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Abstract

Precisely measuring the large-scale structure of the universe is key to learning about fundamental

physics. This thesis focuses on two of the most pressing problems in fundamental physics; massive

neutrinos and dark energy, and explores what can be learnt from precise measurements of the

large-scale structure of the universe.

First, I examine the precision required for large-scale structure measurements to determine the

neutrino hierarchy when combined with current particle physics results. The neutrino hierarchy

refers to the ordering of the neutrino masses, and is a key question in neutrino physics. Particle

physics and cosmology provide complementary information about neutrinos so a joint analysis is

highly desirable. However, the method of incorporating prior knowledge about neutrinos into the

analysis can strongly influence any results. I therefore developed a prior which is agnostic to the

hierarchy by design, and used it to set a conclusive target precision for upcoming cosmological

experiments.

Second, I forecast whether including weak lensing magnification in future large-scale structure

analyses can improve the constraints on dark energy and dark matter. Weak gravitational lensing is

one of the key probes in forthcoming galaxy surveys, such as the Vera Rubin Observatory. Usually,

the signal is detected by measuring distortions to the shapes of millions of galaxies - weak lensing

shear. However, it can also be detected by measuring fluctuations in the number density of galaxies

across the sky - weak lensing magnification. Weak lensing magnification only requires a count

of galaxies to be made, as opposed to a measurement of their shape so is therefore traceable

even for the very faint, small, and distant galaxies. In this thesis, I determined whether including

weak lensing magnification in upcoming deep large-scale structure analyses improves the final

cosmological constraints.
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Impact Statement

This thesis focusses on the precision of upcoming large-scale galaxy surveys. These surveys will

provide vast astronomical datasets, to better understand the fundamental properties of our Universe.

Our work sets a target precision for these surveys to determine the neutrino hierarchy, when

combined with current particle physics measurements. Massive neutrinos are evidence of physics

beyond the Standard Model of particle physics, and the ordering of the three neutrino masses – the

neutrino hierarchy – is a key unanswered question. Since upcoming galaxy surveys will have huge

statistical power their results will be limited by systematic effects. Our target precision therefore

sets a clear aim for systematics control, which can guide the analysis choices.

Our work also explores the impact of a particular systematic effect, called weak lensing mag-

nification, on upcoming weak lensing analyses. Weak lensing is a technique, which probes the

distribution of both light and dark matter in the Universe, and is a key probe for future large-scale

galaxy surveys. Weak lensing magnification has previously not been included in standard weak

lensing analyses, but due to improvements in statistical precision will need to be included in future

studies to avoid biasing the results. We confirmed this bias, and also found that including weak

lensing magnification can increase the precision of the final cosmological constraints. This work will

therefore inform the core analysis of future surveys, and help to improve the accuracy and precision

of the final results.

The work in this thesis has resulted in one peer-reviewed publication (chapter 2), which has

already been cited by several other independent studies, and a second near submission (chapter 3).

The PhD candidate has given over 10 professional presentations, including invited talks, at a variety

of international institutions. Additionally, the work in this thesis involved the collaboration of both

cosmologists and particle physicists, thereby helping to build greater interdisciplinary collaboration.
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1
Introduction

1.1 The Cosmological Model

In the last 30 years cosmology has transformed from a largely speculative data-starved science into

a field able to precisely test theoretical predictions with observations. This is due to the advent

of large datasets from cosmic microwave background satellites, such as the Cosmic Background

Explorer (COBE) (Mather et al., 1990) and Wilkinson Microwave Anisotropy Probe (WMAP)

(Bennett et al., 2013), large galaxy surveys such as the 2dF Galaxy Redshift Survey (Colless et al.,

2001), observations of supernovae (Perlmutter et al., 1999; Riess et al., 1998) and many others.

These observations are able to test the fundamental predictions of the cosmological model and

cosmology is now a data intensive science, focussed on how to extract information from these large

and complex datasets.

The current cosmological model is underpinned by two aspects; the cosmological principle

and Einstein’s theory of General Relativity. The cosmological principle states the Universe is

homogeneous and isotropic, i.e., the Universe looks the same from every observing position and in

every direction. Einstein’s theory of General Relativity connects the matter distribution within the

universe to the structure of spacetime. These fundamentals can explain the large scale geometry

of the Universe, and once coupled with the knowledge that the Universe is expanding, enable an

understanding of the history of the Universe. However, clearly the Universe is not perfectly smooth.

In order to explain the development of structure in the Universe, such as galaxies, we require

deviations from this uniformity.

In this introduction we present the key results of General Relativity, describe the contents of the

Universe, the expansion history of the Universe in relation to these contents and the development

of structure. Next we introduce the technique of weak lensing, the focus of chapter 3, and finally

13



include a discussion of neutrinos in particle physics and cosmology, the focus of chapter 2. The key

references for much of this introduction are the textbooks Dodelson (2003), Mo et al. (2010) and

Schneider (2015); and the lecture notes from both the Imperial College cosmology course, and the

two University College London cosmology courses.

1.1.1 General Relativity

Einstein’s theory of General Relativity links gravity to the underlying geometry of spacetime. This

geometry is summarized by a metric, which gives the physical distance between two points in a

coordinate system. For a homogeneous and isotropic universe the metric is the Friedmann-LeMâıtre-

Robertson-Walker metric (FLRW):

ds2 = c2dt2 − a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
, (1.1)

where dΩ2 = dθ2 + sin2 θdφ2. ds is the infinitesimal line element of spacetime, t is the time

coordinate and r, θ and φ are the spatial coordinates. The geometry of spacetime is therefore

specified by the scale factor a(t), which describes how the length scale of the universe changes with

time, and the curvature κ. If κ < 0 the universe has an open geometry, κ = 0 the universe has a flat

geometry and κ > 0 the universe has a closed geometry.

The geometry of the universe, the metric, is related to the matter and energy in the universe by

the Einstein equation:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν + Λgµν , (1.2)

where Gµν is the Einstein tensor, Rµν is the Ricci tensor, which depends on the metric gµν , and

R = gµνRµν is the Ricci scalar. The infinitesimal line element ds (eq. 1.1) is related to the metric gµν

as ds2 = gµνdx
µdxν . Λ is the cosmological constant, G is Newton’s constant and Tµν is the energy

momentum tensor, which summarises the energy content of the universe. Λ was first introduced by

Einstein to provide a solution for a static universe, but today accounts for the accelerated expansion

of our Universe due to dark energy (see section 1.1.2).

If we employ the cosmological principle once again to give the energy momentum tensor the

form of a perfect fluid Tµν = diag[ρ, P, P, P ], where ρ is the energy density and P is the pressure of

14



the fluid, we can insert the FLRW metric into the Einstein equation and obtain

(
ȧ

a

)2

=
8πG

3
ρ− κc2

a2
+

Λc2

3
, (1.3)

ä

a
= −4πG

3

(
ρ+

3P

c2

)
+

Λc2

3
. (1.4)

These are the Friedmann equations and they specify the rate of expansion or contraction of the

universe, ȧ/a, and whether this evolution is accelerating or decelerating, ä/a. We discuss some

details of these equations in the sections below.

Hubble Parameter

The expansion rate is often referred to as the Hubble parameter,

H(t) =
ȧ

a
, (1.5)

and the expansion rate today, at time t0, is the Hubble constant H0. It is often presented in terms of

h where,

H0 = 100h km s−1Mpc−1. (1.6)

The Hubble constant was actually first introduced by Georges Lemâıtre in 1927 (Lemâıtre, 1927),

and then by Edwin Hubble in 1929 (Hubble, 1929). They observed that galaxies move away from

the Earth with a velocity proportional to their distance,

v = H0d , (1.7)

where v is the recession velocity and d is the distance. This observation that H0 > 0 determined the

Universe was expanding, and began modern cosmology.

Redshift

Hubble and Lemâıtre measured the recession velocities of galaxies by measuring the wavelength of

the photons emitted by these galaxies. In an expanding universe the wavelength of photons emitted

from a galaxy is stretched along with the expansion, λ ∝ a, so the observed wavelength is greater
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than the emitted wavelength. This stretching is often defined in terms of redshift z,

1 + z =
λobs

λem
=
a(tobs)

a(tem)
. (1.8)

If the emitted wavelength is known, for example the photon comes from a known spectral line,

then the redshift provides a direct connection to the scale factor at the time of emission a(tem). This

is because the scale factor today is taken to be 1 by convention, a(t0) = 1, so the scale factor at

observation a(tobs) is usually set to 1. Measuring redshifts is therefore a vital tool for studying the

expansion of the Universe.

Density Parameters

The first Friedmann equation (eq. 1.3) connects the rate of the expansion of the universe to the

energy density, curvature and cosmological constant. The density parameter is defined as,

Ω =
8πG

3H2
ρ =

ρ

ρcrit
. (1.9)

The relevance of the critical density ρcrit can be seen by setting Λ = 0. In this case,

Ω− 1 =
κc2

H2a2
, (1.10)

so if the energy density of the universe ρ is equal to the critical density ρcrit the universe is flat, if it

is greater the universe is closed and if it is smaller the universe is open.

This density parameter formalism can be extended to the curvature, Ωκ = −κc2/H2a2, and

cosmological constant, ΩΛ = Λc2/3H2, to convert eq. 1.3 to,

Ω + Ωκ + ΩΛ = 1 . (1.11)

Density Evolution

Combining the two Friedmann equations (eqs. 1.3 and 1.4) gives the continuity equation,

dρ

dt
+ 3H

(
ρ+

P

c2

)
= 0 . (1.12)
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Integrating this equation, and including an equation of state connecting the energy density and

pressure of the form P = wρ, gives the solution,

ρ ∝ a−3(1+w) . (1.13)

This relates the energy density of the universe to the expansion. Different fluids have different

values of w; for non-relativistic matter (where the average kinetic energy of a particle is small

compared to its rest mass) w=0, for radiation/relativistic matter w=1/3, and for a cosmological

constant w=-1. As the universe expands the radiation density decreases more rapidly than the

matter density, as in addition to the dilution the wavelength is stretched, and the cosmological

constant density does not change. The first Friedmann equation can then be written in terms of the

density parameters as,

(
H

H0

)2

= Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + Ωκ,0(1 + z)2 + ΩΛ , (1.14)

where the subscript 0 indicates the value of the associated energy density today and the scale factor

a has been converted to redshift z using equation 1.8.

We can also relate the evolution of the scale factor directly to the type of fluid dominating the

energy density. If we assume that the universe only contains one fluid and substitute the density

solution in eq. 1.13 into the first Friedmann equation we find,

a ∝


t

2
3(1+w) , if w 6= −1

eHt, if w = −1

. (1.15)

In a radiation-dominated universe the scale factor grows as t1/2, in a matter-dominated universe

the scale factor grows as t2/3 and in a cosmological-constant-dominated universe the scale factor

grows exponentially.

1.1.2 The Contents of the Universe

The equations above show that the evolution of the Universe is governed by the energy density of

its main components. Currently, the most popular model of cosmology is the Λ-Cold Dark Matter

(ΛCDM) model with the additional assumption that the Universe is flat. It contains the following

components:
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Radiation

Radiation refers to relativistic components, and is mostly comprised of photons from the cosmic

microwave background (CMB). The only other contribution is from a background of neutrinos (see

section 1.4). At the present time radiation comprises less than 1% of the energy density of the

Universe.

Baryons

The term baryons, in cosmology, refers to all visible matter including protons, neutrons and electrons

(even though electrons are not baryons). Baryons make up approximately 5% of the energy density

of the current Universe, and form all the stars and galaxies that astronomers observe.

Dark Matter

Dark matter forms the majority of the non-relativistic matter content in the Universe, and approx-

imately 25% of the total energy density. It does not interact electromagnetically (dark) and its

existence has only been inferred indirectly through gravitational effects. The evidence for dark

matter comes from: the velocity dispersion of galaxies in clusters (Zwicky, 1933), the rotation

curves of galaxies (Rubin and Ford, 1970), gravitational lensing (Clowe et al., 2006) and the

CMB (Aghanim et al., 2018). The nature of dark matter remains unknown and is an active area

of research. One proposed candidate is the Weakly Interacting Massive Particle (WIMP), which

interacts with ordinary matter through an interaction that is weaker than the weak interaction, and

through gravity. Three different avenues are being pursued to detect WIMPS; direct, indirect and

accelerator searches. Direct searches focus on spotting the rare occasions when WIMP particles

interact with ordinary matter in lab-based experiments; indirect searches look for signatures of

WIMP annihilation in high density regions in the Universe; and accelerators attempt to reach

sufficient energies to produce WIMPS (Tanabashi et al., 2018). Currently there is no definitive

evidence for the existence of a WIMP particle. Another possible candidate is the axion, a very

light particle, which a direct detection experiment XENON1T may recently have found a hint of

(Aprile et al., 2020). XENON1T observed an excess of events at low energies, however radiological

backgrounds cannot be completely excluded at this point.
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Dark Energy

The remaining approximately 70% of the Universe comprises of Dark Energy. Dark energy is

responsible for the accelerating expansion of our current Universe, which was first discovered

through observations of supernovae in 1998 (Perlmutter et al., 1999; Riess et al., 1998) and won

the 2011 Nobel prize. Little is known about the nature of dark energy except that its effects are

similar to those of a cosmological constant; dark energy replaces the cosmological constant and

reinterprets the term as a contribution to the energy-momentum tensor with w = −1. Whether dark

energy evolves with time, e.g. w(a) = w0 + [1− a(t)]wa, and can be explained by a new theory of

modified gravity are active areas of research in cosmology.

1.1.3 Expansion History

The Big Bang theory rests on three key pieces of observational evidence: the Hubble diagram

showing expansion, the abundance of elements in the Universe which agree with Big Bang Nuc-

leosynthesis (BBN), and the relic radiation left over from approximately 380,000 years after the

Big Bang – the cosmic microwave background (CMB). Since the Universe is currently expanding it

must have been hotter and denser in the past. If we extrapolate all the way back in time, this would

result in a singularity in which all of the laws of Physics break down.

After this time, approximately 10−35 seconds after the Big Bang, it is postulated that the Universe

went through a period of exponential expansion called inflation. Inflation explains both the

homogeneity of our current Universe on large scales and the origin of structure in our Universe, but

is awaiting confirmation. In order to obtain structure in the late-time Universe (stars and galaxies)

there must be perturbations from the smooth background evolution described above. Inflation is

thought to provide the seeds of structure by turning quantum fluctuations in the early Universe into

density perturbations on cosmological scales.

The energy density of the early Universe is dominated by radiation and hence a ∝ t1/2. At

this point the Universe consists of a high energy plasma, a ‘soup’ of relativistic particles which

are constantly being created and destroyed. As the Universe expands the temperature drops and

particles begin to fall out of thermal equilibrium with the plasma – they decouple. Neutrinos

decouple roughly 1 second after the Big Bang forming the cosmic neutrino background (see section

1.4). Big Bang nucleosynthesis occurred approximately 3 minutes after the Big Bang and saw the

formation of light elements such as deuterium, helium and lithium.

Since the density of radiation falls as a−4 and the density of matter falls as a−3 roughly 40,000

19



years after the Big Bang (at z=3000) the Universe becomes matter dominated. The point of

matter-radiation equality is significant as perturbations grow at different rates in the two eras. This

impacts the development of the large-scale structure of the Universe and the CMB anisotropies. In

the matter dominated era a ∝ t2/3.

During the matter-dominated era, 380,000 years after the Big Bang (at z=1100) recombination

takes place. Recombination refers to when the temperature of the Universe is low enough for

electrons and protons to form hydrogen. At this point photons decouple from matter as they are no

longer repeatedly scattered off electrons, and can free stream. These photons form the CMB and

carry an imprint of the small density fluctuations in the early Universe.

After recombination a period called the dark ages began. During this time the dark matter

perturbations continued to grow, and to form the structure we see in our current Universe. This

structure is referred to as the cosmic web, and consists of clusters of gravitationally-bound dark

matter called halos connected together by filaments. Before recombination, baryons were prevented

from falling into the dark matter potential wells by radiation pressure, but after recombination they

begin to cluster. As the perturbations continued to grow they eventually became non-linear, and the

pressure and temperature became great enough to form the first stars and galaxies. This epoch is

called reionisation, as the neutral hydrogen formed during recombination is reionised, and while

little is known about exactly when reionisation occurred it is an active area of research. These first

stars and galaxies continued to evolve into larger galaxies and galaxy clusters. The distribution of

galaxies that we see today is a key observable of large-scale structure cosmology. These galaxies are

particularly useful as they trace the underlying distribution of dark matter.

Recently the Universe ceased to be matter dominated and became dominated by dark energy,

or the cosmological constant. This began a period of exponential expansion (a ∝ eHt), which

continues to this day.

1.2 Structure

If the Universe only followed the background evolution detailed by General Relativity the structure

in the Universe, which we see today, would not exist. Clearly there must be perturbations from

this background. The key quantity used to describe these perturbations is the density contrast or
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fractional density perturbation,

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
(1.16)

where ρ̄ is the mean density of the Universe.

In this section we present the formalism for how the initial fractional density perturbations

evolve into structure, particularly in relation to the dominant component of the Universe at the

time. We then summarize the key statistics used to describe these perturbations, and detail two

observational pillars of cosmology, the matter power spectrum and the CMB.

1.2.1 Perturbation Theory

The evolution of the small initial density perturbations into structure is fully described by relativistic

perturbation theory (Dodelson, 2003; Weinberg, 2008). However, the evolution of cold dark matter

is well approximated by Newtonian perturbation theory. Since the structure formed by dark matter

is the focus of this thesis, and of cosmological surveys in general, Newtonian perturbation theory is

presented here.

A smooth matter-dominated universe can be represented as a perfect fluid with energy/mass

density ρ, pressure P (� ρ), velocity distribution u (� c) and gravitational potential Φ. The

equations of motion of the fluid are: the continuity equation,

∂ρ

∂t

∣∣∣
r

+ ∇r · (ρu) = 0 ; (1.17)

Euler’s equation,

∂u

∂t

∣∣∣
r

+ u ·∇ru = −1

ρ
∇rP −∇rΦ ; (1.18)

and the Poisson equation,

∇2
rΦ = 4πGρ . (1.19)

The continuity equation describes the conservation of energy/mass, the Euler equation describes

the motion of the fluid with respect to gravity and pressure, and the Poisson equation connects the

gravitational potential to the energy density of the fluid.

Since the Universe is expanding it is convenient to convert these equations from physical
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coordinates r into comoving spatial coordinates x. Comoving coordinates expand with the universe

and therefore remain constant for a comoving observer, whereas physical coordinates are scaled by

the scale factor a, r = a(t)x. The derivatives are transformed as,

(
∂

∂t

)
r

=

(
∂

∂t

)
x

+

(
∂x

∂t

)
r

·∇x

=

(
∂

∂t

)
x

−H(t)x ·∇x ,

(1.20)

where in the second line we have used x = r/a(t) and H(t) = ȧ/a; and

∇r = a−1∇x . (1.21)

We can now introduce perturbations around the background evolution,

ρ→ ρ̄(t) + δρ ≡ ρ̄(t)(1 + δ(x, t))

P → P̄ (t) + δP (x, t)

u→ a(t)H(t)x+ vp(x, t)

Φ→ Φ̄(x, t) + φ(x, t) .

(1.22)

Here, ρ̄ is the mean density and δρ is a small perturbation to the mean density, P̄ is the mean

pressure and δP is a small perturbation to the mean pressure, vp is the peculiar velocity which

describes deviations from the general expansion velocity, and Φ̄ is the mean gravitational potential

and φ is a small perturbation to the mean gravitational potential.

Inserting these perturbations into the equations of motion above and keeping only the linear

terms leaves,

δ̇ +
1

a
∇ · vp = 0

v̇p +Hvp = − 1

aρ̄
∇δP − 1

a
∇φ

∇2φ = 4πGa2ρ̄δ ,

(1.23)

where the derivatives are with respect to the comoving coordinates.

Taking the time derivative of the perturbed continuity equation and combining it with the
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perturbed Euler and Poisson equations gives,

δ̈ + 2Hδ̇ − c2s
a2

∇2δ − 4πGρ̄δ = 0 , (1.24)

where cs =
√
∂P/∂ρ is the sound speed. This equation describes the evolution of density perturba-

tions δ in an expanding universe. It can be simplified by converting to Fourier space,

δ̈ + 2Hδ̇ +

(
c2sk

2

a2
− 4πGρ̄

)
δ = 0 , (1.25)

where δ is a function of wavenumber k instead of comoving coordinate x. We now examine the

behaviour of density perturbations in the different phases of the Universe; radiation dominated,

matter dominated and dark energy dominated.

Radiation-Dominated Universe

During radiation domination the Universe cannot be described by a single fluid, which has been

assumed in this analysis. However, using the information from relativistic perturbation theory: that

the density contrast of radiation is negligible (radiation provides a smooth background1); and that

during radiation domination ρr � ρm and a ∝ t1/2 equation 1.25 reduces to,

δ̈c +
1

t
δ̇c = 0 , (1.26)

where the subscript c indicates this equation applies specifically to cold dark matter. The solutions

are δc = const and δc ∝ ln t, so dark matter perturbations do not grow or only grow very slowly

during radiation domination.

Matter-Dominated Universe

When the Universe is matter dominated (after matter-radiation equality but before dark energy

domination) it can be described by an Einstein de-Sitter universe where Ωm = 1 and ΩΛ = 0. In a

matter dominated universe a ∝ t2/3 and equation 1.25 reduces to,

δ̈m +
4

3t
δ̇m −

2

3t2
δm = 0 , (1.27)

1This is true for scales smaller than the horizon (smaller than the visible Universe) after time averaging the baryonic
acoustic oscillations.
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where the suffix m emphasizes that this equation refers to matter perturbations (cold dark matter +

baryons), and we have taken c2s = 0. This equation has two solutions δm ∝ t−1 and δm ∝ t2/3 ∝ a.

In contrast, in a static universe ȧ = 0 and the δ̇ term in equation 1.25 disappears, resulting in an

exponentially growing solution. In an expanding universe perturbations grow with a power law

dependence, whereas in a static universe perturbations grow exponentially – expansion slows the

growth of matter perturbations.

Dark Energy Dominated Universe

At late times the Universe is dark energy dominated and a ∝ eHt. In this case equation 1.25 reduces

to,

δ̈m + 2Hδ̇m ≈ 0 , (1.28)

where the approximation becomes an equality as ΩΛ → 1. In this case the solutions are δm = const

and δm ∝ e−2Ht ∝ a−2, so dark energy suppresses the growth of structure.

Perturbations Larger than the Horizon

Until now we have been considering perturbations which are smaller than the visible Universe, but

very large perturbations evolve differently. A useful quantity in this context is the Hubble radius,

rH(t0) = c/H(t0). The Hubble radius defines a sphere around the observer at the present time,

beyond which objects are receding from the observer faster than the speed of light. The Hubble

radius can be defined as an apparent horizon, where perturbations larger than the horizon are not

observable and perturbations within the horizon are observable.

We can determine how perturbations larger than the horizon grow by considering two patches

of universe; one which is flat with density ρ, and one which is outside the apparent horizon of

the first and has curvature κ and density ρ1. If we define the patches as having the same Hubble

parameter we can equate the Friedmann equations as,

8πG

3
ρ =

8πG

3
ρ1 −

κc2

a2
, (1.29)

and rearrange to find,

ρ1 − ρ =
3

8πG

κc2

a2
, (1.30)
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dividing by ρ gives,

δ ∝ 1

a2ρ
. (1.31)

This classical result is confirmed by relativistic perturbation theory, but is gauge dependent (Dodel-

son, 2003; Weinberg, 2008). Perturbations to the metric can be expressed in multiple different

coordinate systems, or choices of gauge. This result is valid for the synchronous gauge. It tells us

that during radiation domination when ρ ∝ a−4 perturbations on scales larger than the horizon

grow as δ ∝ a2, and during matter domination when ρ ∝ a−3 they grow as δ ∝ a. In a matter

dominated universe perturbations within and outside of the horizon grow proportional to the scale

factor, whereas in a radiation dominated universe perturbations outside the horizon grow as a2 and

perturbations inside the horizon do not grow.

Non-linear Pertubations

The linear perturbation theory equations above only apply to small perturbations and break down

once δ ∼ 1. The formation of stars, galaxies and galaxy clusters are all highly non-linear and

there are only approximate solutions, such as the spherical collapse model (Mo et al., 2010). This

non-linear growth is therfore usually modelled using large numerical simulations (Schneider, 2015).

1.2.2 Density Statistics

To understand the structure in the Universe we need to be able to describe the statistics of the

density fluctuations. By definition the mean is zero,

〈δ(x, t)〉 = 0 , (1.32)

where angle-brackets denote the ensemble average for all x. Instead these density fluctuations are

described by their second moment, the variance,

〈δ(x, t)δ(y, t)〉 = ξ(x,y, t) = ξ(|x− y|, t) , (1.33)

where ξ denotes the correlation function. ξ can be written as a function of the separation between

positions x and y because the density fluctuations are statistically homogeneous and isotropic and

exist on a homogeneous and isotropic background. Another commonly used quantity is the Fourier
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transform of the correlation function – the power spectrum. If the Fourier transform of the density

contrast is,

δ̃(k, t) =

∫
d3x e−ik·xδ(x, t) , (1.34)

then the variance in Fourier space is given by,

〈δ̃(k)δ̃(k′)〉 = (2π3)δ(3)(k + k′)P (k) (1.35)

where δ(3) is the three-dimensional Dirac delta function and P (k) is the power spectrum. The power

spectrum describes the ‘clumpiness’ of the universe as a function of scale. The power spectrum is

particularly powerful, as for a Gaussian distribution of density fluctuations it completely describes

the matter density distribution.

1.2.3 Matter Power Spectrum

As mentioned previously, the initial tiny perturbations from the background universe come from

quantum fluctuations amplified by inflation. However, not only does inflation provide the origin of

these fluctuations, it provides a prediction for the power spectrum of these initial fluctuations,

P0(k) = Ask
ns−1 . (1.36)

P0 is the dimensionless primordial power spectrum, As is the amplitude of the primordial fluctu-

ations and ns is the scalar spectral index. ns depends on the properties of the scalar field driving

inflation. The particular case of ns = 1 is referred to as the Harrison-Zeldovich power spectrum.

The power spectrum observed by large galaxy surveys is the late-time matter power spectrum.

The late-time power spectrum can be connected to the primordial power spectrum as so,

P (k, t) = T 2(k)D2(t)P0(k) . (1.37)

D(t) is the growth factor and summarises how the initial perturbations grow with time. The

spatial and time dependencies can be separated because the Universe in homogeneous. T (k) is

the transfer function, which summarises how matter perturbations grow differently depending on

the dominant component of the universe and their size. In section 1.2.1 we approximated how

matter perturbations grow by assuming the Universe could be described by a single pressure-less
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Figure 1.1: Compliation of measurements of the linear matter power spectrum at z = 0, from

the CMB (Aghanim et al., 2018), galaxy clustering (Reid et al., 2010), the Lyman-alpha forest

(Palanque-Delabrouille et al., 2015) and weak lensing cosmic shear (Troxel et al., 2018). The level

of agreement with the model (black line) from a variety of cosmological probes shows the power of

the ΛCDM model. The dotted line shows the effect of non-linear clustering at z = 0. Figure from:

Akrami et al. (2018).

fluid. This helps to give intuition about how perturbations grow, but clearly the Universe has

multiple components. The Boltzmann equations describe how each of these components evolves

with time, and the Einstein-Boltzmann equations describe how the metric evolves with respect to

these components (Dodelson, 2003; Weinberg, 2008). The transfer function is therefore computed

by numerically solving the Einstein-Boltzmann equations.

Figure 1.1 shows the linear matter power spectrum at z = 0 predicted by the ΛCDM model

compared to various measurements from the CMB (Aghanim et al., 2018), galaxy clustering (Reid

et al., 2010), the Lyman-alpha forest (Palanque-Delabrouille et al., 2015) and weak lensing cosmic

shear (Troxel et al., 2018). The overlap of the measurements on vastly different scales with the

prediction illustrates the power of the ΛCDM model. The location of the turn-over is given by the

size of the horizon at matter-radiation equality keq. Perturbations with k < keq are larger than

the horizon at matter-radiation equality and only enter the horizon during matter domination.
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They have therefore grown as a2 during radiation domination and as a during matter domination.

Perturbations with k > keq are smaller than the horizon at matter-radiation equality and enter the

horizon during radiation domination. Initially they grow as a2, then their growth is ceased when

they enter the horizon, until they being to grow again as a during matter domination. The growth

of small scale perturbations is therefore suppressed compared to larger ones. The power spectrum

takes the form of the primordial power spectrum on large scales P ∝ kns where ns ≈ 1, and the

scaling is reduced on small scales.

The other key feature of the linear matter power spectrum are the wiggles present to the right

of the turnover in Fig, 1.1. Before recombination baryons and photons are tightly coupled. This

means that after matter-radiation equality the dark matter perturbations begin to grow but the

baryons continue to oscillate with the radiation. After recombination the baryons decouple from the

photons, but the oscillations freeze into the baryon distribution. These are referred to as baryonic

acoustic oscillations (BAO), as their scale is set by the sound speed in the baryon-photon plasma at

recombination, and they show up as wiggles in the Fourier space matter power spectrum.

Since dark matter is not directly observable the large-scale structure probes in Fig. 1.1 use

tracers of the dark matter distribution, such as galaxies. While baryon perturbations tend to mirror

the dark matter perturbations in the late-time Universe, the complex physics of galaxy formation

means that galaxies are not perfect tracers of the underlying dark matter distribution. Large-scale

structure probes that utilise galaxies as tracers are therefore really measuring the galaxy power

spectrum Pgg, not the matter power spectrum Pδδ. The galaxy power spectrum is often related to

the matter power spectrum using a multiplicative bias factor bg where

Pgg = b2gPδδ . (1.38)

This relation works well on linear scales but breaks down on small scales where the perturbations

become non-linear. The precision of large-scale surveys is reaching the point where this relation is

not sufficient, so alternative approaches are being explored. One particular approach often referred

to as the ‘halo model’ is discussed in section 3.3.2.

1.2.4 CMB

The CMB currently gives us the earliest picture of the inhomogeneous Universe. The photons in the

CMB last scattered off electrons approximately 380.000 years after the Big Bang and have since

travelled freely through space. The presence of this relic radiation provides key evidence that the
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Universe was once hotter and denser, and measurements of the CMB anisotropies established the

ΛCDM model of cosmology. The first measurements of the CMB found an almost perfect blackbody

spectrum with temperature 2.7 K, and showed that the early Universe was extremely smooth

(Mather et al., 1994; Smoot et al., 1992). It was only with higher precision measurements from

satellites such as WMAP (Bennett et al., 2013) and Planck (Aghanim et al., 2018), that the tiny

fluctuations in this temperature spectrum were observed.

Figure 1.2 shows a compilation of recent CMB angular power spectrum measurements from

satellite experiments such as WMAP and Planck, to ground-based experiments such as the Atacama

Cosmology Telescope (ACT) (Aiola et al., 2020) and the South Pole Telescope (SPT) (George et al.,

2015), which focus on small scales. The top panel shows the power spectrum of the temperature,

and E-mode and B-mode polarization signals; the middle panel the cross-correlation spectrum

between temperature and E-mode polarization; and the lower panel shows the CMB lensing power

spectrum. The ΛCDM prediction using the best-fit values from Planck is shown by the dashed grey

line (Aghanim et al., 2018). There is remarkable agreement between the theory and the data across

a wide range of scales.

Specifically, these observations are described by a spatially flat six parameter ΛCDM model,

and there is no compelling evidence for extending this model (Aghanim et al., 2018). The Planck

best fit parameters and their associated 1σ uncertainties are: the dark matter density Ωch
2 =

0.120± 0.001, the baryon density Ωbh
2 = 0.0224± 0.0001, the amplitude of primordial fluctuations

ln(1010As) = 3.044± 0.014, the scalar spectral index ns = 0.965± 0.004, the optical depth due to

Thomson scattering at the time of reionisation2 τ = 0.054± 0.007 and the angular size of the sound

horizon3 at recombination 100θ∗ = 1.0411± 0.0003. Assuming these early universe parameters it

is possible to infer the late-time parameters: the Hubble constant H0 = (67.4± 0.5)km s−1Mpc−1;

the matter density parameter Ωm = 0.315± 0.007; and the amplitude of matter fluctuations in 8h−1

Mpc spheres σ8 = 0.811± 0.006 4.

There is currently some tension between the late-time measurements inferred by Planck and the

values measured directly by large-scale structure experiments. Observations of Type 1a supernovae,

where the distances are calibrated using Cepheid variable stars, findH0 = 74.03±1.42km s−1Mpc−1,

a 4.4σ discrepancy with Planck (Riess et al., 2019). Weak Lensing surveys find a small tension with

σ8 and Ωm (see section 1.3.2). These tensions could be caused by new physics, or by systematic

2A larger value of τ approximately corresponds with an earlier onset of star and galaxy formation, and τ = 0 implies no
reionisation.

3The sound horizon is the distance sound could travel from t=0 until recombination when the CMB is formed.
4The choice of 8h−1 Mpc spheres for σ8 is a convention from early measurements of galaxy power spectra, where the

amplitude was found to be roughly one on scales of 8h−1 Mpc.
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Figure 1.2: Compilation of recent CMB angular power spectrum measurements. The upper panel

shows the temperature and E and B mode polarization power spectra; the middle panel shows the

cross correlation spectrum between temperature and E mode polarization; and the lower panel

shows the lensing deflection power spectrum. Figure from: Akrami et al. (2018).
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uncertainties in any of the measurements.

1.3 Weak Lensing

Light travelling from distant galaxies is deflected gravitationally by matter along its path. This

means that galaxy images appear distorted. When the deflection is large this can result in multiple

images of the same galaxy, the galaxy image smeared into arcs or in the case of perfect alignment

the galaxy image can be distorted into a ring. This scenario is referred to as strong gravitational

lensing. When the deflection is small, as in most cases, the shapes and sizes of the galaxy images

are distorted so little as to be unobservable to the naked eye. However, these minute distortions can

be measured statistically and their correlations directly related to the matter power spectrum. This

scenario is referred to as weak gravitational lensing.

Weak gravitational lensing is a key probe of the late-time matter distribution in our Universe. It

is particularly interesting because it probes the distribution of mass, not the distribution of baryons

like most other large scale structure probes. As such, weak lensing will form part of the core analysis

of upcoming large-scale galaxy surveys, such as the Vera Rubin Observatory Legacy Survey of Space

and Time (LSST) (LSST Science Collaboration, 2009) and Euclid (Laureijs et al., 2011).

In this section we summarize the theory of weak lensing and then we discuss the current status

of weak lensing measurements. Then in chapter 3 we explore how an often neglected part of weak

lensing, weak lensing magnification, can affect the cosmological parameter constraints obtained

by LSST. This section relies on a number of reviews of weak lensing; Bartelmann and Schneider

(2001), Munshi et al. (2008), Bartelmann (2010), Kilbinger (2015) and Bartelmann and Maturi

(2016).

1.3.1 Theory

Lensing Potential for a Thin Lens

We begin by finding the lensing potential ψ for a thin lens, where the line-of-sight distribution of

matter forming the lens is thin, compared to the overall distance between the source galaxy and the

observer. The lensing potential summarises the imaging properties of the lens and is a key quantity

in weak gravitational lensing.

Figure 1.3 shows the orientation of the thin lens system with the observer marked by O, the true

location of the galaxy marked by S and the location of the galaxy image marked by I. The thin lens
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Figure 1.3: The set up of a thin lens system. The observer is located at O, the source galaxy is

located at S and the image of the galaxy appears at I. DL is the distance between the observer and

the lens, DS the distance between the observer and the source and DLS is the distance between the

lens and the source. Figure from: Bartelmann and Maturi (2016).

assumption allows the light paths to be marked by straight lines. The angular position of the source

from the observers point of view β can be related to the angular position of the image from the

observers point of view θ, and the deflection angle of the light ray α̂ by,

β = θ − DLS

DS
α̂ ≡ θ −α , (1.39)

where DLS is the distance between the lens and the source, DS is the distance to the source and we

have defined the reduced deflection angle α. This equation is the lens equation.

The deflection angle with respect to the light ray α̂ can be calculated from the perturbed metric5;

ds2 =

(
1 +

2Φ

c2

)
c2dt2 − a2(t)

(
1− 2Φ

c2

)[
dr2

1− κr2
+ r2dΩ2

]
, (1.40)

where once again dΩ2 = dθ2 + sin2θdφ2, and the gravitational potential Φ represents a perturbation

to the FLRW metric. Employing Fermat’s principle of least time, which states that a light ray takes

the path between two points that can be traversed in the least time, gives the deflection angle of the

5Perturbations to the metric can be expressed in multiple different coordinate systems, or choices of gauge. This
perturbed metric is defined in the conformal Newtonian gauge.
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light ray in terms of the gravitational potential Φ,

α̂ =
2

c2

∫
∇⊥Φ dλ , (1.41)

where the gradient is perpendicular to the light ray, and the integral is along the light ray in terms

of distance dλ. This gives the deflection angle from the observer’s point of view,

α = ∇⊥
[

2

c2
DLS

DS

∫
Φ dz

]
, (1.42)

where the integral along the light ray is now in terms of distance z. This expression employs the

Born approximation where the integration path along the light ray is approximated as a straight line.

This approximation relies on the deflection angle of the light ray being very small. In weak lensing

it is more useful to discuss the positions of sources and images in terms of their angular positions θ

on the sky, not perpendicular distances. We therefore convert the gradient ∇⊥ → D−1
L ∇θ and find,

α =∇θ

[
2

c2
DLS

DLDS

∫
Φ dz

]
=:∇θψ ,

(1.43)

where we have defined the lensing potential ψ.

Convergence and Shear Related to the Lensing Potential

If we assume that the source is much smaller than the typical scale of variations in the deflection

angle, we can relate the extent of the source δβ to the extent of the image δθ by linearising the lens

equation,

δβ ≈ A δθ, (1.44)

where A describes the linear mapping between the source and the image. A is defined as,

Aij =
∂βi
∂θj

= δij −
∂2ψ

∂θi∂θj
= δij − ψij , (1.45)

where we have introduced the notation ψij for the second derivatives of the lensing potential ψ.

This equation states that the mapping between the source and the image is dependent on the

curvature of the lensing potential; without a lensing potential the mapping is the identity. This
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Figure 1.4: The distortion effect of convergence κ and complex shear γ on a circular image.

mapping between the source and the image is a foundation of weak lensing.

The matrix A is often parametrised in terms of the convergence κ and the shear γ,

A =

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 (1.46)

where γ = γ1 + iγ2. The distortion effect caused by κ and γ is shown in Fig. 1.4. κ is associated

with a change in solid angle, referred to as weak lensing magnification, and γ with a change in

shape referred to as gravitational shear. This parametrisation of A defines the convergence and

shear in relation to the curvature of the lensing potential as,

κ =
1

2
(ψ11 + ψ22) =

1

2
∇2ψ

γ1 =
1

2
(ψ11 − ψ22)

γ2 = ψ12 .

(1.47)

In reality we have the images of the galaxies and we want to infer the source extent δβ from the

image extent δθ,

δθ = A−1δβ . (1.48)

In the weak lensing regime κ and γ are much smaller than 1, so the images of source galaxies are

only mildly distorted. This means that the matrix A is invertible because the source can be mapped
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to a single image, which is not the case for strong lensing where multiple images can be produced.

The inverse of A is given by,

A−1 =
1

detA

1− κ+ γ1 γ2

γ2 1− κ− γ1

 , (1.49)

where the prefactor 1/detA defines the change in the size of the image compared to the size of the

source, the magnification µ. In the weak lensing regime µ is given by,

µ =
1

detA
=

1

(1− κ)2 − γ2
≈ 1 + 2κ . (1.50)

The magnification is determined by the convergence, and not the shear, in weak lensing.

Lensing Potential and Convergence for an Extended Lens

Clearly assuming a thin lens is not appropriate for gravitational lensing by the large-scale structure

of the universe. The light ray from the source galaxy is continually distorted as it travels towards

the observer. To convert the lensing potential for a thin lens (eq. 1.43) to the lensing potential for

an extended lens, a flat universe is assumed, and the distances are replaced by radial comoving

distances and brought within the integral,

ψ(θ) =
2

c2

∫ χS

0

dχ
χS − χ
χSχ

Φ(χθ, χ) , (1.51)

where χ is the comoving radial coordinate, χS is the comoving distance to the source and χθ is a

position perpendicular to the line of sight (Bartelmann and Maturi, 2016).

We can then calculate the convergence κ from the lensing potential using the relation in eq.

1.47 and the Poisson equation,

∇2Φ = 4πGa2ρ̄δ , (1.52)

where a is the scale factor, ρ̄ is the mean matter density and δ is the density contrast, defined in

section 1.2. This gives a convergence,

κ =
4πG

c2

∫ χS

0

dχ
χ(χS − χ)

χS
a2ρ̄δ(χ) . (1.53)
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The mean matter density ρ̄ in terms of the cosmological parameters is,

ρ̄ = ρ̄0a
−3 =

3H2
0

8πG
Ωma

−3 , (1.54)

so in terms of the cosmological parameters the convergence of an extended lens is given by,

κ =
3

2

H2
0

c2
Ωm

∫ χS

0

dχ
χ(χS − χ)

χS

δ(χ)

a
. (1.55)

Convergence Power Spectrum

The actual matter distribution along the line of sight is unknown so instead weak lensing looks

at correlations between the convergence κ. These correlations show the scales at which there is

structure in the universe. Assuming the Universe is homogeneous and isotropic on large scales the

two-point convergence correlation function, in Fourier space, is related to the convergence power

spectrum by,

〈κ̃(`)κ̃∗(`′)〉 = (2π)2δ(2)(`− `′)Cκ(`) , (1.56)

where κ̃ is the Fourier transform of the convergence, ` is the two-dimensional (2D) wave vector,

δ(2) is the 2D Dirac delta function and Cκ is the 2D convergence power spectrum 6

The Limber approximation (Kaiser, 1992) states that if a 2D quantity x(θ) is a projection of 3D

quantity y(r),

x(θ) =

∫ χS

0

dχw(χ)y(χθ, χ) , (1.57)

where w(χ) is a weight function, then the angular power spectrum of x is given by,

Cx(`) =

∫ χS

0

dχ
w2(χ)

χ2
Py

(
k =

`+ 1/2

χ

)
, (1.58)

where Cx denotes the 2D angular power spectrum and Py denotes the 3D power spectrum at 3D

wave number k. This approximation is valid as long as y varies on length scales much smaller than

the scale of weight function. This approximation is often used to calculate weak lensing power

spectra, where x is κ or γ.

By inspection we can see that equation 1.55 relates the convergence to the 3D density contrast δ

6This expression also assumes the flat-sky approximation (e.g. Lemos et al. 2017).
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via a weight function. We can therefore relate the convergence power spectrum Cκ to the matter

power spectrum Pδ using equations 1.56 and 1.58 to give,

Cκ(`) =
9

4

(
H0

c

)4

Ω2
m

∫ χS

0

dχ

(
χS − χ
χSa

)2

Pδδ

(
`+ 1/2

χ
, χ

)
. (1.59)

For further details see the reviews referenced at the beginning of this section.

Shear Power Spectrum

The convergence power spectrum can only be directly measured using the apparent sizes or number

density of galaxies, which can be challenging. It is therefore more common to measure the shear

power spectrum using the ellipticities of galaxies (see chapter 3). However, the 2D shear angular

power spectrum Cγ is equivalent to the convergence power spectrum, Cγ = Cκ. This can be

demonstrated by converting eq. 1.47 to Fourier space,

κ̃ = −1

2
(l21 + l22)ψ̃ ,

γ̃1 = −1

2
(l21 − l22)ψ̃ ,

γ̃2 = −l1l2ψ̃ ,

(1.60)

where tilde denotes the Fourier transform. We can equate the shear and convergence as follows,

4γ̃2 = 4(γ̃2
1 + γ̃2

2) =
[
(l21 − l22)2 + 4l21l

2
2

]
ψ̃2 = (l21 + l22)2ψ̃2 = 4κ̃2 . (1.61)

1.3.2 Current Status

Three current weak lensing surveys are the Kilo Degree Survey (KiDS), the Dark Energy Survey

(DES) and the Hyper Suprime-Cam Survey (HSC). Their most recent cosmic shear results are

detailed in Hildebrandt et al. (2020), Troxel et al. (2018) and Hikage et al. (2019). Figure 1.5

shows a plot of the combined constraints from KiDS and DES in the S8 ≡ σ8

√
Ωm/0.3 vs. Ωm plain.

The parameter combination S8 is used because it is the parameter most tightly constrained by weak

lensing, due to the degeneracy between Ωm and σ8. Ωm determines the position of the matter

radiation equality, the scale where the matter power spectrum turns over, and σ8 determines the

amplitude of the spectrum. Therefore, if the shape of the power spectrum does not change, Ωm and

σ8 can compensate for each other’s effects. The combined results (in pink) have a 2.5σ discrepancy

with the Planck results assuming ΛCDM (in orange). While this tension is not particularly large, it
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Figure 1.5: Constraints in the S8-Ωm plane, which weak lensing is particularly sensitive to (inner

contour is 68% CL, outer contour is 95% CL). The weak lensing results from KiDS are labelled

KV450 and shown in green, the weak lensing results from DES are labelled DES-Y1 and shown in

purple, the combined weak lensing constraints are shown in pink, and the CMB results from Planck

are shown in orange. Figure from: Joudaki et al. (2019).

fits a pattern of weak lensing observations finding a lower value of S8 than Planck (Heymans et al.,

2013).

To confirm or disprove the above tension the precision of the weak lensing results needs to be

increased. A key limiting factor in current and upcoming weak lensing surveys is the accuracy of

their photometric redshifts. Ideally, the redshift of a galaxy would be found by measuring the full

spectrum of light from a galaxy, and looking for shifts in characteristic spectral lines – spectroscopic

redshift. Unfortunately, due to the large numbers of galaxies involved in a weak lensing analysis,

this technique is prohibitively slow. Instead low-resolution spectra are obtained by measuring the

spectrum in a few broad filters (∼5) – photometric redshift. The uncertainties on photometric

redshifts can be very large, and inaccurate estimation biases the final results (Joudaki et al., 2019).
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Figure 1.6: The Vera Rubin Observatory in June 2020. Figure from: Rubin Observatory image

gallery.

1.3.3 Vera Rubin Observatory

The Vera Rubin Observatory Legacy Survey of Space and Time (LSST) is an upcoming 10 year survey

planned to begin taking data in 2021. It will utilise the 8.4m Simonyi Survey Telescope, which is

located on top of the Cerro Pachón ridge in Chile, see Fig. 1.6. The telescope has an exceptionally

large field of view of 9.62 square degrees (40 times the area of the full moon), which enables it to

survey the entire sky every three nights.

The LSST camera is the largest digital camera ever constructed in astronomy and contains over

three billion pixels. Over the course of 10 years LSST will image billions of objects in six color

bands u, g, r, i, z and y, see Fig. 1.7. LSST will also be able to record the time evolution of these

objects due to its repeated imaging every three nights. While unimportant for weak lensing this is

of great interest to cosmologists studying supernovae. The aspects of LSST that make it suited to

weak lensing analyses are the large area and great depth, which result in a large number of objects.

One of the greatest challenges for LSST is processing the huge amount of data it will produce every

night due to its speed and depth, approximately 20 Terabytes. (LSST Science Collaboration, 2009)

We provide details for LSST since it is the focus of our forecast in chapter 3, however there are

also upcoming satellite missions for weak lensing such as Euclid and the Nancy Grace Roman Space

Telescope (previously known as WFIRST) (Spergel et al., 2015). These missions will be highly

complementary to LSST. They will have much better resolution imaging, since they do not have to

contend with the atmosphere, but are not as deep so will detect fewer objects (Rhodes et al., 2017;

Schuhmann et al., 2019).
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Figure 1.7: Transmission functions for the 6 LSST filters u, g, r, i, z and y. Figure from: Olivier et al.

(2008).

1.4 Neutrinos

Neutrino physics is a truly interdisciplinary area of research, where discovering the properties

of neutrinos will likely require combining observations from particle physics, cosmology and

astrophysics. In this section we present a brief theoretical overview of neutrinos in particle physics

and in cosmology. Then in chapter 2 we discuss how to combine the current best measurements of

neutrino properties, from particle physics and from cosmology, in order to learn about the ordering

of the neutrino masses.

1.4.1 Neutrinos in Particle Physics

Discovery of the neutrino

The neutrino was first postulated by Pauli in 1930 to explain the continuous beta decay spectrum

(Pauli, 1978). Beta decay is a type of radioactive decay where a beta particle (electron or positron)

is emitted from a nucleus. At the time it was thought that this process was a two body decay, so

the energy spectrum of the electron was expected to be sharply peaked. However, the observed

spectrum resembled that of a three body decay and led to Pauli postulating the existence of a light,

weakly interacting, neutral particle.

This prediction was confirmed by Cowan and Reines in 1956 when they observed beta decay

antineutrinos (ν̄e) from a nearby nuclear reactor using inverse beta decay, ν̄e+p+ → n+e+ (Cowan

et al., 1956). The existence of three flavours of neutrino – electron, muon and tau – was established

by the discovery of the muon neutrino in 1962 (Danby et al., 1962) and the tau neutrino in 2001
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(Kodama et al., 2001).

Neutrino Oscillations

The importance of the discovery of neutrino oscillations – that neutrinos change flavour as they

propagate – cannot be understated. It can only be explained by neutrinos having mass, which is

contrary to the Standard Model.

Conclusive evidence for neutrino oscillations came from two different sources, solar and atmo-

spheric neutrinos. In the 1960s the Homestake experiment measured the flux of neutrinos from the

Sun and found that it was much smaller than predicted by solar models (Davis et al., 1968). Since

this experiment was only sensitive to electron neutrinos it was possible that the neutrinos were

changing flavour between the Sun and the Earth. More powerful evidence came from the Sudbury

Neutrino Observatory (SNO) in 2001 (Ahmad et al., 2001). This experiment measured both the

flux of electron neutrinos and the total flux of neutrinos from the sun, above a certain energy. The

total flux was found to match solar models and provided strong evidence for neutrino oscillations.

Neutrinos are also produced in the atmosphere by cosmic rays. In 1988 the Kamiokande experiment

measured the flux of atmospheric electron and muon neutrinos and found that while the electron

neutrino flux matched predictions, not including oscillations, there was a significant deficit in the

muon neutrino flux (Hirata et al., 1988). In 1998 the Super-Kamiokande experiment found that this

flux deficit matched the predictions from oscillation models (Fukuda et al., 1998). These discoveries

led to the Nobel Prize for Physics being awarded to the SNO and Super-Kamiokande collaborations

in 2015.

In the three-neutrino oscillation model the neutrino flavour eigenstates |να〉 are a superposition

of the neutrino mass eigenstates |νi〉,

|να〉 =

3∑
i=1

Uαi|νi〉 , (1.62)

where U is the mixing matrix which relates the mass and flavour eigenstates. This unitary matrix is

called the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix and takes the form,

U =


Ue1 Ue2 Ue2

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (1.63)
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This matrix is often parametrised as,


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0

−s13e
−iδCP 0 c13



c12 s12 0

−s12 c12 0

0 0 1

 , (1.64)

where cij = cos θij and sij = sin θij . θ12, θ13 and θ23 are mixing angles and δCP is a CP violating

phase. The matrix U is parametrised in this way because different experiments are sensitive to

different mixing angles. The first matrix only includes θ23, which is probed by atmospheric neutrino

experiments. The third matrix only includes θ12, which is probed solar neutrino experiments. The

second matrix depends on the mixing angle θ13 and the CP violating phase δCP . δCP is non-zero

only if neutrino oscillations violate CP (charge-parity) symmetry (different oscillation probabilities

for neutrinos and antineutrinos). A discovery of non-zero δCP would be a significant finding that

could help explain the dominance of matter over antimatter in the Universe.

Note that δCP is always multiplied by θ13 in the second matrix, so a measurement of δCP requires

θ13 to be non zero. The first evidence of θ13 being non zero came from the Daya Bay reactor neutrino

experiment in 2012 (An et al., 2012). In reactor neutrino experiments the source of neutrinos is

a nuclear reactor, as opposed to the sun or the atmosphere. This finding was then confirmed in

2014 by the Tokai-to-Kamioka (T2K) experiment (Abe et al., 2014). T2K is a long baseline neutrino

experiment, which studies the oscillations of accelerator neutrinos. Following these results, there

have been recent exciting indications of a non-zero δCP from the T2K experiment (Abe et al., 2020).

Neutrinos are detected as flavour eigenstates but propagate as mass eigenstates. In the relativistic

case, where the rest mass is much less than the energy of the neutrino, the probability P (να → νβ)

for να → νβ is,

P (να → νβ) =

∣∣∣∣∑
i

U∗αi
Uβie

−im2
iL/2E

∣∣∣∣2
= δαβ − 4

∑
i>j

Re(U∗αiUβiUαjU
∗
βj) sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im(U∗αiUβiUαjU
∗
βj) sin2

(
∆m2

ijL

4E

)
,

(1.65)

where δαβ is the Kronecker delta,

∆m2
ij ≡ m2

i −m2
j , (1.66)
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Figure 1.8: Diagram illustrating the two possible orderings of the neutrino mass eigenstates alowed

by the current best measurements of the mass squared splittings ∆m2
12 and ∆m2

32. Figure from:

Hewett et al. (2012).

E is the energy of the neutrino and L is the distance over which it has propagated. We include this

equation to show that a change in neutrino flavour can only occur if at least one neutrino has mass.

If ∆m2
ij = 0 for all i and j the probability reduces to δαβ – there is no oscillation. This equation also

shows that neutrinos change flavour with a probability which oscillates as a function of L/E, hence

the name neutrino oscillation. This dependence is key in designing neutrino experiments. Finally,

this equation shows that neutrino oscillation measurements are sensitive to ∆m2
ij not the neutrino

masses mi directly.

Neutrino Mass

∆m2
12 and ∆m2

32 have been measured by neutrino oscillations experiments, see chapter 2 for the

current best constraints. The sign of ∆m12 has also been determined using the Mikheyev-Smirnov-

Wolfenstein (MSW) effect, which modifies neutrino oscillations in matter (Tanabashi et al., 2018),

but not the sign of ∆m32. This leaves two possible orderings of the neutrino mass eigenstates;

Normal where m1 < m2 < m3 or Inverted where m3 < m1 < m2. See Fig. 1.8 for a diagram.

Additionally, the overall scale of the neutrino masses is unknown.

The current best constraint on the scale of the neutrino masses comes from cosmology, see

chapter 2. However, there are also particle physics experiments which focus on measuring the
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neutrino mass scale. One avenue is through making precise measurements of the beta decay

spectrum. If νe is massive then the maximum energy of the beta electron is reduced. Therefore,

by studying the endpoint of the spectrum it should be possible to determine the νe mass, m(νe).

The current best constraint comes from the KATRIN experiment where m(νe) < 1.1 eV (Aker et al.,

2019). The benefit of this approach is that it is not model dependent (the cosmology results assume

ΛCDM). Another avenue for measuring the neutrino mass is through neutrinoless double-beta decay.

Double beta decay refers to when two beta decays occur simultaneously inside a nucleus, releasing

two electrons and two electron anti-neutrinos. If neutrinos are Majorana particles (identical to

their antiparticles) they can effectively annihilate resulting in two electons, which carry the whole

energy of the decay. Neutrinoless double beta decay has never been observed, but experiments

such as SuperNEMO and KamLAND-Zen are currently searching. A measurement of neutrinoless

double-beta decay would determine the nature of neutrinos, and set a scale for the neutrino masses

(Avignone et al., 2008).

1.4.2 Neutrinos in Cosmology

This section is largely based on the summaries of neutrino cosmology given in Tanabashi et al.

(2018), Gerbino (2018), Dodelson (2003) and Mo et al. (2010). For more detailed reviews see

Lesgourgues and Pastor (2006), Hannestad and Schwetz (2016) and Lattanzi and Gerbino (2018).

Cosmic Neutrino Background

In the early Universe neutrinos were in thermal equilibrium with the cosmic plasma. Later, when the

weak interaction rate fell below the expansion rate of the Universe the neutrinos decoupled from the

plasma. After decoupling their temperature fell as a−1. To relate the neutrino temperature to the

photon temperature today (CMB temperature) we need to consider the effects of electron-positron

annihilation. Neutrinos decoupled just before electron-positron annihilation, so while energy was

transferred to the rest of the plasma it was not transferred to the neutrinos. The CMB temperature

today is therefore higher than the relic neutrino temperature. The ratio of the temperatures today

can be computed using entropy conservation to give,

Tν
Tγ

=

(
4

11

)1/3

. (1.67)

Neutrinos are relativistic in the early Universe so contribute to the radiation density. The
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radiation density ρr, including neutrinos, is often parametrised as,

ρr = ργ

[
1 +

7

8

(
4

11

)4/3

Neff

]
, (1.68)

where ργ is the photon density, the factor 7/8 accounts for the neutrinos following a Fermi-Dirac

instead of a Bose-Einstein distribution, the power 4/3 comes from the temperature ratio in eq. 1.67

and that the energy density of massless particles scales as T 4, and Neff is the effective number

of neutrino species. Neff is labelled effective because it can be used to account for any relativistic

species present at early times. In the standard three-neutrino cosmological model Neff = 3.045,

where the extra 0.045 contribution comes from including neutrino oscillations, non-instantaneous

decoupling and improved calculation of the collision terms (de Salas and Pastor, 2016).

At late times we know that at least two neutrinos are non relativistic, as the neutrino temperature

today is less than both mass squared differences measured by neutrino oscillation experiments.

This means that at late times neutrinos contribute to the matter density of the Universe. The

energy density of non-relativistic neutrinos is given by ρν ≈ Σmini, since their velocities are small

compared to their rest mass. Since the number densities ni are equal for each neutrino species the

energy density can be parametrised in terms of the sum of the neutrino masses Σmν . The neutrino

density parameter today Ων is given by,

Ων =
ρν
ρcrit

=
Σmν

93.14h2eV
, (1.69)

where the factor of 93.14 includes ni/nγ from theoretical studies of neutrino decoupling and nγ

from the CMB (Tanabashi et al., 2018).

These equations show that the quantities of interest when studying neutrinos in cosmology are

Neff and Σmν . Cosmology is not sensitive to the mixing angles or the CP violating phase measured

in oscillation experiments but is highly complementary.

Observing Neutrinos

Directly measuring the cosmic neutrino background is extremely challenging, but there are ex-

periments in development (Betti et al., 2019). However, neutrinos have a number of effects on

cosmology, which can be used to probe their properties indirectly. Neutrinos contribute to the energy

density of the universe and hence affect the expansion history. Since they affect the proportion of

radiation at early times and the proportion of matter at late times they can alter the redshift of
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Figure 1.9: Fractional change in the matter power spectrum as a function of wavenumber k for

different values of the neutrino mass sum Σmν . Massive neutrinos suppress structure on small

scales. The arrows indicate the approximate scales probed by different cosmological observations.

Figure from: Abazajian et al. (2015).

the matter-radiation equality (see section 1.1.3). They can also affect the development of matter

perturbations, and one of the most sensitive methods for determining neutrino properties from

cosmology is through their effect on the matter power spectrum.

While neutrinos are relativistic they can free stream out of high-density regions, suppressing

perturbations smaller than the free-streaming scale. The free-streaming scale is the distance a

neutrino can travel in H−1 (a proxy for the age of the universe) at its current speed. Above

the free-streaming scale neutrinos cluster as matter. This leads to an overall suppression in the

matter power spectrum at small scales, as shown in Fig. 1.9. Neutrinos with greater mass become

non-relativistic at earlier times, so the free streaming length is smaller and the suppression starts on

smaller scales (higher k). Additionally, neutrinos with greater mass contribute more to the energy

density of the universe and hence, by free-streaming, suppress perturbations to a greater extent.

Measuring this suppression in the matter power spectrum requires combining a number of

probes over different scales, finding the large-scale amplitude with the CMB and then determining

the small-scale amplitude with ground-based large scale structure experiments. Since the effect of
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Figure 1.10: The CMB temperature power spectrum for different values of the optical depth to

reionisation τ . Changing τ changes the amplitude of the power spectrum. Figure from: Reichardt

(2015).

neutrinos can be compensated for by adjusting other cosmological parameters, combining multiple

probes which are sensitive to different combinations of parameters helps to limit the number of

degeneracies and hence improve the precision of the neutrino mass measurement. See chapter

2 for a discussion of the precision of current and future neutrino mass sum measurements from

cosmology.

One particularly important degeneracy for upcoming measurements of neutrino mass involves

the optical depth to reionisation τ . This is because the amplitude of the CMB temperature power

spectrum is given by Ase−2τ (if all other cosmological parameters are fixed) so if τ changes so does

the amplitude. This means that in order to obtain a highly precise constraint on neutrino mass τ

must be determined to a very high level of precision. CMB polarization measurements on large

scales (from space) are expected to significantly improve the τ measurement. Figure 1.10 illustrates

how a change in τ impacts the amplitude of the CMB temperature power spectrum. Figure 1.11

shows that τ can be disentangled from an overall amplitude change with measurements of the CMB

polarization power spectrum on large scales. The only approved upcoming experiment, which is

potentially capable of performing this measurement is the LiteBIRD satellite (Hazumi et al., 2019).
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Figure 1.11: The CMB polarization power spectrum for different values of the optical depth to

reionisation τ . At large scales (small `) changes to the optical depth can be distinguished from an

overall amplitude change. Figure from: Reichardt (2015).
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2
Target Neutrino Mass Precision for Determining the

Neutrino Hierarchy

Recent works combining neutrino oscillation and cosmological data to determine the neutrino

hierarchy found a range of odds in favour of the normal hierarchy. These results arise from differing

approaches to incorporating prior knowledge about neutrinos. We develop a hierarchy-agnostic

prior and show that the hierarchy cannot be conclusively determined with current data. The

determination of the hierarchy is limited by the neutrino mass scale Σν measurement. We obtain a

target precision of σ(Σν) = 0.014 eV, necessary for conclusively establishing the normal hierarchy

with future data.

2.1 Introduction

Particle physics and cosmology provide complementary information about neutrinos. Neutrino

oscillation experiments have determined that neutrinos have mass, contrary to the Standard Model,

and that there are three mass eigenstates (De Salas et al., 2018). They have also measured two

mass-squared splittings between these mass states. However, the overall scale of the neutrino masses

is unknown, as is the ordering of the two squared splittings — the neutrino hierarchy. Cosmological

data place a constraint on the sum of neutrino masses, which provides an overall scale and will

help to distinguish the hierarchy (Tanabashi et al., 2018). Determining the neutrino hierarchy is

key to further understanding the properties of the neutrino sector and theories of neutrino mass

generation (Patterson, 2015).

The two possible orderings of the neutrino mass states are the Normal Hierarchy (NH) and the

Inverted Hierarchy (IH). The IH has a greater total mass. The minimum total mass for the NH

and IH can be calculated by fixing the mass of the lightest state at zero and using current squared
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splitting measurements to calculate the mass of the other two states. In the NH configuration the

minimum total mass is 0.06 eV, and in the IH configuration the minimum total mass is 0.1 eV.

Recent cosmological measurements have placed a 95% CL upper bound on the sum of the neutrino

masses of 0.12 eV (Aghanim et al., 2018), which is tantalizingly close to the IH minimum mass.

Motivated by these results, many works have performed joint analyses of neutrino oscillation

and cosmology data to see if there is already sufficient evidence for the NH (Gariazzo et al., 2018;

Gerbino et al., 2017; Hannestad and Schwetz, 2016; Heavens and Sellentin, 2018; Long et al.,

2018; Simpson et al., 2017; Vagnozzi et al., 2017). The results of these analyses vary dramatically,

producing relative odds favoring the NH over the IH ranging from 3:2 to 470:1. The main difference

between these analyses is how they incorporate the state of knowledge about the neutrino hierarchy

before taking any data into account: their choice of prior (Gariazzo et al., 2018; Heavens and

Sellentin, 2018). Choosing an appropriate prior is difficult because a physically-motivated prior on

the neutrino properties (whether they are the individual masses, squared splittings, mixing angles,

etc) does not exist (Long et al., 2018). Further, there is a complex mapping between priors on the

neutrino masses to odds on the hierarchy, so a seemingly innocuous prior choice can strongly favor

a particular hierarchy.

In this work we develop a methodology for a joint analysis of neutrino oscillation and cosmology

data, which is agnostic to the hierarchy — a hierarchy-agnostic prior. This guarantees that the

relative odds of the NH:IH are driven by the data, and not by the choice of prior. We demonstrate

using this prior that current data are not sufficiently constraining to determine the hierarchy. The

limiting factor in determining the hierarchy is the neutrino mass sum measurement. We therefore

set a target precision for future measurements of the neutrino mass sum, necessary in order to make

a conclusive determination of the hierarchy. Assuming the NH minimum mass, this is sufficient for

a conclusive determination, but other configurations will require an increased precision.

Current neutrino data is presented in section 2.2. The method for constructing a hierarchy-

agnostic prior and calculating the relative odds NH:IH is described in section 2.3. The odds NH:IH

for current data and a target precision for future experiments are presented in section 2.4, with

conclusions summarized in section 2.5.

2.2 Current Data

Neutrino oscillation experiments have measured two mass-squared splittings: the mass-squared

splitting between the closest two neutrinos ∆m2
S (the small splitting) and the mass-squared splitting
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between the furthest and the midpoint of the closest two ∆m2
L (the large splitting). If we label and

order the masses as ma < mb < mc, in the NH case we have

∆m2
S = m2

b −m2
a ,

∆m2
L = m2

c −
1

2
(m2

b +m2
a) ,

(2.1)

and in the IH case,

∆m2
S = m2

c −m2
b ,

∆m2
L =

1

2
(m2

c +m2
b)−m2

a .

(2.2)

The current best constraints on these parameters are shown in Table 2.1. The constraint on the

small splitting ∆m2
S comes from combining data from the KamLAND experiment with a global

analysis of solar, accelerator and short-baseline reactor neutrino experiments (Gando et al., 2013).

The constraint on the large splitting ∆m2
L comes from a global analysis of data from atmospheric

(Aartsen et al., 2018; Abe et al., 2018a), short-baseline reactor (Adey et al., 2018; Bak et al., 2018)

and long-baseline accelerator neutrino experiments (Abe et al., 2018b; Acero et al., 2018; Adamson

et al., 2014). Individual neutrinos are produced in interaction (i.e., flavor) eigenstates. Since

the flavor eigenstates (νe, νµ and ντ ) are mixtures of the mass eigenstates (ma, mb and mc), the

neutrino flavor subsequently oscillates as it propagates. This means if a certain number of electron

neutrinos (νe) are produced by a source, as they propagate the number will change and manifest

as a deficit of electron neutrinos and an excess of muon (νµ) and tau neutrinos (ντ ). All of the

experiments mentioned above search for a mismatch between the number of a particular neutrino

flavor produced by a source and the number measured by the detector a certain distance away, using

different sources and different distances. For example, KamLAND measures a deficit of electron

anti-neutrinos using Japanese nuclear reactors as a source.

Cosmological data constrain the sum of neutrino masses:

Σν = ma +mb +mc , (2.3)

and the current best constraint is shown in Table 2.1 (Aghanim et al., 2018). This constraint comes

from a combination of cosmological probes: the temperature and polarization fluctuations in the

cosmic microwave background (CMB), which is the relic radiation from the surface of last scattering

380,000 years after the Big Bang (Hu and Dodelson, 2002); weak gravitational lensing, which
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Table 2.1: Current best constraints for the mass-squared splittings with their associated 1σ uncer-

tainty from oscillation experiments (Tanabashi et al., 2018), and 95% CL upper bound on the sum

of neutrino masses from cosmological data (Aghanim et al., 2018). The results are quoted in terms

of the parameters used this in work.

Measurable Parameter Current Constraint

∆m2
S (7.53± 0.18)× 10−5 eV2 (Tanabashi et al., 2018)

∆m2
L (NH) (2.444± 0.034)× 10−3 eV2 (Tanabashi et al., 2018)

∆m2
L (IH) (2.53± 0.05)× 10−3 eV2 (Tanabashi et al., 2018)

Σν < 0.12 eV (Aghanim et al., 2018)

uses coherent distortions in observations of the CMB or galaxies to probe the matter distribution

along the line of sight (Bartelmann and Schneider, 2001; Lewis and Challinor, 2006); and baryon

acoustic oscillations (BAO), which measure a standard distance scale set by sound waves in the

early universe (Anderson et al., 2014). The CMB and lensing part of this constraint comes from the

Planck satellite (Aghanim et al., 2018), and the BAO part comes from low redshift galaxy surveys

(Ade et al., 2014). A larger neutrino mass sum suppresses the growth of structure in the universe; it

is only by combining measurements of cosmic structure at early times, late times, small scales and

large scales, that the effect of massive neutrinos can be determined.

2.3 Method

To quantify whether one hierarchy is favored over the other, we compute the posterior odds, given

by

p(NH|D)

p(IH|D)
=
p(NH)

p(IH)

p(D|NH)

p(D|IH)
, (2.4)

where D represents current data. We wish to impose equal prior odds on the hierarchies, i.e.

p(NH) = p(IH). Therefore, the first term on the right-hand side is equal to one, and calculating the

posterior odds equates to calculating the ratio of the marginal likelihoods, p(D|NH) and p(D|IH).

Calculating the marginal likelihoods requires marginalizing over the individual neutrino properties,

and we compute them via Monte Carlo integration:

p(D|H) =

∫
p(D|θ,H)p(θ|H) dθ

≈ 1

N

N∑
i=1

p(∆m2
S |θi,H)p(∆m2

L|θi,H)p(Σν |θi,H) .

(2.5)
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Here θ represents a parametrization which describes the properties of three neutrinos, N is the

number of sets of neutrino properties drawn from our prior p(θ|H), and H is the hierarchy under

consideration. The likelihood of the data given the parameter set and hierarchy, p(D|θ,H), can be

split into the likelihoods p(∆m2
S |θ,H), p(∆m2

L|θ,H) and p(Σν |θ,H) because the measurements of

∆m2
S , ∆m2

L and Σν are independent. In principle these individual likelihoods should be the data

likelihoods from the experiments reported in Table 2.1. However, these results are independent

and can be accurately approximated with surrogate likelihoods 1 for the purposes of this work.

As such, the likelihoods for ∆m2
S and ∆m2

L are taken to be normal distributions with mean the

measured value and standard deviation the associated uncertainty, given in Table 2.1. Note that

∆m2
L differs between the hierarchies. Since cosmological data currently only places an upper bound

on the sum of neutrino masses Σν , the likelihood is taken to be a normal distribution centered on

zero with standard deviation half the 95% upper bound. A normal distribution provides a flexible

interpretation of the upper bound, which also allows negative values not currently excluded by

cosmological data alone.

If we draw θ from a prior which favors the NH, the corresponding posterior odds will also

be weighted in favor of the NH. For example, previous works have shown that defining θ =

{ma,mb,mc} and drawing the three masses from the same log-normal distribution2 (then ordering

them ma < mb < mc) is a seemingly reasonable choice which, however, strongly favors the NH

(Gariazzo et al., 2018; Simpson et al., 2017). We therefore require a prior which does not favor a

hierarchy; where it is equally likely that a randomly drawn θ corresponds to the NH as to the IH.

Previous works have achieved this by adopting a continuous or discrete hierarchy parameter,

which is positive for the NH and negative for the IH (Gerbino et al., 2017; Jimenez et al., 2010;

Loureiro et al., 2019; Xu and Huang, 2018). However, we achieve this through our choice of

parametrization for θ. The only requirement is that the parameter set θ can be translated to the

measured quantities ∆m2
S , ∆m2

L and Σν . We choose θ = {∆m2
a,∆m

2
b ,ma} where ∆m2

a is the

mass-squared splitting between the lightest two neutrinos, ∆m2
b the mass-squared splitting between

the heaviest two, and ma the mass of the lightest neutrino. Explicitly

∆m2
a = m2

b −m2
a ,

∆m2
b = m2

c −m2
b ,

(2.6)

where ma < mb < mc. Our approach means that the prior assumptions about neutrinos going into

1Likelihoods which use the experimental measurements to approximate the data likelihoods.
2The log-normal distribution is a continuous distribution where the logarithm of the variable is normally distributed.
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the analysis are explicit, which is not the case for Jimenez et al. (2010); Xu and Huang (2018), and

does not require introducing a separate discrete hierarchy parameter as in Gerbino et al. (2017);

Loureiro et al. (2019). Parametrizing neutrino properties in terms of a minimum mass and two

splittings is quite common (e.g., Beacom and Bell 2002; De Salas et al. 2018; Gerbino et al. 2017);

however, the potential of this parametrization for constructing an explicitly equal-odds prior has

not been previously investigated.

In the case of the NH ∆m2
a < ∆m2

b and the IH ∆m2
b < ∆m2

a. Therefore, to construct a hierarchy-

agnostic prior, we require ∆m2
a < ∆m2

b to be equally likely to ∆m2
b < ∆m2

a. Hence we draw ∆m2
a

and ∆m2
b from the same distribution. In our parametrization we wish the splittings to be positive

and vary over a large range. There are a number of distributions which satisfy these requirements,

for example uniform in log space (log-uniform) or log-normal. However, given the high accuracy

of current splitting measurements, we have verified that the particular form of this distribution is

unimportant. We therefore choose a log-normal distribution because it provides a proper prior 3.

The parameter ma is required to translate ∆m2
a and ∆m2

b to the measurable quantities ∆m2
S ,

∆m2
L and Σν , as it provides an overall mass scale. Other possible options are m2

a or Σν . We require

ma to be non-negative and little is known about its magnitude. In the case where a parameter can

vary over many orders of magnitude a log-uniform prior is a reasonable choice. We found that our

results were unchanged whether we used a log-uniform or a log-normal prior, so we once again

choose a log-normal prior (see Table 2.2 in the results section).

The log-normal distributions used in this analysis are defined by the mean, µ, and standard

deviation, σ, of the root normal distribution. As such our prior space is defined by four parameters

µs, σs, µma
and σma

for the priors on the splittings, ∆m2
a and ∆m2

b , and ma respectively. Our

final posterior odds result was found to be invariant over a large range of different choices for

these prior parameters; in this work we specifically used µs = −9.25, σs = 5.0, µma = 0.0 and

σma
= 7.0, where ∆m2

a and ∆m2
b have units of eV2 and ma has units of eV. This choice gives a

broad prior on the splittings because little is known about the magnitude of the mass-squared

splittings before including oscillation data (Tanabashi et al., 2018). This choice is also motivated

by the recent KATRIN result that the highest allowed value of the effective electron neutrino mass

is less than 1.1 eV (Aker et al., 2019). Additionally, this specific prior choice translates into three

approximately log-normal distributions on the individual neutrino masses, which are defined by

distinct parameters (see Fig. 2.1). These distributions are strongly correlated because mb and

mc are computed by adding the splittings to ma, so a larger ma results in a larger mb and mc.

3a prior distribution that integrates to 1
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Figure 2.1: Our prior on the splittings, ∆m2
a and ∆m2

b , and lightest neutrino mass, ma, translated

to the log neutrino masses, where ma < mb < mc.

As expected, they are particularly strongly correlated when ma is much larger than the splittings

because the masses become quasi-degenerate 4. The form of this prior is in contrast to log-normal

priors on the individual masses where the masses are drawn from the same distribution, which have

previously been found to favor the NH (Gariazzo et al., 2018; Simpson et al., 2017).

Once we have defined a hierarchy-agnostic prior, we randomly draw N sets of neutrino prop-

erties, θ = {∆m2
a,∆m

2
b ,ma}. Next, we use all our samples of θ to calculate p(D|NH). The first

step in computing p(D|NH) is to translate the parameters ∆m2
a, ∆m2

b and ma to the measurable

4This pattern is also seen in neutrinoless double-β decay discovery plots (Agostini et al., 2017; Tanabashi et al., 2018)
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quantities ∆m2
S , ∆m2

L and Σν . Assuming the NH,

∆m2
S = ∆m2

a ,

∆m2
L = ∆m2

b + ∆m2
a/2 ,

(2.7)

and

Σν = ma +
√
m2
a + ∆m2

a +
√
m2
a + ∆m2

a + ∆m2
b . (2.8)

Once these values are found for every θ they are used to compute the individual likelihoods

p(∆m2
S |θ,NH), p(∆m2

L|θ,NH) and p(Σν |θ,NH). Equation (2.5) is then employed to compute

p(D|NH).

Next we use the same set of θ to compute p(D|IH). This is allowable because our hierarchy-

agnostic prior means that p(θ|NH) = p(θ|IH). The procedure for computing p(D|IH) is analogous

to p(D|NH). However, there are two differences: the translation of ∆m2
a and ∆m2

b to the measured

splittings,

∆m2
S = ∆m2

b ,

∆m2
L = ∆m2

a + ∆m2
b/2 ;

(2.9)

and the form of p(∆m2
L|θ, IH), as the measured value of ∆m2

L differs between the hierarchies (see

Table 2.1).

Once p(D|NH) and p(D|IH) are calculated, the ratio can be computed to find the posterior

odds, as in Eq. (2.4). Since our calculation of the posterior odds is based on simulations, it is

approximate. However, we find the posterior odds calculated with this method are approximately

normal distributed if the number of sets of neutrino properties N drawn in Eq. (2.5) is equal to 109.

We can therefore use jackknife resampling to calculate the mean and variance (Efron, 1982). We

use 100 sub-samples in our jackknife resampling, which gives us a mean accurate to the sub-percent

level and a variance to the percent level when using N = 109. Setting N = 109 allows us to explore

the sensitivity to various prior choices.
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Figure 2.2: The dependence of the NH:IH posterior odds on the value of a future measurement of the

neutrino mass sum Σν and its associated 1σ precision. The line at σ(Σν) = 0.014 eV shows the target

precision required to reach posterior odds of 100:1 in favor of the NH for a measurement at the

NH minimum mass. The minimum masses are calculated from the current splitting measurements

shown in Table 2.1. This plot could be extended to negative maximum likelihood values, but we are

specifically interested in measurements at or close to the NH minimum mass.

2.4 Results

The posterior odds using our hierarchy-agnostic prior and current data are found to be

p(NH|D)

p(IH|D)
= 2.66± 0.04 , (2.10)

where the 1σ uncertainty is reported. Odds of 2.7:1 show a slight but inconclusive preference for

the NH. This confirms that previous results strongly favoring the NH have been driven by the prior

and not by the data (Gariazzo et al., 2018; Heavens and Sellentin, 2018).

We then turn to the question of what precision needs to be targeted by experiments in order to

distinguish between the hierarchies. Since the splittings are much more accurately measured than

the sum of the masses, we focus on setting a target for neutrino mass sum measurements. Figure

2.2 shows the dependence of the log posterior odds on the value of a future measurement of the

neutrino mass sum Σν and its associated 1σ precision. The Σν likelihood is assumed to be a normal
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distribution centred on the measured value. For a measurement at the NH minimum mass, 0.06 eV,

the precision would need to be increased to σ(Σν) = 0.014 eV to determine decisively the NH with

odds of 100:1. For higher masses the precision required is even greater. A precision of 0.014 eV is

an order of magnitude improvement on the current Σν precision. This result does not change if we

include future improved mass-squared splitting measurements from DUNE and JUNO, where the

1σ precision on the mass-squared splittings is expected to improve by an order of magnitude over

current results (Acciarri et al., 2015; An et al., 2016).

However, we note that the preference for the IH, shown by the blue region on the right-hand

side of Fig. 2.2, is driven by the prior on the lightest neutrino mass ma (Agostini et al., 2017;

Caldwell et al., 2017; Gerbino et al., 2017). This is because if the prior favors ma close to zero, but

the sum of neutrino masses Σν is measured to be close to the IH minimum mass 0.1 eV, the IH is

favored over the NH. The preference for the IH (shown in Fig. 2.2) disappears if one downweights

smaller masses by using a uniform prior on ma instead of a uniform (or normal) prior on log ma,

see Fig. 2.3. As little is known about the order of magnitude of ma, we chose to place a prior on log

ma. In spite of the prior sensitivity in this region, we have verified that our results – the posterior

odds for current data and the target precision for future experiments – are robust to whether we

use a prior on ma or log ma, see Table 2.2 and the left-hand side of Fig. 2.3. This demonstrates that

our results are data-driven.

Table 2.2: Our results – the posterior odds for current data and the target precision for future

experiments – vary little when we place a uniform prior on ma instead of a log-normal prior. Our

choice of a log-normal prior instead of a log-uniform prior on ma also has little impact.

Prior on ma (eV) Current Odds Target Precision (eV)

log-normal 2.66± 0.04 0.014

uniform log, 10−10–1.1 2.66± 0.03 0.014

uniform, 0.0–1.1 2.83± 0.14 0.015

As mentioned previously, making a cosmological measurement of the neutrino mass sum requires

combining multiple data sets at various epochs. Upcoming cosmological experiments which will

contribute to a future measurement include: large scale structure (LSS) surveys such as the Large

Synoptic Survey Telescope (LSST) and Euclid, which will use weak lensing and galaxy clustering to

measure the matter distribution in the late-time universe; spectroscopic galaxy surveys such as the

Dark Energy Spectroscopic Instrument (DESI) and the Maunakea Spectroscopic Explorer (MSE),
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Figure 2.3: The dependence of the NH:IH posterior odds on the value of a future measurement of

the neutrino mass sum Σν and its associated 1σ precision, with a uniform prior between 0.0-1.1 eV

on the lightest neutrino mass (instead of a log-normal prior as in Figure 2.2).

which will obtain a more accurate measurement of BAO and measure the matter distribution on

smaller scales; ground-based CMB experiments such as the Simons Observatory and CMB Stage-4,

which will measure fluctuations in the temperature and polarization of the CMB on smaller scales;

and the CMB satellite experiment LiteBIRD, which will improve the measurement of the optical

depth to reionisation τ (see introduction chapter). A number of studies have predicted the Σν

precision which may be attainable with these experiments, and combinations thereof (Ade et al.,

2019; Aghamousa et al., 2016; Allison et al., 2015; Babusiaux et al., 2019; Brinckmann et al.,

2019; Copeland et al., 2020; Errard et al., 2016; Font-Ribera et al., 2014; Laureijs et al., 2011;

Mishra-Sharma et al., 2018). All of these analyses will be limited by systematic uncertainties in

the Σν measurement, not by statistical uncertainties. Therefore, our target precision of 0.014 eV

imposes a stringent requirement on control of systematics in such analyses.

It is possible to measure the neutrino mass scale using data from particle physics as well as

from cosmology. Current and upcoming experiments include: tritium beta decay experiments,

such as KATRIN and Project-8, which aim to measure the mass of the electron anti-neutrino; and

neutrinoless double beta decay experiments, such as SuperNEMO and KamLAND-Zen (Gando et al.,

2016), which rely on neutrinos being their own anti-particle. These experiments involve completely
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different physics and systematics modeling from the cosmological constraints. They therefore may

be vital in reaching our target precision (De Salas et al., 2018; Qian and Vogel, 2015).

Current long-baseline neutrino oscillation experiments, such as T2K and NOvA, have some

sensitivity to the mass hierarchy through electrons in matter affecting the neutrinos as they travel

through the Earth (Tanabashi et al., 2018). These experiments previously found a slight preference

for the NH (Abe et al., 2017; Acero et al., 2019), but this preference has now been reduced, leaving

no clear preference for the NH (Esteban et al., 2020; Kelly et al., 2020). Heavens and Sellentin 2018

included the previous preference for the NH from long baseline neutrino oscillation experiments

by scaling the surrogate likelihoods. This approach could be included in this work if a preference

for the NH is re-established in the future. One of the major goals of future oscillation experiments

DUNE and JUNO is to determine the mass hierarchy (Acciarri et al., 2015; An et al., 2016). These

experiments are entering the construction phase but once built will have the sensitivity to provide

an independent determination of the hierarchy, if sufficient neutrino interactions are recorded.

2.5 Conclusions

Combining data from neutrino oscillation experiments and cosmological probes has the potential

to determine the neutrino hierarchy. In this work we developed a hierarchy-agnostic prior for a

joint analysis of neutrino oscillation and cosmology data. Using current data we found odds for

NH:IH of 2.7:1, which are inconclusive for determining the hierarchy. This is in contrast to previous

analyses which found substantial odds in favor of the NH, demonstrating that these results were not

data-driven.

We also computed the target precision, for future measurements of the neutrino mass sum,

which is required to determine conclusively the NH with odds of 100:1. For a neutrino mass

sum measurement at the NH minimum mass of 0.06 eV we found the precision on the neutrino

mass sum would need to reach 0.014 eV. For higher masses the precision required is even greater.

Future measurements of the neutrino mass sum will be systematics-limited. Therefore, our work

demonstrates that an order of magnitude improvement in systematics control is needed to determine

conclusively the neutrino hierarchy. While this is a challenging task, reaching this goal will be

essential for our understanding of the Beyond Standard Model properties of the neutrino sector.
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3
Forecasting the Potential of Weak Lensing

Magnification at LSST

3.1 Introduction

As light from distant galaxies travels towards telescopes it is deflected gravitationally by intervening

matter. This means that galaxy images appear distorted. On average, the distortions to individual

galaxy images are very small, but when combined they can be used to map statistically the matter

distribution in the universe. This technique is called weak gravitational lensing.

Weak gravitational lensing distorts both the shape and size of galaxy images. Statistical meas-

urements of the shape distortions are referred to as cosmic shear, and statistical measurements

of the size distortions are referred to as magnification. Making a magnification measurement,

which directly uses size information is challenging because there is a large intrinsic variation in

the sizes of galaxies. However, Schmidt et al. (2011) achieved a magnification measurement using

the joint distribution of galaxy sizes and magnitudes, and there are developing techniques which

anchor the size distribution using the fundamental plane of galaxies (Freudenburg et al., 2019;

Huff and Graves, 2013). Most magnification analyses therefore focus on making a magnification

measurement using galaxy number density information. In a flux limited survey, distortions to the

size of galaxy images affect the observed number density of galaxies for two reasons:

1. Since surface brightness is conserved by lensing if the observed size of a galaxy is increased so

is its observed flux. This means that galaxies previously too faint to be observed by a galaxy

survey become observable. The number density of galaxies is increased.

2. It is not only the observed size of individual galaxies which is increased by magnification but

the observed size of the whole patch of sky behind the lens. This means that the observable
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separation between galaxies behind the lens increases and there is a dilution in the number

density of galaxies.

These two effects compete and contribute to an overall fluctuation in the number density of galaxies,

as a result of weak lensing magnification.

Weak lensing using cosmic shear has been a highly successful technique. In recent years there

have been increasingly precise results using cosmic shear from galaxy surveys such as the Kilo

Degree Survey (KiDS) (Hildebrandt et al., 2020; Joudaki et al., 2018; van Uitert et al., 2018), the

Dark Energy Survey (DES) (Abbott et al., 2018; Troxel et al., 2018) and the Hyper Suprime-Cam

Survey (HSC) (Hikage et al., 2019). Weak lensing magnification has not been included in standard

weak lensing analyses to date. All that has been included is the sensitivity of results to including

a simplified magnification model (Abbott et al., 2019). The reasoning is, magnification provides

similar information to that of cosmic shear and has poorer signal to noise (Bartelmann, 2010).

However, due to improvements in statistical precision, recent works have shown that cosmological

results from upcoming surveys such as the Vera Rubin Observatory Legacy Survey of Space and

Time (LSST) and Euclid will be biased if the effects of weak lensing magnification are not included

(Cardona et al., 2016; Duncan et al., 2014; Lorenz et al., 2018; Thiele et al., 2019).

These works have shown that magnification must be included in future surveys to avoid bias, but

the aim of this work is to determine whether including magnification as a complementary probe can

also improve the final precision of the LSST weak lensing results. Duncan et al. (2014) and Lorenz

et al. (2018) found no increase in precision from including magnification in a weak lensing analysis,

however LSST is a special case. LSST is a very deep ground-based galaxy survey. This means that

there will be a lot of very faint, small and distant galaxies, which will be poorly resolved. It will

therefore not be possible to measure the shape of these galaxies, for use in a cosmic shear analysis,

but it may be possible to count them for a weak lensing magnification analysis. This means that the

potentially usable sample size for weak lensing magnification is significantly larger than that for

cosmic shear, and as such it is worth investigating magnification’s potential as a complementary

probe in the case of LSST.

In summary, we wish to determine the effect of including weak lensing magnification on the

precision of the final constraints from LSST weak lensing. We determine this using the Fisher matrix

formalism introduced in section 3.2. We then describe the modelling of the observables (weak

lensing power spectra and the galaxy luminosity function) in sections 3.3 and 3.4. We describe the

details of our LSST specific survey modelling in section 3.5. We verify the stability of our Fisher
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matrices in section 3.6; and present our results and conclusions in sections 3.7 and 3.8.

3.2 Fisher Analysis

The Fisher Information matrix summarises the expected curvature of the log-Likelihood function

around its maximum,

Fij =

〈
−∂2 lnL

∂θi∂θj

〉
, (3.1)

where L is the likelihood and θi is a model parameter. If the likelihood function is sharply peaked

for a given parameter, the parameter is tightly constrained by the data (Dodelson, 2003). The

marginal uncertainty on the model parameter θi can be calculated from the Fisher matrix as,

∆θi ≥
√

(F−1)ii . (3.2)

The greater than or equal relation is in reference to the Cramér-Rao inequality, which specifies

that the Fisher matrix gives the minimum possible uncertainty on an unbiased estimate of a model

parameter (Tegmark et al., 1997).

The Fisher information matrix can be calculated without data and is therefore a useful tool for

forecasting best-case parameter constraints. In the case of a Gaussian likelihood function and a

parameter independent covariance matrix the Fisher matrix is given by,

Fij =
∑
`

∂C`
∂θi

Cov−1 ∂C`
∂θj

, (3.3)

where C is the theory datavector and Cov is the associated covariance (Tegmark et al., 1997). In

this work we consider two component Fisher matrices, which we then add together since they

concern separate observables: the Fisher matrix where the theory datavector consists of the weak

lensing observables (detailed in section 3.3) and the Fisher matrix where the theory datavector

consists of the galaxy luminosity function (detailed in section 3.4). The associated covariances are

detailed in sections 3.5.5 and 3.5.2 respectively.
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3.3 Weak Lensing Observables

The two observable quantities used in this weak lensing analysis are the shape, often referred

to as ellipticity, and number density of galaxy images. Since weak lensing is a local effect the

mean ellipticity ε and fluctuation in the number density of galaxies n, resulting from weak lensing,

is equal to zero when averaged over large scales. Therefore, the key statistical quantity used in

weak lensing analyses is the two-point correlation function (see section 1.2.2 for further details).

There are three two-point correlation functions commonly considered in large-scale structure and

weak lensing analyses; cosmic shear (ellipticity-ellipticity), angular galaxy clustering (number

density-number density) and galaxy-galaxy lensing (number density-ellipticity). These two-point

correlation functions can be considered as individual probes or combined together into a joint

analysis, commonly referred to as ‘3x2pt’. Performing a joint analysis is desirable as it helps to

control uncertainties in the measurement, since the two-point functions are subject to different

systematic effects and have different sensitivity to the cosmological parameters.

The Fourier transform of the two-point correlation function for cosmic shear is given by,

〈ε̃i(`)ε̃j(`′)〉 = (2π)2δ(2)(`+ `′)Cijεε(`) , (3.4)

where ε̃ is the Fourier transform of the ellipticity, ` is the angular frequency, δ(2) is the two-

dimensional Dirac delta function and Cijεε is the projected ellipticity power spectrum between

redshift bins i and j (Joachimi and Bridle, 2010). It is useful to work in Fourier space because it

simplifies linking to the theory predictions. The galaxy samples used for weak lensing are often split

into redshift bins; a technique called redshift tomography. This binning enables weak lensing to

probe the evolution of the power spectrum with time, through auto- and cross-correlations between

the different redshift bins, and hence study the expansion of the universe and dark energy.

The Fourier space two-point correlation function for angular galaxy clustering is given by,

〈ñi(`)ñj(`′)〉 = (2π)2δ(2)(`+ `′)Cijnn(`) , (3.5)

where ñ is the Fourier transform of the number density contrast and Cijnn is the projected number

density power spectrum between redshift bins i and j. The Fourier space two-point correlation

function for galaxy-galaxy lensing is given by,

〈ñi(`)ε̃j(`′)〉 = (2π)2δ(2)(`+ `′)Cijnε(`) , (3.6)
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where Cijnε is the projected number density-ellipticity power spectrum between redshift bins i and

j. In this work we focus on angular galaxy clustering as an individual probe and a quasi 3x2pt

analysis, described in section 3.7.

3.3.1 2D Power Spectra

The key quantities in equations 3.4, 3.5 and 3.6 are the two-dimensional (2D) power spectra Cεε,

Cnn and Cnε. These are the observables we model to include in our Fisher matrix theory datavector,

see section 3.2.

In this work we model the 2D observable power spectra Cεε, Cnn and Cnε by breaking them

down into their constituent parts. The observed ellipticity of a galaxy comes from a combination of

the intrinsic shear of the galaxy before it is lensed γI (the intrinsic alignment, see Joachimi et al.

2015 for a review), the distortion of the shape by weak lensing shear γG and a random shape noise

component εrnd,

εi(θ) = γiG(θ) + γiI(θ) + εirnd(θ) , (3.7)

where i denotes the redshift bin. The observed number density of galaxies comes from a combination

of the number density fluctuation of galaxies as a result of galaxy clustering ng, the distortion to the

number density from weak lensing magnification nm, and a random shot noise component nrnd,

ni(θ) = nig(θ) + nim(θ) + nirnd(θ) . (3.8)

In terms of the Fourier space 2D power spectra the uncorrelated random components lead to

noise power spectra, and separating out the remaining contributions gives:

Cijεε(`) = CijGG(`) + CijIG(`) + CjiIG(`) + CijII (`) ,

Cijnn(`) = Cijgg(`) + Cijgm(`) + Cjigm(`) + Cijmm(`) ,

Cijnε(`) = CijgG(`) + CijgI(`) + CijmG(`) + CijmI(`) ,

(3.9)

where G represents ellipticity from weak lensing shear, I ellipticity from the intrinsic alignment of

galaxies, g number density fluctuations as a results of intrinsic galaxy clustering and m number

density fluctuations as a result of weak lensing magnification.

We compute all these two-dimensional power spectraCab from their associated three-dimensional
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power spectra Pab using the Limber approximation in Fourier space (Kaiser, 1992):

CijGG(`) =

∫ χhor

0

dχ
qi(χ)qj(χ)

f2
K(χ)

Pδδ

(
k =

`+ 1/2

fK(χ)
, χ

)
,

CijIG(`) =

∫ χhor

0

dχ
pi(χ)qj(χ)

f2
K(χ)

PIδ

(
k =

`+ 1/2

fK(χ)
, χ

)
,

CijII (`) =

∫ χhor

0

dχ
pi(χ)pj(χ)

f2
K(χ)

PII

(
k =

`+ 1/2

fK(χ)
, χ

)
,

Cijgg(`) =

∫ χhor

0

dχ
pi(χ)pj(χ)

f2
K(χ)

Pgg

(
k =

`+ 1/2

fK(χ)
, χ

)
,

Cijgm(`) = 2(αj − 1)CijgG(`) ,

Cijmm(`) = 4(αi − 1)(αj − 1)CijGG(`) ,

CijgG(`) =

∫ χhor

0

dχ
pi(χ)qj(χ)

f2
K(χ)

Pgδ

(
k =

`+ 1/2

fK(χ)
, χ

)
,

CijgI(`) =

∫ χhor

0

dχ
pi(χ)pj(χ)

f2
K(χ)

PgI

(
k =

`+ 1/2

fK(χ)
, χ

)
,

CijmG(`) = 2(αi − 1)CijGG(`) ,

CijmI(`) = 2(αi − 1)CijGI(`) ,

(3.10)

where χ is the comoving distance, fK(χ) is the comoving angular diameter distance, pi(χ) is the

probability distribution of galaxies in redshift bin i, and α is defined below. qi(χ) is a weight

function given by,

qi(χ) =
3H2

0 Ωm

2c2
fK(χ)

a(χ)

∫ χhor

χ

dχ′pi(χ′)
fK(χ′ − χ)

fK(χ′)
, (3.11)

for further details see Bartelmann and Schneider (2001). The calculation of the three-dimensional

power spectra Pab is detailed in the following section.

The equations in 3.10 show that the 2D power spectra associated with magnification Cgm, Cmm,

CmG and CmI can be computed from the 2D power spectra associated with weak lensing shear CgG,

CGG and CIG using the faint end slope of the galaxy luminosity function αi. We discuss the galaxy

luminosity function in section 3.4 but detail the relationship between the magnification and shear

power spectra here.

As mentioned previously weak lensing magnification contributes to fluctuations in the num-

ber density of galaxies n. If the number density of galaxies above the flux limit f is N0(> f)
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magnification alters the number density of sources as,

N(> f) =
1

µ
N0(> f/µ) , (3.12)

where N(> f) is the observed number density of sources and µ is the local magnification factor

(see the introduction chapter for details of the origin of µ) (Bartelmann and Schneider, 2001). If

the number density of galaxies is assumed to follow a power law N0(> f) = kf−α near the flux

limit of the survey then,

N(> f) =
1

µ
k

(
f

µ

)−α
= N0(> f)µα−1. (3.13)

This means the fluctuation in the observed number density of galaxies as a result of magnification

nm is given by,

nm =
N −N0

N0
= µα−1 − 1 ≈ (1 + 2κ)α−1 − 1 ≈ 2(α− 1)κ, (3.14)

where the weak lensing limit µ ≈ 1 + 2κ has been employed (see section 1.3.1 for details).

3.3.2 3D Power Spectra

The only 3D power spectrum Pab in equation 3.10 that is currently well modelled is the non-linear

matter power spectrum Pδδ. Pδδ summarises the clustering of matter in the universe and can

be derived numerically using the Boltzmann equations. In this work we compute Pδδ using the

Boltzmann code CAMB (Howlett et al., 2012; Lewis et al., 2000). To include non-linear corrections

we use HALOFIT (Takahashi et al., 2012). The remaining power spectra in eq. 3.10 are PIδ,

PII, Pgg, Pgδ and PgI. Pgg summarises the clustering of galaxies; PII is the intrinsic alignment

power spectra; and PIδ, Pgδ and PgI summarise the cross-correlations between galaxies, matter and

intrinsic alignments. These power spectra can all be related to the matter power spectrum.

In this work we employ a halo model formalism to calculate Pgg, PII, PIδ, Pgδ and PgI . This

model assumes that dark matter clusters into dark matter halos and that all dark matter exists within

dark matter halos. Galaxies are then assumed to form within these dark matter halos and hence the

galaxy distribution traces the distribution of dark matter. The model relies on two ingredients, the

underlying distribution of dark matter and how galaxies populate dark matter halos.

The dark matter distribution is summarized by: the halo mass function, which gives the number
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density of dark matter halos with mass M at redshift z; the halo bias function, which accounts for

dark matter halos being biased tracers of the underlying dark matter distribution; and the halo

density profile, which summarises how mass is distributed within dark matter halos. In this work we

use the Tinker et al. (2010) functional forms for the halo mass function and halo bias function, and

assume that the density of dark matter halos follows the Navarro-Frenk-White distribution (Navarro

et al., 1996). We compute the halo mass function using the publicly available python package hmf1

(Murray et al., 2013).

We summarise the second ingredient, how galaxies populate dark matter halos, using the

conditional luminosity function (CLF) (Cacciato et al., 2013; van den Bosch et al., 2013; Yang et al.,

2003). The CLF gives the average number of galaxies with a luminosity L between L± dL/2 in a

halo of mass M . It is divided into two parts:

Φ(L|M) = Φc(L|M) + Φs(L|M) , (3.15)

where Φc(L|M) is the CLF for central galaxies and Φs(L|M) is the CLF for satellite galaxies. Central

galaxies reside at the centre of dark matter halos and satellite galaxies orbit around them. Following

the approach detailed in Cacciato et al. (2013) we take the CLF of central galaxies to be modelled

by a lognormal distribution,

Φc(L|M)dL =
log e√
2πσc

exp

[
− (logL− logLc)2

2σ2
c

]
dL

L
, (3.16)

where σc represents the scatter in the log luminosity of central galaxies and Lc is parametrised as,

Lc(M) = L0
(M/M1)γ1

[1 + (M/M1)]γ1−γ2
. (3.17)

L0 = 2γ1−γ2Lc(M1) is a normalisation and M1 is a characteristic mass scale. The CLF of satellite

galaxies is modelled by a modified Schechter function,

Φs(L|M)dL = φ∗s

(
L

L∗s

)αs+1

exp

[
−
(
L

L∗s

)2]
dL

L
. (3.18)

where αs is the faint end slope of the satellite luminosity function. φ∗s is parametrised as,

log[φ∗s (M)] = b0 + b1(logM12) + b2(logM12)2, (3.19)

1https://github.com/steven-murray/hmf
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where M12 = M/(1012h−1M�) and L∗s is parametrised as,

L∗s (M) = 0.562Lc(M) . (3.20)

Both of the functional forms in eq. 3.16 and 3.18 are derived from the SDSS galaxy group catalog

in Yang et al. (2008). In total we have nine free parameters in our CLF model: logM1, logL0, γ1,

γ2, σc, αs, b0, b1 and b2. We include all of these parameters in our Fisher matrix.

Next we detail how to calculate the 3D power spectra Pgg and Pgδ from the CLF. First the power

spectra can be split into contributions from the one-halo (1h) and two-halo (2h) terms. The 1h

term describes the clustering of galaxies on small scales within the same dark matter halo and

the 2h term describes the clustering of galaxies on large scales between different halos. These

contributions can then be split into the contributions from central c and satellite s galaxies, as with

the CLF. This gives,

Pgg = 2P 1h
cs + P 1h

ss + P 2h
cc + 2P 2h

cs + P 2h
ss ,

Pgδ = P 1h
cδ + P 1h

sδ + P 2h
cδ + P 2h

cδ .

(3.21)

Note that there is no 1h term for central galaxies, as by definition there is only one central galaxy in

a halo. These contributions can be calculated using,

P 1h
xy (k, z) =

∫
Hx(k,M, z)Hy(k,M, z)n(M, z)dM ,

P 2h
xy (k, z) =

∫
dM1Hx(k,M1, z)n(M1, z)

×
∫

dM2Hy(k,M2, z)n(M2, z)Q(k|M1,M2, z) ,

(3.22)

where x and y can be c, s or δ. n(M, z) is the halo mass function mentioned above. Q(k|M1,M2, z)

accounts for the clustering of halos of mass M1 and M2, and incorporates the halo bias mentioned

above (for further details see van den Bosch et al. 2013). H is defined as,

Hδ(k,M, z) =
M

ρ̄m
ũh(k|M, z) ,

Hc(k,M, z) = Hc(M, z) =
〈Nc|M〉
n̄g(z)

,

Hs(k,M, z) =
〈Ns|M〉
n̄g(z)

ũs(k|M, z) .

(3.23)

where ũh is the Fourier transform of the normalised density distribution of dark matter in a halo
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of mass M (mentioned above), and ũs is the normalised number density distribution of satellite

galaxies in a halo of mass M . 〈Nc|M〉 and 〈Ns|M〉 are the average number of central and satellite

galaxies in a halo of mass M with luminosity in a given interval, and n̄g is the average number

density of galaxies across all halo masses in a given luminosity interval. 〈Nc|M〉, 〈Ns|M〉 and n̄g

are calculated using the CLF,

〈Nx|M〉 =

∫ L2

L1

Φx(L|M)dL , (3.24)

where x can be c, s or g=c+s,

n̄g(z) =

∫
〈Ng|M〉n(M, z)dM . (3.25)

To calculate the 3D power spectra PII and PIδ we employ the empirical Non-linear Linear

Alignment (NLA) model (Bridle and King, 2007). This model links the strength of the tidal field

when a galaxy forms to the intrinsic ellipticity of the galaxy. This gives,

PδI(k, z) = −AIAC1ρc
Ωm

D(z)
Pδδ ,

PII(k, z) =

(
AIAC1ρc

Ωm

D(z)

)2

Pδδ ,

(3.26)

where C1 is a normalisation constant and D(z) the linear growth factor. C1ρc is set to be 0.0134, a

reference value based on the intrinsic alignment amplitude measured at low redshifts on Super-

COSMOS (Bridle and King, 2007; Hirata and Seljak, 2004), and AIA captures the amplitude of the

deviation from this reference case. We take AIA as a free parameter in our Fisher matrix. The NLA

model is sufficiently flexible for current studies but in Fortuna et al. (2020) they found for upcoming

surveys, such as LSST, it can lead to a 1σ bias on Ωm. In Fortuna et al. (2020) they employ the

NLA model on large scales and then use the halo model formalism to compute PII and PIδ on small

scales. Implementing this modelling could be a future extension for this work.

3.4 Galaxy Luminosity Function

The second part of our Fisher matrix theory datavector, see section 3.2, is the galaxy luminosity

function. The galaxy luminosity function describes the distribution of luminosities in a galaxy

sample, the number density of galaxies with a certain luminosity, and is often directly measured
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from a galaxy sample. As specified in Cacciato et al. (2013) the galaxy luminosity function at a

given redshift z can be calculated from the CLF detailed in section 3.3.2,

Φ(L, z) =

∫
dM Φ(L|M)n(M, z) , (3.27)

where Φ(L|M) is the CLF and n(M, z) is the halo mass function (see section 3.3.2). In this analysis

we work with a galaxy sample divided into redshift bins (labelled i and j previously) so we wish to

compute the galaxy luminosity function for each redshift bin,

Φi(L) =

∫
dz ni(z)Φ(L, z) , (3.28)

where Φi(L) denotes the luminosity function of galaxies in redshift bin i, and ni(z) the redshift

distribution in bin i. We include a prediction for the galaxy luminosity function in each redshift bin

in our theory datavector as it helps to constrain the 9 CLF parameters detailed in section 3.3.2. The

faint end slope of the galaxy luminosity function is also required to calculate the magnification 2D

power spectra, see eq. 3.31.

3.5 Survey Modelling

We perform our Fisher forecast using the cosmological parameter estimation framework CosmoSIS

(Zuntz et al., 2015). To calculate the 3D power spectra detailed in section 3.3.2 we use a halo

model code developed by Maria Cristina Fortuna at the University of Leiden, which is the same halo

model employed in Fortuna et al. (2020).

In this analysis we define two mock LSST galaxy samples; an ellipticity sample ε-sample and a

number density sample n-sample. We use a 445 square degree mock catalog from the LSST Dark

Energy Science Collaboration (DESC) Data Challenge 2 (DC2) simulations (cosmoDC2 1.1.4 Korytov

et al. 2019). This catalog includes photometric redshifts for all galaxies with an i-band magnitude

less than 26.5, up to redshift 3. The photometric redshifts were calculated using the template fitting

code BPZ (Benitez, 2000). n-sample is defined as all galaxies in this mock catalog with an i-band

magnitude less than 26.5 and photometric redshift greater than 0.1 and less than 2.0. We set an

upper limit as the photometric redshifts degrade significantly beyond 2.0, see Fig. 3.1. ε-sample is

defined as a subset of galaxies in n-sample with i < 25.3 (Fig. 3.2). This corresponds to the LSST

gold sample, which will be used for weak lensing (LSST Science Collaboration, 2009). ε-sample is
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Figure 3.1: Photometric redshift point estimate mode against true redshift for the number density

sample n-sample.

defined to be shallower than n-sample because ellipticity measurements require higher resolution

galaxy images. Galaxies in n-sample have a signal-to-noise > 5 and galaxies in ε-sample have a

signal-to-noise > 20.

3.5.1 N(z) Distributions

To compute the 2D power spectra in eq. 3.10 and the luminosity functions in eq. 3.28 we require

the redshift distribution of galaxies in each photometric redshift bin. In this work we split both the

galaxy samples, n-sample and ε-sample, into 10 equally sized tomographic redshift bins using their

photometric redshifts. Figures 3.3 and 3.4 show the resulting distribution of galaxies with redshift

for each tomographic bin, as well as the tomographic bin boundaries. Figure 3.3 shows that the

photometric redshifts are close to random for bin 10 of n-sample, so our maximum photometric

redshift cut of 2.0 is well justified.

We compute the number density of galaxies in each tomographic bin to be 12.7 arcmin−2 for

n-sample and 4.9 arcmin−2 for ε-sample. n-sample has a greater number density of galaxies than

ε-sample because it includes fainter galaxies, due to its greater magnitude cut. However, weak
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Figure 3.2: Photometric redshift point estimate mode against true redshift for the ellipticity sample

ε-sample.

lensing shape measurements typically weight galaxies by signal-to-noise or ability to calibrate shape

measurements, this would reduce the number density for ε-sample, especially at high redshifts.

3.5.2 Conditional Luminosity Function Fiducial Values

The Fisher matrix gives the curvature of the log-Likelihood function around its peak. It does not

find the location of the peak, this is defined with a set of fiducial values (shown in Table 3.2). The

set of parameters required to calculate the 3D power spectra in section 3.3.2 are the cosmological

parameters and the CLF parameters. In this work we consider the constraints on a flat wCDM

cosmology, and vary the cosmological parameters Ωm, h0, Ωb, ns, As/10−9, w and wa. We take

their fiducial values from the input values used to generate the simulation for the LSST DESC mock

catalog, or from the values obtained by the Planck satellite (Aghanim et al., 2018). We also vary the

full set of CLF parameters logM1, logL0, γ1, γ2, σc, αs, b0, b1 and b2, detailed in section 3.3.2. In

this case choosing a set of fiducial parameters is more difficult.

We find the fiducial values of the CLF parameters by measuring the luminosity functions of our

mock LSST galaxy samples. We then find the CLF parameters which maximise the likelihood of the
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Figure 3.3: Number density of galaxies as a function of true redshift for each tomographic bin in

n-sample. The dashed lines indicate the tomographic bin boundaries for n-sample.
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Figure 3.4: Number density of galaxies as a function of true redshift for each tomographic bin in

ε-sample. The dashed lines indicate the tomographic bin boundaries for ε-sample.
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luminosity function predicted by the CLF model, given our mock data. To measure the luminosity

functions for n-sample and ε-sample we begin by computing the luminosity of each galaxy from its

rest-frame absolute magnitude in the i band. We then divide our sample into the 10 tomographic

bins described above and scale the luminosity function for each bin j by the volume of bin j, to

convert the histogram to number density. When calculating the bin volume we assume that the

galaxies do not scatter beyond the tomographic bin boundaries. This is an approximation, which

figures 3.3 and 3.4 show is becoming problematic for bin 10. We bin our 10 tomographic luminosity

functions using 10 luminosity bins.

Ideally, we would use the full range of galaxy luminosities in our analysis. However in order

to use the low luminosity region we would need to correct our galaxy samples to be volume

complete, for example through the 1/Vmax method (Cole, 2011; Felten, 1976; Schmidt, 1968). High

luminosity objects can be observed across the full volume of the survey, but low luminosity objects

can only be observed at smaller distances. This introduces a bias referred to as Malmquist bias, and

we therefore only want to include galaxies that can be observed across the whole volume of the

survey. For the purposes of this work we deemed it sufficient to simply cut out the low luminosity

galaxies to make the sample volume limited, since this is still a significant step forward compared

to previous analyses.

A deeper sample will be volume complete to lower luminosities, so when the luminosity function

of a shallower sample diverges from the luminosity function of a deeper sample, we know the

shallower sample has ceased to be volume complete. We can therefore determine the volume

complete luminosity cut for ε-sample by finding where it diverges from n-sample. Our divergence

condition is,

|Φiε(L)− Φin(ε)(L)|
Φiε(L)

> 0.2 (3.29)

where Φiε is the luminosity function for ε-sample and Φin(ε) is the luminosity function for n-sample,

where n-sample has been binned using the ε-sample tomographic bins. We cut Φiε when there is a

percentage difference of 20% from the deeper sample Φin(ε). 20% was found to cut Φiε before it

significantly diverged from the deeper sample whilst allowing for small deviations, see the right

panel of Fig. 3.5.

Since we did not have a sample deeper than n-sample available to us, we made a more stringent

volume complete cut on the n-sample luminosity function based on where the luminosity function

of our shallower sample ε-sample diverged. If the shallower sample is volume complete we can be
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Figure 3.5: Measured luminosity functions Φi(L) for each photometric redshift bin in n-sample (left)

and ε-sample (right), with associated bootstap errors. The dotted lines show the location of the

luminosity cuts to n-sample (left) and ε-sample (right) to make sure they are volume complete, and

do not introduce a bias. ε-sample n tomo bins refers to the ε-sample being binned into the n-sample

redshift bins, and n-sample ε tomo bins refers to the n-sample being binned into ε-sample redshift

bins. LΦi(L) has units of h3/Mpc3.
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sure that the deeper sample is also volume complete. In this case our divergence condition is,

|Φin(L)− Φiε(n)(L)|
Φin

> 0.2 (3.30)

where Φin is the luminosity function for n-sample and Φiε(n) is the luminosity function for ε-sample,

where ε-sample has been binned using the n-sample tomographic bins. While this luminosity cut

enforces that n-sample is volume complete, using a shallower sample means that the cut is much

more conservative than necessary.

Before the measured luminosity functions can be used to find the maximum likelihood CLF

values, we require their associated covariance. In this analysis we compute a bootstrap covariance

for our measured galaxy luminosity functions. First, we sample our dataset with replacement 100

times and compute the associated datavectors. We then assume that each luminosity bin in each

tomographic bin is independent (each of our datapoints is independent) and calculate the variance

of these 100 samples. This gives us a diagonal covariance. The variance of the 100 samples is in

general small, due to the very large numbers of galaxies in each sample. This is the covariance we

use to calculate our galaxy luminosity function Fisher matrix.

Once we have measured the luminosity functions, and found their associated covariance, we can

find the maximum likelihood CLF values. We assume a Gaussian likelihood, use the Nelder-Mead

method in the SciPy minimize package (Virtanen et al., 2020), and use the CLF parameters obtained

for the Sloan Digital Sky Survey (SDSS) by Cacciato et al. (2013) as our starting point in parameter

space. Figure 3.6 shows the galaxy luminosity function predicted from the CLF using the maximum

likelihood values (labelled theory) compared to the luminosity functions measured from our mock

galaxy samples. The specific values obtained are given in Table 3.2. There is good agreement

between the predicted luminosity function and the measured luminosity function, so we use the

maximum likelihood CLF values as the fiducial values in our Fisher analysis.

The largest difference between the SDSS fiducial values found by Cacciato et al. (2013) and

our maximum likelihood values is for the faint end slope of the satellite galaxy luminosity function

αs. The SDSS value for αs is -1.18 and our maximum likelihood value is -0.18, so the satellite

luminosity slope at the faint end is shallower for our deeper sample2. This makes sense as a survey

as deep as LSST should detect all but the faintest galaxies.

2The SDSS sample has an SDSS r band apparent magnitude greater than 17.7
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Figure 3.6: Measured luminosity functions Φi(L) for each photometric redshift bin in n-sample and

ε-sample compared to the theory prediction from the Conditional Luminosity Function (CLF), where

the CLF parameters that maximise the likelihood have been used as input parameters for the CLF.

LΦi(L) has units of h3/Mpc3. There are no datapoints for the highest luminosity bin of ε-sample

bin 2 and bin 8 due to there being no galaxies of such high luminosity in these samples.
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3.5.3 Faint End Luminosity Slopes

The key quantity in determining the size of the fluctuation in the number density of galaxies as a

result of weak lensing magnification is the faint end slope of the galaxy luminosity function α (see

eq. 3.31). If α is equal to 1 there is no overall fluctuation but if α does not equal 1 there is either an

increase or decrease in the number density of galaxies. In terms of magnitudes,

α(imag) = 2.5
d log10N(> imag)

dimag
, (3.31)

where imag represents the i band magnitude, and N(> imag) the number of galaxies with an i band

magnitude greater than imag (e.g. Duncan et al. 2014).

We measure the faint end slopes α from our LSST DC2 mock catalog. We compute a value αj for

each redshift bin j, in each mock sample. To compute αj we vary the i band magnitude in eq. 3.31

and compute the cumulative number counts N(> imag). We then fit the logarithm of N(> imag)

with a straight line, and use the slope to compute αj . Since we are only interested in the slope at

the faint end (high magnitudes) we only fit log10N(> imag) over the last magnitude before the

sample magnitude limit; 25.5–26.5 for n-sample, and 24.3–25.3 for ε-sample. Figure 3.7 shows that

in general this lower fit limit (marked by a dotted line) captures the value of αj at the faint end

of the sample. Increasing the lower fit limit has little effect on the value of αj obtained, whereas

decreasing the fit limit in general gives a higher value of αj .

Table 3.4 shows the αj values obtained for each sample and their associated uncertainties. The

uncertainties come from the fit, since they were found to be much larger than the uncertainties

on the values of the cumulative number counts N(> imag) due to the large number of galaxies in

each sample. The uncertainties are very small, and would become even smaller when using the full

18000 square degree LSST area instead of a 445 square degree mock catalog. We therefore consider

the αj parameters as fixed in our forecast.

We can compare the α values in Table 3.4 to those found in Duncan et al. (2014) for the

Canada–France–Hawaii Lensing Survey (CFHTLenS). In both cases αj generally increases with

redshift. CFHTLenS reaches an αj value of approximately 1 at its i band magnitude limit of 24.7,

for its highest redshift bin between 1.02 and 1.3. This roughly corresponds to α7 and α8 in ε-sample,

where the magnitude limit of 24.7 is included in the αj fit. Table 3.4 shows that our α7 and α8

values for ε-sample are consistent with CFHTLenS.
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Figure 3.7: The faint end slope of the galaxy luminosity function αi as a function of the limiting

magnitude for each tomographic bin in n-sample (red) and ε-sample (blue). The αi values used in

this analysis were found by fitting the slope of the logarithmic cumulative number counts (see eq.

3.31) between the vertical line and the right-hand side of the figure.
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Table 3.1: Faint end magnitude slopes αj for each redshift bin j in n-sample and ε-sample, with their

associated 1σ uncertainties.

n-sample ε-sample

α1 0.445± 0.005 α1 0.412± 0.005
α2 0.663± 0.006 α2 0.624± 0.004
α3 0.848± 0.006 α3 0.677± 0.004
α4 0.781± 0.005 α4 0.825± 0.006
α5 0.573± 0.004 α5 0.97± 0.01
α6 0.694± 0.006 α6 0.74± 0.01
α7 0.74± 0.01 α7 0.895± 0.006
α8 0.95± 0.02 α8 0.99± 0.01
α9 1.39± 0.01 α9 1.08± 0.01
α10 2.24± 0.02 α10 1.42± 0.01

3.5.4 Systematics

We include a number of systematics models in our analysis using nuisance parameters. For the

fiducial values of these parameters and their associated priors please see Table 3.2. To apply a

Gaussian prior to a particular parameter in a Fisher matrix, one simply adds 1/σ2
prior to the diagonal

element associated with the parameter (Coe, 2009). In conceptual terms, the priors on the Fisher

matrix parameters can be summarized by a diagonal covariance matrix with elements σ2
prior. This

covariance matrix can then be inverted into a prior Fisher matrix, giving 1/σ2
prior diagonal elements,

and added to the experimental Fisher matrix.

Shear Multiplicative Bias

Systematic uncertainties in the measuring and averaging of galaxy shapes can result in a multi-

plicative scaling of the observed shear. These systematic effects include: noisy galaxy images, the

applicability of the model used to describe the light profile of galaxies, the details of the galaxy

morphology and selection biases (Heymans et al., 2006; Mandelbaum et al., 2018; Zuntz et al.,

2018). We parametrise this multiplicative scaling using one parameter mi per redshift bin (10

parameters in total), which scale the cosmic shear and galaxy-galaxy lensing power spectra as:

Cijεε(l)→ (1 +mi)(1 +mj)Cijεε(l) ,

Cijnε(l)→ (1 +mj)Cijnε(l) .

(3.32)

We impose Gaussian priors on these multiplicative parameters, which are guided by the LSST DESC

science requirements (Alonso et al., 2018). These science requirements forecast the uncertainties
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LSST will need to achieve in order to meet their main objectives of significantly improving the

constraints on the dark energy parameters w0 and wa, compared to previous dark energy experi-

ments, and obtaining dark energy constraints where the total calibratable systematic uncertainty

is less than the marginalised statistical uncertainty. For the case of shear multiplicative bias the

requirement is that the systematic uncertainty should not exceed 0.003 by year 10. We therefore

apply a Gaussian prior centred on zero with a standard deviation of 0.003 to our shear multiplicative

bias parameters.

Clustering Multiplicative Bias

We parametrise uncertainties in the number count measurement using a similar approach to that

for shear. Systematics which affect the number density of galaxies include: galactic dust obscuring

background galaxies, variable survey depth impacting the number of sources promoted across the

flux limit by magnification, and stars contaminating the galaxy sample (Hildebrandt, 2015; Thiele

et al., 2019). Analogous to shear multiplicative bias, the observed clustering power spectra are

scaled by a multiplicative factor as,

Cijnn(l)→ (1 +mi
eff)(1 +mj

eff)Cijnn(l) ,

Cijnε(l)→ (1 +mi
eff)Cijne(l) .

(3.33)

However, since most systematics decrease with signal to noise ratio, we assume mi
eff has a power

law dependence on the signal to noise of galaxies in redshift bin i. This enables us to reduce the

number of clustering multiplicative bias parameters from ten parameters (one mi
eff per redshift bin)

to two parameters αm and βm. mi
eff is given in terms of αm and βm by,

mi
eff = mstep −mfid

=
1

Ni

[
αm

Ni∑
n=1

( S
N

)βm

n
− αfid

Ni∑
n=1

( S
N

)βfid

n

]
,

(3.34)

where Ni is the number of galaxies in tomographic bin i, the sum is over the signal-to-noise ratio

S/N of all galaxies in tomographic bin i, αfid is the fiducial value of αm and βfid is the fiducial value

of βm. We introduce the mfid term because if meff = mstep, βm becomes unconstrained when αm is

equal to zero, which breaks the Gaussian Likelihood assumption in the Fisher matrix prediction.

We compute the signal to noise ratio for each galaxy in our samples from the error on the

i band apparent magnitude (Hainaut, 2005). Using the signal to noise of every galaxy in this
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bias calculation is computationally expensive, since the total number of galaxies in n-sample and

ε-sample is of order 107 and 108. We therefore use a randomly selected 1% subsample of galaxies in

this calculation. This subsample is representative of the full galaxy sample, but prevents our bias

calculation from being prohibitively slow.

We only consider multiplicative biases because in Fourier space global additive biases disappear,

and local additive biases can be calibrated directly on the data.

Photometric Redshift Uncertainties

We model uncertainties in the redshift distributions shown in Figures 3.3 and 3.4 by introducing

shift factors ∆i (Bonnett et al., 2016). ∆i simply shifts the redshift distribution in bin i so,

ni(z)→ ni(z −∆i). (3.35)

Since we have two redshift distributions, one for ε-sample and one for n-sample, each divided into

10 bins this results in 20 shift parameters ∆i. We impose Gaussian priors on these shift parameters,

once again guided by the LSST DESC science requirements (Alonso et al., 2018). The prior is

centred on zero, with a standard deviation of 0.003 for the n-sample parameters and of 0.001 for

the ε-sample parameters .

3.5.5 Weak Lensing Observables Covariance

We compute a Gaussian covariance for the observable weak lensing power spectra (Cεε, Cnn, Cnε)

using CosmoSIS. The covariance between two power spectra is given by,

Cov
[
Cij(`), Ckl(`′)

]
= δ``′

2π

A`∆`

[
C̄ik(`)C̄jl(`) + C̄il(`)C̄jk(`)

]
, (3.36)

where ijkl denote redshift bins, A is the survey area and ∆` the size of the angular frequency `

bin (Joachimi and Bridle, 2010; Joachimi et al., 2008). The Kronecker delta δ``′ shows that in the

Gaussian case the covariance is diagonal. To account for the random terms in equations 3.7 and 3.8

we define,

C̄ij(`) = Cij(`) +N ij , (3.37)
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Table 3.2: Fiducial values and priors for the model parameters used to compute the fisher matrices

in this work

Parameter Fiducial Value Prior
Survey (section 3.5.5)

Area 18000 deg2 fixed
σe 0.35 fixed

Cosmology (section 1.2.4)
Ωm 0.265 Flat
h0 0.71 Flat
Ωb 0.0448 Flat
ns 0.963 Flat
As/10−9 2.1 Flat
w −1.0 Flat
wa 0.0 Flat
Ωk 0.0 fixed

CLF (section 3.3.2)
log(M1) 10.98 Flat
log(L0) 9.90 Flat
γ1 3.00 Flat
γ2 0.429 Flat
σc 0.047 Flat
αs −0.18 Flat
b0 −0.63 Flat
b1 1.50 Flat
b2 −0.177 Flat

Intrinsic Alignments (section 3.3.2)
AIA 1.0 Flat

n-sample Photo-z (section 3.5.4)
∆i
n 0.0 Gauss(0.0, 0.003)

ε-sample Photo-z (section 3.5.4)
∆i
ε 0.0 Gauss(0.0, 0.001)

Shear Multiplicative Bias (section 3.5.4)
mi 0.0 Gauss(0.0, 0.003)

Magnification Multiplicative Bias (section 3.5.4)
αm 0.001 Flat
βm 0.0 Flat
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where N ij is the random noise contribution in the shape or number density measurement. In the

case of Cεε,

N ij = δij
σ2
e

2n̄i
; (3.38)

in the case of Cnn,

N ij = δij
1

n̄i
; (3.39)

and in the case of Cnε, N ij = 0. Here, σ2
e is the total intrinsic ellipticity dispersion, and n̄i is the

average number density of galaxies in redshift bin i. We compute the power spectra covariance

for 20 log-spaced angular frequency ` bins from `min = 30, to avoid inaccuracies in the Limber

approximation, to `max = 3000.

3.6 Fisher Matrix Stability

High-dimensional Fisher matrices can be unstable. Here we detail the steps taken to ensure the

stability of our Fisher matrices and hence the robustness of our results.

The derivatives in eq. 3.3 are calculated numerically using a method of numerical differentiation

called a 5-pt stencil (Sauer, 2012). This method requires the pipeline to be evaluated at 4 points

around the model parameter’s fiducial value (5 points including the fiducial value). The separation

between these points is referred to as the step size. If the step size is too large the Fisher matrix fails

to capture the curvature of the likelihood function about the peak and if it is too small numerical

difficulties can arise. Therefore when using Fisher matrices it is vital to verify whether the step size

is appropriate, otherwise any results are meaningless.

We verify our step sizes in one dimension by fixing all but one model parameter. We then

calculate the 1D likelihood using a Fisher matrix with a specified step size and by sampling the

likelihood function directly. If the 1D likelihoods match we know we are using a reasonable step size

when calculating our Fisher matrix. We sample the likelihood function directly using a simulated

datavector generated at the Fisher matrix fiducial values and a grid sampler. Grid samplers evaluate

the likelihood at a specified set of grid points. Since we are assuming a Gaussian Likelihood when

calculating our Fisher matrix (eq.3.3) we are only interested in whether the standard deviation σ

of the likelihood calculated using the Fisher matrix matches the σ of the likelihood from sampling
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directly using a grid sampler.

Figure 3.8 shows the σ of the 1D likelihood calculated using the Fisher matrix for different

choices of step size. These plots show that as the step size decreases the σ of the 1D likelihood

reaches a plateau, where the step size is actually capturing the shape of the likelihood, before

becoming unstable (see subplot for magnification bias parameter αm). We therefore select a step size

in the range where the σ of the Fisher likelihood is stable. Figure 3.9 shows the Fisher likelihoods

generated using the selected step sizes overlaid with the likelihood from the grid sampler to verify

that they match. For the case of the magnification bias parameter βm the Fisher and grid likelihoods

do not match. This is because when calculating the Fisher matrix we assume that the likelihood is

Gaussian, and the likelihood of βm from direct sampling is clearly not Gaussian. This is a limitation

of the Fisher matrix approach, and we keep this in mind when making statements about the βm

parameter.

The 1D grid likelihoods in Figure 3.9 also show some numerical instabilities in the cosmological

parameters. We suspect that this is due to the 1D grid likelihoods challenging the numerical accuracy

of the pipeline, since fixing all but one parameter is not a realistic scenario and results in incredibly

tight constraints on a single parameter. We therefore additionally check the Fisher step sizes for

the cosmological parameters, by varying all the cosmological parameters at once and exploring the

multivariate posterior with Markov Chain Monte Carlo (MCMC) sampling3. Figure 3.10 shows a

comparison between the constraints obtained from the MCMC and the Fisher matrix. They match

well and show that our Fisher matrix is adequately capturing the shape of the likelihood.

Figures 3.8 and 3.9 show only an example case for the parameters used to generate the Cnn

Fisher matrix for ε-sample. However, the step sizes have been verified using this method for every

Fisher matrix referred to in the results section.

3.7 Results

In this section we present the effect of including magnification on the precision of an LSST like

angular galaxy clustering (Cnn) and a quasi ‘3x2pt’ (Cnn, Cnε, Cεε) analysis. We cannot conduct

a full ‘3x2pt’ analysis as the halo model we employ to calculate the 3D power spectra does not

currently have the capability to calculate Pgδ and PgI when the g, and the δI components come

from different galaxy samples. This means we cannot currently compute Cnε. Instead we assume

that the Cnn and Cεε analyses occur on separate patches of sky, so there are no correlations between

3the MCMC we use is emcee (Foreman-Mackey et al., 2013)
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Figure 3.10: Comparison of the constraints on the cosmological parameters used in this analysis

when found using an MCMC or a Fisher matrix. All other parameters have been fixed.
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them (no Cnε term). We are therefore able to use two separate implementations of the halo model,

and avoid the need for implementing two different samples at once.

3.7.1 Clustering

Figure 3.11 shows the forecast constraints on the cosmological parameters from Cnn with and

without including magnification terms for n-sample. In the case of including magnification the

observable is Cnn = Cgg + Cgm + Cmm instead of Cnn = Cgg. Including magnification significantly

improves the constraints on all of the cosmological parameters. In particular the 1σ constraint on

As/10−9 is improved by 73% from 0.04 without magnification to 0.01 with magnification. This is

because by including magnification terms we are incorporating weak lensing information into the

clustering measurement, and weak lensing is particularly sensitive to σ8 (see introduction) which

is the late-time version of As. The 1σ constraints on ns and H0 are also both improved by 61%

from 0.004 to 0.002 and from 0.010 to 0.004 respectively. Weak lensing does not have particular

sensitivity to these parameters, but they are highly degenerate with the measurement of As, see

Fig, 3.11. Therefore the large increase in precision of the As/10−9 constraints from including

magnification is likely driving the increase in precision for ns and H0.

Figure 3.12 shows the forecast constraints on the CLF parameters from Cnn with and without

including magnification terms for n-sample. Including magnification only slightly improves the

constraints on the CLF parameters, because the CLF constraints are predominantly determined by

the galaxy luminosity function, which does not change when including magnification. We focus on

the cosmological and CLF parameters, instead of presenting the full 28 parameter space, for clarity.

Figure 3.13 shows the forecast constraints on the cosmological parameters from Cnn and Cnn

including magnification terms for ε-sample. Including magnification improves the constraints

similarly to the deeper n-sample case (Fig. 3.11), but the improvement is less pronounced. The

greatest improvement in the constraints is still for As/10−9, but the improvement is 55% from 0.05

to 0.02, instead of 73% with the deeper n-sample. This shows that including magnification has a

greater impact for deeper samples as expected, since the total magnification is greater. Once again,

for ε-sample including magnification only slightly improves the CLF parameters.

A useful measure of the constraining power of an analysis is the Figure of Merit (FoM) defined

as,

FoM = det([F−1]q)
1

Nq , (3.40)
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Figure 3.11: Constraints on the cosmological parameters used in this analysis from Cnn and Cnn

including magnification terms for n-sample. Including magnification improves all of the constraints.
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Figure 3.13: Constraints on the cosmological parameters used in this analysis from Cnn and Cnn

including magnification terms for ε-sample. Including magnification improves all of the constraints,

although not as significantly as for the deeper n-sample.
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Table 3.3: Relative increase in the Figure of Merit (FoM) for the full set of cosmological paramet-

ers when deviating from the base analysis. The base analysis is taken to be Cnn not including

magnification terms for the LSST gold sample ε-sample.

change from Cnn ε-sample base case relative increase in FoM

n-sample 1.42
include magnification 1.69
n-sample and include magnification 4.13

where [F−1]q is the inverse Fisher matrix for the set of parameters q and Nq is the number of

parameters q in the set. In this work we define q as the full set of cosmological parameters, so the

FoM represents the power of the constraints on the cosmological parameters. It is also common to

define a Dark Energy FoM where q = {w,wa} (Albrecht et al., 2006).

Table 3.3 shows the relative increase in the FoM for the cosmological parameters, when the

analysis is adjusted from the base case. We take the base case to be the clustering analysis for

ε-sample (the LSST gold sample) not including the impacts of weak lensing magnification. When

only the deeper n-sample is used the FoM is increased by a factor of 1.42, and when only the

magnification terms are included the FoM is increased by a factor of 1.69. This means that when

deviating from the base analysis it is more beneficial to include magnification terms than to use a

deeper sample. However, if we include both the deeper n-sample and the magnification terms the

FoM is increased by a factor of 4.13. This shows that including magnification becomes even more

beneficial for deeper samples with greater numbers of low signal-to-noise galaxies.

3.7.2 Clustering + Shear

Cosmological Parameters

Figure 3.14 shows the forecast constraints on the cosmological parameters from our quasi ‘3x2pt’

analysis of Cnn and Cεε with and without magnification terms, where Cεε is calculated for ε-

sample and Cnn for the deeper n-sample. Including magnification the observables are Cnn =

Cgg + Cgm + Cmm and Cεε = CGG + CIG + CII, and in the case of not including magnification

Cnn = Cgg. Including magnification improves the constraints on the cosmological parameters even

when including the contribution from Cεε. The greatest improvement is in the 1σ constraint on

As/10−9, where there is a 60% increase in precision from 0.02 to 0.01 when including magnification.

This mirrors the Cnn only case, except the improvement in theAs/10−9 constraint is reduced because

the magnification terms provide similar information to Cεε. There is also a 47% improvement in the
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Table 3.4: Relative increase in the Figure of Merit (FoM) for the full set of cosmological parameters

when deviating from the base analysis. The base analysis is taken to be Cεε and Cnn not including

magnification terms for the LSST gold sample ε-sample.

change from Cεε ε-sample and Cnn ε-sample base case relative increase in FoM

n-sample 1.36
include magnification 1.30
n-sample and include magnification 2.60

H0 constraint from 0.007 to 0.004, which as mentioned in the clustering section is likely due to the

degeneracy between H0 and As/10−9 shown in Fig. 3.14. This degeneracy is worth investigating

further as it implies an LSST ‘3x2pt’ analysis could provide a competitive constraint on H0, an active

area of debate in current cosmology.

Figure 3.15 shows the forecast constraints on the cosmological parameters from our quasi ‘3x2pt’

analysis, with and without magnification terms for ε-sample. Similarly to the Cnn only case, the

impact of magnification is reduced when using the shallower ε-sample. In this case the improvement

in the 1σ constraint on As/10−9 is 32% from 0.03 to 0.02.

As above, Table 3.4 shows the relative increase in the FoM for the cosmological parameters,

when the analysis is adjusted from the base case. We take the base case to be the shear and

clustering analysis for ε-sample (the LSST gold sample), not including the impacts of weak lensing

magnification. Compared to the clustering only case the gains from including magnification are

reduced due to magnification providing similar information to Cεε. For the clustering only case

including magnification terms was more beneficial than using the deeper n-sample, which is not

true when including shear. When using only the deeper n-sample for Cnn the FoM is increased by a

factor of 1.36, and when only the magnification terms are included the FoM is increased by a factor

of 1.30. The factor increase in the FoM from including magnification and the deeper n-sample is

2.60, which is approximately half that for the clustering only case. When using shear information,

including magnification is not as beneficial.

Shear Calibration

When obtaining the cosmological constraints in figures 3.15 and 3.14 we place a tight Gaussian

prior on the shear multiplicative bias parameters (see Table 3.2). However, if we remove this prior

we can examine the impact of magnification on the shear multiplicative bias parameters.

Figure 3.16 shows the forecast constraints on the shear multiplicative bias parameters from our
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Figure 3.14: Constraints on the cosmological parameters used in this analysis from a joint analysis

of Cεε and Cnn with and without magnification terms. Cεε is calculated for ε-sample and Cnn is

calculated for n-sample. Including magnification improves the constraints.
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Figure 3.15: Constraints on the cosmological parameters used in this analysis from a joint analysis

of Cεε and Cnn with and without magnification terms. Cεε and Cnn are both calculated for ε-sample.

Including magnification improves the constraints to a lesser extent than when Cnn is calculated for

n-sample.
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Cnn and Cεε analysis, with and without magnification terms, where Cεε is calculated for ε-sample

and Cnn for the deeper n-sample. Including magnification improves the constraints on the shear

calibration parameters, particularly for those at higher redshift. For m1 there is almost no increase

in precision from including magnification, whereas for m6 there is a 40% increase in precision

and for m10 there is a 50% increase in precision. The effect of including magnification is similar

when Cnn is calculated using the shallower ε-sample, but less pronouced. For m1 there is almost no

increase in precision from including magnification, whereas for m6 and m10 there is a 20% increase

in precision.

This result means that including magnification helps to calibrate internally the shear meas-

urement. Usually shear measurments are calibrated using simulations (Kannawadi et al., 2019;

Mandelbaum et al., 2018), so including magnification could be a useful validation. Additionally, as

mentioned in section 3.5.4, the LSST DESC requirement is that the uncertainty on the multiplicative

shear calibration should not exceed 0.003 by year 10. We find that when Cnn is calculated for the

deeper n-sample, the constraints on the shear calibration parameters reach a precision of 0.003 when

including magnification for m6 −m10. Magnification is therefore a highly competitive validation as

it reaches the LSST requirement independently of external calibration.

Clustering Calibration

Figures 3.17 and 3.18 show the FoM for the set of cosmological parameters as a function of the

width of the prior on the multiplicative clustering bias parameters. The clustering bias parameters

are αm and βm, where αm is the amplitude of the bias and βm is the signal-to-noise dependence

(see section 3.5.4). There are two key conclusions to be drawn from these plots. First, that including

magnification always improves the FoM even if there is a lot of uncertainty in the clustering

calibration. Second, that if the 1σ uncertainty on αm can be reduced to approximately 10−3 there

is an increase in the FoM, Fig. 3.17 shows a higher plateau below 10−3. When Cnn is calculated

for the deeper n-sample the increase is 9% and when Cnn is calculated for ε-sample there is a 7%

increase. Similarly, if the 1σ uncertainty on βm can be reduced to approximately 10−1 there is an

increase in the FoM of 4% for n-sample and 3% for ε-sample. If we use the Dark Energy FoM where

q = {w,wa}, we find similar increases in the FoM at 10−3 for αm and 10−1 for βm. These values

could therefore be considered as targets for the future calibration of LSST clustering measurements.
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Figure 3.16: Constraints on the shear multiplicative bias parameters from a joint analysis of Cεε

and Cnn with and without magnification terms, where we have not applied the Gaussian prior

detailed in Table 3.2. Cεε is calculated for ε-sample and Cnn is calculated for n-sample. Including

magnification improves the constraints, particularly for those at higher redshift.
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Figure 3.17: Figure of Merit (FoM) for the set of cosmological parameters used in this analysis as a

function of the prior on the clustering multiplicative bias amplitude αm. Including magnification

always improves the FoM. If αm can be calibrated to a precision of 10−3 there are gains in the FoM.
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Figure 3.18: Figure of Merit (FoM) for the set of cosmological parameters used in this analysis as a

function of the prior on the clustering multiplicative bias signal-to-noise dependence βm. Including

magnification always improves the FoM. If βm can be calibrated to a precision of 10−1 there are

gains in the FoM.
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3.7.3 Bias

Recent works have shown that cosmological results from upcoming surveys such as LSST will

be biased if the effects of weak lensing magnification are not included, due to improvements in

statistical precision (Cardona et al., 2016; Duncan et al., 2014; Lorenz et al., 2018; Thiele et al.,

2019). To examine this for our forecast, figure 3.19 shows the absolute difference between the

clustering power spectra Cnn with and without magnification in terms of the 1σ uncertainty on the

clustering power spectra without magnification. In this case the clustering power spectra have been

calculated using n-sample. The grey shaded region indicates where Cnn including magnification

is more than 2σ away from Cnn without magnification. Particularly at high ` (small scales) Cnn

including magnification significantly diverges from Cnn without magnification.

For comparison, we have also shown the impact of changing Ωm and As by 5σ in Fig. 3.19. In

almost all of the redshift bin combinations shown the difference from including magnification is

larger than the difference from changing Ωm and As by 5σ. This clearly indicates that not including

magnification terms will catastrophically bias cosmological constraints from LSST. Additionally, the

difference from not including magnification seems to mimic the behaviour of biasing As by 5σ. This

implies that not including magnification could particularly bias the constraints for As, one of the

parameters weak lensing is most sensitive to.

Figure 3.20 shows the absolute difference between the clustering power spectra Cnn with and

without magnification in terms of the 1σ uncertainty on the clustering power spectra without

magnification, where the clustering power spectra have been calculated using the shallower ε-

sample. In this case the difference from including magnification is not as large as for n-sample,

however in most redshift bin combinations is still comparable or larger than the differences from

changing Ωm and As by 5σ.

3.8 Conclusions

Previous works have shown that upcoming results from surveys such as LSST and Euclid will be

biased if the effects of weak lensing magnification are not included (Cardona et al., 2016; Duncan

et al., 2014; Lorenz et al., 2018; Thiele et al., 2019). In this work we forecast whether including

weak lensing magnification as a complementary probe can additionally improve the precision of the

LSST weak lensing constraints. We determined this using the Fisher matrix formalism, where our

theory datavector included the weak lensing observables and the galaxy luminosity function. To
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Figure 3.19: Absolute difference between Cnn with and without magnification, in terms of the

uncertainty σ on Cnn with magnification, for n-sample. The grey shaded region indicates where Cnn

including magnification is more than 2σ away from Cnn without magnification. The dashed lines

show the difference in Cnn when Ωm and As are altered by 5σ. The redshift bin combination is

labelled in the top left corner of each panel by (i, j). We show only alternate bin combinations to

condense the figure.
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calculate the weak lensing observables and the galaxy luminosity function, we employed a halo

model, detailed in Fortuna et al. (2020). We defined two mock LSST galaxy samples from the LSST

DC2 simulations (Korytov et al., 2019) for use in our forecast; a sample which corresponds to the

LSST gold sample where the i band magnitude is less than 25.3 (intended to be used for the weak

lensing shear measurement), and a deeper sample where the i band magnitude is less than 26.5.

We found that weak lensing magnification provides additional information as a complementary

probe for LSST. For a galaxy clustering only analysis using the LSST gold sample we found that

including magnification increased the Figure of Merit (FoM) for the set of cosmological parameters

Ωm, h0, Ωb, ns, As/10−9, w and wa by a factor of 1.69. However, when using the deeper galaxy

sample we found that magnification increased the FoM by a factor of 4.13. For a galaxy clustering

and cosmic shear analysis (without galaxy-galaxy lensing) using the LSST gold sample we found

that including magnification increased the FoM by a factor of 1.3. When using the deeper galaxy

sample for the clustering part of the analysis we found that including magnification increased the

FoM by a factor of 2.6. The effect of including magnification is reduced in the combined galaxy

clustering and cosmic shear analysis because magnification provides similar information to that of

cosmic shear. In both analyses including magnification is more beneficial for deeper samples.

We also found that including weak lensing magnification has a significant impact on the precision

of the As constraints. For a galaxy clustering only analysis using the LSST gold sample we found

that including magnification increased the precision of the As constraints by 55%, using the deeper

sample we found an increase of 73%. For a galaxy clustering and cosmic shear analysis using

the LSST gold sample we found that including magnification increased the precision of the As

constraints by 32%, and when using the deeper sample for the clustering part of the analysis we

found that the precision increased by 60%. Even for the LSST gold sample, which will form the

core analysis, including magnification has a significant impact on the As constraints.

Aside from its impact on the cosmological parameter constraints we found that including weak

lensing magnification in a galaxy clustering and cosmic shear analysis can help to internally calibrate

the shear measurement. The increases in precision from including magnification may be optimistic

for our joint galaxy clustering and cosmic shear analysis, as we assume that the cosmic shear

analysis occurs on an independent part of the sky. In reality magnification will partially or fully

measure the same volume as cosmic shear, which will reduce the statistical gains, but would likely

improve magnification’s ability to calibrate the shear measurement. There is no choice but to model

the cosmology dependence of magnification in an LSST analysis to avoid bias, and this work shows

that there are additional benefits to including magnification.
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While this forecast is more realistic than many to date, as it includes LSST mock catalog data and

a flexible galaxy bias model, it still relies on a number of simplified assumptions about magnification.

Firstly, the magnification modelling assumes that the galaxy sample is purely flux limited. Often

galaxies are also selected based on their signal-to-noise ratio, colours and morphology which

complicates the magnification modelling (Hildebrandt, 2015). Secondly, there are a large number

of systematics associated with the magnification measurement such as dust attenuation, variable

survey depth, star-galaxy separation and the blending of galaxy images (Hildebrandt et al., 2013;

Morrison and Hildebrandt, 2015; Thiele et al., 2019). We included a multiplicative factor in our

modelling of the clustering power spectra in order to incorporate these effects, and found that

magnification always improves the FoM, independent of the uncertainty in the clustering calibration.

However, more detailed modelling of these effects may alter this conclusion. Our results also

showed that there are much greater benefits to including magnification when using a galaxy sample

deeper than the the LSST gold sample. Using a deeper galaxy sample is therefore very desirable,

but the impact of systematic effects would likely be increased due to the greater numbers of low

signal-to-noise galaxies.
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4
Conclusion

This thesis is focussed on the precision of upcoming large-scale structure surveys. In chapter 2 we set

a target precision for future large-scale structure measurements to determine the neutrino hierarchy,

when combined with neutrino oscillation measurements. In chapter 3 we forecast whether including

weak lensing magnification in future large-scale structure analyses, such as for LSST or Euclid, can

improve the precision of the final cosmological constraints.

In chapter 2, we set a target precision for future large-scale structure measurements by formu-

lating a prior, for a joint analysis of neutrino data from oscillation experiments and from cosmology,

which is agnostic to the neutrino hierarchy. The neutrino hierarchy refers to the ordering of the

neutrino masses, and is a key question in neutrino physics. Neutrino oscillation experiments provide

information about the mass differences between the individual neutrinos, whereas cosmological

experiments provide an overall mass scale in the form of the sum of neutrino masses. They are

therefore highly complementary probes, and a joint analysis of the neutrino hierarchy is desirable.

However, selecting a suitable prior for this joint analysis is challenging and can have a large impact

on the final results. A number of works have found very different odds in favour of the neutrino

hierarchy largely due to their choice of prior, see chapter 2 for details. We therefore constructed

a prior, which was agnostic to the hierarchy by design, and determined that current data is not

powerful enough to determine the neutrino hierarchy. Since the limiting factor in this joint analysis

is the cosmological neutrino mass sum measurements, we then set a target precision for future

cosmological data to determine the neutrino hierarchy.

A future direction for this work is to determine whether our target precision is achievable. With

the DESI telescope currently taking data, it is likely that there will be a cosmological measurement

of the neutrino mass sum in the next 5 years; currently the measurements are only upper limits

(Aghamousa et al., 2016; Font-Ribera et al., 2014). But reaching the precision required to determine
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the neutrino hierarchy is a more challenging task. Current forecasts suggest that a combination of

CMB data from Planck, with large-scale structure data from Euclid, LSST or DESI can reach a 1σ

precision of approximately 0.02 eV (Copeland et al., 2020; Font-Ribera et al., 2014; Laureijs et al.,

2011; Mishra-Sharma et al., 2018). However, in order to reach our target 1σ precision of 0.014 eV,

an improved measurement of the optical depth to reionisation τ is likely required (see introduction)

(Brinckmann et al., 2019; Mishra-Sharma et al., 2018). Currently, the LiteBIRD satellite is the only

funded experiment, which could improve upon the Planck measurement of τ , and it is expected to

be launched in the mid-late 2020s (Hazumi et al., 2019).

One of the major goals of upcoming neutrino oscillation experiments, such as DUNE and JUNO

is to determine the neutrino hierachy (Acciarri et al., 2015; An et al., 2016). This is an independent

measurement, which focusses on how neutrinos and anti-neutrinos propagate differently through

matter, and is becoming possible due to the long propagation distances involved in these experiments

(Acciarri et al., 2015). DUNE is planned to begin taking data in 2026 and JUNO in 2021, so it is

likely there will be a determination of the neutrino hierarchy from oscillation experiments in the

late 2020s. However, an additional determination of the hierarchy from combining the neutrino

mass splittings and neutrino mass sum from cosmological data would be a stunning confirmation of

both the cosmological and the standard model, given the hugely different physics involved. Another

interesting avenue for future neutrino physics is the improved measurements of the neutrino mass

from beta decay and neutrino-less double beta decay experiments (see introduction). If these

lab-based searches find a result consistent with future cosmological results, the cosmological model

will gain a significant boost.

In chapter 3 we investigate whether including weak lensing magnification in future weak lensing

analyses can increase the precision of the final constraints on the cosmological parameters. Weak

lensing is a technique which uses the minute distortions to galaxy images caused by gravitational

light deflection to map the matter distribution in the Universe. Usually weak lensing focuses on

distortions to the observed shape of galaxies, but weak lensing magnification utilises distortions to

the apparent size of galaxies. Statistical measurements of the shape distortions are called cosmic

shear, and weak lensing magnification can be measured statistically through its contribution to

galaxy clustering (see chapter 3). Weak lensing magnification has not been included in standard

weak lensing analyses to date, but recent works have shown that it must be included in future

analyses, such as for LSST and Euclid, to avoid biasing the results (Cardona et al., 2016; Duncan

et al., 2014; Lorenz et al., 2018; Thiele et al., 2019). We therefore forecast whether including

weak lensing magnification in an LSST analysis could additionally improve the precision of the final
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cosmological constraints.

We found that including weak lensing magnification improves the precision of the final LSST

constraints for both a galaxy clustering only analysis and a joint galaxy clustering and cosmic shear

analysis, and that the impact of magnification is greater for deeper galaxy samples. In particular

we found that for a joint LSST galaxy clustering and cosmic shear analysis the constraint on As,

a parameter weak lensing is particularly sensitive to, would be improved by 32% when using the

base LSST galaxy sample for the galaxy clustering analysis, and by 60% when using a sample which

is approximately one magnitude deeper. In addition to weak lensing magnification improving the

precision of the cosmological constraints, we found that it could help to calibrate internally the

cosmic shear measurement. This work therefore shows that there are benefits to including weak

lensing magnification in an LSST analysis, beyond avoiding bias.

A future direction for this work is to examine how best to include weak lensing magnification in

upcoming weak lensing analyses. Current magnification modelling is quite simplified and in order

to include magnification in a future weak lensing analysis the effects of various systematics on the

magnification measurement would need to be modelled (see chapter 3 for further details). Thiele

et al. (2019) also showed that the effects of magnification cannot simply be removed by making

cuts to the datavector used in the analysis. Also, our work shows that including magnification has a

much greater impact on the final constraints when using a deeper galaxy sample. A deeper galaxy

sample would likely be more susceptible to systematic effects, given the greater numbers of low

signal-to-noise galaxies, so accurate modelling is even more important.

Another way weak lensing magnification could bias future photometric surveys is through its

impact on photometric redshift calibration. Photometric redshift estimation is a major source of

uncertainty for current and upcoming large-scale photometric surveys, and may be the source

of the current tension between weak lensing surveys, such as DES (Troxel et al., 2018) and

KiDS (Hildebrandt et al., 2020), with Planck (Aghanim et al., 2018) (see introduction). One

option for controlling photometric redshift uncertainties is to use the clustering of galaxies in a

spectroscopic sample (where the redshifts are well known), to calibrate the photometric sample

(Busch et al., 2020; Matthews and Newman, 2010). However, since magnification biases clustering

measurements it can complicate the calibration. The impact of weak lensing magnification on the

calibration therefore needs to be quantified. Additionally, since photometric redshift uncertainties

will contribute significantly to the total uncertainty of results from upcoming surveys, accurately

calibrating the photometric redshifts will be vital in reaching our target precision to determine the

neutrino mass hierarchy.
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Our target precision has been cited by several other studies focussed on how to learn about

neutrinos from cosmology, and our finding that including weak lensing magnification can improve

the precision of the final cosmological constraints provides a positive case for its inclusion in future

weak lensing analyses. This thesis work has therefore made a useful contribution to the era of

precision cosmology.
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