not yield any appreciable 

difference in the location of the match result. The region-growing param eters 

were simply the set of boundary points within which the region-growing could 

take place. The neighbour distance was specified to define the regular grid-like 

coverage of the left-hand image.

The selection of the match window size is non-trivial. A number of research

ers have investigated methods for automatically selecting an optimal window size 

given a priori information about the signal and noise ([Bamea72], [Moravec77], 

[Shirai87]). With the fundus image data, it has only been possible to make a 

qualitative assessment of the signal content versus the noise content. In this 

preliminary application of the stereo matching algorithm, the match window size 

was assigned by examining the image spectrum to determine the frequency dis

tribution (i.e. how many frequency components for a  given window size), the 

grey-level statistics to determine signal content, and the convergence of the 

least-squares algorithm on a few trial match windows. As is demonstrated in 

chapter 7, a more quantitative relationship can be made between window size, 

signal content and noise. Initially, it was sufficient th a t the window size was 

large enough such that the matching algorithm can converge to a solution.

6.3.3 Post-processing and Data R epresentation

Following the matching procedure, the resulting image point matches can be 

interpreted in a number of different ways. Generally, when converting from pixel 

disparities to meaningful measures of depth, the computed geometric and 

radiometric param eters which define the transformation of the right-hand image 

patch to the left-hand image patch are not taken into consideration, and only the 

resulting match coordinates are utilised.

Recall from chapter 4 equations (4.3) and (4.5), which specify the relation

ship between match points in the left and right-hand images, given information
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about the stereo image geometry. In Data Set A, the plaster model, the stereo 

image geometry is known, and thus a meaningful transformation from pixel 

disparity to real-world depth values can be made through the application of 

these equations. Therefore, the estimates of disparity for the plaster model will 

be expressed in real-world units.

Conversion of disparity estimates to real-world values for Data Sets B and C 

is complicated by a lack of information not only about camera geometry, but also 

about the optical properties of the subject’s eye. In order to fully covert the 

disparity estimates to real-world depth estimates, values for the stereoscopic 

baseline, the refractive error of the eye, the axial length of the eye, and the cur

vature of the cornea (keratometer reading) are required. One complication is 

th a t the focal power of the eye (the eye’s own magnification) is determined by the 

focal power of the lens and the curvature of the cornea a t the viewing position. 

The focal power varies across the cornea by as much as ± 2  diopters [ElHage73]. 

This variation introduces a refractive error. When viewing the eye stereoscopi- 

cally, both views will not be subject to the same focal power (magnification) or 

refractive error.

To overcome the difficulties of measuring the eye’s individual optical proper

ties, an average value for the focal power of the eye is often used [Littmann82]. 

Littmann has shown th a t even with a value for the axial length of the eye and a 

measure of the comeal curvature, only an estimate of the focal power of the eye 

can be made. The average or idealised eye, then, is assumed to have a focal 

length of 17mm and no refractive error. However, in order to make such an esti

mate, the fundus camera must be positioned such tha t the nodal point (focal 

point) of the camera lens is congugate to the nodal point of the lens of the eye 

[LeGrand80]. If the operator does not align the nodal point of the camera with 

that of the eye (independent of focus), then the perceived magnification will not 

correspond to the estimate of 17mm as the focal length of the eye. In other 

words, operator alignment error can introduce an unknown optical magnification 

in the system.
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Therefore, for Data Sets B and C, where a value for the stereoscopic baseline 

is known but little is known about the optical param eters of the patient’s eye, 

the disparity values will not be fully converted to real-world depth estimates. 

However, if  an idealised eye is assumed, a relative scale (in microns) can be 

assigned to the resulting disparity estimates. The scale associated with Data 

Sets B and C will be discussed with the results. Although the conversion to 

real-world depth values involves a simple scaling, in order to avoid making 

unfounded claims of matching accuracy the topography of the optic disc region 

will be represented by plotting the disparity values alone.

The presentation of 3-dimensional information in a format which best 

highlights those aspects of the data which are of interest is non-trivial. Indeed, a 

great deal of effort is often required to present 3-dimensional data adequately. 

In order to highlight many of the interesting aspects of the stereo matching data, 

three methods were chosen for displaying the match results:

(1 ) a grey scale (depth-shaded) image of disparity values (depth values);

(2 ) a 1 -dimensional cross-section of disparity (depth) through the surface near 

points of interest (compared with idealised depth values where applicable);

(3) a 2-dimensional contour plot of the disparity values (depth values).

In the following section, the results from the application of the Gruen-Otto stereo 

matching algorithm to Data Sets A, B, C, and D are presented in this form.

6.4 E xperim ental R esults

In this section the experimental results from the application of the Gruen- 

Otto stereo matching algorithm to the four data sets are presented and dis

cussed. The results for each Data Set are reviewed in turn, and the common 

stereo matching problems encountered are summarised in the following section.
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6.4.1 Data Set A: Plaster Model Image Pair

A stereo pair of 512x512 pixel resolution images of the plaster model, Data 

Set A, were obtained using the methods outlined in section 6.3, where a sequence 

of 16 images were digitised and averaged for both the left and right view. Two 

seed match points were manually selected; one lying centrally in the depression, 

and the other in the surrounding flat region. The match window size was set to 

15x15 pixels (corresponding to 0.3cm), and the region-growing neighbourhood set 

to a spacing of 5 pixels. Due to the large stereoscopic shift in the right image as 

compared to the left image, only a central region of 400x400 pixels could poten

tially be matched. The physical depth of the hemisphere is 2 .2 cm. The (x , y ) 

param eter thresholds for the least-squares iterations were set to 0 .0 1  pixel dis

placements; th a t is, for a Ax and Ay less than 0.01, the match was considered 

converged. Similar thresholds were set for the affine parameters.

The output from the stereo matching program is a list of corresponding coor

dinates in the left and right-hand images. These disparity values are then con

verted using the geometric relationships shown in chapter 4, given by equations 

(4.3) and (4.5). As the geometric param eters defining the stereoscopic relation

ship between the left and right-hand images are known, the estimates of dispar

ity (in pixels) are easily converted into estimates of real-world depth (in cm). 

The converted results of the stereo matching are shown in figures 6.2 and 6.3.

In figure 6.2a, the original left-hand image is shown with a sample pixel 

patch of size 15x15 pixels superimposed in order to show the relative scale of the 

mask window size. Figure 6.2b shows a depth shaded image of the estimate 

depth values (over the matchable 400x400 image region), where the brighter 

values represent increased depth. Figures 6.2c and 6.2d show a horizontal 

cross-section of estimated depth (solid fine) compared to an idealised cross- 

section (dashed line), and the error in computed versus ideal depth, respectively. 

Although the computed depth does not match the expected depth exactly, it  is 

understood th a t the plaster model will not quite have such an ideal shape (due 

to unknown factors such as shrinkage during drying). Moreover, the largest
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errors near the rim of the cup depression indicate, as is the case in the real plas

ter model shape, th a t the rim has a slight curvature; tha t is, the plaster model 

does not have the ideal right-angle entrance to the cup depression.

Of interest is the mean error in estimated depth. As the stereo matching 

algorithm gives sub-pixel estimates of depth, it is not surprising tha t in  regions 

of the image with little depth change (as in the bottom of the cup) the actual 

depth estimate is highly accurate. The mean error across the entire matched 

region is less than 0.25mm in magnitude, and more specifically, the mean error 

of the horizontal cross-section shown in figure 6.2c is 0.51mm. Figure 6.3 shows 

a contour plot of the estimated depth, where each contour line represents a 1 mm 

interval in depth.
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Figure 6.2. Stereo match results of Data set A, the plaster model stereo 
images, showing (a) original left-hand image, (b) grey-scale (depth- 
shaded) image of converted disparity values, (c) horizontal cross-section 
of computed depth (solid line) and the idealised cross-section (dashed 
line), and (d) the error in computed depth.
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Figure 6.3 Contour plot of Data Set A stereo match results. The con
tour lines represent 1mm intervals in depth.
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6.4.2 Data Set B: Non-simultaneous Fundus Image Pair

A stereo pair of 512x512 pixel resolution images of the standard fundus cam

era data, Data Set B, were obtained using the methods outlined in section 6.3. 

One seed match point was selected manually on an arterial bifurcation near the 

centre of the optic disc. Due to a slight shift in the right-hand image, a potential 

match area of only 450x450 pixels results. The match window size was set to 

35x35 pixels, with a neighbourhood spacing of 10 pixels. The total number of 

points to be matched was 2025. Due to the size of the match window, and the 

number of least-squares iterations required to converge to a solution for each 

match point, a neighbour spacing of 10 pixels, ra ther than 5 pixels, was used to 

reduce the overall computation time. As each potential match point was solved 

independently, using a grid coverage of 5 pixels did not significantly affect the 

results, but would have increased the computation time by a factor of four.

As discussed in chapter 2 , the data were obtained from a standard fundus 

camera using the method of non-simultaneous fundus photography. A special 

apparatus called a bite-bar was mounted to the head mount of a fundus camera 

system, so as to ensure (as near as possible under such conditions) th a t the 

patient’s head would remain in the same position for both photographs. The 

main potential source of error from the patient, then, is eye movement, and a 

fixation fight is used to provide a visual target to minimise this error. The 

fundus camera itself was carefully shifted laterally 3mm to obtain the second 

view (without refocusing). This is considered to be the “best case” non- 

simultaneous stereo fundus image data.

As discussed in section 6.3.3, conversion of the disparity esitimates to real- 

world values is complicated by a lack of information about the optical properties 

of the patient’s eye (e.g. spherical abberations). However, the idealised eye with 

a focal length of 17mm was assumed in order th a t a relative scaling can be 

assigned to the resulting disparity values. By applying equation (4.5) from 

chapter 4, a relative scale between units of pixel disparity and units of real 

depth (microns) can be found. The stereoscopic baseline was assumed to be 3mm
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(neglecting any comeal refraction or spherical aberations). The lateral 

magnification of the fundus camera is also known, and is 3.4x. By measuring a 

small area on the film transparency and dividing by the number of pixels cover

ing th a t area, a lateral scale for 1 pixel can be approximated (neglecting 

diffraction and defocus effects). For Data Set B, the lateral scale for 1 pixel at 

unit magnification was approximately 7pm. Applying equation (4.5), the scale for 

1 pixel disparity is 40pm (in the plane of best focus). Therefore, the horizontal 

cross-section of disparity shown in figure 6.4c corresponds to approximately 

400pm from the highest to the lowest point.

Figures 6.4 and 6.5 show the results of applying the stereo matching algo

rithm  to D ata Set B. In figure 6.4a, the original left-hand image is shown. Fig

ure 6.4b shows a depth shaded image of the disparity estimates, where darker 

values indicate increased depth. Regions of the image lying outside the match- 

able 450x450 pixel area are extrapolated from match results (for display pur

poses only). Interestingly, the central area clearly shows the raised vascular 

structure often visible in stereoscopic optic disc photographs (this is caused by 

supporting tissue which elevates the vessels near the optic disc). Figure 6.4c is a 

horizontal cross-section of computed disparity through the centre of the optic disc 

area (scanline 260). Finally, figure 6.5 shows a contour plot of the computed 

disparity, where each contour line represents a 1 pixel (approximately 40pm) 

disparity interval. One can infer from this figure a possible boundary for the 

optic disc, but marking the true location is is still very much a subjective task.
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Figure 6.4. Stereo match results of Data Set B, the non-simultaneous 
stereo fundus images, showing (a) original left-hand image, (b) grey
scale (depth-shaded) image of disparity values, and (c) horizontal 
cross-section of computed disparity through the line y  = 260.
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Figure 6.5 Contour plot of Data Set B stereo match results. The con
tour lines represent 1 pixel disparity intervals.
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6.4.3 Data Set C: Donaldson Fundus Image Pair

A stereo pair of 512x512 pixel resolution images of the Donaldson stereo

fundus camera data, Data Set C, were obtained using the methods outlined in 

section 6.3. One seed match point was selected manually near the centre of optic 

disc. The match window size was set to 35x35 pixels, with a neighbourhood 

spacing of 10 pixels. The potentially matchable area ranges over 480x480 pixels, 

and thus the total number of points to be matched is 2300. As discussed for 

D ata Set B, a neighbour spacing of 10 pixels was selected to minimise the com

putation time without affecting the results.

A description of the Donaldson stereo fundus camera was given in chapter 3, 

and a discussion of the physical constraints associated with obtaining photo

graphs follows in chapter 4. The photographic image pair used here has a

stereoscopic baseline of 3mm. One potential source of error from the patient is

eye movement, causing motion blur during exposure. Further, as noted in 

chapter 4, obtaining two views through a small pupil requires th a t each view 

passes through less than favourable portions of the lens of the eye. This may 

cause unknown distortions in the stereo images not due to the stereoscopic effect.

As discussed for Data Set B, a relative scale between units of pixel disparity 

and units of real depth (microns) can be found by applying equation (4.5). For 

D ata Set D, the stereoscopic baseline is known, and is 3mm. The lateral 

magnification on the film is also known, and is 3 x. By measuring a small area 

on the film transparency, dividing by the number of pixels covering th a t area, 

and further dividing by the magnification, a lateral scale for 1 pixel at unit 

magnification was found to be approximately 8 pm (ignoring defocus and 

diffraction effects). By applying equation (4.5), and assuming an idealised eye 

with a focal length of 17mm, the scale for 1 pixel disparity is found to be approxi

mately 45pm (in the plane of best focus). The horizontal cross-section of dispar

ity shown in figure 6.5c corresponds to approximately 650pm from the highest to 

the lowest point. If the optic cup begins at a depth of 150pm below the disc rim 

(see chapter 2), then cup in figure 6.5c has a measured depth of approximately
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2 2 0 pm.

Figures 6 . 6  and 6.7 show the results of applying the stereo matching algo

rithm  to Data Set C. In figure 6 .6 a, the original left-hand image is shown. Fig

ure 6 .6 b shows a depth shaded image of the disparity estimates, where darker 

values indicate increased depth. Regions of the image lying outside the match- 

able 480x480 pixel area are extrapolated from match results (for display pur

poses only). Figure 6 .6 c is a  horizontal cross-section of computed disparity 

through the centre of the optic disc area (scanline 250). Finally, figure 6.7 shows 

a contour plot of the computed disparity, where each contour line represents a 1 

pixel disparity interval.
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Figure 6.6. Stereo match results of Data Set C, the Donaldson stereo 
fundus images, showing (a) original left-hand image, (b) grey-scale 
(depth-shaded) image of disparity values, and (c) horizontal cross- 
section of computed disparity through the line y  = 250.
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Figure 6.7 Contour plot of Data Set C stereo match results. The con
tour lines represent 1 pixel disparity intervals.
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6.4.4 Data Set D: SLO Image Pair

A stereo pair of 256x256 pixel resolution images of the Scanning Laser 

Ophthalmoscope (SLO) data, D ata Set D, were obtained by direct digitisation of 

the analogue output signal from the SLO (via an Acorn ARM computer and a 

Wild Vision V10 frame grabber), and were provided “as is” by the Institute of 

Ophthalmology, University of London. Experimentally, the images are obtained 

in a similar manner to Data Set B, where the camera is shifted laterally to 

obtain the second view. For this data, the stereoscopic baseline is 2mm. The 

SLO represents a relatively new technology in ophthalmic imaging, and therefore 

this data has been used to provide an early indication of the benefits of this new 

and highly innovative camera. The results obtained here are simply an indica

tion of the potential of this fundus image source.

One seed match point was selected manually near the centre of optic disc. 

The match window size was set to 20x20 pixels, with a neighbourhood spacing of 

5 pixels. This relatively large window size is required to overcome the high levels 

of electrical line noise present in both images. One of the disadvantages of the 

SLO data is tha t although it is visually of high contrast in the centre of the disc 

area, there is a lot of noise in the system. Also note th a t the images visually 

have a different appearance to th a t of the fundus photographs, due to the imag

ing model of the SLO (see chapter 3, section 4), and are low in resolution.

Figures 6 . 8  and 6.9 show the results of applying the stereo matching algo

rithm to Data Set D. In figure 6 .8 a, the original left-hand image is shown. Fig

ure 6 .8 b shows a depth shaded image of the disparity estimates, where darker 

values indicate increased depth. Figure 6 .6 c is a horizontal cross-section of com

puted disparity through the centre of the optic disc area (scanline 130). Finally, 

figure 6.9 shows a contour plot of the computed disparity, where each contour 

line represents a 1 pixel disparity interval.
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Figure 6.8. Stereo match results of Data Set D, the SLO stereo fundus 
images, showing (a) original left-hand image, (b) grey-scale (depth- 
shaded) image of disparity values, and (c) horizontal cross-section of 
computed disparity through the line y  =130.
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Figure 6.9 Contour plot of Data Set D stereo match results. The con
tour lines represent 1 pixel disparity intervals.
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6.5 A nalysis o f R esults

In this section a summary of the results presented in section 4 is given, 

highlighting the stereo matching problems encountered with each data set. An 

analysis of matching accuracy is presented and known methods for measuring 

matching error are briefly discussed. Finally, some of the common problems 

encountered in the application of the Gruen-Otto stereo matching algorithm to 

the fundus image data are discussed.

6.5.1 O verview

In order to test the stereo matching algorithm, a physical model is used. 

This approach has been previously employed by Rosenthal using the Zeiss Model 

Eye, as a means by which to verify clinical and photogrammetric estimates of 

estimated optic cup depth [Rosenthal80]. The model is a simple plaster cast 

with a hemispherical depression. Although image data from such a model are 

not directly comparable with fundus image data, they serve as a useful test-bed 

for the Gruen-Otto stereo matching algorithm. The results from stereo matching 

the plaster model image data show th a t accurate measurements of disparity 

(depth) can be obtained when the image contains sufficient signal for robust 

cross-correlation, and when the stereoscopic baseline is sufficiently large. The 

mean matching error is less than 0 .2  pixels displacement, corresponding to 

0.25mm in depth.

For the fundus image data, the results indicate th a t a dense set of disparity 

values can be obtained across the optic disc region in the fundus images, and 

tha t “plausible” estimates of depth can be derived. Although several additional 

param eters are required to yield real-world estimates of depth for the fundus 

image data, plotting the disparity values themselves provides a good indication 

of the potential sources of error in the stereo matching process. The results from 

matching Data Set B, the non-simultaneous stereo fundus images, indicate a 

topography which is biologically plausible. One interesting point is that with the 

presence of a large raised vascular structure which bisects the optic disc
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vertically (see figure 6.5), it becomes difficult to infer, even manually, the location 

of the optic disc boundary. As these data were obtained with a 3mm stereoscopic 

baseline, qualitatively they provide acceptable results.

The results from stereo matching Data Set C, the Donaldson (simultaneous) 

stereo fundus images, are (qualitatively) an improvement over D ata Set B. This 

is not a surprising result, given the consistent stereoscopic baseline of 3 mm, 

simultaneous image acquisition, and a reduction in error caused by patient move

ment. Simultaneous stereo fundus images, obtained with a relatively large base

line, provide what m ust be considered "ideal" stereoscopic data. The larger 

stereoscopic baseline (and fixed camera geometry) qualitatively gives improved 

results over Data Set B, and it is much easier to match depth map features to 

anatomical features.

In the horizontal cross-section of disparity shown in figure 6 .6 c, a small pla

teau is visible before the contour drops into what appears to be the optic cup. It 

is interesting to compare the estimated depth of this plateau (and thus the 

estimated depth of the top of the cup) with the clinically accepted range of 1 2 0  to 

150(xm, which is taken to indicate the depth of the optic cup relative to the posi

tion of the optic disc (see chapter 2). Using the scale value of 45|im of depth to 1 

unit of pixel disparity (from section 6.4.3), the plataeu (or cup entrance) lies at a 

measured depth of approximately 200|im. In figure 6.7, an elliptical relief is 

clearly visible in the contours, and represents a possible boundary for the optic 

disc. However, it m ust be made clear that such shapes and topographical 

features are not directly comparable among data sets from different patients; it 

may simply be the case that this particular data set has a deeper optic cup than 

tha t of D ata Set B. Although figures 6 .6  and 6.7 show results which are more 

anatomically plausible than the results shown in figures 6.4 and 6.5, there is no 

indication tha t the results are more accurate due to simultaneous stereo image 

acquisition.

Finally, the results from stereo matching Data Set D, the Scanning Laser 

Ophthalmoscope stereo fundus images, are presented only to provide an
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indication of the potential benefit tha t this new and highly innovative camera 

may provide. Figure 6.9 shows tha t some anatomical features are recognisable 

and th a t a slight elliptical relief can be detected. This is a promising, if not 

surprising, result given the low resolution, very small stereoscopic baseline 

(2mm), and high noise content present in the images. It is clear th a t with future 

improvements to the SLO system, the potential exists for accurate stereoscopic 

measurement of the optic disc.

6.5.2 Error A nalysis and Accuracy

One difficulty in the stereo matching process is the detection of gross 

mismatches, or blunders. It is possible that a point match will have converged to 

a locally minimal solution, but that the solution is not correct. The presence of 

such blunders is visible in, for example, figure 6.4b, where a bright region in the 

right-hand side of the disparity map is due to a region-growing error. An error 

in one match point can spread to neighbouring matches since starting seed 

values for neighbour match points are estimated from points which have already 

been matched. What is required, then, is some indicator of the “goodness” of the 

estimated match. With such a measure, blunders could be detected during the 

matching and region-growing process, thereby limiting the overall matching 

error.

The linearised equation (6 .2 ) can be expressed in the form of a Gauss- 

Markov estimation model, by making some simple assumptions about the distri

bution of the errors (see [Gruen85]). By formulating the correlation procedure 

mathematically in this way, the least-squares model leads to an unbiased 

minimum variance estimator. The precision of the estimated param eters is 

expressed by the co-variance matrix

K  = o ? Q  = Og (A t A  r 1 (6.5)

following the notation in section 6 .2 .1 , where
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A  is the m atrix of observations, 

e = I -  A  a  is the residual vector,

c?  = — er e is the variance of the residuals,
E r

n is the number of observations, 

u is the number of transformation param eters, 

r = n -  u is the redundancy, and 

Q is the cofactor matrix.

Of particular interest are the specific standard deviations 

= (9 Ax )

oAy= o z (qAy)y\  (6.6)

of the translation param eters Ax and Ay, because they describe the precision of 

the match location. Here, qj indicates the y th  diagonal element of Q . Gruen 

proposes th a t the size of the standard deviations of the translation param eters 

and the correlations between themselves (the eigenvalues of a sub-matrix of the 

elements of K ) may give useful information concerning the stability of the solu

tion [Gruen85]. Further, Otto and Chau [Otto89] use the largest eigenvalue of 

the 2 x 2  sub-matrix formed from Q for the param eters Ax and Ay to give an 

indication of the accuracy of the match location. Currently this measure is used 

to prioritise the region-growing list, but not as a direct indicator of the accuracy 

of the match.

The results from Data Set A, for which real error estimates are known, pro

vide a means by which to verify the use of the Otto and Chau [Otto89] eigen

value measure as an indicator of the accuracy of disparity estimates. The values 

for the eigenvalues obtained for matched points from Data Set A do correlate 

well with the observed error in the match; tha t is, a larger eigenvalue 

corresponds to a larger real error in estim ated depth. Figure 6.10 plots the 

(scaled) error measure together with the observed error for the horizontal cross- 

section of computed depth shown in figures 6 .2 c and 6 .2 d.
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E r r o r  m e a s u r e  c o m p a r e d  u i t h  r e a l  e r r o ri
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Figure 6.10. Plot of the largest eigenvalue measure (see text) and the 

observed error for matched points in the horizontal cross-section from 

Data Set A (figure 6.2). The error estimator has been scaled for illus

trative purposes.

Although the eigenvalue measure does correlate well with the magnitude of 

the error in estimated depth, the derivation of the (co)variances depends on 

assumptions about the image and noise statistics which are not easily generalis- 

able. Using this measure does not provide a quantitative means by which to 

threshold matching errors so as to discard matching blunders; the relative accu

racy of a match can be expressed, but not the absolute accuracy. In chapter 7 a 

more rigorous treatm ent of the problem of estimating matching accuracy in the 

presence of additive noise is presented, with the specific aim of resolving this 

problem.

6.5.3 Iso la tio n  of key  p ro b lem s

We conclude the analysis of the results from stereo matching by isolating 

some of the key problems common to all four data sets. Several of these
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problems are addressed in chapters 7 and 8 , and are simply listed here as warn

ing signs, pitfalls, and dilemmas encountered during the experimental stage. In 

chapter 5, a least-squares stereo matching algorithm is chosen because it over

comes some of the obvious difficulties of correlating the fundus images. However, 

the algorithm has some hidden problems:

Window Size

The selection of the mask window size, the size of the region surrounding the 

point to be matched, is ad hoc a t best. If a priori information about the sig

nal and noise characteristics are available, a mask window size can be more 

appropriately selected (see [Bamea72], [Secilla8 8 ]). Once selected, the win

dow size is fixed for all attem pted matches. One may ask, can the mask 

window size be made adaptive, so as to improve (locally) an individual 

match. The results obtained for the fundus image data, where the signal 

content varies across the image, may well be improved by some method for 

dynamically determining mask window size on a match point by match point 

basis.

Param eter Ranking

The selection of the set of param eters which model the transformation of the 

right-hand image window to the left-hand image window is not a straightfor

ward task. Here, the set of affine param eters allowing for planar geometric 

distortions are modelled. The question arises as to the individual weighting 

assigned to each parameter; tha t is, should all the param eters be weighted 

equally (in the least-squares sense)? In applications where some detail about 

the camera geometry is known, constraints on some param eters can be 

added in the form of a weighting matrix (see [Rosenholm87a]).

Alignment

One of the prime considerations in selecting the Gruen-Otto stereo matching 

algorithm is that no image alignment prior to processing is required. It is 

assumed tha t due to the param eter tracking property of the least-squares 

approach tha t y  and © alignment prior to processing would be unnecessary
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(and would result in resampling the right-hand image twice - once for align

ment, again dining matching). There is the mathematical danger that the 

inclusion of y  -related param eters has over-parameterised the problem and 

increased the likelihood of error (see [Keating85]).

Image Pre-filtering

In his 1986 paper, Gruen discusses the use of image pre-filtering to improve 

the match results (and the convergence of the minimisation). However, as 

noted earlier, there is little quantitative justification for the use of filtering in 

this application. Rosenholm has also indicated tha t the use of image pre

filtering can improve the convergence of the algorithm, provided there is 

sufficient signal content in the images [Rosenholm87b]. Can such image 

pre-filtering (median, average, edge enhancement) be meaningfully applied, 

and will its use significantly improve the accuracy of the results?

Detecting Errors

As discussed in detail above, the detection of match errors (blunders, false 

local minima) is far from simple. Gruen has expressed the linearised equa

tions in the form of a Gauss-Markov estimation model, which allows for 

direct estimates of the (co)variances of the param eters [Golub83], as demon

strated by figure 6 .1 0 . Currently this measure is used to prioritise the 

region-growing list, but not as a direct indicator of the accuracy of the match. 

Can the minimum variance estimator measure be quantitatively verified and 

subsequently used as a means by which to filter inaccurate matches, thus 

improving the effectiveness of the region-growing strategy as well as the 

accuracy of the resulting disparity estimates?

6.6 S um m ary

In this chapter the computer implementation of the Gruen-Otto stereo 

matching algorithm is presented together with a brief analysis of the computa

tional requirements. The experimental methods applied to four test data sets 

are discussed, including data acquisition, image pre-processing, stereo matching,
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and post-processing and analysis. The results from applying the stereo matching 

algorithm to each data set are reviewed. An analysis of the results highlights a 

number of im portant issues with respect to determining matching accuracy. 

Finally, several of the key problems associated with the stereo matching algo

rithm  and the fundus image data are discussed.

In summary, a number of points related to the overall problem of stereos

copic fundus imaging have become clear. The importance of data standardisation 

becomes apparent, and a more consistent data format m ust be adopted by clini

cians if the methods employed here are to be reliable. Similarly, the importance 

of stereoscopic baseline, discussed in chapter 4, is well demonstrated by compar

ing the results from Data Set B (3mm baseline, non-simultaneous), D ata Set C 

(3mm baseline, simultaneous), and Data Set D (2mm baseline, simultaneous). 

The results from Data Set A indicate that the algorithm can work well in favour

able conditions, and thus the importance of image quality (resolution, illumina

tion and contrast, low noise) also becomes apparent. In conclusion, it is reassur

ing tha t the fundus image results represent biologically plausible estimates of 

optic disc topography, but locating the optic disc remains a subjective task.
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Chapter 7 
Modelling the Data

7.1 Introduction

In this chapter, the use of mathematical models to explore the structure of 

auto- and cross-correlation functions is presented. Stereo data for which no 

known ground tru th  can be obtained, present problems for conducting error 

analysis on correlation measures. This has prompted the need to explore the 

behaviour of correlation algorithms, and more specifically the shape of the corre

lation function over which the algorithm is to be applied. Consider a sampled 

two-dimensional function f ( x y )  which is to be examined to see if a small portion 

of the sampled data matches a reference pattern g ( x y ) .  The process of search

ing f ( x y )  to locate th a t portion which best matches g ( x y )  is called template 

matching. Algorithms for organising the search process to find the best match 

are based on the concepts of correlation. The term correlation algorithm  is used 

synonymously with the term search process in this chapter. Where the term 

correlation is to refer to the actual mathematical process, this will be made expli

cit.

Correlation algorithms, such as the stereo matching algorithms discussed in 

chapter 5, manage the process of moving the template across the scene and mak

ing some measure of the quality of the match a t any given position. The correla

tion measure can be thought of as a two-dimensional function or surface on 

which, ideally, a well defined peak exists representing the location in f ( x y )  

where a near-copy of g ( x y )  is to be found. When g ( x y )  is identical to some 

part of f ( x j ) ,  the process is termed auto-correlation. When g ( x y )  differs from 

f  (x j ), for example two different views of the same scene as with stereo, the pro

cess is termed cross-correlation. Often, the ability to find the correct match of 

g(x y )  in f ( x y )  is complicated by the structure of the functions themselves, or 

by deficiencies in the correlation algorithm itself. False correlation maxima may 

be present in the correlation surface, and they may be larger than the maximum
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of the correct match. Noisy data may distort or obscure the correlation peak, or 

the structure of the scene and/or template may be such th a t the shape of the 

correlation surface near the maximum is excessively broad, m aking it  difficult to 

accurately locate the best match position. The issue of accuracy has to be 

addressed.

It would seem im portant to be able to predict the performance of a given 

correlation algorithm for specific scene types, though surprisingly, relatively few 

theoretical predictions have been published. Such analyses have usually been 

confined to general discussions of unspecified scene structures (see [DeSoete84], 

[Dvomychenko83], [Parthasarathy8 6 ], [ScloveSl], [Therien84]), or a t the other 

extreme, to experimental work on specific scene types, which is predominately 

empirical in nature (see [Gruen85], [Caelli8 8 ], [Chan8 8 ], [Lee90],

[Rosenholm87a,b]). To predict the performance of a particular correlation algo

rithm  from its theoretical description is extremely difficult, while a t the same 

time it  is equally difficult to extrapolate performance measures from a limited set 

of published experimental results. The goal here is to derive explicit formulae 

which permit predictions of the performance of standard correlation algorithms 

(such as tha t used in stereo matching) in terms of a few easily-definable scene 

parameters.

To begin, the various param eters which characterise the fundus images are 

studied in section 7.2. This leads to the development of a functional model of 

local scene structure which exhibits the same characteristics as the real fundus 

image data. With a suitable model of scene formation, in section 7.3 the classical 

autocorrelation formulae for a scene defined by this model are derived. The for

mulae are extended to sum of squared difference correlation in section 7.4, as 

this reflects the nature of the stereo correlation algorithm selected in chapter 5 . 

In section 7.5, the addition of gaussian noise to the scene model and its effects on 

the correlation formulae are discussed. The corruption of the correlation function 

by additive noise leads to a set of formulae for predicting the likelihood of a 

correlation error for a given set of scene parameters. The auto-correlation
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formulae are then extended to cross-correlation as discussed in section 7.6. The 

derived formulae are shown to provide a useful set of tools for predicting correla

tion performance on specific scene types.

7.2 Im age M odels

In this section, a study of the various param eters which characterise the 

fundus images is presented. This will allow us to devise a model of local scene 

structure which exhibits the same characteristics as the real fundus image data. 

With a suitable model for scene formation, the mathematical structure underly

ing image correlation can be explored.

7.2.1 Local M odels o f Im age Structure

To examine the various param eters which characterise the fundus image 

data, well known image models which classify images by grey-level distribution 

statistics [Pratt781, stochastic texture models [Conners80], and Fourier spectral 

content [Bracewell65], are reviewed with the aim of determining a suitable model 

of local image structure. It is shown, in due course, th a t a functional image 

model not only provides a flexible model for a large class of image types, but also 

allows us to examine the functional shape of the image and its corresponding 

auto-correlation surface. Modelling images by a function of a few easily definable 

param eters will enable theoretical predictions about the variability of the correla

tion of such images with respect to the param eters themselves. Predictions 

about convergence, accuracy, and probability of false correlation maxima (or 

minima) can be developed from the functional model.

It is important to understand, qualitatively, the types of param eters which 

might affect the result of a correlation algorithm. This will give us a set of cri

teria by which to assess a particular image model. Correlation, as discussed in 

7.1, is the process of searching an image f i x ,  y ) to see if a portion of the data 

matches a reference pattern g( x , y ) .  Note tha t the size or extent of g ( x , y )  is 

not defined. If, for example, the process of image alignment is required, g { x , y )
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will be near-equal in size to f i x , y ) .  If, on the other hand, one wished to identify 

a particular object in f i x , y ), g i x , y ) may only cover a small portion of the total 

area of f  i x , y ). The question arises as to how large a portion of f i x ,  y )  m ust be 

modelled. The answer for our particular application, th a t of stereo correlation, is 

tha t f i x , y )  need only be modelled locally over a small range. Indeed the large 

scale structure of f i x , y )  may be quite different from tha t seen locally over a 

small portion of the image, but if  g i x , y ) is to be matched a t this local scale, then 

the large scale structure will not greatly affect the correlation result. Hence, the 

model will be confined to local image structure.

The second question which arises is how "image structure" is defined. 

Briefly, image structure can be defined to be the pattern  or texture in a local 

region of an image. An image may contain several different patterns or textures 

but it  is assumed tha t a t the scale of g i x ,  y )  a unique pattern can be recognised. 

Although the pattern  or texture in a local region of f i x , y )  can be modelled, it is 

also im portant to vary such parameters as image contrast (variance) and bright

ness, which may affect the correlation result. Orientation and scale of the pat

tern m ust be considered as well; the model should contain spatial information 

about the pattern  if it is to be applicable to a larger class of images. To summar

ise, an image model is required which closely represents the image structure in a 

local region of f i x , y )  tha t can be tuned by param eters such as orientation, 

scale, contrast and brightness.

Naively, then, a portion of a fundus image is examined using some well 

known image descriptors. Figure 7.1 shows a 64 x 64 pixel region of a fundus 

image together with its grey-level co-occurrence statistics, its Fourier spectrum, 

and its auto-correlation function. The grey-level distribution statistics, as pro

posed by Haralick (see [Pratt78]), offer a method of examing the relationships 

between neighbouring pixels. These relationships loosely define the structure or 

texture in the image by giving a measure of the transition from one grey-value to 

another in the local neighbourhood of a given pixel. Note tha t these relationships 

are not unique to a given image, nor to a given class of images, since an infinite
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num ber of patterns or textures can exhibit similar distributions. Also note tha t 

the overall spatial information (orientation and scale) about the placement of 

individual grey-values is not retained. It therefore becomes difficult to infer the 

original image pattern  from its grey-level statistics. As these measures are also 

non-isomorphic, they are not suitable as a  means by which to model arbitrary 

image textures, and thus they will not be considered further.

Another approach to studying texture in the image follows the work of a 

number of researchers in stochastic image modelling (for example [Wong77], 

[Yokoyama78] and [Thomason87]). The premise is th a t natural textures can be 

modelled on the basis of a Gauss-Markov random field, and th a t modelling tex

tures in this way enables the study and classification of natural textures 

([Gagalowicz81], [Kaneko82]). A Gauss-Markov random field is an array of 

Gaussian distributed random variables which are governed by some conditional 

probability requirements which define the value of an image point. This 

approach has proved useful in synthesising natural textures from measured sta

tistical properties of a natural image scene. Although for a given set of random 

variables the process of image formation is deterministic, the model itself is not 

easily generalised. For each pattern or texture which is to be modelled, a unique 

set of conditional probability requirements m ust be determined. This violates 

our criteria th a t the image model be easily generalisable and flexible. The com

plexity of the stochastic model approach makes it unattractive even for a limited 

set of image types. Extending the model to tunable param eters such as spatial 

orientation, contrast, and brightness is not straight-forward. Stochastic image 

modelling is attractive in tha t texture fields can be generated with specified s ta 

tistical properties, but the mathematical complexity of the model makes it unat

tractive as a tool for exploring the mathematical structure underlying image 

correlation.

In Figure 7.1c, the Fourier spectrum of the fundus image region is shown. 

Apart from the large DC component, the shape of the remaining frequency com

ponents exhibit a rather simple shape or form. A large body of literature exists
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Figure 7.1. A fundus image region and various image descriptors, (a) 

region of fundus image, (b) distance 1 grey-level co-occurrence matrix at 

0°, (c) Fourier spectrum, and (d) the 2-dimensional auto-correlation 

surface.

on the application of Fourier theory to image filtering, image analysis, and image 

correlation (see e.g. [Haykin86], [Castleman79], and [Rosenfeld82]).
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Interestingly, a number of mathematical properties define the relationship 

between an image and its auto-correlation function, which can be expressed in 

term s of its Fourier spectrum [Bracewell65]. If a simple mathematical descrip

tion of the shape of an image spectrum could be derived, meaningful information 

about its auto-correlation function would be readily available. As will be shown 

in section 7.2.2, a functional description of the shape of the Fourier spectrum can 

be derived which meets the desired criteria for an image formation model. Here 

a discussion of why this might provide a good model is appropriate.

The Fourier spectrum exhibits a number of properties which give the flexibil

ity desired in an image model. First, the Fourier transform is an isomorphic 

transform, providing a simple means by which to translate between the func

tional (spectral) description and the image (spatial) domain. Second, the spatial 

relationships between features in the image are retained in the Fourier spec

trum , and thus the model could accommodate changes in spatial orientation and 

scale of the resulting image texture. Third, changes to image param eters such as 

contrast (variance) and brightness are simply a function of the amplitude of the 

frequency components and thus are simply modelled by a scalar multiplier. 

Finally, the model can be expressed in an easily manageable mathematical form, 

whose param eters correspond directly to the types of visual image param eters 

one might wish to vary. This makes the model very general, and a wide range of 

image textures can easily be modelled. In the following section a model of local 

image structure is developed which is based on summing frequency components 

in the Fourier domain.

In summary, the local structure of the fundus image data has been examined 

with the aim of determining the parameters which characterise the pattern  or 

texture present in the images. A set of criteria are given with which to assess 

any proposed image model. Well known image descriptors such as grey-level co

occurrence statistics, Gauss-Markov stochastic processes, and Fourier spectra are 

examined to evaluate whether they might provide a useful mathematical model 

for image formation which meets the desired criteria. With such a model the
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mathematical structure underlying image correlation can be explored. It is 

determined tha t a functional description based on the Fourier spectrum can meet 

the criteria for a flexible model of local scene structure.

7.2.2 A Functional M odel of Local Scene Structure

In this section, a functional model of local scene structure which well approx

imates the scene structure of the fundus image data is derived. As discussed 

above, the fundus image data exhibit properties which can be described by the 

distribution of component frequencies in the image spectrum. Image spectra 

often exhibit a characteristic functional shape in amplitude and phase, where the 

phase component can be considered, but is not limited to, a random distribution 

between 0  and 2 k .

As a functional approximation to the shape or structure of the amplitude 

and phase components of the spectrum of the fundus image, a model of image 

formation is proposed where image frequency components are summed to form 

discrete samples in the spatial domain. Initially the model is considered in one 

dimension for simplicity, but is extended to two dimensions thereafter.

The discrete image formation function f i x )  is defined as

n=nc

f i x )  = £  a in ) cos
71=0

2k u x  + *< „)
N

(7.1)

where

a ( n ) defines the amplitude at frequency n , up to the cutoff frequency nc, 

nc defines the cutoff frequency for the spectrum inc <
z

$>in) defines the phase at frequency n , 

and N  defines the image width.

The flexibility of this simple model becomes apparent through the selection 

of a suitable amplitude function a in).  A suitable function a i n ) might be given 

by



which defines a linearly decreasing amplitude function with the phase com

ponent, 0 (/z), considered to be randomly distributed between 0 and 2k. The DC 

component B  in a x(0) allows for modelling varying background levels against a 

relatively low-contrast scene structure. The param eter 6  is a scalar which allows 

for varying the dynamic range of the individual frequency amplitudes; th a t is, 

the frequency components are scaled between 0  and b , except at a ^O). Some 

other typical image spectra can be modelled by, for example,

a 2(0) = B  (7.3)

a 2( n ) = b , 1 < n <nc ,

and

a 3(0) = £  (7.4)

a 3(n) = — , 1 < n < nc .
n

The amplitude function a 2( n ) defines a spectrum which is flat and of amplitude 

b out to the cut-off frequency nc, except for the DC component which has ampli

tude B.  The amplitude function a 3( n ) defines a spectrum which follows a 1 IF 

law over the range 1 to nc, also with DC component B . The phases of the indivi

dual components are assumed to be randomly distributed between 0 an 2 k . Fig

ure 7.2 plots the shape of these example amplitude functions and the correspond

ing 1 -dimensional scenes generated using equation (7.1).

To extend the model to the discrete 2-dimensional image f ( x , y ) ,  frequency 

components are simply modelled in two dimensions. Hence, f ( x , y )  can be writ-
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Functions for a ( r , s ) defining the amplitude of each frequency component can be 

obtained by extending the above 1 -dimensional amplitude functions to their cir

cularly symmetric or separable 2 -dimensional equivalents.

linearly decreasing (circularly symmetrical):

a lc(0, 0) = £  (7.6)

a lc(r, s)  = b 1 -
+  S '

nr

linearly decreasing (separable-axes): 

a i s(0, 0) = B

a i s(r, s)  = b

(7.7)

[l -  — | i _  J s f
nc n°

flat:

a 2(0, 0) = B 

a 2(r , s)  = b

(7.8)

1 IF:

a 3(0, 0) = B

a 3(r, s)  =

(7.9)

r s

where

—nc < r < nc , 0  < s < nc

Equation (7.5) defines a 2-dimensional model for the formation of the discrete 

image f ( x }y).  Note however that the summation over r extends to both positive 

and negative frequencies to create asymmetry in the scene structure, whereas 

the summation over s need only extend over the positive frequencies (extending 

the range of s would simply result in an overall doubling of the scene amplitude). 

One can ignore, for mathematical simplicity, the fact that the frequency com

ponents for which r < 0 and s = 0 should not strictly be included. The phase
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Figure 7.2. Some typical amplitude functions and corresponding values 

of f i x )  generated from equation (7.1).
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components are again, without loss of generality, considered to be randomly dis

tributed between 0  and 2k.

The functional image model defined by equation (7.5) provides a good quali

tative approximation to the fundus image data, but a formal quantitative meas

urem ent of the suitability of this model is difficult to provide. As a first-order 

measure, figure 7.3 shows a region of a fundus image and a synthetic region gen

erated using the 2 -dimensional model of frequency distribution given by equation 

(7.9). Also shown is the absolute difference between the model image and the 

real fundus image spectrum. Despite small differences in the low order frequen

cies, there is good agreement between the spectrum of functional image model 

and the real fundus image. More generally, to give a visual (qualitative) feel for 

the flexibility of the functional model, figure 7.4 shows some images generated 

using the linearly decreasing, flat, and 1 IF spectral models given here.

The aim is to develop a functional model of local scene structure to enable 

generation of synthetic images which closely models the fundus image data. 

Equation (7.5) defines a discrete 2-dimensional image formation function suitable 

for the task. However, the limitations of this model must be made explicit. 

Summing cosine components a t discrete intervals in x and y  may introduce 

undesirable aliasing artifacts in the resultant image. Further, not all real image 

spectra exhibit amplitude functions which are easily functionally defined, nor is 

it true th a t phase components will in general be random. Although the example 

amplitude functions have been defined as separable in r and s , this will not in 

general be the case. The amplitude function a a(r, s ) provides the a good approx

imation to the fundus image data in local regions of predominantly nerve fibre.

The assumption of separability can be used to simplify the derivation of the 

correlation function (section 7.3), but one m ust be aware of the limitations of this 

assumption (see [Oppenheim75], [Therien84], and [Bracewell85]). Real image 

spectra often exhibit symmetric properties; however, a good separable approxi

mation for a ( r , s ) can typically be found for most classes of image. No restriction 

has been placed on the phase function 0 ( r , s ); a good functional approximation
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(c)

Figure 7.3. (a) real and (b) modelled region of a fundus image, together 

with (c) the absolute difference between the real fundus image spec

trum  and the model image spectrum given by equation (7.9).

to d>(r, s )  can also typically be found for a given class of image. In the case of 

the fundus image data, a ( r ,  s )  is well modelled by equation (7.9), and 0 (r, s) is 

well modelled by a random distribution of phase between 0 and 2 k . Figure 7.4
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m

nc = 10, b = 5

nc = 20, b = 3

\ ■  i s  1

m

nc = 30, b = 1

Figure 7.4. Some typical (separable) two-dimensional amplitude func

tions and corresponding values of f ( x , y )  generated from equation 

(7.5), where B = 140, N  = 64, and b and nc vary as listed.
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plots the shape of these example 2 -dimensional amplitude functions and shows 

the corresponding 2-dimensional scenes generated using equation (7.5).

7.3 Auto-Correlation o f th e Functional Model

Presented here is the derivation of the auto-correlation of the functional 

image model developed in section 7.2. Describing the shape of the auto

correlation function near the origin (that is, near the peak in the correlation and 

thus near the correct solution), will give a direct indicator of the effects such 

param eters as correlation window size, scene spectral content (a param eter of 

the functional model), and added noise will have on the ability to accurately 

locate the auto-correlation peak. This then will be extended to cross-correlation 

for a better understanding of matching accuracy obtained by the stereo cross

correlation algorithm used to match regions of the fundus images.

7.3.1 The O ne-Dim ensional Auto-Correlation Function

The following derivation of the one-dimensional auto-correlation of the func

tion f i x )  defined by equation (7.1) is given not only because it is of value in the 

general signal processing field, bu t also as a tool for the derivation of the two- 

dimensional auto-correlation formulae.

The classical auto-correlation of a function f i x )  is given by 

M/2

d d ) =  J f i x )  f i x  + d)  dx , (7.10)
-M /2

where M  is the width of the correlation window. Substituting f i x )  defined by 

equation (7.1), this expands to

M/2 n=nc m=ne

d d ) -  f 2  a i n )  cosipnx + <&) £  a i m ) cos(pm ix+d)  + O) dx (7.11)
-M /2  n =0 m =0

where p  = 2k/N and O abbreviates the random phase component <b(rc). Decom

posing the double summation inside the integral and rearranging terms, the 

expression becomes
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M / 2  n=*ie

Ci d)  = f £  a  2(n ) cos(pnx + O) cos(pnix+ d ) + O) dx (7.12)
-M /2 n=0

M / 2  m = n c n = n e

+ \ % a i m )  % a in)  cosipmx + O) cos(p/uc + C>) dx .
-M /2 m =0 n =0

The first set of terms are those for which n = m , and hence the amplitude com

ponents are combined (the phase components in this case of auto-correlation are 

also identical). The expectation value for this set of terms will be of order 

O iM  nc <a2>); the cos()cos() term  in the first integral will, on average, integrate 

to a value of approximately M l2  for small values of inpd), and the subsequent 

summation over n will yield nc <a 2>. The second set of terms are those for which 

n * m . The expectation value for this set of terms will be of order 0 (n c<\a l>). 

If  the phase terms are assumed to be randomly distributed, then the cos()cos() 

terms will integrate to an average value of order 0(1). The summations over n 

and m  will yield a quantity whose average expectation value will be of order 

0(rcc<)al>). Thus, Ci d)  can be approximated by neglecting the second set of 

terms in comparison of magnitude with the first. Hence,

M / 2  n = n e

d d ) ~  f £  a 2in)  cosipnx + O) cosinpix+d) + 0 ) dx . (7.13)
- M l2 n=  0

Ci d)  is simplified further by expanding cos(a +b) to 

cos(a )cos(6 ) -  sin(a )sin(6 ). By making the approximation tha t the resulting 

cos2() terms yield an average expectation value of 1 / 2  over the symmetric 

integral, and the sin()cos() terms yield an average expectation value of 0  (the 

integral is odd!), the following expression for Ci d)  is obtained; note tha t the 

approximation for the cos2() term at n = 0  is not valid, and a value of unity must 

be retained. Hence,

n=ne
C(d)  = M  a 2(0) + Af/2 X a 2(n) cosinpd). (7.14)

n = l

Note here tha t the auto-correlation function Ci d)  is now independent of the 

phase component <X> in f i x) .  In Fourier theory, the Autocorrelation Theorem
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states that: the auto-correlation function of a signal is the Fourier transform of 

its Power Spectrum [Bracewell65]. The unique feature of this theorem is that 

information about the phase of F(s)  is entirely missing from I F(s)  I2, the Power 

Spectrum. The auto-correlation function Ci d)  in equation (7.14) correspondingly 

contains no information about the phase of the Fourier components (the fre

quency components) of f i x ) .  Although the phase components of f i x ) are 

assumed to be randomly distributed between 0  and 2 tc, any functional model for 

®in) would suffice, since the resulting correlation function C id ) is independent 

of phase.

The expression for Ci d)  given by equation (7.14) is a good approximation for 

large values of M  and for relatively busy scenes (i.e. large nc). As M  and/or nc 

become small, the above formulae should be treated, not as an exact expression 

for the auto-correlation of any individual realisation of f  i x ), in  the limiting case 

where M  approaches N  and nc approaches N 12, but as the expectation value of 

the auto-correlation of f i x ) for a large number of averaged trials.

The sampled function f i x )  given by equation (7.1) has thus far been treated 

as a discrete realisation of a continuous function composed of sinusoidal com

ponents characterised by a i n ). It is often convenient to treat the sampled func

tion f i x )  as if  it were continuous. This can be justified by considering tha t the 

scene structure is highly correlated from sample to sample (see [Sclove81] and 

[Pratt78, pl32ff]). Image blurring and signal degradation along the signal pro

cessing chain which ultimately produces the (real) sampled f i x )  yields an inter

sample correlation which is generally high. For the functional image model given 

by equation (7.1), cosine components are sampled a t discrete intervals which are 

inherently highly correlated from point to point, provided the discrete intervals 

are relatively small. In the present case, it is of interest to investigate the shape 

of the auto-correlation function for sub-pixel displacements, and some approxima

tion m ust therefore be made for the data between individual samples. Sub-pixel 

correlation searches can only be made by interpolating values between discrete 

samples, and it is assumed that a meaningful interpolation can be made between
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discrete samples of f i x ) .  Hereafter, it is assumed th a t f i x )  can be approximated 

as a continuous function.

Under this assumption, the summation in equation (7.14) is replaced with an 

integral; swapping between summations and integrals will thus be carried out 

where it  appears convenient to do so, and a similar argument of justification 

applies. Thus, Ci d)  can be rewritten as

n - n c

Ci d)  = M  a 2(0) + M/2  f a 2in ) cosinpd) dx . (7.15)
n= 1

Provided the function a  \ n ) defining the amplitudes of the frequency components 

in f i x ) can be integrated, a simple analytic expression for Ci d)  can be obtained. 

The specific scene structures defining a in)  given by equations (7.2), (7.3), and 

(7.4) are examined in this context.

Linearly-decreasing Spectrum

For the specific scene structure defined by ai i n )  in equation (7.2), Ci d)  can 

be readily derived. Given the approximations used in obtaining a manageable 

form for Ci d)  above, only the form of Ci d)  in the region of small d  near the 

correlation maximum is considered. Thus, cos(jc) will be approximated by its 

second order series expansion 1 - jc 2/2. Substituting a ^ in ) into equation (7.15) 

and using this approximation, after integration the following approximate 

expression for Ci d)  results;

9 M  6 2 nc M  b 2 k2 d 2 nc3
Ci d)  = M  B + ----- —  =— S- . (7.16)

6  3 0 iV2

Flat Spectrum

The expression for Ci d)  for the case of a flat image spectrum a 2(n ) defined 

by equation (7.3) can be derived in a straightforward manner. Substituting 

a ^ in ) into equation (7.15), the following is obtained after integration,

C(.d) = M  B 2 + y  bl  
2 p  d

sinincp d ) -  sin(pd) (7.17)
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Again, the primary interest is an expression for C(d)  which is valid for small 

values of d , although one m ust be aware th a t the approximation becomes poorer 

away from the correlation peak. The sin() terms are approximated by a power 

series expansion to obtain the following approximate expression (see 

[Forshaw90]);

n 2 M  b 2 nc M  b 2 it? d 2 nc3 
C(d) = M B 2 +  g - S -  3 ^ 2 ■ . (7.18)

1 IF Spectrum

The derivation of C(d)  for the 1 IF spectrum defined by equation (7.4) can be 

obtained following a number of simple approximations. Reference [Forshaw90] 

gives a detailed derivation and the resulting expression is provided.

C ( d )  = M B 2 + M J i _ M b ^ ^ n c ( ? l 9 )
2

Clearly, the derived expressions of C(d)  for the specific scene structures have 

almost the same form, varying in dependence on the cut-off frequency nc. This 

dependence will prove interesting when examining the theoretical versus experi

mental accuracy of the derived formulae in chapter 8 .

7.3.2 The Tw o-Dim ensional Auto-Correlation Function

The following derivation of the two-dimensional auto-correlation function 

C(d,  e) builds from the methods used to derive the one-dimensional formulae. 

The classical auto-correlation function C ( d , e ) of f ( x , y )  is 

M l2 Ml2

C ( d , e ) =  f f f ( x , y ) f ( x + d , y + e ) d x d y .  (7.20)
-M /2  -M /2

Recall the two-dimensional image model f ( x , y )  given by equation (7.5). Substi

tuting into equation (7.20) above,

M/2 M /2 s =nc r=nc

C ( d , e ) =  J J J  E  a (r , 5 ) cos(rpjt + spy + O) (7.21)
-M /2  -M /2  s=0 r= -n e 

v=ne u=ne
2  £  a ( u , v)  cos(up(x+d) + vp(y+e) + O) dx dy ,

v=C u =-n„
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where d  and e are the correlation displacements in x  and  y . Here r , s , u , and 

v are the spatial frequencies of f ( x , y \ p  = 2k/N as before, and O abbreviates 

the two-dimensional phase components 0 ( r , s ). The full derivation of the two- 

dimensional auto-correlation function to a reduced form is given in [Forshaw90], 

and the resulting formula is provided.

2 Ml2 M/2
C ( d , e )  = M 2 a 2( 0 , 0 ) + - ^ -  f J a 2( r , s ) cos(rpd + spe) dx dy (7.22)

^ -M /2 -M /2

As for the one-dimensional case, the auto-correlation function is now independent 

of 0 ( r , s ), the phase components of f i x , y ). Notice also th a t the formula takes a 

similar form to the one-dimensional C(d),  modified only by the now two- 

dimensional correlation window Af2, and the extra dimension in the frequency 

components a ( r , s ).

Provided the function a 2( r , s ) defining the amplitudes of the frequency com

ponents in f ( x , y )  can be integrated, a simple analytical expression for C ( d , e ) 

can be obtained for a given scene type. Therefore, the form of C(d,  e) for the 

specific two-dimensional scene spectra described in 7.2 will be examined, whose 

corresponding one-dimensional formulae were examined in 7.3.1.

Linearly Decreasing Spectrum

The expression for C (d ,e ) for the specific scene structure defined by both the 

circularly symmetric a i c( r , s )  and the separable a ls( r , s )  linearly decreasing 

spectra given by equations (7.6) and (7.7) is derived. Given the approximations 

used in deriving a manageable form for C(d,  e), only the form of C(d ,e) in the 

region of small d  and e near the correlation maximum is considered. Thus, 

cos(x) will be approximated by its second order series expansion (1  -  x 2I2).  First, 

the separable form of a ^  ( r , s ), in following on from the one-dimensional deriva

tions, is examined. Although the separable forms of a ( r , s ) will, in general, pro

duce simpler expressions for C( d, e ) ,  and although C ( d , e )  derived from the 

separable form experimentally agrees quite well with C ( d , e )  derived from the 

circularly symmetric form (at least for the linearly-decreasing spectra), it may be 

unwieldy if  not impossible to make a separable approximation to an
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experimentally determined radially symmetric frequency distribution. It is for 

this reason the derivation for the circularly symmetric form, a y. ( r , s ), for the 

linearly decreasing spectrum is also included.

One can derive C ( d , e )  for the separable a(r,  s )  given by equation (7.7) in a 

straight-forward m anner by substituting a  ^ ( r , s ) into equation (7.22) and using 

the series expansion of cos(*). After integration, the following approximate 

expression for C(d> e ) is obtained (see [Forshaw90]);

o o M 2 b 2 n 2 M 2 b 2 tc2 ;ic4 (d2 + e 2)
C(d,  e ) = M 2 B 2 + ------— -------------------- ^- 5----------   . 7.23

9 45 N 2

To derive C ( d , e )  for the circularly symmetric a lc( r , s )  given by equation 

(7.6), a ic( r , s ) is redefined as follows

a 'ic{q ) = 1 -  q 2 - r 2 + s 2, r  = pcos(0), s - p sin(@). (7.24)
nc

Further, C ( d , e ) given by equation (7.22) is re-formulated as

2 M l 2 M l 2

C (d ', 0) = M 2 a'&(0) + ^ -  f f o ' u ( 9 ) cos(r'pd') d r ' d s ' , (7.25)
2  -Af/2 -Af 12

where d ' is the radial displacement vrf2 + e2, and r '  and s ' are the newly 

oriented axes of the frequency components along d' .  The angular displacement 

from the new axis r '  is expressed as 0, and this converts fully to (q , 0). Drop

ping the prime for notational simplicity,

2 Af/2 M l 2

C(d)  = M 2 a 2C(0) + f f a  2c(q ) cos (qpd cos(©)) q dq d@ . (7.26)
2  -Af/2 -Af/2

Note tha t the limits of integration have changed to reflect the new coordinate 

axes. Following the series approximation of c o s (jc ), subsequent integration yields 

the desired expression,

C(d,  e )  =  M 2 B 2 + M 2 * bA2n‘ -  , (7 .27)
24 120 N 2
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where the original coordinates in d  and e have been returned. Interestingly, this 

expression for C(d,  e)  differs approximately by a factor of k from the separable 

equivalent. Hence, for small d  and/or e , we might expect the circularly sym

metric formula to be well approximated by the separable axes formula.

F lat Spectrum

The expression for C ( d , e )  for the case of a flat image spectrum defined by 

equation (7.8) can be derived in a straightforward manner. Substituting a,2( ry s)  

into equation (7.22) we obtain, after integration,

C ( d , e ) = Af2 B  2 + —_ ^ sin(ncp d ) sin(ncp e ) . (7.28)
p z c r

Again, one is primarily interested in an expression for C(d,  e)  which is valid for 

small values of d  and e, aware tha t the approximation becomes poorer away 

from the correlation peak. Thus, as with the one-dimensional case, expanding 

the sin(x) terms yields the following expression,

o o  9  9  ^  b 2  r c2  Tic ( d 2 +  e2)
C(d,  e)  = M  (B + b n 2) -------------------- %------------- . (7.29)

3 N 1

1 IF Spectrum

To derive C ( d , e )  for the 1 IF spectrum defined by equation (7.9), a number 

of approximations for small d  and e near the correlation peak m ust be applied 

(this follows on directly from the one-dimensional derivation). The following 

expression is obtained (see [Forshaw90]):

9 9 9 2 M 2 b 2 n2 nc (d2 + e 2)
C(d,  e ) = M  (B +b ) ------------------------------ . (7.30)

i \ r

7.3.3 A R eview  of D erived  C o rre la tio n  F o rm u lae

A theoretical model for the two-dimensional auto-correlation of the synthetic 

image function f ( x , y )  has been derived. The theoretical formulae for C(d,  e) 

for the specific scene structures provide a good approximation for small values of 

d and e near the correlation peak. Knowledge of the underlying shape of
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C ( d , e ) will allow predictions on the ability of a given correlation algorithm to 

accurately locate the correlation maximum, and thus the correct match.

The following tables give a summary of the one- and two-dimensional corre

lation formulae derived.

O ne-D im ensional A u to co rre la tio n  F o rm u lae

amplitude a(n) auto-correlation C(d)

M l - — )
nc

9 M  6 2 nc M  b 2 k2 d 2 nc3
IV l £> i _-----  - _

6  30 N 2

b ,  M  b 2 nc M  6  2 it2 d 2 nc3
IV l D T  - o

2 3 N

b_
n

„  i>2 . M  b 2 M  b 2 it2 d 2 ncM B -t------------------------ ; --------
2 N 2

Figure 7.5. Table of derived one-dimensional auto-correlation functions.

Tw o-D im ensional A u to co rre la tio n  F o rm u lae

amplitude a ( r , s ) auto-correlation C(d,  e)

6 (1 - — X I - — )nc nc
,  ,  M 2 b 2 n? M 2 b 2 k2 n* (d.2 + e 2)

M B  + -------— --------------------- —z-------—
9 451V2

Vr2 + <?2 h(1 ) ,  ,  M 2 n b 2 n?  M 2 b 2 it3 n* (d2 + e 2)D & i *• t'
nc

IVl D 1 _ . 1 — „
24 120 N 2

b
Af2 (B2 + 6 V ) - 2 M 2  6 2  * 2 " { W 2  + e2)

3 N

b_
rs M 2 (B 2 + b 2) - 2 M 2 b 2 *2n: (d2+e2)

N 2

Figure 7.6. Table of derived two-dimensional auto-correlation functions.
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7.4 M ean Square D ifference Correlation

In chapter 5 a stereo cross-correlation algorithm, based on the sum of 

squared differences or mean square difference (MSD) correlation measure, is 

selected for use on the fundus image data. To better understand the behaviour 

of the stereo algorithm, the classical auto-correlation functions developed in sec

tion 7.3 are extended to MSD correlation. The goal of this section is to derive 

expressions for the sum of squared difference auto-correlation of the one

dimensional and two-dimensional image models f i x )  and f ( x , y )  developed in 

section 7.2.

Note tha t whereas the classical auto-correlation formulae C i d ) and Cid,  e) 

produce a correlation maximum at d  and e equal zero, the MSD auto-correlation 

formulae will produce a correlation minimum. The MSD correlation is often 

termed the minimum-square error or least-squares algorithm. Often, scaled or 

normalised versions of these formulae are used to produce more manageable 

correlation values (see [Rosenfeld82], [Pratt78], [Griffin90]). The general form 

for MSD auto-correlation is

M/2
MSD i d ) = £  f i x ) - f i x + d )

-M/2

for the one-dimensional case and

(7.31)

M/2 M/2
M S D i d , e ) =  £  £  f i x , y ) - f i x + d , y + e )

-M/2  -M/2
(7.32)

is the two-dimensional form. The advantage to using MSD correlation over clas

sical correlation is that it shows less sensitivity to the large DC component (the 

average scene value), and this will become apparent in the following derivations.

7.4.1 O ne-Dim ensional MSD Correlation

The one-dimensional sum of squared difference auto-correlation formula 

given above can be expanded to

M/2 r
MSD (d)= £  f(.x)2 + f ( x H i ) 2 - 2 f ( x ) f ( x - Hi )

-M/2 L
(7.33)
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The first two terms of equation (7.33) can be considered the average value of 

f i x )  over the window M , which in many cases can be approximated by the DC 

term of the image. Here such an approximation is reasonable, given the

definition of f i x )  given by equation (7.1). The third term of equation (7.33) can

be recognised as the classical auto-correlation of f i x )  given by Ci d)  in equation 

(7.15), multiplied by the constant - 2 . Thus, MSD id)  will be approximated as a 

function of C i d ), and written as

MSD i d ) = 2C (0) - 2  Ci d ) .  (7.34)

Using this approximation, the MSD auto-correlation formulae for the specific 

one-dimensional scene spectra defined in section 7.2 are obtained directly from 

their corresponding expressions for C i d ).

Linearly-Decreasing Spectrum

M  k2 6 2 d 2 n 3MSD i d ) = --------------- r— -  (7.35)
15 N 2

Flat Spectrum

2 M  n2 b 2 d 2 n 3
MSD i d ) = ------------- 5-------  (7.36)

3 N 2

1 /F Spectrum

_ , 7 2 M  n2 b 2 d 2 nc
MSD i d ) = ------------=----------------------------------------------------------------------- - (7.37)

N

7.4.2 T w o-D im ensional MSD C o rre la tio n

As with the one-dimensional sum of squared difference auto-correlation for

mula, the two-dimensional formula can be expanded to

M/2 M/2
M S D ( d , e ) =  X X f ( x , y ) 2 + f ( x +d , y+e ) 2 (7.38)

-M/2 -M/2

- 2  f i x , y ) f i x + d , y + e ) .
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The first two terms are nearly constant and can be approximated by the DC 

term for a scene defined by f ( x , y )  given by equation (7.5). Hence, MSD i d , e) 

will be w ritten as a function of C i d , e ) as

MSD id,  e ) ~  2C(0, 0) -  2C id , e ) . (7.39)

Using this approximation, the MSD auto-correlation formulae for the specific 

two-dimensional scene spectra defined in section 7.2 are obtained directly from 

their corresponding expressions for Ci d,  e).

Linearly-Decreasing Spectrum

(separable)

2 Af2 7c2 6 2 Tin i d2 + e 2)
MSD id,  e ) = --------------- V -------   (7.40)

45 A r

and

(symmetric)

X M 2  re3 b 2 n* (d2 + e2)
MSD  (d , e ) = -------------------   (7.41)

60 N 2

Flat Spectrum

 ̂ 4 M 2 it2 6 2 nc4 (d2 + c 2)
MSD (d , e ) = ---------------- -z- (7.42)

3 N

1 IF Spectrum

4 M 2 >t2 6 2 nc (d 2 + e2)
MSD (d , e ) = ---------------------   (7.43)

A r

By extending the MSD correlation formulae to the specific two-dimensional 

scene spectra above, a description of the correlation function which is equivalent 

to that used in the least-squares stereo cross-correlation algorithm is obtained

(for linear displacements in x  and y ). This is important for several reasons; (1 )
i

experiments involving the theoretical model give a direct insight into the perfor

mance of the stereo algorithm, (2 ) the theoretical model can be easily extended to 

other scene types, (3) it can be applied to other forms of correlation formulae (not
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ju s t stereo cross-correlation - for example, image alignment), and (4) most impor

tantly, the model can be extended to incorporate the presence of additive noise in 

the scene, which is all too common in real world applications.

7.5 Cross-Correlation

In this section the extension of the one- and two-dimensional auto-correlation 

formulae to cross-correlation is discussed. Although the formulae derived in sec

tions 7.3 and 7.4 are strictly only meaningful for auto-correlation, a number of 

simplifying assumptions allows one to make use of the formulae for the analysis 

of cross-correlation. The extension of the formulae to true cross-correlation of 

two image regions is extremely complex. In this section it is shown tha t the 

m athematical process underlying cross-correlation (particularly of stereo images) 

is related to the concepts of auto-correlation, and th a t the auto-correlation formu

lae will be useful for predicting the performance of image cross-correlation.

It is im portant to recall from section 7.2 th a t i t  is only of interest to assess 

the ability to accurately correlate a small portion of the image in relatively stable 

parts of the scene; tha t is, there is an assumption th a t the region to be matched 

is uniform in texture. In stereo imagery, there may be portions of one image that 

are obscured or occluded in the other, and indeed there may be a large variation 

in scene texture across the image. However, it is assumed tha t the region to be 

matched does not encompass portions which are obscured, and does not encom

pass the boundary between two vastly different scene textures.

7.5.1 Types o f Cross-Correlation

There is a wide range of image processing tasks where cross-correlation 

might be required. The following list is an attem pt to give some idea of the spec

trum  of applications for cross-correlation. It is not intended to be a definitive 

classification, but rather to show the range of complexity in correlating images, 

from simple auto-correlation to multi-dimensional cross-correlation.
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• object identification or location: correlation of a noise-free template 

with a noise-free or noisy scene (x , y ).

Examples: Robotics, assembly line inspection.

• two-dimensional image alignment: correlation of a noise-free or noisy 

template with a noise-free or noisy scene (x, y , 0 ).

Examples: Serial-section alignment, voxel processing.

• multi-dimensional image alignment: correlation of a noise-free or 

noisy template with a noise-free or noisy scene (x, y , 0 , scale, etc.).

Examples: Stereo matching (fundus image data), elastic matching.

• partial or temporal matching: correlation of a noise-free or noisy com

plete template with a noise-free or noisy partial or time varying scene 

(x, y , 0 , scale, etc.).

Examples: Robotics, bin picking.

• multi-dimensional best-match cross-correlation where the template 

and scene are not identical (x, y , 0 , scale, etc.).

Examples: Close-range (large-baseline) photogrammetry, karyotyping.

The types of cross-correlation listed above m ust be examined individually to 

determine the extent to which auto-correlation underlies the matching process. 

Clearly, object identification or location can be considered as auto-correlation 

when some portion of the scene is identical to the template. With or without 

additive noise, this is simply an exhaustive search process, and the auto

correlation formulae can be used to help make predictions on the expected accu

racy.
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Another common cross-correlation application is th a t of image alignment. 

Here, one can consider the scene to be a near-copy of the template, where both 

the template and scene may be corrupted by additive noise. To the extent that 

the scene and template are not identical, this is strictly cross-correlation. How

ever, in many applications of image alignment (e.g. serial section alignment), the 

scene and template differ only slightly. This difference could be treated as sim

ply another form of noise, and therefore the auto-correlation formulae may still 

prove useful for making some estimate of the expected error in applications of 

image alignment.

As discussed above, image alignment often only takes place over two or three 

dimensions (i.e. x , y , 0). When the matching process is extended to higher 

dimensions, but the scene and template (when transformed) are still near-copies, 

the assertions made above can be applied to multi-dimensional image alignment. 

Although the correlation formulae derived in this chapter only encompass the 

two dimensions x and y , it is often the case that measurements of accuracy are 

restricted to a subset of a multi-parameter space, perhaps for simplicity or, as is 

the case in stereo matching, because the relative weight of one param eter dom

inates over several others. For these reasons, the auto-correlation formulae may 

prove useful in such applications as stereo matching, where the estimated 

param eters Ax and Ay are of prime importance.

The final two classifications of cross-correlation, namely partial or temporal 

matching and multi-dimensional best match cross-correlation are clearly beyond 

the scope of the auto-correlation formulae. Partial matching of obscured or 

occluded scenes with a whole template is difficult to analyse given limited infor

mation about which subset of data samples are available in the scene, and the 

cause or structure of the occlusion. When the template and scene are not identi

cal, and the best global match of the template across the scene is required, then 

the auto-correlation formulae are not applicable. Further development of the for

mulae is required for such applications of cross-correlation.
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7.5.2 Solving Cross-Correlation

The types of cross-correlation discussed above can be further analysed by 

looking a t the approaches to calculating a cross-correlation minimum for a given 

application. Recall from chapter 5, in the context of stereo matching, tha t there 

are a number of ways in which to make some measure of the goodness of match 

between th a t template and the scene. For object identification or location and 

indeed for two-dimensional image alignment the complexity of the process can 

range from simple image differencing, to pre-filtering followed by a sum of 

squared difference measure. In the case of multi-dimensional image alignment a 

number of suitable methods apply. For the application of stereo matching (over 

several param eters) matrix methods can prove useful, where the template is 

transformed over the multi-parameter space, iterating in the direction of steepest 

gradient, until a minimum is found. When the application is considered best- 

match cross-correlation, there may be multiple minima. The choice of a starting 

location in the scene can be critical for convergence to a valid minimum.

It was natural to extend the auto-correlation formulae to sum of squared 

difference correlation in section 7.4. The primary aim of this chapter is to inves

tigate the means by which to make some estimate of matching accuracy in the 

application of stereo matching. The addition of noise to the derived correlation 

formulae will be investigated in the following section, leading to a theoretical 

relationship between cross-correlation error and the various param eters of the 

functional image model.

7.6 N oise and Correlation

In this section the functional image model is extended to incorporate additive 

Gaussian noise to investigate the effects of such noise on the theoretical perfor

mance of cross-correlation formulae. An analytical expression for predicting 

alignment accuracy is described. This work builds closely on prior work 

presented in [McGillem76], [Mostafavi78], [Ryan80], and [Bogler8 6 ]. I t is 

assumed here tha t the cross-correlator takes the form of the sum of squared
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difference or mean square difference (MSD) operator. Furthermore, the presence 

of noise in  the image model is simplified to include only zero-mean, random 

Gaussian additive noise. To simplify the notation, all functional relationships 

are expressed in one dimension. Extension to two dimensions is direct and does 

not alter the analysis.

7.6.1 Term inology

The variables and expressions used in this section are listed below with a 

brief description. Their definition is given in the text where appropriate.

f the underlying continuous scene

f i ( x) the i th  observed (discrete) image of f  (i = 1 ,2 )

Tli (X ) observed Gaussian distributed additive noise in image i

C(d) underlying scene auto-correlation function

MSD ( d ) observed MSD cross-correlation of f  j and f  2 a t position d

ri(d) noise component of MSD ( d ) a t position d

< > expected value of the quantity between the brackets

variance of the total noise

d estimated positional shift

a true positional shift

ctd variance of the error in location, <(d -  d )2>.

7.6.2 A dditive Noise

There are many sources of additive noise tha t can affect alignment accuracy 

in cross-correlation. The noise may be due to either film-grain noise, shot noise 

(photon noise) in a photo-electric sensor, or a direct consequence of the process of 

image acquisition, sensing or recording. A further possible source of noise is that 

caused by the correlation process itself, due to the interpolation necessary to pro

duce intensity values at other than at whole numbered pixel coordinates. The 

process of acquiring a discrete image function necessarily involves the averaging
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of small regions of image density data. Even when an image region is not cor

rupted by noise, obtaining two independent digital representations will not usu

ally result in identical pixel arrays. Fundus image stereo cross-correlation, 

where each data set is digitised from two film transparencies, where the video 

camera system may add electrical noise, and where the correlator will itself 

cause "interpolation" noise, is a good example of the presence of systematic addi

tive noise. The combined effects of all sources of noise can be adequately 

modelled by zero-mean, Gaussian distributed noise. The reason for the use of 

the Gaussian distribution is th a t it  leads to a closed form analytical solution in 

estimating error variance.

Consider the 1-dimensional observed image function f t ( x ) as the sum of the 

noise-free signal f ( x )  and zero mean, random Gaussian distributed noise n ^ x )  

with variance c%.

f i i x )  = f i x )  + riiix) , i = l , 2 .  (7.44)

Due to the additive noise, the MSD cross-correlation of f  \{x) with f  2(x) will 

introduce errors in estimating the location of the true minimum. Note th a t the 

addition of two independent noise functions to f  \{x) and f  2(x) respectively (e.g. 

the image and template are both corrupted by independent additive noise) can be 

modelled by one cumulative noise function added to f  2(x) alone (i.e. n = rii + n 2). 

The expression for the MSD cross-correlation of f  \{x) with f  2{x) over M  samples 

is given by

M/2
M S D (d ) = f ( f 1( x ) - f 2(x-Hi))2 dx  . (7.45)

-M /2

The expression MSD(d)  can be decomposed into the sum of two functions, writ

ten as

MSD ( d ) = <MSD (d )> + r\(d),  (7.46)

where the first function, <MSD (d )>, denotes the average or expected value (the 

value of MSD (d ) when the noise is averaged out), and the second function, r\(d),
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represents the noise in the system which acts to perturb the true minimum 

[Bogler86]. Consider <MSD(d)> to represent the unbiased version of the true 

correlation function M S D (d ) th a t yields a minimum at the correct value of d . 

The noise component in MSD (d ) is signal dependent, and may perturb the corre

lation function sufficiently to give rise to a false minimum for a given value of d . 

The question arises as to the accuracy to which the correct value of d  can be 

estimated in the presense of noise.

7.6.3 The Cramer-Rao Bound

The accuracy of correlation processors has been extensively studied in the 

context of radar and sonar target range determination, and it has been shown by 

the method of Cramer-Rao [Whalen71] th a t there is a lower bound on the accu

racy of any correlation process in the presence of additive noise. In the context 

of image cross-correlation, the Cramer-Rao bound is a lower bound on the vari

ance of any unbiased estimate of the displacement d  (see, for example, 

[Ryan81]). The Cramer-Rao bound is given by

No_

o j = <(d - S f >  > --------=---- - -------------- , (7.47)

(2tc)2 f  u 2 IF(u )l2 du

N
where represents the spectral density of the additive noise, and \F(u)\2 is

the Fourier power spectrum of f (x) .  The Cramer-Rao inequality specifies a 

lower bound on the displacement error variance, but it does not guarantee that 

this bound can be reached or even closely approximated. Equation (7.47) implies 

tha t the accuracy of displacement estimation (regardless of the correlator 

applied) varies inversely with signal bandwidth (the spectral density of f  (jc )).

The spectral density of the noise is equivalent to the variance of the noise 

when the sampled noise n ^ x )  is bandlimited to one half-cycle per pixel. Further

more, from the Fourier moment theorem ([Bracewell65, p. 172]) one can write

oo

(2jt)2 f u 2 \F(u )l2 du = - - ^ - C W )  |d_o . (7.48)
i .  dd2
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Thus, a relationship is found between the Cramer-Rao bound and the auto

correlation function. Substituting equation (7.48) into (7.47) above, one can write

can be interpreted as a measure of the shape or curvature a t the peak of the 

autocorrelation function a t the origin, and it relates the shape of the underlying 

auto-correlation function to the theoretical cross-correlation accuracy.

7.6.4 Correlation Error Variance

Alternatively, a measure of the positional uncertainty can be found directly 

by calculating the variance of the error in the estimate of d  (see [McGillem76] 

and [Bogler86]). The one-dimensional form is developed here, but is easily 

extended to the two-dimensional equivalent. The development of the expression 

for the variance of registration error begins (following [Bogler86]) with a second- 

order Taylor series expansion about the match position:

Note tha t since <MSD{d)> is maximised at d = d ,  the necessary condition of a 

maximum is tha t <MSD'(d)> = 0. Further, the maximum is found by 

differentiating with respect to d , and equating the resultant expression to zero. 

One can now find the variance of registration error by squaring and taking 

expectations, to arrive at

(7.49)

Although the correlation variance estimate in equation (7.49) is not a bound, it

MSD id)  = <MSD(d)> + (<d-d)<MSD'{d)> (7.50)

o j  = <(d -  d  )2> (7.51)
[<MSD"(d)>]2 ’

where

var rj' is the variance on r|', and
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MSD " (d ) = MSD ( d ) .
dd

Bogler has shown th a t expressions for both the num erator and denominator can 

be derived [Bogler86]. The resulting (approximate) expression for the variance of 

the match location in d  (in the notation presented here) is given by

o$ = < d -  3 f >  = w,;/Ts \-----• C7.52)
C ( u ) | d = o

Not surprisingly, equation (7.52) is identical to the approximation of the 

Cramer-Rao bound given by equation (7.49). When the signal-to-noise ratio is 

high (i.e. the spectral density of f ( x )  is large compared to the spectral density of 

the noise), one might expect the correlation variance estimate given by equation 

(7.52) to converge to the Cramer-Rao bound. For reference, equation (7.52) will 

be termed the Cramer-Rao bound estimate (CRBE).

7.6.5 U sing th e Estim ated Variance

In this section the utility of the displacement variance measure is demon

strated by examining the Cramer-Rao bound estimate (CRBE) in the context of 

the auto-correlation formulae derived in section 7.3 and 7.4. As discussed in sec

tion 7.5, the auto-correlation formulae can be used in the context of cross

correlation for a number of application areas. With the development of the 

CRBE, the importance of knowing the underlying auto-correlation function 

becomes apparent. Using the functional image model developed in section 7.2, a 

direct relationship between the param eters which describe the image spectral 

content, the image auto-correlation function, and the CRBE can now be given. 

When the image contains additive Gaussian noise, the CRBE provides an analyt

ical expression for predicting correlation accuracy.

To demonstrate the use of the CRBE in one dimension, recall the image 

model given by equation (7.1) and a suitable amplitude function given by, for 

example, the linearly decreasing spectrum in equation (7.2). The auto-correlation 

function of this image is given explicitly by equation (7.16) as
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M  6 2 nc M  6 2 n2 d 2 nc3 
6 30 N 2

Taking the second derivative of C(d), the desired form is obtained;

C"(d  1 M b * ^ n' 3
c  ( d ) =  15 w 2 • ( 7 5 3 )

Substituting this expression into the CRBE, the resulting estimate on the vari

ance of the correlation error is

.
M b k nc

Thus, in the one dimensional case, if the amplitude of the frequency components 

of f i x )  can be modelled with a suitable function, following the method described 

in section 7.3 leads to an analytical expression for the auto-correlation function 

C(d).  The second derivative of the auto-correlation function can be used in the 

CRBE to provide a measure of correlation error in the presence of additive Gaus

sian noise.

To demonstrate the use of the CRBE in two dimensions, the one-dimensional 

CRBE measure given by equation (7.49) m ust be extended to two dimensions. 

The extension of equation (7.49) is based on the assumption th a t the correlation 

error is independent in x and y ; tha t is, the error in estim ating d  can be deter

mined independently of the error in estimating e. In two dimensions the 

Cramer-Rao bound is given by

N0

o j  > --------— -------- ?----------------------- . (7.55)

(271)2 J |  u 2 i;2 \F(u , v )l2 du dv
—CO —oo

Note th a t the bound is only expressed for the error in d . Following the approxi

mations for the one-dimensional case, where the Fourier power spectrum is 

separable in u and v , the second (partial) derivative of the auto-correlation func

tion (with respect to d ) can be substituted in the denominator. Thus,
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transposition of coordinates.

Recall the two-dimensional image model f ( x , y )  given by equation (7.5). 

With a suitable amplitude function given by, for example, the 1 f f  spectrum 

defined by equation (7.9), an expression for the auto-correlation function can be 

derived. Equation (7.30) gives the two-dimensional auto-correlation function for 

the model 1 I f  spectrum as

C<.d , e ) = MHB> + b>) - 2 M2 b ^ n; (d2 + e2) .
N z

Taking the second derivative of C (,d, e ), the desired form is obtained;

4 M 2 b 2 k2 nc
C " ( d , e ) = - ^ C ( d , e )  = ------------— -----2_. (7 .5 7 )

3cr N *

Substituting this expression into the two-dimensional CRBE, the resulting esti

mate on the variance of the correlation error is given as

9 N 2 a 2
^  ,  w2 l2  2 ' <7-58>4 M  b n nc

Thus, for two-dimensional cross-correlation, if the amplitude of the frequency 

components of f ( x , y ) can be modelled with a suitable function, following the 

method described in section 7.3 leads to an analytical expression for the two- 

dimensional auto-correlation function C(d,  e). The second derivative of the 

auto-correlation function can be used in the CRBE to provide a measure of 

cross-correlation error in the presence of additive Gaussian noise. In chapter 8, 

the verification of the CRBE as a useful error measure will be investigated in the 

context of stereo cross-correlation.
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7.7 Summary

The use of mathematical modelling to investigate the structure of auto- and 

cross-correlation functions has been presented. The local structure of the fundus 

image data has been examined using well known image descriptors, and this led 

to a functional description of image formation based on modelling the spectral 

components. An image model is developed which characterises the image struc

ture of not only the fundus data, but of discrete image data in general. This 

model is based on summing sinusoidal frequency components with varying ampli

tude and phase. Explicit formulae for the auto-correlation of the image model, 

given some example amplitude functions, are derived in both one and two dimen

sions. These formulae are then extended to mean square difference auto

correlation. Subsequently, it is shown that the derived auto-correlation formulae 

are useful for describing the fundamental process underlying cross-correlation, 

for a large class of applications. Finally, a description of the Cramer-Rao bound 

provides a  means by which to assess the potential accuracy of cross-correlation 

when the scene contains additive Gaussian noise. The utility of this measure is 

demonstrated on both one- and two-dimensional image models developed in this 

chapter.

The formulae derived in this chapter are not intended to accurately define 

the performance of cross-correlation algorithms. The image model is too simplis

tic to provide accurate measures about scene param eters versus correlation 

parameters. Rather, it  is hoped tha t the formulae will provide some insight into 

the expected performance of a specific correlation algorithm, given information 

about the spectral properties of the scene. The ability to make simple predic

tions about the performance of standard cross-correlation algorithms is essential 

for investigating alternative methods for correlating complex scenes. With the 

tools to make such simple predictions, one might envisage a process by which we 

adaptively assess the expected performance of a given algorithm over the variety 

of textures in a given scene, altering correlation param eters to compensate for 

expected error rates. Although no quantitative evidence is provided to indicate



th a t the auto-correlation formulae will be useful for analysing cross-correlation, 

in the next chapter some experimental results are given which suggest tha t we 

can make valid predictions about the expected accuracy in applications of cross- 

correlation using the tools developed in this chapter.
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Chapter 8 
Model Verification and Analysis

8.1 Introduction

In this chapter the image model, correlation formulae, and error prediction 

formulae developed in chapter 7 are tested and applied. There are many experi

mental methods which could be used to verify the utility of the image model 

together with the corresponding error prediction formulae. In the present con

text, it is sufficient to demonstrate th a t the formulae are of use with the fundus 

image data, with the implication that, after further development, there is a 

broader range of application. Time did not permit a full study of the utility of 

the formulae, although the experimental results presented in this chapter indi

cate tha t the image model and the error prediction formulae are useful in their 

current form.

The verification of the utility of the image model and the error prediction for

mulae are to be taken in the context of the cross-correlation algorithm employed 

for the fundus image data; the least-squares matching algorithm. The question 

is, whether valid predictions about the accuracy of cross-correlation can be 

assessed, in the absence of ground tru th  information. In this chapter the image 

model developed in chapter 7 is shown to be applicable to both Data Set A (the 

plaster model) and the fundus image data. Further, with an appropriate image 

model, the corresponding error prediction formulae are shown to be valid. And 

finally, the least-squares error estimator (discussed in chapter 6, section 6.5), 

which is a product of the least-squares technique, is also assessed as a match 

error measure.

The ways in which the formulae were tested and applied were:

1) synthetic data, generated using the image model, were used to verify match

ing accuracy in the absence and presence of additive noise;

2) plaster model data (Data Set A), for which ground tru th  was known, were 

used to assess the utility of the image model and the corresponding error
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prediction formula for a given class of image;

3) fundus data, from Data Sets B and C, under the assumption tha t the error 

prediction formulae are valid, were used to test the applicability of the image 

model, the validity of the error prediction formulae, and to assess the least- 

squares error estimator;

By applying Gruen’s algorithm to synthetic data, we could test for any 

inherent error in the algorithm in the absence of noise (e.g. due to interpolation 

error) as well as the utility of the Cramer-Rao bound estimate (CRBE) error 

measure in the presence of noise. Further, we could also verify the least-squares 

error estimator, demonstrated in chapter 6 to be an a  posteriori measure of 

match error. Experiments involving synthetic data are presented in sections 8.2 

and 8.3.

The plaster model data, Data Set A, are a set of data for which ground tru th  

is known, and thus, as shown in chapter 6, the real matching error could be 

assessed. In this instance the full range of techniques developed in  chapter 7 

were applied: estimating the shape of the image spectrum, employing the image 

model by using a suitable amplitude function, defining the specific correlation 

formulae for the model image, and finally using the CRBE to make estimates of 

the expected error. This is presented in section 8.4.

Use of the error prediction formulae with the real fundus image data was 

complicated by the lack of ground tru th  from which to verify predictions with 

experiments. However, if  the formulae are assumed to be useful (as is demon

strated in sections 8.2, 8.3, and 8.4), both the image model and the error predic

tion formulae could be used to provide estimates of matching accuracy. The sui

tability of the image model to represent a range of regions in a typical fundus 

image was also assessed. Experiments involving regions of a real fundus image 

and the application of the image model and the CRBE error prediction formulae 

are presented in section 8.5.

Other real-world data (e.g. landsat images) might be used to demonstrate 

the utility of the formulae for other classes of image or other application areas
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(e.g. image alignment), but time did not permit this. Although it  would be of 

general interest to extend the use of the formulae to other image application 

areas, time did not permit this. Further work is required to develop the image 

model beyond the scope of the fundus image application, and to verify the utility 

of the CRBE for other application areas and image domains. Initial application 

of the formulae to the fundus image data indicates tha t valid predictions about 

matching accuracy can be made, but with certain limitations and restrictions. 

The limitations of the formulae are discussed in section 8.6.

8.2 A pplication to Synthetic Data in  the A bsence o f N oise

In this section the application of the stereo matching algorithm, Gruen’s 

algorithm, to synthetic data in the absence of noise is assessed. This will be 

im portant for several reasons. Firstly, both real and synthetic data are discrete, 

and matching to sub-pixel accuracy requires interpolation of whole valued pixels. 

I t was therefore important to determine matching error due to the necessity for 

interpolation. In order to test this a model image was transformed (geometri

cally and radiometrically) by a known amount to form a second (sampled) image. 

By using Gruen’s algorithm to match selected points - in this context Gruen’s 

algorithm is used for template matching - and comparing the expected result 

with th a t obtained experimentally, the matching error due to interpolation could 

be assessed. As Gruen’s algorithm (as implemented here) is intended to cope 

with a wide range of geometric and radiometric differences between two images, 

it was interesting to measure the matching error in the absence of any other 

source of additive noise.

Another reason for applying Gruen’s algorithm to synthetic data in the 

absence of additive noise (although sampling can be thought of as a type of noise) 

was to assess the least-squares error estimator (LSEE) presented in chapter 6, 

which gives an a posteriori estimate of the accuracy of the match based on the 

largest eigenvalue of the cofactor matrix for the param eters Ax and Ay. The 

LSEE of each match point is shown experimentally for Data Set A to be a
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reasonable indicator of match precision (see chapter 6, section 6.5). It was there

fore im portant to attem pt to quantify the utility of the LSEE as an error analysis 

tool.

A model image was generated using the two-dimensional image formation 

formula developed in chapter 7, given by equation 7.5. The separable, linearly 

decreasing amplitude function, given by equation 7.7, was used to model the 

image spectrum and the resulting synthetic image is shown in figure 8.1a ( the 

image param eters are N  = 128, nc = 20, 6 = 2 ,  and B  = 130). Three test images 

were derived from the original image by applying a scaling in the x axis 

(corresponding to a 30° tilt, if  the images are taken to be a stereoscopic pair), a 

rotation of 15°, and a radiometric contrast stretch, which are shown in figures 

8.1c, 8.1e, and 8.1g respectively.

In order to obtain a statistical measure of matching error, Gruen’s algorithm 

was applied to the original image and the transformed image for all possible 

match points over a grid-like coverage of the original image, with a spacing of 5 

pixels. The root mean square (r.m.s.) pixel error for all resulting match points 

was then obtained by comparing the expected and experimental match result for 

the x  coordinate position. In addition, the mean LSEE was calculated from all 

resulting match points. This procedure was repeated for a varying match win

dow size over a range from 7x7 to 31x31 pixels, and for each test image in turn. 

Figures 8.1d, 8.1g, and 8.1h plot both the r.m.s. pixel error and the mean LSEE 

measure against increasing match window size for each of the three test images 

respectively. Figure 8.1c shows the disparity surface obtained from matching the 

original and scaled images for a match window size of 15x15 pixels.

The resulting plots indicate several im portant properties of the matching 

process. As expected, the least-squares matching algorithm is not immune to 

interpolation error, even for a large number of iterations and low param eter 

thresholds. A small match window size can yield significant match errors, 

depending on the severity of the geometric and/or radiometric distortions. As the 

match window size increases, the r.m.s. pixel error approaches l/100th of a pixel.
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This is an acceptable error when considering all the factors tha t contribute to 

numerical precision, such as rounding error. More interestingly, the LSEE meas

ure agrees well in magnitude with the experimental r.m.s. pixel error for all 

three test images, despite the absence of additive noise. This shows promise as a 

direct measure of match precision and might be used to prune wildly inaccurate 

matches.

Quite surprisingly, the r.m.s. pixel error for the radiometric test image 

(figure 8.1h) was unexpectedly high, given tha t no interpolation was required for 

the correct match. The error may be due to the fact th a t all affine and 

radiometric param eters were weighted equally (in the least-squares sense) and 

thus the correct solution was not obtained directly. Another possible cause of the 

error was over-parameterisation; tha t is, there were too many param eters to 

compensate for such a simple (in this case radiometric) set of distortions. The 

weighting of param eters has been discussed by, for example, Rosenholm 

[Rosenholm87a], and requires further investigation in the context of this 

research.
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O r i g i n a l  m a t c h e d  t o  s c a l e d
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Figure 8.1. Application of Gruen’s algorithm to synthetic data in the absence of 
noise, (a) original model image, (b) original image scaled in x (representing a 30° 
tilt), (c) disparity surface of (a) matched to (b), and (d) the rms pixel error versus 
match window size (the solid line represents the experimental error and the 
dashed line represents the mean LSEE measure), (continued ...)
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(e)

o r i g i n a l  m a t c h e d  t o  r o t a t e d

(f)

o r i g i n a l  m a t c h e d  t o  r a d i o m e t r i c

m a t c h  u i n d o u  u i d l h
o

(g) (h)

Figure 8.1. (cont.) (e) original image rotated by 15°, (f) original image with 
radiometric variation (contrast stretch), (g) and (h) the rms pixel error versus 
match window size for (e) and (f) respectively. In each plot the solid line 
represents the experimental error and the dashed line represents the mean 
LSEE measure.

1 3 0  1 6 0  1 9 0  22 0 25  0
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8.3 A pplication to Synthetic Data in  the P resence o f N oise

In this section the application of Gruen’s algorithm to synthetic data in the 

presence of noise is assessed. In the previous section, the performance of 

Gruen’s algorithm in the absence of additive noise was shown to be highly accu

rate for a range of geometric and radiometric differences between two images. 

However, the error prediction formulae developed in chapter 7 are valid only for 

cross-correlation in the presence of additive noise, and it will therefore be impor

tan t to validate the theoretical Cramer-Rao Bound Estimate (CRBE) on synthetic 

data. In order to assess the utility of the CRBE, a series of synthetic images was 

generated which were based on the same underlying spectral model; tha t is, the 

amplitude function required by the image formation formula (equation (7.5)) was 

the same for all images in the series. The images were not identical in the spa

tial domain, however, since the phase components of their spectra were random.

To each image in the series, zero mean, Gaussian distributed random noise 

was added to generate an image pair, where the standard deviation of the noise 

was known. By using Gruen’s algorithm to match selected points for each image 

pair and comparing the expected match result with tha t obtained experimentally, 

statistics on matching error could be obtained. As each image was generated 

from the model, with a known amplitude function, a corresponding formula for 

the CRBE could be obtained, as shown in chapter 7. The CRBE formula pro

vided a prediction of the variance (and standard deviation) of the experimental 

error. The r.m.s. pixel error associated with all match points for each pair in 

the image series could then be compared to the predicted error given by the 

CRBE. As with the application of Gruen’s algorithm to synthetic data in the 

absence of noise, it was also useful to assess the utility of the least-squares error 

estimator (LSEE) as an a posteriori measure of match precision in the presence 

of noise.

In order to give an unbiased validation of the error prediction formulae, two 

image series were generated using the two dimensional image model, where each 

series was based on a different amplitude function; the first on the separable,



linearly decreasing amplitude function given by equation (7.7), and the second on 

the I l f  amplitude function given by equation (7.9). Each series consisted of 100 

images, and for each image pair, 16 candidate match points were attempted, 

resulting in 1600 potential match results in the series. The candidate points 

were located such tha t their surrounding match windows had minimal overlap 

with match windows of neighbouring candidate points, to avoid systematic error. 

For each image series two param eters were varied. First, the amount of additive 

noise was varied from 1 to 25 standard deviations while maintaining a fixed 

match window size of 21x21 pixels, and second, the match window size was 

varied from 7x7 to 31x31 pixels for a fixed amount of additive noise representing 

a signal-to-noise ratio of 1:1. Thus for each image series two plots were obtained; 

one which plots experimental error versus increasing noise, and one which plots 

experimental error versus increasing match window size. Together with the 

experimental error, both the CRBE and mean LSEE were also plotted. (The 

reader is reminded th a t adding noise of standard deviation on to one image only 

is equivalent to adding noise of standard deviation on /^2 to each image).

The first image series was generated using a separable, linearly decreasing 

amplitude function, and one of the 128x128 images in the series is shown in 

figure 8.2a. The model param eters were N  = 128, nc = 21, 5 = 1 ,  and B  = 130. 

The standard deviation of the model image, Of , was measured to be 7 grey lev

els. Figure 8.2b is the result of adding Gaussian distributed, random noise to 

the image in figure 8.2a, where the standard deviation of the noise, on , was also 

7 grey levels (and thus the signal-to-noise ratio, SNR = Cf/on , is 1:1). Figure 

8.2c and 8.2d plot the experimental r.m.s. pixel error, the CRBE, and the mean 

LSEE versus increasing additive noise and increasing match window size respec

tively. The CRBE for the variance of the correlation error for the images in the 

first series is given by
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The second image series was generated using a 1 IF amplitude function, and 

one of the 128x128 images in the series is shown in figure 8.3a. The model 

param eters were N  = 128, nc = 16, 6 = 6, and B  = 130. The standard deviation 

of the model image, Of, was measured to be 12 grey levels. Note th a t this image 

is visually quite different from th a t in figure 8.2a. Figure 8.3b is the result of 

adding Gaussian distributed, random noise to the image of figure 8.3a, where the 

standard deviation of the noise, on , was also 12 grey levels (SNR 1:1). Figure 

8.3c and 8.3d plot the experimental r.m.s. pixel error, the CRBE, and the mean 

LSEE versus increasing additive noise and increasing match window size respec

tively. The CRBE for the variance of the correlation error for the images in the 

second series is given by

N 2 o 2
«3 = T T7TTo~“ o • (8-2)4 M 2 b 2 v? n

For the experimental results plotted in figures 8.2c and 8.2d for the first 

image series and figures 8.3c and 8.3d for the second image series, the solid line 

represents the experimental r.m.s. pixel error, the dashed line represents the 

mean LSEE measure, and the dotted line represents the theoretical CRBE pred

iction for the given image model, given by equations 8.1 and 8.2. The results 

indicate tha t the experimental error agrees quite well with the theoretical predic

tion given by the CRBE, although the agreement deteriorates for large amounts 

of additive noise ( SNR < 1:2) and small match window sizes ( M  < 10). Further, 

the a posteriori estimate of match error, the LSEE, also agrees well with both 

the experimental error and the CRBE, although this measure appears to be an 

over optimistic estimate of match error, as demonstrated in, for example, figure 

8.3c. There is increasing experimental evidence th a t the magnitude of the LSEE 

can be used a direct indicator of match precision.
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(c) (d)

Figure 8.2. Comparison of theoretical and experimental matching error in the 
presence of noise - example #1. (a) original model image (linearly decreasing 
spectrum), (b) image (a) with additive noise (SNR 1:1), (c) plot of the rms pixel 
error versus increasing noise, and (d) the rms pixel error versus match window 
size. In each plot the solid line represents the experimental error, the dashed 
line represents the mean LSEE measure, and the dotted line represents the 
theoretical CRBE error measure for the given model.



rm
s 

pi
xe

l 
er

ro
r

197

(a) (b)
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(c) (d)

Figure 8.3. Comparison of theoretical and experimental matching error in the 
presence of noise - example #2. (a) original model image (1/F spectrum), (b) 
image (a) with additive noise (SNR 1:1), (c) plot of the rms pixel error versus 
increasing noise, and (d) the rms pixel error versus match window size. In each 
plot the solid line represents the experimental error, the dashed line represents 
the mean LSEE measure, and the dotted line represents the theoretical CRBE 
error measure for the given model.
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8.4 Application to Model Data

The plaster model data, Data Set A, were the only data used in this research 

for which ground tru th  values were known and thus real matching errors could 

be measured. In this section the tools for error prediction developed in chapter 7 

are applied to this real world data. In the previous two sections the image model 

and the corresponding error prediction formulae have been validated, and the 

indication is, a t least for synthetic data, th a t the formulae were useful for a 

priori estimates of matching accuracy. It was therefore of interest to see 

whether the same formulae could prove useful when applied to real world data 

such as Data Set A. In this section, the utility of the Cramer-Rao bound esti

mate (CRBE) is assessed for real data, with the added benefit th a t the ground 

tru th  is known for this data and previous experimental results were available.

To apply the image model developed in chapter 7, a 64x64 pixel region from 

the left-hand image from Data Set A was first extracted, and this image region is 

shown in figure 8.4a. Recall tha t the image model is only intended to model the 

local texture in an image, and thus only a small 64x64 region was extracted. 

The procedure was to determine the characteristic shape of the amplitude com

ponents of the Fourier spectrum, and then select an appropriate amplitude func

tion for use with the image model (equation (7.5)). The grey level statistics of the 

image region were also measured; the mean grey value was 120, and the stan

dard deviation, C f , was 16 grey levels. The Fourier spectrum of the image region 

is shown in figure 8.4b, for which a separable, linearly decreasing amplitude 

function (given by equation 7.7) was chosen as a suitable functional model. The 

param eters of the model were set to N  = 64, nc = 16, 6 = 3 ,  and B  = 120, and 

the resulting synthetic model image is shown in figure 8.4c. There is a visual 

similarity between the synthetic model image and the real image.

With an image model based on the separable, linearly decreasing amplitude 

function, the expression for the auto-correlation formula of the model could be 

derived, and is given by equation (7.23). This expression could then be used with 

the CRBE to make predictions about matching error. For example, given some
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estimate of the amount of noise present in the image (from sources such as 

electrical noise), a suitable match window size can be selected to yield an average 

match error below a desired threshold. Further, having previously selected a 

match window size of 15x15 pixels for the application of Gruen’s algorithm to 

D ata Set A in chapter 6, one can now ask what the expected matching error 

would be for a moderate amount of additive noise. In this case, such predictions 

can be compared directly with experimental results already obtained.

Figure 8.4d plots the predicted r.m.s. pixel error versus increasing match 

window size for the model image in the presence of noise. Two levels of noise are 

shown: the solid line represents additive noise yielding a signal-to-noise ratio 

(SNR) of 2:1, and the dashed line represents SNR 1:1. If the signal-to-noise ratio 

in the real image is taken to be 2:1 (which is not unlikely), the r.m.s. matching 

error is predicted to be 0.0671 pixels, using a match window size of 15x15 pixels.

From the application of Gruen’s algorithm to synthetic data in the absence of 

noise it was shown tha t in the presence of geometric distortions, the matching 

error could be as high as 0.07 rms pixel, depending on the image model, match 

window size, and type of distortion. If the effects of matching error to due 

geometric corrections (interpolation error, numerical accuracy) and the predicted 

matching error due to additive noise are combined, the matching error could be 

as high as 0.15 r.m.s. pixels. This estimate agrees well with the mean experi

mental error of 0.194 pixels obtained in the application of Gruen’s algorithm to 

Data Set A (presented in chapter 6, section 6.5.1). If the component sources of 

matching error are not cumulative, then either the prediction is over optimistic 

(which is the more likely) or the estimate of the amount of additive noise is too 

low. Despite this discrepancy, the application of the image model and the 

Cramer-Rao bound estimate to the plaster model data gave some indication tha t 

the error prediction formulae were of use with real image data.
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Figure 8.4. Application of the image model and the matching error prediction 
theory to Data Set A. (a) a 64 x 64 pixel region of the plaster model image, (b) 
the Fourier spectrum of (a), (c) synthetic model image (see text), and (d) plot of 
the predicted rms pixel error versus match window size for the model image in 
the presence of additive noise; the solid line represents SNR 2:1 and the dashed 
line represents SNR 1:1.

oo oo -----------1----------- 1-----------1-----------1-----------1-----------1----------- .----------- i
00 0 M 50 9  00 13 5 18 0 22  5  27  0 31 5  38  0

m a t c h  u i n d o u  u i d t h
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8.5 Application to Fundus Data

In this section the application of the image model and error prediction for

mulae to the fundus data are studied, specifically to assess the utility of the for

mulae when applied to real data (the fundus image data), for which no ground 

tru th  were known. The driving inspiration for development of the error predic

tion tools was primarily to enable analysis of the matching error in  the applica

tion of Gruen’s algorithm to the fundus image data. In a sense, this section is 

the culmination of the development of the image model and error prediction for

mulae in chapter 7, and the experimental validation of the formulae in the ear

lier sections of this chapter. The suitability of the image model to represent a 

range of regions in a typical fundus image will be assessed. Experiments involv

ing selected regions of a real fundus image and the application of the image 

model and CRBE formulae indicate that valid predictions about matching accu

racy can be made.

Use of the error prediction formulae with the real fundus image data was 

complicated by the lack of ground tru th  from which to verify predictions with 

experiments. In the absence of ground tru th  measurements for the fundus 

image data, one could argue tha t it would be difficult to apply the image model 

and the CRBE in a meaningful way. It is argued here that there is strong exper

imental evidence for confidence in the error prediction formulae, and the least- 

squares error estimator has been shown to accurately reflect the magnitude of 

the accuracy of the match (as is demonstrated in sections 8.2, 8.3, and 8.4), and 

therefore both a priori (the CRBE) and a posteriori (the LSEE) analysis of 

fundus data disparity estimates obtained from stereo cross-correlation are possi

ble.

To assess both the image model and error prediction formulae developed in 

chapter 7 for the fundus image data, three representative regions from both Data 

Sets B and C were studied. The results for the image regions from Data Set B 

are presented in detail, whereas the results for Data Set C are only intended to 

give additional experimental evidence tha t the theoretical formulae can be
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Figure 8.5. The left-view fundus image from Data Set B, indicating 
three regions selected for experimentation.

meaningfully applied to real image data.

Figure 8.5 shows the left-hand image from Data Set B with the three 

selected regions highlighted. Each region was 64x64 pixels square; one located 

in the nerve fibre area surrounding the optic disc, the second located centrally in 

the optic cup area, and the third located in an area of retinal vessels. For each 

image region, the characteristic shape of the Fourier spectrum was modelled 

using a suitable amplitude function, and a synthetic image was generated using 

the image model (equation (7.5)). Unlike the earlier experiments, the model 

image (and its derived correlation function) was used only as a tool for error 

prediction, and the actual experimental match results were obtained from the 

real fundus image regions.
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The predicted matching error estimated by the CRBE for each model image 

was compared to the experimental error obtained from the application of Gruen’s 

algorithm to the corresponding real image region in the presence of additive 

noise. As with the application of Gruen’s algorithm to synthetic data in the pres

ence of noise, presented in section 8.3, match results was obtained for both a 

varied amount of additive noise with a fixed match window size and for a varied 

match window size with a fixed amount of additive noise. Zero mean, Gaussian 

distributed random noise was added to each image region to produce an image 

pair for matching. Gruen’s algorithm was then applied to match points densely 

across the image pair. With a few starting seed match points, the region growing 

technique was used with Gruen’s algorithm to match the every fifth pixel across 

the entire image. This was repeated by generating a new image with added 

noise, and thus a new image pair, and matching the entire image again. By 

repeating the entire process 10 times for each image region, where typically 64 

match results are obtained for each image pair, a statistical measure of about 

500 to 1000 match points was obtained for each experiment, and for each image 

region.

The nerve fibre image region was shown in figure 8.6a together with the 

model image in figure 8.6b. The model image for the nerve fibre region is based 

on a circularly symmetric, linearly decreasing amplitude function, where the 

model param eters were N  -  64, nc = 10, 6 = 2 ,  and B  = 90. The grey level 

statistics of the nerve fibre image region were known, with a mean value of 90 

and a standard deviation of 8 grey levels. Figure 8.6c plots the experimental 

r.m.s. pixel error versus increasing additive noise, where the standard deviation 

of the noise ranged from 1 to 24 grey levels, and the match window size was con

stan t at 21x21 pixels. Figure 8.6d plots the experimental r.m.s. pixel error 

versus increasing match window size, where the window size varied from 11x11 

to 31x31 pixels and the standard deviation of the noise was constant a t 8 grey 

levels (SNR 1:1).
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The optic cup image region is shown in figure 8.7a together with the model 

image in figure 8.7b. The model image for the optic cup region was based on a 

1 IF amplitude function, where the model param eters were N  -  64, nc -  20, 

6 = 4 ,  and B  = 188. The grey level statistics of the optic cup image region were 

known, with a mean value of 188 and a standard deviation of 9 grey levels. Fig

ure 8.7c plots the experimental r.m.s. pixel error versus increasing additive noise, 

where the standard deviation of the noise ranged from 1 to 18 grey levels, and 

the match window size was constant a t 21x21 pixels. Figure 8.7d plots the 

experimental r.m.s. pixel error versus increasing match window size, where the 

window size varied from 11x11 to 31x31 pixels and the standard deviation of the 

noise was constant at 9 grey levels (SNR 1:1).

The retinal vessel image region is shown in figure 8.8a together with the 

model image in figure 8.8b. The model image for the retinal vessel region was 

based on a 1 IF amplitude function, where the model param eters were N  = 64, 

nc = 4, 6 = 14, and B  = 97. The grey level statistics of the retinal vessel image 

region were known, with a mean value of 97 and a standard deviation of 24 grey 

levels. Figure 8.8c plots the experimental r.m.s. pixel error versus increasing 

additive noise, where the standard deviation of the noise ranged from 1 to 24 

grey levels, and the match window size was constant a t 21x21 pixels. Figure 

8.8d plots the experimental r.m.s. pixel error versus increasing match window 

size, where the window size varied from 11x11 to 31x31 pixels and the standard 

deviation of the noise was constant at 12 grey levels (SNR 2:1 - matching error 

for SNR 1:1 is too high, and a sufficient number of match results could not be 

obtained for the smaller window sizes).
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(c) (d)

Figure 8.6. Nerve fibre region - comparison of theoretical and experimental 
matching error in the presence of noise, (a) 64 x 64 fundus image region (see 
figure 8.5), (b) generated model image representing (a), (c) plot of the rms pixel 
error versus increasing noise, and (d) the rms pixel error versus match window 
size. In each plot the solid line represents the experimental error, the dashed 
line represents the mean LSEE measure, and the dotted line represents the 
theoretical CRBE error measure based on the image model.
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Figure 8.7. Optic cup region - comparison of theoretical and experimental match
ing error in the presence of noise, (a) 64 x 64 fundus image region (see figure 
8.5), (b) generated model image representing (a), (c) plot of the rms pixel error 
versus increasing noise, and (d) the rms pixel error versus match window size. 
In each plot the solid line represents the experimental error, the dashed line 
represents the mean LSEE measure, and the dotted line represents the theoreti
cal CRBE error measure based on the image model.
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Figure 8.8. Retinal vessel region - comparison of theoretical and experimental 
matching error in the presence of noise, (a) 64 x 64 fundus image region (see 
figure 8.5), (b) generated model image representing (a), (c) plot of the rms pixel 
error versus increasing noise, and (d) the rms pixel error versus match window 
size. In each plot the solid line represents the experimental error, the dashed 
line represents the mean LSEE measure, and the dotted line represents the 
theoretical CRBE error measure based on the image model.
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Figure 8.9 shows the left-hand image from Data Set C with the three 

selected regions highlighted. Each region was 64x64 pixels square, and as with 

Data Set B, was located in a representative area of the fundus image. For each 

image region, the characteristic shape of the Fourier spectrum was modelled 

using a suitable amplitude function. The predicted matching error given by the 

CRBE for each model image was compared to the experimental match error 

obtained from the application of Gruen’s algorithm in a like manner to that out

lined for the image regions from Data Set B.

Figure 8.9. The left-view fundus image from Data Set C, indicating 
three regions selected for experimentation.

Figures 8.10 shows the plotted results for each of the image regions shown in 

figure 8.9. The grey level statistics for each image region, the model parameters, 

and the corresponding experimental methods were similar to those outlined for 

the image regions from Data Set B and are not detailed here.
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Figure 8.10. Data Set C image regions - comparison of theoretical and experi
mental matching error in the presence of noise. For the nerve fibre region (see 
figure 8.9), (a) plots the rms pixel error versus increasing noise, and (b) plots the 
rms pixel error versus match window size. For the optic cup region, (c) plots the 
rms pixel error versus increasing noise, and (b) plots the rms pixel error versus 
match window size, (continued...)
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Figure 8.10. (cont.) For the retinal vessel region (see figure 8.9), (e) plots the rms 
pixel error versus increasing noise, and (f) plots the rms pixel error versus match 
window size. In each plot the solid line represents the experimental error, the 
dashed line represents the mean LSEE measure, and the dotted line represents 
the theoretical CRBE error measure based on the image model.

For all the experimental results plotted in figures 8.6 through 8.10 the solid 

line represents the experimental error, the dashed line represents the mean 

LSEE measure, and the dotted line represents the theoretical prediction from the 

CRBE of each model image. The results obtained for all image regions indicate 

that the predicted error based on the model image agrees quite well with the 

experimental error measured from the real image. Further, the plotted curve for 

the mean LSEE is closely aligned with the predicted error, bringing further evi

dence tha t the both the a priori CRBE and the a posteriori LSEE measure accu

rately predict and reflect the magnitude of the error of the match. Surprisingly, 

the retinal vessel image regions, which one might expect to be difficult to model, 

yielded the best results. The nerve fibre image region also yielded good results. 

These results are discussed further in the following section.
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8.6 Discussion

With the experimental evidence tha t both the error prediction formulae and 

the least-squares error estimator can provide meaningful measures for assessing 

matching error in both synthetic and real image data, a discussion of the limita

tions of such theoretical tools is presented in this section. It is im portant not 

only to assess the utility of the tools developed in chapter 7, but also to define 

the conditions under which the tools are not applicable.

As demonstrated by the experiments conducted in section 8.3, the error 

prediction formulae, which are based on the auto-correlation function of an 

image, were shown to be valid when used with synthetic images, where the 

image model and the underlying auto-correlation function were known. In this 

sense, the image model, derived auto-correlation, and error prediction formulae 

were shown to be self consistent. What was encouraging, though, was th a t the 

same image model and error prediction formulae applied to real image data gave 

good agreement between theory and experiment. Specifically, the application of 

these theoretical tools to the fundus image data gave an indication tha t such 

tools might be used in a systematic way to measure, assess, and control match

ing cross-correlation error.

The set of experiments presented in this chapter have shown tha t the 

Cramer-Rao bound ([Whalen71], [Bogler86]) estimate might be used as an a 

priori measure of match error from which a suitable threshold can be set for an 

acceptable level of match error. This threshold might be used to filter match 

results using the a posteriori LSEE measure of match precision. A match result 

with a LSEE below the threshold (or some scalar multiple of it) could be 

accepted, and any wildly inaccurate results could be discarded (see also 

[Ryan80,81]). This process is consistent with the region growing technique 

[Otto89] used in conjunction with Gruen’s algorithm, detailed in chapter 5, where 

the starting param eters for match points (i.e. the x and y  coordinates) are 

estimated from nearby points for which a match has already been obtained. If 

the match error could be assessed during computation, then the region growing
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process could proceed from the best match first, thereby improving the overall 

results. This type of match result filtering requires further research.

It is im portant to recall the criteria by which the image model was 

developed, specified in chapter 7, so as not to be over critical of the limitations of 

the model. Images which appear to be highly structured macroscopically, are 

often relatively homogeneous (and isotropic) in texture microscopically. The 

image model is to be used as a tool for studying image cross-correlation, and 

match window sizes are usually of modest extent (typically less than 50x50 pix

els). Therefore, the image model was used in the experiments to model only 

small regions in an image. The model is based on the amplitude components of 

an image Fourier spectrum, since image spectra often exhibit a characteristic 

functional shape, whose param eters correspond directly to the types of visual 

image param eters one might wish to vary.

The application of the image model to three fundus image regions in section 

8.4 highlights some of the empirical strengths and limitations of the model. Both 

the nerve fibre image region and the retinal vessel region were relatively easy to 

model on a local scale, where the image textures were homogeneous and their 

spectra were easily modelled by a symmetric amplitude function. It was 

encouraging th a t the image model could accurately represent two such different 

image textures as the nerve fibre image region (figure 8.6) and the retinal vessel 

image region (figure 8.8). The results indicate that for relatively low levels of 

noise (SNR > 1:1), there was good agreement between theory and experiment. 

As the match window size increased, the experimental error approached the 

Cramer-Rao bound estimate as shown, for example, in figure 8.6d.

The results for the optic cup image region (figure 8.7), however, were not as 

encouraging. The form of the amplitude components of the image spectrum were 

difficult to model, and the resulting synthetic image was visually not the best 

representation of the real image. The optic cup image region was an example of 

an image with little grey level structure, where a small amount of additive noise 

can cause a large deviation in the grey level statistics of the image. Further
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development of the image model is required to cope with more structured or com

plex image textures. It is most im portant to obtain an accurate measure of 

matching error in the optic cup region of the fundus image (since the topography 

of the optic disc and cup is the main interest), and further development and 

assessm ent of the image model and the Cramer-Rao bound estimate is needed. 

When the form of the amplitude of the image spectrum is difficult to model, as 

with the optic cup image region, the model is less than ideal.

The experimental results for the synthetic data are representative of an 

ensemble or series of images, each with the same spectral form, where each 

image is a different realisation of a particular image model. The cumulative 

results for each image series, in effect, average out the bias introduced by any 

individual image in the series. Therefore, the experimental results (figures 8.2 

and 8.3) are in good agreement with the theory. The experiments involving the 

real fundus image data were representative of a specific scene structure, where 

the same original image was used in each trial. Thus, the results may contain 

some bias, due to the specific structure in these fundus image regions.

It is evident tha t the image model can provide a good representation of real 

image data when the scene texture is relatively "busy" and homogeneous in pat

tern. Further, the scene spectrum should be similar in form in both the x and y 

axis (isotropic), where the form or shape of the amplitude components is func

tionally either circularly symmetric or linearly separable (examples of this type of 

spectrum are presented in chapter 7). When the scene spectrum exhibits a 

different form in each axis, the incorporation of scale factors in both the x fre

quency and y  frequency or a more complex separable functional form for the 

amplitude components m ust be considered. The image model could be developed 

to cope with this type of scene spectrum. When the scene texture is relatively 

"flat" or constant in grey value, or if the scene contains a unique (non- 

homogeneous) texture pattern, the image model and corresponding error predic

tion formulae are not suitable.
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The model was used to represent image regions, with the assumption that 

sub-regions of the image (as taken within a match window) have a spectrum 

which is similar in form to the larger (surrounding) image region. As the match 

window size approaches the full extent of the image region, this assumption is 

valid. Small match window sub-regions may contain little of the global grey level 

structure, and may have a spectrum which is very dissimilar in form to the spec

trum  of the whole image region. The image models which represent the fundus 

image regions were thus too idealistic, and there was some divergence between 

experiment and theory. The real image spectra did not have the ideal form of 

their model counterparts, and the spatial grey level structure was not as uniform 

in the real image regions. The error predictions based on the model image do 

not take into account the specific structures of any individual real image, because 

they are intended to represent an average value for many image regions with the 

same spectral form.

Apart from the general development of the image model and the associated 

error prediction formulae to handle a broader range of image domains, there are 

a number of other areas which could be studied further. For any individual set 

of matching errors, it would be interesting to study their distribution to see if a 

characteristic shape for the distribution could be found (for a given image model 

and amplitude function). This would require a much larger set of data and 

experimental results than available here in order to yield a statistically confident 

assessment. By characterising the form of the distribution of errors (e.g. Poisson 

distributed), it would then be possible not only to predict the magnitude of the 

matching error, as demonstrated in this chapter, but also to give the associated 

probability of such an error occurring. With a more rigorous mathematical trea t

ment of the error prediction formulae, it may be possible to derive suitable 

analytical probability measures.
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8.7 Summary

In this chapter the image model, correlation formulae, and error prediction 

formulae developed in chapter 7 were tested and applied. The application of the 

stereo matching algorithm, Gruen’s algorithm, to geometrically distorted image 

data was assessed in order to verify the degree of matching accuracy in the 

absence of additive noise. The use of a mathematical image model (equation 

(7.5)) allows for the derivation of specific auto-correlation functions given specific 

amplitude functions. With an analytical expression for the auto-correlation func

tion for a given model image, the matching error in the presence of additive noise 

can be predicted using the Cramer-Rao bound estimate developed in chapter 7.

The Cramer-Rao bound error prediction formula, which is based on the 

auto-correlation function of an image, was shown to be valid when used with syn

thetic images, where the image model and the underlying auto-correlation func

tion are known. The image model developed in chapter 7 was shown to be appli

cable to two real image data; Data Set A, the plaster model image, and Data Set 

B, a typical fundus image. In image matching applications where ground tru th  

verification of match results is not possible, the tools developed in  chapter 7 can 

be used to accurately reflect the expected magnitude of cross-correlation match

ing error. The set of experiments presented in this chapter show that the 

Cramer-Rao bound estimate can be used as an a priori measure of match error, 

and can be compared to the a posteriori least-squares error estimator obtained 

for each match point. The application of the image model to the fundus image 

data, and the assessment of both the theoretical error prediction formula and the 

least-squares error estimator gives an indication tha t such theoretical tools might 

be used in a systematic way to measure, assess, and control matching cross

correlation error.
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Chapter 9 
Conclusions and Suggestions for Further Work

9.1 Sum m ary o f the R esearch

Stereoscopic photography of the human fundus and the subsequent calcula

tion of the topography of the optic disc is of great potential clinical value if accu

rate measurements of the various param eters tha t characterise the changing 

shape of the optic disc topography can be provided. The research presented in 

this thesis has been an investigation into the problems of obtaining useful clini

cal measurements from stereo photographs of the optic disc, through automation 

of the stereometric procedure by digital stereo matching and image analysis tech

niques.

Following the introduction of the research topic in chapter 1, an overview of 

the research was presented and the objectives of the research were defined in 

chapter 2. The general problem of stereoscopy of the human fundus was 

reviewed together with a discussion of the clinical objectives, data acquisition 

and data sources, measurement by stereo matching, and methods for modelling 

the data. At the end of the chapter a set of research objectives was proposed, 

and these objectives are reviewed in the following section.

A survey of the current clinical methods for stereoscopic measurement of the 

optic disc was presented in chapter 3. From the literature it was apparent tha t 

the problem of topographic analysis of the optic nerve head from stereo photo

graphs was by no means solved, even by commercially available systems. A brief 

historical survey of stereoscopic fundus photography was given so tha t some 

insight could be gained into the difficulties tha t may arise in the application of 

digital stereo matching to the fundus data.

Fundus image data acquisition, stereo geometry, limitations of resolution 

and accuracy, and other relevant physical constraints related to fundus imaging 

were investigated in chapter 4. In order to understand the difficulties associated 

with stereo photography of the optic disc, various physical constraints were
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examined. The param eters which ultimately define the accuracy to which topo

graphic measurements of the optic disc can be made include the size of the optic 

disc, the stereoscopic baseline, eye movements, motion blur, optical defocus, and 

illumination variations. The conclusions drawn from chapter 4 indicate th a t the 

results obtained from stereoscopic analysis of photographs of the optic disc m ust 

be shown to be consistent, accurate to an acceptable level, and reproducible. Not 

until the stereoscopic effect can be standardised will stereo analysis of the optic 

disc prove reliable.

In chapter 5, a survey of digital stereo matching algorithms was presented 

and their strengths and weaknesses were explored, specifically as they related to 

the suitability of the algorithm for use with the fundus image data. Stereo 

matching algorithms including feature-based matching, area-based matching, 

optical flow techniques, and elastic matching were reviewed and evaluated. The 

potential problems for stereo matching algorithms specific to the fundus image 

data were also addressed, leading to a set of criteria on which to base the selec

tion of an algorithm. In considering the relevant algorithms in  the literature, an 

area-based algorithm based on the least-squares matching technique was 

selected. The mathematical foundations of Gruen’s algorithm [Gruen85] and its 

extensions [Otto89] were described in detail.

The algorithm for computer implementation of the Gruen-Otto stereo m atch

ing algorithm was presented in chapter 6 together with a brief analysis of the 

computational requirements. The experimental methods applied to four test 

data sets were discussed, including data acquisition, image pre-processing, stereo 

matching, and post-processing and analysis. The data included a physical model 

for which ground tru th  could be measured and thus real matching error could be 

assessed. Three representative sets of fundus image data were also used; non- 

simultaneous and simultaneous stereo images obtained from standard fundus 

cameras, and non-simultaneous stereo images obtained from the Scanning Laser 

Ophthalmoscope.
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In review of the results presented in chapter 6, the importance of data stan

dardisation became apparent, and a more consistent data format should be 

adopted by clinicians if the methods employed here are to be reliable. Similarly, 

the importance of a large stereoscopic baseline, discussed in chapter 4, was also 

well demonstrated. An analysis of the results highlighted a number of important 

issues with respect to determining matching accuracy, and several of the key 

problems associated with the stereo matching algorithm and the fundus image 

data were discussed.

A mathematical model of two-dimensional image formation was developed in 

chapter 7 together with its corresponding auto-correlation function. The model 

was used as a tool for exploring key problems with respect to the stereo match

ing of fundus images. Specifically, measures for predicting correlation matching 

error were developed and applied. Such measures were shown to be of use in 

applications where the results of image correlation could not be independently 

verified, and meaningful quantitative error measures were required.

The local structure of the fundus image data was examined using well 

known image descriptors, and this led to a functional description of image forma

tion. A generic image model was developed which characterised the image struc

ture of discrete image data. Explicit formulae for the auto-correlation of the 

image model were derived in both one and two dimensions. These formulae were 

then extended to mean square difference auto-correlation. With an analytical 

expression for the auto-correlation function for a given model image, the match

ing error in the presence of additive noise could be predicted using the Cramer- 

Rao bound estimate ([Ryan80], [Bogler86]). The utility of this measure was 

demonstrated on both one- and two-dimensional image models.

In chapter 8 the image model, correlation formulae, and error prediction for

mulae developed in chapter 7 were tested and applied. The application of the 

stereo matching algorithm to geometrically distorted image data was presented 

in order to assess the degree of matching accuracy in the absence of additive 

noise. The Cramer-Rao bound error prediction formula was shown to be valid
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when used with synthetic image data in the presence of additive noise. The 

image model developed in chapter 7 was shown to be applicable to three real 

image data sets; Data Set A, the plaster model image, and Data Sets B and C, 

two typical fundus images. In image matching applications where ground tru th  

verification of match results is not possible, the tools developed in chapter 7 can 

be used to accurately reflect the expected magnitude of cross-correlation match

ing error. The set of experiments presented in chapter 8 show th a t the Cramer- 

Rao bound estimate could be used as an a priori measure of cross-correlation 

matching error. The application of the image model to the fundus image data, 

and the assessment of both the theoretical error prediction formula and the 

least-squares error estimator gives an indication tha t such theoretical tools could 

be used in a systematic way to predict, assess, and control cross-correlation 

error.

9.2 R eview  o f the R esearch Objectives

It is of interest to reflect upon the original research objectives presented in 

chapter 2 and assess how well each objective has been met. The primary objec

tive was to ascertain whether or not reliable stereoscopic measurements could be 

obtained from photographs of the optic disc, and this objective has been 

thoroughly addressed in chapters 4, 5, and 6. The issues regarding image 

acquisition were addressed in chapter 4 for both non- and simultaneous stereo 

photographs. A suitable stereo matching algorithm was selected in chapter 5, 

and the application of the algorithm was demonstrated in chapter 6. This pro

vided an automated method from which to generate a depth contour map of the 

optic disc region from stereoscopic fundus image pairs. It has been shown th a t 

depth contour maps of the optic disc which are of clinical relevance can be 

obtained using the methods described in this thesis. The desire to assess the 

accuracy of the depth estimates, in the absence of ground tru th , promoted the 

development of the image model and error prediction formulae in chapter 7. 

With these tools the magnitude of the matching error can be predicted, moving 

some way toward addressing the issue of reliability in topographic measurement.
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The second research objective was to study the physical constraints related 

to stereoscopy of the hum an fundus, and to study any potential limitations in the 

m easurem ent and analysis of the optic disc. Chapter 4 addressed this objective. 

The constraints imposed by the camera geometry, imaging through the pupil of 

the eye, as well as the small extent of the optic disc area all impose limitations 

on the accuracy to which stereo information can be extracted. I t was shown th a t 

the most problematic param eter in non-simultaneous stereo fundus photography 

was the camera separation or baseline. There are several key param eters which 

are beyond the control of the clinician, and these include patient movement and 

change of fixation. In simultaneous stereo fundus photography, optical defocus, 

image resolution, and image contrast are of key importance.

Another objective of this research was to select a suitable stereo matching 

algorithm for use on the fundus image data. In chapter 5, a survey of digital 

stereo matching algorithms was presented and their strengths and weaknesses 

were explored, specifically as they relate to the fundus image data. Under a set 

of criteria on which to base the selection of an algorithm, a least-squares match

ing algorithm was selected; namely Gruen’s least-squares matching algorithm 

[Gruen85]. The algorithm could be extended, as shown by Otto and Chau 

[Otto89], to automatically generate a dense set of disparity estimates from a 

stereo fundus image pair.

The fourth objective was to determine the utility of automated stereo meas

urem ent of the optic disc by applying the selected matching algorithm to a 

representative set of fundus image data. Chapter 6 presented the results of 

applying the stereo matching algorithm to four test data sets. The results indi

cated tha t biologically plausible estimates of the optic disc topography could be 

obtained, but tha t further work was required to standardise the procedure and 

to assess the accuracy of the results.

In the absence of ground tru th  information for the fundus image data, it  was 

natural th a t the fifth research objective was to use a physical model (for which 

ground tru th  was known) to test the performance of the stereo matching



221

algorithm, and to develop a set of mathematical tools which would perm it 

theoretical predictions on the performance of the stereo matching algorithm. The 

application of the stereo matching algorithm to the plaster model data and the 

subsequent analysis of the real matching error in chapter 6 indicated th a t the 

algorithm could perform well under favourable conditions. The development of a 

set of mathematical tools for theoretical predictions of cross-correlation error was 

undertaken in chapter 7. Although these tools require further development, 

experimental evidence presented in chapter 8 gave an indication that, a t least for 

the fundus image data, the magnitude of cross-correlation error could be 

predicted and controlled.

The final research objective was to investigate methods for extracting clinical 

param eters from the topographic measurements obtained from stereo matching 

fundus image data. This would provide a means by which changes to these 

param eters could be monitored over time. This objective was not addressed 

directly in this thesis. However, some of the key points are considered in the fol

lowing section.

9.3 Tools for C linical M easurem ent

In conventional stereo photography of the fundus, a skilled clinician or 

trained observer manually processes each stereo pair, estimating parameters 

such as cup-disc ratio and cup volume. If the topography of the optic disc has 

been computed using stereo matching techniques, the three-dimensional struc

ture of the disc can be represented as a contour map, as a wire-frame model, or 

as a series of depth profiles (one-dimensional cross-sections). Although the clini

cian may find locating the optic disc margin an easier task  when viewing a con

tour map or wire-frame model of the optic nerve head, the visual cues from the 

photographs themselves are no longer used. Even with additional three- 

dimensional information, the task of reliably locating the optic disc margin (or 

the edge of the cup) is not a trivial one.
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The disc boundary is difficult to extract reliably from the three-dimensional 

topographic model of the fundus, and it is equally difficult to determine the cup 

edge position [Peli89]. A method to automate the task  of locating the optic disc 

boundary from a topographic representation of the fundus is of key importance.

H o r i z o n t a l  c r o s s - s e c t i o n  of  computed d i s p a r i t y

7 500 -

(Li
X 3 750 -
a
c

00  0 0  -
rr
♦j

a
-7  500 -

00  00 63 75 191 2 255 0 316 6 382 5 510 0

Image c o o r d i n a t e s

Figure 9.1. A horizontal cross-section of computed depth through the 

optic disc from Data Set B, highlighting the difficulty in specifying the 

location of the disc boundary.

It was initially assumed that with a computer generated depth map, locating the 

optic disc boundary (and the optic cup) would be a relatively easy task. There

fore, most of the effort in this research was directed toward first obtaining an 

accurate depth map. This assumption, however, was mis-directed. By examin

ing typical contour map results, like those in presented in chapter 6 (figures 6.5 

and 6.7), one can begin to see that locating the disc boundary in the general case 

is itself a major research task. The complexity of the problem was grossly 

underestimated, and a disproportionate amount of time went toward obtaining 

accurate topographic measurements, with little time remaining to address the
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problem of obtaining clinical parameters.

Figure 9.1 shows a one-dimensional cross-section through the contour depth 

map of D ata Set B (as shown in figure 6.4c). Note tha t for this particular profile, 

the left-hand boundary of the optic disc is easily sited, but th a t a procedure for 

automatic location of the right-hand boundary is not easily specified. Similar 

representations of disc topography shown in the literature are typically only a 

simple 1-D profile through a measured optic disc, avoiding the difficulties associ

ated with automatically locating the disc boundary in two dimensions (see, for 

example, [Johnson79], [Algazi85], and [Lee91a]). More recently, Lee and Brady 

[Lee91b] have taken a monocular approach to optic disc boundary detection, 

where the optic disc region is segmented from its surround using morphological 

image operations. The difficulty with this approach is th a t the bright central 

region of the optic nerve head and the scleral ring or bright crescent th a t often 

surrounds the optic disc do not necessarily correspond to the location of the disc 

boundary.

Commercially available systems for optic disc analysis, discussed in chapter 

3, require a human operator to mark key boundary points along the optic disc 

(see [Peli89]). Before an automated procedure to detect the boundary of the optic 

disc can be developed, a greater understanding of the heuristics by which clini

cians now do the task manually is required. With hindsight, the problem of 

automating what clinicians do is an example of a class of vision problems where 

machine vision has not yet reached the complexity of human vision.

The ground work of the research in this thesis now provides a suitable stereo 

matching algorithm for fundus image data, an understanding of the source and 

magnitude of matching error, and a method for automatic generation of contour 

maps of the optic disc topography. This is a sound base from which to progress 

in solving the problems of automated optic disc measurement.
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9.4 Suggestions for Further Work

Finally, some suggestions for further work which build on the research 

presented in this thesis are given. To indicate what may represent the future of 

stereoscopic analysis of the optic disc, figure 9.2 shows the graphical projection of 

the fundus image from Data Set C onto the computed surface topography. 

Appendix I presents some additional results of applying Gruen’s algorithm to 

several simultaneous stereoscopic fundus image pairs obtained using the Donald

son stereo fundus camera (similar to Data Set C). Although these results are not 

discussed in detail, they give an indication of how well the algorithm can perform 

on a varied set of fundus image data.

There are a number of suggestions for further work which are a natural 

extension to the research presented in this thesis. As discussed in the previous 

section, it is of key importance to investigate methods for automatic disc boun

dary detection. Demarcating the optic disc boundary is still very much a subjec

tive task, even with the aid of additional three-dimensional information from 

stereoscopic analysis of optic disc topography. If a robust method can be 

developed, it will be important to compare clinicians’ estimates with those 

obtained automatically, and to make some assessment of the reliability and 

reproducibility of the method.

Another area which requires further study is in the improvement of the 

stereo matching method. For example, it would be useful to investigate the 

effect th a t image pre-filtering may have on matching error. Gruen has reported 

tha t for certain types of image, a small amount of spatial pre-filtering, such as 

local averaging, can improve both the convergence and accuracy of the match 

[Gruen86]. Pre-filtering of the fundus image data prior to stereo matching 

requires further investigation. Other improvements to the basic Gruen stereo 

matching algorithm, such as dynamic match window size, param eter weighting, 

and run-time error analysis, are all interesting areas for further study.

The theoretical and experimental results presented in this thesis indicate 

th a t the error prediction formulae developed in chapter 7 might be used to
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Figure 9.2. The fundus image from Data Set C projected onto its com

puted surface topography. The super-imposed grid indicates the points 

at which disparity estimates have been computed.

predict, assess, and control cross-correlation error. However, these theoretical 

tools were developed primarily to study the associated error in stereo matching 

the fundus image data. In order for such tools to become more generally applica

ble to a wider class of image domains, enhancements to the image model and 

error prediction formulae would be required. For example, as noted in chapter 8, 

it would be of great interest to characterise the distribution of matching error, so 

that it would be possible not only to predict the magnitude (standard deviation)
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of the matching error, but also to give the associated probability of such an error 

occurring. With a more rigorous mathematical treatm ent of the error prediction 

formulae, it might be possible to derive analytical error probability measures.

One final recommendation for further research is to give more consideration 

to the latest form of fundus image source, the Scanning Laser Ophthalmoscope 

(SLO). Fitzke et al [Fitzke91] are exploiting the confocal properties of the optics 

of the SLO in order to obtain optical sections of the optic nerve head. Optical 

sectioning through small increments of depth could potentially revolutionise the 

clinical study of the optic nerve head. It would be of great interest to combine or 

compare the topographic measurements of the optic disc obtained from stereos

copic analysis and optical sectioning.

The work presented in this thesis provides a sound base from which to pro

gress in solving the problems of automated optic disc measurement. Recent 

advances in the fields of image processing, lasers, optics, computing, and 

ophthalmology are converging toward a fully autom ated system for diagnostic 

evaluation of the hum an fundus.
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Appendix I 
Some Further Results

Presented here are some additional results of applying Gruen’s algorithm to 

several simultaneous stereoscopic fundus image pairs obtained using the Donal- 

son stereo fundus camera (similar to Data Set C). Although these results are not 

discussed in detail, they provide additional illustrations of the computed topogra

phy of the optic disc.

The methods employed to obtain each digitised image were the same as 

those used for Data Sets B and C, discussed in chapter 6, section 6.3.1. For each 

stereo image pair, the Gruen-Otto algorithm was applied after manually select

ing a small set of seed match points. The selection of the match window size was 

determined by applying the theoretical techniques presented in chapters 7 and 8. 

Figures 8.6 through 8.10 indicated that an average match window size of 21x21 

pixels would yield better than 0.5 pixel r.m.s error in match location for a 

representative set of fundus image regions, assuming that the signal-to-noise 

ratio is better than 1:1. All the results presented here were matched using a 

21x21 match window size.

The Gruen-Otto algorithm is a region-growing, stereo matching algorithm 

which results in a grid-like coverage of the left-hand image (see chapter 5, sec

tion 5.6.3). This set of stereo images was matched with a neighbourhood spacing 

of 5 pixels, and thus the results are similar to those presented for Data Sets B 

and C. The time to process each image pair was approximately 1 hour running 

on a Sun Microsystems SparcStation 4/370.

The presentation of the stereo match results for each image pair is similar to 

that used in chapter 6 in figures 6.4 through 6.9. Additionally, the graphical pro

jection of the left-hand image from each pair onto the corresponding computed 

surface topography is shown in order to better illustrate the results.
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Figure A.I. Image pair #1: stereo match results of a Donaldson stereo 
fundus image pair, showing (a) original left-hand image, (b) original 
right-hand image, and (c) grey-scale (depth-shaded) image of disparity 
values, (continued...)
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(d)

Figure A.l (cont.). (d) the left-hand image in (a) projected onto its com
puted surface topography.



Figure A.2. Image pair #2: stereo match results of a Donaldson stereo 
fundus image pair, showing (a) original left-hand image, (b) original 
right-hand image, and (c) grey-scale (depth-shaded) image of disparity 
values, (continued...)
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(d)

Figure A.2 (cont.). (d) the left-hand image in (a) projected onto its com
puted surface topography.



232

\  W'M/
f t  '

(c)

Figure A.3. Image pair #3: stereo match results of a Donaldson stereo 
fundus image pair, showing (a) original left-hand image, (b) original 
right-hand image, and (c) grey-scale (depth-shaded) image of disparity 
values, (continued...)
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(d)

Figure A.3 (cont.). (d) the left-hand image in (a) projected onto its com
puted surface topography.
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Appendix II 
Gruen Program Source Code

This appendix contains the ‘C’ source code listing of the Gruen program, 

together with a brief description of how the program can be used (in the form of 

a UNIX m anual page). This implementation of Gruen’s algorithm [Gruen85,86] 

and the region-growing extensions of Otto and Chau [Otto89] follows the 

pseudo-code description of the algorithm presented in chapter 6.
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NAME
Gruen - stereo matching using Gruen’s method with sheet growing extension 

SYNOPSIS
Gruen [ -p  patchradius ] [ - t  xyjhreshold ] [ -s shaping threshold ] [ - i  maxiters ] [ -g  
startx nx incx starty ny incy ] [ -e eigenjhreshold ] [ -c conrad ] [ -x  radiomet ricypt ] [ 
-d  distort Jhreshold ] [ -m  maxrs ] [ -n  minrs ] [ -u  maxrg ] [ -v  minrg ] [ -b  ] imagel 
image2

DESCRIPTION
Gruen uses Gruen’s adaptive least squares correlation algorithm and a sheet growing 
algorithm to produce an array of disparity points for imagel and image2. A number of 
seed points are necessary as the start off points for the algorithm. The seed points are 
read from standard input. The algorithm for sheet growing is based on a "best" first 
growing algorithm. The match with current best "score" is used to predict an initial guess 
for the match of its neighbours. The "score" used is determined by the x and y terms in 
the covariance matrix of the parameters. (See the section on "precision" in Gruen 1985.) 
The largest eigenvalue of this submatrix defines the score (thus, the nearer the eigen
value to 0, the better the match). A priority queue based on this score is used to imple
ment this strategy. Hence, the matching "grows" out from the best matched points first.
The output format is the same as the input format and is as follows:-

fieldl field2 fieldl3

where,
fieldl,field2,field3,field4

fieldl and field2 are the sample,line of the left hand image. Similarly field3 and 
field4 are the sample,line of the corresponding point in the right hand image.

field5This is the disparity measured for the match, determined from fieldsl-4.
field6, field 7, field8,field9

These are the 4 shaping parameters corresponding to the affine matrix elements s ll, 
sl2, s21 and s22 respectively.

fieldlO
This is the additive radiometric parameter where 0.0 means that there is no additive 
shift.

fieldl 1
This is the multiplicative radiometric parameter where 1.0 means that there is no 
multiplicative gain.

fieldl2
This is an integer field which is used to denote how many iterations the algorithm 
required before reaching the termination thresholds.

field 13
This field is the largest eigenvalue for the covariance matrix mentioned above. The 
larger the number, the less confident the stereo match.
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OPTIONS
-p  patchjadius

Modify the default patch radius. The patch will be square, with each side of length 
2xpatch_radius+l. The default radius is 12.

- t  xyjhreshold
Modify the default xy threshold, which specifies the termination threshold for the x 
and y parameters — when the changes are less than this threshold (in magnitude) 
the iteration terminates. The default value 0.05.

-s shapingJhreshold
Modify the default shaping paramter threshold, which specifies the termination 
threshold for the affine shaping parameters — when the changes are less than this 
threshold (in magnitude) the iteration terminates. The default value 0.05.

-i maxiters
Modify the default maximum no. of iterations. The default is 16. There is a limit on 
the maximum number of iterations because Gruen’s algorithm may not converge.

-g  startx nx incx starty ny incy
These parameters will specify the area of the image in which the sheet growing algo
rithm should be working. The default for startx and starty are (0,0) i.e. top left and 
incx and incy are 5 i.e. sample every 5 pixels. The nx and ny are set to size of input 
image / 5.

-e  eigenJhreshold
Modify the default eigenvalue threshold, which specifies the threshold used on the 
largest eigenvalue of the x-y covariance matrix. If the threshold is 0.0 (default), then 
this constraint is not used. Otherwise, any point with the eigenvalue less than this 
threshold will be considered as valid.

-c convergence radius
Modify the convergence radius threshold, which sets the threshold limit of the 
difference in the calculated disparity (after gruen) and the predicted disparity (from 
the sheet growing). The default is 3.0 pixels, i.e. it will allow a shift of 3.0 pixel and 
the point is still valid.

~x radiometric option
Modify the default radiomteric option used as match parameters. The options are 0) 
no radiometric parameters, 1) multiplicative radiometric gain only, 2) additive 
radiometric shift only, 3) both additive and multiplicative radiometric parameters. 
The default is option 3.

-d  distort Jhreshold
Modify the default distortion threshold, which specifies the threshold used on the 
standard deviation of the 2 rotational parameters in the distortion matrix. The 
default is 0.1. Any point with the standard deviation less than this threshold will be 
considered as valid.

-m  maxrs
Modify the default threshold used on the additive radiometric parameter of the final 
match. This sets a limit on the maximum radiometric shift allowed for each point. 
The default is 128.0.
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-n  minrs
Modify the default threshold used on the additive radiometric parameter of the final 
match. This sets a limit on the minimum radiometric shift allowed for each point. 
The default is -128.0.

-u  maxrg
Modify the default threshold used on the multiplicative radiometric parameter of the 
final match. This sets a limit on the maximum radiometric gain allowed for each 
point. The default is 4.0.

-v  minrg
Modify the default threshold used on the multiplicative radiometric parameter of the 
final match. This sets a limit on the minimum radiometric gain allowed for each 
point. The default is 0.25.

-b  Various diagnostic messages are output for debugging and testing purposes. The 
default is no debugging.

DIAGNOSTICS
Assorted difficulties and errors will produce messages on standard error. These are 
intended to be self-explanatory.

BUGS
In this implementation, the image patches must be square, with each point weighted 
equally.
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1. INTRO DUCTIO N

Consider a continous, two-dimensional function F(x,y), which might for example be the 
apparent brightness of a scene. In image processing, and indeed in other areas of science 
and technology, it frequently happens that a sampled version of F(x,y) is obtained, and 
that this sampled version, which we shall denote by f(x,y), has to be examined to see if a 
portion of the sampled data corresponds to a previously stored reference pattern or tem
plate, which we shall denote by g(x,y). The size of the template is usually much smaller 
than the size of f(x,y): for example f(x,y) might be non-zero over 512 by 512 pixels, 
while g(x,y) might be of size 32 by 32 pixels. The process of searching f(x,y) to see if a 
portion of it corresponds to g(x,y) is often called template matching. A number of algo
rithms exist for carrying out the matching: most of them are based on two or three varia
tions on the theme of correlation.

In correlation the template is moved across the scene and some measure of the match is 
derived. This correlation measure can be thought of as a two-dimensional surface: the 
hope is that there exists a well-defined peak, or perhaps a minimum, which represents the 
location in f(x,y) where a near-copy of g(x,y) may be found. If g(x,y) is identical to a part 
of f(x,y) then the process can be considered to be auto-correlation, though not in the 
strict mathematical sense, which requires that the template and scene should be identical. 
If g(x,y) is known to differ in some way from all or part of f(x,y) then the process should 
strictly be called cross-correlation.

The hope of finding a perfect match is often not fulfilled in practice. A copy or near-copy 
of g(x,y) may not be present in f(x,y); the correlation algorithm and the structure of the 
functions f(x,y) and g(x,y) may be such that false correlation maxima (or minima) may 
be larger than the ‘correct* match; noisy data may distort the shape of the peak; or the 
scene may have so little structure that the correlation maximum is excessively broad.

Although it is obviously important to be able to predict the performance of a correlation 
algorithm for a specific type of scene and template, relatively few theoretical predictions 
have been published. The correlation functions of elementary types of scene, such as iso
lated square objects on a uniform field, can obviously be calculated with little difficulty. 
However, theoretical analyses have usually been confined to more general discussions of 
unspecified scene structures (see e.g. [De Soete], [Dvomychenko], [Parthasarathy], 
[Sclove], [Therrien & Fukunaga]). At the other extreme, much of the experimental work 
which we have located has been either heuristic or empirical in nature (e.g. [de 
Bougrenet], [Gruen a], [Caelli], [Chan], [Lee & Lei], [Rosenholm a, b]). This is unfor
tunate: on the one hand, it is sometimes difficult to predict the performance of a particu
lar algorithm from its theoretical description, and on the other hand it is often equally 
difficult to extrapolate from a limited set of experimental results. It is the purpose of this 
report to derive explicit formulae which permit relatively simple predictions of the per
formance of two standard cross-correlation algorithms in terms of a few easily-definable 
scene parameters. Formulae are also derived for the one-dimensional case. The contents
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of this report apply only to noise-free scenes: an analysis of the effects of noise will 
appear in Chapter 7 of D.G.’s PhD thesis.

The report contains a brief review of certain correlation algorithms (section 2). After a 
description of how the scene structure is defined (section 3), the one-dimensional auto
correlation case is treated first (section 4), followed by an analysis of two-dimensional 
auto-correlation (section 5). The extensions to cross-correlation are then considered (sec
tion 6 ).



2. CRO SS-CO RRELATIO N ALGORITHM S

We assume that f(x,y) has non-zero values only over the range —N 12 < x  < N / 2 , 
—N I 2 < y  < N 12 , that g(x,y) is non-zero over the range —M 12 < x  < M /2  , 
—M 12 < y  < M / 2  , and that M < N .  The two correlation algorithms which we shall be 
concerned with are defined as follows:

C ( d , e ) = +̂ f 2  g ( x , y ) f ( x + d y + e ) ( 1 )
y= -M  f l  x=-M  12

where x and y are initially assumed to take only integer values and d  and e are the dis
placements of the template origin relative to that of the scene, and

CSsd(d,e)  = T 2 ( g ( x , y ) - f ( x + d , y + e ) ) 2 (2)
y=-M  12 X——M 12

The subscript *ssd* stands for ‘sum of squares of differences* and the displacements d  
and e are assumed to be sufficiently small that the template never falls outside the non
zero range of the scene. Expression (1) is the most-frequently used algorithm, or rather 
the one which is most frequently described. Under ideal circumstances it produces a 
correlation peak for the particular values of d  and e where a copy of the template can be 
found in the scene, whereas expression (2) produces a correlation minimum. Expression 
(2 ) can be called the minimum-error, minimum-square-error or least-squares algorithm 
(see e.g. [Lee & Kim]), though it is sometimes misnamed the mean-square-difference or 
mean-square-error algorithm. There may, of course, be several copies or near-copies of 
the template in the scene, in which case there will be several maxima or minima. Scaled 
or normalised versions exist for both of these algorithms, but we will not deal with these 
versions here, or with other correlation algorithms (see e.g. [Rosenfeld & Kak], section 
9.4.1., [Pratt], section 19.1, [Griffin]).

If we expand (2) we obtain

Cssd(d,e) = +' f f  g 2( x , y ) - 2 f ( x , y ) g ( x , y ) + f 2(x ,y)  (3)
y= -M  12 x=-M  12

The first and last terms in (3) are related to the local average values of the template and 
scene. In many cases we may approximate them by constants, and this is what we shall 
do in this report. Thus the variable term is the second, which can be seen to be identical 
to C (d ye ), apart from a factor of —2. For the particular case when / (x,y)  and g ( x ,y ) 
are equal then Cssd(d ,e)  has the value of zero when c and d  are both zero. In this 
instance, and with the assumption about the constancy of the f 2(x>y) and g 2(x fy )  
terms, CSS(j (d ,e  ) reduces to

Cssd(d ,e )  = 2C (0,0) — 2C (d ,e ) (4)

We shall use this approximation throughout this report in order to derive expressions for 
Cssd (d te ) from C(d).  The practical advantage of Cssd( d 9e)  over C (d ,e )  is that it is 
less affected by large DC scene components (the covariance correlation measure also 
avoids the effect of DC biases, by calculating the mean, then removing it - see e.g.
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[Keating]). Thus, provided that descriptions which are easy to sum or to integrate can be 
found for g and / , so that we can derive an expression for C (d,e  ), then we can immedi
ately write down the (approximate) expression for CSS(i ( d , e ).

It is the aim of this work, to derive analytical expressions for the shape of C { d te ) and 
Cssd(d  ,e ) in the vicinity of the "ideal" correlation maximum or minimum, as a function 
of the following parameters:

the size of the scene f(x,y), assumed to be N by N pixels square,

the size of the template g(x,y), assumed to be M by M pixels square (M < N),

a(r,s), the spatial frequency amplitude spectrum of the scene, where r and s are the spatial 
frequencies in the x and y directions,

The effects of noise are not discussed in this report: they will be considered in D.G.’s 
PhD thesis.

It is important to note that our particular aim is to derive formulae which are suitable for 
describing the performance of a more complicated scene-matching algorithm for use in 
stereophotogrammetry. The algorithm is a least-squares cross-correlation algorithm, and 
has been developed by a number of workers - see e.g. [Gruen], [Otto]. It is not our pur
pose to describe this algorithm in detail, but it is relevant to note that one important 
feature of this algorithm rests on the assumption that it is possible, under favourable con
ditions, to obtain sub-pixel registration accuracy using correlation methods. In the 
present context, this implies that the correlation functions C (d ,e )  and Cssd(d,e) ,  which 
strictly speaking exist only for integer values of the displacements d  and e , have a valid 
meaning for non-integer values of d  and e , particularly in the vicinity of the correlation 
maximum or minimum: this point is discussed further in Section 3 which follows. In 
order to obtain formulae which are manageable and not over-burdened by superfluous 
symbols, we shall make various simplifying assumptions or approximations, which will 
be discussed as the derivation proceeds. It may comfort the reader to know that these 
approximations appear to be justified by the good-to-excellent agreement which has been 
obtained between the theoretical predictions and experimental results.



F IG U R E  1 Some examples o f scene texture.
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3. TH E TEM PLA TE AND TH E SCENE

In this report w e arc particularly interested in scenes which have random texture, in the 
sense that any part o f  the scene may be expected a priori to have the same statistics as 
any other part o f  the scene. W e shall assume that the scene, F(x,y), is a continuous func
tion o f x  and y , and that it can be described by an expression with the follow ing form:

F (x,y)  = a (r <s )c o s (-7^-0* + s? )  + <t>(V,s)) (5)

where r and s, the spatial frequencies in the x and y directions, take on only discrete 
integer values over the scene width (one cycle per image width, two cycles per image 
width, etc.). The phases <(>(r ,s ) are assumed to be randomly distributed over the range 0  
to 2K. The detailed form of the spatial frequency amplitude spectrum, a(r,s), can be left 
unspecified for the time being, except that we assume that it is real, and that a(r,s) = a(- 
r,-s), although <f>(r j  ) will not in general equal <J>(— ,—s ). Later, we shall choose forms 
for a(r,s) which are representative of some scene spectra. Note that the ranges of r  and s 
do not cover all four quadrants, because of the assumed symmetry of a(r,s). Specification 
of a (r yS ) over all four quadrants is superfluous and merely results in expressions for the 
correlation coefficients which are twice as big as those given in this report

One of the first assumptions which we shall make is that a(r,s) is non-zero over a rela
tively large range of values of r and s, that is, we implicitly assume that the scene has a 
fairly complex structure and that the template has the same sort of local texture as the 
scene. This is roughly equivalent to the assumption that the scene is stationary in a sta
tistical sense. The reason for this assumption is that, if we take as template a small but 
arbitrary portion of this scene, M by M pixels in extent, then this template will have less 
structure than the whole scene (because it is smaller and therefore has more low- 
frequency components relative to its size). The correlation surface C ( d 9e ) or Cccs (d ,e ) 
which results from the particular choice of template may, in individual cases, have a very 
peculiar, atypical shape, depending on the details of the template. The formulae which 
we shall derive can be looked on in two ways, either as the limiting case when M and N 
are large and the scene is very complicated, or as the expectation values which will be 
obtained with smaller values of N and M, and with less busy scenes, but taken over a 
very large number of repeated correlation trials with random choices of template and 
scene. In the latter case we could expect to find that individual realisations of scene and 
template may produce a correlation surface which departs significantly from the theoreti
cal predictions. A more detailed discussion of the properties of certain scenes will be 
given elsewhere [DG thesis].

The scene function F (x ,y )  is continuous in x and y, whereas its sampled counterpart 
/  C* 0 0  is strictly non-zero only at discrete values of x and y, namely the sampling 
points. However, in the remainder of this report we shall treat the functions f  (x ,y )  and 
8 (x >y) (and their one-dimensional counterparts) as if they were continuous functions. 
Our justification for this is based on two assumptions.



First, it is frequently the case that scene structures are relatively highly-correlated from 
point to point - see for example [Pratt, pp132,565]. This is not always true: for example, 
a scene may contain small structures against a background with a different texture. 
There will then be discontinuities in the correlation between neighbouring points across 
the boundaries of the small structures. However it is sometimes the case, even here, that 
the template and scene will contain such a large number of the small structures that they 
may be considered merely as ‘texture* which is uniformly distributed over the whole 
scene. Furthermore, it is often the case that significant correlation exists over a few pix
els, due perhaps to image blurring or to signal degradation in the signal-processing chain. 
In the present instance, we are interested in the case where the template represents a 
slightly-distorted version of part of the scene. The distortion may be due to rotation, 
translation, shear, expansion or some more general affine or projective transformation. 
The underlying problem is to search through the range of possible distortions and to find 
the best possible match, preferably to within a small fraction of a pixel. This sub-pixel 
search can only be carried out by resampling the data, using for example bilinear interpo
lation. Such interpolation is only meaningful if some sort of correlation exists between 
pixels. References [Sclove] and [Dvomychenko] contain theoretical discussions of some 
of the effects associated with inter-pixel correlation. We shall assume in this report that a 
meaningful interpolation can be made between the discrete samples of f ( x 9y )  and
g(x,y)-

Our second assumption is that real data are always affected to some extent by noise. 
When the noise is relatively large, the correlation surface will be so corrupted that sub
pixel location of the correlation maximum or minimum is almost impossible, unless the 
template is very large. There is therefore a regime, where it is almost irrelevant that the 
data are sampled: the best that one can hope to do is to obtain an estimate of the probabil
ity that the correlation maximum lies within a specified set of limits. Under these cir
cumstances it is permissable (with only a moderate amount of hand-waving) to treat the 
sampled functions f  (x ,y)  and g (x 9y ) as if they were continuous variables. Although 
this report does not consider the effects of noise, the inclusion of noise effects is con
veniently carried out by using the assumption of continuity.

The reader may have noticed that we have chosen to define the scene structure in terms 
of its spatial frequency spectrum and not as a Markov random field (MRF). It is our opin
ion that in many practical cases (though not always: see e.g. [Thomason]) a better under
standing and analysis of the correlation function can be obtained using the methods out
lined in this report. On the other hand, if one is interested in texture analysis, then MRF 
methods are perhaps to be preferred over the present approach.

One consequence of our assumption that the discrete sampled functions f  (x ,y)  and 
g(x ,y  ) can be treated as continuous, is that we can frequently replace summations by 
integrals. Swapping between summations and integrals is carried out at several points in 
this report where it appears convenient to do so. The reader is assured that this cavalier 
treatment could be justified at excessive length, if justification were needed.
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4. T H E  1-D AUTO CO RRELATION FU NCTION

In this section we derive expressions for the one-dimensional autocorrelation functions 
C (d)  and Cssj ( d ). This is done for two reasons: first, because the 1-D case is interesting 
in its own right (see e.g. [Oppenheim & Schafer], sections 11.5 & 11.6), and second, 
because we shall use the 1-D case to develop expressions for the 2-D case. Here we con
sider only the autocorrelation case, where the template is assumed to be identical to 
some portion of the scene.

Given a one-dimensional scene F(x):

F(x)  =  " v 'a  (n )cos (px + $ n) (6 )
n=4)

where p  = 2nJN, we may approximate the one-dimensional autocorrelation function 
C ( d )  by

_  . , M p .m=nc n-nc
C ( d )  = J  £  a(m)cos(mpx+$m) 'Z,a(rt)cos(np{x+d)+<)>„)dx (7)

—M12 m=0 n=t)

Re-arranging the sums gives

C ( d )  = f y \ ca (m )  y ]a (n )cos (m px+ ^ m)cos(np(x+d)+^n)dx (8)
—m  f2m=Q

If we decompose the double summation we obtain
M p. n-nc _

C (d )  = f V  a 2(n )cos (npx+§n)cos{np (x + d )+<)>„)dx
—M (2 n=D 

MI2 m=nc n=nc
+ | 2  a (m )  ^ a ( n ) c o s ( m p x  +<f>m)cos{np(x +d)+())n)dx (9)

—Mi2 m=0 n—0
mitn

For nc sufficiently large, and for d  sufficiently small ( d  «  N/nc), and for <|> uniformly 
distributed between 0  and 2k , we may neglect the second set of terms in comparison with 
the first: its magnitude will be of order O (nc < I a I >) in comparison with the first term’s 
O (Mnc < a 2>). To show this we note that, for small values of npd, the cos.cos term in 
the first integral will integrate to an approximate value of M/2. The summation over n 
yields nc <a  2>. Now consider the second integral. Because the phase terms are assumed 
to be randomly distributed, the cos.cos term here will in general integrate to the much 
smaller value of 0 (1 ). The double summation of a (m )a (n )  over n and m yields a 
quantity whose r.m.s. value will be of order O ( 2 <  I a I >), and it follows that the 
second set of terms may be neglected in comparison with the first We therefore obtain 
the approximate expression

M/2
C (d )  = f y* a 2(n)cos(npx+$n)cos(np(x+d)+tyn)dx (1 0 )

—m 12 n =0

Using the relation cos {a +b  ) = cos (a )cos (b)  — sin (a )sin (b ) we obtain



n=nc M p  
a \ n ) IC ( d )  ~  V  a 2(n)  I cos(npx +<(>„)cos(npx +<()„)cos(npd)dx 

n=0 -M /2
n-ric 0 M/2

-  V  a 2(n ) [ C051 (npx -Hj>„ )sin (npx-K|>n )sin (npd )dx (11) 
n=3) —AT!2

n=nc M p
= T . a 2(n)cos(npd)  I cosl (npx+$n)dx 

/i=0 —M 12

-  ny ea 2(n)sirt(npd) ^  cos (npx +<(>n m (npx +<)>„)dx (12)
/ S )  -M/2

We make the approximation that the expectation value of the cos2  term is 1/2 over the 
range of integration, except for the DC term n = 0, for which we must use a value of 
unity. This is a good approximation for large values of M  and nc , but it becomes pro
gressively poorer as M  and/or nc tend to unity. In such circumstances the comments in 
the introduction, namely that the resulting formulae represent average values over many 
trials, apply. Similarly, we approximate the sin.cos term by its expectation value of zero. 
This yields

C (d )  = M a \ 0) + M 12 y ! a 2 (n )cos{n p d ) (13)
n=1

which may be further approximated by

C ( d ) = M a 2 (0) + M 12 a 2(n)cos(n p d )d n  (14)
n=1

4.1. Specific Scene Structures

In this section we shall derive expressions for C(d) when the scene is described by 
specific formulae which represent cases which are often found experimentally. In particu
lar, we consider scene spectra given by the following formulae:

(15a)

(15b)

(15c)

The first describes a spectrum which is flat out to a cut-off frequency nc, except for the 
DC component, which has an amplitude B (the inclusion of a distinct value for the DC 
term permits us to consider the all-too-frequent cases where the scene structure is rela
tively low-contrast and the background level is high). The second describes a spectrum 
whose amplitudes decrease linearly to the cutoff frequency: for this spectrum also, a DC 
component of amplitude B is included. The third spectrum follows a 1 //  law between

( 1 ) a(n)  = b , 1  < n < nc;

IIoV-/

(2 ) a(n)  = b (  1  - \n \ ln c)y 1  < n < n c;

a ( 0 ) = B

(3) a(n)  = bln  , 1  < n < nc.

Cl o II to
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/  = 1 , where its amplitude is b , and n = n c , the cutoff frequency (note that nc is not the 
Nyquist frequency). The DC component in this example is once again chosen to have an 
amplitude B. In all of these cases we assume that the phases of the individual com
ponents are randomly distributed between 0 and 2tc.

Case 1: Flat Spectrum

The formulae for C (d)  is readily derivable for this case:
n=nc

Although this expression is quite straightforward, the expressions which are obtained 
with other scene spectra are not so understandable. It is also the case that the expressions 
for C ( d )  become progressively more inaccurate away from the peak. Since we are 
mainly interested in the shape of the curve near the peak, we expand the expression as a 
power series in d :

provided that 1 «  nc < N ,  and nc < N /4 d .  If we replace p  by 2idN and neglect the 
lower limit of the integral in comparison with nc , we obtain

As one might expect from considerations of symmetry, the approximate expressions have 
a quadratic variation with d .

Case 2: Linearly-Decreasing Spectrum

It is possible to obtain an exact solution to (14) when the spectrum is given by (15b), but, 
given the variety of approximations which are involved, it is not particularly meaningful. 
We therefore consider only the shape of C ( d )  in the region of the maximum. For this 
particular scene spectrum, if we approximate cos (x ) by 1  — x  2 /2 ,

C (d )  = M B 2 +  M!2  f b 2 cos(npd)dn
1

(16)

M B 2 +  |jj/i(ncp d ) -  sin(pd ) j (17)

C ( d )  ~ MB2 +  \pdnc — p 3 d 3 nc 3 / 6  + .. — p d  + p ^ d 2/6 + ..  j (18)

C (d )  = M W 2- b 2ncl2 ]  -  n2d 2M b zn?IQN2) (19)

Hence, from expression (4),

Cssd(d )  = 2n2d 2M b 2n<?/QN2) (20)

(21)

„ n ?  . Mb2nc M b 2p 2d 2n 2 m b 2 + — 5--------------- m ------vin (22)



if we neglect the lower limit of the integral in comparison with nc . Replacing p  by 2tcJN 
gives

i /  n i  b 2nc M b2K2d 2rtc 3  
C (d)  =  M B 2 + - ^ -  r  ■ (23)

whence, using (4),

^  -  M b 2wtd 2nc'i
L s s d ( a ) ----------- Y 5 N 1------ (24)

Case 3 : 1/F Spectrum

In this case the correlation coefficient C ( d )  is given by

C (d ) = A/B2  + 7 ,  Cos(y [ d  ̂dn

Changing variables in the integral yields
nJ= 1 *

J *

=  p d -c o sfr)  _ r w»( x ) dx
JC * ^ pd

(25)

(26)

(27)

The integral in (27) is the sine integral Si () (see e.g. Abramowitz & Stegun section 5.2). 
We shall approximate the integrand, for argument values less than ni2, by 
(1 —x 2/6 + ...). We thus obtain

jdn = p d  £-coy (x )/;c - x  +  x 3/18 + • • •

= - p d

Hence

and

ncp d  p d

= 1  -  (pd)2ncl l

C(d)  = M ( B 2 + b 2/2) -  n2Mncb 2d 2IN2

Cssdid) = 2n2Mncb 2d 2IN2

(28)

(29)

(30)

(31)

(32)

Comparison of Correlation Formulae

It is of interest to note that expressions (20), (24) and (32) have almost the same form, 
but in going from the flat-spectrum case to the 1 /f spectrum case the sensitivity of the
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correlation to the cut-off frequency nc varies in the ratio

2  n }  n }
~ T ~  : "13" : 2n°

In the flat-spectrum case the dependence on the cut-off frequency is quite strong, as one 
might expect, while the dependence on nc is much weaker for the 1  If  spectrum.
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5. TH E TW O -DIM ENSIONAL AUTO CO RRELATION FU NCTION  

Consider the two-dimensional im age function

f ( x , y )  =  ' f a ( r a ) c o t ( ^ r ( «  +  ) +  <i>r ,*) ( 33)

where we assume that a (r ) is real and symmetrical in r and s . Note that the summa
tion over r extends over both positive and negative frequencies, in order to avoid asym
metries in the scene structure. It would be possible to extend the range of the s summa
tion as well, but this would merely result in an overall doubling of the scene amplitude. 
We shall ignore the fact that, strictly speaking, we should not include frequency com
ponents for which r  < 0  and 5 = 0 .

The 2-D autocorrelation function C (d ,e ) of /  (x ,y ) is:
Af/2 Af/2 ju

C (d ,e )  = I I S  x a  (r j  )cos (rpx +  spy + $r j )
-AT/2 -AT/2 r  " n e s^O

£  ^ \a  (u ,v )cos (up (x+d)  +  vp (y+ e)  +  %  >y )dxdy (34)
u=-nc v^)

where r r s , u ,  and v are spatial frequencies, andp  = 2n/N as before. As for the 1-D
case, we factor out the terms in the summation for which r —u and s = v . Only this
group of terms is retained:

Af/2 Af/2 n, n,
C ( d ,e )  = 1 1 £  T a  \ r  ,s )cos(rpx + spy +  <t>r j )

-AT/2 -AT/2 r ——nc i= 0

cos(rp (x+<i ) + 5p (y +e ) +  <])r ̂  )dxdy (35)

since the remaining terms are of order nc2< I a I > in comparison with (35), which is of
order M 2 /zc2 <<z2> (see the argument for the 1-D case). Re-arranging the summations 
and integrations in (35) gives:

nc nc 0 Af/2 Af/2
C (d ,e )  = £  X r  (r,5) I I cos(rpx + spy + (Jv )̂

r~-nc s =0 -AT/2 -AT/2

cos (/p (x +<i ) + Ap (y +e ) + )<ix<iy (36)
We now expand the cosine terms in the double integral, first by the rpd components:

jjdxdy = f* cos(rpx + sp y  +(()r^)

cos(/p (x ) + sp (y +e ) + j)cos(rpd)dxdy
M p  M p  

-  _  f  J  C O S(/pJC

sin(/p (x ) + 5 p (y +e ) + <(>r ̂  )sin(jp<i )<2xd[y (37)



The equivalent spe expansion yields 

jjdxdy =
MI2 Ml2

cos(rpd) cos(spe) cos(/pjc + spy + tyr j)cos(rpx + spy + tyrtS)dxdy

M p M p
-  cos(rpd)sin(spe) cos(rpx + 5py + <)>r>J)sin(/p;t + spy + <t>rfJ>ftdy

M/2 M/2
-  sin (rpd) cos (spe) J  ^  cos (rpx +spy  + <j>rfJ)sin(rpx +spy  +<()rfS)dxdy

M p M p
-  sin (rpd) cos (spe) J  cos (rpx + spy + <(v j)cQ$(rpx + spy + §TtS)dxdy

(38)

which reduces to

jjdxdy = cos (rpd + spe) ^  cos2(rpx + spy + tyrtS)dxdy

M p M p
-  sin(rpd +spe)  J  cos(rpx +spy  + (|v^)sin(/px +spy  + <|)r j )dxdy

(39)

We make the approximation that the first double integral in (39) can be replaced by 
M 2 /2, except for the DC term r,s = 0, for which we must use a value of M 2. This is a 
good approximation for large values of M  and r  and s , but it becomes progressively 
poorer as M  and/or r , s tend to unity. Similarly, we approximate the sin.cos term by 
its average value of zero. On replacing the sums over r and s , this yields

C(d,e)  ~ M 2a (0 ,0 ) + MX ^  ^\a2(r,s)cos(rpd + spe) (40)
r=-nc s= l

As in the 1-D case, we approximate the summation by an integral:

C ( d te) ~ M 2a (0,0) + MX f f a 2(r ,s )cos (rpd + spe )dx (41)
z  r=-nc 5=1

We now make the assumption that a (r j  ) is a separable function of x and y , and further, 
that the x  and y functions are identical ( differences in scale along the two axes could 
easily be incorporated if needed). The assumption of separability is often used (see e.g.
[Pratt] for some experimental results and [Therrien & Fukunaga] for a discussion of some 
of the properties of separable covariance matrices). In the present case we write:

a ( r ry) = a(r)a(s)  (42)
where the reader will be aware that the a functions on the LHS and RHS are not identi
cal. We expand the cosine term:
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C ( d ,e )  =

M 2a (0,0) +  7  a 2(s ) cos (sp e )
z  5 = 1

-  /  a 2i s ) s in ( s p e )

nc
J a 2(r )cos (rpd )dr

r=-n,

j  a 2(r )sin (rpd )dr
r=-n,^ A i

Consider just the first part-integral in (43) :

nf1 1 = f a 2(r)cos(rpd)dr
r - - n c

which equals
ns

2  I a 2{r)cos(rpd)dr
r=0

using considerations of symmetry. A similar consideration of the integral

1 2 -  /  a 2(jr)sin(rpd)dr

ds

ds ( 43)

(44)

(45)

(46)
r= -n c

shows that its value is zero. Hence

i
5 = 1

ni
C (d ,e )  = M 2 + M 2 J a 2(s) cos(spe)

ne
I a 2(r ) cos (rpd )dr

r=0
ds (47)

At this point, hoping that the reader will bear with us, we shall make yet another approxi
mation. Instead of having a lower limit of s = 1 in the integral (47) we shall henceforth 
replace it by the value 5 = 0 .  We saw in the 1-D case that we could make this approxi
mation when nc was large in comparison with unity. It is possible to show that a similar 
approximation holds for the 2-D case. Leaving the limit 5 = 1  merely leads to extra poly
nomial terms which will only be neglected in the end.

5.1 SPECIFIC SCENE STRUCTURES

The scene structures which we consider are the two-dimensional counterparts of those for 
the one-dimensional case:

( 1 ) a ( r , s ) - b  , 1  < r j < n c;

a (0,0) = B (48a)

(2 ) a ( r , s ) = b (  1 -  \ r  l/nc)(l -  Is \/nc) , 1  < r , s  <rtc;

a (0,0) = B (48b)

(3) a ( r , s )  = b / ( r s )  , 1 < r , j < n c;

a (0,0) = B (48c)
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As in the 1-D case, these represent flat, linearly-decreasing and 1/f spectra respectively, 
at least along the r=0 and s=0 axes. These spectra are all linearly separable, whereas the 
‘real’ spectra shown in Figure 1 are circularly symmetrical.

Case 1. Flat spectrum

Since the spectrum is flat out to the cut-off frequency nc , it is easy to evaluate C ( d , e ) 
exactly (subject to the various assumptions which we have made):

C ( d ,e )  = M 2B 2 + M 2b 2 \ cos (spe)  f cos (rpd) dr ds (49)
5=0 r k )

=  M 2B 2  +  M 2b 2 ™ ( P _ p c \  s « y  (5Q)

In the present instance we are chiefly interested in the shape of the function near the 
correlation peak. Expanding the sin functions yields:

C ( d , e ) = M 2{B2 + b 2n 2) ~ M 2b 2p 2nc4 (d 2 ^ e2) + 0 ( d 2e 2)/36 (51)

If we replace p  by 2nJN then we obtain

C ( d ,e )  = M 2(B2 + b 2n 2) -  2k2M 2b 2nc\ d 2 + e 2)l(3N2) (52)

Hence

CSsd(d,e)  = 4n2M 2b 2nc4(d 2 + e 2)/(3N2) (53)

Case 2 . Linearly-decreasing spectrum

Here we consider the particular case where

a(ryS)  = b ( l - \ r  l/nc) ( l - l y  \fnc),

a (0,0) = B (54)

This is equivalent to setting the expression for a (r ) equal to

a ( r )  = b ll2( \ —\r \ ln c)t r  0

a (0) =  (B )x/2 (55)

with equivalent expressions for a (s ). The reason for using separable expressions like □, 
rather than a radial function of the form ( 1  —(r 2  + s 2)ir2/nc), is quite simple: it produces 
much simpler expressions for the correlation functions, and these expressions still agree
quite well with experiment near the correlation peak, even for radially symmetric fre
quency distributions.

For a scene spectrum as specified by (55), and approximating cos(x ) by 1 — x 2/2 as for 
the 1-D case, the correlation function takes the form



C ( d 9e )  = M 2B 2 + M 2b 2 J a 2( s ) cos (spe) ^ 3  j r£y (56)

where

/ 3 =  ]  i - 2 r + 4 - «  +  L W - 4 ^ ^
r k  nc n ?  2  nc 2 nc2

nc n ? (p d )2
~  T " W ~

The second integral in (56) has the same form as 1 2 - Thus

nc4b 2p 2(d2 + e 2)C ( d 9e)  = M 2 ry b 2n 2
B 2 + —^ ~ w + 0 ( d 2e 2)

(57)

(58)

(59)

We ignore the term in d 2e 2, as this simply makes the function tend more nearly to a 
‘square* function of d  and e (in line with the separable-axes approximation), while we 
are more interested in a circularly-symmetric approximation. Thus C ( d 9e)  becomes

C ( d 9e )  = M 2 B 2 + b 2n 2 n2n fb  2(d2 + e 2) 
45N 2

(60)

As for the 1-D case, we may deduce the correlation function Cssd (d 9e ) by inspection:

Cssd (d 9e ) = - 2  (second term o f  (60)) (61)

or

-  . 2 M 2b 2n 4K2(d2 + e 2)
Cssd(.d,e) = ---------45771--------- (62)

Case 3 .1/F spectrum

Here we have

where

C {d ,e )  = M 2B 2 + M W V z z f f i O . j/ 4]de

I  =  "jf cos {rpd) dn 
r k  n 2

(63)

(64)

From Section 4.1., Case 3, we know the value of /  4 , at least in the vicinity of the correla
tion peak:

, _  , (Pd)2nc/ 4  _  1 ----------- j ------

Therefore

( 65)
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1 -
(p d ) 2nt

1 -
(Peprtc

C ( d , e ) = M 2B 2 +  M 2b 2

= M 2B 2 +  M 2b 2 \ \ - p 2nc{ d 2 +  e 2) l l  + 0 { d 2e 2)^ 

Substituting for p  yields

and
C ( d , e ) ~  M ( B 2 +  b 2) — 2k2M  2 b 2nc(d 2 + e 2)/N2 

Cssd( d 9e )  = 4ti2M 2b 2nc( d 2 + e 2)/N2

(66)

(67)

(68) 

(69)

6 . ONE- AND TWO-DIMENSIONAL CROSS-CORRELATION FORMULAE

When the template is no longer identical to part of the scene then matters become much 
more complicated. There are many reasons why the two may differ, even if we ignore the 
effects of sampling and quantisation. For example:

1. The template may be a ‘perfect’ representation of some prototype object, but the scene 
may be corrupted by noise.

2. Both template and scene may be corrupted by noise. This is often the case in stereo- 
photogrammetry.

3. There may be differences in the DC components between scene and template, there 
may be some ‘gain factor’ which multiplies g ( x , y ) but not f  (x yy  ), or there may be 
some slow secular variations in g (x ,y ) or /  (jc ,y ) which must be taken into considera
tion.

4. The template may contain a distorted version of part of the scene. This distortion may 
be due to an affine transformation of the template with respect to the scene, or there may 
be some more complicated non-linear spatial relation between the template and its best 
match in the scene.

5. Parts of the template may simply be missing from the scene, for example due to obscu
ration or to temporal changes between the recording of the template and the collection of 
scene data.

There is an extensive body of literature which relates to the filtering of sampled, one
dimensional, electrical signal data (see e.g. [Haykin]). When the properties of the scene 
and the noise (or other perturbations) are known then Wiener filtering may be used. If the 
properties of the template and/or scene vary slowly with time (or its equivalent) then it is 
sometimes possible to employ adaptive Kalman filtering techniques.



Such methods are less successful for two-dimensional image data matching, though some 
attempts have been made. A more practical method for handling the many perturbing 
factors is to treat the problem of finding the best match between the template and the 
scene as a minimum-square-error (m.s.e.) problem using matrix methods. Here, the tem
plate data are deliberately distorted to cover the multi-dimensional parameter space (gain 
factor, x and y translation, rotation, shear etc.) until that choice of parameters is found 
which minimises the sum of squares of differences between the template and some part 
of the scene. Such methods have been explored in [Gruen a,b], [Otto] and elsewhere. 
D.G.’s thesis (in preparation) applies the technique to stereophotogrammetry of the 
human retinal fundus. Such error-minimising algorithms are based in effect on the use of 
the Cssd algorithm: their computational complexity does not at present permit even 
greater refinements, such as the inclusion of spatial-frequency weighting based on 
Wiener or Kalman filter theory. In effect, the matrix methods assume that the data are 
noise-free, and that they need only to test the template against the scene, over some 
volume of parameter space, to find the perfect match.

If we could ignore the corrupting effects of noise, sampling effects and secular or other 
slow variations, then such methods would be almost completely successful. Any imper
fect match would be equivalent to cross-correlation between a template g (x ,y ) and a 
scene /  (pc ,y ), and not to auto-correlation. The cross-correlation coefficient Cssd would 
have some minimum value at the perfect match and a greater-than-minimum value for all 
other parameter values. We might therefore be tempted to think that it would be useful to 
derive expressions for Cssd when the scene and template differ along one or other axis in 
the multi-dimensional parameter space.

In an ideal world this would indeed be the case, because one would then be able to assess 
the sensitivity of the algorithm to changes in one parameter or another. In practise, it 
does not seem to be so desirable. Apart from the enormous range of variations in possible 
scene type, the main limitation would appear to be the fact that the theory outlined in this 
report is based on the assumption that the scene is more-or-less uniform in ‘texture*. At 
the present stage of development of this class of algorithm, there seem to be more press
ing problems, the most important of which are probably

1 . the need to assess the effects of noise and

2 . the need to introduce an element of adaptability into multi-parameter matching algo
rithms, in order to cope with changes in scene texture and structure from region to 
region.

We shall not therefore in this report derive any expressions for cross-correlation which 
depend upon any particular distortion parameter.
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7. SUMMARY

In this report we have derived formulae for the shape of the correlation surface when a 
template image is matched against a scene. Two correlation algorithms were considered, 
and formulae were given for three types of scene structure. Formulae were also given for 
one-dimensional data. Comparisons between theory and experiment will be given in a 
separate publication.
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