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Acute decompensation (AD) of cirrhosis is defined by the development of ascites, hepatic encephalop-
athy and/or variceal bleeding. Ascites is traditionally attributed to splanchnic arterial vasodilation and
left ventricular dysfunction, hepatic encephalopathy to hyperammonaemia, and variceal haemorrhage to
portal hypertension. Recent large-scale European observational studies have shown that systemic
inflammation is a hallmark of AD. Here we present a working hypothesis, the systemic inflammation
hypothesis, suggesting that systemic inflammation through an impairment of the functions of one or
more of the major organ systems may be a common theme and act synergistically with the traditional
mechanisms involved in the development of AD. Systemic inflammation may impair organ system
function through mechanisms which are not mutually exclusive. The first mechanism is a nitric oxide-
mediated accentuation of the preexisting splanchnic vasodilation, resulting in the overactivation of
the endogenous vasoconstrictor systems which elicit intense vasoconstriction and hypoperfusion in
certain vascular beds, in particular the renal circulation. Second, systemic inflammation may cause
immune-mediated tissue damage, a process called immunopathology. Finally, systemic inflammation
may induce important metabolic changes. Indeed, systemic inflammatory responses are energetically
expensive processes, requiring reallocation of nutrients (glucose, amino acids and lipids) to fuel immune
activation. Systemic inflammation also inhibits nutrient consumption in peripheral (non-immune) or-
gans, an effect that may provide one mechanism of reallocation and prioritisation of metabolic fuels for
inflammatory responses. However, the decrease in nutrient consumption in peripheral organs may result
in decreased mitochondrial production of ATP (energy) and subsequently impaired organ function.
© 2020 European Association for the Study of the Liver. Published by Elsevier B.V. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Cirrhosis is among the most complex chronic dis-
eases in humans. Its clinical course is dominated by
3 major complications (also known as de-
compensations): ascites, hepatic encephalopathy
and gastrointestinal haemorrhage. Moreover, it
seriously affects the function of the kidneys, brain,
heart, lungs, systemic circulation, intestines, im-
mune system, adrenal glands, thyroid, reproductive
organs and skeletal muscles.

The course of cirrhosis is classically divided into
2 major periods, compensated (asymptomatic) and
decompensated cirrhosis. The term acute decom-
pensation (AD) defines the acute development of
one or more major complication(s). The first
episode of AD signals the transition from
compensated to decompensated cirrhosis. The
course of decompensated cirrhosis is characterised
by repeated episodes of AD. During AD, patients are
extremely prone to developing bacterial infections,
to the point that infections have been proposed as
Journa
the fourth major complication of the disease.
Finally, the recently recognised syndrome of acute-
on-chronic liver failure (ACLF), which is charac-
terised by single or multiple organ system failure
and elevated short-term mortality, always occurs
in the setting of an episode of AD. However, the
current paradigm of decompensated cirrhosis does
not consider AD as a specific clinical entity. Instead,
this paradigm considers that ascites, hepatic en-
cephalopathy and gastrointestinal haemorrhage
develop through different pathophysiological
pathways in the setting an acute aggravation of
portal hypertension or liver failure.

Systemic inflammation is a well-recognised
feature of decompensated cirrhosis. The aim of
the current article is to present a new hypothesis,
the systemic inflammation hypothesis, which,
instead of supporting specific and relatively inde-
pendent pathophysiological mechanisms for each
of the major complications and organ failures of
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AD, proposes systemic inflammation as the com-
mon driver of all these events. Systemic inflam-
mation, either acting alone or in concert with
organ-specific mechanisms (e.g. the effects of
hyperammonaemia on the brain), and depending
on its severity, would give rise to a wide array of
clinical forms, ranging from a relatively stable
decompensated cirrhosis with good quality of life
and prolonged survival to a rapidly evolving mul-
tiorgan ACLF syndrome that may lead to death
withing days of hospital admission.

The systemic inflammation hypothesis proposes
systemic inflammation as the key mechanism in
the progression of compensated to decompensated
cirrhosis, and the development of episodes of acute
decompensation of cirrhosis that are associated
with either a generalised extrahepatic organ sys-
tem dysfunction or organ system failure.

Current paradigm of AD
Modern concepts on the pathophysiology of asci-
tes, hepatic encephalopathy and gastrointestinal
haemorrhage in cirrhosis were introduced at the
end of the 19th century by Ernest Starling in Lon-
don, Ivan Pavlov in Saint Petersburg, and Augustin
Gilbert in Paris. Starling was first to demonstrate
that ascites develops due to an increased hepatic
lymph production secondary to high hydrostatic
and low oncotic pressures at the sinusoidal capil-
laries, with a significant proportion of lymph
escaping from subcapsular lymphatics directly into
the peritoneal cavity.1 Renal fluid retention was
subsequently proposed as the natural consequence
of a reduction in circulating blood volume. Pavlov
et al. went even further in their investigations on
the pathogenesis of hepatic encephalopathy. They
demonstrated that dogs with side-to-side porta-
caval anastomosis (Eck’s fistula) developed hepatic
encephalopathy only a few weeks after surgery in
association with a marked increase in the urinary
excretion of ammonium salts, and that this feature
could be reproduced by oral administration of this
molecule.2–4 Finally, portal hypertension was first
suggested by Gilbert in his book “Les Fonctions
Hépatiques”. He hypothesised that cirrhosis could
bring about a condition of hypertension in the
portal system, with enlargement of the natural
collaterals between the portal and the systemic
venous circulation and subsequent development of
oesophageal varices.5

The current paradigm of AD was developed
during the last century and consisted in a modifi-
cation of principles proposed in the 19th century.
Among the new concepts introduced, 3 are of
special interest for the systemic inflammation hy-
pothesis. The first relates to the functional
component of portal hypertension, which consists
of an imbalance between the local activity of va-
sodilators (i.e., nitric oxide [NO] and hydrogen
sulphide) and vasoconstrictors (i.e., angiotensin II
and endothelin) molecules leading to increased
Journal of Hepatology 2021 vol. - j
intrahepatic vascular resistance .6–10 Portal hyper-
tension is therefore not only the result of distortion
of the hepatic histological architecture due to
fibrosis and the formation of regenerative nodules,
but also to an intense dysregulation of intrahepatic
vasoactive mechanisms. An additional functional
mechanism of portal hypertension is the increased
local release of NO in the splanchnic microcircu-
lation with subsequent vasodilation and increased
inflow of blood into the portal venous system.10–12

The second concept is that, despite numerous at-
tempts to identify potential alternative mecha-
nisms, hyperammonaemia is still considered a key
factor in the development of hepatic encephalop-
athy. Thus, identification of new pathophysiolog-
ical mechanisms related to hyperammonaemia,
new pathways of ammonia entry into the brain,
and new processes by which ammonia impairs
neuronal function, emphasised the major role of
hyperammonaemia in the development of hepatic
encephalopathy.13–22 Finally, the pathophysiology
of ascites was reformulated in 1988 by an inter-
national group of investigators according to the
new concept of portal hypertension and in line
with studies showing that decompensated
cirrhosis develops in the setting of decreased
vascular resistance in the splanchnic circulation,
decreased cardiac output, and homeostatic activa-
tion of the renin-angiotensin-aldosterone system,
sympathetic nervous system and antidiuretic hor-
mone to maintain arterial pressure (peripheral
arterial vasodilation hypothesis of ascites).23

Accordingly, splanchnic arterial vasodilation and
left ventricular dysfunction are considered the
initial events of ascites formation, while homeo-
static activation of endogenous vasoconstrictor
systems is seen as the intermediate process, and
renal fluid retention forming ascites the final
consequence.

Fig. 1 illustrates the complexity of AD. At the
time of admission to hospital, patients with AD
presented 15 different combinations of major
complications;24,25 approximately 1 in every 3 of
these patients presented ACLF at admission or
developed the syndrome during early follow-up
(1–3 months); also, the number of failing organ
systems (liver, kidney, brain, coagulation, circula-
tion and respiration) in these patients ranged be-
tween 1 and 6. Therefore, stratification of patients
with AD is a major challenge.

Background of systemic inflammation in
cirrhosis
Bacterial translocation, as defined by the passage of
viable bacteria or bacterial byproducts (pathogen-
associated molecular patterns [PAMPs], e.g. lipo-
polysaccharide [LPS]) through the gut mucosa to
the systemic circulation (Fig. 2A), and the second-
ary systemic inflammation, have been well-known
features of decompensated cirrhosis for many
1–16
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Fig. 1. Combinations of major complications at AD development. The four-ellipse Venn’s diagram was constructed merging
data from the CANONIC and PREDICT studies (2,467 patients).

B

01 218 64 20

IL
-6

(p
g/

m
l)

200

150

100

50

0

Week

↓
↓
↓
↓

A
Healthy gut
microbiota Dysbiosis

Diet
Antibiotics

Bile flow
Motility
Gastric pH
Immunity Bacteria

Microbial
metabolites

PAMPs

Disrupted
tight
junction

Tight
junction

Intestinal epithelium

Lamina propria

Monocyte

Macrophage                     T cell

Blood vessel

Cytokines
  IL-6
  NO
TNF

  IL-17
  IFNγ

Fig. 2. Bacterial translocation. (A) Intestinal dysbiosis and bacterial translocation. Cirrhosis is associated with bacterial overgrowth and qualitative changes in
the intestinal microbiota. A second important feature of cirrhosis is the translocation of bacteria or bacterial products from the intestinal lumen to the systemic
circulation. Disruption of the tight junctions allows PAMPs and other microbial products to use the paracellular route between adjacent intestinal epithelial cells
for translocation. Viable bacteria use a transcellular route (transcytosis). PAMPs activate immune cells in the lamina propria of the intestines, leading to release of
inflammatory mediators and NO, which contributes to further dysfunction of tight junctions and to splanchnic arterial vasodilation that characterises portal
hypertension (Arroyo V. et al., Nat Rev Dis Primers (2016) PM10. ID: 27277335 DOI 1038/nrdp.2016.41). (B) Instability of bacterial translocation. Sequential
measurement of the plasma IL-6 levels (ELISA, normal upper value <5 pg/ml), as marker of systemic inflammation, in 5 selected patients hospitalised for the
treatment of an episode of AD. The study was performed during a follow-up period of 14 weeks after discharge. Since patients did not present bacterial infections
or any other significant event during this period, the peaks of the circulating levels of IL-6 were interpreted as secondary to transient bursts of translocation of
PAMPs (Fernandez J. et al., Gastroenterology 2019; 157:149-162). IFN, interferon; IL-, interleukin-; NO, nitric oxide; PAMPs, pathogen-assocated molecular pat-
terns; TNF, tumour necrosis factor.
years. In the 1950s, among the standard laboratory
tests routinely used for the assessment of patients
with cirrhosis, the plasma concentration of
gamma-globulin became an important component.
Hypergammaglobulinemia, which is common in
decompensated cirrhosis, was considered a signal
Journa
of the escape of intestinal antigens into the sys-
temic circulation and correlated with prognosis. In
the 1960s, spontaneous bacterial peritonitis was
recognised as a specific infection of decom-
pensated cirrhosis secondary to translocation of
viable bacteria to the systemic circulation and
l of Hepatology 2021 vol. - j 1–16 3
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ascites.26 Wilkinson et al., Tarao et al., and Triger
et al., first reported in the 1970s that circulating
levels of LPS are increased in patients with acute
liver failure or with cirrhosis and AD in association
with renal failure and poor prognosis.27–29 In 1998
and 2003, Navasa et al. and Albillos et al. presented
data suggesting for the first time that bacterial
translocation and systemic inflammation are
chronically present in non-infected patients with
decompensated cirrhosis.30,31 For decades intesti-
nal bacterial overgrowth and increased perme-
ability of the mucosal barrier to bacteria and
bacterial products were considered the main
mechanism of chronic bacterial translocation and
systemic inflammation in cirrhosis .32,33 This has
recently been confirmed by metagenomics studies
showing that an altered profile of human gut
microbiota is associated with complications of
cirrhosis .34,35 Finally, Fernández et al. have shown
that chronic systemic inflammation in cirrhosis, as
estimated by the sequential measurement of
plasma interleukin (IL)-6, is not a steady process.
Indeed, in some patients, plasma IL-6 levels dis-
played a waxing and waning profile, with
extremely high peaks, the duration of which
ranging from days to weeks36 (Fig. 2B). These peaks
likely relate to transient episodes of massive
translocation of PAMPs.

Systemic inflammation in decompensated
cirrhosis is a chronic condition related to sustained
translocation of bacterial products from the intes-
tinal lumen to the systemic circulation. Bursts of
systemic inflammation related to episodic aggra-
vations of bacterial translocation or to proin-
flammatory precipitants (mainly bacterial
infections, alcoholic hepatitis, and hepatitis B
reactivation) are the mechanisms by which organ
system dysfunctions or failures develop.

Interest in systemic inflammation in decom-
pensated cirrhosis increased after the pioneering
observational study by Rolando et al. of 887 pa-
tients admitted to hospital with acute liver fail-
ure.37 Patients were investigated by sequential
assessment of the systemic inflammatory response
syndrome (SIRS), which was present in 56% of pa-
tients irrespective of whether the patients had
bacterial infections or not. Severity of SIRS was
associated with a more critical illness, progression
of encephalopathy, multiorgan failure and death.
Following this publication, the number of studies
investigating systemic inflammation as a potential
mechanism of AD increased markedly (reviewed in
detail in references 38–41).

Infections are well-known precipitants of en-
cephalopathy. Indeed, 1 in every 3 patients hospi-
talised with encephalopathy also have bacterial
infections at admission, whereas the prevalence of
infections in patients with gastrointestinal hae-
morrhage is less than 2% 24,25 (Fig. 1). Moreover,
patients with decompensated cirrhosis and in-
fections challenged with a dose of oral amino acids
Journal of Hepatology 2021 vol. - j
mimicking haemoglobin composition, had signifi-
cant impairment in neuropsychological scores
associated not only with hyperammonemia but
also SIRS, suggesting that inflammation modulates
the cerebral effect of ammonia.42 This synergy
probably relates to the effect of cytokines and
reactive molecules on blood-brain barrier perme-
ability, entry of ammonia and inflammatory me-
diators into the brain, secondary activation of
microglia and neuroinflammation .40,41,43,44

There is also evidence that systemic inflamma-
tion is involved in the acute development of ascites
and renal failure. In fact, ascites and bacterial in-
fections occur concurrently in 30% of patients
hospitalised with AD (Fig. 1). Moreover, bacterial
infections are well-recognised precipitants of
hepatorenal syndrome (HRS).45 Finally, as observed
in sepsis, systemic inflammation related to bacte-
rial infections in decompensated cirrhosis may
worsen liver failure, impair left ventricular
contractibility, and reduce vascular resistance in
the splanchnic and systemic circulation.38,39

Clinical studies on the potential role of systemic
inflammation in gastrointestinal haemorrhage in
cirrhosis are scarce .46,47 In contrast, there are
many experimental studies indicating that sys-
temic inflammation may exacerbate portal hyper-
tension (reviewed in detail by Mehta et al. in
reference 39). Serum bacterial DNA levels, an
inducer of inflammation, as well as the severity of
systemic inflammation correlate with the severity
of portal hypertension in patients with cirrhosis.46

Moreover, in patients with spontaneous bacterial
peritonitis, those with higher plasma levels of
tumour necrosis factor (TNF)-a had higher portal
pressures .47 Systemic inflammation activates Toll-
like receptors on hepatic stellate cells making them
responsive to the increased circulating levels or
local release of vasoconstrictors (endothelin,
norepinephrine, angiotensin II, leukotrienes and
thromboxane A2). These activated cells cover the
sinusoidal network through cellular extensions and
can modulate intrahepatic vascular resistance
through contractibility .9,48 Moreover, Kupffer cells,
the resident macrophages in the liver, are activated
in the setting of systemic inflammation, increasing
the production of proinflammatory cytokines and
reactive oxygen species (ROS) .49,50 Next, oxidative
stress decreases local NO bioavailability and activ-
ity through several mechanisms, including direct
interaction of ROS with NO, which leads to the
formation of peroxynitrite and other ROS ,51 and
inhibition of endothelial NO synthase (eNOS) via
increased formation of eNOS inhibitors .51 There-
fore, systemic inflammation may induce a
disequilibrium between vasoconstrictor and vaso-
dilator mechanisms within the liver, leading to
increased vascular resistance .39 This concept is
supported by the observation that high-density li-
poprotein administration, which has an anti-
inflammatory effect by neutralising circulating
1–16



LPS, attenuates the liver proinflammatory
response, restores liver eNOS activity and lowers
portal pressure in rats with experimental cirrhosis
challenged with LPS.52

Systemic inflammation is the common
mechanism for major complications and
organ failures in AD
Most of the concepts included in this section
largely derive from the CANONIC and PREDICT
studies. Both studies were observational pro-
spective investigations in large cohorts of non-
selected patients hospitalised with AD.24,25 The
aim of these studies was to characterise the ACLF
syndrome at hospital admission (CANONIC study)
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and to explore the critical periods prior to and
within 3 months after admission (early follow-up
period) in patients with AD without ACLF (PRE-
DICT study).

Considering the complexity of AD, patient
stratification (for prognostic classification) was the
initial analytical process in both studies. This was
relatively simple in patients with ACLF (AD-ACLF
phenotype, CANONIC study), since stratification
according to the number of organ system failures at
admission resulted in 3 clearly distinct subgroups
(ACLF-1, 1 organ system failure; ACLF-2, 2 organ
system failures; and ACLF-3, 3 to 6 organ system
failures), with different clinical courses and prog-
noses (Box1, Fig. 3A).24 However, this was less easy
-2 ACLF-3
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Box 1. Definitions proposed by the systemic inflammation hypothesis.

Acute decompensation-related definitions
Acute decompensation (AD): defines the acute development of ascites, encephalopathy, gastrointestinal bleeding, bacterial

infection or any combination of these complications. Bacterial infection may precipitate and/or constitutes part of the AD process.
Classification of infections according to their role on AD (PREDICT study)

� Precipitant: proven infection cured within 48 hours prior to the onset of AD or diagnosed at the time of AD.

� Decompensation: infections diagnosed at the time of the first episode of AD or thereafter.

� Unrelated: isolated bacterial infections in patients with compensated cirrhosis.

� Decompensation: each of the individual major complications of cirrhosis (ascites, encephalopathy, gastrointestinal
bleeding related to portal hypertension and infections).

Compensated cirrhosis: the disease phase prior to the first AD.
Decompensated cirrhosis: the disease phase after the first AD.
Acute-on-chronic liver failure (ACLF): AD associated with single or multiple (>−2) organ failure(s) and high risk (>15%) of short-

term (28-day) mortality.

Stratification of AD (CANONIC and PREDICT studies)
AD-No ACLF phenotype or “mere” AD: AD without diagnostic criteria of ACLF

� Stable decompensated cirrhosis (SDC). AD No-ACLF episode, no death during hospitalisation, no rehospitalisation during
early follow-up (3 months after admission).

� Unstable decompensated cirrhosis (UDC). AD No-ACLF episode, death during hospitalisation or early follow-up due to
causes other than ACLF, or one or more rehospitalisation during early follow-up.

� Pre-ACLF. AD No-ACLF episode progressing to ACLF development during early follow-up.

AD-ACLF phenotype: AD with diagnostic criteria of ACLF.

� ACLF grade 1 (ACLF-1). AD episode associated with single renal failure, single brain failure associated with renal
dysfunction, or single liver, coagulation, circulatory or respiratory failure associated with renal and/or brain dysfunction.

� ACLF grade 2 (ACLF-2). AD episode associated with 2 organ failures.

� ACLF grade 3 (ACLF-3). AD episode associated with 3–6 organ failures.

Clinical course of ACLD (CANONIC study)
Resolution of ACLF: evolution of AD-ACLF (any grade) to AD No-ACLF.
ACLF development: progression of AD No-ACLF to AD-ACLF (any grade).
Improvement of ACLF: decrease of ACLF severity by at least 1 grade.
Worsening of ACLF: increase of ACLF severity by at least 1 grade.
Steady ACLF: ACLF with no changes in grade.

6
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in patients without ACLF (AD-No ACLF phenotype,
PREDICT study) until we considered the clinical
course during early follow-up as a stratification
criterion;25 this enabled us to identify the
following prognostic subgroups (Box 1, Fig. 3A):
stable decompensated cirrhosis (SDC, no death
during hospitalisation and no re-hospitalisation
during early follow-up), unstable decompensated
cirrhosis (UDC, death by any cause other than ACLF
during first hospitalisation or at least 1 re-
admission during early follow-up), and pre-ACLF
(ACLF development during the 3-month follow-
up period). The 3-month and 1-year mortality
rates after admission increased progressively and
in parallel with the severity of AD in all 6 sub-
groups except for the pre-ACLF subgroup, which
showed a distinctly higher mortality than the
ACLF-1 and ACLF-2 subgroups (Fig. 3A).

The identification of clear clinical phenotypes of
AD and ACLF enabled us to address key questions
regarding the relationships between these pheno-
types and systemic inflammation. These key
questions and their respective answers are dis-
cussed in the following sections
Journal of Hepatology 2021 vol. - j
Do all patients with AD exhibit systemic
inflammation at hospital admission and during
early follow-up? Is the severity of systemic
inflammation correlated with the severity of
AD?
The plasma levels of IL-6, a sensitive marker of
systemic inflammation, and of other cytokines and
chemokines were evaluated to address this ques-
tion (PREDICT study database, unpublished obser-
vations). IL-6 plasma levels were normal at
admission in only 40 (3.3%) of the 1,211 patients
with AD included in the analysis (unpublished
observation). Additionally, 37 of these patients
showed high plasma levels of 2 or more other
markers of systemic inflammation (TNFa, IL-8, IL-
10, IL-1RA and C-reactive protein [CRP]). Therefore,
only 3 patients (0.24%) showed no biological evi-
dence of systemic inflammation at presentation. In
contrast, of the 97 patients with compensated
cirrhosis (i.e. out-patients with no history of AD)
included in the analysis, 48 (49.4%) showed normal
plasma levels of IL-6, and 24 (24.7%) showed
normal plasma levels of all other markers of sys-
temic inflammation. Moreover, while plasma levels
1–16
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ACLF, acute-on-chronic liver failure; AD, acute decompensation; CRP, C-reactive protein; FU, follow-up; IL-6, interleukin-6; SDC, stable decompensated cirrhosis;
UDC, unstable decompensated cirrhosis.
of these inflammation markers were only slightly
increased in patients with compensated cirrhosis,
they were markedly elevated in most patients with
AD (Fig. 3B). Finally, elevated plasma levels of these
inflammation markers were observed in all pa-
tients with AD during early follow-up. Therefore,
the transition from compensated to decom-
pensated cirrhosis and the recurrence of AD occur
in the setting of severe systemic inflammation,25,53

which persists following AD resolution.
In the patients with AD, the intensity of sys-

temic inflammation at admission increases pro-
gressively from the best (UDC) to the worst (ACLF-
3) prognostic subgroup (Fig. 3B) .25,53 Systemic
inflammation also correlated with the number of
decompensations at admission, which is also a
prognostic marker in AD (Fig. 3C) (unpublished
observations). Therefore, the intensity of systemic
inflammation at admission correlates with the
clinical phenotypes of the AD syndrome as well as
short- and long-term prognosis.

Do type and number of precipitants impact the
severity of systemic inflammation at admission?
AD frequently follows a major clinical event that
may act as a precipitating factor. In Europe, the
most frequent precipitants are bacterial infections
and acute alcoholic hepatitis, which are present,
either as a single precipitant, pair of precipitants, or
associated with other precipitants, in more than
90% of patients with identifiable precipitants. Pa-
tients with any precipitant represent 44% of AD-No
ACLF patients and 70% of AD-ACLF patients.54
Journa
Bacterial infections and acute alcoholic hepatitis
are forceful inducers of systemic inflammation
through the release of PAMPs by bacteria or
damage-associated molecular patterns (DAMPs)
from necrotic hepatocytes. Bursts of bacterial
translocation are likely the precipitants of systemic
inflammation and AD in more than half of the AD-
No ACLF patients and in 30% of AD-ACLF patients.
The number but not the type of precipitants im-
pacts the severity of systemic inflammation
(Fig. 3D), suggesting a synergetic effect between
precipitating events .54

Does the evolution of systemic inflammation
correlate with the patient’s clinical course?
In addition to the clinical characteristics present at
hospital admission, the second feature that marks
the prognosis of patients with AD is the short-term
clinical course, which may follow different trajec-
tories within a few weeks after admission in pa-
tients with AD-No ACLF and within a few days in
patients with AD-ACLF. As indicated, patients with
AD-No ACLF may follow a distinct clinical course
which can be benign (SDC), moderately severe
(UDC), or extremely severe (pre-ACLF).25 In pa-
tients with SDC, the benign course is associated
with marked deactivation of systemic inflamma-
tion, while the progression to AD-ACLF observed in
patients with pre-ACLF occurs in association with a
significant increase in the grade of systemic
inflammation, emphasising systemic inflammation
as a key mechanism of ACLF (Fig. 4A). The clinical
course of patients with UDC, which is characterised
l of Hepatology 2021 vol. - j 1–16 7
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by a higher prevalence of surrogates of severe
portal hypertension, is predominantly related to
the severity of portal hypertension, which is asso-
ciated with systemic inflammation. In patients
with AD-ACLF, the ACLF syndrome may improve or
worsen within a few days after admission in the
context of significant deactivation or overactivation
of systemic inflammation, respectively (Fig. 4B) .53

Therefore, in patients with AD-No ACLF as well as
AD-ACLF, the clinical course is closely correlated
with the evolution of systemic inflammation.

The systemic inflammation hypothesis proposes
that clinical features of acutely decompensated
cirrhosis, including ascites, encephalopathy,
gastrointestinal haemorrhage, bacterial infections,
and organ system dysfunction or failure, share a
common pathophysiological mechanism which is
systemic inflammation.

Which mechanisms underpin the link between
systemic inflammation and multiorgan
dysfunction or failure?
Systemic inflammation is traditionally thought to
cause organ dysfunction and failure through 2
different mechanisms which are not mutually
exclusive. First, systemic inflammation, by stimu-
lating NO production in splanchnic arterioles may
accentuate the preexisting systemic circulatory
dysfunction resulting in a further decrease in
effective arterial blood volume and overactivation
of endogenous vasoconstrictor systems. This over-
activation causes vasoconstriction in several
vascular beds resulting in organ hypoperfusion and
subsequently impaired organ function .23,38 For
example, intense renal vasoconstriction is a central
mechanism in the development of type-1 HRS (an
acute kidney injury that is specific to cirrhosis and
a form of ACLF). Second, systemic inflammation
may be associated with an activation of immune
cells resulting in tissue damage and impaired organ
function .38 Recently, a third mechanism that in-
volves metabolic alterations associated with sys-
temic inflammation and may develop on top of the
2 other mechanisms has been suggested to play a
role in the development of organ dysfunction and
failure in patients with cirrhosis. Indeed, results of
blood metabolomics obtained in a large series of
patients with AD of cirrhosis (with and without
ACLF) ,55–57 along with data accumulated in the
field of immunology of sepsis ,58–63 suggest that
activated innate immune cells, which have a high
metabolic demand, are prioritised in the allocation
of circulating nutrients (glucose, amino acids, fatty
acids) 57,64 (Fig. 5A). Thus, activated innate immune
cells are the site of an energy-consuming anabolic
metabolism required to produce soluble inflam-
matory mediators (proteins and lipids), acute-
phase response, respiratory burst, and cell prolif-
eration (resulting in leukocytosis). One way in
which systemic inflammation leads to the reallo-
cation of nutrients to the immune system is by
Journal of Hepatology 2021 vol. - j
inhibiting nutrient consumption in peripheral or-
gans, an effect that results in decreased mito-
chondrial O2 consumption and ATP (energy)
production. The cost of decreasing mitochondrial
energy production may be peripheral organ
dysfunction and, in extreme cases, multiorgan
failure.

Connection between systemic inflammation
hypothesis and the classical physiopathological
concepts of ascites, encephalopathy and variceal
bleeding
In patients with cirrhosis there is no ascites
without sodium retention, encephalopathy
without hyperammonaemia or variceal bleeding
without significant portal hypertension. However,
none of these complications develop without sys-
temic inflammation. Therefore, systemic inflam-
mation and these organ-specific mechanisms are
likely to act synergistically in the development of
major complications of cirrhosis. In fact, as indi-
cated, systemic inflammation alone can affect brain
function and effective arterial hypovolemia and
increase portal hypertension in cirrhosis. It is also
likely that the acute burst of systemic inflamma-
tion preceding AD may reduce the critical
threshold level of cerebral ammonia, effective
arterial blood volume or portal hypertension
leading to the development of encephalopathy,
ascites and/or variceal haemorrhage.

Bacterial infections in AD may be caused
by immunoparesis
Immunoparesis was first described as a mechanism
of primary or secondary infection in patients with
sepsis .65–67 Among 407 patients with AD-ACLF
enrolled in the CANONIC study, the incidence of
infections at admission and during a 28-day
follow-up period was 65%.68 The corresponding
incidence of infections in the 1,071 patients with
AD-No ACLF from the PREDICT study was 53%.25,54

Such extremely high incidences of infections
strongly suggest immunoparesis. In addition, many
of our patients had severe alcoholic hepatitis and
some received corticosteroids, which may induce
immunosuppression, contributing to their suscep-
tibility to bacterial infections.69,70

There are results suggesting mechanisms by
which immunoparesis may develop in patients
with AD. The blood levels of soluble molecules
known to induce immunoparesis, including the
anti-inflammatory cytokines IL-10 and IL-1RA, and
the tryptophan catabolite quinolinate are markedly
increased in patients with AD-No ACLF and even
more so in those with AD-ACLF.53,71 Moreover, in
patients with AD, subsets of circulating monocytes
exhibit features of immune incompetence. These
cells are present in patients with AD-No ACLF and
their number increases in patients with AD-
ACLF.72–75 Patients with severe alcoholic hepatitis
have reduced frequencies of myeloid mononuclear
1–16
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cells, including conventional and plasmacytoid
dendritic cells.76 Moreover, in these patients,
circulating CD14+ monocytes exhibit transcrip-
tional alterations characterised by downregulation
of major innate immune and metabolic pathways
and upregulation of important genes known to
induce immunoparesis .76 These changes in gene
expression were closely associated with corre-
sponding changes in chromatin accessibility at the
gene promoter level, suggesting that epigenetic
regulation plays a crucial role in the development
of monocyte immunoparesis in the context of se-
vere alcoholic hepatitis. In patients with decom-
pensated cirrhosis, the ability of circulating
neutrophils to migrate, recognise bacteria, and kill
bacteria (by engulfment, phagocytosis, degranula-
tion, rapid production of large amounts of ROS
[respiratory burst] and neutrophil extracellular
trap [NET] formation) is defective.77 A defect in
respiratory burst is a hallmark of neutrophils and
monocytes in severe alcoholic hepatitis .77 Of note,
alterations in T cells and natural killer cells have
been shown to be involved in immunoparesis and
the development of secondary infections in pa-
tients with protracted sepsis .67 Because little is
known about T cells and natural killer cells in the
context of AD, these cells should be investigated in
this context. In sum, simultaneous increases in
plasma levels of soluble proinflammatory signals,
immunosuppressive molecules, and immune-
incompetent myeloid cells, strongly suggest that
immunoparesis occurs early, as a compensatory
mechanism in AD, to limit the vigorous proin-
flammatory response seen in affected patients.
Based on these data, bacterial infections present at
admission, or that develop thereafter, can be
considered as likely complications of immunopa-
resis within the framework of the systemic
inflammation hypothesis.
Liver failure and acute kidney injury in AD
as seen by the systemic inflammation
hypothesis
The liver is a component of the innate immune
system. PAMPs and proinflammatory cytokines
induce sustained synthesis of positive acute-phase
proteins, including CRP, serum amyloid protein and
mannose-binding protein, which promotes path-
ogen clearance through complement activation
and phagocytosis .78 Another acute-phase protein
is hepcidin, whose role is to limit the availability of
iron, which is vital for invading microbes .79 The
liver is, therefore, a site of an extensive energy-
consuming anabolic metabolism during systemic
inflammation. To cope with the high cost of the
synthesis of positive acute-phase proteins, repres-
sion of the synthesis of negative acute-phase pro-
teins, such as albumin and transferrin, occurs.78 It
is plausible that the de novo synthesis of other
hepatic proteins (e.g. coagulation proteins)
Journal of Hepatology 2021 vol. - j
decreases in order to “spare” oxygen. Indeed, sys-
temic inflammation also inhibits hepatic biotrans-
formation,80 the enzymatic transformation of
lipophilic molecules (i.e. bilirubin) into water sol-
uble molecules, which is an important energy-
consuming process. The inhibition of hepatic
biotransformation in sepsis is induced by proin-
flammatory cytokines and results in hyper-
bilirubinemia and jaundice .80 Collectively, these
findings suggest that systemic inflammation in AD
elicits an energetic trade-off between the synthesis
of acute-phase proteins and other biosynthetic
processes, resulting in the progressive decline of
liver function and, ultimately, liver failure.

Patients with cirrhosis are prone to develop
acute kidney injury, which is traditionally thought
to be functional and related to renal hypoperfusion.
Acute kidney injury, which also commonly de-
velops in the general population of patients with
sepsis, is traditionally attributed to renal tubular
cell death (necrosis or apoptosis) secondary to
renal ischaemia. However, these traditional views
are challenged by recent findings. Acute kidney
injury associated with sepsis may develop in the
setting of normal or even increased total renal
perfusion, it commonly occurs in the absence of
significant histological signs of tubular necrosis or
apoptosis, and is characterised by heterogeneous
dysfunction in the microcirculation and down-
regulation of energy production by the tubular
epithelial cells.81–83 That said, in the only study
published to date assessing renal lesions in bi-
opsies from patients with decompensated
cirrhosis, Trawalé et al. observed fibrosis and
interstitial inflammation by mononuclear and
polymorphonuclear leukocytes as the most obvious
features .84 Inflammation was closely associated
with renal failure. Overexpression of Toll-like re-
ceptors by epithelial tubular cells was also reported
in another study on kidney biopsies.85 Therefore,
the following 4 major steps proposed to explain the
development of acute kidney injury during
sepsis86,87 may also be applied to acute kidney
injury in cirrhosis: i) Damage of the glycocalyx
covering the microvascular endothelium by PAMPs,
DAMPs and cytokines, exposing adhesion mole-
cules and facilitating the transmigration of acti-
vated leukocytes to the peritubular interstitium. ii)
Extension of inflammation to the epithelial tubular
cells, either via interaction of circulating PAMPs,
DAMPs and inflammatory cytokines with luminal
Toll-like receptors on epithelial tubular cells, or via
the extension of interstitial inflammation to the
tubules, or both. iii) Induction of tubular cell
hypometabolism by the inflammatory milieu
enabling nutrients to be reallocated to activated
immune cells. iv) Downregulation of tubular
function, leading to increased sodium release to the
macula densa, activation of the glomerulus-tubular
feedback mechanism, massive intrarenal release of
angiotensin II, vasoconstriction of the afferent
1–16



arteries and reduction of the glomerular filtration
rate.

This new pathophysiological concept is also
supported by the recent observation of Piano et al.
that the renal response to terlipressin and albumin
in patients with type-1 HRS is highly dependent on
the grade of ACLF .88 Resolution of HRS (normal-
isation of serum creatinine) was obtained in 60% of
patients with ACLF-1, in 42% of patients with ACLF-
2, and in only 29% of patients with ACLF-3. It ap-
pears as if both renal vasoconstriction secondary to
effective arterial hypovolemia and intrarenal
mechanisms secondary to renal inflammation
operate simultaneously in patients with HRS.
When systemic inflammation, and probably also
renal inflammation, is not extreme, as in patients
with ACLF-1, HRS likely responds to improvement
in systemic haemodynamics by plasma volume
expansion and vasoconstrictors. However, this is
not the case in patients with ACLF-3, in whom HRS
would be predominantly related to renal
inflammation.

Albumin treatment downregulates
systemic inflammation in decompensated
cirrhosis
Prevention of circulatory dysfunction after thera-
peutic paracentesis and prophylaxis and treatment
of HRS are well-recognised indications for albumin
treatment in cirrhosis .89 Moreover, long-term al-
bumin treatment has recently been shown to
reduce the number of episodes of AD and to in-
crease survival in patients with cirrhosis and AD-
No ACLF.90 A recent study in patients with AD
suggests that these beneficial effects are related to
downregulation of systemic inflammation since
both acute and long-term (14 weeks) albumin
administration at high dosages significantly
reduced the plasma levels of CRP and cytokines
[36].

Systemic inflammation causes multiorgan
dysfunction (AD No-ACLF) or failure (AD-ACLF)
through 3 different mechanisms: first, synergy
with organ-specific pathophysiological pathways;
second, immunopathology (direct tissue damage
by the inflammatory process); and third, reduction
of mitochondrial respiration (hypometabolism) in
the non-immune organs as a metabolic regulation
reallocating nutrients to the activated immune
system.

The molecular mechanisms underlying the
immunomodulatory properties of albumin were
also recently identified .91 Experiments in isolated
leukocytes from patients with AD-No ACLF and AD-
ACLF demonstrated that albumin abolishes cyto-
kine expression and release induced by bacterial
DNA rich in unmethylated CpG-DNA (Fig. 6A,B).
The immunomodulatory actions of albumin were
related to its internalisation into the cytosol of
leukocytes (Fig. 6C) and, specifically, to the
Journa
endosomal compartment (Fig. 6D), where CpG-
DNA binds Toll-like receptor 9, its cognate recep-
tor.92 These findings suggest that albumin modu-
lates responses to PAMPs through interaction with
intracellular Toll-like receptor signalling pathways.

Main proposals of the systemic
inflammation hypothesis
The proposals presented here are based on data
from clinical studies in patients with decom-
pensated cirrhosis, the authors’ clinical experience,
and concepts derived from studies of other dis-
eases associated with systemic inflammation and
multiorgan failure.
1. The term AD is used to define the acute devel-

opment of one or more of the major complica-
tions of cirrhosis. These complications are
traditionally thought to develop due to different
pathophysiological mechanisms. Acute wors-
ening of portal hypertension and/or liver failure
are considered the initial triggers of AD. In
contrast, the systemic inflammation hypothesis
proposes that AD is a specific clinical entity and
that all major complications, including organ
system failures, share a common pathophysio-
logical mechanism.

2. Systemic inflammation is the major driver of
progression from compensated to decom-
pensated cirrhosis, the recurrence of AD during
the clinical course of the disease, and the
development of single or multiple organ system
failures.

3. Once the first episode of AD develops, systemic
inflammation follows a chronic course, with
transient episodes of reactivation due to identi-
fiable proinflammatory precipitants, or to bursts
of translocation of viable intestinal bacteria or
bacterial products. The repeated episodes of AD
during the clinical course of decompensated
cirrhosis develop in the setting of these reac-
tivations of the immune system.

4. ACLF is the extreme expression of severe sys-
temic inflammation and is associated with a
very high risk of short-term mortality. When
systemic inflammation progresses rapidly, major
decompensations and organ failures coincide
leading to the AD-ACLF phenotype which,
depending on the intensity of the inflammatory
reaction, may evolve to ACLF-1, ACLF-2 or ACLF-
3. However, if the progression of systemic
inflammation is slower, as it is in patients with
pre-ACLF, the AD-No ACLF phenotype precedes
ACLF development by days or some weeks. Un-
fortunately, at present, patients with pre-ACLF
cannot be differentiated from patients with
UDC and SDC at hospital admission based on
standard clinical and laboratory parameters.
Once ACLF develops, a patient’s clinical course
critically depends on the evolution of systemic
inflammation.
l of Hepatology 2021 vol. - j 1–16 11
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5. The clinical course of patients with AD associ-
ated with moderate, non-progressive systemic
inflammation depends on the grade of portal
hypertension. Patients with severe portal hy-
pertension frequently develop an unstable clin-
ical course (UDC), requiring frequent hospital re-
Journal of Hepatology 2021 vol. - j
admission, and significant short- and long-term
mortality. In contrast, if portal hypertension is
moderate, systemic inflammation improves after
the episode of AD, patients develop a benign
stable course (SDC), and long-term mortality is
low.
1–16
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6. Re-compensation of decompensated cirrhosis
following successful aetiological treatment (i.e.
antiviral treatment or sustained alcohol with-
drawal) eliminates the risk of AD by improving
the diseased liver, which is the primary cause of
systemic inflammation.

7. Systemic inflammation perturbs organ function
or causes organ failure (AD-ACLF) through 3
different pathways:
� acting in synergy with organ-specific mecha-

nisms (hyperammonaemia in hepatic en-
cephalopathy, portal hypertension in variceal
haemorrhage and effective arterial hypo-
volemia in ascites).

� through immune pathology (damage of
endothelial glycocalyx, migration of inflam-
matory cells, and direct tissue damage by
cytotoxic mediators).

� through metabolic dysregulation. This is a
major mechanism of AD. Systemic inflamma-
tory responses are energetically expensive
processes requiring reallocation of nutrients
to the immune system. Therefore, immunity
competes with other maintenance pro-
grammes (including peripheral organ func-
tion homeostasis). The systemic inflammation
hypothesis postulates that immune activation
in AD causes an energetic trade-off with
mechanisms of organ function homeostasis,
resulting in peripheral organ hypometabolism
and organ dysfunction (AD-No ACLF) or organ
failure (AD-ACLF).

8. Systemic inflammation hypothesis and the
traditional organ-specific mechanisms of AD
(portal hypertension, effective arterial blood
volume, and hyperammonaemia) are not mutu-
ally exclusive, but rather complementary, since
they may act synergistically in the development
of ascites and HRS, encephalopathy and gastro-
intestinal haemorrhage. The systemic inflam-
mation hypothesis offers a rational explanation
for the development of multiorgan dysfunction/
failure that characterises decompensated
cirrhosis.
Final remarks
The systemic inflammation hypothesis shows bet-
ter agreement with the clinical features of
decompensated cirrhosis than the traditional
pathophysiological paradigm of the disease.
Moreover, the hypothesis is supported by the close
relationship between intensity and course of sys-
temic inflammation, and features of decom-
pensated cirrhosis, including severity of AD, clinical
course and patient survival. Finally, the identifica-
tion of an intense metabolic dysregulation, with
hypometabolism in peripheral organs, as observed
in patients with severe sepsis and other conditions
Journa
associated with systemic inflammation, offers a
rational explanation for the multiorgan dysfunc-
tion/failure associated with advanced cirrhosis. We
are aware that many aspects proposed here require
further investigation. In particular, investigations
should address the potential role of bacterial
translocation in the chronic systemic inflammation
of decompensated cirrhosis and the question of
whether acute increases in translocation can
explain the frequent AD episodes not associated
with identifiable precipitants. The main objective
of proposing the systemic inflammation hypothesis
for cirrhosis is to provide a new perspective for
research that will hopefully facilitate the develop-
ment of new pathophysiological concepts and
improved targeted treatments.
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