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Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture
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A multiple-relaxation-time discrete Boltzmann model (DBM) is proposed for multicomponent mixtures,
where compressible, hydrodynamic, and thermodynamic nonequilibrium effects are taken into account. It allows
the specific heat ratio and the Prandtl number to be adjustable, and is suitable for both low and high speed
fluid flows. From the physical side, besides being consistent with the multicomponent Navier-Stokes equations,
Fick’s law, and Stefan-Maxwell diffusion equation in the hydrodynamic limit, the DBM provides more kinetic
information about the nonequilibrium effects. The physical capability of DBM to describe the nonequilibrium
flows, beyond the Navier-Stokes representation, enables the study of the entropy production mechanism in
complex flows, especially in multicomponent mixtures. Moreover, the current kinetic model is employed to
investigate nonequilibrium behaviors of the compressible Kelvin-Helmholtz instability (KHI). The entropy of
mixing, the mixing area, the mixing width, the kinetic and internal energies, and the maximum and minimum
temperatures are investigated during the dynamic KHI process. It is found that the mixing degree and fluid flow
are similar in the KHI process for cases with various thermal conductivity and initial temperature configurations,
while the maximum and minimum temperatures show different trends in cases with or without initial temperature
gradients. Physically, both heat conduction and temperature exert slight influences on the formation and evolution

of the KHI morphological structure.
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I. INTRODUCTION

Numerical simulations of multicomponent mixtures with
essential nonequilibrium characteristics are of great impor-
tance in many fields of science and engineering [1-5], as
these practical systems are often too complex to be studied by
experiment or theory in a simple and intuitive way. A typical
case is the spacecraft reentry into the atmosphere under the
condition of low air density and high flight speed [6-9].!
Other typical examples include the porous media biofiltra-
tion device, micro electromechanical system, microfluidic
device, geological storage of nuclear wastes, carbon dioxide
sequestration, combustion chamber, and rotating detonation
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'To be specific, it often involves hydrodynamic, thermodynamic,
and thermochemical nonequilibrium effects during an entry in the
atmosphere. To deal with chemical reactions, it needs to add a re-
action source term on the right-hand side of the discrete Boltzmann
equation [10-13].
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propulsion engine. In fact, the thermodynamic nonequilibrium
effect (TNE) accompanied by the hydrodynamic nonequilib-
rium effect (HNE) takes place due to remarkable regional
variations, such as around the shock front, rarefaction wave,
and material interface [14]. For such phenomena where both
TNE and HNE have a significant role due to the small char-
acteristic length and/or sharp physical gradient (noticeable
differences exist between the distribution functions and their
equilibrium counterparts, the equipartition of energy between
different degrees of freedom breaks down), the traditional
continuum description may be inadequate [9,15,16], and the
need for a microscopic or mesoscopic description arises
[16,17].

To resolve the above issue, the computational kinetic the-
ory is sought as a promising approach. As a central equation
in the kinetic theory, the Boltzmann equation has the capa-
bility to describe complex fluid flows with both HNE and
TNE. However, in practice, it is usually too complicated to be
employed for simulations in a straightforward way due to the
quadratic nonlinearity of the collision integral, dependence of
the integrand function on postcollision velocities, and high
multiplicity of integration [15]. To be specific, given a mixture
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of chemical species labeled by indiceso and x = 1,2, ..., N,
the Boltzmann equation for species o reads

afe af° afe afe
T Vi A i W
ot ory avg ot /.o

with the collision term,
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where ¢ denotes the time, r, the physical space, v the par-
ticle velocity, a the acceleration due to an external force,
N; the total number of chemical species; f° = f°(r,J?,t)
and f° = f°'(r,J°’,t) stand for the distribution functions
of species o before and after collision, fX = fX(r,JX,t)
and f*' = fX'(r, J*, t) represent the distribution functions
of species x before and after collision, J° and J* indicate
the momenta of species o and x before a collision, Jo’
and J*' are the corresponding momenta after the collision,
&X = |J° — JX| = |J°’ — J¥'| is the magnitude of the relative
momenta, /°X is the differential cross section between the two
particles. In Eq. (2) the sum of integrals describes the entry
and exit of particles of species o in or out of the phase-space
element of the momentum J and solid angel €2.

An alternative approach to the use of the Boltzmann equa-
tion is the molecular dynamics that provides accurate results,
but is incapable of simulating large-scale systems owing to
prohibitive increasing of the computational cost [16,18-20].
As another alternative method, the direct simulation Monte
Carlo method is widely used for modeling nonequilibrium
systems, including multicomponent flows and chemically re-
acting flows [15,21-23], but its probabilistic nature leads to
noisy solutions [24]. To overcome these difficulties, various
kinetic models based on a simplified Boltzmann equation
were proposed [25-30]. Such kinetic models have existed for
a very long time, starting with the famous Bhatnagar-Gross-
Krook (BGK) equation in 1954 [31]. Later, an ellipsoidal
statistical model [32] and a Shakhov model [33] were pro-
posed. An overview of their properties can be found in
Ref. [34]. Moreover, there were also kinetic models for the
gas mixtures [35,36] and gas flows consisting of molecules
with internal degrees of freedom [17]. Numerous effective
numerical methods were proposed for solving these equations
[9,24,37-39], and a large number of essentially nonequilib-
rium problems where the continuum description is adequate
or inadequate have been solved.

To further utilize the simplified Boltzmann equations, a
straightforward method is to discretize the time and space
as well as the particle velocity. In fact, the idea of using a
finite set of discrete speeds appeared early in the seminal
work [40], where the discrete velocity model was constructed
for the Boltzmann equation, and the collision integral was
expressed as a nonlinear quadratic term. In the last three
decades, the lattice Boltzmann method (LBM), developed
from the lattice gas automaton [41,42] and originally based on
the discrete simplified Boltzmann equations [25,43—48], has
been successfully used as an alternative tool of various partial
differential equations for complex systems with a multiphase
[49-54], multicomponent [55-57], mass diffusion [58,59], ex-
ternal force [60], and/or chemical reactions [61,62], etc. In the

evolution of the discrete Boltzmann equation, the particle ve-
locity space is dicretized besides the discretization in physical
space. The physical variables are calculated from the discrete
distribution functions whose evolution is obtained with proper
numerical methods. To be specific, there are two stages (i.e.,
“collision” + “propagation’) in the procedure of the standard
LBM. In the stage of collision, the lattice distribution func-
tions evolve under the control of the relaxation time. In the
phase of propagation, the particle population transfers from
one node of the square grid in physical space to exactly one
of the neighboring nodes. To meet the requirement that the
time step, space step, and discrete velocities are coupled, the
discrete speeds should be chosen in a particular way (such
as D1Q5, D2Q9, D3Q27, etc.), which is one of the charac-
teristic features of standard LBMs [25]. Although the LBM
has achieved great success in replacing traditional continuum
governing equations, few of the lattice Boltzmann models go
beyond the continuum equations to provide various significant
thermodynamic nonequilibrium information.

To address this problem, one possible method is to change
the discrete Boltzmann equation by introducing a modified
discrete equilibrium distribution function that satisfies higher
order kinetic moments [63,64]. The collision term becomes
complicated with increasing kinetic moments required due to
the simplicity of the discrete equilibrium distribution function
and the lattice symmetry [63,64]. In fact, a more direct way
is to invoke a novel methodology, the discrete Boltzmann
method (DBM), which is regarded as a modern variant of the
standard LBM [10-13,65-73]. The DBM is based on the dis-
crete Boltzmann equation, which can be solved with various
numerical approaches. For time discretization, the implicit,
explicit, or implicit-explicit scheme [74] can be employed. For
space discretization, the frequently used schemes include the
finite difference, the finite volume, the finite element, and the
spectral methods. The numerical flexibility makes it easier to
perform simulations with desirable robustness, accuracy, and
efficiency. The numerical scheme for the DBM can be chosen
to balance the desired physical fidelity and computational
cost.

In a broad sense, the DBM can be regarded as a dis-
tinctive branch of the LBM tree and has special features
compared with the other branches of LBMs [25,43,75,76].
Standard LBMs mainly serve as solvers of (incompressible
or slightly compressible) Navier-Stokes (NS) equations or
other partial differential equations and aim to be loyal to
these original equations. The DBM is equivalent to a modi-
fied hydrodynamic model plus a coarse-grained model of the
thermodynamic nonequilibrium behaviors [10-14,65-73]. In
other words, the DBM kinetic modeling goes beyond tradi-
tional macroscopic governing equations in terms of physics
recovered. To be specific, the DBM provides two tools to de-
scribe the TNE: one is to employ the viscous stresses and heat
fluxes derived via Chapman-Enskog (CE) multiscale analysis;
the other is to use kinetic moments of the differences between
the distribution functions and its equilibrium counterparts
[10-14,65-73]. The former simply describes the TNE upon
the evolution of macroscopic fluid behaviors, while the latter
provides a detailed description of the specific nonequilibrium
degree. The study of TNE based on the DBM is helpful
to deepening the understanding of the linear and nonlinear
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constitutive relations in hydrodynamic fluid models from a
more fundamental point of view [11]. It is convenient to use
the DBM to probe the relationship between the nonequilib-
rium quantities and other concerned physical variables (e.g.,
entropy) and identify the correlation and similarity between
different nonequilibrium states or processes [70].

Due to its solid physical foundation, the DBM has been
applied to investigate various complex fluid flows and gained
some new physical insights into the corresponding systems,
including multiphase flows [65,66], reactive flows [10-13],
and fluid instabilities [14,67,68,70,77,78]. Besides by the-
oretical analyses and experimental data [12], DBM results
have been confirmed and supplemented by numerical solu-
tions of molecular dynamics [18,19], direct simulation Monte
Carlo [79], etc. Generally, in terms of relaxation time, the
DBM can be divided into two classes, single-relaxation-
time DBM [13,65,67,79] and multiple-relaxation-time (MRT)
DBM [69-73]. From the perspective of fluid species, it can be
classified into two categories, single-component DBM [14,65]
and multicomponent DBM [12,13,68]. Now we propose a first
MRT DBM for multicomponent flows. Compared with single-
relaxation-time DBMs where there is only one relaxation time
and a fixed Prandtl number Pr = 1 [13,65,66], the MRT DBM
has various relaxation times for different nonequilibrium pro-
cesses and a flexible Pr. In contrast to single-component
DBMs [14,65], N-component DBM describes each chemical
species by an individual distribution function, and conse-
quently presents a much finer treatment of the flow system;
for example, each component has its own particle mass, den-
sity, flow velocity, temperature, viscosity, heat conductivity,
etc. As a preliminary application, the current model is used
to study the nonequlibrium mixing process induced by the
Kelvin-Helmholtz instability (KHI) in this work.

The KHI is a fundamental interfacial instability in fluid me-
chanics [80-82]. It occurs when there is velocity shear across
a wrinkled interface in a fluid system, and leads to the forma-
tion of vortices and turbulence [80]. KHI phenomena are ubig-
uitous in nature and are of considerable interest in scientific
and engineering fields [77,83-87]. Although the KHI has been
investigated extensively, there are still some open problems,
such as the effect of heat conduction or ablation, on which the
conclusion is highly controversial [77,83—-86]. Viscous poten-
tial flow analysis of the KHI around a liquid-vapor interface
suggests that heat transfer (resulting in mass transfer) tends
to enhance the unstable process of a fluid system [83,84]. On
the other hand, comparison of numerical results between the
classical and ablative KHIs indicates that thermal conduction
(with dissipative nature) stabilizes the flow by impeding the
linear growth rate and frequency, suppressing the perturbation
transmission and fine structures, but it promotes the vortex
pairing process and large-scale structures [85,86]. Very re-
cently, Gan et al. proposed an easily implementable DBM for
the KHI with flexible specific-heat ratio and Prandtl number,
and found that the thermal conduction first restrains and then
strengthens the KHI afterwards [77] because it extends both
density and velocity transition layers simultaneously.

However, the aforementioned studies on KHI are based
on numerical models only applicable to single-component
fluids. These models have the following constraints: (1) The
fluid within the same chemical species can be studied, while

the interaction between different components is beyond its
capability. (2) To set the pressure invariant across a material
interface in an initial configuration, a heavy (light) medium on
one side of the interface should have a low (high) temperature,
because the pressure is a linear function of the concentration
and temperature. (3) As changes of density and temperature
are strongly coupled due to the equation of state, heat transfer
always results in mass transfer, and vice versa. In other words,
the independent impact of either density or temperature (i.e.,
mass or heat transfer) cannot be accurately probed. For exam-
ple, the effect of the Atwood number is bound to the influence
of temperature differences. For the sake of investigating an
independent thermal effect (or impact of temperature varia-
tion) on KHI, it is necessary to adopt a two-component (or
multicomponent) physical model suitable for the practical
situation where the changes of mass density and temperature
are not combined together [68]. For instance, the multicom-
ponent model is applicable to fluid systems where the Atwood
number is constant and the component temperature is variable.
In fact, it is one reason why we develop the MRT DBM for
multicomponent mixtures and apply it to the thermal KHI in
this research.

The rest of the paper is organized as follows. Details of our
DBM are described in Sec. II. In Sec. III the model is validated
by three benchmarks: the three-component diffusion, the ther-
mal Couette flow, and the Sod tube shock. Then the DBM
is employed to investigate the compressible nonequilibrium
KHI with various initial temperature and thermal conductivity
in Sec. I'V. Finally, Sec. V gives conclusions and a discussion.

II. DISCRETE BOLTZMANN MODEL

In nonequilibrium statistical physics, the system is de-
scribed by the particle velocity distribution functions that are
equivalent to all their kinetic moments (from zero to infinite
orders). In theory, the main features of the distribution func-
tion can be captured by the initial parts of its kinetic moments
(with relatively low orders) [34]. More kinetic moments are
needed to describe the nonequilibrium behaviors with increas-
ing deviation from the equilibrium state.

In the constructing process of the DBM, there are three
main stages: (1) simplification of the collision term, (2)
discretization of the velocity space, and (3) description of
meaningful nonequilibrium information. The first two phases
belong to coarse-grained physical modeling, where the con-
cerned physical variables (including conserved quantities and
some nonconserved ones) should remain unchanged during
the simplification and discretization process. The last step
is actually the core and main purpose of DBM, where the
nonequilibrium effects can be measured by using the high-
order kinetic moments of the differences between the discrete
distribution functions and their equilibrium counterparts.

Note that the DBM is a special discretization of the Boltz-
mann equation in particle velocity space. First of all, let
us introduce symbols £ and £, which denote the discrete
distribution functions in the velocity and moment spaces, re-
spectively; see Eq. (16). Here the subscripti (=1, 2, ..., N)
represents the number of discrete velocities v, and the total
number is N (= 16) in this work; see Eq. (27). The superscript
o stands for the chemical species in a fluid mixture.
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The individual mass density p°, molar number density
n°, momentum JJ, and velocity u (in the « direction) are
obtained from the following relations:

0% =m°n’ =m°® Zfia’ (3)
Jo = p%ug = m® Y [T “)

with the molar mass m?. The mixing mass density p, number
density n, momentum J,, and velocity u, (in the « direction)

are given by
p= 0, (5)

n:Zn", (6)

Jy = puy = ZJ;’ (7N
The individual and mixing energies are, respectively,
o 1 o o (,02 o2
E — " Xl:f: (v7* +nf?), ®)
E=)E°, ©)

where n; is used to describe extra energies corresponding to
molecular rotation, vibration, and a third translational mo-
tion hidden by the two-dimensional DBM. Actually, results
of the two-dimensional model are helpful in understanding
the real processes of energy exchange between translational,
rotational, and vibrational degrees of freedom of molecules,
which play an important role in nonequilibrium flows.

The individual temperature relative to the mixing velocity
u = uye, and average temperature are, respectively,

2E° _pau2
U*Z—’ 10
(D +1°)n° (10)
2E — pu?
_, (11)

Ty D+

where D = 2 represents the dimension, /° indicates extra de-
grees of freedom, u = |u| = /), u? is the magnitude of the
fluid velocity, and e, denotes the unit vector in the « direction.
Different from the definition (10),

2E° — ,00 uaZ
(D +I°)n°
denotes the individual temperature relative to the individual

velocity ug, and u® = /), u3?.

The individual and mixing pressures take the form

o _

) 12)

pﬂ*znﬂTU*, (13)
p=>_p0" (14)

respectively. Corresponding to Eq. (12), the definition
p"=n°T° (15)

is introduced as well.
Furthermore, let us introduce two kinds of discrete equi-
librium distribution functions in the velocity and moment

spaces, respectively. The first sets are £7°d and £7°, which are
functions of (n”, u,, T) (see Appendix A). The second ones
are 7** and f7°°, which depend upon (n, uZ, T), and their
expression is given by substituting (n?, ug, T°) for (n°, uy, T)
in formulas of £7°! and £, respectively (see Appendix A).
The projection of discrete (equilibrium) distribution functions

from velocity onto moment spaces is

N

fo =Mt (16)
foea — MO foed, (17)
fosea = Mg, (18)
in terms of the column matrices
= (7 £ )" (19)
o =(fr fo... fo), (20)
£o00 = (F79 £ 90T, Q1)
foes = (foea foea | foeayt, (22)
P = (7 ) @3)
B = (f70 e fo) (24)

For a mixture under no external force, the discrete
Boltzmann equations read

W7+ vLoufT =M IS (fT — 7)) + AT, (25)

which is a special discretization of the Boltzmann equation
in particle velocity space. On the left-hand side, @ = x, y
denotes the physical space for a two-dimensional system. On
the right-hand side, S7, is the element of a diagonal matrix
S = diag(S7 S --- S%), and the parameter S7 controls the
relaxation speed of f;’ approaching f;”eq. Mﬁ_l is the element
of the square matrix M? ~! which is the inverse of M with
the element MJ (see Appendix A). A7 is an additional term
expressed by Eq. (36).
Actually, Eq. (25) is a reduced form of

O +vgduff = — My [SEE(K — /Y
TSR K] AT @)

where S7' = S7,. Equations (25) and (26) are regarded as one-
and two-step relaxation models, respectively. During the ther-
modynamic process described by Eq. (25), fAk" tends towards
£7°9 with a speed controlled by the relaxation parameter S%
in a straightforward way. While in Eq. (26), fk" first relaxes to
£7°° at a speed controlled by the parameter S, then £7* to
7% with S5, (Further study of the latter equation is beyond
this work.)
As shown in Fig. 1, there are two groups of discrete ve-
locities whose magnitudes are v] and vy, respectively. The
expression of the discrete velocities reads

(v v5) =

v (cos I, sin Z) for 1 < i <
27
<i<

o i CO 4
vy (cos Z, sin Z) for 9
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1 2 3 o N.-1 N,

FIG. 1. Sketch of the discrete velocities and mesh grids.

Obviously, there is a good isotropy in the velocity space.
Also, we define n{ =nJ for 1 <i<4, and nf =nj for
9 <i < 12, otherwise, n{ = 0. Here v7, vy, nJ, and nj are
flexible parameters. It is worth mentioning that these parame-
ters can be adjusted to optimize the DBM properties. (1) The
conditions vJ # vy # 0 and nJ # n; # 0 should be satisfied
to ensure the matrix M? invertible. (2) For the sake of nu-
merical stability, the sizes of v and vj should be given by
reference to the values of flow velocity u® and sound speed
v =y°T° /m" where y? denotes the specific heat ratio.
For example, v] is less than v, vj is greater than v{, and
one of them is around u’ However, in general, both the flow
velocity and sound speed take variable values in different
fluid areas and also vary with time. Further, in a slow flow,
the real molecular velocities still remain large and there are
no two distinct groups of molecules, one of which moves at
low speeds, and the other at high speeds. The complexities of
practical systems often challenge the numerical robustness of
the current model. One feasible method to solve this problem
is to use adaptive discrete velocities which are functions of u®
and sound speed v{ . For simplicity, the discrete velocities are
constant in this work. (3) The values of 1 and n; should be
set by reference to the value of ) = \/I°T° /m°, because the
extra internal energy is %m" 7= %I ?T° in the local thermo-
dynamic equilibrium according to the equipartition of energy
theorem. One of them should be less than 7 if the other
is greater than 7, and vice versa. For instance, n] < 7 and
nh > 7). Moreover, for convenience, (v, vy, na, no) can be
given the same values for various chemical species o if their
properties (including u?, 77, and vy ) do not have remarkable
differences in practical simulations.

It is noteworthy that, to ensure consistency with traditional
NS equations in the hydrodynamic limit (see Appendix B),
an additional term A{ is imposed on the right-hand side of
Eq. (25). Similar to Egs. (16)—(18), the relation between the
additional term A° and its moment A° takes the form

A =M°A’, (28)
with

A% = (A7 A ... A%)", (29)

LA (30)

where A? =0 for 1 <i < 7and 10 <i < 16, and
A =2(S3 — )u AZ +2(Sg — Sg)ugAg, (31)
A3 =2(S§ — ST )u AG +2(S5 — S )ul Ag, (32)
in terms of
, 2m°T° (1—D—1°
A? = ol + , (33)
Seme \ D+I° D+1I°
Ag = “Som (dyu? + du)), (34)
2°T° ( du?  1—D-—1I°
Aj = - yu | 35
7T Seme (D+1(fJr D+I° ~‘”—‘> (%3)

From Eq. (28), the following formula is derived:
AT =M""'AC, (36)

which is the expression of the additional term.

It should be explained that, the additional term Ay in
the DBM is different from that in the standard LBM.
To be specific, the discrete Boltzmann equation (25) is a
simplified/reduced form of the original Boltzmann equation
(1). In the simplification process from Eq. (1) to Eq. (25), our
concerned physical quantities (such as density, momentum,
energy, and some lower-order kinetic moments) have been
kept unchanged, while much physical information (such as
other higher-order kinetic moments) has been lost. The loss of
relevant information would restrict its applicable conditions
and scopes and may lead to inconsistency with real situations
or physical models. Theoretically, the CE analysis is helpful
to find out the loss of the link between the nonequilibrium
quantities A7, AZ, A9, Ag, and A in Eq. (25) without the
additional term. Then its inconsistency with the NS equations
can be removed by introducing the additional term for the lost
relationship.

In addition, the Fick’s laws of diffusion and Stefan-
Maxwell diffusion equation could also be derived from
the multicomponent NS equations under corresponding as-
sumptions (see Appendix C). Besides giving the continuum
equations, the DBM also provides a set of handy, effective,
and efficient tools to describe and probe the abundant ki-
netic information beyond them. Let us define f7 = f7*"° +
f7°9, with the equilibrium part f7*°% and nonequilibrium
part f754, respectively. In a similar way, we can define
f7 = f7"9 4 £7°9. Namely, there are two kinds of nonequi-
librium physical quantities ™! and f7"*?, which can be
obtained in each iterative step and used to investigate the
nonequilibrium effects. (It is the key reason why £7*¢ and
f7% are introduced.) Concretely, fgsneq 0 for 1 i<4
in line with conservation laws, as fl" = fimeq =n°, J°/m°,
Jy /m®, 2E° /m® for i=1, 2, 3, 4, respectively In con-
trast, the nonequlhbrlum quantity f 9 may not equal zero
for 5 <i <16 in a nonequilibrium state. Physically, frered
denotes the departure of a kinetic mode fl“ from its equi-
librium counterpart f7*°Y. The speed of relaxation process
from f7 to f7%9 is controlled by the relaxation parameter
7, and both f7*"*! and SY exert influence on the thermody-
namic and hydrodynamic behaviors. Simultaneously, various
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nonequilibrium effects interplay with each other, and these
kinetic modes are coupled as well. For instance, at the NS
level,

289n°

7 = A7 —n” (uf? — ul) + < uf (ug — uy)
5

X X

s (0 =)+ (g —w)

S¢ D+1°
(55— sy =T G37)
4 s/ SIme ’
S A7 (8 — )
Sa o SU o
S )+ S ). o
S6 - S6
£osnel o o(,0 Sf’}’la 9 (1°
70 = A —n” (u]? —u}) +2 ;(77 uy (u§ — uy)
_Sqin? (u — "X)z + (”if - “y)2
s7 D+1I°
P Wil (39)
4T Tge e
7o sneq

which are derived from the CE analysis, reduce to f; =
AZ, f7 = AZ, and £ = A under conditions of ug =
ugyand 7° =T.

The above mentioned capability of this DBM makes con-
venient to study behaviors in the nonequilibrium process, such
as the entropy production [11,66,87]. Especially, with X the
molar fraction of species o, the entropy of mixing,

Sy = — Zn" InX?, (40)

which is part of the increasing entropy as separate mixable
fluids contact and mix, can be obtained in each iterative step.

It should be stressed that kinetic effects are significant
and traditional hydrodynamic models are not sufficient for
fluid flows with small characteristic scales or large Knudsen
numbers [10-14,65-72]. The TNE becomes crucial and even
dominant in the evolution of multicomponent flows due to
the existence of various complex material and/or mechanical
interfaces [10-14,65-72]. In such complicated cases, to in-
vestigate the TNE is a significant and convenient way to study
the fundamental kinetic processes, which is made easy by the
discrete Boltzmann modeling. The DBM is equivalent to the
modified NS equations plus a coarse-grained thermodynamic
nonequilibrium model in fluid systems with essential TNE.
In the continuum limit, it reduces to the usual NS equations
supplemented with a coarse-grained model for the most rel-
evant thermodynamic nonequilibrium behaviors. In any case,
a DBM brings more physical information than a pure hydro-
dynamic model. Because the hydrodynamic model generally
consists of only the evolution of the conserved kinetic mo-
ments, i.e., the density, momentum and energy.

In addition, the DBM has the advantage of simplicity for
coding and high efficiency of parallel processing, since the set
of formulas in Eq. (25) is uniformly linear and the information
transfer in DBM is local in both time and space [87]. Actually,
the parallel programming based on the message-passing inter-

face is used for all simulations in this work. Moreover, we
adopt the second-order nonoscillatory and nonfree-parameter
dissipation difference scheme [88] to deal with the space
derivatives and the second-order Runge-Kutta method to treat
the time derivative in Eq. (25). Note that the current Runge-
Kutta method is an explicit scheme, so the temporal step
should be no greater than the minimum of the relaxation
times 1, in order to have accurate and robust solutions. To
be specific, it is necessary to satisfy the relation Ar < T,
where 7, = min(1/57) is the minimum of the reciprocal of
S7, and another restriction is on the Courant number: At <
Ax/max(vi).

Remark: The DBM and other discrete ordinate methods are
based on special discretization forms of the (simplified) Boltz-
mann equation in particle velocity space [9,24,40]. These
kinetic models have the common feature that the time, space
and particle velocity are discretized in particular ways. The
essential differences among them lie in how the collision term
is simplified and how the discrete (equilibrium) distribution
functions are calculated, which leads to different capabili-
ties of the models. In the pioneering discrete velocity model
(DVM) that aims to solve the Boltzmann equation [40], there
are only six molecular velocities and the collision term is
written as the gain minus the loss (in a nonlinear quadratic
form). But the model is too simple to describe a real physical
system [40]. With the Gauss-Hermite or Newton-Cotes rule
used in the discrete ordinate method, the DVM is applicable
to rarefied gas flows over a wide range of Mach and Knudsen
numbers [9]. Furthermore, the conservation laws and entropy
dissipation are obeyed, as the discrete equilibrium distribution
functions are expressed by an exponential function with the
introduction of a discrete-velocity grid [24]. Although the
set of allowable velocities becomes finite in the DVM, the
computational cost is still often too expensive to perform sat-
isfactory simulations [9,24]. In contrast, the DBM is designed
to accurately predict fluid flows with HNE and TNE. To this
end, a list of moment relations of discrete equilibrium distri-
bution functions is required in the DBM. The collision term
(including several relaxation times) and discrete equilibrium
distribution functions are calculated through the matrix inver-
sion method, which is physically accurate, computationally
efficient, and numerically robust [72].

III. VERIFICATION AND VALIDATION

For practical calculations, it is convenient and useful to
use dimensionless variables. In this work, physical quantities
are expressed in nondimensional forms using the following
references, i.e., the molar mass m, molar number density ny,
length Ly, temperature 7, and universal gas constant R. For
example,

Distribution functions: f;” by ng
Mass density: p7, p by mong
Speed and velocity: v7, n7,u’, u by /R1y/mg

Energy density: E?, E by noRTy
Pressure: p°, p by noRTy
Temperature: 7°, T by Tp
Coordinate: x, y by Loy

by Lo/~/RTo/mq

Time: ¢
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u=0 T=1
n' =0.80 n'=0.20
n® =0.15 n” =0.60
n“ =0.05 n“=0.20
'l
L

FIG. 2. Initial configuration of the three-component diffusion.

In the following are three subsections. The first part is for
the three-component diffusion, which is to demonstrate the
capacity of the present DBM in dealing with the interaction
among various nonpremixed chemical species. The second
subsection is to use the thermal Couette flow to validate that
our DBM is suitable for fluid flows where both Prandtl number
and specific heat ratio are flexible. Finally, the Sod shock tube
is simulated to show that this model has the capability of
describing the shock wave with a high Mach number (as well
as the rarefaction wave).

A. Three-component diffusion

Diffusion is the net movement of molecules driven by a
gradient in chemical potential of fluid species [1,89]. As one
of the most important and fundamental transport processes, it
has received great attention due to its significance in chemical
process and biological engineering [1,2,89], etc.

To demonstrate that the DBM could describe the inter-
action among various chemical species, we carry out the
simulation of multicomponent diffusion. As shown in Fig. 2,
the initial configuration is

(n*, n8, n%), = (0.80,0.15,0.05),
(41)
(™, n®, n)p = (0.20, 0.60, 0.20),

where the subscripts L and R indicate 0 < x < Ly/2 and
Ly/2 < x < Ly, respectively, with Ly = 0.1. The superscripts
A, B, and C represent three chemical species, respectively. For
simplicity, the molar mass is chosen as m? = 1. The average
velocity and temperature are u = 0 and 7 = 1. The pressure
on the two sides equals p = 1, hence the interface remains
rest. In the horizontal direction the quantities on the ghost
nodes outside the boundary are replaced by the neighboring
ones [90,91], while the boundary conditions are periodic in
the vertical direction. In fact, this case is a one-dimensional
problem as the physical field is the same in the y direction.
Hence, the mesh is chosen as Ny x N, = N, x 1. The spatial
step is Ax = Ay = Ly/N,, the temporal step At =4 x 1074,
the relaxation parameters S; = 10°, the extra degrees of
freedom /7 = 3.

First of all, let us perform a grid convergence analysis,
which is an important issue for numerical models. To this
end, we carried out some simulations under various spatial
steps Ax; = Lo/10, Axy = Ly/20, Axz = Ly/40, and Axy =
Ly /80, respectively. Figure 3(a) shows the mole fraction of
species A. The long-dashed, short-dashed, dash-dotted, and
short-dotted lines stand for DBM results under Ax;, Axy, Axs,
and Axy, respectively. The solid line denotes the analytical

08 -4.8+ @ Error
- . — Fitting function
£0.6 854}
£ g
= x|

0.4 -6.0

02 -6.6

0.2 0.4 0.6 0.8 -6.9 -6.6 6.3 -6.0

. Cin(ax)

FIG. 3. Grid convergence analysis: (a) the horizontal distribution
of mole fractions X4 at the time ¢ = 0.05, (b) relative errors under
various spatial steps.

solution [1,89]

X7 +Xg  XP—Xg =
xo =t A RErf<x xo), (42)
2 2 4Dt

where Erf is the complementary error function, xo = Lo/2 is
the location of the interface, D = 1073 is the diffusivity. It can
be found that, with decreasing spatial steps (i.e., increasing
resolution), the numerical results converge towards the ana-
lytical solution. Particularly, the results with spatial step Axy
are quite close to the solution, which is satisfactory.

For the purpose of a quantitative analysis, Fig. 3(b) gives
relative errors versus spatial steps. The relative error takes the
form

Y e [Palx, . 1) = pulx, y, DI
Z(x,y) |¢a(~x’ )’7 t)|2

where ¢, and ¢, denote the analytical and numerical results
of the variable ¢ (e.g., the mole fraction X*). The circles
represent the DBM results, and the line stand for the fit-
ting function, In(Error) =2.079 In(Ax) + 7.6887. Clearly,
the slope of the fitting function is close to 2.0, which indicates
that the current model has a second-order convergence rate in
space.

Figure 4 illustrates molar fractions, X° = n°/n, at vari-
ous times in the diffusion process. The spatial step is Axy,
which is validated in Fig. 3(a). Symbols denote numerical
results at various times ¢ = 0.005 (squares), 0.02 (circles),
0.06 (triangles), and 0.2 (diamonds), respectively. Lines de-
note the analytical solutions. It is evident that the DBM results
coincide with the analytical solutions in the evolution of the
diffusion.

Moreover, to further validate that the DBM has the ca-
pability of capturing nonequilibrium effects, Fig. 5 plots
nonequilibrium quantities fy " at time # = 0.02 in the dif-
fusion process. Symbols represent our DBM results, and lines
represent the analytical solutions in Eq. (37). Obviously, our
simulation results are in excellent agreement with the analyti-
cal solutions. Consequently, it is confirmed that the DBM can
be used to probe and measure nonequilibrium manifestations.

Error(¢) = . 43)

B. Thermal Couette flow

In fluid dynamics, thermal Couette flow is the flow of a vis-
cous fluid between two surfaces with relative shear movement.
It is a classical benchmark to test a model for compressible
fluid flows where viscosity and heat transfer dominate [92,93].
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FIG. 4. Molar fractions in the diffusion process: X* (top), X8
(middle), and X€ (bottom). Squares, circles, triangles, and diamonds
denote DBM results at time instants ¢ = 0.005, 0.02, 0.06, and
0.2, respectively. Solid lines stand for the corresponding analytical
solutions.

Here we conduct simulations of the thermal Couette flow for
two purposes. One aim is to verify that the DBM is suitable for
various values of the specific heat ratio y and Prandtl number
Pr. The other aim is to verify the DBM for the case with
premixed compressible fluid species.

Figure 6 delineates the sketch of initial configuration for
this problem. A premixed fluid flow with species, 0 = A, B,
C, is between two infinite parallel flat plates separated by
a distance H = 0.1. The concentrations are (n*, nf, n®) =
(0.1, 0.3, 0.6), the molar mass m® = mgy = 1, the temperature
T° = Ty = 1, and the velocity u’ = 0. The upper plate moves
horizontally at the speed up = 0.1, while the lower plate
keeps motionless. The nonequilibrium extrapolation scheme
is imposed on the top and bottom, respectively [94]. Peri-
odic boundary conditions are applied for the left and right
boundaries, respectively. Because the field is the same in the
x direction, the configuration is actually a one-dimensional
case. The mesh is chosen as N, x Ny, = 1 x 200, the spatial
step Ax = Ay = 5 x 107#, the temporal step At =2 x 1073,
the parameters (vJ, vy, n7, n7) = (1.5, 1.8, 1.6, 2.5), and the
remaining parameters are listed in Table I.

3 Jposne
10° /7™
S DB

00 02 04 06 08 1.0

FIG. 5. Nonequilibrium quantities at time ¢t = 0.02 in the dif-
fusion process. Squares, circles, and triangles denote DBM results
of fired, fE€a and fO59, respectively. Solid lines stand for the

corresponding analytical solutions.

Five cases are under consideration with various values
of the specific heat ratio and Prandtl number in Table I. In
the current DBM, the specific heat ratio of species o takes
the form y? = (4 +1°)/(2 + I?), and the Prandtl number of
species o is Pr? = S§7 /ST under the conditions §j, = S =
S§¢ =87 and S =857 = S5§. Consequently, in terms of 7,
S s67and S7_go, weset Pr=1.0and y =13, 14, and 1.5
for Runs I, II, and III, respectively. While the parameters are
y = 1.4 and Pr = 1.0, 0.5, and 2.0 for Runs II, IV, and V,
respectively.

As an important parameter characterizing nonequilibrium
flows, the Knudsen number is defined as Kn = A/H, where
H denotes the characteristic length scale, A = vt stands for
the molecular mean-free path, v, = \/yTy/mg is the sound
speed, and t = 1/875 ¢ ; is the representative relaxation time.
Hence, the Knudsen number is Kn = 0.0114, 0.0118, and
0.0122 for y = 1.3, 1.4, and 1.5, respectively. Moreover, the
Mach number is defined as Ma = uy/v;. Thus, the Mach
number is Ma = 0.0877, 0.0845, and 0.0816 for y = 1.3, 1.4,
and 1.5, respectively.

First, we consider the case of Run IV in Table I. Figure 7(a)
exhibits the comparisons between the numerical and analyti-
cal results of the horizontal speed along the y axis at various
time instants. Symbols represent numerical results, and lines
represent the following analytical solutions [80,95]:

2 e[ 1 ni
uz%{uo—i-;uo;[ " exp(—n2n2%>sin(7y)],

(44)

_—
u=uye,

n'=0.1
n® =03 I,=1 t H
n“=0.6

7

u=0

FIG. 6. Initial configuration of the thermal Couette flow.
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TABLE 1. Parameters for the thermal Couette flow.

Case Pr 1% S§’=5,6_7 5;5‘6,7 1°
Run I 1.0 1.3 1000 1000 14/3
Run IT 1.0 1.4 1000 1000 3
Run III 1.0 1.5 1000 1000 2
Run IV 0.5 1.4 2000 1000 3
Run V 2.0 1.4 500 1000 3

where p is the viscosity coefficient. Clearly, we can find a
good agreement between them in the evolution of the thermal
Couette flow. To further demonstrate its capability of measur-
ing nonequilibrium manifestations, Fig. 7(b) plots the vertical
distribution of the nonequilibrium quantity f*"* of species
o = A. Via the CE analysis, we can obtain the analytical so-
lution in Eq. (38). Obviously, the DBM results are consistent
with the analytical solution in the thermal Couette flow.

Figure 8 shows the vertical distribution of the temperature
when the thermal Couette flow achieves its steady state. In
theory, the analytical solution reads [80,95]

Pr ,y y
T =T, —2—(1——),
o2 m\ T w

(45)

where Tj is the temperature of the top/bottom wall, ¢, = y ¢,
the specific heat at constant pressure, c, the specific heat at
constant volume. Temperature depends upon the specific heat
ratio and Prandtl number. Figure 8(a) is for the cases with
fixed Pr = 1.0 and various y = 1.3, 1.4, and 1.5, respectively.
Figure 8(b) is for the cases with fixed y = 1.4 and various

1.0

0.8
=06}
:H
0.4
0.2
0.0

1
(98]
>

4t q
00 02

FIG. 7. Vertical distribution of the horizontal speed u, (a) and
nonequilibrium quantity f*°% (b) in the thermal Couette flow.
Squares, circles, triangles, and diamonds represent DBM results at
time instants r = 0.1, 0.4, 2.0, and 30, respectively. Solid lines stand
for the corresponding analytical solutions.

o

10*(T-T,) / T,
(8]

2 L
1-
7 L
6
55
&4
«  3F
(e}
p— 2 L
1 L
0 . (b)) ,
0.0 0.2 0.4 0.6 0.8 1.0
vIH

FIG. 8. Vertical distribution of the temperature in the steady
Couette flow. (a) Cases with Pr = 1.0 and y = 1.3, 1.4, and 1.5,
respectively. (b) Cases with y = 1.4 and Pr = 0.5, 1.0, and 2.0,
respectively.

Pr = 0.5, 1.0, and 2.0, respectively. It is clear that simulation
results match the corresponding analytical solutions for all
cases.

C. Sod shock tube

To verify the DBM for high-speed compressible flows,
we consider a typical benchmark, the Sod shock tube that
includes abundant and complex characteristic structures [96].
It is worth mentioning that, compared with single-component
models, the current DBM is applicable to the Sod shock
tube that contains various species (with different molar mass
and/or specific-heat ratios, etc.) in different locations. As
shown in Fig. 9, the initial field reads

(n*,n® 1, p), =(1.25,0,0, 1),
(46)
(n*, n®, nC, p)r = (0,0.0625,0.0521, 0.1),

where the subscripts L and R denote the left part —L/2 < x <
0 and right part 0 < x < Ly/2, respectively, with Ly = 1.0.

p, =10 pr=0.1

, n® =0.0625

n® =1.25 c

“_1a4 n- =0.0521

7 yP=y=15
u, =u,=0

FIG. 9. Initial configuration of the Sod shock tube.
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FIG. 10. Profiles of density at a time instant = 0.2 in the Sod
shock tube with various spatial steps (a) and temporal steps (b).

Both parts are initially at rest, i.e., u = 0. The molar mass is
(m*, m?, m¢) = (0.8, 1, 1.2). Consequently, it is easy to obtain
(oL, pr) = (1,0.125) and (T, Tg) = (0.8, 0.87273) in terms
ofp=>_m°n”andT = p/ )" n°. The specific-heat ratios
are (y4, y®, y©) = (1.4, 1.5, 1.5), and the parameters S7 =
2 x 10%, g, vy, n2,n2)=(1.5,3.3, 1.1, 3.9). The boundary
conditions are the same with those in Fig. 4.

As numerical accuracy and robustness should be under
consideration, we carry out simulations of the Sod shock tube
with various spatial and temporal steps. Figure 10 plots den-
sity profiles at a time instant ¢+ = 0.2 in the Sod shock tube. In
Fig. 10(a) the dashed, dotted, dash-dotted, and solid lines rep-
resent numerical results under spatial steps Ax; =4 x 1073,
Ax; =2 x 1073, Ax3 = 1073, and Axg =5 x 1074, respec-
tively. The corresponding meshes are Ny x N, =250 x 1,
500 x 1, 1000 x 1, and 2000 x 1, respectively. Besides, in
Fig. 10(b) the dashed, dotted, dash-dotted, and solid lines
represent numerical results in cases with temporal steps At; =
5x 1075, At, =25 x 107°, Atz = 1.25 x 1075, and Aty =
6.25 x 107°, respectively. The inset maps in Figs. 10(a) and
10(b) are the enlargements of portions within 0.186 < x <
0.195. It indicates that simulation results start to converge
with decreasing spatial and temporal steps. Moreover, it can
be found that the spatial step Ax =5 x 10~ and temporal
step 2.5 x 107>, which are used in Fig. 11, are small enough
to give satisfactory simulation results.

04 02 00 02 04 Y704 02 00 02 04
X X
FIG. 11. Profiles of density (a), horizontal speed (b), internal
energy (c), and pressure (d) at a time instant ¢t = 0.2 in the Sod
shock tube. Symbols represent DBM results, and solid lines stand
for Riemann solutions.

Pr = Pr

Pr = Pr

FIG. 12. Initial configuration of the KHI.

Figure 11 illustrates the density (a), horizontal speed (b),
internal energy (c), and pressure at a time instant ¢+ = 0.2 in
the Sod shock tube. Symbols and lines stand for our DBM
results and the Riemann solutions, respectively. As shown in
Figs. 11(a)-11(d), the rarefaction wave (moving leftward),
the contact discontinuity (between two media with different
concentrations), and the (right-propagating) shock front are
captured well. It is clear that the numerical and exact results
coincide well with each other. For this problem, the Reynolds
number is defined as Re = p.u.L./u., where the charac-
teristic density p. = 0.25340, velocity u. = 0.91661, and
dynamic viscosity . = >, u” = 0.30728/(2 x 10*) are be-
hind the shock front, and the characteristic length equals the
length of the shock tube L. = Ly, hence Re = 15117. As well,
the Knudsen number is Kn = A/L. = 6.74 x 107> in terms
of the characteristic length scale L. = Ly and the molecular
mean-free path A = v,7, where 7 = 1/87 =5 x 1073 is the
relaxation time and vy = 1.3487 is the sound speed behind the
shock wave. The Knudsen number is in the continuum regime
(namely, the TNE is relatively weak), this is the physical
reason why the DBM results (involving detailed TNE) agree
with the exact solutions (without consideration of any TNE).

IV. KELVIN-HELMHOLTZ INSTABILITY

As an essential physical mechanism in turbulence and flu-
ids mixing process, the KHI has been studied extensively with
experimental [97-99], theoretical [83,84,100], and computa-
tional [77,85-87] methods during the past decades. In this
section, we further utilize the DBM to simulate and investigate
the compressible KHI with both HNE and TNE.

Figure 12 portrays the initial configuration for the KHI.
The length and height of the calculation domain are L, = 1.5
and L, = 0.5, respectively. Initially, the left half part is occu-
pied by upward-moving species A with velocity u; = 0.5e,,
and the right is filled with B traveling downwards with ve-
locity ug = —0.5¢,. To have an initial smooth interface, we
impose a transition layer with width W = L, /300 on the con-
centration and velocity fields across the interface. Moreover,
to trigger the formation of the KHI, a sinusoidal perturbation,
w = wqcos(2wy/Ly), is imposed on the interface with an
amplitude wy = L,/200. The concentration and velocity are
expressed by

nL+nR
n= —

nyp — ng

X —Xxp+w
anh( ),
2 2 w

u; + ug u; —ugr X—Xxo+w
o= BT g, ()
2 2 w
where xp = L,/2 denotes the averaged x position of the

cosine-shaped interface, n; and ng are the concentrations in
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TABLE II. Parameters for the KHI.

Cases (Ty, Tz) Pr° (x4, kB)

Run I 1,1 0.25 (2.8,2.8)x1073
Run II (1,1 0.5 (14,1.4)x1073
Run III (1,1 1.0 (7.0,7.0)x10~*
Run IV (1,1 2.0 (3.5,3.5)x107*
Run V 1,1 4.0 (1.75, 1.75)x 1074
Run VI (1,2) 0.25 (2.8, 1.4)x107°
Run VII (1,2) 0.5 (14,0.7)x1073
Run VIII (1,2) 1.0 (7.0,3.5)x107*
Run IX (1,2) 2.0 (3.5, 1.75)x 10~
Run X (1,2) 4.0 (17.5, 8.75)x 1073

the left and right parts, respectively. Across the interface,
pressure keeps homogeneous, i.e., pr, = pg. The two species
are given an identical velocity and temperature at the same
location. In addition, the specular reflection (periodic) bound-
ary condition is used in the x (y) direction. The time and
space steps are as small as Az = 2.5 x 107 and Ax = Ay =
5 x 107 to reduce numerical errors. Correspondingly, the
mesh is N, x N, = 3000 x 1000 (see Fig. 1).

Next, let us study the influence of heat conduction upon
the formation and evolution of the nonequilibrium KHI. To
this end, 10 representative cases are under consideration; see
Table II. For the first five cases, the temperatures in the
two parts are equal, i.e., T, = Tz = 1.0, the concentrations
n; = ng = 1, the molar mass m® = 1, and the parameters (v,
vy, no, 1) = (2, 3.7, 1.5, 5.5). Moreover, the relaxation
parameters are Sg = So = 1.25 x 103, 2.5 x 10%, 5.0 x 103,
1.0 x 10%, and 2.0 x 10, respectively. The other relaxation
parameters are S; = 5.0 x 10°. The extra degrees of freedom
I° = 3. Actually, in these cases, the initial dynamic viscos-
ity is fixed, and the thermal conductivity is variable, i.e.,
k7 =28x1073, 1.4 x 107, 7.0 x 107%, 3.5 x 107*, and
1.75 x 1074, respectively. In other words, the Prandtl number
is variable in the five cases. In contrast, for the latter five
cases, the temperatures in the two parts are different, namely,
T, = 1.0 and T; = 2.0, the molar mass m* = 1 and m®? = 2,
and the parameters (v, vy, 7, no) = (1.4,2.8,5.0, 2.5). The
particular thermal conductivity is (4, k%) = (2.8, 1.4)x 1073,
(1.4, 0.7)x1073, (7.0, 3.5)x107*, (3.5, 1.75)x107*, (17.5,
8.75)x 1073, respectively. The other parameters in the latter
five cases are the same with the former corresponding ones.
Additionally, for all above cases, the density is homogeneous,
i.e., p =1 in the system, hence the Atwood number is a
constant At = (oL — pr)/(pL + pr) = 0.

To give an intuitive impression, we take Run I for example
and depict the entropy of mixing in the evolution of KHI in
Fig. 13. From top to bottom are its contours at time instants
t =0.0, 0.5, 1.0, 1.5, and 3.0, respectively. We can find a
sequence of distinct evolutionary stages, namely, the initial
linear growth period, then the nonlinear growth stage, the
later time with a highly rolled-up vortex, and finally a suffi-
ciently mixed phase with nonregular structures. To be specific,
first, the smooth interface starts to wiggle due to the initial
perturbation and the velocity shear between the two layers.
At the early stage, the perturbation grows exponentially in

FIG. 13. Contours of the entropy of mixing at time instants t =
0.0, 0.5, 1.0, 1.5, and 3.0 in the evolution of KHI.

accordance with the linear stability theory (see Figs. 14 and
15), and the sinusoidal structure gradually becomes asym-
metric. Then, in the nonlinear stage, a braid-shape region is
formed and a roughly circular vortex appears. Subsequently,
the vortex becomes elliptical with its roll-up movement, and it
is further stretched in the vertical direction. In the final phase,
with the development of the vortex, the rotating movements
promote the mixing between the two parts until its saturation
state (see Figs. 14 and 15). On the whole, the above simulated
process is roughly consistent with previous studies, despite
some differences in detail due to different initial conditions or
methods.

Figure 14 displays the evolution of physical quantities for
the first five cases in Table II. The lines with squares, circles,
upper triangles, lower triangles, and diamonds stand for the
Prandtl number Pr = 0.25, 0.5, 1.0, 2.0, and 4.0, respectively.
Figure 14(a) shows the whole entropy of mixing [/ Sy dx dy
and its growth rate. Here the integral is extended over the
physical region L, x L,. Figure 14(b) exhibits the value of
Sa/(LxLy) and its growth rate, with the mixing area S, where
the mass fraction of species A is within the range 1% < A4 <
99%. Figure 14(c) gives the value of Ly /L, and its growth
rate. Here the mixing width L), is defined as the horizontal
distance between the leftmost and rightmost points within the
region 1% < A < 99%. It is clear in Figs. 14(a)-14(c) that
the mixing degree, area, and width coincide well with each
other in the five cases.

With the definition of the kinetic energy Ej = 1pu?,
Fig. 14(d) plots the whole Kinetic energy [/ Eydxdy.
With the introduction of the internal energy E; =
% >, (D+I7)n°T, we show the whole internal energy
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FIG. 14. Physical quantities in the evolution of KHI with 7, = T¢: (a) the entropy of mixing and its growth rate, (b) the mixing area
and its growth rate, (c) the mixing width and its growth rate, (d) the kinetic energy, (e) the internal energy, (f) the total energy, (g) the
maximum temperature, (h) the minimum temperature, and (i) the temperature difference. The inserts in (d) and (e) correspond to the
rectangles, respectively. The lines with squares, circles, upper triangles, lower triangles, and diamonds indicate Pr = 0.25, 0.5, 1.0, 2.0, and

4.0, respectively.

J[E;dxdy and its growth rate in Fig. 14(e). The inserts
in Figs. 14(d) and 14(e) are enlargements of the portions
in the corresponding rectangles. It can be found that the
kinetic and internal energies in the five cases are almost
the same with each other, and their differences are very
small. The kinetic (internal) energy becomes only a little
larger (smaller) with the increasing Prandtl number, i.e., the
decreasing thermal conductivity. Figure 14(f) plots the whole
energy ([ Edxdy in terms of E = E; + E;. It is evident
that the energy is a conserved quantity in the KHI process.
For instance, in the first case, our DBM gives [ Edxdy =
[[Exdxdy+ [[ E;dxdy = 0.0883230 + 1.8798020 at the
time 7 =3, which equals its initial result [[Edxdy=
0.0931250 + 1.8750000. It is noteworthy that, apart from the
energy conservation, the mass and momentum conservation
is ensured by the DBM as well (which is not shown here).

Figures 14(g)-14(i) are for the maximum temperature
Thax, the minimum temperature Tp,,, and their difference
Ty = Thax — Tmin- On the whole, the maximum temperature
is smaller for larger thermal conductivity. The minimum tem-
perature with various Prandtl numbers competes with each
other before the time t = 1.5, afterwards it is larger for larger
thermal conductivity. Hence, the temperature difference be-
comes smaller with the increasing thermal conductivity that
facilitates heat exchange.

Figure 15 exhibits the evolution of physical quantities for
the latter five cases in Table II. In the following, comparison
is made between Figs. 14 and 15. The former is for the cases

in an initial homogeneous temperature field, while the latter
initially has a temperature difference between the left and
right half parts of the physical domain. Some findings are
listed as follows.

(1) From Figs. 14(a)-14(c) and Figs. 15(a)-15(c), it is
apparent that the whole entropy of mixing, the mixing area,
the mixing width, and their growth rates for various Prandtl
numbers basically coincide with each other. That is to say, the
heat conduction has a weak effect on the formation and evo-
lution of the KHI for the parameter range here we considered.

(2) It can be found in Figs. 14(d)-14(e) and Figs. 15(d)—
15(e) that the kinetic and internal energies have slight
differences for various Prandtl numbers. The inserts show
that, for either 7, = Ty or T # T, the kinetic (internal) en-
ergy becomes only a bit smaller (larger) with the reducing
Prandtl number, i.e., the increasing thermal conductivity.

(3) The energy conservation is held in the DBM simula-
tion, which is validated in Figs. 14(f) and 15(f). Take Run
X in Table II, for instance: the simulation result remains
J[ Edxdy = 1.96813, which is exactly equal to its exact
solution 1.96813. Actually, the mass and momentum conser-
vation is also obeyed by the DBM (which is not shown here).

(4) Comparison between Figs. 14(g)-14(i) and Figs. 15(g)—
15(i) shows that the maximum and minimum temperatures
and their differences for 7p = Ty are quite different from
those for 7; # Tg. In Figs. 15(g)-15(i), both maximum and
minimum temperatures, and their differences on the whole are
larger for a larger thermal conductivity.
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FIG. 15. Physical quantities in the evolution of KHI with 7; # Tx: (a) the entropy of mixing and its growth rate, (b) the mixing area and
its growth rate, (c) the mixing width and its growth rate, (d) the kinetic energy, (e) the internal energy, (f) the total energy, (g) the maximum
temperature, (h) the minimum temperature, and (i) the temperature difference. The inserts in (d) and (e) correspond to the rectangles, res-
pectively. The lines with squares, circles, upper triangles, lower triangles, and diamonds indicate Pr = 0.25, 0.5, 1.0, 2.0, and 4.0, respectively.

(5) Although the evolutionary temperature fields are quite
different for various Prandtl numbers, the mixing process is
almost the same for homogeneous or inhomogeneous ini-
tial temperature configuration. Consequently, the temperature
plays a nonessential role in the formation and evolution of the
KHI.

Finally, for the sake of validating above conclusions again,
let us compare the specific KHI fields in four representative
cases, i.e., Run I (T = Ty and Pr = 0.25), Run V (T, = Ty
and Pr = 4.0), Run VI (T # Tx and Pr = 0.25), and Run
X (Ty, # Tg and Pr = 4.0), respectively. Figure 16 depict the
contours of physical fields at a time instant t = 1.5 in the
KHI process. The four cases are shown from left to right
columns, respectively. The mass fraction (A4), the vorticity
(w = 0,u, — 9dyu,), and the temperature (T') are plotted from
top to bottom rows, respectively. Only a part of the physi-
cal domain 0.5 < x < 1.0 and 0 < y < 0.5 is shown in each
subfigure.

Obviously, the fields of mass fraction and vorticity are
almost the same (with negligible differences) for all cases.
Their shapes and sizes are very similar, despite few differ-
ences of the vorticity maxima and minima in the four cases.
On the contrary, the contours of temperature fields are similar
for the same initial configurations, and are distinguishable
for different initial configurations. It is further confirmed that
neither temperature nor thermal conductivity has a strong
influence on the mass fraction and vorticity in the KHI pro-
cess. From the point view of mixing state (such as mixing
area and degree) and flow state (including the vortex shapes

and sizes), the temperature and thermal conductivity play
inessential roles in the spatiotemporal evolution of the KHI
morphological structure.

Besides, the cases of T, = Tr in the left two columns of
Fig. 16 show that the low-temperature spot is around the
vortex center, the high-temperature spot is at the junction of
vertically periodic vortices. More specifically, the maximum
temperature is located at the material interface. The physical
mechanisms are as follows: (1) There is a rarefaction effect
upon the vortex center due to the centrifugal force of the rotat-
ing flows, and the centripetal force is offered by the pressure
gradient. Hence the density, temperature, and pressure are low
at the vortex center. (2) There is a compressible impact on
the junction of corotating adjacent vortices because of the
collision between fluids from opposite directions, which leads
to an increase of the density, temperature and pressure. (3)
There exists a tangential velocity difference between the two
different media, which results in a viscous shear action on
the material interface. With the viscous heat dissipation, the
internal energy and temperature increase.

V. CONCLUSIONS AND DISCUSSION

We presented an MRT DBM for compressible multicom-
ponent mixtures with both hydrodynamic and thermodynamic
nonequilibrium effects. Physically, the DBM formulation is
not only consistent with the NS equations, Fick’s law and
Stefan-Maxwell diffusion equation under corresponding con-
ditions in the continuum limit, but also provides more detailed
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FIG. 16. Comparison of physical fields at the time r = 1.5 in the KHI process. From top to bottom are the mass fraction of species A,
vorticity, and temperature in the three rows, respectively. From left to right are the cases (7, = Tz and Pr = 0.25), (T, = Tz and Pr = 4.0),
(Tp # Tg and Pr = 0.25), and (7} # Tk and Pr = 4.0) in the four columns, respectively. Only a part of the horizontal range 0.5 < x < 1.0 is

shown in each subfigure.

kinetic thermodynamic nonequilibrium information. Such a
capability of the DBM allows the study of nonequilibrium
processes like the entropy production. Mathematically, a set
of uniform discrete Boltzmann equations are used to describe
multicomponent mixtures, and the linear form of evolution
equations makes it easy to code. Computationally, it can
be implemented on massively parallel clusters with excel-
lent scalability because all information transfer in DBM is
local in time and space. Several prototype problems, includ-
ing the three-component diffusion, thermal Couette flow, and
Sod shock tube, are simulated to verify and validate the
model. It is demonstrated that the present DBM is suitable for
both low and high speed compressible nonequilibrium flows,
with premixed or nonpremixed chemical species, whose spe-
cific heat ratio and Prandtl number are adjustable. Various
nonequilibrium effects in complex fluid flows can be captured,
measured, and predicted effectively by the current versatile
kinetic model.

Furthermore, the current model is utilized to investigate
the compressible KHI with thermodynamic nonequilibrium
effects. Ten cases with various values of thermal conductivity
and initial temperature configurations are compared and an-
alyzed. The entropy of mixing, the mixing area, the mixing
width, the kinetic and internal energies, and the maximum
and minimum temperatures are investigated during the KHI
process. It is found that the mixing state (such as the mixing
area and degree) and flow state (including the vortex shapes
and sizes) are quite similar for all cases in the dynamic KHI
process, although the temperature is similar only for the same

initial configurations but is distinguishable for different initial
configurations. The whole kinetic (internal) energy becomes
only a bit smaller (larger) with the increasing thermal conduc-
tivity. It is concluded that both heat conduction and tempera-
ture exert slight influences on the formation and evolution of
the KHI morphological structure, which is absolutely different
from previous studies for single component fluids [77,83-86].
Physically, to set the pressure invariant across a material inter-
face, the multicomponent DBM is capable of simulating the
KHI with an initial homogeneous density and inhomogeneous
temperature (or inhomogeneous density and homogeneous
temperature), while the single-component model is only suit-
able for the case where a heavy (light) medium beside the
interface should have a low (high) temperature.

Moreover, it is interesting to find that the temperature
field shows different trends in cases with or without spatial
variation of temperature across the material interface in an
initial configuration. To be specific, for the initial homoge-
neous temperature, the maximum temperature is smaller for
larger thermal conductivity as a whole, while the minimum
temperature with various Prandtl numbers competes with each
other in the early stage and is larger for larger thermal conduc-
tivity afterwards. For the initial inhomogeneous temperature,
both maximum and minimum temperatures and their differ-
ences on the whole are larger for larger thermal conductivity.
Besides, the cases of initial homogeneous temperature show
that the low-temperature spot is around the vortex center, the
high-temperature spot is at the junction of vertically peri-
odic vortices, and the maximum temperature is located at the
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material interface. On the one hand, there is a rarefaction
effect upon the vortex center due to the centrifugal force of
the rotating flows, and the centripetal force is offered by the
pressure gradient. Hence the density, temperature, and pres-
sure are low at the vortex center. On the other hand, there is
a compressible impact on the junction of corotating adjacent
vortices because of the collision between fluids from opposite
directions, which leads to an increase of the density, tem-
perature, and pressure. Additionally, the tangential velocity
difference between the two different media results in a viscous
shear action on the material interface. With the viscous heat
dissipation, the internal energy and temperature increase.
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APPENDIX A

In essence, to choose the discretization of velocities (e.g.,
Fig. 1) is a process of determining the calculation of dis-
crete (equilibrium) distribution functions, wherein the order
of physical accuracy is specified. Actually, the physical accu-
racy is directly related to the kinetic moment relations. (The
Boltzmann equation is equivalent to an infinite list of coupled
moment equations [34].) The more the moment relations, the
higher the physical accuracy.

In the current work, there are 16 moment relations satis-
fied by the discrete equilibrium distribution functions f a
follows:

Zfi"eq = /f [ dvdn, (A1)

Fooe // Fo%y, dvdn, (A2)

Zfi”eq(vf’z + 77?2) = // FoU? 4+ nHdvdn,  (A3)
| Zfaeqvf;”ﬁs = //f “ygvg dvdn, (A4)

DN el e e i /]1ﬂm%v + 17 )va dvdy,

(A5)
Zfaeq mUTBUD, = // F7%%vvpv, dvdn,

(A6)
Zﬁm(v,‘-’zﬂf’z = [[ 1796 g dvan,

(AT)

where the equilibrium distribution function reads

m® \P2/ o \ 12
oeq _ 0
A (271T) <2711“T>

malv_u|2 mon2:|

A8
2T 2I°T (A8)

X exp |:—

Mathematically, Egs. (A1)-(A7) can be expressed in a uni-

form form (17), which leads to the solution of the discrete
equilibrium distribution functions, £ = Mo ~lfoed

The square matrix M® has 16 x 16 elements: Mi’l =1,

Mgl = le’ Mgl = vtv’ MU = v<72 + 7772’ Mgl = le ’ Mgl =

v,xv,}, MS, = vlz}, Mg, = (v‘r2 + n”z)le, Mg, = (v‘72
z)vl)’ M?Ot - le3’ M?lt vaZvl), M121 - levlyz’

M i = vi’f’ My = 7 + 072 wit, Mis = 7 +17%)

(v0'2 + naZ)U02_

The column matrix £7%4 has 16 elements: ffeq =n’,
A;eq = n®u,, f;e = n"uy, Afeq =n’[(D+1°)T/m° + u?],
;eq n°(T/m° + u?), f”eq = n"uuy, f;geq =n°(T/m° +

le vty’ 161

uy), S =n8u,, fy =n"&%u,, fi74=3n"u.T/m* +
n"u3 P = nou, T /m® + n®uluy, f;’q =n°uT/m° +

n uxu2 o = 3n%u, T /m° +n’u, P = nE0T /m® +
2(é‘“JrZT/m ), fisd =n"ueu v(§“+2T/m ). frod=
"E"T/m +n”u?(§" +2T/m° ), with &° =D +1° +

DT /m® + u?.
Moreover, the expression and moment relations of
f7°1 are obtained in a similar way (which is not

shown here for brevity). The column matrix fosed has

16 elements: f7*=n, f7*=nu?, f7*=nu’,
fZ’SCq n [(D + Ia)Ta/m + uaZ] 5055‘] U(To'/m +

02) faseq = n°u’u aseq

g, f ”GWm—w”>FW—

(TEO'A 0’ ‘755‘«1 _ naéos q’ 0'59(-1 = 3n° uaTa/m + n° I/t
Foseq oo o 02 u® Foseq oo

1 _nuT/m +nu uy, 1 =n%uiT?/m’ +
0,002 Foseq 0,070 o a% foseq o sosTo
nugul”, fi3 —3nuT/m +n%ui’, fiy  =n°§7T%/

m® +n°u’?(£°° + 2T° /m°), f“eq_n udul (§7°427° /m?),
f';eq =n’E%T /m° + n”u;,’z(é” +2T%/m° ), with £7° =
(D+1° +2)T° /m® + u°>.

It is worth mentioning that there are 16 discrete velocities
and discrete (equilibrium) distribution functions. Correspond-
ingly, there are only 16 sets of discrete Boltzmann equations
(25). Obviously, this type of methodology is economic. To
achieve the same order of physical accuracy (namely, to have
the same moment relations), more discrete velocities, discrete
(equilibrium) distribution functions, and discrete Boltzmann
equations are required in other kinetic models. For example,
there are 65 discrete velocities in a finite difference LBM
proposed by Watari [101], and many more are needed in the
discrete velocity model [24].

APPENDIX B

Let us give the NS equations recovered from the DBM
in the continuum limit via the CE analysis. The Einstein
summation convention is adopted here. The NS equations of
individual species take the form
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8,0% + 3J7 =0, (B1)
aJg + Bﬁ((Saﬁp" + p%uguf + Pgg + Uo‘fﬁ) = 87,07 (ua - uZ), (B2)
o 0.0 (e o o o po o 1 o o o -T° 2 a2
QE 4 0y (E7uf, 4+ p7ul — kg 0. T + ujPgy + Y7 ) = 357\ D A+ — = —u” |, (B3)
mU
in terms of
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where 7, = 87, 87, = S7. S5, = S2. S, = 8¢, 53,, = 59,

Pxx Pyy
Sex = 8¢, 8¢y = 8¢ The thermal conductivity is
D+1°+2p°
K = Lp_ (B7)
28, m°
which is reduced to
D+1°4+2 p°
P Lp_ (BS8)

289 m°
in the case S§§ = Sg = S7. Moreover, if 5 = ¢ = §7 =S,
Eq. (B4) can be rewritten as

2
Pgﬁ =u’ <8a558Xu; — 8514;’ — aau(é) — 80“3“;8)(14;,

(B9)
with the dynamic, kinematic, and bulk viscosities
W= (B10)
o SM TO’
o=t (B11)
p°  m°Sy
and
o o2 2 (B12)
Fe =K \D " D¥xr1°)
respectively.

The specific heat at constant pressure and volume are,
respectively,

D+1°+2
e — B13
» T (B13)

D+1°
7 = B14
v T (B14)
hence the specific-heat ratio is
¢ D+I1°+2

y’=-"L = orie . (B15)

S D+ 1I°

(

The number of degrees of freedom is a tunable parameter,
which leads to a flexible specific heat ratio. To take into ac-
count real-gas effects associated with the gradual excitation of
vibrational degrees of freedom with increasing temperature,
the extra degrees of freedom are a function of temperature,
ie.,I° = 1°(T?). In addition, the Prandtl number is

0,0 o
cou’  Sg

Pr? = e = S—o_.
k 12

(B16)

Consequently, both the specific-heat ratio and Prandtl number
are flexible.

Furthermore, summing Egs. (B1)-(B3) over all species o
results in the NS equations describing mixing fluids as fol-
lows:

0 p + da(pua) =0, (B17)
3 (ptte)) + dp Y (8app” + p uGuy + Py + UZy) =0,
o

(B18)
QE + 3 Y (E7ul + p7ul — k59T +ul Py + Y7 ) =0,

(B19)

under the condition of momentum and energy conservation,

Zp“(ua — ug) =0,

D+I°T° —T u’? —u?
> op° + —0. (B21)

(B20)

= 2 me 2
In addition, if individual velocities and temperatures of
various chemical species are quite close to each other, i.e.,
uy, =uy and 7% =T, Eqs. (B18) and (B19) are simplified as
0 (putg) 4+ 08 (8app + pugup + Pyp) =0, (B22)

O E + 0y (Eug + pug — k0, T + ugPypg) =0, (B23)
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with

26
Paﬂ = ,u,< “ﬂa XUy — aﬂua — aauﬁ) - S,Iﬁ,ugaxux,

D
(B24)

w= u, (B25)
E=)E°, (B26)

(B27)

Ky = E Ky .
o

Clearly, the coefficients of viscosity and thermal conductivity
become

p

- B28

u s, (B28)
D+I1+2p

-1 Te7 B29

“ 25, m (B29)

in the case with SZ =84, 82, =8 I° =1, and m° =m.
Moreover, in practical systems, the parameters S7 are a func-
tion of physical variables, such as the density and temperature
[9,24,102]. For simplicity, values of S7 are kept constant in
this work.

In fact, the expressions of viscosity p and thermal con-
ductivity k depend upon a particular simplified kinetic model
that is an approximation to the original complex Boltzmann
equation. For example, the ellipsoidal statistical model [32]
gives

M =Pr§, (B30)
5p
=22 (B31)

where S denotes the collision frequency, and the Prandtl num-
ber is specified as Pr = 1 in the BGK model [31]. For power
potentials for the interaction between the particles, they take

the form
T w
w= Mo(?() , (B32)
5nu
==, B33
2 Pr ( )

where 1 represents the viscosity at a reference temperature
To, and w € [0.5, 1] is a parameter depending upon the inter-
action potential [34].

APPENDIX C

In a similar way to previous works [10,103], it is easy
to demonstrate that the NS equations (B1)—(B3) lead to the
following diffusion equations:

(1) Fick’s first law
®F = —D7 0,0, (el))

where &7 = p?(ud — u,) is the individual diffusion flux of
mass in the o direction, and D° = T /(m°S9,) is the individ-
ual diffusivity.

(2) Fick’s second law

927 = D?04(3,A7), (C2)

where A° = p?/p represents the mass fraction.
(3) The Stefan-Maxwell diffusion equation

Ns

= S SO gy 2

Pk#P

. X/
3. X’ dup.  (C3)

Additionally, comparing Eq. (C3) with the traditional
Stefan-Maxwell diffusion equation

NS . . .
‘ X/xk oM =X
0. X7 = Z W(Ug — M(]x) + 0 D, (C4)
k#j
we get
Ns Xxixk( j k
Uy — U
Sja — Zk;ﬁ/ DIk ( ) (C5)

N j
N )
with D/* the binary diffusivity. With the assumption that the

quantity (u({; — uf;) is of the same order for all j #£ k, the above
equation is reduced to

Ns  Xx/x* .
Zk;ﬁj DiF X/ Zk;ﬁj D/k _ pX/

S, =p = ——,  (C6)
p e pi(1 =2y — piDi
in terms of
-1
Ns k
Dl = Z oF (1 =29, (C7)
kit

which is the mixture-averaged diffusion coefficient of compo-
nent j [104].

Note that substituting Eq. (C6) into (B2) may give a result
in contradiction to Eq. (B20). A solution to this problem
is to set 87, =3 ; S7,/Ns . Namely, the condition of mo-
mentum conservation is satisfied if all individual parameters
S9, are equal to each other [102]. Another solution is to
modify the right-hand side of discrete Boltzmann equation
(25) [105]. Similarly, a way to overcome the inconsistency
between Eqs. (B3) and (B21) is to set S as the same value or
to add a modified term to Eq. (25). More discussion is out of
the scope of this paper.
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