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9 Abstract 

10 Aberrant neural oscillations hallmark numerous brain disorders. Here, we first report a 

11 method to track the phase of neural oscillations in real-time via endpoint-corrected Hilbert 

12 transform (ecHT) that mitigates the characteristic Gibbs distortion. We then used ecHT to 

13 show that the aberrant neural oscillation that hallmarks essential tremor (ET) syndrome, the 

14 most common adult movement disorder, can be transiently suppressed via transcranial 

15 electrical stimulation of the cerebellum phase-locked to the tremor. The tremor suppression 

16 is sustained shortly after the end of the stimulation and can be phenomenologically 

17 predicted. Finally, we use feature-based statistical-learning and neurophysiological- 

18 modelling to show that the suppression of ET is mechanistically attributed to a disruption of 

19 the temporal coherence of the aberrant oscillations in the olivocerebellar loop, thus 

20 establishing its causal role. The suppression of aberrant neural oscillation via phase-locked 

21 driven disruption of temporal coherence may in the future represent a powerful 

22 neuromodulatory strategy to treat brain disorders. 

23 

24 Introduction 

25 Synchronous oscillatory firing in large populations of neurons has diverse functional roles in 

26 the central nervous system (CNS), including regulation of global functional states, endowing 

27 connectivity during development, and providing spatiotemporal reference frames for 

28 processing of sensory input1,2. Aberrant synchronous oscillations have been associated with 

29 numerous brain disorders3,4. A palpable manifestation of such aberrant oscillation is 

30 pathological tremor in essential tremor (ET) syndrome, the most prevalent movement 

31 disorder affecting 0.4% of the general population5. While the biomolecular origin of ET 

32 remains elusive, rendering pharmacological interventions unspecific and often inefficient6, its 

33 systems-level origin, i.e., oscillatory activity in the cortico-cerebello-thalamo-cortical (CCTC) 

34 network, is well established7. Invasive systems-level interventions such as lesioning and 

35 high-frequency deep brain stimulation (DBS) can successfully treat medication refractory 

36 ET6,8, but their wide-scale application is limited due to the need for brain surgery. However, 

37 such aberrant oscillations fundamentally require a delicate cascade of coherent activities 

38 across the network components. We here explored whether such a cascade of coherent 

39 activities in the CCTC under ET can be disrupted non-invasively by perturbing the 

40 synchronous activity of the cerebellum via stimulation that is phase-locked to the tremor 

41 oscillation. To phase-lock the stimulation to the tremor oscillation, we first present a strategy 

42 to mitigate the Gibbs phenomenon distortion9 from the Hilbert transformation10 to compute 

43 the instantaneous phase of an oscillatory signal in real-time, a strategy that we called 

44 endpoint corrected Hilbert transform (ecHT). We then demonstrate that if transcranial 

45 alternating current stimulation (tACS) of the cerebellum is phase-locked to ET movement it 



46 can suppress its amplitude. Finally, we show that the suppression of ET amplitude is 

47 attributed to a disruption of the cascade of coherent activities in the olivocerebellar loop. 

48 Results 

49 Real-time computation of instantaneous phase via endpoint corrected Hilbert transform 

50 To enable phase-locking of stimulation to oscillatory activity, we first developed a strategy to 

51 compute in real-time the instantaneous phase of oscillatory signals. Traditionally, the 

52 instantaneous phase and envelope amplitude, of a band-limited, time-varying oscillatory 

53 signal are computed from a complexified version of the signal, known as the analytic signal, 

54 in which the real part is the unmodified signal and the imaginary part is the signal’s Hilbert 

55 transform10. The discrete analytic signal is most accurately and efficiently computed in the 

56 frequency domain11. However, the Gibbs phenomenon9 has made it impossible to accurately 

57 compute the instantaneous phase and amplitude at the ends of finite-length analytic 

58 signals12. We hypothesized that by applying a causal bandpass filter to the frequency 

59 domain representation of the analytic signal we would mitigate the Gibbs phenomenon by 

60 establishing a continuity between the two ends of the signal and remove the distortion 

61 selectively from the end part of the signal – aka endpoint corrected Hilbert transform (ecHT). 

62 See Methods for a detailed description of the ecHT. 

63 To assess whether the ecHT strategy could effectively mitigate the Gibbs phenomenon at 

64 the endpoint of the analytic signal, we computed the Hilbert transform of a test signal, i.e., a 

65 finite-length discrete cosine waveform, and quantified the error at the endpoint. Fig. 1a and 

66 Fig. 1b show the Fourier spectra and the Hilbert transforms without the endpoint correction 

67 when the signal completed and did not complete full cycles within the sampled time interval, 

68 respectively. At the endpoint of the signal without ecHT, the maximal phase error was 179° 

69 (mean error 47° ±50° standard deviation, st.d.), and the maximal amplitude error was 191% 

70 (76% ±69%. Fig. 1c. Fig. 1d shows the same as Fig. 1b but with the endpoint correction.  At 

71 the endpoint, the ecHT strategy reduced the phase error by at least an order of magnitude 

72 (maximal error 12°; mean error 9° ±2° st.d.) and the amplitude error by at least two orders of 

73 magnitude (8%; 4% ±2%). The effects of the filter bandwidth and filter order are shown in 

74 Fig. 1f and Fig. 1g, respectively. 

75 

76 Cerebellar stimulation phase-locked to essential tremor movement 

77 Next, we deployed the ecHT to test whether stimulation of the cerebellum phase-locked to 

78 the tremor movement can perturb ET in a cohort of 11 human participants with ET (see 

79 Supplementary Table 1 for demographic details). We measured the tremor movement of the 

80 hand, computed its instantaneous phase in real-time, generated eight different stimulating 

81 currents – sinusoidal at six different phase lags (0°, 60°, 120°, 180°, 240°, 300°), a control 

82 sinusoidal at the tremor frequency without phase-locking, and a sham, and applied them 

83 transcranially to the ipsilateral cerebellum via scalp electrodes (mean current amplitude 2.7 

84 ±1 st.d. mA). Fig. 2a shows a schematic of the phase-locked stimulation concept, Fig. 2b 

85 shows a schematic of the electrode configuration and the theoretical distribution of the 

86 electric fields in the brain, computed using finite element method (FEM) modelling. 

87 Supplementary Movie 1 shows a representative video. We applied each stimulation 

88 condition in a block of 60s during which the participants maintained a tremor evoking 

89 posture. Each block consisted of a 30s stimulation period (including 5s of ramp-up and 5s of 

90 ramp-down) and 15s stimulation-free periods before and after. We repeated the stimulation 



91 conditions four times in a double-blinded random order with a 30s rest interval between 

92 conditions and 5-10min rest interval between sessions of eight stimulation conditions (see 

93 Fig. 2c for a schematic of the study design and Methods). 

94 To assess whether the stimulating currents were delivered at accurate phase-lag, we 

95 computed, offline using Hilbert transform, the lag between the instantaneous phase of the 

96 stimulation waveforms and the instantaneous phase of the tremor movement waveforms. 

97 We found that during the phase-locked stimulation, the phase-lag distribution of each 

98 condition was narrow and different from the other conditions throughout the stimulation 

99 period (Fig. 2d(i)) and during the first and second halve periods (Fig. 2d(ii)), (p<10-8 for all 

100 periods; Fisher test; see Supplementary Table 2 for full statistics). The difference between 

101 the measured phase-lag and the set phase-lag was small, i.e., 3° ±11° (mean ±st.d), across 

102 all the phase-locked conditions. The mean resultant vector length (quantifying the circular 

103 spread)13, was close to one, i.e., 0.98 ±0.01, across all the conditions, and did not differ 

104 between conditions throughout the stimulation period (Fig. 2e(i)), and during the first and 

105 second halve periods (Fig. 2e(ii); p>0.95 for all periods; one-way ANOVA, see 

106 Supplementary Table 3 for full statistics). The mean resultant vector length was slightly 

107 larger at stimulation blocks with higher tremor amplitude (Fig. 2f(i)) and was slightly smaller 

108 at stimulation blocks with higher tremor amplitude st.d. (Fig. 2f(ii)) higher tremor frequency 

109 (Fig. 2g(i)) and higher tremor frequency st.d. (Fig. 2g(ii)). In contrast, during the sinusoidal 

110 stimulation without phase-locking, the phase-lag distribution was not different from a uniform 

111 distribution (Fig. 2d(i-ii); p>0.4 for all periods; Omnibus test). The mean resultant vector 

112 length was small, i.e., 0.19 ±0.071, and did not differ from sham stimulation (p=0.37, paired 

113 Wilcoxon signed-rank test), indicating that the stimulation did not entrain the tremor phase 

114 (Fig. 2d-e and Supplementary Table 3). Across all stimulation conditions, the mean resultant 

115 vector length was not different in trials in which participants reported sensation underneath 

116 the electrodes and trials in which no sensation was reported (p=0.3, Paired sign-rank test). 

117  

118 Phase-dependent suppression of essential tremor amplitude 

119 After establishing that the stimulating currents were delivered at the desired phase lags, we 

120 assessed whether they affected the tremor amplitude. To quantify the stimulation effect 

121 relative to the baseline period and relative to the effect of sham stimulation, we computed, 

122 for each participant, the z-score of the tremor amplitude relative to the mean and the st.d. of 

123 the tremor amplitude during baseline in each stimulation condition, and then subtracted the 

124 median z-score of the tremor amplitude during sham stimulation (there was no significant 

125 difference in the tremor frequency and amplitude during baseline between conditions, see 

126 Supplementary Table 1 for full statistical details). To examine the temporal dynamics of  the 

127 effect we quantified the z-score values during the first half and second half of the stimulation 

128 period, as well as during the post-stimulation period. 
 

129 We found that the stimulation at the tremor frequency without phase-locking resulted in a 

130 tremor amplitude reduction, yet not statistically significant (Fig. 3a). A significant tremor 

131 amplitude change (reduction or increase) occurred in only a small number of participants 

132 (Fig. 3b and Supplementary Table 4). Across these subsets of participants, the change was 

133 statistically significant only in those showing a reduction and only during the first half of the 

134 stimulation (Fig. 3c-d). The corresponding percentage reduction during the first half period of 

135 the stimulation was -10.8 ±3.0% (mean ±st.d.) relative to baseline. In contrast, stimulation 

136 that was phase-locked to the tremor movement resulted in a significant reduction in the 



137 tremor amplitude, that increased throughout the stimulation period and sustained during the 

138 post stimulation period  (Fig. 3e;  see Supplementary Fig. 1  for z-score  values  expressed 

139 relative to stimulation without phase-locking). The number of participants who showed a 

140 significant reduction in the tremor amplitude was significant during the second half of the 

141 stimulation and the post-stimulation period, while the number of participants who showed a 

142 significant increase in the tremor amplitude was not significant throughout (Fig. 3f and 

143 Supplementary Table 4; p-value threshold of amplitude change was Bonferroni corrected for 

144 six phase-locked conditions). Across these subsets of participants, the reduction/increase in 

145 the tremor amplitude was statistically significant throughout (Fig. 3g-h). The corresponding 

146 percentage reduction (and increase) in tremor amplitude during the first half period of the 

147 stimulation, second half period of the stimulation, and after the stimulation period, was -18.1 

148 ±2.5% (8.3 ±4.5%), -15.2 ±2.2% (1.6 ±2.0%), and -12.0 ±2.3% (6.5 ±3.3%), respectively, 

149 relative to baseline. The change in tremor amplitude was not different between sessions 

150 (p=0.64, ANOVA; p=0.32, linear mixed effect model with sessions as a predictor variable). 

151 Across all stimulation conditions, the z-score tremor amplitude was not different in trials in 

152 which participants reported sensation underneath the electrodes and trials in which no 

153 sensation was reported (p=0.54, paired t-test). 
 

154 Comparing the phase-locked conditions, we found that the reduction in tremor amplitude 

155 was close to significance (not corrected) only at a phase-lag of 0° (Fig. 4a) but the number of 

156 participants who showed a significant reduction in tremor amplitude was not significant (Fig. 

157 4b). However, if the phase lags of individual participants were expressed relative to the 

158 phase lag that resulted in the largest reduction of their tremor amplitude, the reduction in 

159 tremor amplitude and the number of participants who showed a significant reduction, were 

160 statistically significant̶ indicating a narrow range of efficacious phase that can vary between 

161 participants (Fig. 4b-c, see Supplementary Table 5 for complete statistical details). The 

162 corresponding percentage reduction during the second half period of the stimulation at 0° 

163 phase-lag was -21.5 ±4.2% relative to baseline. 

164 To test whether the effect of the stimulation on the tremor amplitude is reproducible, we 

165 repeated the experiment in a subset of participants (n=6, including participants 1,2,3,6, and 

166 11 who showed a reduction in the tremor amplitude and participant 9 who did not; see 

167 Supplementary Table 1 for demographic and clinical details during the repeated experiment) 

168 and analysed the data in the same way as in the original experiment. We found that in the 

169 repetition  experiment  the  stimulation  currents  were  delivered  at  the  same  phase-lag 

170 accuracy as in the original experiment (Supplementary Table 6). As before, stimulation at the 

171 tremor frequency without phase-locking resulted in a tremor amplitude reduction, yet not 

172 statistically significant (Fig. 4e), however stimulation currents that were phase-locked to the 

173 tremor movement resulted in a significant reduction in the tremor amplitude that was 

174 sustained during the post-stimulation period (Fig. 4f). The participants who showed a 

175 significant reduction in the tremor amplitude during the stimulation period in the original 

176 experiment also showed a significant reduction in the tremor amplitude in the repetition 

177 experiment (see Supplementary Table 7 for full statistics). The z-score reduction in the 

178 tremor amplitude across those participants was not different from the original experiment 

179 (Fig. 4g). Comparing the phase-locked conditions, we found that across the cohort the 

180 reduction in the tremor amplitude was smaller at phase-lag of 0° and larger at phase-lag of 

181 300° (Fig. 4h, see also Supplementary Table 8 for full statistics). Within individual 

182 participants the phase-lag values that reduced the tremor amplitude were consistent in only 

183 20% of the cases. 



184  

185 Prediction of participants’ response from distinct features of the tremor movement 

186 Next, we sought to explore whether the variability in the participants’ response to the 

187 stimulation can be attributed to certain characteristics of their ET condition. We divided the 

188 participants into two groups, i.e., a ‘responder’ group (n=7, including participants 1,2,3,6,8,9, 

189 and 11) and a ‘non-responder’ group (n=4, participants 4,5,7, and 10). A participant was 

190 defined a ‘responder’ if his/her tremor amplitude decreased in at least one of the tested 

191 stimulation phases relative to sham and did not increase in any of the tested stimulation 

192 phases relative to sham, and a ‘non-responders’ if his/her tremor amplitude increased in at 

193 least one of the tested stimulation phases relative to sham or did not change in any of the 

194 tested stimulation phases relative to sham. We first assessed whether certain clinical or 

195 demographic characteristics can distinguish between responder and non-responder groups 

196 but found only non-significant trends of younger age (p=0.07, Wilcoxon rank-sum test) and 

197 higher tremor frequency (p=0.08) in responders (see Supplementary Table 1 for full 

198 statistical details). In addition, we did not find a difference between the groups in the 

199 amplitude of the applied currents (p = 0.8). 

200 We then explored whether certain characteristics of the tremor movement can distinguish 

201 between the two groups. We deployed a feature-based statistical learning strategy14 to 

202 extract 7873 different time-series features from a 10s segment of the tremor movement 

203 before the onset of the stimulation in all the trials with phase-locked stimulation (301 trials in 

204 total, including 28 trials per participant except participant 3 in which only 21 trials were 

205 recorded); exemplary tremor traces are shown in Fig. 5a. We then used the features and a 

206 support vector machine (SVM) with a linear kernel to classify the tremor trials according to 

207 the subjects’ responsiveness to a phase-locked stimulation. We found that using all the 

208 features, the tremor trials could be classified according to the participants’ response with an 

209 accuracy of 97% (F-score of 96). However, even a small number of features was sufficient 

210 for high accuracy classification, using the top 1, 5, 10, and 40 features with highest single- 

211 feature classification accuracy, the tremor trials could be classified with an accuracy of 83%, 

212 81%, 86%, and 92% (F-score of 82, 80, 85, and 91), respectively (Fig. 5b). 

213 We then used a hierarchical cluster tree approach to search for the most informative 

214 features among the 40 features with the highest classification accuracy (Fig. 5c; feature 

215 values of individual participants did not differ between trials, p>0.5; ANOVA). We identified 

216 14 clusters of correlated features and extracted the corresponding features at the centre  of 

217 those clusters – the list of the most informative features is given in Supplementary Table 9 

218 and the magnitude probability density plots of exemplary features are shown in Fig. 5d (the 

219 classification accuracy plateaued at approximately 14 features, Fig. 5e). The extracted 

220 features revealed that the tremor movement in responders was smaller (Fig. 5dii), had a 

221 more sinusoidal like regularity (Fig. 5diii and Fig. 5div), and had a higher amplitude 

222 symmetry relative to zero (Fig. 5di). The Euclidean distance between feature centroids of the 

223 responders class and non-responders class was 0.55 (feature centroid of a class was 

224 computed by averaging the features across the corresponding samples). The feature 

225 centroids of individual participants who responded to the stimulation located at a distance 

226 <0.5 to the feature centroid of the responders class and had a longer distance to the feature 

227 centroid of the non-responders class (exception was participant 8; Fig. 5f; distance of 

228 responders to responders’ class, mean 0.35 ±0.2 st.d.; responders to non-responders class, 

229 0.6 ±0.25; non-responders and responders class, 0.65 ±0.15; non-responders and non- 

230 responders class, 0.35 ±0.15). 



231 To test whether these features of the tremor movement can potentially help to predict the 

232 response of participants to the stimulation, we repeated the experiment in a new cohort of 

233 seven human participants with ET. We analysed the data in the same way as in the original 

234 cohort and extracted the same 14 features from the 10s tremor movement before the 

235 stimulation onset (see Supplementary Table 10 for demographic details, see Supplementary 

236 Table 11 for phase-locking and Supplementary Table 12 tremor amplitude statistics). We 

237 found that three participants (i.e., participants 2,3, and 7) responded to the stimulation based 

238 on the aforementioned responding criterion. The feature centroids of these participants,  but 

239 not the rest of the cohort, were located at ≤0.5 distance to the feature centroid of the 

240 responders class from the original cohort and had a longer distance to the feature centroid of 

241 the non-responders class from that cohort (Fig. 5g) indicating a consistency in the 

242 relationship between the features of the tremor movement and the response to the 

243 stimulation. 

244  

245 Suppression of essential tremor amplitude is underpinned by disruption of temporal 

246 coherence of movement 

247 After establishing that participants who responded to stimulation had distinct characteristics 

248 of tremor movement during baseline, we next sought to explore whether the change in 

249 tremor amplitude during stimulation was associated with a change in other characteristics of 

250 tremor movement. We divided all the tremor trials with phase-locked stimulation (again 301 

251 trials in total) into three datasets according to the change in tremor amplitude during 

252 stimulation relative to sham, i.e., trials with a decrease in tremor amplitude (‘decrease’; 58 

253 trials from 11 subjects), trials with an increase in tremor amplitude (‘increase’; 51 trials from 

254 10 subjects; participant 6, did not show an increase in tremor amplitude in any phase-locked 

255 condition), and trials without a change in tremor amplitude (‘no-change’; 192 trials from 11 

256 subjects). 

257 We then deployed the same feature-based statistical learning strategy14 to test whether the 

258 characteristics of the tremor movement can distinguish between the stimulation and baseline 

259 periods in these three datasets. We extracted the same 7873 features as before from a 10s 

260 segment of the tremor movement before the onset of the stimulation and from a 

261 corresponding 10s segment during the middle of the stimulation; exemplary tremor traces 

262 with tremor amplitude ‘decrease’ and ‘increase’ are shown in Fig. 6a and Fig. 6b, 

263 respectively. We then used the features and the same SVM as before to classify the tremor 

264 trials according to the period class, i.e., ‘baseline’, or ‘stimulation’. We found that the 

265 ‘decrease’ dataset had a higher probability of classification with high accuracy compared to 

266 the ‘increase’ and the ‘no-change’ datasets (Fig. 6c; ‘decrease’ vs. ‘increase’, p=0.01; 

267 ‘decrease’ vs. ‘no-change’, p=0.008; ‘increase’ vs. ‘no-change’, p =0.45; and against a null 

268 distribution, generated by assigning random values to the feature), ‘decrease’,  p=0.005; 

269 ‘increase’, p=0.34; ‘no-change’, p=0.58; pairwise Kolmogorov-Smirnov test). 

270 Focusing on the ‘decrease’ dataset, we found that using all the features, the tremor trials 

271 during stimulation and baseline could be classified with an accuracy of 79% (F-score of 79). 

272 However, the classification accuracy was dominated by only a few features, using the top 1, 

273 5, 10, and 40 features with highest single-feature classification accuracy, the tremor trials 

274 could be classified with an accuracy of 78%, 79%, 79%, and 80% (F-score of 78, 81, 81, and 

275 81, respectively; Fig. 6d). We then used, as before, the hierarchical cluster tree approach 

276 with a between-feature correlation threshold of 0.2 to search for the most informative 

277 features among the 40 features with the highest classification accuracy (Fig. 6e).  We 

278 identified 9 clusters of correlated features and extracted the corresponding features at the 



279 centre of those clusters – the list of the most informative features is given in Supplementary 

280 Table 13 and the magnitude probability density plots of the central features with the highest 

281 probability are shown in Fig. 6f. We found that the classification was dominated by two time- 

282 series features, i.e., the ‘information gain’ feature, which estimates how easy it is to predict a 

283 data point in the time series from the preceding data points, and the ‘quadratic fit of power 

284 spectrum cumulative sum’ feature, which characterizes the power spectrum of the time 

285 series. The increase in ‘quadratic fit of power spectrum cumulative sum’ during stimulation 

286 can be simply attributed to the drop in the spectral peak at the tremor’s frequency. In 

287 contrast, the increase in ‘information gain’ during stimulation revealed a loss of linear 

288 dependency between consecutive datapoints of the tremor movement, i.e., a loss of 

289 temporal coherence. 

290 To specifically test whether the change in the tremor amplitude was associated with a 

291 change in temporal coherence, we computed the change in the magnitude-squared 

292 coherence during the stimulation period relative to the baseline period in the ‘decrease’  and 

293 the ‘increase’ datasets as well as in a dataset consisting of all the trials with sham 

294 stimulation (‘sham’). We found that the temporal coherence in the tremor frequency-band 

295 decreased in the ‘decrease’ dataset and increased in the ‘increase’ dataset during the 

296 stimulation, however, it did not change in the ‘sham’ dataset (Fig. 6g). The change in the 

297 tremor amplitude in the ‘decrease’ dataset, but not in the ‘increase’ dataset, was correlated 

298 with the change in the tremor temporal coherence. The change in the tremor amplitude in 

299 the ‘sham’ dataset was also positively correlated with the change in the tremor temporal 

300 coherence, however, with a smaller slope of the linear regression (Fig. 6h; combined 

301 dataset, line y-intercept c=0.2, line slope m=1.2, R2 =0.32; ‘decrease’ dataset, c=-1.4, 

302 m=1.35, R2 =0.49; ‘increase’ dataset, c=0.94, m=0.58, R2 =0.004; ‘sham’ dataset, c=-0.3, 

303 m=0.78, R2 =0.32; Pearson correlation; see Supplementary Fig. 2 for a correlation analysis 

304 of trials during stimulation without phase-locking). The change in temporal coherence in the 

305 ‘decrease’ dataset was correlated with the onset of the stimulation and was maintained 

306 during the duration of the stimulation (Fig. 6i). 

307 To explore the possible mechanism by which the disruption of the temporal coherence could 

308 result in a suppression of the tremor amplitude, we simulated the CCTC network under ET 

309 condition15 and phase-locked cerebellar stimulation. We found that the mechanism might be 

310 related to the suppression of the aberrant complex spikes in the Purkinje cells of the 

311 cerebellum due to synchronization of the hyperpolarizing phase of the stimulating with the 

312 onset of the complex spikes. See ‘Neurophysiological model’ in Supplementary Information. 

313  
 

314  

315 Discussion 

316 In this paper we presented the ecHT strategy to compute the instantaneous phase of 

317 oscillatory signals in real-time and validated it using both simulation and measurements with 

318 pathologic oscillatory brain activity, i.e., ET. The ecHT strategy is based on the application of 

319 a causal bandpass filter to the DFT of the analytic signal to mitigate the distortion, known as 

320 the Gibbs phenomenon, from its end. Other frequency-domain and time-domain filters have 

321 been previously proposed to mitigate the Gibbs phenomenon from finite signals with a 

322 discontinuity16 but these filters restore the DFT only away from the discontinuity itself17. 

323 There have also been reports of restoring the endpoint of the analytic signal using recursive 

324 models, such as autoregression18 or polynomial fitting19 to forward predict the physiological 

325 signal so that the last acquired datapoints are shifted from the window edge before the 



326 computation of the Hilbert transform. Recursive models have been recently tested for phase- 

327 locking brain stimulation20–22, showing in some cases large st.d. (e.g., ~55°)21 and 

328 dependency on the coherence of the signal22. Ultimately, the high runtime complexity of 

329 recursive models (e.g., autoregression has a runtime complexity of O(n3) for n samples, 

330 governed by the parameter estimation operation23) limit their use in applications that require 

331 real-time computation using conventional, and/or portable digital hardware. 

332 In comparison, the ecHT is a simple, yet powerful method to accurately compute the Hilbert 

333 transform in real-time to track the instantaneous phase and envelope amplitude of an 

334 oscillatory signal. The ecHT maintains the same runtime complexity as the original Hilbert 

335 transform (i.e., O(n log(n)) for n samples), allowing implementation in simple and portable 

336 hardware. Future studies may be able to improve the accuracy of the ecHT by adjusting, 

337 online, the central frequency of the bandpass filter to the instantaneous frequency of the 

338 signal, computed e.g., via a time derivative of the instantaneous phase. Given the 

339 widespread use of the Hilbert transform to compute the instantaneous attributes of 

340 oscillatory signals10, the possibility for real-time computation using ecHT opens exciting 

341 opportunities in neuroscience and beyond (e.g., to monitor rotating engines and structural 

342 defects24, speech analysis25, and geophysics26). 

343 We then used the ecHT to demonstrate the causal role of synchronous cerebellar activity in 

344 human participants with ET. By deploying for the first-time phase-locking stimulation to the 

345 cerebellum, we showed, in a double-blinded, sham and active controlled experiment, that ET 

346 amplitude can be efficiently supressed within a few seconds. The range of phases that  were 

347 efficacious in suppressing the tremor in our stimulation was small but varied between 

348 participants and within participants between days of experiments perhaps due to differences 

349 in the electrode-skin capacitance. Future studies may be able to adjust the target stimulation 

350 phase online using similar closed-loop strategies currently deployed to adjust the target 

351 amplitude or frequency of DBS27. Our results exemplify the importance of accurate phase- 

352 locking to successfully induce a reduction in tremor amplitude. The fact that the tremor 

353 amplitude continued to drop during the stimulation period suggests that a longer stimulation 

354 period may yield an even larger suppression. The sustained drop in tremor amplitude after 

355 the end of the stimulation period may hold potential for a therapeutic effect via neural 

356 plasticity. To start testing the reproducibility of the stimulation effect, we validated the effect 

357 in a subset of participants a few years after the initial experiment and share the phase- 

358 locking methodology to allow other researchers to easily reproduce the experiment. 

359 The rational of targeting the cerebellum in ET has been motivated by the recent discoveries 

360 of cerebellar abnormalities in ET patients and its strong connectivity to the basal ganglia (via 

361 the thalamic nuclei)28. Invasive phase-locked DBS of the thalamic Vim near the region 

362 receiving input from the cerebellum showed benefit in ET29. Nevertheless, numerous non- 

363 invasive cerebellar stimulation studies have failed to demonstrate a clear effect on ET 

364 severity even after multiple days of stimulation (see recent reviews28,30,31). For example, a 

365 prior study applying tACS to the cerebellum, but without phase-locking, found only a phase 

366 entrainment of the tremor with no effect on its amplitude32. There has been an original report 

367 that showed that non-invasive phase-locked stimulation of the motor cortex can ameliorate 

368 tremor in Parkinson’s disease (PD) patients33. Although both ET and PD are caused by 

369 aberrant oscillations in the motor system, their anatomical origins and degree of coupling 

370 between the central oscillators are very distinct34. Of course, the effect of stimulation on the 

371 activity of a brain circuit is complex, involving mixtures of local activation and inactivation 

372 pathways and interactions with downstream and upstream brain regions35, and hence cannot 

373 be extrapolated across brain locations, brain states and diseases28. In fact, even a small 

374 change in stimulation parameters was shown to result in different and sometimes opposite 



375 effects36,37 which may be particularly true in the case of the cerebellum given its both 

376 inhibitory and excitatory effects on the motor cortex38,39. There has also been a report that a 

377 periodic stimulation of the motor cortex at the tremor frequency without phase-locking, can 

378 entrain the phase of ET in patients undergoing DBS with an efficiency that was correlated to 

379 the somatosensory sensation underneath the electrodes40. In our study, the changes in the 

380 circular phase distribution and amplitude of the tremor were not dependent on the subjective 

381 sensation of the patients. 

382 Finally, we showed, using data-driven statistical learning approach, that ET severity is linked 

383 to the temporal coherence of the movement, and that stimulation that disrupts the temporal 

384 coherence can reduce its severity. Hitherto investigations of the tremor coherence have 

385 focused on the correlation between two different tremor signals, such as the bilateral hand 

386 movement41, intermuscular electromyography (EMG)42, and cortico-muscular43. These 

387 studies have elucidated important differences between diseases (e.g., ET vs. PD) however 

388 have not found a relationship to the severity of the tremor. The causal relationship between 

389 the amplitude of ET and its temporal coherence provides an important insight into the 

390 dynamics of the central oscillator underlying the disease. This is particularly interesting given 

391 the distinct relationship between the instantaneous frequency of ET and its fluctuation44. 

392 With almost a third of ET patients discontinuing medications due to insufficient benefit, 

393 medical contraindications, or the emergence of adverse effects45, there is a pressing need 

394 for a novel treatment strategies for ET. Invasive DBS of the Vim nucleus is an alternative 

395 treatment for drug-refractory ET patients however, it is limited by the need for a brain surgery 

396 and the development of adverse side effects such as dysarthia and dysphagia6,46,47. Our 

397 results may provide the foundation for a new interventional strategy for ET. The mechanism 

398 of action of such an interventional strategy will be based on an active disruption of the 

399 cascade of coherent activities that generate the tremor oscillation in the olivocerebellar loop. 

400 Our computational modelling suggests that it may be attributed to a timely perturbation of the 

401 generation of complex spikes in the PCs. Future computational studies may be able to 

402 explain the underlying mechanisms of those features predicting the stimulation outcome. 

403 Such a mechanism of action differs from the existing Vim DBS therapy for ET that masks the 

404 tremor oscillation in the thalamocortical loop but does not mitigate its generation in the 

405 olivocerebellar loop15. Future studies with larger patient cohorts and longer stimulation 

406 periods, are needed to better pinpoint the magnitude and duration of the tremor reduction 

407 and to assess the safety profile. In the future, neuromodulatory strategies that target the 

408 temporal coherence of the pathology may offer new opportunities to treat a wide range of 

409 brain disorders underpinned by aberrant synchronous oscillations. 

410  
 

411 Methods 

412 Endpoint corrected Hilbert transform (ecHT) 

413 A discrete analytic signal is most accurately and efficiently computed by deriving the discrete 

414 Fourier transform (DFT) of the signal, zeroing the Fourier components of the negative 

415 frequencies and doubling the ones of the positive frequencies, and constructing the analytic 

416 signal using the inverse discrete Fourier transform (IDFT)11. However, Gibbs phenomenon 

417 distortion9 in the derivation of the analytic signal at the ends of finite-length signals has 

418 rendered an accurate computation of the instantaneous phase and envelope amplitude at 

419 the last data point impossible12. Since the Gibbs phenomenon stems from a nonuniform 

420 convergence of the DFT at a discontinuity between the beginning and the end of the analytic 
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421 signal48, we hypothesized that by applying a causal bandpass filter to the DFT of the analytic 

422 signal we would establish a continuity between the two ends of the signal and remove the 

423 distortion selectively from the end part of the signal. The bandpass feature of the filter 

424 reduces extraneous DFT coefficients, limiting the oscillatory properties to the target 

425 frequency-band, while balancing the phase-lag introduced by the low-pass component of the 

426 filter with the phase-lead introduced by the high-pass component of the filter. The causality 

427 feature of the filter restores the linear increment of the phase at the end of the analytic signal 

428 by projecting the oscillatory properties from the adjacent, non-distorted data points. Since 

429 the DFT treats finite sampled signals as if they were replicated periodically, the projection of 

430 the oscillatory properties would continue through the beginning of the signal, thus forcing a 

431 continued increment of the phase from the restored signal end to its beginning. The runtime 

432 complexity of the filtering is O(n/2), where n is the number of frequency points, is lower than 

433 O(n ∙ log(n)) of the fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) 

434 that dominates the computation of the analytical signal. 

435 Simulation of ecHT 

436 Simulation of ecHT was done in MATLAB (MathWorks Inc). A discrete oscillatory test signal 

(1) yi[n] = Aicos(2nfin − ∅ i) 

437 was generated (i being the signal number) over a finite time interval T, where 0 < n < N − 1 

438 was the time point number and N  was the total number of time samples, Ai  was the 

439 envelope amplitude of the signal, fi was the frequency of the signal, and ∅ i was the phase 

440 delay of the signal. The analytic signal was computed by first computing the Fourier 

441 representation Yi[k] of the signal using MATLAB’s fast FFT function (‘fft’), where 0 < k < 

442 K − 1 was the frequency bin number and K was the total number of frequency samples. 

443 Then, generating the Fourier representation Zi[k] of the analytic signal by zeroing the 

444 Fourier components of the negative frequencies and doubling the Fourier components of the 

445 positive frequencies, i.e., 
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If ecHT was applied, the Fourier representation of the analytic signal Zi[k] was multiplied with 

the response function a[k] of a Butterworth bandpass filter that was obtained using 

MATLAB’s frequency response of digital filter function (‘freqz’) from the filter’s impulse 

response coefficients generated using MATLAB’s Butterworth filter design function (‘butter’). 

Finally, the analytic signal zi[n] was computed from its Fourier representation Zi[k] using 

MATLAB’s IFFT function (‘ifft’). The phase of the signal at the last data point was computed 

via  atan (INag{zi[N]}), where INag{z [N]} is the imaginary part of the analytic signal, i.e., the 
yi[N] 

Hilbert transform of the original signal, and was compared to the actual phase of the signal 

at the last data point, i.e., 2nfiN − ∅ i. The amplitude of the signal at the last data point was 

computed  via   ƒINAg{zi[N]}2 + yi[N]2    and  was  compared  to  the  actual  amplitude  of  the 

signal at the last data point, i.e., Ai. 



458 Feasibility study of cerebellar electrical stimulation phase-locked to ET 

459  

460 Ethics 

461 The study was approved by the local research ethics committee in accordance with the 

462 declaration of Helsinki. All participants provided written informed consent prior to study 

463 participation. Specifically, the study was approved by the Heath Research Authority (HRA; 

464 REC 03/N018, principal investigator John Rothwell, UCL). The approval included the 

465 assessment of governance and legal compliance, undertaken by HRA, with the independent 

466 Research Ethics Committee (REC) opinion provided by the National Hospital for Neurology 

467 and Neurosurgery (NHNN) and the UCL Institute of Neurology (ION) Joint Research Ethics 

468 Committee (REC). The overarching aim of the research project was to use transcranial brain 

469 stimulation paradigms to discover mechanisms of cortical excitability and their impact  on 

470 motor behaviour. The research project was not classified as clinical trial or interventional trial 

471 by the HRA and hence did not required registration (which is mandatory for all clinical trials 

472 in the UK). 

473 Participants 

474 Eleven human participants with ET (3 females) were recruited from the outpatient 

475 department of the UK National Hospital of Neurology and Neurosurgery, London. All 

476 participants fulfilled the diagnostic criteria for ET according to the Tremor Investigation 

477 Group and consensus statement of the Movement Disorder Society49 and were on a stable 

478 treatment regime for their tremor for at least 30 days prior to the experiment. See 

479 Supplementary Table 1 for demographic and clinical information. Experiments were 

480 performed after overnight withdrawal of tremor medication during a single study visit in the 

481 dominant hand, or in case of slight asymmetry in the hand with the larger tremor amplitude. 

482 There were no drop-outs or adverse events noted. 

483 Participants (second cohort) 

484 Seven human participants with ET (4 females) were recruited as in the original to test 

485 whether their response can be predicted via the feature-based approach developed in the 

486 original study. See Supplementary Table 10 for demographic and clinical information. 

487 Experiments were performed as in the original cohort. 

488 Experiment design 

489 The experiment consisted of eight stimulation conditions, i.e., six sinusoidal stimulating 

490 currents that are phase-locked to the tremor movement at different phase lags (i.e., 0°, 60°, 

491 120°, 180°, 240° and 300°), a control sinusoidal current at the tremor frequency but without 

492 phase-locking, and a sham stimulation condition. Each stimulation condition was applied in a 

493 block (i.e., trial) of 60s during which the participants sat in an armchair and were instructed 

494 to maintain a tremor evoking posture, i.e., stretched, elevated arm with fingers parted, while 

495 their tremor movement was measured (see details below). The 60s block included a 15s of a 

496 baseline period, a 30s of a stimulation period (including 5s of ramp-up and 5s of ramp-down 

497 at the beginning and end of the stimulation, respectively) and a 15s of post-stimulation 

498 period. In sham stimulation blocks, the current was set to zero after the 5s of ramp-up. Each 

499 60s block was preceded by a short (~4s, 2048 data samples) calibration recording also in a 

500 tremor evoking posture to compute the tremor frequency and amplitude at the onset of the 

501 block (see details below). The eight stimulation conditions were applied consecutively with a 

502 30s rest interval between conditions. The sequence of eight stimulation conditions was 



503 repeated four times (apart from one participant in which they were applied three times due to 

504 fatigue) in a random order with 10min rest period between sequences. The rest interval 

505 between conditions and the rest period between sequences were occasionally extended 

506 slightly if the participants requested. 

507 Measurement and real-time computation of instantaneous tremor phase via ecHT 

508 Tremor movements were measured using a 3-axis analog microelectromechanical system 

509 (MEMs) accelerometer (MMA7361, Freescale Semiconductor, Inc.; operated at a sensitivity 

510 range of ±1.5G) that was attached to the proximal phalangeal segment of the middle finger 

511 using a custom-made adapter. The 3-axis acceleration measurements were sampled using 

512 three analog-to-digital converters (ADCs) of a microcontroller (Arduino Due with an Atmel 

513 AT91SAM3X8E processor and a single ARM Cortex M3 core; operated at a clock rate of  84 

514 MHz) at a rate of ~500Hz and an amplitude resolution of 12-bit, and the vector amplitude 

515 sum of the three axes was computed and stored in a running window of 128 samples. The 

516 instantaneous phase and amplitude of the tremor movement, i.e., at the last sample of the 

517 running window, were computed in real-time and at the same rate, using ecHT that was 

518 implemented on the microcontroller. The ecHT implementation had a 2nd order Butterworth 

519 bandpass filter (2nd order low pass, 2nd order high pass) with a bandwidth that was equal to 

520 half the frequency of the tremor and was centred at the frequency of the tremor. The 

521 frequency of the tremor was computed using FFT from a short calibration measurement of 

522 2048 samples (i.e., frequency resolution of ~0.25Hz) before each 60s stimulation block. The 

523 sampled tremor movement measurement was logged to a laptop, together with the ecHT 

524 setting and the tremor frequency and amplitude computed during calibration, using a 

525 Processing script that was also used to interface with the microcontroller. 

526 Transcranial stimulation of ipsilateral cerebellum 

527 Sinusoidal stimulating currents were generated by first producing voltage waveforms, 

528 pseudo-differentially via two digital-to-analog converters (DACs) of the microcontroller (with 

529 an amplitude range of ±1V and an amplitude resolution of 12-bit) and then feeding them to 

530 an isolated bi-phasic current source (DS4, Digitimer Ltd; operated at an input range of ±1V 

531 and an output range of ±1mA or ±10mA). The frequency of each voltage waveform was 

532 equal to the frequency of the tremor computed before each 60 s stimulation block as 

533 mentioned above. To phase-lock a stimulating current to the ongoing tremor movement, the 

534 phase of the voltage waveform was adjusted, at the same rate of 500Hz, to maintain a fixed 

535 phase lag to the computed phase of the last acceleration sample. The amplitude of the 

536 stimulating currents was 2.7 ±1 mA (mean ±st.d.) across the participants, (the amplitude was 

537 individually adjusted for each participant below any discomfort level due to extraneous 

538 somatosensory stimulation underneath the electrodes). To reduce risk of extraneous high- 

539 frequency stimulation due to low signal-to-noise (SNR) level, the amplitude of the voltage 

540 waveform was set to zero when the amplitude of the last acceleration sample was <1% of 

541 the amplitude during the short calibration measurement before each 60s stimulation block. 

542 The generated stimulating voltage waveforms were logged to a laptop together with the 

543 tremor movement measurements using the same Processing script. 

544 The stimulating currents were applied transcranially to the ipsilateral cerebellum via a 2 x 2 

545 cm2 skin electrode (Santamedical, 2" X 2" carbon electrode pad with Tyco gel that was cut to 

546 the specified dimensions)  that was  placed 10%  nasion-inion distance  lateral to inion (i.e., 

547 above the cerebellar lobule VIII) and was paired with a 5.08 x 5.08 cm2 skin electrode (the 

548 same carbon electrode pad but was not cut) that was placed over the contralateral frontal 

549 cortex between F3-F7 or F4-F8 of the international 10-20 system. Before the placement of 

550 the electrodes, the scalp skin was prepared using 80% Isopropyl alcohol and an abrasive 



551 skin gel (NuPrep, Weaver and Company Inc), and a conductive paste (Ten20, Weaver and 

552 Company Inc) and/or a conductive gel (CG04 Saline base Signa gel, Parker Laboratories 

553 Inc) was deposited at the target locations. The resistance between the electrodes was 

554 maintained below 8 kOhm. 

555 Analysis of stimulation phase lag 

556 Analysis of the stimulation phase lag was done in MATLAB. The tremor movement trace of 

557 each 60 s block was filtered with the same filter settings that were used in the real-time 

558 computation, i.e., a 2nd order Butterworth bandpass filter with a bandwidth that was equal to 

559 half the frequency of the tremor and centered at the frequency of the tremor computed and 

560 logged at the short calibration period preceding each block. The instantaneous phase of the 

561 stimulating waveform trace and the instantaneous phase of the filtered tremor movement 

562 trace were computed using MATLAB’s ‘hilbert’ function, and the instantaneous phase lag 

563 between the two traces was calculated and then epoched in intervals of 1s. The stimulating 

564 trace in the sham condition was a virtual sinusoidal waveform at the tremor frequency. 

565 The statistics and statistical tests of the phase lag values were computed, using MATLAB’s 

566 CircStat toolbox13, in the following periods – the whole stimulation period (20s since 5s 

567 ramp-up time and the 5s ramp-down time at the beginning and the end were excluded, 

568 respectively),  the  first  half  of  the  stimulation  period  (10s  since  5s  ramp-up  time  was 

569 excluded), the second half of the stimulation period (10s since 5s ramp-down time was 

570 excluded). First, the unimodality of the phase distribution of each stimulation condition was 

571 validated using Watson's test against a von Mises distribution (set phase 0°, p<10-5; 60°, 

572 p<10-5; 120°, p<10-5; 180°, p<10-5; 240°, p<10-5; 300°, p<10-5; no phase-lock, p=0.6). The 

573 phase distribution during stimulation with phase-locking was not different from von Mises 

574 distribution but since the phase distribution during stimulation without phase-locking was 

575 different from von Mises distribution, we used non-parametric statistical tests. Next, the 

576 circular spread of the phase distribution of each stimulation condition was quantified by 

577 computing the length of the mean resultant vector R and its uniformity was assessed using 

578 the Omnibus test. Then, the difference between the mean phase of the stimulation 

579 conditions was assessed using Fisher test and the difference between the mean resultant 

580 vector length R of the stimulation conditions was assessed using ANOVA with post-hoc 

581 analysis using Wilcoxon signed-rank test. Finally, the effect of the tremor parameters, i.e., 

582 amplitude and frequency, on the length of the mean resultant vector R was assessed via 

583 Pearson correlation. 

584 Analysis of change in tremor amplitude 

585 Analysis of the tremor amplitude was done in MATLAB. The tremor trace of each 60s block 

586 was filtered as in the ‘Analysis of stimulation phase lag’. The instantaneous amplitude was 

587 computed using MATLAB’s ‘hilbert’ function and was epoched in intervals of 1s. To express 

588 the tremor amplitude relative to the amplitude of the baseline period, the amplitude value of 

589 each epoch was z-scored by subtracting the mean value during the baseline period and then 

590 dividing by the st.d. of the value during the baseline period. The statistics and statistical tests 

591 of the tremor amplitude values were computed in the following periods – the baseline period 

592 (10s between 3s and 13s from block onset), the whole stimulation period (as in ‘Analysis of 

593 the stimulation phase lag’), the first half of the stimulation period (as in ‘Analysis of the 

594 stimulation  phase  lag’),  the second  half  of the  stimulation  period (as  in  ‘Analysis of the 

595 stimulation phase lag’), and the post-stimulation period (10s between 3s and 13s from 

596 stimulation offset). To assess the change in the tremor amplitude relative to the change in 

597 the tremor amplitude during the sham stimulation condition, the z-score amplitude values 



598 during stimulation and during post-stimulation periods of each stimulation condition were 

599 subtracted by the corresponding median z-score values of the sham stimulation condition. 

600 To assess the effect of phase-locking the stimulation to the tremor movement, the change in 

601  the tremor amplitude due to stimulation with phase-locking and without phase-locking was  602    

analysed. First, the change in the tremor amplitude due to each type of stimulation, i.e.,     603  

without phase-locking  and with  phase-locking (data from all six phase-lags of stimulation  604  was 

combined) was assessed across the participants in each epoch using unpaired t-test.  605    Next, 

the  change in tremor amplitude of  individual participant due  to  each stimulation    606    condition 

was assessed (i.e., data including four repetition trials from each phase-lag of     607   stimulation 

was treated separately) during stimulation and post-stimulation periods using    608  unpaired t-test 

as well as using surrogate distributions (i.e., 1000 z-scores values with the   609 same st.d. but zero 

mean value), where the p-value threshold of the stimulation conditions  610    with phase-locking 

(but not without phase-locking) were Bonferroni corrected for the six     611  phase lag conditions. 

Then, the number of participants that showed statistically significant  612 increase/ decrease of z-

score amplitude was assessed using Fisher’s exact test against the 613 number  of  participants  

who  did  not  show  a  change  in  the  z-score  tremor  amplitude  614 (participants could have a 

significant increase of z-score in one phase-lag and a significant  615 decrease of z-score in another 

phase-lag). Finally, the z-score amplitude of the sub-group of 616 subjects that showed a statistically 

significant increase/decrease of z-score amplitude was  617 assessed using unpaired t-test. 

618    To assess the effect of the phase lag value during stimulation, the change in the tremor    619 

amplitude due to stimulation with different phase lags was analysed. First, the change in the 620 

tremor amplitude due to each phase-lag of stimulation was assessed across the participants 621 

during the stimulation period using unpaired t-test. Next, the change in tremor amplitude of  622 

individual participant was assessed during stimulation again using unpaired t-test. Then, the 623  

number of participants that showed a statistically significant increase/ decrease of z-score  624    

amplitude was assessed using Fisher’s exact  test. Finally, to account for differences in     625 

phase response across participants, the phase lags were expressed relative to the phase lag 626     

that resulted in the largest reduction in the tremor amplitude, and the change in tremor     627 

amplitude of individual participant and the number of participants with statistically significant 628 

change were reanalysed. 

629 

630 Prediction of participants’ response to stimulation from features of tremor movement 

631 Dataset 

632 Time-series of tremor movement during the baseline period, i.e., 10s (5000 data points) from 

633 5s after the onset of tremor posture till 5s before the onset of the phase-locked stimulation,  634     

were extracted from all the recorded trials with phase-locked stimulation, resulting in a      635 

dataset of 301 time-series trials (28 trials per participants except participant 3 in which only 636 21 

time-series trials were recorded). The time-series were assigned a ‘responder’ or a ‘non- 637   

responder’  label  if  the  participant  responded  or  did  not  respond  to  the  stimulation,   638   

respectively.  A participantwas  conservatively  labelled as a  ‘responder’ if his/her tremor   639 

amplitude significantly decreased in at least one of the tested stimulation phases relative to 640   

sham and did not significantly increase in any of the tested stimulation phases relative to   641 

sham, and was labelled a ‘non-responders’ if his/her tremor amplitude significantly increased 642 in 

at  least  one of  the  tested stimulation  phases  relative  to sham or did  not  significantly 643 change 

in any of the tested stimulation phases relative to sham. 



644 Extraction of time-series features 

645 For each time-series trace, 7873 features were computed using the highly comparative time- 

646  series analysis (hctsa) 14, resulting in a 301 x 7873 feature matrix. The computed features  647 

included autocorrelations, power spectra, wavelet decompositions, distributions, time-series 648    

models  (e.g.  Gaussian  Processes,  Hidden  Markov  model,  autoregressive  models),    649 

information-theoretic  quantities  (e.g.  Sample  Entropy,  permutation  entropy),  non-linear 650  

measures (e.g. fractal scaling properties, nonlinear prediction errors) etc. All features with   651  

infinity or not  a number (NaN)  values and features with  zero variance across the dataset  652 

were removed from the feature matrix, resulting in a reduced feature matrix of 301 x 6196.  653 The 

value of each feature was individually normalized to the interval [0,1]. 

654 Classification 

655   The feature space was partitioned, i.e., classified, using a linear Support Vector Machine   656   

(SVM) classifier, implemented with the classify function of MATLAB’s Statistics Toolbox,    657  

which returned a threshold that optimally separated the two classes, i.e., ‘responders’ and  658 ‘non-

responders’ time-series. The accuracy of the classification was quantified by first 
precicion+recaSS 

65
9 

computing the balanced classification accuracy a =  
2 

, and then computing the 
2∙precicion∙recaSS 

660   harmonic mean of precision and recall, i.e., F1  score, F1  =  
precicion+recaSS 

, where precision is 661 

the fraction of true positive classified samples over the total of positively classified samples 662  and 

recall is the fraction of true positive classified samples over the total true positive and   663  false 

negative classified samples. The classification was performed using a 10-fold cross-   664 validation 

to reduce bias and variance. 

665 Performance-based feature selection 

666 The univariate classification performance of each feature was evaluated against the class 

667 labels. A subset of 40 features with the highest single-feature classification accuracy was 

668 selected. To reduce the redundancy within the subset of features, the Pearson correlation 

669  distance, dij = 1 − qij  was computed for each pair of features, where qij is the Pearson 670 

correlation coefficient between feature i and feature j, and a hierarchical clustering was 671 

performed using a complete linkage threshold of 0.2, resulting in clusters of features that 672  

were inter-correlated by  qij > 0.8. The clusters of highly correlated features  were then  673 

represented by the feature that was located most centrally within the cluster (i.e., at the 674 

cluster’s centre). 

675 Feature-based prediction of participant response 

676 The centroid of individual participants in the feature space (including the extracted 14 most  677  

informative  features)  was   computed   by   averaging   the   feature   values   across   the 678  

corresponding  trials.  The  centroid  of  the  participant  class  (i.e.,  ‘responders’  or  ‘non-  679   

responders’) in the same feature space was computed by averaging the features values    680  

across the corresponding trial dataset. The Euclidean distance between feature centroids   681 was 

computed with pdist function of MATLAB. 

682 Visualization using principal component analysis 

683    To facilitate visualisation of the feature space, principal component analysis (PCA) was     684 

performed. In this case, a covariance matrix was computed for the normalized set of features 685 

from which the eigenvectors and eigenvalues were extracted. Each principal component was 686 

constructed as a linear combination of the initial features. The first two principal components 687 

were then used to display 2D scatter plots of the features. 



688 

689 Change in features of tremor movement due to stimulation 

690 Dataset 

691  Time-series of tremor movement during stimulation (10s; 5000 data points; from 10s after   692 

the onset of stimulation  till 10s before the  offset of  stimulation)  and during baseline (10s;  693     

5000 data points; same as in ‘Classification and prediction of participants’ response to      694     

stimulation’) from all trials with phase-locked stimulation (301 traces of stimulation and      695 

baseline each) were extracted and assigned a ‘stimulation’ class label or a ‘baseline’ class  696 

label, respectively. The ‘stimulation’ and ‘baseline’ time-series were then divided into three  697 

datasets according to the change in the tremor amplitude during stimulation, i.e., ‘decrease’, 698 

traces in which the tremor amplitude decreased during stimulation relative to sham (58 time- 699   

series of stimulation and baseline each, 11 subjects); ‘increase’, time-series in which the    700 

tremor amplitude increased during stimulation relative to sham (51 time-series of stimulation 701  

and baseline each, 10 subjects); ‘no-change’, traces in which the tremor amplitude did not  702 

change during stimulation relative to sham (192 time-series of stimulation and baseline each, 703   

11 subjects). In addition, in a subset of the analysis, the same ‘stimulation’ and ‘baseline’   704    

tremor traces were extracted from all the blocks with sham stimulation (‘sham’; 43 time-    705 series 

of stimulation and baseline each, 11 subjects). 

706 Extraction of time-series features, classification, and performance-based feature selection 

707 Same as in ‘Classification and prediction of participants’ response to stimulation’.  

708 Temporal coherence analysis 

709   The tremor temporal coherence versus frequency of each tremor trace was quantified by   710  

computing the magnitude squared coherence across 1s epochs during ‘stimulation’ period  711 and 

‘baseline’ period using MATLAB’s mscohere function with a frequency range of 0 to 31 712 Hz and 

a 1Hz frequency resolution. The computed values during ‘stimulation’ were then z-  713   scored 

relative to the mean and st.d. of the values during ‘baseline’. The tremor temporal   714    coherence 

at the tremor frequency band was quantified by computing the mean z-score    715   across the 4 – 

8 Hz frequency bins. The tremor temporal coherence versus time of each    716   tremor trace was 

quantified by computing the magnitude squared coherence between 1s   717 epoch and its 

preceding one during ‘stimulation’ period and ‘baseline’ period using the same 718   MATLAB’s 

mscohere function, z-score the ‘stimulation’ values relative to ‘baseline’ in the   719     same way, 

and then computing the mean z-score across the 4 – 8 Hz frequency bins.      720  Statistical  

significance  of   magnitude   squared   coherence   at   a   frequency   bin   was 721 characterized 

for each dataset (i.e., decrease’, ‘increase’, and ‘sham’) using unpaired t-test 722 with Bonferroni 

corrections for multiple comparisons of frequency bins and datasets. 

723 

724 Neurophysiological modelling 

725 Model description 

726 The CCTC network model under ET condition was simulated as in Zhang et al.15. The model 

727 is  available  on  ModelDB  (http://modeldb.yale.edu/266842).  It  consisted  of  425  single- 728 

compartment, biophysics-based neurons from the olivocerebellar and thalamocortical loops, 729 

including 40 inferior olivary nucleus (ION) neurons in the brainstem, 200 Purkinje cells (PCs) 730 

and 20 granular layer clusters (GrL; 3 distinct neurons per cluster, 60 neurons altogether)  in 

http://modeldb.yale.edu/266842)


731    the cerebellar cortex, 5 glutamatergic deep cerebellar projection neurons (DCNs) and 5    732  

nucleoolivary (NO) neurons in the dentate nucleus, 5 ventral intermediate thalamus (Vim)   733  

thalamocortical  (TC)  neurons,   100   pyramidal   neurons   (PYN),   and   10   fast-spiking 734 

interneurons (FSI). As in our previous study15, the ET condition was simulated by reducing  735 the 

conductivity and increasing the decay time of the PCs’ GABAergic currents to the DCN, 736 which 

mimics the loss of GABAA α1-receptor subunits and an up-regulation of α2/α3-receptor 737     subunits 

in the cerebellum. Five instances of the model were considered and for each      738   instance,  

simulations  were  repeated  under  normal  condition,  ET   condition  with  no   739    stimulation, 

and ET condition with stimulation of the cerebellum. Each simulation lasted     740 11,500ms  

(integration  step,  0.0125ms).  ET  condition  was  initiated  after  1000ms  and  741 stimulation 

started after 1,500ms and lasted till the end of the simulation. 

742  Hitherto computational studies of the effect of electrical stimulation on tremor activity have  743  

used  a  range  of  models   ranging   from   a   single  cell   with  detailed  biophysical  and 744 

morphological representations50 to thousands of cells in which their activity is represented by 745  

a  simplified  point-mass  function51,  revealing   complimentary  insights.  Neural  network   746 

modelling  has  an  inevitable  trade-off  between  the  scale  and  biological  complexity  of  747  

representation with both the size of the network and the biological complexity of individual  748     

cells affect the dynamics52.  We chose to use a middle-ground approach with  detailed      749 

biophysical representation but reduced morphological representation – an approach proven 750 to 

be successful in the past by us53 and others54,55. This approach may be particularly suited 751    for 

ET since neural mass or mean-field models cannot represent the complex change in    752  spiking 

pattern (rather than mean firing rate) observed in ET patients56,57. Furthermore, by  753 maintaining 

a detailed biophysical representation of the cells, we could explore the effect of 754      the stimulation 

on the interaction between the high-frequency simple spiking and low-      755 frequency complex 

spiking of Purkinje cells that has been causally linked to ET58. 

756 To simulate the cerebellar stimulation, a current Istim was added to all the PCs in the model. 757 

Istim was sinusoidal with a frequency that is equal to the frequency of the ET and amplitudes 758    

between 1-5pA evoking small subthreshold depolarizations expected in our experiment.    759     

Specifically, Istim with an amplitude of 1pA induced a periodic depolarization of ~0.5mV     760   

amplitude in the single-compartment PC model which is similar to the depolarization that    761 was 

induced by an extracellular electric field with an amplitude of 2V/m, predicted from our  762     FEM  

modelling  of  the  experiment  (Fig.  2b),  in  the  multi-compartment  PC  model      763 

(Supplementary Fig. 4a-b). 

764 To validate that the direct response of the cerebellar cortex to the stimulating electric fields is 

765  dominated by the PCs, we simulated the response of the most abundant cell types in this   766    

region, i.e., PC and granule cell (GrC) to extracellular electric fields. To best capture the    767 

spatiotemporal dynamics, we used multi-compartmental models with detailed 3D geometrical 768   

reconstruction of the PC59 and GrC60. We exposed the cells to homogenous extracellular   769 

electric fields that were aligned with the dendrite-somatic axes of the cells and quantified the 770 

induced depolarization. As in the original study with the PC model59, we removed the sodium 771 

and calcium  channels  from  the  axonal  initial  segment  (AIS)  of  this  cel l  to  reduce  its 772 

spontaneous pacemaker activity (see Supplementary Fig. 4a-b). 

773 The amplitude of Istim was normalized to the average amplitude of the endogenous synaptic 774 

current to PCs, measured under ET state over 4000ms (see also Perkel et al.61), with Istim of 775     

1pA equals 4% of the average endogenous synaptic current to PCs. To phase lock the     776 

sinusoidal current to the ET oscillation, first the spike count trace of the TC neurons of the 



777   Vim was computed with a temporal resolution of 1ms and then filtered using a 2nd order    778    

Butterworth  bandpass  filter  with  cut-off  frequencies  of  6Hz  and  10Hz).   Then,  the    779 

instantaneous phase of the spike count trace was computed online every 10ms using ecHT 780  on 

a running window of 1000ms, and the phase of the stimulating current was adjusted at   781 those 

time points to maintain the target phase lag. 

782 Computation of PCs phase-locking value 

783  The spike count trace of the PCs was computed with a temporal resolution of 1ms (spikes  784 

were summed across PCs) and low pass filtered using a 2nd order Butterworth filter with a  785 cut-

off frequency of 30 Hz. Then, the instantaneous phases of the spike count trace and the 786 

stimulating  current  were  computed  offline  using  MATLAB’s  ‘hilbert’  function,  and  the  787   

instantaneous phase lag between the two was calculated every 1ms. The phase-locking    788 value 

(PLV) of each PC was computed as in Lachaux et al.62 and then averaged across the 789 PCs. 

790 Computation of Vim power spectrum density 

791    First, the spike count trace of the TC neurons in the Vim was computed with a temporal     792     

resolution of 1ms (spikes were summed across TC neurons). Then, the power spectral     793  

density (PSD) of the spike count trace was computed using Welch’s method with 2,000ms  794 

Hanning window and 1,000ms overlap, and normalized to the total power between 0Hz and 795     

25Hz. Tremor PSD was estimated as the peak PSD at the tremor frequency band, i.e.,     796 

between 4 -12 Hz. 

797 Computation of DCN and Vim temporal coherence 

798 The spike trains of the DCN and TC neurons of the Vim were low pass filtered using a 2nd  799     

order Butterworth filter  with a cut-off frequency of 30 Hz, and the magnitudes squared     800 

coherence were computed using MATLAB’s mscohere function with a frequency range of 0 801  to 

30 Hz. Then the magnitude squared coherence in DCN and Vim during stimulation was  802 

expressed relative to baseline by subtracting the mean value during baseline and dividing by 803 

the st.d. value during baseline, i.e., z-score. 

804 Sensitivity analysis to the model size 

805    To explore the effect of the model size on the simulation outcome, we first repeated the     806  

simulation  with a 5-fold increase in the number of cells in the olivocerebellar  circuit while   807 

keeping the other parts of the model unchanged, i.e., ‘Model expansion 1’. Model expansion 808      

1 consisted of 1425 cells, including 200 ION neurons, 1000 PCs and 20 GrL clusters (60 

809  neurons altogether), 25 DCNs, 25 NO neurons, 5 Vim TC neurons, 100 PYN, and 10 FSI.   810     

We randomized the synaptic connections between the TC neurons and the DCNs with     811 

adjusted weights (20% of the original value) due to model expansion. Then, we repeated the 812 

simulation with a 5-fold increase in the number of all cells in the model i.e., ‘Model expansion 813      

2’. Model expansion 2 consisted of 2125 cells, including 200 ION neurons, 1000 PCs and 

814 100 GrL clusters (300 neurons altogether), 25 DCNs, 25 NO neurons, 25 Vim TC neurons,  815   

500 PYN,  and 50 FSI. We  randomized the  synaptic  connections between the different    816   

neuron types along the olivocerebellar circuit, and between TC neurons and DCNs, with    817 

adjusted weights (20% of the original value) due to model expansion. 

818 

819 Transcranial electric field modelling 



820 Finite element method (FEM) electromagnetic simulations were performed in Sim4Life V.4  821  

(ZMT ZurichMedTech  AG, Zurich), using  a quasi-static  ohmic-current solver. Electrodes  822    

were created within the platform using Sim4Life’s CAD functionalities and applied to the    823 scalp 

of the  MIDA anatomical head  model63. Dirichlet (voltage) boundary conditions were  824 assigned 

to the electrodes, and tissues electrical conductivities were assigned according to 825 the IT’IS LF 

database64. A uniform rectilinear grid of 0.6 mm was used. The current between 826  the  electrodes 

was  calculated  integrating the  current  flux density on  a closed  surface   827 surrounding one 

electrode and field magnitude were normalized to 2mA input current. 

828 

 
829 

 

830 Figure captions 
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neous phase and amplitude via ecHT. a Hilbert transform (HT) of a finite, discrete, 

oscillatory signal completing full cycles. (i) Test signal y1 in this example a cosine waveform 

with normalized amplitude, frequency f1 = 2Hz, and phase delay ∅ 1 = 0, sampled at 256 

equidistant time- points over 1s. First and last datapoints are marked with black and blue 

circles, respectively. 

(ii) Fourier spectrum (FS) Y1, grey trace, of y1, obtained via fast Fourier transform (FFT) of y1 

(in this example using 256 equidistant frequency-points), and FS Z1, black trace, of the 

analytic signal, obtained from Y1 by deleting the negative frequencies and doubling the 

amplitude of the positive frequencies; y-axis in log-scale. Y1 trace at positive frequencies is 

overlaid by the Z1 trace. (iii) HT ℎ1 obtained via inverse FFT of Z1Filled blue circle, computed 

endpoint; non-filled blue circle, actual endpoint (in this case, overlaid by the filled circle). b 

HT of a finite, discrete, oscillatory signal not completing full cycles. Test signal y2 similar to y1 

but with f2 = 2.25Hz. Showing the same as in (a), but with FS sampled using 2048 points to 

illustrate the formation of the sinc waveform; red ellipse, outlines the Gibb phenomenon at the 

end of the signal. c Computation error of (i) phase and (ii) amplitude at the signal’s endpoint 

for different end phases, simulated by varying f2 between 2Hz and  3Hz.  d Endpoint corrected 

Hilbert transformation (ecHT) of the same signal in (b), i.e., f3 = f2. Showing the same as in 

(b), but with the FS of the analytic signal multiplied by a response function of a causal 

bandpass (CBP) filter, in this example, 2nd-order Butterworth bandpass 

filter with centre frequency f and bandwidth ƒ3 ; green ellipse, outlines the mitigation of the 
2 

Gibb phenomenon at the end of the signal. e Computation error of (i) phase and (ii) amplitude 

at the signal’s endpoint obtained via ecHT. Showing the same as in (c). f Effect of filter’s 

bandwidth on ecHT computation error of (i) phase and (ii) amplitude at the endpoint. Shown 

values are mean ±st.d.; n=180 phase intervals between 0 and 2n; filled black markers, error 

computed as in (e) for different filter bandwidths normalized to the filter centre frequency (in 

this example f3); non-filled markers, error at the same data-point introduced by the filter, 

obtained by simulating a signal with a twice time-interval to shift the Gibbs phenomenon from 

the original endpoint. g Effect of filter’s order on ecHT computation error at the endpoint. 

Showing the same as in (f). 

 

 
Fig. 2 Stimulation of the cerebellum phase-locked to ET movement. a Neuromodulation 

concept. ET is suppressed by perturbing its pathologic synchrony via cerebellar stimulation 



863 phase-locked to hand tremor oscillation. ET oscillation  is measured  via a  motion  sensor,  864 

instantaneous attributes of the oscillation (i.e., amplitude A(t), phase 0(t)), are computed in  865 

real-time using ecHT, and electric currents are delivered, transcranially, to the cerebellum at 866    

a fixed phase lag. b  Electrode configuration  and cerebral electric  fields distribution. (i)     867     

Stimulating currents were applied via a small skin electrode placed over the cerebellar      868 

hemisphere ipsilateral to measured hand tremor (10% axial nasion-inion distance lateral to  869 

inion) and a larger electrode placed over the contralateral frontal cortex (between F3-F7 or  870 F4-

F8 of the  international 10-20  system).  (ii)  Finite element method  (FEM)  modelling  of 871  induced 

electric field for current amplitude of  2 mA. c Experimental  design. d Phase  lag   872  between 

stimulating currents and tremor movement versus set phase lag during (i) whole   873    stimulation 

period and (ii) 1st half (light blue) and 2nd half (dark blue) of the stimulation     874   period. ‘No’, 

control sinusoidal current at the tremor frequency but without phase-locking;   875 shown are box, 

25% and 75% percentile values; horizontal red line, median value; horizontal 876 black lines, data 

range; black markers, participants’ values; ‘No’, stimulation with no phase  877    locking; * p < 0.05, 

two-sided Omnibus test; n.s., non-significant; n=11 participants. See    878    Supplementary Table 

2 for between conditions statistics. e Mean phase resultant vector    879     length versus set phase 

lag during the same periods as in (d); shown are mean ±st.d.;     880     markers show participants’ 

values; ‘No’, stimulation with no phase locking;  ‘Sh’, sham      881 stimulation. two-sided ANOVA 

with post-hoc analysis using Wilcoxon signed-rank test; n=11 882   participants; See Supplementary 

Table 3 for full statistics. f Mean phase resultant vector    883 length versus (i) tremor amplitude, 

(ii) st.d. tremor amplitude; shown black markers are trials’ 884 mean values. Red line, linear 

regression, (i) line slope m=0.59, p<10-5, Pearson correlation 885 test, (ii) m=-0.49, p<10-16. g Same 

as (f) but (i) tremor frequency, m=-0.33, p<10-7; (ii) st.d.  886 tremor frequency, m=-0.66, p<10-32. 

Source data are provided as a Source Data file. 

887 

888  Fig. 3  Characterization of  change in tremor amplitude  induced  by stimulation. a-d  889    

Stimulating  currents were applied  at the tremor frequency but without phase-locking. a    890 

Change in tremor amplitude over time, shown are mean ±s.e.m. z-score computed using 10s 891 

window every 1s between  5s and 55s ;  horizontal black bar outlines stimulation  period.  b 892 

Number of participants with significant reduction (turquoise bars) and increase (red bars) in 893 

tremor amplitude during  the first-half of  stimulation period  (‘1st stim half’),  second-half of  894  

stimulation  period  (‘2nd   stim   half’),   and   post-stimulation   period   (‘post   stim’);   see 895  

Supplementary Table  4.  c Change in tremor amplitude over time across participants with  896 

significant reduction (turquoise) and increase (red) in tremor amplitude during 2nd stim half 897    in  

(b),  shown  are  mean  ±s.e.m.  z-score;  horizontal  turquoise  and  red  lines  show    898 

corresponding  epochs  with  significant  z-score  amplitude;  horizontal  black  bar  outlines 899    

stimulation period. d Change in tremor amplitude across the participants with significant    900 

reduction (turquoise) and increase (red) in tremor amplitude in (b), box plot shows 25% and 901 

75% percentile values; horizontal red line, median value; horizontal black lines, data range, 902   

throughout the figure; from left-to-right n=5,3,4,2,5,3 participants. e-l Stimulating currents   903     

were phase-locked to the tremor  movement.  e Change in tremor amplitude over time,     904    

showing the same as in (a); horizontal black lines show epochs with significant  z-score     905   

amplitude. f Number of participants with statistically significant reduction and increase in    906 

tremor amplitude in (e), showing the same as in (b); *, from left-to-right p=0.0019, p=3.4·10-5. 907 g 

Change in tremor amplitude over time across participants with decreased and increased  908  tremor 

amplitude during 2nd stim half in (f), showing the same as (c). h Change in tremor   909   amplitude 

in (f), showing the same as in (d); from left-to-right n=5,5,9,4,10,3 participants.   910 Significance 

of z-score amplitude was analysed using unpaired two-sided t-test; Significance 



911 of number of participants was analysed using two-sided Fisher exact test against the number 

912  of participants who did not show a significant change; * indicates p < 0.05, ** p<0.005, ***   913 

p<0.0005, n.s. non-significant throughout the figure. Source data are provided as a Source  914 

Data file. 

915 

916 Fig. 4 Characterization of phasic dependency and reproducibility of induced change  917  

in tremor amplitude. a-d Effect of the phase lag of stimulation. Shown values are for 2nd  918 stim 

half. See Supplementary Table 5 for complete statistical data including 1st stim half and 919 post-

stimulation period. a Change in tremor amplitude versus stimulation phase lag; n= 11  920  

participants.  b  Number  of  participants  with   significant   reduced  (turquoise  bars)  and 921  

increased (red bars) tremor amplitude during 2nd stim half versus stimulation phase lag. c  922     

Same as (a) but phase lags of each participant are expressed relative to the phase lag     923   

showing the largest reduction in tremor amplitude and wrap to ±180°. d Same as (b) but    924   

phase lags  of each participant are expressed  as in  (c). e-h  Characterization  of tremor   925  

amplitude during a repeated experiment in a subset of participants (participants 1,2,3,6, 9   926 and 

11), see Supplementary Table 6 for statistics. e Change in tremor amplitude over time  927  when 

stimulating currents were applied at the tremor frequency but without phase-locking,  928  showing 

original experiment (blue) and repeated experiment (red); horizontal blue and red  929 lines show 

epochs with significant z-score amplitude in original and repeated experiments,  930    respectively; 

horizontal black lines show epochs with a  significant difference in  z-score    931 amplitude between 

original and repeated experiments. f Same as (e) but stimulating currents 932     were phase-locked 

to the tremor movement. g Change in tremor amplitude across the      933  participants with 

significant in tremor amplitude in (f) in original experiment (light blue) and  934 repeated experiment 

(dark blue); see Supplementary Table 7 for full statistics. h Change in 935 tremor amplitude versus 

stimulation phase lag, colour scheme as in (g); see Supplementary 936 Table  8  for  full statistics. 

Box  plots  throughout  show  25% and  75%  percentile values;  937 horizontal red line, median 

value; horizontal black lines, data range. Significance of z-score 938 amplitude and number of 

participants was analysed as in Fig 3. Significance in (c) was also 939    analysed using 2-sample 

Kolmogorov-Smirnov test. * indicates p < 0.05, ** p<0.005, ***    940 p<0.0005, n.s. non-significant 

throughout the figure. Source data are provided as a Source  941 Data file. 

942 

943   Fig. 5 Classification and prediction of participant’s response via features extraction   944     

and statistical learning of the tremor movement. a Exemplary recordings of  tremor     945   

movement from a participant that showed a reduction in tremor amplitude during phase-    946 

locked stimulation relative to sham (i-iii) and one that did not (iv-vi). b Classification accuracy 947 

(blue) and F-score (orange) of participants’ response as a function of the number of features. 948 

Shown are mean and st.d. values of the 10-fold cross-validation. c Most informative features 949 of 

the class structure. Shown are the 40 top predictive features in (b), clustered according to 950    

correlation coefficient and re-ordered according to the clustering; green box, outline of a    951 

feature cluster; red square, central feature of a cluster. See Supplementary Table 9 for a list 952 of 

the features at the cluster’s centre. d Normalized magnitude of exemplary features shown 953  in 

(c) at the center of the clusters of correlated features. Green, ‘responders’ participants;   954 

magenta, ‘non-responders’ participants.  See Supplementary Table 9 for description of the  955 

features. e Classification accuracy of participants’ response using the 14 most informative 



956 

957 

958 

959 

960 

961 

962 

963 

964 

965 

966 

967 

968 

969 

970 

971 

972 

973 

974 

975 

976 

977 

978 

979 

980 

981 

982 

983 

984 

985 

986 

987 

988 

989 

990 

991 

992 

993 

994 

995 

996 

997 

998 

999 

100
0 

100
1 

100
2 

100
3 

features, i.e., the features shown in (c) at the centres of the clusters of correlated features, 

showing (i) mean classification accuracy ±st.d. vs number of features, each repeated 100 

times with a random selection of features out of the 14 most informative features, and (ii) 2D 

principal component analysis (PCA) plots of classification using all 14 features. Acc, 

classification accuracy; PC, principal component. f Euclidean distance between feature 

centroids of individual participants and the feature centroids of the responders’ and non- 

responders’ classes, using the 14 most informative features; *, indicates ‘responders’’; green 

bar, distance to responders class < 0.5 & distance to responders class < distance to non- 

responders class; magenta bar, distance to responders class > distance to non-responders 

class. g Same as (f) but for a new cohort of participants, showing distances to the same 

centroids of responders’ and non-responders’ classes in f, i.e., of the original participants; 

grey bar, distance to responders class < 0.5 but distance to responders class > distance to 

non-responders class. Source data are provided as a Source Data file. 

 

Fig. 6 Change in ET amplitude is linked to change in temporal coherence of the tremor 

movement. a Exemplary recording of tremor movement during stimulation at a phase that 

resulted in a reduction of tremor amplitude relative to sham. (i) full 60s recording; black 

hexagon, stimulation period. (ii) and (iii) magnified view of boxed region in (i); (iv) and (v) 

magnified view of boxed region in (ii) and (iii), respectively. b Exemplary recording of tremor 

movement from the same participant as in (a) but during stimulation at a phase that resulted 

in a small increase of tremor amplitude. (i-v) as in (a). c Probability distribution histogram of 

the feature-based classification accuracy according to the period class (i.e., ‘baseline’ and 

‘stimulation’) of the ‘decrease’ (green), the ‘increase’ (magenta), and the ‘no-change’ (grey) 

datasets. two-sided pairwise Kolmogorov-Smirnov test. d Classification accuracy (blue) and 

F-score (orange) of the time-series traces in the ‘decrease’ dataset according to the period 

class (i.e., ‘baseline’ and ‘stimulation’) as a function of the number of features. Shown are 

mean and st.d. values of the 10-fold cross-validation. e Most informative features for the 

class structure in the ‘decrease’ dataset. Shown are the 40 top predictive features in (d), 

clustered as in Fig 5c. See Supplementary Table 13 for feature list. f Normalized magnitude 

of features shown in (e) at the centres of the clusters of correlated features. Green, 

‘stimulation’ period; blue, ‘baseline’ period. See Supplementary Table 13 for feature 

description. g Change in tremor’s temporal coherence. Shown values are mean ± st.d. z- 

score during stimulation relative to baseline period from (i) ‘decrease’ dataset (*, from left-to- 

right p=2.5·10-6, 8.8·10-8, 2.45·10-8, 6.0·10-7, 9.5·10-6, 1.2·10-5, 6.1·10-6, 7.7·10-6, 4.9·10-5, 

2.6·10- 
4; n=49 trials from 11 participants), (ii) ‘increase’ dataset (* p=0.0015; n=41 trials from 11 

participants), and (iii) dataset of sham stimulation (‘sham’; n=43 trials from 11 participants); 

unpaired two-sided t-test with Bonferroni corrections for multiple comparisons of frequency- 

bins and datasets; grey markers, recording trails. h Correlation between change in tremor’s 

amplitude and change in tremor’s temporal coherence at the tremor frequency-band. (i) 

combined datasets and (ii) individual datasets with ‘decrease’, green; ‘increase’, magenta; 

‘sham’, grey; each datapoint is a single trial i Change in tremor’s temporal coherence at the 

tremor frequency-band over time. Shown values are mean ± st.d. with the same colour 

scheme as in (hii); horizontal lines show epochs with significant change; unpaired t-test with 

Bonferroni corrections for multiple comparisons of datasets; black hexagon, stimulation 

period. Source data are provided as a Source Data file. 
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repository https://doi.org/10.7910/DVN/Z6EN2I. 

 

 
Code availability 

 
The endpoint corrected Hilbert transform (ecHT) code implemented in Matlab is available as 

a supplementary file ‘Supplementary_Code_1’. The highly comparative time-series analysis 

(hctsa) is available on GitHub https://github.com/benfulcher/hctsa. The Matlab code of the 

most informative features in Figure 4 & Figure 5 is also available as a supplementary file 

‘Supplementary_Code_2’. The NEURON model of CCTC network under ET condition and 

phase-locked electrical stimulation is available on the ModelDB repository 

http://modeldb.yale.edu/266842. The FEM model of the transcranial cerebellar electrical 

stimulation is available on the Harvard Dataverse repository 

https://doi.org/10.7910/DVN/H7RHQF. 
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