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Abstract. Laparoscopic scene segmentation is one of the key building
blocks required for developing advanced computer assisted interventions
and robotic automation. Scene segmentation approaches often rely on
encoder-decoder architectures that encode a representation of the in-
put to be decoded to semantic pixel labels. In this paper, we propose
to use the deep Xception model for the encoder and a simple yet ef-
fective decoder that relies on a feature aggregation module. Our feature
aggregation module constructs a mapping function that reuses and trans-
fers encoder features and combines information across all feature scales
to build a richer representation that keeps both high-level context and
low-level boundary information. We argue that this aggregation module
enables us to simplify the decoder and reduce the number of parameters
in the decoder. We have evaluated our approach on two datasets and our
experimental results show that our model outperforms state-of-the-art
models on the same experimental setup and significantly improves the
previous results, 98.44% vs 89.00%, on the EndoVis'15 dataset.
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1 Introduction

Laparoscopic techniques have become a paradigm in modern interventions due
to the numerous benefits over laparotomy such as shorter hospital stay, less
scars, reduced postsurgical pain and faster recovery. Visualising the anatomy in
high definition with bright illumination through the laparoscope also provides a
magnified, detailed view of the surgical site that can be seen in 3D. However,
minimally invasive surgery comes at the cost of restricting surgeon’s range of
motion and imposing altered hand-eye coordination [16]. As a result, signifi-
cant efforts in computer assisted interventions (CAI) have been directed at tools
to enhance surgeons’ capabilities through robotics, image guidance and surgical
data science [5, 10, 13, 14]. Laparoscopic scene segmentation is an essential build-
ing block in vision based CAI and is required to enable applications needing full
surgical scene understanding [6, 2].
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Fig. 1. Sample color and label images from LapSleeve and EndoVis'15 datasets, re-
spectively.

Scene segmentation is a fundamental vision problem that is now tackled us-
ing deep Convolutional Neural Networks (CNNs). Features driving segmentation
learned using deep CNN outperform handcrafted features like SIFT and HOG
[8]. Fully Convolutional Networks (FCNs) can construct segmentation models
that are learned in an end-to-end manner [12] using AlexNet [11] as the feature
encoder and relying on transposed convolutions as the decoder to predict pixel-
level labels. The FCN model can be extended by improving either the encoder
or the decoder to achieve better performance [3, 7]. U-Net is one of the popular
architectures adopting FCN for segmenting biomedical images [15]. The U-net
encoder consists of a sequence of convolutional blocks that map and downsample
the input by a factor of two and the decoder applies a sequence of similar blocks,
but upsamples the output at the end of each block. ToolNet [7] follows a similar
architecture, but simplifies the decoder to reduce the computation burden. The
decoder concatenates the output of each encoder blocks and computes a segmen-
tation loss on the output of each block to provide stage-wise supervision. While
powerful, these architectures are relatively shallow and have a limited feature
receptive field, which limits performance in complex surgical scenes.

In this paper, we introduce a novel decoder architecture that reuses the rich
representations extracted by the Xception model [4]. This builds deep, rich rep-
resentations while it reduces the number of parameters by using depthwise sep-
arable convolutions as shown by DeepLabv3+ [3], the top performer on Pascal
segmentation challenge at the moment [1]. Our decoder relies on a feature ag-
gregation module to incorporate information across all feature channels and
construct a mapping function that selects and combines the most informative
channels. This aggregation module allows reuse of the multi-scale features ex-
tracted at different Xception modules and construction of a representation that
preserves semantic information along with detailed object boundaries. Previous
works [3, 7, 12] have also explored the idea of reusing multi-scale features com-
puted by the encoder but only with a decoder that reuses features in-between
a series of convolutions and upsampling blocks. This introduces more parame-
ters to the decoder and hence requires more training data. Instead, our feature
aggregation decoder constructs a channel-wise mixing function and removes the
need for multi-layer convolutions. We evaluate our approach on two datasets:
EndoVis'15 and Laparoscopic Sleeve gastrectomy, hereafter called LapSleeve.
Fig. 1 shows sample images. Our experimental results show that the proposed
decoder outperforms the more complex segmentation network of [3] on the same
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Fig. 2. The core modules of our decoder: left, a block to resize the output of Xception
modules to the same size; right, feature aggregation module to learn a mapping function
for transferring and combining feature channels.

experimental setup. Our model also significantly advances the state of the art
results on EndoVis'15 dataset.

2 Method

Most recent scene segmentation approaches are based on FCN [3, 12]. These
approaches are following the encoder-decoder design where sequences of con-
volutional blocks are used as both encoder and decoder. We argue that deep
CNN encoders can encode both low-level and high-level information and a de-
coder can reuse this information without the need for deep multi-stage decoders.
We therefore propose to use a deep CNN encoder and propose a simple feature
aggregation encoder to perform scene segmentation, which are explained next.

2.1 Xception Encoder

The Xception network has been originally proposed for image classification and
has achieved promising results on ImageNet [4]. This network benefits from
depthwise separable convolutions to reduce the number parameters. Chollet in
[4] shows that separable convolutions also allow using the model parameters
more efficiently. The Xception architecture consists of entry, middle and exit
flows, which are built by using sequences of Xception modules with different
numbers of output channels, stride sizes and residual connection types. In this
paper, we use the modified aligned Xception model of [3], which was adapted for
image segmentation. The modifications are: (1) doubling the number modules in
the middle flow; (2) replacing max pooling operations with separable convolu-
tion with stride; (3) adding batch normalisation and ReLU activation after each
3×3 convolution; (4) extracting multi-resolution feature maps using atrous con-
volution. From the modified Xception module, we do not use atrous convolution.
We instead build a multi-scale feature map by reusing the features computed
by Xception modules at different scales. More specifically, we reuse the output
of all Xception modules in the entry flow and the last module in the middle as
well as exit flows. The entry flow modules have narrow receptive fields and are
therefore more likely to capture low-level features such as texture and bound-
ary information [15]. Meanwhile modules close to the output of the network
benefit from larger receptive fields, hence wider context, that can theoretically



4 A. Kadkhodamohammadi et al.

enable constructing high-level representations for discriminating semantic cate-
gories [3]. We use our feature aggregation module to predict image pixel labels
by assembling this low and high-level information.

2.2 Feature Aggregation Decoder

Our decoder utilises two modules to map representations into image pixel labels,
shown in Fig. 2. We use the resize module at the output of the selected Xception
modules for first resizing all the feature channels to be 1/16 of the input size and
for fixing the number of output channels to 256. Bilinear interpolation is used
to scale feature channels. The second module is the feature aggregation module.
This module is designed to first capture global information and second construct
a mapping function across all scales.

We aggregate information per channel by using global average pooling as a
way of summarising global image information captured by each feature channel.
We use these concise channel representations to learn a function for mapping
information across channels. A similar idea has also been explored in [9] to
model interdependency between channels inside a module. However, we argue
that this operation can be used to learn dependency among features coming
from different modules and recalibrate them to build a better representation. In
our case, the benefit is not only aggregating information across scales, but also
reducing the number of parameters and the computation burden at the decoder
by effectively reusing extracted features. More formally, we can define the output
of global average pooling as X and write the aggregation function as:

f(X) = σ(ρ(X ∗W1 + β1) ∗W2 + β2), (1)

where σ is the standard logistic sigmoid function, ρ is the ReLU function, Wi

and βi are representing weight and bias vectors, respectively. This allows us to
learn a nonlinear function, which incorporates channel-wise dependencies and
relationships. This function can therefore put more emphases on some channels
and learn a mapping function to calibrate feature channels. As function param-
eters are learned by optimising a segmentation loss, it learns to assemble the
multi-scale features extracted at different parts of the encoder, which enables
combining context and boundaries information. Finally, we apply a 1× 1 convo-
lution layer to the output of the feature aggregation module to refine and reduce
the number of feature channels to 256. Our experiments show that this extra
layer makes the training easier.

3 Experimental Results and Discussions

We implemented our approach using TensorFlow and perform all experiments on
a Linux machine equipped with two NVIDIA GTX 1080 Ti GPUs. We optimise
our networks using stochastic gradient decent. We use poly policy as learning
rate scheduler [3] with the start learning rate of 0.0005 and finetune batch nor-
malisation parameters. For the Xception backbone, we initialise the weight from
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[2] DeepLabv3+ [3] Feature Aggregation Decoder

Metric DSC DSC mean DSC mean IOU DSC mean DSC mean IOU

OP1 - 98.41 95.15 91.02 98.83 95.85 92.22
OP2 - 98.36 94.89 90.58 98.01 95.03 90.78
OP3 - 98.42 95.22 91.15 98.76 96.08 92.63
OP4 - 98.18 94.41 90.01 98.31 95.2 91.09
OP5-OP6 - 98.0 94.66 90.17 98.3 94.73 90.32

Average 89.00 98.27 94.87 90.59 98.44 95.38 91.41
Table 1. EndoVis'15 results. The evaluation results are presented as per the splits
provided with the dataset.

a model trained on PASCAL VOC 2012 segmentation benchmark. Our resize
module always scales the images to be 1/16 of the original image size.

For evaluation of our approach, we rely on two datasets: EndoVis'15 segmen-
tation challenge and a laparoscopic sleeve gastrectomy dataset (LapSleeve). We
use the EndoVis'15 rigid instrument dataset [2]. This dataset is generated from
six laparoscopic colorectal surgeries. From each surgery, 50 frames are annotated.
The train set includes the first 40 frames from OP1 to OP4 and the rest of the
frames constructs the test set. A sample frame is shown in Fig. 1.

The LapSleeve dataset is generated from recordings of five laparoscopic sleeve
gastrectomy procedures. We have randomly selected 600 to 900 frames from each
video during the stomach dissection phase. In total, we have chosen 3600 frames.
All these frames are annotated to provide full pixel-level segmentation masks.
The dataset contains 14 class labels, namely stapler tip, stapler handle, sta-
pler trigger, atraumatic grasper handle, atraumatic grasper tip, liver retractor,
ligasure tip, ligasure handle, marylands tip, marylands handle, bandage, liver,
stomach and background. We used all 750 frames from one of the videos as the
test set and the rest as the training set.

We assessed the performance of our model by computing pixel intersection
over union averaged across all classes (mean IOU). In case of EndoVis'15, we
also compute the Dice Similarity Coefficient (DSC) as in [2], which is computed
among prediction and ground-truth. As this is biased towards classes with high
number of instances, we report average DSC across all classes (mean DSC).

EndoVis'15. We evaluate our model on the EndoVis'15 dataset following the
experimental setup suggested in [2]. In other words, we follow a leave-one-
surgery-out fashion, where frames from the test surgery are not used during
training. We thus train five different models to evaluate on the different subsets
provided in the test set. Table 1 presents the evaluation results in comparison to
results of two other methods. Bodenstedt et al. [2] summarised the performance
of the approaches participated in the EndoVis'15 challenge on instrument seg-
mentation and tracking challenge. They obtained the best results by merging
prediction results from several approaches using the STAPLE algorithm. In [2],
the DSC metric is used to evaluate the performance of models in discriminating
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DeepLabv3+ FAD FAD[-1CNN] FAD[+1CNN] FAD[-Add] FAD[1/8]

mean IOU 42.76 47.81 45.74 46.88 46.16 41.54

Table 2. LapSleeve results. The mean IOU metric is used to compare the performance
of our Feature Aggregation Decoder (FAD) with DeepLabv3+ on the same experimen-
tal. Different variants of our FAD are also evaluated. See the text for explanation.

.

tools vs background3. As the DSC is however sensitive to the number of in-
stances per class and the dataset is extremely unbalanced, where ∼ 70% − 90%
is the background class, we report mean DSC and also mean IOU that tends
to penalise more wrong detections. In addition, we have reported the results of
finetuned DeepLabv3+ initialised from a model trained on PASCAL VOC 2012.
Our feature aggregation decoder preforms similarly to the DeepLabv3+, but al-
ways better, on the same experimental setup. This indicates that our decoder
is capable of effectively aggregating information across different scales. Further-
more, our model achieves the DSC of 98.44%, which significantly outperforms
the best model in [2].

Laparoscopic Sleeve. We use LapSleeve to train and evaluate our feature
aggregation decoder and DeepLabv3+. All weights are initialised from models
trained on PASCAL VOC 2012. The evaluation results on the LapSleeve dataset
are presented in Table 2. Because of the higher complexity of LapSleeve that in-
cludes more classes and body organ segmentation classes, the performance of
both models has dropped on this dataset compared to EndoVis'15 results. How-
ever, our model improves the performance by 5% over DeepLabv3+ on the same
experimental setup. While DeepLabv3+ performs slightly better in segmenting
body organs (80.01 vs 79.83), we found that our model is better in discriminating
tool tips and tool handles. We should note that a handle and a tip of tool are
in the same semantic group and only low-level edge information can help to dis-
tinguish these classes. Even though, given enough training data one can expect
to retrieve this information from the presentation built at the end of encoder,
this information is often better captured at shallower layers of the encoder. Our
higher precision in discriminating tool tips from handles underlines the benefits
of our aggregation decoder in reusing multi-scale features across the encoder as
opposed to DeepLabv3+, which tries to obtain all this information at the end of
the encoder.

Fig. 3 shows two sample frames along with corresponding labels and predic-
tions. Our model is better in distinguishing grasper shaft from tip. The sample
frame in the first row shows an example, where our model has successfully used
low-level information to detect the stapler trigger. We have also used this dataset
to evaluate different parameters of our model presented in Table 2. The perfor-

3 Even though this dataset has been annotated for shaft, manipulator and background
classes, the author of [2] confirms that shaft and manipulator are merged. We also
merge these classes during our experiments
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Fig. 3. Qualitative results: input image, label, DeepLabv3+ and our model. The pre-
dicted pixel-wise semantic labels are color coded.

mance of our model degrades dramatically when the resize module scales feature
channels to 1/8 of the original image (FAD[1/8]). We believe that it is due to
noise introduced by upsampling deep feature representations at the middle and
the exit flows of Xception. Excluding the residual connection (FAD[-ADD]) also
decreases the performance, which agrees with the findings in [9]. We remove
(FAD[-1CNN]) and add (FAD[+1CNN]) a convolution layer after the feature
aggregation module. The performance drops in both cases. Removing the convo-
lution layer degrades the performance more, indicating that this layer is needed
for reducing the number of channels in the representation built by the aggrega-
tion module and for converging to a better model.

4 Conclusions

In this paper, we proposed a simple yet effective decoder to perform laparoscopic
scene segmentation. We use the modified aligned Xception model as our encoder.
Our decoder relies on an aggregation module to reuse and calibrate represen-
tations extracted by the encoder at different scales. This aggregation module
allows us to select the most informative feature channels and reuse them effec-
tively for predicting pixel-level semantic labels. Our experiments on two different
datasets highlights the effectiveness of our decoder. Our model significantly ad-
vances the state-of-the-art results on EndoVis'15 and achieves 98.44% DSC. We
believe that the forward nature of our decoder enables systematic study of fea-
tures at different modules that would boost the explainablility of our model and
it would be interesting to look at this aspect in future work.
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