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Abstract

Chemical process optimization and control are often mired by the need to satisfy
constraints for safe operation. Reinforcement learning (RL) has been shown
to be a powerful control approach that can handle nonlinear stochastic optimal
control problems. However, despite the promise exhibited, RL has yet to see
marked translation to industrial practice primarily due to its inability to satisfy
state constraints. In this work we aim to address this challenge. We propose an
“oracle”-assisted constrained Q-learning algorithm that guarantees the satisfaction
of joint chance constraints with a high probability, which is crucial for safety critical
tasks. To achieve this, constraint tightening (backoffs) are introduced, which can be
adjusted using Broyden’s method, hence making them self-tuned. This results in a
general methodology that can be imbued into approximate dynamic programming-
based algorithms to ensure constraint satisfaction with high probability. Finally,
we present case studies that analyze the performance of the proposed approach
and compare this algorithm with model predictive control (MPC). The superior
performance of this algorithm, in terms of constraint handling, signifies a step
toward the incorporation of RL into real world optimization and control of systems,
where constraints are essential in ensuring safety.

1 Introduction

The online optimization and control of chemical and biochemical processes, provides significant
improvements in operative sustainability. Currently, the optimization of nonlinear stochastic processes
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poses a challenge for conventional control schemes given the requirement of an accurate process model
and method to simultaneously handle process stochasticity and satisfy state and safety constraints.
Recent works have explored the application of model-free reinforcement learning (RL) methods for
online dynamic optimization of batch processes within the chemical and biochemical industries [1, 2].
Many of these works demonstrate the capability of RL algorithms to learn a control law independently
of a nominal process model, but negate proper satisfaction of state and safety constraints [3]. In
this work, we use constrained Q learning, a model-free algorithm to meet the operational and safety
requirements of constraint satisfaction with high probability.

Despite the interest of the academic community in the application of RL for data-driven control,
there exists relative inertia in practical and industrial implementation. Specifically, in the chemical
and biochemical process industries, the development of methods to guarantee safe process operation
and constraint satisfaction would enhance prospective deployment of RL-based systems [4]. The
literature documents a number of approaches to constraint satisfaction, which typically either add
penalty to the original reward function for constraint violation [5, 6] or augment the original MDP
to take the form of a constrained MDP (CMDP) [7, 8]. The former approach introduces a number
of hyperparmeters, which are typically chosen on the basis of heuristics and have bearing on policy
optimality. This is also discussed in [9, 10]. The latter approach is underpinned by the learning of
surrogate cost functions for each individual constraint combined with appropriate adaptation of the
policy [9, 8] or value learning rule [11]. Other works include a Lyapunov-based approach proposed in
[12], where a Lyapunov function is found and the unconstrained policy is projected to a safety layer.
All the approaches above ensure constraint satisfaction only in expectation, which is insufficient for
control and optimization of (bio)chemical processes. As most engineering systems are safety critical,
satisfaction of constraints with high probability is a necessity [13].

To our knowledge, no method has been proposed which achieves such constraint satisfaction for
pure action-value based methods. In this work, we propose a Q-learning method, which guarantees
constraint satisfaction with high probability. Here, we learn an unconstrained actor and surrogate
constraint action-value functions. We then subsequently construct a constrained actor action-value
function as a superimposition of the unconstrained actor with the surrogate constraints. The con-
strained actor is iteratively tuned, as learning proceeds, via localised backoffs [14] to penalize
constraint violation. Conceptually, backoffs provide a policy variant shaping mechanism to ensure
high probability satisfaction [15]. Tuning comprises a Monte Carlo method to estimate the probability
of constraint violation under the policy combined with Broyden’s root finding method. The optimal
greedy constrained policy is optimized through an evolutionary strategy [16] given its nonconvex
nature. The work is arranged as follows; the problem description is formalised in section 2, the
methodology proposed in section 3 and demonstrated empirically in section 4 via two benchmark
case studies.

2 Reinforcement learning

2.1 RL in process engineering

Using RL directly on an industrial plant to construct an accurate controller would require prohibitive
amounts of data. As such, process models must be used for the initial part of the training. The
workflow shown in Fig. 1 starts with either a randomly initialized policy or a policy that is warm-
started by an existing controller and apprenticeship learning [17]. Preliminary training is performed
using closed-loop simulations from the offline process model. Here, the resulting control policy is a
good approximation of the optimal policy, which is subsequently deployed in the real plant for further
training online. Importantly, system stochasticity is accounted for and the controller will continue to
adapt and learn to better control and optimize the process, hence addressing plant-model mismatch
[18, 19].

2.2 Problem statement

We assume that the stochastic dynamic system in question follows a Markov process and transitions
are given by

xt+1 ∼ p (xt+1 | xt,ut) , (1)
where p(xt+1) is the probability density function of future state xt+1 given a current state xt ∈ Rnx

and control ut ∈ Rnu at discrete time t, and the initial state is given by x0 ∼ px0
(·). Without loss of
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Figure 1: Schematic representation of RL for chemical process optimization

generality we can write Eq. (1) as:

xt+1 = f (xt,ut,dt,p) , (2)

where p ∈ Rnp are the uncertain parameters of the system and dt ∈ Rnd are the stochastic
disturbances. In this work, the goal is to maximize a predefined economic metric via an optimal
policy subject to constraints. Consequently, this problem can be framed as an optimal control problem:

π(·) :=



maxπ(·) E
{
J
(
x0, . . . ,xtf ,u0, . . . ,utf

)}
s.t.
x0 ∼ px0 (x0)
xt+1 ∼ p (xt+1 | xt,ut)
ut = π (xt)
ut ∈ U
P
(⋂tf

t=0 {xt ∈ Xt}
)
= 1− ω

∀t ∈ {0, . . . , tf}

(3)

where J is the objective function, U is the set of hard constraints for the controls and Xt denotes
constraints for states that must be satisfied. In other words,

Xt = {xt ∈ Rnx | gj,t (xt) ≤ 0, j = 1, . . . , ng} , (4)

with ng being the total number of constraints to be satisfied, and gj,t being the jth constraint to
be satisfied at time t. Joint constraint satisfaction must occur at high probability of 1 − ω where
ω ∈ [0, 1]. Herein, we present a Q-learning algorithm that allows to obtain the optimal policy which
satisfies joint chance constraints.

3 Methodology

3.1 Oracle-assisted Constrained Q-learning

Q-learning, when unconstrained, may offer little practical utility in process optimization due to
unbounded exploration by the RL agent. For instance, an unconstrained policy may often result in
a thermal runaway leading to a safety hazard in the process. As such, herein constraints gj,t are
incorporated through the use of an oracle ĝj,t which is formulated as

ĝj,t = max(gj,t′), t′ ≥ t (5)

with gj,t being the jth constraint to be satisfied at time t, and the oracle ĝj,t is determined by the
maximum level of violation to occur in all current and future time steps t′ in the process realization.

The intuition behind this framework is as follows: Imagine a car (agent) accelerating towards the
wall with the goal of minimizing the time it takes to reach some distance from the wall (objective)
without actually crashing into the wall (constraint). Accelerating the car without foresight causes it to
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go so fast that it cannot brake and stop in time, causing it to crash into the wall (constraint violated).
As such, there is a need for foresight to ensure constraint satisfaction.

Effectively, the framework shown in Eq. (5) is aking to an oracle (or fortune-teller peeking into a
crystal ball) advising the agent on the worst (or maximum) violation that a specific action can cause
in the future given the current state. These values are easily obtained using Monte-Carlo simulations
of the system. Analogous to a how a Q-function that gives the sum of all future rewards, the oracle
provides the worst violation in all future states if a certain action is taken by the agent, hence imbuing
in the agent a sense of foresight to avoid future constraint violation.

Similar to the Q-function, constraint values are represented by neural networks Gj,θ with state and
action as input features. However, the subtle difference between the two is that the state representation
of the input for Gj,θ involves time-to-termination tf − t instead of time t.

3.2 Constraint Tightening

To satisfy the constraints with high probability, it is required that the constraints are tightened with
backoffs [20, 21] bj,t as:

Xt = {xt ∈ Rnx | gj,t (xt) + bj,t ≤ 0, j = 1, . . . , ng} (6)

where bj,t are the backoffs which tighten the former feasible set Xt stated in Eq. (4). The result of
this would be the reduction of the perceived feasible space by the agent, which consequently allows
for the satisfaction of constraints. Notice that the value of the backoffs necessarily imply a trade-off:
large backoff values ensure constraint satisfaction, but renders the policy over-conservative hence
sacrificing performance. Conversely, smaller backoff values afford solutions with higher rewards,
but may not guarantee constraint satisfaction. Therefore, the values of bj,t are the minimum value
needed to guarantee satisfaction of constraints.

To determine the desired backoffs, the cumulative distribution function (CDF) F of the oracle ĝj,t is
approximated using sample approximation (SSA) with S Monte Carlo (MC) simulations to give its
empirical cumulative distribution function (ECDF) F̂S where

F̂S(0) ≈ F (0) = P (ĝj,t ≤ 0) (7)

hence F̂S(0) is the approximate probability for a trajectory to satisfy a constraint.

Subsequently, we adjust backoffs bj,t using Broyden’s method in order to satisfy Eq. (8) to obtain the
desired backoffs [22].

F̂S(0) ≈ P (ĝj,t ≤ 0) = 1− ω (8)

where ω is a tunable parameter depending on the case study, such that constraint satisfaction occurs
with high probability 1− ω as shown in Eq. (3). Alternatively, the lower bound of the ECDF can be
forced to be 1− ω, and guarantee with confidence 1− ε that P (ĝj,t ≤ 0) ≥ 1− ω. More technical
details can be found in [13].

4 Case studies

4.1 Case study 1

This case study pertains to the photoproduction of phycocyanin synthesized by cyanobacterium
Arthrospira platensis. Phycocyanin is a high-value bioproduct, and serves its biological role by
increasing the photosynthetic efficiency of cyanobacteria and red algae. In addition, it is used as a
natural colorant to substitute toxic synthetic pigments in cosmetic and food manufacturing. Moreover,
it possesses antioxidant, and anti-inflammatory properties.

The dynamic system comprises a system of ODEs from [20] that describe the evolution of concen-
tration (c) of biomass (x), nitrate (N ) and product (q) under parametric uncertainty. The model
is based on Monod kinetics, which describes the growth of microorganism in nutrient-sufficient
cultures, where intracellular nutrient concentration is kept constant because of rapid replenishment.
Here, a fixed volume fed-batch is assumed. The controls are light intensity (u1 = I) and inflow rate
(u2 = FN ).
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This case study and parameter values are adopted from [20]. Uncertainty in the system is two-fold:
First, the initial concentration adopts a Gaussian distribution, where [cx,0, cN,0] ∼ N ([1.0, 150.0],
diag(10−3, 22.5)) and cq(0) = 0. Second, parametric uncertainty is assumed to be: ks

(µmol/m2/s) ∼
N (178.9, σ2

ks
), ki

(mg/L) ∼ N (447.1, σ2
ki
), kN

(µmol/m2/s) ∼ N (393.1, σ2
kN

) where the variance σ2
i =

10% of its corresponding mean value. This type of uncertainty is common in engineering settings,
as the parameters are experimentally determined, and therefore subject to confidence intervals after
being extracted using regression techniques. The objective function is to maximize the product
concentration (cq) at the end of the batch, hence the reward is defined as:

Rtf = cq,tf (9)

where tf is the terminal time step. The two path constraints are as follows: Nitrate concentration
(cN ) is to remain below 800 mg/L, and the ratio of bioproduct concentration (cq) to biomass concen-
tration (cx) cannot exceed 11.0 mg/g for high density biomass cultivation. These constraints can be
formulated as:

g1,t = cN − 800 ≤ 0 ∀t ∈ {0, . . . , tf}
g2,t = cq − 0.011cx ≤ 0 ∀t ∈ {0, . . . , tf}

(10)

The control inputs are subject to hard constraints to be in the interval 0 ≤ FN ≤ 40 and 120 ≤
I ≤ 400. The time horizon was set to 12 with an overall batch time of 240 h, and hence giving a
sampling time of 20 h. The Q-network Qθ consists 2 fully connected hidden layers, each consisting
of 200 neurons with a leaky rectified linear unit (LeakyReLU) as activation function. The parameters
used for training the agent are: ε = 0.99, b1,t = −500, b2,t = −0.05, sD = 3000, sG = 30000,
M = 2000, N = 100, G = 100, H1 = 500, H2 = 1000, D1 = 0.99 and D2 = 0.995.

Algorithm 1 Oracle-assisted constrained Q-learning
1. Initialize replay buffer D of size sD and constraint buffers Gj of size sG , j = 1, . . . , ng
2. Initialize Q-network Qθ and constraint networks Gj,θ with random weights, j = 1, . . . , ng
3. Initialize ε and backoffs bj,t
for training iteration = 1, . . . , M do

for episode = 1, . . . , N do
Initialize state x0 ∼ px0

(x0) and episode E
for t = 0, . . . , tf do

1. With probability ε select random control ut
otherwise select ut = maxuQθ (xt,ut) | Gj,θ (xt,ut) + bj,t ≤ 0, j = 1, . . . , ng
(Sub-problema)
2. Execute control ut and observe reward Rt and new state xt+1

3. Store transition (xt, ut, Rt, xt+1) in E
end
1. Extract Q-values from E and store datapoint (xt, ut, Qt) in D
2. Extract oracle-constraint values from E using: ĝj,t = max(gj,t′), t

′ ≥ t, j = 1, . . . , ng
3. Store datapoint (xt, ut, ĝj,t) in Gj , j = 1, . . . , ng

end
1. Sample random minibatch of datapoints of size G (xt, ut, Qt) from D
2. Sample random minibatch of datapoints of size Hj (xt, ut, ĝj,t) from Gj
3. Perform gradient descent on Qθ and Gj,θ using Adam optimizerb with step size of 10−3
4. Decay ε using ε = D1ε
5. Decay backoffs using bj,t = D2bj,t

end
Output: Optimal Q-network Q∗θ and constraint networks Gj,θ, j = 1, . . . , ng

aSub-problem: An evolutionary algorithm is used to optimize the constrained Q-function using fitness
function f(u) = Qθ(u) +

∑
j Cj min (0,−(Gj,θ(u) + bj,t)) where gj,t is the jth constraint violation at time

t, and bj,t is the corresponding backoff. Cj are large values to ensure large negative fitness values for controls
that lead to constraint violation.

bAny other full optimization step can be used here.

After completion of training using Algorithm 1, the backoffs are adjusted to satisfy Eq. (8), with
backoffs at all time-steps t being constant. For simplicity, these backoffs are adjusted to ensure
satisfaction of individual constraints, but it is worth noting that methods to satisfy joint chance
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(a) (b)

Figure 2: Case Study 1: Constraints g1,t (a) and g2,t (b) when backoffs are applied (green), and when
they are absent (red) with probabilities of violation Pv within the parentheses. Inset: Zoomed-in
region where violation of constraints occur. Shaded areas represent the 99th to 1st percentiles.

(a) (b)

Figure 3: Case Study 1: Constraints g1,t (a) and g2,t (b) when backoffs are applied (green), and for
MPC (blue) with probabilities of violation Pv within the parentheses. Inset: Zoomed-in region where
violation of constraints occur. Shaded areas represent the 99th to 1st percentiles.

Table 1: Case Study 1: Comparison of probabilities of constraint violation Pv and objective values of
different algorithms

Algorithm Violation probability Pv Objective (cq,tf )

Oracle Q-learning with backoffs 0.01 0.166
Oracle Q-learning without backoffs 0.82 0.169
MPC 0.53 0.168

constraints can also be implemented as shown in [13] and [20]. The constraint satisfaction is shown in
Fig. 2, where the shaded areas represent the 99th to 1st percentiles. Here, we elucidate the importance
of applying backoffs to the policy: As shown in Fig. 2 (a), even though it may seem at face value that
g1,t values for both methods are similar, the zoomed-in region (in the inset) clearly shows that oracle
Q-learning without backoffs (red) results in a high probability of constraint violation (Pv = 0.77).
The violation probabilities Pv in Fig. 2 and 3 correspond to the fraction of 400 MC trajectories that
violate a certain constraint. Gratifying, when backoffs are applied (green) in Fig. 2 (a), all constraints
are satisfied (Pv = 0).

In the same vein, in Fig. 2 (b), applying backoffs resulted in a drastic reduction of constraint violation
from Pv = 0.24 to 0.01. This is expected since the backoffs are adjusted using the 99th percentile of
gj,t values as shown in Eq. (8) where ω is set to 0.01. The objective value, represented by the final
concentration of product cq, are 0.166 and 0.169 for oracle Q-learning with and without backoffs,
respectively. Consequently, this indicates that a small compromise in objective value can result in
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high probability of constraint satisfaction, where violation probability is reduced from 0.82 to 0.01
(in boldface) upon applying backoffs as shown in Table 1.

In addition, the performance of the oracle Q-learning algorithm with backoffs has been compared
with that of MPC, which is one of the main process control techniques used in chemical process
optimization and hence serves as an important benchmark. Although MPC achieves a slightly higher
objective value (Table 1), it fares poorly in terms of constraint satisfaction as shown in blue Fig.
3 (a) and (b) where probabilities of violation are 12 and 53 % for g1 and g2, respectively. This is
unsurprising, since MPC is only able to satisfy constraints in expectation, which means that in a
stochastic system, loosely speaking, violation occurs 50 % of the time. On the other hand, oracle
Q-learning with backoffs violated a constraint only 1 % of the time (boldface in Table 1). Therefore,
it is clear that this algorithm offers a more effective means of handling constraints compared to MPC.

4.2 Case study 2

The second case study involves a challenging semi-batch reactor adopted from [23], with the following
chemical reactions in the reactor catalyzed by H2SO4:

2A
k1A−−→
(1)

B
k2B−−→
(2)

3C (11)

Here, the reactions are first-order. Reactions (1) and (2) are exothermic and endothermic, respectively.
The temperature is controlled by a cooling jacket. The controls are the flowrate of reactant A entering
the reactor and the temperature of the cooling jacket T0. Therefore, the state is represented by the
concentrations of A, B, and C in mol/L (cA, cB , cC), reactor temperature in K (T ), and the reactor
volume in L (V ol).

The objective function is to maximize the amount of product (cC · V ol) at the end of the batch. Two
path constraints exist. Firstly, the reactor temperature needs to be below 420 K due to safety reasons
and secondly, the reactor volume is required to be below the maximum reactor capacity of 800 L and
therefore:

g1,t = T − 420 ≤ 0 ∀t ∈ {0, . . . , tf}
g2,t = V ol − 800 ≤ 0 ∀t ∈ {0, . . . , tf}

(12)

The ODEs describing the evolution of the system can be found in [23]. The time horizon is fixed to
10 with an overall batch time of 4 h, therefore the sampling time is 0.4 h. Parametric uncertainty is set
as: θ1 ∼ N (4, 0.1), A2 ∼ N (0.08, 1.6× 10−4), θ4 ∼ N (100, 5). The initial concentrations of A, B
and C are set to zero. The initial reactor temperature and volume are 290 K and 100 L, respectively.

In this case study, due to its more challenging nature in terms of constraint satisfaction compared
to the first case study, the backoffs have been adjusted to satisfy Eq. (8) using the 90th percentile
(gj,t) with ω = 0.1 in Eq. (3). We observe that backoffs again proved to be necessary to ensure high
probability of constraint satisfaction. From the inset of Fig. 4 (a), we can see that without backoffs the
policy violates g1 41% of the time, and this probability is reduced to 9% when backoffs are applied.
The same applies for g2 in Fig. 4 (b) where Pv is completely eliminated from 3 to 0% using backoffs.

Table 2: Case Study 2: Comparison of probabilities of constraint violation Pv and objective values of
different algorithms

Algorithm Violation probability (Pv) Objective (cC,tf · V oltf )

Oracle Q-learning with backoffs 0.09 532
Oracle Q-learning without backoffs 0.44 680
MPC 0.66 714

To compare the performance of MPC with oracle Q-learning with backoffs in the context of this case
study, we consider two cases: First, in a deterministic system, MPC is found to be more efficient and
gives solutions of much higher objective values. However, chemical systems are rarely deterministic
in nature, hence limiting the applicability of MPC. Second, in the stochastic system, MPC often
struggles in terms of constraint handling. This can be clearly seen in Fig. 5 (a), where the MPC
trajectories only satisfy g1 in expectation (blue line), hence resulting in high levels of violations
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(a) (b)

Figure 4: Case Study 2: Constraints g1,t (a) and g2,t (b) when backoffs are applied (green), and when
they are absent (red) with probabilities of violation Pv within the parentheses. Inset: Zoomed-in
region where violation of constraints occur. Shaded areas represent the 95th-5th percentiles for (a)
and 99th-1st percentiles for (b).

(a) (b)

Figure 5: Case Study 2: Constraints g1,t (a) and g2,t (b) when backoffs are applied (green), and for
MPC (blue) with probabilities of violation Pv within the parentheses. Inset: Zoomed-in region where
violation of constraints occur. Shaded areas represent the 95th-5th percentiles for (a) and 99th-1st
percentiles for (b).

(66%). Intriguingly, for g2 the MPC trajectory in Fig. 5 displayed little variation, resulting in only
small probability of violation (6%).

In terms of objective values, unlike the first case study, oracle Q-learning with backoffs saw a
significant decrease in objective value in Table 2 after applying backoffs. This is expected because
we further restrict the feasible space of the controller leading to a more conservative solution, hence
exhibiting a trade-off between constraint satisfaction and objective value.

This trade-off is justified as the MPC solution results in 66% probability of constraint violation. In
the context of a chemical plant, the MPC solution is unfeasible due to the high risk, for example,
of a plant meltdown. The adoption of RL in such industries necessitates that these probabilities are
minimized as safety is of utmost importance in chemical engineering.

Gratifyingly, it can been seen that the probability of constraint violation has been significantly
improved from 66% (for MPC) to 9% (boldface in Table 2). Clearly, oracle Q-learning offers an
effective means of not only satisfying constraints in expectation (green lines in Fig. 4), but more
importantly with high probability (all green shaded areas below zero).

However, it is worth noting that this algorithm is based on Q-learning, which is expected to take
longer time to train, particularly because it requires backoffs to be tuned. This is a direct consequence
of shifting the computation time from online to offline. Indeed, such a tradeoff can be justified as this
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guarantees robust constraint satisfaction online with fast computation time, which is crucial in many
safety critical engineering applications.

5 Conclusions

In this paper we propose a new RL methodology for finding a controller policy that can satisfy
constraints with high probability in stochastic and complex process systems. The proposed algorithm
- oracle-assisted constrained Q-learning - uses constraint tightening by applying backoffs to the
original feasible set. Backoffs restrict the perceived feasible space by the controller, hence allowing
guarantees on the satisfaction of chance constraints. Here, we find the smallest backoffs (least
conservative) that still guarantee the desired probability of satisfaction by solving a root-finding
problem using Broyden’s method. Results show that our proposed methodology compares favorably
to model predictive control (MPC), a benchmark control technique commonly used in the industry, in
terms of constraint handling. This is expected since MPC guarantees constraint satisfaction only in
expectation (loosely speaking constraints are satisfied only 50% of the time), while our algorithm
ensures constraint satisfaction with probabilities as high as 99% as shown in the case studies. Being
able to solve constraint policy optimization problems with high probability constraint satisfaction has
been one of the main hurdles of the widespread use of RL in engineering applications. The promising
performance of this algorithm is an encouraging step towards applying RL to the real world, where
constraints on policies are absolutely critical due to safety reasons.
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