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Abstract 

 

Speech can convey emotional meaning through different channels, two are regarded as 

particularly relevant in models of emotional language: prosody and semantics. These 

have been widely studied in terms of their production and processing aspects, but 

sometimes overlooking individual differences of listeners. The present thesis examines 

whether greater intrinsic levels of anxiety can affect threatening speech processing. Trait 

anxiety is the predisposition to increased cognitions such as worry (over-thinking of the 

future), and emotions such as angst (felling of discomfort and tension), and can be 

reflected by an overactive behavioural inhibition system. As a result, according to 

emotional language and anxiety models, emotional prosody/semantics and anxiety might 

have overlapping neural areas/routes and processing phases. Thus, threatening 

semantics or prosody could have differential effects on trait anxiety depending on the 

nature of this overlap. This problem is approached by using behavioural and 

electroencephalographic (EEG) measures. Three dichotic listening experiments 

demonstrate that, at the behavioural level, trait anxiety does not modulate lateralisation 

when stimuli convey threatening prosody, threatening semantics or both. However, these 

and another non-dichotic experiment indicate that greater anxiety induces substantially 

slower responses. An EEG experiment shows that this phenomenon has very clear neural 

signature at late processing phases (~600ms). Exploratory source localisation analyses 

indicate involvement of areas predicted by the models, including portions of limbic, 

temporal and prefrontal cortex. The proposed explanation is that threatening speech can 

induce anxious people to over-engage with stimuli, and this disrupts late-phase processes 

associated with orientation/deliberation, as proposed by anxiety models. This process is 

independent of information type until later phase occurring after speech comprehension 

(e.g. response preparation/execution). Given this, a new model of threatening language 

processing is proposed, which extends models of emotional language processing by 

incorporating an orientation/deliberation phase from anxiety models.  
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Impact Statement 

 

The present thesis portrays the core of a long-run research project aimed at 

understanding cognition and emotion by studying the relationship between language and 

anxiety. In particular, the effects of trait anxiety on threatening speech processing can 

reveal the intermingling of cognitive and emotional processes via precise measurements 

of speech, anxiety and comprehension. This relationship can have a direct impact on 

theoretical models on emotional language and anxiety. By researching them together, it 

is not only possible to test their derived hypotheses, but also allowing to extend these 

models. Furthermore, beyond the basic science research carried on by this project, it can 

develop into many practical applications. For instance, understanding how threatening 

speech affects trait anxiety behavioural responses can provide crucial information for 

anxiety assessment through speech. Moreover, understanding the temporal neural 

signature of anxious responses to threatening speech can help to understand what the 

particular brain responses of anxiety are. In this way, present research can provide a solid 

base for developing assessment and/or treatment of anxiety- and speech-related issues. 

Therefore, the main impact of this thesis is relevant to both experimental and theoretical 

domains; which can provide useful evidence for developing future applied science 

approaches. Indirectly, areas such as artificial emotional speech development or applied 

statistical modelling could receive relevant input from the present project. In short, the 

present project is a relevant contribution to theory, experimentation, methodological and 

practical domains.  
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Chapter 1 

Introduction 

A Link between Language and Anxiety 
 

 

 The relationship between emotion and cognition has been considered elusive, and 

this might result from understanding them as dissociable, instead of understanding them 

as part of a single broader process or at least tightly intertwined, where processes 

considered as cognitive like planning or thinking support and/or depend on processes 

considered emotional such as responses to feelings or appetitive/aversive responses 

(Damasio, 2012; Pessoa, 2018; Pessoa et al., 2019). Language could be understood as a 

possible window into cognitive-emotional processing as it can instantiate both 

communication and thought. Language has been observed to rely on both cognitive and 

emotional processing; where, for instance, emotional processing networks in the brain 

can support the interpretation of abstract meanings or emotional states of listeners can 

affect meaning interpretation in general (Kousta et al., 2011; Pauligk et al., 2019; Pinheiro 

et al., 2013; Van Berkum et al., 2013; Verhees et al., 2015; Vigliocco et al., 2014). 

Therefore, if emotion and cognition are not clearly separable and language is rooted in 

them, then the basic processing of language should be affected by anything that affects 

cognitive-emotional processing. Thus, individual differences such as cognitive-emotional 

disorders or traits, should induce effects on language processing. The present thesis is 

the result of a research project intended to tap into this interaction between language and 

individual differences. To narrow down observations to a more precise object of study, 

the main focus is placed on emotional speech and anxiety. Emotional speech, because 

language can convey complex emotional meaning through different channels 

simultaneously, which can elicit cognitive-emotional responses with clear temporal and 

anatomical patterns (Kotz and Paulmann, 2011). Anxiety, because it grasps cognitive-

emotional aspects in a very straightforward manner, with clear neurophysiological 

mechanisms of action (Robinson et al., 2019). More precisely, the present project focuses 

on how threatening speech processing, conveyed prosodically or semantically, is affected 

by trait anxiety. 

This narrowing down is important, as stimuli conveying different emotions can 

elicit different responses. For instance, clear double dissociations have been observed for 
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the processing of fear and anxiety, processed by partially overlapping but distinct 

neurophysiological mechanisms (Gray and McNaughton, 2000; Robinson, 2019); even 

more so for positive affective states such as happiness/pleasure (Kringelbach and 

Berridge, 2009). This fact is sometimes overlooked by research on language or acoustics, 

which usually test emotional variation across emotions rather than variations within a 

single emotional expression (e.g. threat) and its effects on intrinsic affect (e.g. trait 

anxiety). For instance, it has been observed that syntax processing can be impaired by 

induced negative mood (Van Berkum et el., 2013; Verhees et al., 2015) or by disorders 

such as bipolar disorder or schizophrenia (Lee et al., 2016); which emphasises the 

relevance of studying specific effects of threatening speech variation of information 

channels (e.g. semantics, prosody) on anxiety. On the other hand, research on anxiety 

tends to assume that all stimuli provide a similar basis of stimulation, independent of 

their modality. This overlooks the fact that emotional language can be conveyed through 

different information types (e.g. prosody, semantics), which are not processes in the same 

way (Kotz and Paulmann, 2011) and may be differently affected by anxiety (e.g. Pell et al., 

2015). Therefore, the present approach can bring a more nuanced description and 

explanation of specific effects of trait anxiety on processing of threatening speech; from 

which less coarse generalizations could be generated.  

A crucial link between these domains is related to general mechanism of attention 

control. It is generally understood that early attention (up to 200ms) to emotional stimuli 

involves right lateralised ventral portions of prefrontal cortex, while more integrative 

and evaluative processes would involve more posterior left lateral cortex (Corbetta et al., 

2008; Vuilleumier and Driver, 2007). Greater right prefrontal activity has been associated 

with anxiety and behavioural inhibition (Gable et al., 2017). Furthermore, right and left 

lateralised activity have been associated with the arousal and apprehension components 

of anxiety respectively, where the first is associated with over-attention to threat and the 

latter to over-engagement with threat (Spielberg et al., 2013). This matches models of 

attentional biases in anxiety, where earlier phases are related with detection and 

recognition of stimuli, while later phases are related with evaluation and orientation 

(Bar-Haim et al., 2007). Models of emotional language, such as the multistep model of 

emotional language processing (Kotz and Paulmann, 2011), already reveal this match-up 

between lateralisation and processing phases, but they can also be indicative of possible 

differences regarding stimulus type. Although speech processing is generally bilateral 
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(Hickok and Poeppel, 2007), prosody processing is privileged by the right hemisphere 

while semantic processing is privileged by the left (Poeppel et al., 2008; Zatorre et al., 

2002). In the case of emotional language, this can be highly dependent on processing 

phase, involving distinct limbic and neocortical structures at earlier or later processing 

windows (Kotz and Paulmann, 2011). This is very important, as prosodic and semantic 

threat could be affected by anxiety in different ways, depending on both lateralisation 

patterns and processing phase. 

The following chapters will present a theoretical background and supporting 

evidence used to construct a model of anxious processing of threatening language. 

Chapter 2 will introduce a literature review of current theory and models focusing on the 

time-course and anatomical networks of emotional speech and anxiety processing. 

Chapter 3 will introduce the statistical methods for subsequent chapters, detailing 

modelling decisions and model structures. Chapter 4 focuses on assessing experimental 

stimuli and will provide evidence for prosodic and semantic characteristics of 

threatening speech production. Chapter 5 details a study containing two dichotic 

listening experiments aimed at understanding possible lateralisation and phasic 

differences of threatening speech processing given trait anxiety levels. Chapter 6 will 

provide an in-principle replication of the second experiment presented in the previous 

chapter, focusing on a non-dichotic task to observe whether similar effects are observed 

in a different task. Chapter 7 details an EEG experiment, using the event-related potential 

technique, providing evidence for late phase effects of anxiety on speech processing. 

Chapter 8 discusses the previously presented results, revising the proposed operative 

model, and proposes a model for the processing of threatening speech in anxiety.  
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Chapter 2 

Literature Review 

Threatening Voices and the Anxious 
 

 

2.1 Threatening Speech 

 Before exploring the characteristics of threatening speech, it is important to clarify 

the features of general speech processing. The current prevalent neuroscientific model of 

speech processing is the dual stream model, which in terms of language 

perception/processing involves two main brain networks termed the ventral and dorsal 

streams (Kemmerer, 2015). While the dorsal stream, involving areas such as inferior 

frontal gyrus (IFG) and parietal-temporal cortex (with a left hemisphere bias), is mainly 

involved in speech production and articulation; the ventral stream, involving areas such 

as bilateral inferior, middle and superior temporal cortex, mainly participates in speech 

comprehension (Hickok and Poeppel, 2007). As the present project focuses on speech 

comprehension/processing, features of the ventral stream are particularly relevant. The 

bilateral involvement of areas in this network has to do with differences in the 

information properties of the processed stimulus. The key difference is processing rate, 

where tonal information, processed at a slower frequency rate, would be processed 

mainly by the right hemisphere (RH), but the left hemisphere (LH) would privilege fast 

rate segmental information (Poeppel et al., 2008; Zatorre and Gandour, 2007). This 

implies that speech information that depends upon spectral variation (e.g. pitch or voice 

quality increases/decreases), would be mainly processed by RH structures, such as right 

temporal cortex (Belin et al., 2004; Ethofer et al., 2011). Otherwise, faster rate 

information, such as phonological variation, would be prioritised by areas (e.g. temporal 

cortex) at the LH (Scott and Johnsrude, 2003; Poeppel, 2014). Note that 

 As words (i.e. lexical items) are composed of phonemes (i.e. segmental features of 

speech), semantic information conveyed through words is dependent on segmental 

features of speech (Kemmerer, 2015). Hence, according to the presented speech 

processing model, there should be an increased involvement of LH networks during 

semantic comprehension, as LH language networks tend to privilege fast rate information 

processing. Otherwise spectral elements of emotional prosody, processed at a slower 

rate, should be prioritised by RH. Crucially, the dorsality and laterality differences for 
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acoustic processing not only vary with respect to information type, but also depend on 

processing time (in particular for emotional sounds), with bilateral support from other 

brain structures in different time windows (Früholz et al., 2016a). Therefore, speech 

comprehension can show both laterality and temporal differences depending on whether 

meaning is conveyed through different information types, such as prosody or semantics. 

 Prosody is understood as the variation and combination of suprasegmental 

features such as duration, rhythm, intensity or pitch (Sidtis and Van Lancker Sidtis, 

2003); combination and variation which can be intended for the communication of 

emotion (Banse and Scherer, 1996; Lausen and Hammerschmidt, 2020; Sidtis and Van 

Lancker Sidtis, 2003). Thus, the comprehension of prosody might depend upon contrasts 

between and presence/absence of several features, which have been adjusted by the 

speaker to convey a specific emotion (e.g. anger). This ‘tuning up’ of sorts can imply the 

increase of certain features and the decrease of others which together will imbue the 

stimulus (i.e. sentences) with emotional meaning. For instance, it has been observed that 

emotional meanings as different as joy and rage are similar in having higher pitch, and 

mainly differ in being less intense and having less energy at high frequency ranges 

(Hammerschmidt and Jürgens, 2007). For the case of threatening speech, this would 

imply that voice quality measures focusing on frequency range differences, such as 

Hammarberg index which measures differences between 0-2000hz and 2000-5000hz 

ranges (Banse and Scherer, 1996), should be lower for raging or threatening sentences; 

while average or median fundamental frequency (pitch) should be higher. Whether 

increases in median pitch and decreases in Hammarberg index (voice quality) are 

sufficient to explain threatening/aggressive voices is a relevant empirical question.  

Semantic meaning can be understood, linguistically, as the meaning derived from 

lexical items or explicit sentence context (Kemmerer, 2015). Hence, if a stimulus has no 

meaningful variations in prosody, it could convey emotionality through its content, as the 

slow rate phonemic articulations can combine to produce a lexical item (or similar), but 

not prosodic meaning (at a slower rate). Hence, if the focus is on threatening semantics, 

threat could be characterised solely by lexical content. Thus, standardised norm of words’ 

meanings, such as the Affective Norms for English Words (ANEW) (Warriner et al., 2013), 

could provide a good mechanism for quantifying the threat level of lexical items 

(semantics). For instance, as indicated by ANEW’s arousal and valence scores, sentences 

containing lexical items higher in arousal and lower in valence could be understood as 
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angrier and more threatening. Consistent with this, it has been observed that words 

conveying pain (Borelli et al., 2018) or threat (Ho et al., 2015) show high arousal and low 

valence values. Although sentences not containing emotional lexical items can convey 

emotional meaning (Lai et al., 2015), if emotionally loaded items are present, these will 

normally drive the emotional meaning of the sentence (e.g. Paulmann and Kotz, 2008; 

Yan and Sommer, 2018). Given this, sentences with threatening semantics characterised 

as high in arousal and low in valence (via their lexical items) could provide a 

complimentary empirical question to that asking whether threatening prosody can be 

mainly characterised as high in median pitch and low in Hammarberg index (voice 

quality).   

Although arousal and valence at the lexical level are not necessarily the only 

features composing semantic threat, or pitch and voice quality are not necessarily the 

only features composing prosodic threat, they can be sufficient to quantitively 

characterise stimuli that are able to be felt and comprehended as threatening. This should 

provide two comparable bidimensional maps of threatening semantics (arousal and 

valence dimensions) and prosody (pitch and voice quality dimensions). Also, this 

approach allows stimuli to be concretely categorised, which facilitates making inferences 

about emotional/cognitive responses (e.g. rumination/worry) elicited by these stimuli. 

Regarding prosody, some electroencephalography (EEG) studies show mid-phase event-

related potentials (ERPs) (~300ms) and theta (4-12Hz) band activity modulated by 

variations of acoustic measures of angry prosody such as intensity (Chen et al., 2012). 

Previous research (Chen et al., 2011) indicates that late phase processing (over 400ms) 

is highly relevant for assessment processes (e.g. integration), when evaluating angry 

prosody characterised by mean pitch and intensity. Using similar stimuli, more recent 

research indicates earlier phase theta (100-600ms), but also later phase beta (12-30Hz) 

modulation by angry prosody (Chen et al., 2014). Similarly, late activity (400-600ms) as 

a left-lateralised late positive potential (LPC), has been recently observed for angry 

versus happy vocalisations (also characterised by pitch and intensity), but was 

interpreted as enhanced attention and evaluation (Burra et al., 2018). Regarding 

semantics, some EEG studies directly addressed lexical meaning as characterised by 

arousal and valence (Citron, 2012). A commonly observed pattern is the modulation of 

LCP by valence and arousal variations (Citron et al., 2013; Delaney-Busch et al., 2016; 

Imbir et al., 2017; Zhang et al., 2014). Although these studies did not characterise 
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arousal/valence variation in terms of specific emotions (e.g. anger), they do indicate that 

lexical meaning properties, such as valence and arousal norms, can modulate responses 

in a similar way as prosody-related acoustic properties. In the present thesis it is 

proposed that the homologation of semantic (arousal and valence) and prosodic (pitch, 

voice quality/roughness) features can be important for comparing emotional 

(threatening) stimuli and understanding their effects on listeners, as it has been proposed 

and observed that aggressive or angry voices can be associated with increase in arousal 

and pitch, and decreases in valence and voice quality (Patel et al., 2011).  

Regarding the anatomical aspect of angry prosody some functional magnetic 

resonance imaging (fMRI) studies indicate the role of various structures, such as the 

superior temporal cortex (STC), middle frontal gyrus (MFG), basal ganglia (BG), 

amygdala, IFC and operculum, when participants listen angry vocalisations, syllables or 

words (Ceravolo et al., 2016; Früholz et al., 2015; Grandjean et al., 2005; Mothes-Lasch et 

al., 2016). This matches recent studies using functional near infrared spectroscopy 

(fNIRS) and EEG, testing angry, happy and neutral vocalisations, which show consistency 

between ERP waves and P2 and LPC and activity in areas such as medial prefrontal cortex 

(mPFC), IFC and STC (Steber et al., 2020). Consistent with recent 

magnetoencephalography (MEG) research (Styliadis et al., 2018), previous literature on 

emotional words (for a review see: Citron, 2012) indicate similar patterns of mPFC, 

amygdala and additional cingulate cortex involvement; which have been observed in 

some fMRI studies as well (e.g. Wittfoth et al., 2009). However, most of these studies 

either focus on language congruency issues or on attentional effects of prosody, and they 

use different and sometimes not detailed measures for anger in prosody and semantics. 

Thus, these approaches can give precise information about the speech-related aspects of 

angry prosody, but not much about differences between semantics and prosody in terms 

of emotional processing. In view of this, current models of emotional language processing 

are based mainly on studies assessing emotional recognition or categorisation (for 

reviews see: Kotz and Paulmann, 2011; Liebenthal et al., 2016). Therefore, the models 

will tell about the involvement of brain areas and processing phases in regard to 

responses to a myriad of emotions and how they are recognised and told apart, which 

makes difficult to assess aspects of emotional communication/elicitation. Even so, the 

multistep model emotional language (Kotz and Paulmann, 2011) clearly specifies 

processing phases by combining EEG and fMRI evidence in terms of clearly defined 
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sources of information, such as written and language, and speech’s prosody and 

semantics.  

The model proposes three crucial stages: 1) Early phase processing (~100ms), 

comprising sensory analysis, and involving bilateral primary and secondary auditory 

cortices (STC, BA41, and related structures). 2) Mid phase processing (~200-300ms), 

comprising recognition and incipient meaning interpretation, and involving structures 

such as amygdala and hippocampus. 3) Late phase processing (~400ms and over), 

comprising integration and evaluation, and involving bilateral inferior frontal cortex and 

orbital cortex. More recent models of emotional audition (Früholz et al., 2016a), 

emphasising the roles of music and prosody, have pointed out a more comprising and 

defined network involving: mPFC, inferior frontal cortex (IFC), insula, ofbitofrontal cortex 

(OFC), amygdala, hippocampus, STC, BG and cerebellum. However, phasic processing and 

specific interaction within the network at such possible phases are not specified. Each 

area within this network is very broadly defined, which makes difficult to disentangle 

which type of connectivity tightens them together and what neurochemical mechanisms 

come into play. Another important gap to be filled is a clear definition of stimuli, such as 

finding semantic/prosody features which are sufficient to characterise emotional 

elicitation, such as threat increasing as a function of arousal/valence and 

pitch/roughness. This focus on more specific emotions and emotional/cognitive 

elicitation can be crucial to understand how specific emotional/cognitive states or traits, 

such as anxiety, can affect speech or language processing. This relationship between trait 

emotional/cognitive features (i.e. anxiety) can help to better identify the involvement of 

more specific neuroanatomical networks but also the processing time-course of 

emotional language. 

 

2.2 Trait Anxiety 

 Anxiety is a process characterised by the tight integration between emotion and 

cognition. As an adaptive and defensive reaction, common to many animal species, 

anxiety is understood as a motivation or response to potential or signalled threat 

(Blanchard et al., 2008; Gray and McNaughton, 2000; Robinson et al., 2019). When threat 

is not directly actualised, ambiguous or indirect, the response is anxiety as characterised 

by an emotional response of pervasive unpleasantness and accompanied by a cognitive 

response of focused thought on threat (McNaughton and Zangrossi, 2008). This could also 



9 
 

be understood as a simultaneous feeling of concern, angst or apprehension, and 

persistent assessment and re-assessment of risk. Crucially, current models of anxiety 

(Calhoon and Tye, 2015; McNaughton, 2011; Robinson et al., 2019) emphasise the 

difference between anxiety and fear. As opposed to anxiety, fear is a defensive response 

to direct threat or ongoing aggression; which will imply both anatomical and 

neurotransmission differences (LeDoux and Pine, 2016; McNaughton, 2011; Robinson et 

al., 2019). This can be understood as a continuum, where serotonin (5HT) and 

noradrenalin modulate responses to shorter defensive distance (i.e. close proximity 

threat) to larger defensive distance (i.e. potential threat) through widespread routes 

(McNaughton and Corr, 2004; McNaughton, 2011). For instance, networks comprising 

areas such as periaqueductal gray, medial hypothalamus and portions of amygdala 

mediate short defensive distance and panic responses. When defensive distance 

increases, areas such as amygdala, hippocampus, cingulate and dorsal and ventral 

prefrontal cortex mediate anxiety responses.   

 Current neuroimaging-based models of fear emphasise the role of additional areas 

in a phasic way (Fullana et al., 2015). Consistent with the aforementioned, 

physiochemically-based models, areas such as hypothalamus are strongly involved in 

earlier phases, but accompanied by anterior insula and somatosensory cortex. Later 

phases involve mPFC and anterior cingulate cortex (ACC). Nevertheless, these could be 

better explained by anxiety rather than fear, as the continuous exposition to threat in 

neuroimaging studies could activate anxious responses as anticipation to threat. These 

have been proposed to be associated with increased levels of anxious arousal as a result 

of continued anxiety (McNaughton and Grey, 2000). All these features have been taken 

into account in current models of anxiety (Calhoon and Tye, 2015; Robinson el al., 2019), 

where the coordinated activity of the basolateral amygdala (BLA), the bed nucleus of the 

stria terminalis (BNST), the ventral hippocampus (HC) and the mPFC, signalled by phasic 

theta band (4-12Hz) activity will be the core of anxiety processing. However, these 

regions are supported by dorsolateral prefrontal cortex (dlPFC), which exercises 

excitatory control over mPFC (in its paralimbic portion) together with the insula, while 

mPFC (from its infralimbic or ventral portion) exercises inhibitory control over BLA 

which communicates with BNST.  

 Phasic processing of responses to threat has been previously explored by 

multiphasic models of anxiety, derived from a metanalysis and review of behavioural 
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evidence (Bar-Haim et al., 2007). The model considers four phases: 1) Pre-attentive 

evaluation of threat, that is the process before awareness that allows to quickly identify 

threatening stimuli. 2) Resource allocation, namely aware evaluation of threat to stop or 

continue ongoing activity. 3) Guided evaluation of threat, which involves threat 

assessment respect to context and as compared with previous experience. 4) Goal 

engagement, involving the assessment of threat before decisions oriented to pursue or 

interrupt current goals. In line with other models (Eysenck et al., 2007; Cisler and Koster, 

2010), the core feature of these phases responds to attention control. These models, 

though underspecified in neuroanatomical and physiological terms, relate to emotion and 

attention regulation models (Corbetta et al., 2008), which propose adrenergic regulation 

from locus coeruleus of two networks. First, a right-lateralised ventral network, 

associated with attention disruption/control, composed by temporoparietal junction 

(TPJ), middle frontal gyrus (MFG), IFG, frontal operculum and insula. Second, a dorsal 

network, associated with stimuli integration/evaluation, which comprises intraparietal 

sulcus (IPS), superior parietal lobule (IPL) and frontal eye field (FEF). Similar models 

propose early (up to ~100ms), mid early (~200ms), and unclearly specified later phases; 

integrating structures such as orbitofrontal cortex (OFC), amygdala and hippocampus for 

supporting earlier attention and later emotional processing in interaction with attention 

networks (Vuilleumier and Driver, 2007).  

 More recent models have tried to overcome this issue by focusing on ERP 

literature (Gupta et al., 2019), proposing early (~50-300ms) over-attention biases and 

later (over 300ms) over-engagement biases. Although there is a great effort in 

distinguishing phasic effects as signalled by a number of ERP components, the model 

conflates fear with anxiety, which makes difficult to disentangle what specific biases 

might induce each proposed stage. Therefore, for understanding the possible phasic 

processing of anxious responses to threat it is indispensable to consider emotional 

attention models (e.g. Corbetta et al., 2008) in the context of models of anxiety (e.g. 

Robinson, 2019). This would imply that anxious biases should respond mainly to 

potential or indirect threat, or to the continuous exposure to threatening stimuli. Hence, 

the effects of anxiety should be more evident at mid or late processing phases, when 

evaluation and deliberation processes have taken place. This derives from the previously 

discussed notion of anxiety as an overactive behavioural inhibition system (BIS), 

implying that over-engagement with threat is prevalent, also indicated by anxious 
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rumination/worry usually associated with repetitive thinking (McEvoy et al., 2010; 

McLaughlin et al., 2007). According to this, past oriented (rumination) or future oriented 

(worry) repetitive thoughts are characterised by increased imageability and by a verbal 

component. Both can be cognitive components of anxiety, but the latter is specifically 

associated with inner speech. This is particularly relevant, as inner speech has been 

shown to work in a cyclic manner, through the phonological loop (Buchsbaum and 

D’Esposito, 2008; Vigliocco and Hartsuiker, 2002). This model is supported by a wide 

variety of evidence, and indicates that inner speech activates mainly areas in the language 

dorsal stream, such as left supramarginal gyrus (SMG) IFG and STC (Geva, 2018). 

Accordingly, there could be a tight relationship between language and anxiety, 

particularly when verbal repetitive thinking is elicited. 

 Having said this, it is relevant to point out that people with increased anxiety and 

BIS, tend to show greater right lateral frontal involvement respect to people with lower 

anxiety or BIS levels (Gable et al., 2017). Some models show that this should be a pattern 

associated with anxious arousal, while anxious apprehension (e.g. worry) should show a 

left-lateral pattern (Heller et al., 1997). However, further results show a bilateral pattern 

for worry-related anxiety (Nitschke et al., 1999; Spielberg et al., 2013). The regions 

observed in this way, tend to match with both attention and language networks, which is 

consistent with a broader notion of anxious arousal positing a cyclic pattern of 

physiological hyperarousal as increased by sustained BIS (McNaughton and Gray, 2000). 

This process has also been proposed to be associated with theta band modulation and 

right frontal activity (Calhoon and Tye, 2015; McNaughton et al., 2013; Neo et al., 2011). 

This neatly connects cognitive patterns of sustained anxiety (BIS), characterised by 

verbal repetitive thinking, with the emotional patterns characterised by amygdala-

hippocampal activity and right-frontal regulation. This could also suggest that anxious 

responses to language stimuli might not be equivalent to other types of stimuli. For 

instance, verbal threat could be especially impaired by intrinsic predispositions to verbal 

repetitive thinking, as this would engage similar networks, possibly inducing saturation 

or interference effects. 

  For instance, some behavioural studies have shown that socially anxious people 

will show slower reaction times if enough time is allowed for them to over-engage with 

angry prosody (Peschard et al., 2016; Tseng et al., 2017). This slow-down has been 

observed for higher BIS as well, together with fMRI measures indicating a directly 
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proportional relationship between BIS level and prefrontal cortex activation (Sander et 

al., 2005). However, different predispositions to higher anxiety (e.g. social anxiety versus 

trait anxiety) may reflect different patterns when more fine-grained measures are 

considered (Schulz et al., 2013). Indeed, EEG studies on the semantic domain, researching 

the effects of abusive words on social anxiety, indicate early EPN and later N400 

modulation by social anxiety (Wabnitz et al., 2015); and studies exploring the effects of 

vocalisations and speech prosody on trait anxiety have shown earlier P2 and later LPC 

modulation by anxiety (Pell et al., 2015). Earlier studies have found a relationship 

between mismatch negativity (MMN) ERPs, elicited by deviant angry syllables, 

physiological hyperarousal and state anxiety (Schirmer and Escoffier, 2010). These 

studies, however, demonstrate that when stimuli are short and decisions need to be taken 

quickly, anxiety modulates early pre-attentive or attentive responses, where later 

processing phases are affected only because of this earlier processing. Even so, several 

questions are still opened, such as whether the use of semi-naturalistic longer duration 

stimuli (e.g. sentences) and tasks which allow delayed responses would provide greater 

opportunity for over-engagement with threatening stimuli thus showing different 

electrophysiological/anatomical signatures. Another important question is whether 

behavioural and electrophysiological responses would be equivalent if anxious over-

engagement with threat is present. That is, trait anxiety associated with increased BIS 

might induce both early and late effects on speech processing, which would require re-

assessing or extending current models of emotional language processing. 

 

2.3 Operative Model 

An important issue with models of emotional language or emotional auditory 

processing is that they attempt to model responses to all types of emotional language 

through a single model. However, as portrayed on the first two subsections above, even 

within the sphere of defensive emotions, the supporting neurological networks and 

phases of interaction differ between fear and anxiety (McNaughton, 2011). Then, it could 

be expected that emotions within the appetitive range differ even more from defensive 

emotions. Similarly, models of anxiety tend to portray responses to threat as if all stimuli 

are equivalent, overlooking their physical and biological properties (e.g. the acoustics of 

threatening language). Again, as reviewed above, the features of different informational 
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properties of language, such as prosody and semantics, can differ in important ways, 

leading to different processing modes (Kotz and Paulmann, 2011).  

Given all this, the present operative model attempts to be a portrayal of anxiety 

effects (e.g. predisposition to worry or overactive BIS) on threatening speech and a very 

specific one at that. In other words, there is a departure from emotional type 

categorisation tasks as a form of assessing emotional processing in general towards a 

focus on single emotion/cognition stimulation (i.e. threat) and single emotion/cognition 

elicitation (i.e. anxiety). It is implicit in the present model that signalling direct threat 

through language is extremely difficult, even more so in tasks of continued expositions to 

meaningful threatening stimuli, as no threat is actualised to condition the stimulus (e.g. a 

painful unconditioned stimulus). This is the reason fear conditioning tasks can tap into 

anxiety processes only if long lapses are placed between unconditioned and conditioned 

stimulus (Robinson et al., 2019). Semi-naturalistic sentences (or longer stimuli) together 

with delayed responses to these stimuli could be effective in eliciting anxious behavioural 

and/or electrophysiological responses. Moreover, when stimuli are speech utterances, 

their acoustic features might not be irrelevant. The different phasic lateralisation 

patterns of speech processing might overlap with anxiety processing, being affected in 

different ways depending on prosody or semantics. Bearing this in mind, the present 

operative model, specified on Figure 2.1, attempts to integrate emotional language and 

anxiety processing models. Although the operative model resulting from this integration 

predicts the involvement of specific anatomical networks, the present focus will be on the 

time-course of the processing of threatening speech given trait anxiety. Relevantly, this 

extends the model by including a new fourth phase, where stimuli are re-appraised 

and/or rehearsed to orient responses (deliberation phase).  

 

Figure 2.1. Operative model of phasic processing of threatening speech and anxiety. 

Sensorial Phase
Pre-attentive

Around 100ms

Possible ERP components: P1, N1, 
MMN

Possible Network: bilateral 
auditory sensory cortex, superior 
temporal cortex (STC), basolateral 
amygdala ( BLA)

Recognition Phase
Aware

Around 200ms

Possible ERP components: P2, N2, 
EPN

Possible Network: extended 
amygdala, central amygdala, bed 
nucleus of stria terminalis (BNST), 
right medial prefrontal cortex 
(mPFC)

Evaluation Phase
Integrative

Around 300-500ms

Possible ERP components: P300, 
N400

Possible Network: septum, ventral 
hippocampus (vHC), dorsolateral 
prefrontal cortex (dlPFC), temporal 
pole, basal ganglia (BG), insula

Deliberation Phase
Cogitant

Around 600ms +

Possible ERP components: LCP, 
P600

Possible Network: middle temporal 
cortex (MTC), superior temporal 
cortex (STC), basal ganglia (BG), 
IFG, hippocampus, amygdala
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The four phases of the operative model can be understood as follows: 1) An 

auditory language stimulus elicits processing in the ventral stream while simultaneously 

activating re-orienting attention networks modulated by anxiety; this corresponds to 

sensory processing and happens pre-attentively. 2) The listener becomes aware of the 

stimulus and recognises it as possibly threatening, enacting the initial steps of anxious 

responses if threat is not direct or imminent. 3) The stimulus is assessed and its potential 

threat is integrated with context and past experience, cognitive-emotional anxious 

processing is enacted. 4) In the absence of time-pressure the stimulus is re-assessed, 

overactive BIS over-engages with the stimulus and verbal repetitive thinking is elicited 

(excessive cogitation). This implies that in early and early-mid phases (~0 to 300ms) 

over-attention to threat could take place, and anxious people would re-orient attention 

to threatening stimuli, initialising BIS if no flee-freeze-fight (FFF) response is required. 

From mid-late to late phases (from ~300-400ms), as threatening speech is evaluated in 

terms of previously processed prosody and semantics, the BIS response starts. At late 

phases BIS will be sustained if the stimulus has generated over-engagement with threat, 

which will involve either rehearsing the stimulus through the phonological loop, or using 

inner speech to think over past-oriented comparisons or future consequences regarding 

the stimulus (i.e. rumination/worry).  In the experimental context, this could imply 

comparing the stimulus with concurrent activity and/or pondering upcoming responses.  

At the behavioural level, dichotic listening studies have observed no reaction time 

slow-down and LH accuracy dominance in an emotional categorisation task (Leshem, 

2018). Contrary to this, dichotic listening studies normally show a decreased right ear 

advantage (i.e. LH poorer performance) (Gadea et al., 2011), and slower reaction times 

(Peschard et al., 2017). Under the current model, this discrepancy is not hard to explain, 

as the emphasis on categorisation tasks, using single words of varied emotional meaning, 

would imply a semantic emphasis (i.e. LH privilege at early stages), as opposed to 

emotional prosody inducing greater RH involvement (Grimshaw et al., 2003; 2009). In 

addition, no exposure to threatening stimuli and no sufficient delay in responses would 

not induce a reaction slow-down. In short, reaction time slow-down and hemispheric 

differences are not absolute processes, but depend on processing phase and type of tasks 

and type of stimuli. Therefore, different tasks need to be directly compared; in such a way 

that differences between fast (during stimulus) and delayed (after stimulus) responses 

can be tested. Furthermore, electrophysiological evidence comparing different moments 
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of processing, including onset-aligned versus response-aligned ERPs are important veins 

of exploration to elucidate predictions based on the presented operative model.  

The process described by this model in its current state, as noted by literature 

from both language and anxiety, could be cyclic. For instance, the observed elicitation of 

theta band activity by angry prosody (Chen et al., 2012; 2014) could correspond to the 

classic theta activity observed in anxious responses to potential threat, possibly 

signalling activity in the BLA-vHC-mPFC 5HT route (Calhoon and Tye, 2015). Notably, 

these language experiments have observed this theta activity to take place over 400ms 

and similar studies have observed LPC modulations from this time on (Chen et al., 2011; 

Burra et al., 2018; Steber et al., 2020). Important to emphasise, these studies use 

sentences or tasks with long inter stimulus intervals. When either semantic or prosody 

stimuli are short, and responses are not delayed, experiments tend to show that social or 

trait anxiety induces increases in amplitude on early ERPs (i.e. P1), but not on late-phase 

ERPs (i.e. P600) (Pell et al., 2015; Wabnitz et al., 2015). So, with enough time to deliberate 

(over-engage with threat), anxious people should present greater late phase amplitudes. 

Stated differently, anxiety could disrupt these via over-engagement with threat, inducing 

excessive re-appraisal suggested to be signalled by LPC-like ERPs (Hajcak et al., 2010).  

Therefore, it is possible to experimentally test the relationship between 

behavioural and EEG measurements, which could provide evidence of the effects of 

anxiety through the whole processing cycle, from stimulus input to behavioural output.  

In the present thesis, the focus is on possible laterality differences across the processing 

time-course (i.e. the four proposed phases). The present project will attempt to observe 

these differences via behavioural (i.e. dichotic listening) and ERP measurements. These 

measurements will allow to test differences in the time-course of threatening speech 

processing and how it is affected by trait anxiety. Through this theoretically motivated 

experimental approach, some relevant questions can be answered. First, whether 

threatening language can be sufficiently characterised by specific semantic and prosodic 

features oriented to emotional/cognitive elicitation. Second, whether both early over-

attention and later over-engagement depend on trait anxiety (i.e.. BIS) increases. Third, 

whether these effects, if present, have different laterality patterns given semantic and 

prosodic threat. The upcoming chapters will provide a methodological framework, 

norming procedures and behavioural and ERP evidence aimed at scrutinising the 

previously presented operative model.    
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Chapter 3 
Statistical Methods 

Bayesian Hierarchical Models for Experimental Analysis 
 

 

3.1 Bayesian Approach 

Before assessing the operative model presented in the previous chapter through 

experiment, it is important to clarify how this evidence will be assessed in statistical 

terms. Choosing a statistical approach for scientific inference is not necessarily a trivial 

matter, as data can follow different distributions and experimental design will render 

data organised in different levels, and standard/predefined tests will not necessarily 

adequate to these particularities (Kruschke, 2015). However, most if not all the 

previously presented research does not explicitly model their statistical analyses. As 

common in life sciences, this implies the use of a ‘predefined test’ approach, where 

researchers pick a model from a conventional list to input their data and perform null 

hypothesis significance testing (NHST), overlooking the hidden assumptions of the model 

and the fact that not all hypotheses have a null counterpart (McElreath, 2020). The aim 

of the present project is to explicitly and transparently model all assumptions from the 

scientific operative model into statistical models. The aim of this chapter is to provide a 

very brief overview of the Bayesian approach to probabilities and to explain how this will 

be applied to the design of hierarchical models. These models are designed to deal with 

specific inferential and predictive problems derived from the hypotheses at hand, namely 

with the inferential and predictive outcome posited by the current operative model. This 

involves the effects of different variables from experiments designed to test laterality, 

information type (semantic, prosody) and anxiety effects on threatening speech 

processing. These include dichotic listening and EEG experiments plus psychometric 

measures of anxiety, using stimuli with clearly defined acoustic and lexical threatening 

properties.   

Modelling data from such experiments has both practical and philosophical 

implications which cannot be overlooked, as they have a direct impact on inference, 

prediction and interpretation. For instance, it has been proposed that current statistical 

modelling techniques, such as the use of hierarchical models are a good approach for 

dealing with issues of balance between bias and variance in observation and 
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experimental settings as opposed to traditional non-hierarchical modelling (Alday, 2018; 

West et al., 2014). This is relevant, because the advantage of a hierarchical model (aka 

multilevel, mixed-effects) lies on its ability to un-pool data in terms of multiple levels 

within the data structure. As opposed to completely pooling the data, thus assuming a 

single overarching variance, or to completely un-pooling the data, thus assuming several 

unrelated variances, a hierarchical model treats data as arising from different 

interdependent levels and thus avoids underfitting or overfitting problems (Gelman, 

2006). These levels are not arbitrary, and they are defined by how data was collected, 

organised or originated. These levels are also placed in the context of variables, which 

can be included into the model as covariates to account for possible relationships 

between them. However, improving inference by the implementation of additional 

covariates requires very well-defined assumptions with a strong theoretical foundation 

about model’s variables and parameters (Gelman, 2006; Gelman et al., 2014; Imbens and 

Rubin, 1997; McElreath, 2020; Sassenhagen and Alday, 2016; West et al., 2014). 

According to this, to avoid introducing spurious or nuisance relationships, or to block 

relationships between variables, variables should be included into a model in terms of 

their theoretically/hypothetically proposed relationships.  

 Besides the relevance of how a model is organised (i.e. what levels and variables 

to include), it is important to consider where the model’s structure comes from. In other 

words, identifying the mathematical structure of a model and determining its relevance. 

A common problem in frequentist statistics is that it tends to rely on fixed pre-defined 

(assumed) distributions for data, and on an assumed space of probabilities (i.e. an 

imaginary population) where parameters depend on (Kruschke, 2015). As widely 

discussed in the past, this has led to serious issues in the application of statistical tests 

and their interpretation, in particular for NHST approaches (e.g. Cohen, 1994). The most 

important ones for present purposes are: 1) NHST depends on point estimates which are 

compared to an imaginary population distribution, so it is very sensitive to sample size 

and stopping rules (Kruschke, 2015). 2) NHST models are usually organised as 

predefined tests, which may lead to wrong assumptions on how and when to use them, 

including their use for testing hypotheses that do not have null counterparts (McElreath, 

2020). These two problems could easily lead to bias and variance becoming detrimental, 

leading to false positives or negatives; while instead bias and variance should be 

expressions of the natural uncertainty of any measurement (Kruschke, 2015; McElreath, 
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2020). Instead of fighting against these phenomena, a Bayesian approach can help to 

understand this uncertainty from the data in terms of probabilities. This results from two 

features of Bayesian modelling. 1) The selection of prior probabilities for model’s 

parameters, which allows great modelling flexibility resulting in the selection of adequate 

distributions for hypotheses and data at hand; and 2) the sampling of a whole posterior 

probability distributions form prior distributions and observed data in terms of Bayes 

rule, allowing to directly account for error an uncertainty (Gelman et al., 2014; Kruschke, 

2015; Martin, 2018; McElreath, 2020).  

With this in mind, it will be possible to avoid some common issues present in the 

reviewed literature (and the literature in general), which include: 1) Not using subjects 

and/or stimuli varying intercepts, which might require un-pooled treatment of their 

variance, especially if physiological or psychometric measures are involved, as individual 

variation in features like brain anatomy or personality can have a relevant impact on 

measurements or responses. 2) Non explicit or inappropriate use of statistical 

distributions for observed data, which can be detrimental to inference or prediction, 

reducing the reliability of the analysis. 3) Unjustified integration of variables into models 

(mainly linear models), inducing spurious effects or obscuring real effects (e.g. including 

both measures of trait and state anxiety by slopes in a model, which will obscure effects 

as trait anxiety can have a direct effect on state anxiety). 4) Not using or not justifying the 

use of varying slopes, in particular for variables with binary or categorical distributions, 

where variance may not be equivalent across conditions. Explicitly addressing these 

issues, the following subsection will explain how analyses were statistically modelled by 

using a Bayesian approach. The organisation of models will be explained in terms of the 

operative model detailed in Chapter 2 (section 2.3) and in terms of the experimental 

measurements at hand (Chapters 4, Chapter 5, and Chapter 7); which include accuracy, 

reaction times (in ms), amplitude (in μV), and experimental variables such as ear 

presentation, sentences’ type, and trait anxiety level. 

 

3.2 Statistical Modelling  

An important aspect of a Bayesian approach is the use of conditional probabilities 

in terms of prior information. Bayes’ rule is based on deriving the probability of a 

parameter that is not directly observed (A) given the probability of an observed 

parameter (B), which can be expressed as the classic Bayes’ rule: 
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𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

(3.2.1) 

 

Where 𝑃(𝐴|𝐵) is the posterior probability, 𝑃(𝐵|𝐴) is the likelihood, 𝑃(𝐴) is the prior 

probability, and 𝑃(𝐵) is the marginal likelihood. A fundamental way for adjusting the 

inferential capabilities of a statistical model in an appropriate way for the analysed data 

is by using a hierarchical structure (Gelman et al., 2014; Kruschke, 2015). This simply 

implies new parameters are added in a chain of dependencies respect to A and B, such as: 

 

 
𝑃(𝐴, 𝑐|𝐵)  =  

𝑃(𝐵|𝐴, 𝑐)𝑃(𝐴, 𝑐) 

𝑃(𝐵)
 

(3.2.2) 

 
= 

𝑃(𝐵|𝐴) 𝑃(𝐵|𝑐)𝑃(𝑐)

𝑃(𝐵)
 

 

 

Where  𝑐 is a parameter associated to a feature, group or similar that is associated to the 

observed parameter making the parameter 𝐴 dependent on 𝑐. For instance, in the case of 

accuracy observed data, involving correct (hit = 1) or incorrect responses (false 

alarm/miss = 0), that is Bernoulli trials, the hierarchical structure can become 

exceedingly complex.  

Considering Chapter 2’s operative model (Figure 2.1), different information types 

(prosody or semantic) could have different effects on attention. Behavioural experiments 

presented in Chapters 5, 6 and 7 were explicitly designed to address the question of 

whether anxiety has different effects on behavioural measures given ear of presentation 

of threatening stimuli, which can be sentences with prosody-only (Prosody), semantic-

only (Semantic) or both types of threat (Congruent). In statistical terms, this question is 

about the probability of answering correctly to stimuli given ear (left or right), sentence’s 

type (Congruent, Prosody, Semantic), anxiety level (scores, treated as continuous), 

subjects (44 participants) and stimuli (240 sentences). Any of these variables could be 

parametrised in a hierarchical structure by assigning distributions (hyperpriors) to the 

parameters of their distributions (priors). For instance, a simplified linear model of this 

sort could involve a varying intercept for subjects and a distribution for observed data. A 

varying intercept, sometimes referred (misleadingly) as a random intercept, is simply the 

portion of the linear model that is not associated to a variable (intercept) but with 
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hyperpriors for its mean and standard deviation/precision if a Normal distribution is 

used. This allows the model to vary across levels, in this case each subject. Such a model 

can be expressed in the following way: 

 

 𝜇𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) (3.2.3) 

 𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝛼𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑗(1…44)  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝜇𝑠𝑢𝑏𝑗𝑒𝑐𝑡, 𝜎 = 𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡)  

 𝑦̅ 
𝑖
 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑗))  

 

Where 𝑁𝑜𝑟𝑚𝑎𝑙 is the Gaussian or Normal distribution and 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙 is a special case 

of a Normal distribution, but folded at the zero mean (i.e. restricted to positive values), 

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 is the Bernoulli distribution, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 is the transformation of the value 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 for the 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 mean 𝑝 to be expressed as a sigmoid function instead of a linear 

function, and 𝑦̅ is the observed distribution. Normal priors are used as they represent 

weakly informative priors, a good balance between non-informative and informative 

priors in the absence of good prior knowledge about the model’s distributions. They can 

also be understood, in machine learning terms, as providing L2 regularisation 

(regularising priors) (see: Gelman et al., 2014; McElreath, 2020). 

 

 
𝑁𝑜𝑟𝑚𝑎𝑙 =  

1

𝜎√2𝜋
𝑒−

1
2
(
𝑖−𝜇
𝜎

) 
(3.2.4) 

 

𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙 =  √
2

𝜋𝜎2
exp(

𝑖2

2𝜎2
) 

(3.2.5) 

 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 = 𝑝𝑖(1 − 𝑝)1−𝑖 (3.2.6) 

 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑝) =  

1

1 + 𝑒−𝑝
 

(3.2.7) 

 

 It can be seen that building up this simplified model in terms of Bayes rule (3.2.2) 

is already complex if 𝑃(𝑝, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡|𝑦̅) = 𝑃(𝑦̅|𝑝)𝑃(𝑦̅|𝑠𝑢𝑏𝑗𝑒𝑐𝑡)𝑃(𝑠𝑢𝑏𝑗𝑒𝑐𝑡)/𝑃(𝑦̅), to the 

extent of analytic intractability if a more complete model is applied: 

 

 𝛼0 ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1)  

 𝜇 𝑠𝑢𝑏 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) (3.2.8) 
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 𝜎𝑠𝑢𝑏 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝛼𝑠𝑢𝑏𝑗(1…44) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝜇 1, 𝜎 = 𝜎 1 )  

 𝜇 𝑠𝑒𝑛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1)  

 𝜎𝑠𝑒𝑛 𝑘(1…240) ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝛼2𝑠𝑒𝑛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝜇 2, 𝜎 = 𝜎 2 )  

 𝛽1 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1 )  

 . 
. 
. 

 

 𝛽7 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1 )  

 𝑝 = 𝛼0 + 𝛼1𝑗 + 𝛼2𝑘 + 𝛽1𝐸𝑎𝑟𝑐𝑜𝑑𝑒𝑠 + 𝛽2𝑇𝑦̅𝑝𝑒1,2𝑐𝑜𝑑𝑒𝑠 +

𝛽3𝑊𝑜𝑟𝑟𝑦̅ + 𝛽4𝑊𝑜𝑟𝑟𝑦̅𝐸𝑎𝑟𝑐𝑜𝑑𝑒𝑠 + 𝛽5𝐸𝑎𝑟𝑇𝑦̅𝑝𝑒1,2𝑐𝑜𝑑𝑒𝑠 +

𝛽6𝑊𝑜𝑟𝑟𝑦̅𝑇𝑦̅𝑝𝑒1,2𝑐𝑜𝑑𝑒𝑠 + 𝛽7𝑊𝑜𝑟𝑟𝑦̅𝐸𝑎𝑟𝑇𝑦̅𝑝𝑒1,2𝑐𝑜𝑑𝑒𝑠  

 

 𝑦̅ 
𝑖
 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑝))  

 

Where 𝛼0 is the main “fixed” (non-varying) intercept, the other two 𝛼 parameters are the 

varying intercepts for subject (44) and sentence (240 stimuli), and all 𝛽 parameters are 

the non-varying slopes for categorical variables coded as Ear (left = 1, right = 0), Type1 

(Prosody = 1, Semantic = 0, Congruent = 0), Type2 (Prosody = 0, Semantic = 1, Congruent 

= 0), Worry (continuous), and their interactions. (All variables and exact numbers come 

from the first experiment presented in Chapter 5). This model permits testing of whether 

log-odds increase as a function of anxiety given type or ear parameters. Although there is 

valid criticism against using a multiplicative interaction (McElreath, 2020), the present 

decision seeks a trade-off between predictive accuracy and reducing parameter space in 

order to improve tractability. Even so, the possibility of using varying slopes across 

indexed variables remains a good alternative to the present model and could potentially 

improve the present approach; but this remains an issue of statistical analysis 

comparison, which is outside the scope of the present thesis. 

The base structure of this model can remain constant for other types of data by 

replacing changing distributions for more appropriate ones for the new data. For 

instance, in the case of reaction time data would require a continuous distribution. Given 

the possibility of outliers, a robust regression (Gelman et al., 2014; Kruschke, 2015) could 

be used. Here, the observed distribution is modelled by using a Student’s t-distribution, 

which has long tails able to capture outlying datapoints.  
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𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇 =
𝛤 (

𝜈 + 1
2 )

𝛤 (
𝜈
2)

 (
𝜆

𝜋𝜈
)

1
2
 [1 + 

𝜆(𝑖 − 𝜇)2

𝜈
]

−
𝜈+1
2

 

 

 

(3.2.9) 

Where,  𝛤 is the gamma function ( 𝛤(𝑛) = (𝑛 − 1)! ), 𝜈 are the degrees of freedom 

(normality parameter), and 𝜆 is a scale parameter which can also be expressed as σ 

(standard deviation). This might hinder the predictive capacity of the model, as reaction 

time data do not have negative values (McElreath, 2020). This trade-off, though 

sacrificing predictive capacity, could imply better convergence and inferential capacity 

(Gelman et al., 2014). Thus, the full reaction time model (Figure 5.1) can be expressed as:  

 

 𝛼0 ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1)  

 𝜇 𝑠𝑢𝑏 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) (3.2.10) 

 𝜎𝑠𝑢𝑏 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝛼𝑠𝑢𝑏𝑗(1…44) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝜇 1, 𝜎 = 𝜎 1 )  

 𝜇 𝑠𝑒𝑛 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1)  

 𝜎𝑠𝑒𝑛 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝛼𝑠𝑒𝑛 𝑘(1…240) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 𝜇 2, 𝜎 = 𝜎 2 )  

 𝛽1 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1 )  

 . 
. 
. 

 

 𝛽7 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1 )  

 𝜇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝛼0 + 𝛼𝑠𝑢𝑏𝑗 + 𝛼𝑠𝑒𝑛𝑘 + 𝛽1𝐸𝑎𝑟𝑐𝑜𝑑𝑒𝑠 +

 𝛽2𝑇𝑦̅𝑝𝑒1,2𝑐𝑜𝑑𝑒𝑠 +                𝛽3𝑊𝑜𝑟𝑟𝑦̅ + 𝛽4𝑊𝑜𝑟𝑟𝑦̅𝐸𝑎𝑟𝑐𝑜𝑑𝑒𝑠 +

𝛽5𝐸𝑎𝑟𝑇𝑦̅𝑝𝑒1,2𝑐𝑜𝑑𝑒𝑠 +                𝛽6𝑊𝑜𝑟𝑟𝑦̅𝑇𝑦̅𝑝𝑒1,2𝑐𝑜𝑑𝑒𝑠 +

 𝛽7𝑊𝑜𝑟𝑟𝑦̅𝐸𝑎𝑟𝑇𝑦̅𝑝𝑒1,2𝑐𝑜𝑑𝑒𝑠  

 

 𝜎𝑒𝑟𝑟𝑜𝑟 = 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 =  10 )  

 
𝜈𝑑.𝑓. = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝜆 =  

1

29
) + 1 

 

 𝑦̅ 
𝑖
 ~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(𝜇 = 𝜇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 𝜎 = 𝜎𝑒𝑟𝑟𝑜𝑟 , 𝜈 = 𝜈𝑑.𝑓.) 

 

 

Another advantage of implementing this robust regression model relates to EEG 

research. When implementing the event-related potential (ERP) technique, it is 

customary to extract mean amplitudes from pre-defined time-windows (Luck, 2014). 
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When averaged trial by trial, ERP amplitude measurements can contain extreme outliers, 

even after rejecting trials over certain amplitude thresholds (Luck, 2014). So, deciding 

whether these amplitudes represent or are influenced by brain activity or not is not easy. 

This provides a perfect case for robust regression, and helps to avoid arbitrary data 

rejection. Taking advantage of this, a more complex model is suitable (variables and exact 

values come for the EEG experiment presented in Chapter 7, see Figure 7.1). All 

interactions can be modelled as indexed interactions by using Ear by Type by Channel 

matrix B to model varying slopes (384 interaction points: 2 ears, 3 types of sentence, 64 

electrodes) and a Channel shaped matrix A to model a fixed intercept pooling amplitude 

at each electrode (64 channels), also including matrices for varying intercepts for subject 

(S1) and sentence (S2). 

  

 𝜏𝑠𝑢𝑏 ~  𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝜃𝑠𝑢𝑏 𝑗(1…30)  ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) (3.2.11) 

 𝛾𝑠𝑢𝑏 =  𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐(𝜃𝑠𝑢𝑏𝜏𝑠𝑢𝑏)  

 𝜏𝑠𝑒𝑛 ~  𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝜃𝑠𝑒𝑛 𝑘(1…162) ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1)  

 𝛾𝑠𝑒𝑛 =  𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐(𝜃𝑠𝑒𝑛𝜏𝑠𝑒𝑛 )  

 𝛼𝑐(1…64) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1 )  

 𝜏 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝜃𝑛(1…384) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1 )  

 𝛽 =  𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐(𝜃𝑛𝜏 )  

 𝜇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = 𝛾𝑠𝑢𝑏 ∙ 𝑆1 + 𝛾𝑠𝑒𝑛 ∙ 𝑆2 + 𝛼𝑐 ∙ 𝐴 +  𝛽 ∙ 𝐵xBIS   

 𝜎𝑒𝑟𝑟𝑜𝑟 = 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 =  10 )  

 
𝜈𝑑.𝑓. = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝜆 =  

1

29
) + 1 

 

 𝑦̅ 
𝑖
 ~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(𝜇 = 𝜇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 𝜎 = 𝜎𝑒𝑟𝑟𝑜𝑟 , 𝜈 = 𝜈𝑑.𝑓.)  

 

Note that subject and sentence varying effects are reparametrized as a deterministic 

function of the product between a half-normal (scale parameter, here denoted as 𝜏) and 

a Normal distribution (the distribution of the reparametrized parameter, here denoted 

as 𝜃) , and the location parameter is extracted to the linear model itself as a non-varying 

(‘fixed’) intercept (i.e. channel intercept: 𝛼𝑐(1…64)). In this case, scale is the standard 
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deviation, and the external location acts as the mean (though neither mean nor standard 

deviation need to be present). This reparameterisation strategy allows for better 

convergence of intricated parameters (McElreath, 2020). Previously presented models 

were reparametrized in a more conventional way, by adding individual location 

parameters in the deterministic function as an added mean (e.g.  𝛼𝑠𝑢𝑏 =  𝜇 + 𝜎𝜇𝑠𝑢𝑏, 

where μ is the location and σ is the sacle).   

Amplitude data can be described at the electrode level as well, when informed 

from the main model about which parameters have sufficiently strong effects. In this case, 

this model could be pooling across sentence, subject, ear and/or type and use each 

sampling point (256 epoch + 26 baseline) as a varying intercept and slope, where 𝑇 is the 

matrix containing 282 amplitude sampling time-points (from Chapter 7’s experiment). 

   

 𝜏1 ~  𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝜃1 𝑡𝑖𝑚𝑒 𝑗(1…282)  ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) (3.2.12) 

 𝛼 =  𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐(𝜃1𝜏1)  

 𝜏2 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝜃2 𝑡𝑖𝑚𝑒 𝑗(1…282) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1 )  

 𝛽 =  𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐(𝜃2𝜏2 )  

 𝜇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =  𝛼 ∙ 𝑇 +  𝛽 ∙ 𝑇   

 𝜎𝑒𝑟𝑟𝑜𝑟 = 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 =  10 )  

 
𝜈𝑑.𝑓. = 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 (𝜆 =  

1

29
) + 1 

 

 𝑦̅ 
𝑖
 ~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑇(𝜇 = 𝜇𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑, 𝜎 = 𝜎𝑒𝑟𝑟𝑜𝑟 , 𝜈 = 𝜈𝑑.𝑓.)  

 

This approach is inspired in non-parametric techniques intended to identify statistical 

differences across the whole epoch (Maris and Oostenveld, 2007). However, the present 

approach has some advantages. To start with, there is no need for multiple comparison 

corrections, as no p-values are used, which heavily depend on a space of counterfactual 

(presumed) possibilities derived from testing decisions (i.e. sample size, testing stop) 

inflating the false alarm rate (or Type I error). Differently, posterior distributions are 

unaffected by this issue as they are data-dependent (Kruschke, 2015), and hierarchical 

models are especially robust to any influence of multiple parameters as they directly 
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model distributions and each posterior distribution can be directly derived from the 

model (Gelman et al., 2014).  

This conduces to another relevant advantage. For instance, model 3.2.12 directly 

includes 282 varying slopes, each representing a time-point, each a whole posterior 

distribution from which a high posterior density interval (HDI) can be derived, thus 

providing a direct interpretation of how probable (e.g. 90%) a difference between two 

amplitudes waves is at a given time-point sample. Hence, models are much more 

informative than pre-designed tests operating with fixed or not explicit parameters, as 

commonly observed in the discussed literature. Differently, the present approach 

explicitly portrays modelling decisions and assumptions, such as chosen priors, by 

mathematically and computationally defining them respect to hypotheses and data. 

(Importantly, these advantages also apply to all the previously presented models). 

Nevertheless, this also evidenced some limitations of the present approach. For instance, 

model 3.2.12 is designed for a single electrode, instead of modelling all 64 of them. This 

decision responds to practical limitations, such as computational capacity, as with 

millions of datapoints (e.g. 64 electrodes by 282 time-samples, etc.) and thousands of 

parameters, model convergence is not necessarily guaranteed just by extended sampling 

time, as the complexity of the posterior (as parameter space) might not be easy for the 

sampler (see section 3.3 below). This evidences the need for constructing models as 

adequately as possible for the explored problem, but also shows some of the limits of the 

current approach. This also makes the behavioural modelling to seem oversimplified, but 

this simply responds to the limited range of assumptions about how variables relate in 

the models (i.e. simple interactions). Nevertheless, it would be possible to explore 

alternative behavioural models, such as models using ear and/or types variables as 

slopes, which might serve to support or criticise the present approach. 

The final model presented here is aimed to test stimuli’s acoustic and lexical 

features (experiments presented in Chapter 4, see Figure 4.3). These involve the effects 

of arousal and valence and/or median pitch and Hammarberg index (see Chapter 2) on 

sentences classification by threat level. To this aim, the following model was constructed: 
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 𝐶𝑛(1…8) ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 10)  

 𝛽1 ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) (3.2.13) 

 𝛽2 ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) 

𝜆𝑠 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1) 

 

 𝜏𝑠 ~ 𝐻𝑎𝑙𝑓𝑁𝑜𝑟𝑚𝑎𝑙(𝜎 = 1)  

 𝜃𝑠 𝑗(1…22) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 1 )  

 𝛼𝑠 =  𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐(𝜆𝑠 +  𝜃𝑠𝜏𝑠 )  

 𝜙 =  𝛼𝑠 + 𝛽1p + 𝛽2h   

 𝑦̅ 
𝑖
 ~ 𝑂𝑟𝑑𝑒𝑟𝑒𝑑𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐(𝜂 = 𝜙, 𝑐𝑢𝑡𝑝𝑜𝑖𝑛𝑡𝑠 = 𝐶𝑛)  

 

Where 𝐶𝑛(1…8) are the 9 minus 1 cutpoints of a 0-8 points Likert scale for threat 

level, 𝛽1 𝑎𝑛𝑑 𝛽2 are L2 regularising priors for p (median pitch) and h (Hammarberg 

index), 𝛼𝑠 is a reparametrised distribution for a varying intercept on subjects, and 𝜙 is a 

simple linear model acting as the predictor parameter 𝜂 of an ordered logistic log-

likelihood across the 8 cutpoints. Note that, if required, valence and arousal measures 

could be added as additional parameters in the model or simply replace p and h by arousal 

and valence variables (for details on ordered-logistic regression see: McElreath, 2020).   

This model allows to effectively treat trial-by-trial rating data, thusly enabling the 

model to account for single rating variability, additionally constrained by a varying 

intercept across subjects. This model can provide information about two relevant things. 

Firstly, inference about what features are relevant for threat recognition, namely whether 

increases or decreases on acoustic measures or valence/arousal norms can indicate 

increases in threatening ratings. Secondly, based on these measures and norms it could 

be possible to adjust future stimuli to select and record them to be more consistently 

threatening and to predict future threatening ratings. In this way, the inference chain can 

link well-defined stimuli (threat production) with the listener’s behavioural responses 

(reaction times and accuracy) and associated neurological activity (EEG measures). 

 

3.3 Model Assessment  

 Given the complexity of the models, the best current alternative for sampling is 

using Markov Chain Monte Carlo (MCMC) methods. In particular, the implementation 

applied here is based on the Python’s package PyMC3 (Salvatier et al., 2016), and it uses 

the no U-turn sampler (NUTS) method (Hoffman and Gelman, 2014), which is a type of 
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Hamiltonian Monte Carlo (HMC) sampling and it is the default sampling method for 

continuous parameters in PyMC3 (Martin, 2018). Roughly explained, HMC samples the 

log-transformed posterior distribution (log-posterior) by simulating the movement of a 

frictionless particle, where parameters provide a vector and the log-posterior a space or 

surface for the particle to move through (for more detailed explanations see Martin, 

2018; McElreath, 2020). This is relevant, because all convergence tests for a model 

sampled with HMC/NUTS are based on the fact that as any MCMC method, NUTS is 

devised to produce a Markov chain, but it does it through leapfrog steps with an initial 

position and a momentum, which allow the particle to traverse the log-posterior and 

output a sampled proportional posterior distribution.  

This leads to the following convergence tests, which require sampling two chains 

or more. 1) Energy transition: this is based on the Bayesian fraction of missing 

information (BFMI), which indicates whether the momentum resampling (momentum is 

resampled after an iteration) induced energy variation is sufficient (Betancourt, 2016); a 

good BFMI should be close to one, or at least BFMI > 0.5, for chains to have similar energy 

transitions. 2) Effective sample size (ESS): indicates whether samples within a chain are 

autocorrelated, the lower the ESS, the more autocorrelation and the more uncertainty of 

the estimates (Martin, 2018).  Sufficient amounts of EES are usually: ESS > 400, or ESS > 

200 if sampling proved too strenuous; autocorrelation plots and trace plots are important 

check-ups accompanying ESS for assessing autocorrelation. 3) Gelman-Rubin statistic 

(�̂�): indicates whether variance within and between chains is large, where large 

differences indicate non convergence (Gelman et al., 2014); good convergence implies 

�̂� ≅ 1, or at least �̂� ≤ 1.1. Inference from a model is feasible if and only if all these check-

ups are passed. In short, after sampling a model, failing any of these checks will provide 

meaningful information about what could have caused the problem, such as the 

requirement for more samples, reparameterisation, observed data transformations, or 

simply the inadequacy of the approach. 

The predictive capacity of a model requires other forms of assessment. As the 

main goal of the present approach is inference, prediction check-ups will be only briefly 

discussed. The most straightforward way for testing predictive capacity is a posterior 

predictive check (PPC). In general terms, a PPC consists in sampling observed data 

simulations from the posterior; if these simulated data match the actually observed data, 

the predictive capacity is good (Martin, 2018). In addition, model comparison can test 
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models containing different parameters of variables. Generally, the recommended 

options are Watanabe-Akaike or widely appliable information criterion (WAIC) and leave 

one out cross validation (LOO-CV), they estimate out of sample expectation or predictive 

fit adjusting for overfit (for more details see: Gelman et al., 2013; Martin, 2018; McElreath, 

2020). Both can be used together to test whether models would be efficient for predicting 

unobserved data, or similar purposes. However, as models are theoretically well defined 

and constructed a priori, mainly with inferential aims, the assessment of models’ 

predictive capacity will not be a common theme in the present project. Having said this, 

it is important to keep in mind that this aspect of model assessment could be especially 

relevant for criticising models in non-inferential terms in view of they capability for 

applied approaches.  

 If models fulfil all these convergence requirements (a much more stringent 

criteria than in conventional statistical approaches), their interpretability will depend 

upon the scientific model they aim to reproduce. This means that the pre-established 

relationships between variables, given models’ estimates, will evidence effects of one 

variable over another. In the present case, the operative model presented in Chapter 2 

(Figure 2.1) proposes effects of anxiety at different time-windows for both behavioural 

and EEG measures. The models presented in this chapter provide a way of estimating the 

effects of trait anxiety, either by worry or BIS levels, given ear presentation (laterality) or 

stimulus type (information channel). But they also provide a way to examine the 

relationships between stimuli’s properties, namely the effects of acoustic measures and 

lexical norms on the categorisation of stimuli. This provides a strong statistical basis for 

linking stimuli’s features with stimuli’s processing (e.g. through EEG measures) and 

behavioural outcome (i.e. reaction times and accuracy). The upcoming sections will show 

experiments where these models are directly applied to the retrieved data, providing 

results from which sound inferences can be made.  
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Chapter 4 

Stimuli Analysis 

Prosodic and Semantic Features of Threatening Speech 

 

 

4.1 Introduction 

This chapter presents the selection, norming and analysis of experimental stimuli: 

auditorily presented sentences. As pointed out in Chapters 2 and 3, an experimentally 

based norming procedure will help in ascertaining the threatening features of stimuli, 

thus providing a better link between stimuli and behavioural/EEG responses. 

Theoretically speaking, specific acoustic measures and lexical norms should indicate 

whether the speaker actually conveys threat in the produced sentences (see Chapter 2, 

section 2.1). Namely, empirical tests should reveal whether the prosodic (pitch and voice 

quality) and semantic (arousal and valence) features proposed to characterise threat are 

actually associated with threat comprehension. Therefore, a proper experimental 

norming procedure is required in addition to comparisons between measurements; so 

that by comparing norms and measures a proper link between production (stimuli) and 

comprehension (elicited response) can be established. Together with an appropriate 

statistical treatment, this approach can help in dealing with some common issues 

regarding selection and creation of experimental materials. 

First, it has been proposed that stimuli norming and comparison is conventionally 

analysed in statistically inappropriate ways (Sassenhagen and Alday, 2016). Mainly, this 

responds to the use of NHST for testing the equivalency of stimuli measures (e.g. whether 

they do not differ in mean fundamental frequency), which cannot be achieved by a 

frequentist test. Namely, frequentist tests cannot give evidence of absence, mainly due to 

their dependency on a null hypothesis based on an imaginary population (Kruschke, 

2015). Such NHST approach for stimuli comparison is the default in the literature 

presented in Chapter 2. Second, another important issue present in the literature, is the 

inappropriate treatment of norming data. Here, data from rating scales (i.e. Likert) are 

not treated as categorical variables (the appropriate treatment), but they are averaged 

and analysed as normal distributions instead, thus obscuring relationships between 

variables (see McElreath, 2020). Otherwise, the present Bayesian approach will be able 
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to provide a direct comparison between means of acoustic and lexical features. In 

addition, based on model 3.2.13 (Chapter 3), threat ratings will be given an appropriate 

statistical treatment. In this way, present experimental norming of stimuli is not simply a 

check-up on stimuli’s singled-out properties, but an inference- and prediction-based 

approach to defining what acoustic and lexical features are sufficient for characterising 

threat in an experimental context. In other words, strong evidence will be provided that 

these features may be causally associated with threat comprehension and categorisation. 

Regarding acoustic threat, previous literature indicates that hot anger (rage) 

needs to be distinguished from cold anger (Banse and Scherer, 1996; Hammerschmidt 

and Jürgens, 2007), and that rage can be associated with voices higher in pitch and lower 

in quality (rougher), as reviewed in Chapter 2. Thus, threatening prosody, as similar to 

hot anger, should imply a higher pitch (median fundamental frequency) and a rougher 

voice (lower Hammarberg index). These two features are selected based on the following 

rationale. First, both median pitch and Hammarberg index address slow rate spectral 

measures in equivalent units (Hz); which can directly relate to laterality and time-course 

differences (as discussed in Chapter 2, section 2.1). Second, as median pitch is a central 

tendency measure marking the mid-point frequency in the sentence and Hammarberg 

index represents a difference between lower and upper frequency ranges, they may not 

be so sensitive to prosody variations within the sentences, thus reflecting the overall 

prosodic threat of each sentence more accurately. 

 Similarly, lexical content could be evaluated from measurements taken from 

emotional judgements on words; such as measures of valence and arousal from the 

extended version of the Affective Norms for English Words (ANEW) (Warriner et al., 

2013). Here, valence indicates how negative/positive a word is perceived and arousal 

indicates whether the stimulus is arousing. These norms are developed to indicate 

affective judgements on words through a self-assessment manikin (SAM), which consists 

of a visual and numerical Likert scale intended for participants to indicate their 

feelings/emotions after reading/listening a stimulus (i.e. word) (Warriner et al., 2013). 

The ANEW norms also include a dominance measure, associated with meekness, but this 

has been shown to highly correlate with valence (Montefinese et al., 2013), which could 

create redundancy in the present approach. As reviewed in Chapter 2 (section 2.1), it has 

been observed that words conveying pain or threat show high arousal and low valence 

(Borelli et al., 2018; Ho et al., 2015), which gives consistency to the present approach. In 
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other words, ANEW valence and arousal norms from threatening lexical items within a 

sentence can give information about the overall threat of each sentence. Although 

sentential context can contribute or completely determine the meaning of a sentence (Lai 

et al., 2015), lexical items with clear offensive/aggressive content (i.e. high arousal and 

low valence) will drive the threatening content of the whole sentence (see Chapter 2, 

section 2.1). 

 Given this, median pitch and Hammarberg index are to prosody what arousal and 

valence are to semantics; and the following experiments will test whether median pitch 

and Hammarberg index can characterise threatening prosody, and whether valence and 

arousal can characterise threatening semantics. This leads to the following operative 

hypothesis: threatening prosody is higher in pitch and rougher (high median pitch, low 

Hammarberg index), and threatening semantics are arousing and negative (high arousal, 

low valence). This allows the following predictions to be made: 1) Sentences that contain 

only threatening prosody (neutral semantics and threatening prosody: Prosody) should 

not be characterised by arousal and valence, but clearly characterised by median pitch 

and Hammarberg index. 2) Sentences that contain only threatening semantics (neutral 

prosody and threatening semantics: Semantic) should not be characterised by pitch and 

roughness, but clearly characterised by arousal and valence. 3) Therefore, sentences 

containing lexical items which are high in arousal and low in valence should be easily 

categorised as semantically threatening, while sentences recorded as threatening (high 

in median pitch and low in Hammarberg index) should be easily categorised as 

prosodically threatening. 4) Control sentences (neutral prosody and neutral semantics: 

Neutral) should be characterised by no increase in median pitch/arousal and no decrease 

in Hammarberg index/valence.  

To test these possible effects, Prosody stimuli were selected in low arousal and 

higher valence and recorded by asking a London English speaker (untrained in acting: lay 

speaker) to produce an aggressive voice (as if threatening someone). Semantic stimuli 

were selected to be high in arousal and low in valence and the speaker was requested to 

record them in a neutral voice (as in conversation). Neutral stimuli were selected to be 

around the median in arousal and valence (or at least median arousal and higher valence) 

and requested to be spoken in neutral voice. Study 1 involves the rating (threat scale) of 

written stimuli for a Semantic vs. Neutral comparison, and a second rating session for a 

small sample of Prosody vs. Neutral stimuli. Study 2 involves the rating of fifty-four 
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acoustic stimuli per type for both sessions in threat and SAM scales. Note that Study 1 

ratings were collected as a simple check-up in both written (for Semantic) and acoustic 

(for Prosody) modalities, so they present uneven sets of stimuli and participants, without 

detailed demographic information. To ameliorate this, Study 2 implemented a more 

controlled rating procedure (acoustic for both conditions), with a smaller number of 

listeners judging sentences (e.g. Hammerschmidt and Jurgens, 2007) and rating all 

experimental Prosody and Semantic stimuli (from Chapter 7). These decisions seek a 

balance between appropriateness of the analysis and resources availability.  

 

4.2 Methods  

4.2.1 Study 1 Methods 

4.2.1.1 Participants  

For Study 1, 60 participants (29 females, age over 18) took part on rating written 

neutral and semantic-threat sentences: first session; and 22 participants (age over 18, no 

more information available) took part on rating auditorily presented neutral and 

prosody-threat sentences: second session. Participants were paid at £7.5/hour rate and 

gave their consent before participating according to 1998 European data protection act.  

 

4.2.1.2 Materials 

Four types of sentences were defined: Prosody (neutral-semantics and threatening-

prosody), Semantic (threatening-semantics and neutral-prosody), Congruent 

(threatening-semantics and threatening-prosody), and Neutral (neutral-semantics and 

neutral-prosody).  Semantically threatening sentences were extracted from movie 

subtitles by matching the subtitles with a list of normed threatening ANEW words 

(Warriner et al., 2013). Any word over 5 points in the arousal scale, and below 5 points 

in the valence scale was considered threatening (these scales ranged from 1 to 9 points). 

Every word with less than 5 arousal points and between 4 and 6 (inclusive) valence 

points was considered neutral. Words’ frequencies were extracted from SUBTLEX-UK 

(van Heuven et al., 2014), only sentences containing words with Zipf’s log frequencies 

over 3 were included. After this, sentences were recorded in an acoustically isolated 

chamber using a RODE NT1-A1 microphone by a male English speaker (untrained in 

acting: lay speaker). The speaker was instructed to speak in what he considered his own 

angry threatening/angry or neutral voice for recording Prosody/Congruent and 
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Semantic/Neutral sentences respectively. Sentences were not repeated across type (i.e. 

each type has a unique set of sentences). Figure 4.1 shows examples of recorded stimuli. 

 

 

 

4.2.1.3 Procedure 

In Study 1’s rating sessions participants rated how threatening they considered 

sentences to be in a 0-8 points Likert scale (where 0 is not threatening at all and 8 is very 

threatening). Participants in the first session rated Semantic sentences (44) together with 

control Neutral sentences (186) in written form. Participants in the second session rated 

Prosody sentences (7) together with control Neutral sentences (7) in auditory form. 

These sessions included sentences selected/recorded to express concern (and respective 

scale) as well, but they are not included in final analyses as the main focus of present 

research is only on threat.  

 
Figure 4.1. Example of four sentences used in Study 1. Top of each image: oscillogram showing amplitude 
changes. Bottom of each image: spectrogram showing frequency changes. Top left: neutral prosody and 
neutral semantics (Neutral). Top right: threatening prosody and threatening semantics (Congruent). Bottom 
left: neutral prosody and threatening semantics (Semantic). Bottom right: threatening prosody and neutral 
semantics (Prosody). Green dots indicate fundamental frequency (F0) contours.  
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4.2.2 Study 2 Methods 

4.2.2.1 Participants 

For Study 2, 10 University College London (UCL) students (9 Females, mean age = 

19.5, all cisgender) rated auditorily presented neutral and semantic-threat sentences, 

and 10 UCL students (9 Females, mean age = 19.1, all cisgender) rated auditorily 

presented neutral and prosody-threat sentences. All received coursework credits for 

their participation and consented to participate informed of GDPR regulations regarding 

data protection. Participants declared not having auditory, psychiatric or neurological 

problems, and speaking English as first or native language.  

 

4.2.2.2 Materials 

For the second study sentences were re-selected. Any word over 5 points in the 

arousal scale, and below 5 points in the valence and dominance scales was considered 

semantically threatening. Every word with less than 5 arousal points and between 4 and 

6 valence points was considered semantically neutral. Some sentences remained from the 

first study’s materials and, again, only sentences with Zipf’s log frequencies over 3 were 

included. The same speaker from Study 1 was recruited for a new recording session, and 

he was instructed to speak in the same manner, but being careful not to de-emphasise 

threat. Sentences were recorded in the same manner as in Study 1, but minor technical 

issues were fixed. Figure 4.2 shows examples of recorded stimuli. 

 

4.2.2.3 Procedure 

In Study 2’s rating session participants rated sentences in the same 0-8 Likert 

scale for threat, but also judged their arousal and valence levels in SAM scale (as in ANEW 

norms: Warriner et al., 2013), and categorised sentences as Calm, Neutral, Angry or 

Enraged. Prosody sentences (54) and Semantic sentences (54) were rated separately. In 

both Prosody and Semantic rating sessions, Neutral sentences (54) were used as a 

control. Sentences were presented randomly in both tasks. 
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4.2.3 Analysis 

 The aim of the present chapter is demonstrating whether acoustic measures and 

lexical norms can function as markers for threat. Hence, an ordered-logistic regression 

was implemented to assess the relationship between acoustic/lexical features and threat 

ratings. The general structure of the model is described on Figure 4.3. Previous analyses 

on these stimuli were performed using the Bayesian estimation supersede the t-test 

(BEST) (Kruschke, 2013), but using exponential distributions for standard deviations 

(Busch-Moreno et al., 2020a; 2020b). These analyses are repeated here as a way of 

demonstrating that mean differences between stimuli are consistent with threat ratings. 

All models were sampled with the Hamiltonian Monte Carlo (HMC) no U-turn sampling 

(NUTS) method as provided by PyMC3 (Salvatier et al., 2016), using 1000 tuning samples 

and 1000 samples.  

Figure 4.2. Example of four sentences used in Study 2. Top of each image: oscillogram showing amplitude 
changes. Bottom of each image: spectrogram showing frequency changes. Top left: neutral prosody and 
neutral semantics (Neutral). Top right: threatening prosody and threatening semantics (Congruent). Bottom 
left: neutral prosody and threatening semantics (Semantic). Bottom right: threatening prosody and neutral 
semantics (Prosody). Green dots indicate fundamental frequency (F0) contours.  
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For Study 1 and 2, four sentences’ acoustic measures were extracted: 

Hammarberg index (maximum energy differences between the 0-2000hz and 2000-

5000hz ranges), harmonicity (amplitude signal to noise ratio or harmonic to noise ratio), 

median pitch (fundamental frequency: F0), and shimmer (ratio between absolute 

amplitude difference of consecutive periods and mean amplitude). Acoustic measures 

were extracted via Python’s Parselmouth interface to Praat (Jadoul et al., 2018). For both 

studies, lexical norms were ANEW mean Arousal and Valence scores from the lexical 

items used in the aforementioned sentence selection procedures. For both Studies, the 

dependent variable consisted of threat scores given by participants. Plots and model 

comparisons were produced using Arviz (Kumar et al., 2019) and Matplotlib (Hunter, 

2007). 

 

 

 

 
 

Figure 4.3. Graph representation of hierarchical ordered-logistic model, used for analysing ratings data 
in terms of acoustic measures or lexical norms. The 𝛼𝑠 parameter is the re-parametrised varying intercept 
across subjects. Parameters denoted as 𝛽 represent slopes of median pitch and Hammarberg index, 
denoted as p and h respectively. Parameter 𝐶𝑛 indicates the 9 minus 1 cutpoints for the Likert scale. Note 
that additional 𝛽 parameters could be added for shimmer and harmonicity without altering the general 
model’s structure. For the analysis of Semantic ratings, the number of participants change and the 
variables p and h change to v and a, for valence and arousal respectively.  
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4.3 Results 

All models showed excellent convergence with �̂�  ≅  , ESS > 400, and BFMIs > 0.7. 

All other details, such as stimuli, data, summaries, traceplots, autocorrelation-plots and 

additional plots of results can be also found at the present chapter’s Open Science 

Framework (OSF) repository (https://osf.io/xrfkq/).  

 

4.3.1 Study 1 Results 

Results from Study 1’s Semantic model are summarised in Table 4.1, and they 

indicate a clear modulation of threat ratings by Arousal and Valence. This is evident in 

Arousal, with a 90% high posterior density interval (HDI) at least 2 SDs away from zero, 

reliably indicating that the log-odds of a stimulus being rated higher in threat increase by 

0.76 on average per Arousal score unit. Similarly, but slightly less reliably (there is a 

minor HDI overlap with 2SDs), a one-point increase in Valence implies a decrease in mean 

log-odds of around -0.60.  

 

Table 4.1. Study 1, Semantic ordered-logistic model results 
Lexical Norm Mean SD HDI 5% HDI 95% 

Arousal 0.764 0.038 0.705 0.825 

Valence -0.596 0.029 -0.644 -0.550 

 

Prosody results are summarised on Table 4.2, and they go contrary to predictions. 

They indicate a very small (almost negligible) decrease in Median Pitch; a stronger 

decreased in Hammarberg Index, but with HDIs completely overlapping zero; which also 

happens for Shimmer; and an increase in Harmonicity. These results indicate that no 

consistent inference can be drawn from acoustic measures in this very narrow (14 

stimuli) sample.  However, a model comparison using LOO-CV indicates that though this 

model has better in-sample and out-sample predictive capacity (Log score = -2594, error 

= 41.4, weight = 99%), the model without Harmonicity and Shimmer gives equivalent 

results for Median Pitch and Hammarberg Index. Interestingly, as seen in Figure 4.4, 

Median Pitch (pitch) and Hammarberg Index (roughness) are better at explaining higher 

threatening ratings in the Prosody model, than Arousal and Valence in the Semantic 

model. Nevertheless, semantic ratings still show a consistent, though less pronounced, 

increase from the lowest to the highest threatening rating probability when valence 

decreases and arousal increases.  
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Figure 4.4. Study 1 cutpoints plots. Plots show probability of rating a sentence as not 
threatening at all (0 points) or very threatening (8 points) given acoustic measures for the 
Prosody experiment (upper panel) and given lexical norms for the Semantic experiment (lower 
panel). Prosody orange solid line indicates maximum Median Pitch (MP) plus minimum 
Hammarberg Index (HI) posterior distributions, violet dashed line indicates minimum Median 
Pitch (MP) plus maximum Hammarberg Index (HI) posterior distributions. Semantic solid red 
line indicates maximum Arousal plus minimum valence posterior distributions, blue dashed 
line indicates minimum Arousal plus maximum Valence posterior distributions. Faded lines are 
random samples from the posteriors, expressing uncertainty. Note that for both Prosody and 
Semantic ratings Neutral sentences overfit, most are rated as zero threatening so dashed 
purple/blue lines drastically drop to almost zero probability for 1 point of threat score.  
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Table 4.2. Study 1, Prosody ordered-logistic model results 
Acoustic Measure Mean SD HDI 5% HDI 95% 

Median Pitch -0.006 0.004 -0.013 0.001 

Hammarberg Index -0.352 0.033 -0.402 -0.296 

Shimmer -0.931 0.902 -2.427 0.602 

Harmonicity 0.356 0.056 0.261 0.442 

  

 

Notwithstanding these differences, the models have a reasonable predictive 

capacity. As shown on Figure 4.5, predicted threat scores for Study 2’s ratings fall within 

an acceptable rage of actually collected scores.  Better Prosody predictions might indicate 

that Semantic threat scores changed more consistently by re-selection and/or that 

Prosody threat scores are given on the basis of multiple acoustic features in combination, 

from which voice quality and pitch are sufficient but not completely necessary for 

explaining increases in threat score. 

Results from BEST models indicate that mean differences are in coincidence with 

these predictions. Indeed, BEST models indicate clear similarities across studies. To 

derive means, 54 stimuli per category were used. All models showed excellent 

convergence with �̂�  ≅  , ESS > 1000, and BFMIs > 1.  Table 4.3 summarises the estimated 

means and SDs, which shows that for both studies Arousal means are higher and Valence 

means are lower for Congruent and Semantic; while Median Pitch means are higher and 

Hammarberg Index means are lower for Prosody and Congruent. Figure 4.6 shows, 

differences between means clearly indicate that posterior distributions of matching 

parameters substantially overlap or are very close to each other; while non-matching 

parameters’ estimates fall wide apart. 
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Table 4.3. Study 1, BEST Mean and SD average posteriors 
Study 1 Arousal Valence Median Pitch Hammarberg Index 

Category Mean SD Mean SD Mean SD Mean SD 

Neutral  3.89 0.74 5.84 0.91 96.48 4.09 33.83 3.57 

Congruent 5.88 0.95 3.31 1.25 129.90 9.10 24.15 5.48 

Prosody 3.67 0.64 5.93 0.80 133.30 11.60 22.87 4.01 

Semantic  6.00 0.93 2.98 1.07 90.06 2.18 31.70 4.62 

 

Figure 4.5. Prediction of ratings of Study 2 using ratings from Study 1. Upper left: Semantic threat 

predictions across Valence. Upper right: Semantic threat predictions across Arousal. Bottom left: 

Prosody threat predictions across Hammarberg Index (roughness). Bottom right: Prosody predictions 

across Median Pitch (pitch). Note that Semantic predictions are less accurate for threat (they cluster 

as solid blue dots) and Prosody predictions are less accurate for neutral. 
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Figure 4.6. BEST model results from Study 1. Top: Median Pitch and Hammarberg Index. Bottom: Arousal 
and Valence. Ridgeplots represent the HDI distribution (kernel density) from each mean difference’s 
posterior. Grey bands indicate 2SDs regions of practical equivalence (ROPE). 

Study 1: BEST Means Comparisons
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4.3.2 Study 2 Results 

For Study 2, all ratings were given to auditory stimuli (54 per category), so both 

Semantic and Prosody models included acoustic measures and lexical norms. Results of 

subjects’ varying intercepts will not be addressed, as they are not of direct interest. To 

confirm the contribution of measures of Harmonicity and Shimmer, a model comparison 

for the Prosody model was performed through the LOO-CV method (see Chapter 3, 

section 3.3). This indicated that the full model (log score = -1,734, error = 29, weight = 

74%) barely outperforms the reduced model (only using pitch and roughness) only in 

out-sample predictions but not in in-sample predictions, showing a log score difference 

of only 2 points (log score = -1,736, error = 29, weight = 26%). Although the full model 

shows more weight, inferential results indicate that estimates of Harmonicity and 

Shimmer fall across zero or widely overlap the ROPE, thus showing minimal inferential 

contributions. Thus, only results from the reduced model are presented. As shown in 

Table 4.4, Arousal and Valence contribute little to explain acoustic threat (HDIs across 

zero), but Median Pitch and Hammarberg Index show clear increases and decreases 

respectively. This indicates that as pitch increases and voice quality decreases (more 

roughness), the ratings become more threatening. Oppositely, Table 4.5 indicates that 

pitch and roughness contribute little to explaining threatening ratings (HDIs across zero), 

but Arousal and Valence show a strong increase and decrease respectively. 

 

Table 4.4. Study 2, ordered-logistic Prosody model results 
Norm/Measure Mean SD HDI 5% HDI 95% 

Median Pitch 0.033 0.003 0.029 0.037 

Hammarberg Index -0.113 0.013 -0.134 -0.091 

Arousal 0.007 0.105 -0.167 0.168 

Valence -0.074 0.158 -0.319 0.199 

 

 

Table 4.5. Study 2, ordered-logistic Semantic model results 
Norm/Measure Mean SD HDI 5% HDI 95% 

Median Pitch -0.012 0.010 -0.029 0.004 

Hammarberg Index 0.028 0.014 0.002 0.050 

Arousal 0.518 0.083 0.385 0.653 

Valence 0.356 0.056 0.261 0.442 
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Figure 4.7. Study 2 cutpoints plots. Plots show probability of rating a sentence as not threatening 
at all (0 points) or very threatening (8 points) given acoustic measures for the Prosody 
experiment (upper panel) and given lexical norms for the Semantic experiment (lower panel). 
Prosody orange solid line indicates maximum Median Pitch (MP) plus minimum Hammarberg 
Index (HI) posterior distributions, violet dashed line indicates minimum Median Pitch (MP) plus 
maximum Hammarberg Index (HI) posterior distributions. Semantic solid red line indicates 
maximum Arousal plus minimum valence posterior distributions, blue dashed line indicates 
minimum Arousal plus maximum Valence posterior distributions. Faded lines are random 
samples from the posteriors, expressing uncertainty. Note the improvement of estimates 
respect to Study 1 (Figure 4.4). 
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Table 4.6. Study 2, BEST Mean and SD average posteriors 

Study 2 Arousal Valence Median Pitch Hammarberg Index 

Category Mean SD Mean SD Mean SD Mean SD 

Neutral  3.55 0.58 5.43 0.36 101.38 3.84 21.09 3.51 

Congruent 6.13 0.67 2.88 0.92 167.25 12.65 7.93 3.70 

Prosody 3.80 0.52 5.50 0.36 175.85 10.19 7.85 2.81 

Semantic  6.26 0.64 2.75 0.85 102.01 3.95 21.20 3.75 

 

Study 2 shows the opposite pattern respect to Study 1, in terms of overall 

probability across cutpoints. While the Semantic model indicates that lower ratings have 

low probability, the Prosody model shows a higher probability for lower values and a less 

pronounced probability increase. This might indicate that Study 1 has more extreme 

values for Arousal and Semantic, while Study 2 has more extreme values for Median Pitch 

and Hammarberg Index. Even so, Study 2’s mean differences as estimated by BEST are 

remarkably similar. As summarised in Table 4.6, Semantic and Congruent Arousal means 

are high but Neutral and Prosody are low; while Prosody and Congruent Median Pitch 

means are high but Neutral and Prosody are low. Again, the opposite pattern is observed 

for Valence and Hammarberg Index. Figure 4.8 summarises the differences between 

means, as estimated by BEST, across all conditions. 

In short results indicate that threat ratings increase as Median Pitch and/or 

Arousal increases and Hammarberg Index and/or Valence decreases. Furthermore, the 

central tendency (mean) of Median Pitch and Arousal is higher for Prosody and Semantic 

threat respectively, while the central tendency (mean) of Hammarberg Index and Valence 

is lower for Prosody and Semantic threat respectively. Study 2’s SAM ratings for arousal 

and valence given to each sentence provide further confirmation of this pattern. These 

are not ANEW ratings, but ratings given by Study 2’s participants to sentences and not 

words; they can be denominated arousal-sen and valence-sen. Ratings for Prosody show 

high arousal-sen (m = 5.96, SD = 1.4) and low valence-sen (m = 2.47, SD = 1.49) for 

Prosody sentences (prosodic threat only), as opposed to Neutral sentences showing low 

arousal-sen (m = 1.64, SD = 1.66) and valence-sen around the median (m = 4.25, SD = 

1.86). Ratings for Semantic indicate high arousal-sen (m = 6.08, SD = 2.10) and low 

valence-sen (m = 1.65, SD = 1.52) for Semantic sentences (semantic threat only), but low 

arousal-sen (m = 2.24, SD = 2.01) and valence-sen around the median (m = 4.19, SD = 

1.19) for Neutral sentences. Furthermore, 73% of Prosody sentences were classified as 

Angry, 16% as Enraged, 11% as Neutral and none as Calm. Similarly, 52% of Semantic 
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sentences were classified as Angry, 27% as Enraged, 17% as Neutral and 4% as Calm. No 

statistical analyses were performed on SAM ratings or classifications, as these trends are 

sufficiently clear and consistent with previous results. 

 

 

 
 
Figure 4.8. BEST model results from Study 2. Top: Median Pitch and Hammarberg Index. Bottom: Arousal 
and Valence. Ridgeplots represent the HDI distribution (kernel density) from each mean difference’s 
posterior. Grey bands indicate 2SDs regions of practical equivalence (ROPE). 

Study 2: BEST Means Comparisons
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4.3 Discussion 

 Overall, present results validate stimuli and their selection procedure. This is 

demonstrated by the predictive capacity of stimuli and ratings from Study 1, by the clear 

rating pattern from Study 2, and by the replicated BEST results across studies. Results 

from BEST models indicate that Semantic’s high arousal and low valence means 

homologate Prosody’s high median pitch and low Hammarberg index. That is, prosodic 

threat (Prosody and Congruent) is characterised by higher average median pitch but 

lower average Hammarberg index, semantic threat (Semantic and Congruent) is 

characterised by higher average arousal and lower average valence, and Neutral 

sentences show lower averages in all measures. Ratings, in particular from Study 2, 

indicate that increases in arousal and median pitch and decreases in valence and 

Hammarberg index explain and predict threatening scores. In other words, the more 

arousing and negative the semantics, and the more pitched and rougher the prosody, the 

more threatening the sentence is perceived. Furthermore, threatening sentences 

(Prosody and Semantics) from Study 2 show higher arousal and lower valence in a SAM 

scale, indicating that lexical and spectral features drive sentence-level perception of 

arousal and valence. In general, these results indicate that the assumption of arousal and 

valence as homologues of median pitch and Hammarberg index is appropriate, and that 

stimuli are comprehended as threatening. Hence, these stimuli are potentially good at 

eliciting emotions/cognitions such as anxiety. 

 Present results add up to the accumulated evidence indicating that more pitch and 

roughness are expressions of hot-anger (Banse and Scherer, 1996; Frühholz et al., 2016b; 

Hammerschmidt and Jürgens, 2007; Juslin and Laukka, 2003). Although most of these 

previous investigations usually use harmonicity (harmonic to noise ratio) as a measure 

of noisier less quality speech, present results show that Hammarberg index, a frequency 

measure of voice quality, can be a better predictor. Indeed, angry prosody’s harmonicity 

has not always shown direct effects on brain activity (Frühholz et al., 2016b). 

Importantly, noting that most Prosody sentences (89%) are classified by participants as 

expressing anger or rage, the present approach links this hot-anger/rage production with 

aggression, namely with the communication of threat. This implies that the speaker of 

presents studies effectively communicated threatening speech (as requested). This is 

consistent with research observing that natural expressions of anger have increased 

pitch and decreased voice quality (Anikin and Lima, 2017). This implies that sentences 
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with more pitch and rougher (less voice quality) could be more naturally comprehended 

as threatening. 

 In terms of semantics, present results support the sufficiency of Valence and 

Arousal ANEW norms (Montefinese et al., 2013). In other words, a bidimensional ANEW 

approach, at least for the portrayal of semantic threat. This is supported from previous 

evidence showing how pain or threat corresponds to increases in negativity and arousal 

(Borelli et al., 2018; Ho et al., 2015). This indicates that these words convey the potential 

of inducing harm, which is consistent with prosody measures as conveying potential 

aggression by increasing voice’s pitch but decreasing voice’s quality. In addition, present 

results indicate that lexical items can strongly drive the interpretation of threatening 

sentences. This is consistent with previous evidence evaluating semantic emotional 

effects of sentences based on emotional words (e.g. Kotz and Paulmann, 2007; Chen et al., 

2011). However, syntax may also drive the perception or comprehension of sentences as 

threatening. Indeed, it has been shown that sentences lacking lexical items with 

emotional meaning can be comprehended as emotional (Lai et al., 2015). So, even if 

present lexical items are sufficient for explaining and predicting perceived threat, 

addressing possible influences of syntax can prove a relevant further step. Even so, both 

Prosody and Semantic sentences show higher arousal and lower valence average SAM 

ratings than Neutral sentences. Also, most Semantic sentences (79%) are classified by 

participants as angry or enraged. These patterns add up to the evidence provided by 

present models, indicating clear effects of selected features (pitch, voice quality, arousal 

and valence) on threatening speech comprehension.  

All in all, the present approach is a strong alternative to conventional methods for 

treating experimental stimuli, usually subject to inappropriate procedures and statistical 

treatment (Sassenhagen and Alday, 2016). In addition, it is a step forward in researching 

naturalistic speech, not only by including better statistical modelling and stimuli selection 

(Alday, 2018), but also by treating stimuli analysis and norming itself through an 

experimental approach. Even so, there are some crucial limitations that need to be 

addressed. Firstly, ratings from Study 1 were split between written (for Semantic) and 

auditory (for Prosody) ratings, also containing later excluded items and deficient 

recordings, which reduces consistency. In addition, sample sized between Study 1’s 

Semantic and Prosody tasks were dissimilar and insufficient for Prosody. This implies 

that both inference and predictions from Study 1 are weak, as evidenced by overfit of 
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Neutral ratings. Nevertheless, these issues were addressed in Study 2, by including 

improved versions of selection/recording and norming procedures. Despite these 

limitations, comparisons of means (BEST) showed great consistency across studies. This 

also evidences that Bayesian approaches are an excellent option for dealing with small 

data, and also demonstrate that hierarchical models can properly address data 

inconsistencies if appropriate and meaningful levels are modelled. A limitation of Study 

2 is the lack of confidence ratings. However, the fact that participants in Study 2 tend to 

classify most sentences as angry or enraged in the four items scale (calm, neutral, angry, 

enraged) strengthens the suggestion that threatening and offensive language resembles 

hot-anger if understood as emotional expression. Note that the analogous nature 

between pitch/voice-quality and arousal/valence (Patel et al., 2011), strongly supported 

by present results, can be extended to an analogy between hot-anger and threatening 

prosody not only because they match acoustically, but also because they imply more 

arousing and negative meaning which can be understood as potentially harmful (Borelli 

et al., 2018; Ho et al., 2015). 

 In summary, the present study shows strong acoustic and lexical counterparts that 

underlay prosodic and semantic threat. Namely, Arousal increases and Valence 

decreases, indicating that semantic threat is comprehended via negatively arousing 

content. Similarly, Median Pitch increases and Hammarberg Index decreases, suggesting 

that prosodic threat is comprehended through a rougher higher pitched voice (angry 

voice). Importantly, these analyses show the relevance of the present procedure for semi-

naturalistic stimuli. This extends the scope of evidence supporting theories of threat 

production and perception. Also, inter-speaker variability needs to be addressed, as 

different speakers could produce slightly different prosodic cues for conveying threat. 

Notwithstanding, present sentences can guarantee good threatening stimuli and also 

evidence core properties of semantic and prosodic threat.    
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Chapter 5 

Behavioural Evidence 1 

Is Anxious Repetitive Thinking Influencing Responses?  
 

 

5.1 Introduction 

As discussed in Chapter 2, humans can convey emotion information through 

different channels, and in the particular case of language the manipulation of tone and/or 

meaning (i.e. prosody and semantics) are common ways to do so. These different 

informational features (suprasegmental information associated with prosody, and 

segmental information associated with semantics) can develop together in a complex 

language emission such as an emotional sentence, and can convey emotional information 

simultaneously. Whether intrinsic affect differences between individuals (e.g. variation 

in trait anxiety) has differentiable effects on prosody and semantics remains a generally 

unexplored problem in language perception and comprehension research.  

The present study, published as a full paper elsewhere (Busch-Moreno et al., 

2020a), aims to understand the effect of trait anxiety on these information properties of 

speech, based on two dichotic listening (DL) experiments. Where DL can be a robust test 

of functional hemispheric lateralization (Hugdahl, 2011), tapping into features of both 

speech (language) and anxiety (affect) processing. DL can provide a behavioural test of 

laterality in such a way that information- and affect-related aspects of processing can be 

disentangled. Normally, responses to DL tasks that do not involve prosody or emotion 

indicate a right ear advantage (REA): faster response times and/or higher accuracy for 

language processing at stimuli presented at the right ear (Hugdahl, 2011). Differently, DL 

responses to emotional and/or prosodic stimuli show either diminished REAs or a left 

ear advantage (LEA) (Godfrey and Grimshaw, 2015; Grimshaw et al., 2003).   

Few dichotic listening (DL) experiments have researched the effects of anxiety 

on emotional speech processing (Gadea et al, 2011). They either use speech/prosody as 

an emotion-eliciting stimulus or use DL mainly as an attentional manipulation technique 

(e.g. Leshem, 2018; Peschard et al., 2016; Sander et al., 2005). As a result, they are limited 

in the extent to which they reveal the relationship between dynamic variations in 

emotion language processing (prosody/semantics). Instead, studies focusing on the 

dynamic properties of emotional language, whether using DL or not (e.g. measuring 
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laterality through electrophysiological measures), do not tend to consider individual 

differences (e.g. Godfrey and Grimshaw, 2015; Grimshaw et al., 2003; Kotz and Paulmann, 

2007; Paulmann et al., 2012; Techentin et al., 2009; Wambacq and Jerger, 2004). 

Therefore, on one side of the picture speech stimuli are typically treated as generic 

threatening stimuli, so possible differences induced by the informational features of 

speech that may vary over time are overlooked. On the other side, participants are 

typically regarded as a homogeneous group, so possible differences induced by anxiety-

related processing, that may vary over time and may differ across informational features. 

Another important thing to consider is that in natural speech, emotional prosody might 

not be constrained to a single word, as is the case in the experimental manipulations used 

by most studies cited above. However, semantics is always constrained by sentence’s 

structure and lexical meaning. In other words, while a lexical item needs to be identified 

within a sentence in order for emotional semantics to be recognized, prosody might be 

expressed from the beginning of a sentence. This makes difficult to generalize from word 

level, or highly controlled sentences, to real world emotional utterances.  

To address these issues, two web-based DL experiments were designed, using semi-

naturalistic sentences in order to ensure dynamic language processing beyond the single 

word level. Participants were asked to discriminate between neutral and threatening 

sentences (the latter expressing threat via semantics, prosody or both), in a direct-threat 

condition: identifying whether a threatening stimulus was presented to the left or right 

ear, and in an indirect-threat condition: identifying whether a neutral stimulus was 

presented the left or right ear. Participant’s anxiety level was measured by using a 

psychometric scale. By so doing, the present approach is able take advantage of past 

studies researching the attentional effects of threatening language on anxiety and of 

studies researching the dynamics of speech’s informational properties within a single 

study. Also, as both speech processing and anxiety literature seem to converge on 

theoretical perspectives incorporating multistep models (processing time-course), two 

experiments were designed to tap into different points in processing for which individual 

variation in anxiety may affect speech. In particular, experiments were aimed at 

differentiating responses made at late evaluative stages (delayed response) vs. responses 

made at earlier attentive stages (online response) as early over-attention to threat (Bar-

Haim et al., 2007) might affect earlier prosody/semantic lateralization patterns (Kotz and 

Paulmann, 2011), and later over-engagement with threat (Bar-Haim et al., 2007) might 
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affect later emotional language evaluation stages (Kotz and Paulmann, 2011). Thus, 

Experiment 1 required participants to wait until after sentences’ offset to respond 

(delayed response), and Experiment 2 required participants to respond during sentence 

presentation (online response).  

For Experiment 1 it is hypothesized that anxious over-engagement with threat at 

mid-late evaluative stages (Bar-Haim et al., 2007) should increase left hemisphere (LH) 

engagement (Spielberg et al, 2013), disturbing possible LH to right hemisphere (RH) 

information transferring (Grimshaw et al., 2003; Kotz and Paulmann, 2011). Hence, a left 

ear advantage (LEA) is predicted; usually observed in DL experiments as an effect of 

prosody/emotional stimuli (Godfrey and Grimshaw, 2015; Grimshaw et al., 2003), this 

LEA should decrease as a function of anxiety, especially for semantic threat. This implies 

slower and less accurate responses for anxious people at their left ear when responding 

to semantically threatening but prosodically neutral stimuli (here referred as Semantic 

stimuli). As present sentences are semi-naturalistic, they have varied durations, but are 

long on average (~2s). This implies that answering after sentence’s offset emphasizes late 

stage processing, understood to start at around 400ms (Kotz and Paulmann, 2011), 

followed by deliberation (~600ms). This late stage could be sustained for a long period 

of time, as it is characterized by a cyclic BIS process (McNaughton et al., 2013). Hence, if 

trait anxiety extends deliberation through excessive worry, then responses locked to 

sentence’s offset should be slower. 

For Experiment-2 it is expected that, as responses are forced to be faster (online), 

prosody should induce the most noticeable effects, as online responses may overlap with 

early-mid emotional processing stages (Kotz and Paulmann, 2011). Therefore, it is 

hypothesized that higher anxiety should reduce LH involvement (Spielberg et al., 2013) 

due to over-attention to threat effects, characteristic of earlier-mid processing stages 

(Bar-Haim et al., 2007). Hence, predict an enhanced LEA for highly anxious participants 

is predicted, especially for prosodically threatening but semantically neutral stimuli 

(here named Prosody stimuli). Thus, faster and more accurate responses for anxious 

people at their left ear when attending prosodic stimuli. In other words, as participants 

are required to answer as fast as possible, and prosody is readily identifiable in each 

sentence, but semantics required the identification of lexical items, processes before 

quick responses (~100, ~200ms) should take precedence for prosody, while semantics 



52 
 

might be affected by later processes (~400ms) as responses could be naturally slower 

independent of anxiety.   

 

5.2 Methods 

5.2.1 Participants 

Participants were recruited using Prolific (prolific.ac). Only participants reporting 

being right-handed, having English as first language, without hearing and 

neurological/psychiatric disorders, and using only a desktop or laptop to answer the 

experiment were recruited.  For Experiment 1, after exclusion, due to poor accuracy 

(below 70%) or not finishing the task properly, 44 participants (mean age = 31.7, 27 

females) were retained (26 excluded). For Experiment 2, accuracy rejection threshold 

was relaxed to 60% (slightly closer to chance); thus 24 participants were excluded and 

52 participants (mean age = 31, 24 females) were retained. Participants were 

remunerated on a £7.5/hour rate. All participants gave their informed consent before 

participating. It is important to clarify, the web-based nature of the experiment implies 

that task compliance levels could be low, as there is no direct control over participants 

meeting requested requirements (e.g. appropriate headphones) or performance (e.g. 

answering randomly). For this reason, and also to avoid issues related with possible 

impulsive behaviour or to age-related audition loss, only participants well above the 

adolescence threshold and amply below critical ages for audition loss were accepted, 

namely participants between 24 and 40 years old. Participants were informed that all 

their data is managed by UCL and 1998 data protection act protocols. Note that accuracy 

exclusion thresholds vary, as the second experiment is more difficult. Also, sample sizes 

are based on previous literature (e.g. Leshem, 2018; Peschard et al., 2016), and resources 

availability. 

  

5.2.2 Materials 

Four types of sentences were recorded: Prosody (neutral-semantics and 

threatening-prosody), Semantic (threatening-semantics and neutral-prosody), 

Congruent (threatening-semantics and threatening-prosody), and Neutral (neutral-

semantics and neutral-prosody). Details about sentence selection and semantic and 

prosodic properties are widely discussed in Chapter 4. As a brief reminder, sentences 

were recorded in an acoustically isolated chamber using a RODE NT1-A1 microphone by 



53 
 

a male English speaker. The speaker was not a professional actor or voice actor (i.e. 

untrained speaker). The speaker was instructed to speak in what he considered his own 

angry threatening/angry or neutral voice for recording Prosody/Congruent and 

Semantic/Neutral sentences respectively. Sentences were not repeated across type (i.e. 

each type has a unique set of sentences). Neutral dichotic pairs were also unique across 

conditions (480 different sentences). Due to a technical problem several sentences were 

recorded with very low amplitude. Therefore, sentences were normalized and cleaned 

from noise in Audacity (audacityteam.org).  

Next, sentences were paired using Audacity: sentences were paired such as their 

durations were as similar as possible. Silences between words were extended, never 

surpassing 40ms, to match sentences’ latencies as closely as possible. After this, 

sentences were allocated to one of the stereo channels (left or right) of the recording; 

each pair was copied with mirrored channels. A silence (~50ms) was placed at the 

beginning and at end of each pair. This resulted in a total of 480 pairs where 80 sentences 

of each type (congruent, semantic, prosody) were each paired with a neutral sentence of 

the same length twice, so every sentence was presented once at each ear. Sentences’ 

average length is 1720.65ms, and their prosodic features (Chapter 4) are consistent with 

previous DL experiments (Godfrey and Grimshaw, 2015; Grimshaw et al., 2009). 

 

Table 5.1. Average number of words, duration and reaction time per stimulus type 

Type Words Threat Words Neutral Stimulus Duration Delayed RT Fast RT 

Congruent 4.44 (0.88) 4.9 (0.96) 1744.49 (321) 535.32 (108) 1218.47 (148) 

Prosody 4.45 (1.04) 5.01 (0.81) 1853.55 (256) 639.34 (104) 1328.92 (159) 

Semantic 4.41 (1.03) 4.4 (1.05) 1554.44 (364) 590.65 (91) 1207.93 (155) 

Note. Standard deviation appears in brackets. Duration and reaction times (RT) are expressed in milliseconds (ms). 

 

 

5.2.3 Procedure 

Before starting the experiments, participants answered the Penn State Worry 

Questionnaire (PSWQ) (Meyer et al., 1990) to assess their worry-level, and the Anxious 

Arousal sub-scale of the Mood and Anxiety Symptoms Questionnaire (MASQ-AA) (Watson 

et al., 1995) to assess their arousal level. This follows previous approaches (Nitschke et 

al., 1999), with the difference that PSWQ scores are used as a continuous predictor 

instead of splitting participants between high and low anxiety groups. For Experiment 1, 

PSWQ results indicated a distribution which is varied enough in terms of worry level 
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(mean = 47.31, median = 48.0, range [33, 67]). For experiment 2, PSWQ scores show 

similar properties (mean = 45.22, median = 45.0, range = [26,61]). PSWQ measures worry 

in a scale ranging from 16 to 80 points (median = 48 points), showing a consistent normal 

distribution in tested samples (mean close to median, as in our samples), and has been 

shown to have high internal consistence and validity (for details see: Meyer et al., 1990). 

MASQ-AA scores indicate that participants showed low levels of arousal, as none of them 

marked above the median. According to previous literature (e.g. Heller et al., 1997; 

Nitschke et al., 1999; Spielberg et al., 2013), high scores of MASQ-AA would be indicative 

of trait anxious arousal (hyperarousal), while high scores of PSQW would indicate trait 

anxious apprehension. Therefore, the present sample does not include participants with 

high or trait hyperarousal. So, only PSWQ scores were included in the analyses. 

After a practice session, participants were randomly assigned to a list containing 

half of the total number of dichotically paired sentences (threat-neutral pairs) per 

threatening type (Prosody|Neutral, Semantic|Neutral, Congruent|Neutral), that is 40 

pairs per type (120 in total). Sentences’ lists were created previous to the experiment 

using randomly selected sentences from the total pool. Sentences were presented 

randomly to participants. In one half of the study they were instructed to indicate at 

which ear they heard the threatening sentence by pressing the right or left arrow keys 

(direct-threat condition). In the other half of the study they were instructed to respond 

in the same way, but indicating which ear they heard the neutral sentence in the dichotic 

pair (indirect-threat condition). This was intended to address attention effects (Aue et al., 

2011; Peschard et al., 2016). Starting ear (left or right) and starting condition (direct- or 

indirect-threat) were counterbalanced. Participants were told to answer, as fast as 

possible, only when the sentence finished playing and a bulls-eye (target) image 

appeared on the screen. A 1400ms inter-stimulus-interval (ISI) was used, and the target 

image stayed on the screen during this period. For Experiment 2, participants were 

instructed to answer, as fast and as accurately as possible, before the sentence finished 

playing, and to withhold any response when a stop sign image appeared on the screen 

after sentences' end. 

 

5.2.4 Analysis 

Reaction time (RT) data were recorded in milliseconds, locked to sentence’s offset.  

Accuracy was coded as correct=1 and else=0 (including misses and false alarms). 
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Participants with hit rates below 70% were excluded, as lower thresholds are too close 

to chance. This is mainly due to the nature of web-based experiments, where compliance 

levels cannot be more directly controlled. Thus, using too low exclusion criteria (e.g. 

~50% or chance) is not methodologically warranted, as this would make difficult to 

identify how much variance or bias is added by unidentified non-compliance. Moreover, 

by setting a higher criterion for inclusion, it is ensured that participants are 

understanding the sentence content sufficiently for the various proposed stages of 

processing to occur.  Two Bayesian hierarchical models were built for reaction time (RT) 

and accuracy. Models are described in detail in Chapter 3, but a reminder diagram of the 

present RT model can be seen on Figure 5.1. For Experiment 2, the same robust 

regression model was applied without duration, which would be inappropriate as 

participants answer before offset (incomplete sentence’s duration). 

 

 

As shown in Chapter 3, accuracy used a similar structure with Bernoulli 

distribution for observed likelihood. RT models used a robust regression (Kruschke, 

2015) in order to account for outliers through a long-tailed Student-t distribution. In this 

way, RTs that are implausibly fast or implausibly slow do not need to be removed, but 

can be dealt with statistically.  Both accuracy and RT models were sampled using Markov 

 
 
Figure 5.1. Diagram representation of hierarchical robust regression model. Arrows indicate the relationship 
between a parameter and priors/hyperpriors, where tilde (~) indicates a stochastic relationship and equal (=) 
indicates a deterministic relationship. Observations (Obs.) represent RTs in milliseconds. 
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Chain Monte Carlo (MCMC) No U-turn Sampling (NUTS) as provided by PyMC3 (Salvatier 

et al., 2016). Two chains of 1000 tuning steps and 1000 samples each were used. Plots 

and model comparisons were produced using Arviz (Kumar et al., 2019) and Matplotlib 

(Hunter, 2007). A region of practical equivalence (ROPE) of 2SDs, compared with a 90% 

high posterior density interval (HDI), was established as main criterion for deciding 

whether posterior distributions indicated strong or weak effects/differences.  

In other words, 90% HDIs which fall completely outside the ROPE are considered 

to have very high chances of never overlapping with a distribution centred around zero 

and spanning the ROPE, namely a distribution indicating no change from one condition 

to another (if categorical) or no change as a variable progress (if continuous). Otherwise, 

HDIs partially overlapping with ROPEs indicate that chances of distributions being 

equivalent increases, thus when HDIs completely overlap a ROPE it can be considered 

that both distributions are indeed equivalent and that the variable had no effect or an 

extremely negligible effect. The reader is urged to interpret ROPEs as a heuristic of 

thresholding, but not as an “effect barrier”. This implies a basic science interpretation 

where the interest is in continuous changes in nature rather than an applied science one, 

where threshold decisions are necessary (see Kruschke, 2018).  Note that when HDIs are 

narrower than ROPEs, this indicates high precision of the estimates. 

 

5.3 Results 

5.3.1 Experiment 1: Delayed Response 

 All models sampled properly (�̂�  =̃ 1, ESS > 400, BFMIs > 0.6); energy plots, 

traceplots and autocorrelation plots also indicate excellent convergence. In addition, 

HDIs widths indicate high precision of the estimates, as each HDI is narrower than its 

associated ROPE. Plots and results from these checks, including raw data and full 

summaries of parameters and conditions, can be found in an Open Science Framework 

(OSF) repository (https://osf.io/z8pgf/), also associated with present chapter’s 

published version (Busch-Moreno et al., 2020a). 

Results for accuracy models are summarized in Table 5.2: Direct-threat, and Table 

5.3: Indirect-threat. Tables show summaries for each condition at the lowest and highest 

worry levels (PSWQ score). As an important reminder: when variables are included in an 

interaction, their parameters are not free anymore, so main effects (lower-order effects) 

cannot be understood independently. For the present model, all effects are modulated by 
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the Worry by Ear by Type interaction. Indeed, when taking worry level into account, 

slopes show HDIs widely overlapping with zero and/or ROPEs. This makes safe to 

conclude that evidence supporting accuracy effects is not strong (i.e. weak or negligible 

effects).  

 

Table 5.2. Experiment 1. Direct-threat task, accuracy logistic regression slopes 

Worry Slopes 

Stimulus Type Ear PSWQ Score Posterior Mean Posterior SD HDI %5 HDI 95% Probability % 

Semantic Left 33 1.00 0.67 -0.08 2.13 73.12 

Prosody Left 33 0.07 0.66 -0.94 1.24 51.75 

Semantic Right 33 0.74 0.56 -0.21 1.65 67.66 

Prosody Right 33 -0.01 0.56 -0.93 0.91 49.64 

Semantic Left 67 2.03 1.37 -0.17 4.32 88.41 

Prosody Left 67 0.14 1.34 -1.91 2.51 53.54 

Semantic Right 67 1.50 1.14 -0.43 3.35 81.74 

Prosody Right 67 -0.03 1.14 -1.89 1.85 49.27 

Note. Posterior estimates are expressed in log-odds, the rightmost column contains the mean derived probability. 

 

 

 

Table 5.3. Experiment 1. Indirect-threat task, accuracy logistic regression slopes 

Worry Slopes 

Stimulus Type Ear PSWQ Score Posterior Mean Posterior SD HDI 5% HDI 95% Probability% 

Semantic Left 33 -0.43 0.66 -1.49 0.66 39.51 

Prosody Left 33 -0.86 0.62 -1.95 0.12 29.72 

Semantic Right 33 1.06 0.56 0.12 1.92 74.35 

Prosody Right 33 -0.19 0.55 -1.12 0.66 45.29 

Semantic Left 67 -0.87 1.34 -3.02 1.33 29.63 

Prosody Left 67 -1.75 1.26 -3.97 0.25 14.84 

Semantic Right 67 2.16 1.14 0.24 3.89 89.66 

Prosody Right 67 -0.38 1.12 -2.28 1.34 40.53 

Note. Posterior estimates are expressed in log-odds, the rightmost column contains the mean derived probability. 

 

 

Results for reaction time (RT) data in both the direct-threat and indirect-threat 

tasks indicated strong effects of worry level. Table 5.4 and Table 5.5 summaries show that 

worry level did not have particularly strong differences between ear or type effects. Slope 

estimates for worry, however, indicate a strong effect of worry. Increases from lowest 

worry level (33 PSWQ points) to highest (67 PSWQ points) are almost the same across 

conditions (~290ms to ~309ms); a negligible difference when considering error. Note 
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that seemingly slower responses to Semantic can be disregarded due to HDIs 

overlapping. In short, independent of type or ear, estimates indicate that RT increases 

around 8ms (± ~0.3ms) per PSWQ score point. At the highest worry level participants 

answer around 300ms later than at the lowest worry level (see Figure 5.2). 

 

 

 Note. Posterior estimates are expressed in milliseconds (ms). 

 

 

 

 

 

 

 

 

 Note. Posterior estimates are expressed in milliseconds (ms). 

Table 5.4. Experiment 1. Direct-threat task, reaction time robust regression estimates  

 Worry Slopes 

Stimulus Type Ear PSWQ Score Posterior Mean Posterior SD HDI 5% HDI 95% 

Semantic Left 33 285.21 8.95 271.01 299.88 

Prosody Left 33 280.51 9.98 265.42 298.46 

Semantic Right 33 280.06 7.97 267.14 293.42 

Prosody Right 33 266.88 8.86 253.23 282.11 

Semantic Left 67 579.06 18.16 550.23 608.84 

Prosody Left 67 569.52 20.27 538.88 605.96 

Semantic Right 67 568.61 16.18 542.37 595.73 

Prosody Right 67 541.85 17.99 514.14 572.77 

Table 5.5. Experiment 1. Indirect-threat task, reaction time robust regression estimates  

 Worry Slopes 

Stimulus Type Ear PSWQ Score Posterior Mean Posterior SD HDI 5% HDI 95% 

Semantic Left 33 296.34 9.25 280.50 310.79 

Prosody Left 33 283.14 10.50 264.45 298.82 

Semantic Right 33 288.38 8.02 275.42 301.63 

Prosody Right 33 285.20 9.34 270.94 301.46 

Semantic Left 67 601.66 18.77 569.50 630.99 

Prosody Left 67 574.85 21.31 536.91 606.70 

Semantic Right 67 585.50 16.28 559.18 612.40 

Prosody Right 67 579.05 18.97 550.09 612.06 
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 Duration had no relevant impact on results, showing very small increases in 

accuracy and very small decreases in RTs. Only the indirect-threat RT task shows an HDI 

outside ROPE indicating a considerable but small effect of around 0.03ms RT decrease 

per 1ms increase in sentence’s duration. So, the maximum duration difference in present 

stimuli (~1800ms) barely decrease RT by ~50ms from the shortest to the longest 

sentence. Given the huge variability in sentences’ lengths, these effects are negligible. 

Overall, results from Experiment 1 (delayed responses) indicate that whether 

participants answer to threat directly (pressing a button to indicate which ear the 

threatening sentence was presented to) or indirectly (indicate which ear the neutral 

sentence was presented to), they are similarly accurate. There are negligible effects of ear 

and type due to variability in uncertainty and error. Experiment 1’s results for RTs also 

indicate that small effects of Semantic stimuli type, slowing down RTs for higher worry, 

can also be considered negligible due to overlapping HDIs. RTs are strongly affected by 

                    
    

Figure 5.2. Experiment 1 (delayed responses), direct-threat regression lines. Images show posterior 
distributions across worry levels by Semantic and Prosody at left and right ears for both conditions. Faded 
lines are samples from the posterior and indicate uncertainty. Grey circles indicate total RT average across 
worry level (independent of condition). Note that certainty of the estimates is good, and that differences 
between conditions are small. This indicates that, independent of condition, reaction times substantially 
increased as worry level increased. 
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worry level, where at both direct- and indirect-threat tasks responses increase about 

eight milliseconds per PSWQ score point. 

 

5.3.2 Experiment 2: Fast Response 

 Models for Experiment 2 did not include duration in the regression, as the 

relationship between duration and worry level is not clear, as participants must always 

answer before the end of each sentence. Again, all effects show good precision and all 

models sampled properly (�̂�  =̃ 1, ESS >  400, BFMIs > 0.6), with energy plots, 

traceplots, and autocorrelation plots showing excellent convergence (for images see the 

OSF repository: https://osf.io/z8pgf/). 

 Accuracy results are summarised in Tables 5.6 and Table 5.7. Note that the direct-

threat results seemingly high effect of highest anxiety participants (61 points) of dis-

preferring their Right ear for Prosody with a 9.7% probability still slightly overlaps the 

ROPE, and given this, it cannot be considered good evidence in support for a Prosody 

right ear disadvantage. Similar conclusions can be drawn for the 12.6% probability for 

higher worry responses to Prosody at left ear in the indirect-threat task (Table 5.7). All 

other effects are more clearly near 50% probability, or zero log-odds, with HDIs spanning 

zero and ROPEs. All other effects are more clearly near 50% probability, or zero log-odds, 

with HDIs spanning zero and ROPEs.  

 

 

Table 5.6. Experiment 2. Direct-threat task, accuracy logistic regression slopes 

Worry Slopes 

Stimulus Type Ear PSWQ Score Posterior Mean Posterior SD HDI 5% HDI 95% Probability% 

Semantic Left 26 0.35 0.37 -0.24 0.98 58.59 

Prosody Left 26 0.11 0.38 -0.48 0.76 52.63 

Semantic Right 26 -0.62 0.30 -1.07 -0.07 35.09 

Prosody Right 26 -0.95 0.30 -1.49 -0.48 27.87 

Semantic Left 61 0.81 0.88 -0.57 2.29 69.29 

Prosody Left 61 0.25 0.90 -1.12 1.78 56.15 

Semantic Right 61 -1.44 0.71 -2.52 -0.18 19.11 

Prosody Right 61 -2.23 0.71 -3.50 -1.14 9.70 

Note. Posterior estimates are expressed in log-odds, the rightmost column contains the mean derived probability. 
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Table 5.7. Experiment 2. Indirect-threat task, accuracy logistic regression slopes 
Worry Slopes 

Stimulus Type Ear PSWQ Score Posterior Mean Posterior SD HDI 5% HDI 95% Probability% 

Semantic Left 26 -0.47 0.34 -1.01 0.07 38.51 

Prosody Left 26 -0.83 0.34 -1.35 -0.21 30.44 

Semantic Right 26 -0.48 0.27 -0.90 0.00 38.16 

Prosody Right 26 -0.10 0.28 -0.54 0.37 47.54 

Semantic Left 61 -1.10 0.79 -2.38 0.17 25.01 

Prosody Left 61 -1.94 0.81 -3.17 -0.50 12.58 

Semantic Right 61 -1.13 0.64 -2.11 0.00 24.37 

Prosody Right 61 -0.23 0.66 -1.26 0.87 44.24 

Note. Posterior estimates are expressed in log-odds, the rightmost column contains the mean derived probability. 

 

 

Results from RT data are summarised in Table 5.8 and Table 5.9. These indicate a 

more consistent, but small, effect of Prosody at the highest worry level in the direct-threat 

task. This effect is independent of ear (but slightly stronger at the left), where increases 

from lower (26 points) to higher worry (67 points) at the left ear are ~369ms for 

Semantic but ~418ms for Prosody, and ~368ms for Semantic and ~400ms for Prosody 

at the right ear. However, estimates still indicate this as weak effects, as HDIs of Prosody 

at higher worry still overlap with HDIs of Semantic at higher worry. Furthermore, these 

effects tend to fade in the indirect-threat task. Hence, the strong general effects of worry 

must be emphasised, which indicate a strong increase of about 400ms, independent of 

ear or stimulus type, from the lowest to the highest worry level (see Figure 5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Note. Posterior estimates are expressed in milliseconds (ms).  

Table 5.8. Experiment 2. Direct-threat task, RT robust regression estimates  

 Worry Slopes 

Stimulus Type Ear PSWQ Score Posterior Mean Posterior SD HDI 5% HDI 95% 

Semantic Left 26 274.43 18.02 244.75 304.10 

Prosody Left 26 310.51 18.47 280.63 340.87 

Semantic Right 26 273.28 17.36 245.23 302.20 

Prosody Right 26 296.75 17.82 267.89 326.86 

Semantic Left 61 643.86 42.27 574.21 713.46 

Prosody Left 61 728.49 43.34 658.39 799.74 

Semantic Right 61 641.16 40.73 575.34 709.01 

Prosody Right 61 696.23 41.81 628.52 766.87 
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Note. Posterior estimates are expressed in milliseconds (ms). 

 

 

5.4 Discussion 

Results from the delayed response experiment (Experiment 1) indicate small 

effects of worry on accuracy and strong effects of worry on RT. A noticeable feature is an 

Table 5.9. Experiment 2. Indirect-threat task, RT robust regression estimates  

 Worry Slopes 

Stimulus Type Ear PSWQ Score Posterior Mean Posterior SD HDI 5% HDI 95% 

Semantic Left 26 299.96 16.99 269.96 325.15 

Prosody Left 26 308.13 17.27 281.61 337.45 

Semantic Right 26 280.37 16.00 256.25 308.77 

Prosody Right 26 307.72 16.07 280.61 332.93 

Semantic Left 61 703.75 39.87 633.37 762.85 

Prosody Left 61 722.91 40.52 660.71 791.71 

Semantic Right 61 657.79 37.54 601.21 724.42 

Prosody Right 61 721.96 37.71 658.36 781.10 

 

 
    

Figure 5.3. Experiment 2 (fast responses), direct threat regression lines. Images show posterior 
distributions across worry levels by Semantic and Prosody at left and right ears for both conditions. Faded 
lines are samples from the posterior and indicate uncertainty. Grey circles indicate total RT average 
across worry level (independent of condition). Note that certainty of the estimates is good, and that 
differences between conditions are small. This indicates that, independent of condition, reaction times 
substantially increased as worry level increased. 
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increase in accuracy for Semantic in the indirect-threat task, where participants prefer 

the right ear for semantic independent of worry level (anxious people are slightly more 

accurate). These effects, however, are very weak and associated with greater uncertainty. 

The same happens for effects of worry on type. Therefore, the most sound and grounded 

inference from present results is that worry mainly affects RT in a directly proportional 

relationship, and does so for any type of threatening stimuli (Prosody, Semantic or 

Congruent) and independent of ear presentation. These results are generally echoed by 

the fast response experiment (Experiment 2). To note, higher worry accuracy in the 

direct-threat task seems to decrease when they answer to Prosody at their right ear, but 

in the indirect-threat task this happens at the left ear. This reversal is to be expected due 

to threat-direction, but again these effects are small and somewhat uncertain. A clearer 

effect of greater reaction times for Prosody as a function of worry level was observed for 

the direct-threat task of the fast experiment. Although this effect was more reliable than 

previous Type effects, it was small.  

Some effects become more evident when their slopes are taken into account 

separately, such as a general accuracy increase at left ear for Prosody in the direct-threat 

task of Experiment 1 (reversed for indirect-threat to a decrease as a function of worry), 

and an accuracy increase for Prosody at left ear as a function of worry in the direct-threat 

task of Experiment 2 (also reversed to a decrease for indirect-threat as a function of 

worry); which can be expected in a dichotic listening task and are partially consistent 

with present predictions (for plots and addition materials see the OSF repository: 

https://osf.io/z8pgf/). Nevertheless, for present purposes the most conservative 

approach is taken. That is, the most straightforward interpretation is upheld; 

interpretation which takes all effects into account simultaneously due to their 

involvement into an interaction. This simply indicates that in both experiments higher 

worriers tend to answer slower to any type of threatening stimuli. Namely, for each point 

increase of worry score, reaction times increase around eight milliseconds. This implies 

that this Chapter’s hypotheses indicating ear preferences as distinct by type cannot be 

supported, nor the hypothesis on differing effects of fast responses. However, the main 

hypothesis indicating a strong effect of worry level (trait anxiety) receives strong support 

from present results. 

In order put the present results in context, it is important to recapitulate important 

aspects that differentiate the current experiments from previous relevant studies: 1) The 
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use of worry-level as a continuous variable. Worry is associated with anxious 

apprehension (Heller et al., 1997), which implies more chances of participants over-

engaging with threat. 2) Stimuli were semi-naturalistic sentences, providing stronger 

contextual effects. In addition, their longer durations can facilitate engagement with their 

content. 3) Information channels were manipulated to disentangle effects of semantics 

and prosody from effects of emotional expression (Kotz and Paulmann, 2007). 4) The use 

of two tasks measuring responses directed to threatening or neutral stimuli (direct vs. 

indirect threat, e.g. Sander et al, 2005) helps to check whether attention effects could be 

inducing different response patterns. 5) Two experiments were implemented to verify 

whether answering after sentences’ end or during sentence presentations (delayed vs. 

fast) can influence laterality patterns by tapping into different moments of a multistep 

emotional language processing mechanism (Kotz and Paulmann, 2011). 

With this in mind, it is important to carefully interpret the lack of laterality (ear) 

effects in Experiments 1 and 2. Weak ear effects might be explained by the great 

variability between items and the high duration (also very variable) of sentences. 

However, the lack of sensitivity of DL when more semi-naturalistic stimuli are provided 

cannot be discarded as a possible explanation. If DL effects are task dependent (Godfrey 

and Grimshaw, 2015), increased naturalness on stimuli can bring out a myriad of bilateral 

processing patterns that might make ear advantages disappear on the long run when 

prolonged auditory stimuli are listened to. Although there is previous evidence 

suggesting a right lateralized pattern for prosody vs. semantic evaluation in an EEG 

experiment (not considering anxiety), using a congruency (not DL) task with sentences 

as stimuli (Kotz and Paulmann, 2007), further experimentation using a similar paradigm 

has not observed this pattern (Paulmann and Kotz, 2012). Although this pattern is 

explained by the strong association between pitch recognition and RH engagement (Kotz 

and Paulmann, 2007; Zatorre et al., 2002), there are other frequency and spectral features 

that might be important for recognizing both threatening and neutral sentences (Banse 

and Scherer, 1996; Hammerschmidt and Jürgens, 2007; Xu et al., 2013; Zatorre et al., 

2002). This could imply that distinguishing prosody and semantics might be a continuous 

process that can have diversified effects even during sentence presentation.  

Indeed, by manipulating angry prosody changes at the beginning and end of 

sentences, an EEG study has observed that when prosody changes from angry to neutral 

within sentences, processing is more effortful (Chen et al., 2011). This might indicate that 
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the rich acoustic nature of prosody might be detected quickly but resourcefully. Recent 

EEG research has observed that anxious people present ERP differences at both early and 

late processing stages when answering to threatening prosody and non-language 

vocalizations (Pell et al., 2015). This is consistent with the notion of early over-attention 

and later over-engagement, and indicates that behavioural responses might change given 

early or late variations in threat.  

Another possible explanation is callosal relay (Atchley et al., 2011; Grimshaw et al., 

2003), where increased anxiety would disrupt RH to LH callosal information transferring 

of threatening prosody. It has been proposed that callosal relay is highly relevant for 

language informational and emotional processing (Friederici et al., 2007; Kotz and 

Paulmann, 2011; Steinmann et al., 2017). Hence, interference at one hemisphere (e.g. 

rumination or worry impacting LH) can have an effect on information transferring to the 

other. Thus, callosal relay effects could have a relevant impact on how DL tasks are 

processed, subject to both top-down and bottom-up effects (Westerhausen and Hugdahl, 

2008), which is particularly relevant when laterality effects induced by acoustic or lexical 

properties need to be disentangled from those induced solely by emotional processing 

(Grimshaw et al., 2003; Leshem, 2018).  

Nevertheless, strong effects of worry level (trait anxiety), affecting emotional 

language processing were observed, which may be due to over-engagement with threat 

(Bar-Haim et al., 2007; Spielberg et al., 2013). It was proposed that delayed responses 

facilitate over-engagement with threat due to the long latency between sentence 

presentation and response. This, together with the high variability in sentences’ 

durations and content might have nullified ear and/or type effects. Furthermore, the 

present experimental set-up failed to observe any clear Type or ear effect when 

responses were forced to be fast (during sentence), besides a small effect of worry level 

on Prosody stimuli (slower RTs). Contrary to predictions, the pattern of Experiment 2 

(fast response) is basically the same as in Experiment 1 (delayed response), which gives 

evidence against early and early-mid emotional language processing effects having a 

direct behavioural output (at least in the context of semi-naturalistic sentences).  

Similarly, previous research using single words, dichotically presented as direct- 

and indirect-threat (or anger), and measuring anxiety, did not find differences in RT for 

left or right ears (Sander et al., 2005; Leshem, 2018; Peschard, 2016), but did find 

differences in attention focus per ear. Present results indicate that RTs differ in neither 
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of these conditions, which is supported by the remarkably similar posterior distributions 

for direct- and indirect-threat and the high certainty of these estimates. Recent research 

(Leshem, 2018) did not find effects of trait anxiety on ear either; present results, going 

even further, evidence a precise pattern of weak or negligible interactions between ear 

and worry (trait anxiety). Although the absence of other effects might be induced by 

stimuli’s high variability in length and content, it is also important to emphasize that 

present analyses are fairly robust.  

In addition to observing very weak or negligible effects of ear, results indicated 

weak effects of Type (i.e. Semantic or Prosody). Variations on Type parameter 

magnitudes might not necessarily indicate an effect of worry on particular stimulus types, 

but a trade-off between accuracy and RT for stimuli that are harder to recognize 

(Robinson et al., 2013). In the delayed response experiment (Experiment 1), Semantic 

stimuli are easily recognizable by finding the threatening lexical item within a sentence, 

but this might take longer to achieve, which impact the already slow reactions by 

participants with higher levels of worry. In the fast response experiment (Experiment 2), 

as responses are required to be executed as fast as possible before the sentence ends, 

higher worriers have no time to brood. Thus, possible earlier pre-attentive or attention 

effects (Bar-Haim et al., 2007) can be still observed as speeding-up the quick 

categorisation of lexical items as soon as they are identified within a sentence; there is no 

need to ponder on them while waiting for a sentence’s end.  

Given this, present results suggest that any type of threatening language, attended 

either directly or indirectly, strongly affects higher worriers when stimuli are sufficiently 

long. Therefore, the proposal of adding a fourth stage to a multistep model of emotional 

language (Kotz and Paulmann, 2011) is partially supported: trait anxiety indeed affects 

threatening language processing in a way that response times strongly and consistently 

increase. In other words, the more participants approach a state of trait anxiety, the 

slower their responses will be.  A very plausible explanation for this phenomenon is 

verbal repetitive thinking, which can be also associated with higher levels of rumination 

and/or worry as a feature of anxious apprehension (Nitschke et al., 1999; Spielberg et al., 

2013), or as a marker of an over-reactive behavioural inhibition system (Corr and 

McNaughton, 2012). The long duration of present stimuli might have been a decisive 

factor for inducing a strong effect of worry.  
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Over-engagement with threat does not need to be in the form of verbal repetitive 

thinking, but the strong slow-down in responses induced by present threatening speech 

stimuli suggest that language processing might be specially affected by higher worry, 

widely associated with verbal repetitive thinking (McEvoy et al., 2010). Previous research 

has found that non-language simple threatening stimuli (e.g. noise) can indeed induce 

similar over-engagement effects (slower RTs) in association with BIS but not with trait 

anxiety (Massar et al., 2011), while other studies indicate that induced anxiety slows 

down RTs irrespective of stimulus emotional content (Aylward et al., 2017). However, 

these studies focus on short duration stimuli and compare very short RT differences, in 

the order of tens of milliseconds. Present findings arise from prolonged exposure to 

language stimuli and indicate RT increases in the order of hundreds of milliseconds as a 

function of anxiety. In addition, results indicate that when the task requires to identify 

the Neutral (not threatening) sentences from the dichotic pair, RT increases are almost 

equivalent to the task requiring to directly identify the Threatening one of a pair. This 

indicates that attention effects are not playing a direct role in current responses, neither 

induce relevant nor sufficiently big indirect effects. It might be that the extended nature 

of sentences implies that participants have enough time for advancing from early 

attention to late deliberation phases.  

Considering this, the initial assumption that a fast response experiment 

(Experiment 2) would be enough to identify difference at early processing stages was 

incorrect, at least given the present stimuli and task. The varied position of threatening 

lexical items and/or threatening intonation emphasis might cause a general slow-down 

of responses, as very specific features of sentences need to be identified and participants 

have time to do so (the whole extent of a sentence). Therefore, without time pressure, 

attention mechanisms cannot be posited as a plausible explanation for RT increases as a 

function of anxiety. While evaluation mechanisms could serve as an explanation, the fact 

that there are not strong effects associated with difficulties categorising of identifying 

stimuli makes them weak candidates. Differently, long semi-naturalistic speech stimuli 

might be especially effective in triggering late phase components, such as goal-

orientation processing or deliberation. In such case, verbal repetitive thinking, as induced 

by worry, would be particularly effective for impairing responses to longer and more 

varied semi-naturalistic speech/language stimuli. Hence the strong association of worry 

with slower reaction times. Given this, verbal repetitive thinking is a parsimonious 
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explanation, which could account for patterns such as those of present experiments, and 

also develops as a promising hypothesis for future experimentation. 

With all that being said, a general caveat of the present experimental approach lies 

on the nature of the experiment itself. Behavioural measures such as DL, though able to 

portray a very general picture of underlying brain processes, might not be enough. Better 

spatial and temporal resolution is required to disentangle laterality and early stage 

effects of threatening language. The latter is particularly relevant, as the time-course of 

emotional language processing might have crucial differences at much shorter time-

scales, as evidenced by previous EEG research (Chen et al., 2011; Kotz and Paulmann, 

2007; Paulmann and Kotz, 2012; Pell et al., 2015; Wabnitz et al., 2015; Wambacq and 

Jerger, 2004). In consequence, present tasks could be replicated by using EEG measures, 

in particular Experiment 1, where EEG measures such as event-related potentials could 

provide richer information about processing occurring during sentence listening, before 

response preparation and response execution. This could also provide lab results as point 

of comparison with present web-based results. But more importantly, this is crucial for 

identifying differences in the neural signature of worry and language processing, 

indispensable for properly understanding time-related models of language and anxiety 

processing.  

In conclusion, present results indicate that extending multistep models of language 

processing (Schirmer and Kotz, 2006; Kotz and Paulmann, 2011) by including aspects of 

multistage models of anxiety (Bar-Haim et al., 2007; Corr and McNaughton, 2012) could 

be a relevant theoretical move. The current multistep model proposes three stages that 

can be understood as early (perception), mid (recognition), late (evaluation); or as pre-

attentive, attentive and evaluative stages. A fourth orientative stage, associated with 

deliberation, can help to understand aspects of goal-directed processes before response. 

Late stages which could be particularly impaired by worry components of anxiety, as 

suggested but not ascertained by present evidence. Complementing this model, however, 

might be insufficient. Further theoretical development, including quantitative modelling, 

the inclusion of physiological correlates, and more precise anatomical mappings, might 

be necessary. Further experimental testing is thus required, in particular by 

implementing physiological measures such as EEG, and tasks that do not involve DL, 

using more controlled stimuli and investigating the effects of stimuli below or above the 

sentence level, such as phrases or narratives.  
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Chapter 6 

Behavioural Evidence 2 

 Delayed Responses to Non-dichotic Threatening Speech 

 

 

6.1 Introduction 

 In the previous chapter, results suggest that in a dichotic listening experiment, the 

effects of anxiety do not greatly impact ear advantages nor information type, but anxiety 

induces a big slow-down in reaction times. Slower responses are common finding in 

previous literature, mainly as a response associated with anxiety and not fear, and is 

interpreted as anxious people over-engaging with threat (Cisler and Koster, 2010). One 

of the aims of previous chapters and the present one is to provide a more consistent 

theoretical background that can better explain the effects of threatening language on 

anxiety. First, a clear distinction between fear and anxiety responses is required (Gray 

and McNaughton, 2000), as over-attention to threat might be associated more with fear 

than anxiety, and if associated with anxiety at all it should be in early processing stages. 

Second, a distinction between arousing anxious states and apprehensive anxious states 

(Heller et al., 1997); where apprehension (e.g. worry or rumination) might modulate later 

over-engagement with threat. Third, integrating phasic models of emotional language 

(Kotz and Paulmann, 2011) with phasic models of anxiety (Bar-Haim et al., 2007; Cisler 

and Koster, 2010) to understand how different anxiety-related phases affect speech 

processing phases. This integration should imply that emotional language models are 

extended from three phases (perception, recognition, evaluation) to four phases, where 

the latter occurs after emotional language has been evaluated (~500ms) and is associated 

with goal-orientation or deliberation. Anxious over-engagement should occur from the 

evaluation phase, and sustained during the deliberation phase. There, emotional 

language can be specially affected, as over-engagement can be expressed as repetitive 

thinking (worry and/or rumination), exhausting language processing resources (e.g. 

rehearsing the language stimulus) and inducing slower but not less accurate responses.  

Consistent with this notion, dichotic listening studies tend observe this 

phenomenon (e.g. Peschard et al., 2016; Sander et al., 2005), similar to results from 

Chapter 5. There, participants listened sentences containing only prosodic threat with 
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neutral semantics (Prosody), only semantic threat with neutral prosody (Semantic), and 

both combined (Congruent). Anxiety was measured by the Penn State Worry 

Questionnaire (PSWQ) (Meyer et al., 1990). Results from Chapter 5 studies indicate that 

reaction times (RTs) to threatening language (semi-naturalistic threatening sentences) 

increase as apprehensive anxiety (worry) levels increase; but accuracy remains more or 

less constant, with an uncertain increase for Semantic and uncertain decrease for 

Prosody (so not allowing strong conclusions about accuracy). From these studies it was 

concluded that more anxious participants must have recognised threat efficiently but 

found difficult to disengage from it, as both delayed responses (after sentence) and fast 

responses (during sentence) induced similar RT delays but did not induced strong 

accuracy differences. This possible accuracy/RT trade-off has been proposed to occur 

only when stimuli are emotionally (i.e. negatively) loaded (Robinson et al., 2013). Indeed, 

recent studies indicate that over-engagement with threatening sounds occurs only when 

anxious participants have enough time to engage with threat, and is associated with 

decreased RTs as a function of trait anxiety when participants respond to naturalistic 

threatening sounds (Wang et al., 2019).  

The focus of present chapter is on understanding whether an overactive 

behavioural inhibition system (BIS) could be associated with increased reaction times, as 

it was with worry in Chapter 5, even if responses to non-dichotic threatening sentences 

are required to be fast. This is relevant, because in previous chapter participants showed 

the same response pattern either in direct-threat (indicate ear of threatening pair) or 

indirect-threat (indicate ear of neutral pair) conditions. Thus, it is not clear whether 

accuracy would be also unimpaired in a task where stimuli identification is requested 

(e.g. responses to presence of threat or type of threat), providing a better accuracy 

measure (i.e. sensitivity and/or bias towards certain stimuli) in a go/no-go paradigm; 

which has been associated with anxious response inhibition effects (Neo et al., 2011; 

Robinson et al., 2013). In addition, this would allow to show whether an anxiety-related 

slow-down effect persists under less cognitively taxing conditions (i.e. non-dichotic). 

Importantly, this task should be a fast response (during sentence) as this will help to 

demonstrate that sentences on their own provide a sufficiently long time for participants 

to over-engage with threat. In short, the present aim is to understand whether a non-

dichotic task requiring fast responses will show a clearer trade-off between accuracy and 

reaction times; namely, similar increases in reaction time but clearer non-differences in 
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accuracy as in Chapter 5’s Experiment 2. To this aim, two web-based experiments were 

conducted, having the following features. 1) Experiments consist of non-dichotic 

sentence-type identification tasks, Experiment 1 (Prosody Experiment): participants 

answer to acoustic threat; Experiment 2 (Semantic Experiment): participants answer to 

threatening content. 2) Sentences were recorded by a different speaker to improve 

generalizability. 3) A full go/no-go paradigm is implemented, where participants answer 

whether sentences ‘sound threatening’ in the Prosody Experiment, or whether they ‘have 

threatening content’ in the Semantic Experiment, but refrain answers from neutral 

sentences. 4) A BIS scale from RST-PQ is used instead of the PSWQ, as this measure is 

better described in relation to physiological measures and has shown to be a reliable 

(Corr and Cooper, 2016). Given this, the present hypothesis states that anxiety should 

slow-down responses but should not affect accuracy in both tasks. This implies the 

following predictions: RTs should increase as a function of BIS scores; but accuracy 

should not change as a function of BIS scores.  

  

6.2 Methods 

6.2.1 Participants 

 Participants for the Prosody Experiment (n=40; age: mean=34.82, SD=9.99; 39 

females) and for the Semantic Experiment (n=49; age: mean=36.06, SD=10.43; 26 

females) were recruited using Prolific and completed the study on Gorilla (gorilla.sc). 

They reported not having hearing, psychological or neurological problems; having 

English as their first language; and being right-handed. Participants were compensated 

at a £7.50/hour rate. All the procedure counts with UCL’s ethical approval and 

participant’s data was handled according to GDPR protocol as informed to them. Note 

than sample size tends to be moderately bigger respect to previous studies researching 

anxiety in the go/no-go paradigm (e.g. Neo et al., 2011; Robinson et al., 2013), which may 

help to improve possible online-induced non-compliance- or error-related issues. 

 

6.2.2 Materials 

Sentences (52 per category) were selected by using the same procedure as in 

previous chapters (some were replaced and some retained), and recorded on an isolated 

anechoic chamber by a male native London English speaker using a RODE NT1-A1 

microphone. Note that this speaker is different from previous (Chapter 5) and following 
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(Chapter 7) chapters, and is an amateur actor. Sentences’ categories include: Prosody 

(only prosodic threat) and Semantic (only semantic threat), Congruent (both types of 

threat), and Neutral (no threat). Table 6.1 summarises sentences’ average number of 

words and duration. Sentences’ acoustic measures and lexical norms were analysed 

following the same procedure described in Chapter 4. However, only Prosody norms 

were taken for these stimuli; which indicate that’s sentences are perceived as threatening 

and are accurately predicted by previous speakers’ norms (from Chapter 5). These 

analyses’ summaries and results can be found in the present chapter’s open science 

framework (OSF) repository (https://osf.io/ptcr9/). Figure 6.1 shows oscillograms and 

spectrograms of example sentences on each category. Table 6.2 shows Bayesian 

estimation supersedes the t-test (BEST) estimated means and SDs, and Figure 6.2 shows 

BEST differences between means. Note the consistency of these results with BEST results 

from Chapter 4. Note that participants rated previous sentences (Chapter 4, Study 2) as 

both low in valence and high in arousal in addition to high in threat. This may indicate 

that either present speaker is closer to a non-trained speaker or that a non-trained or 

semi-trained speaker may produce threatening prosody in a similar manner.  

 

Figure 6.1. Example of four sentences used in this study. Top of each image: oscillogram showing 

amplitude changes. Bottom of each image: spectrogram showing frequency changes. Top left: neutral 

prosody and neutral semantics (Neutral). Top right: threatening prosody and threatening semantics 

(Congruent). Bottom left: neutral prosody and threatening semantics (Semantic). Bottom right: 

threatening prosody and neutral semantics (Prosody). Green dots: fundamental frequency (F0) contours. 

https://osf.io/ptcr9/
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Table 6.1. Sentences average number of words and duration 
Type #Words Mean #Words SD Duration Mean Duration SD 

Congruent 5.16 1.03 1519.08 233.67 

Neutral 4.61 1.03 1471.37 257.65 

Prosody 5.02 0.73 1509.69 172.19 

Semantic 5.16 1.01 1518.20 215.96 

    

 

      

 

 

Figure 6.2. Images show differences between means of lexical norms and acoustic measures. Left to 

right: Arousal, Valence, Median Pitch, and Hammarberg Index. Ridgeplots show the highest posterior 

density intervals (HDIs) distributions (kernel density). Grey bands indicate 2SDs regions of practical 

equivalence (ROPE).         

sbusc
Typewriter
Differences between means of lexical norms and acoustic measures
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Table 6.2. BEST estimated average posterior distributions for Mean and SD  

Measure Arousal Valence Median Pitch Hammarberg Index 

Category Mean SD Mean SD Mean SD Mean SD 

Neutral  3.96 0.67 5.94 0.91 109.17 4.74 22.74 4.13 

Congruent 5.96 0.89 3.49 1.26 197.89 10.96 19.66 3.50 

Prosody 4.04 0.69 6.17 0.88 200.17 11.29 20.38 3.88 

Semantic  5.94 0.86 3.44 1.23 108.99 4.57 23.00 3.60 

 

 

6.2.3 Procedure 

 Tasks were web-based and were presented in Gorilla (gorilla.sc). In both 

experiments, after providing consent and confirmation of requirements, participants 

completed the BIS scale questionnaire and then proceeded to a brief practice task (10 

stimuli) before proceeding to the main task. For the Prosody Experiment, participants 

had to answer to Congruent and Prosody (threatening sound) by pressing the space bar 

on their keyboards as fast as possible and before the sentence ended but withhold 

responses to Semantic and Neutral. For the Semantic Experiment, participants had to 

answer to Congruent and Semantic (threatening content) by pressing the space bar on 

their keyboards as fast as possible and before the sentence ended but withhold responses 

to Prosody and Neutral. Stimuli were presented randomly with a 1.5s inter stimulus 

interval (ISI) between them. From initial 50 subjects performing each experiment, 10 

failed to complete the task for Prosody and 1 for Semantic, as they gave zero responses 

to either target category or answered to the opposite category (i.e. more responses to 

Semantic than Prosody in the Prosody Experiment). 

 

6.2.4 Analysis 

 Before analysis, all responses made on ISI before 300ms were coded as hits or 

false alarms (FAs) depending on correct or incorrect preceding trial respectively, the rest 

were kept as misses or correct rejections (CR). For accuracy analyses, a probit regression 

was implemented. This is similar the logistic regression described in Chapter 3 (model 

3.2.8), but the logistic/sigmoid function is replaced by a probit/logit function 

(−log(1/𝑝 − 1), i.e. the inverse of the logistic function). Also, the model used varying 

slopes over each sentence type (Neutral, Congruent, Prosody, Semantic), input as matrix 

operation with the parameter (as in model 3.2.11), and varying intercepts for subject and 

sentence. For RT analyses, a robust hierarchical regression, using the same rationale as 
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previous research (Chapter 3: model 3.2.10; Chapter 5: Figure 5.1), was used for both 

experiments. Participants (40 Prosody Experiment, 49 Semantic Experiment) and stimuli 

(196) were used as varying intercepts, while BIS score (continuous) and stimuli type 

(categorical) were the interaction terms (non-varying, for consistency with previous 

approach). As in previous chapters, results were assessed by using ROPEs and HDIs.  

 

6.3 Results 

 Models converged well (all �̂�𝑠 =̃ 1, 𝐸𝑆𝑆 > 200, 𝐵𝐹𝑀𝐼𝑠 > 0.6), presented high 

precision (all widths of HDIs < ROPEs widths) and good certainty of estimates. For 

detailed summaries and plots see the OSF repository (https://osf.io/ptcr9/). Accuracy 

results indicate that in both experiments participants were able to discriminate signal 

and noise efficiently. Note that response corresponds to any type of response, which was 

input in the model as a Bernoulli trial (0 = no-response, 1 = response), where response 

can be Hits and False Alarms (FAs) and no-responses are misses and correct rejections 

(CRs). So, for the Prosody experiment, the computed probability is for Hits (Prosody and 

Congruent) and False Alarms (Semantic and Neutral). For the Semantic experiment the 

computed probability is for Hits (Semantic and Congruent) and False Alarms (Prosody 

and Neutral). As summarised in Table 6.3 and Table 6.4, the probabilities of participants 

answering to noise (FAs) is very low for both experiments. Differently, the slopes (in log-

odds) indicate that response do not differ between each other within signal or noise 

categories (i.e. log-odds near zero, thus probability near 50%). In the Prosody experiment 

the Congruent type shows a ~8% probability increase over Prosody; which is negligible 

due to overlapping HDIs and high uncertainty. BIS level seems to have no effects either, 

where the Semantic experiment shows that the probability to answering to Semantic or 

Congruent tends to decrease by ~20% each. However, HDIs widely overlapping zero and 

each other indicate that these decreases are highly uncertain. Hence, the general 

conclusion is that participants show high sensitivity to the signal, low bias and this is not 

dependent on sentence type or BIS level. 
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Table 6.3.  Prosody experiment accuracy estimates 

Type Response BIS Int Mean Slope Mean Slope SD HDI 5% HDI 95% Reg Prob% 

Neutral  Noise (FA) 1 -5.16 -0.01 0.02 -0.04 0.02 0.58 

Prosody  Signal (Hit) 1 2.12 0.00 0.01 -0.02 0.02 89.28 

Semantic  Noise (FA) 1 -3.27 -0.01 0.01 -0.03 0.01 3.70 

Congruent  Signal (Hit) 1 3.38 -0.02 0.01 -0.04 0.00 96.86 

Neutral  Noise (FA) 62 -5.16 -0.74 1.09 -2.55 1.04 1.20 

Prosody  Signal (Hit) 62 2.12 -0.03 0.83 -1.38 1.29 89.60 

Semantic  Noise (FA) 62 -3.27 -0.63 0.87 -1.98 0.87 6.66 

Congruent  Signal (Hit) 62 3.41 -1.02 0.83 -2.36 0.30 98.82 

Note. Int mean corresponds to the mean of the intercept used to calculate the regression probability (final column). 
Excepting Reg Prob, all estimates are in log-odds. 

 

 

 

 

 

 

 

 

 

 

Figure 6.3. Images show posterior distributions, as regression lines, per BIS score point. Upper left: Overall 

effect of BIS on RT for the Prosody experiment. Bottom left: Overall effect of BIS on RT for the Semantic 

experiment. Grey circles indicate raw average RT. Faded lines show sample from the posterior and indicate 

uncertainty. Right panels: histograms of posterior distributions of Prosody vs Congruent (up) and Semantic 

vs Congruent (bottom); red, blue and black bars represent 90% high posterior densities.  
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Table 6.4.  Semantic experiment accuracy estimates 

Type Response BIS Int Mean Slope Mean Slope SD HDI 5% HDI 95% Reg Prob% 

Neutral Noise (FA) 2 -5.67 0.02 0.04 -0.05 0.09 0.34 

Prosody Noise (FA) 2 -3.63 0.03 0.03 -0.03 0.08 2.50 

Semantic Signal (Hit) 2 1.62 0.03 0.03 -0.02 0.08 83.00 

Congruent Signal (Hit) 2 1.78 0.04 0.03 -0.02 0.09 85.10 

Neutral Noise (FA) 63 -5.67 0.50 1.33 -1.53 2.73 0.21 

Prosody Noise (FA) 63 -3.63 0.90 1.07 -0.99 2.52 1.06 

Semantic Signal (Hit) 63 1.62 0.98 1.02 -0.67 2.65 65.37 

Congruent Signal (Hit) 63 1.78 1.21 1.03 -0.66 2.78 63.94 

Note. Int mean corresponds to the mean of the intercept used to calculate the regression probability (final column). 
Excepting Reg Prob, all estimates are in log-odds. 

 

 

Results from RT data analyses indicate that for the Prosody experiment, RTs 

increase ~334ms from the lowest BIS score (1 point) to the highest BIS score (62 points). 

For the Semantic experiment, RTs increase ~ 217ms from the lowest BIS score (2 points 

to the highest BIS score (63 points). For both experiments, sentence type had no effect on 

RTs; though participants tend to be slower in the Prosody experiment. There is a small 

speed up for Congruent in the Semantic experiment, but with Congruent posterior HDI 

overlapping Semantic HDI; which indicates a very small difference (just ~76ms at the 

highest BIS level). Figure 6.3 summarises these results, from which it can be concluded 

that RT increases as a function of BIS independent of sentence type, indicating that at the 

highest BIS level participants can be between 200ms and 300ms slower in answering to 

threatening speech. 

 

6.4 Discussion 

 Results indicate that accuracy is not strongly affected by sentence type or BIS. That 

is, irrespective of anxiety level, participants can distinguish all threatening stimuli with 

ease; namely, they show high sensitivity and low bias. This is strongly suggested by the 

low FA rate and high Hit rate that posterior distributions indicate. Results also show that 

RTs increased directly proportional to BIS score. In other words, as trait anxiety level 

increases, responses to threatening speech become slower. In the Prosody experiment, 

where participants answered only to sentences with threatening sound (prosody), RTs 

increase around 5.5ms to 5.6ms per BIS point; while for the Semantic experiment, where 

participants answered only to sentences with threatening content (semantics), RTs 

increased by about 2.2ms to 3.5ms per BIS point. Hence, results from Chapter 5 are 
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replicated in non-dichotic tasks, with the sole difference of somewhat faster RTs for 

semantics. Thus, the present hypothesis is strongly supported, as in both experiments 

participates with higher trait anxiety levels answer similarly accurately but slower than 

participants with lower trait anxiety levels.    

A relevant implication of these experiments is that responses to Semantic are 

slightly faster or at least similarly fast as responses to Prosody; despite prosodic threat is 

present across the whole sentence and does not require identifying a specific lexical item. 

Then, the only strong conclusion which can be taken from present results is that as trait 

anxiety increases reaction times increase, irrespective of sentence type. This implies that 

sentences are not sufficiently brief to evidence over-attention to threat (i.e. faster 

responses to threat given condition). Thus, over-attention to threat is either very hard to 

observe behaviourally (inconsistent across experiments) or not a feature of trait anxiety; 

at least not of anxiety understood as an overactive BIS, associated with 

worry/rumination, and different from fear or anxious arousal (Gray and McNaughton, 

2000; Heller et al., 1997).   

 Further interpretation of these results is straightforward, anxiety inducing slower 

responses to threatening language could be associated with over-engagement with 

threatening language. Indeed, repetitive thinking with a verbal component (e.g. 

rehearsal) has been observed in worry, rumination and post-event processing (McEvoy 

et al., 2010), where worry is future oriented and rumination is past oriented (post-event 

processing is recent past oriented). This verbal component, although present together 

with imagery in rumination, has been more strongly associated with worry (McLaughlin 

et al., 2007). Also, increases in worry have been associated with brain asymmetries and 

electrophysiological frequency differences (Nitschke et al., 1999; Spielberg et al., 2013), 

and increases in BIS have been related with rumination and also with brain asymmetries 

and electrophysiological frequency differences (Keune et al., 2012; Sander et al., 2005). 

Hence, whether verbal repetitive thinking is more strongly related with worry or 

rumination is irrelevant, as long as it contains a verbal component. Although present 

experiments cannot provide direct evidence for a verbal repetitive thinking component, 

they reinforce the fact that trait anxiety, understood as an overactive BIS, is associated 

with a more effortful processing of threatening language. In addition, the notion of an 

extended multiphasic model of emotional language is strengthened. In Chapter 5, it has 

been proposed that multistep models of emotional language (Kotz and Paulmann, 2011) 
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can be extended by adding an additional late processing stage, based on multiphasic 

models of anxiety (Bar-Haim et al., 2007; Corr and McNaughton, 2012). Given present 

results, a late deliberation stage (~600ms) extended until or near responses fits well into 

to a phasic model of emotional language. In particular when long semi-naturalistic 

sentences are used as stimuli, giving participants enough time to over-engage. 

Even so, the Semantic experiment shows a small decrease in accuracy and RT 

(slightly faster responses) for semantic threat; which may indicate that the accuracy-RT 

trade-off is slightly weaker for Semantic than for Prosody. Nevertheless, no strong 

conclusion can be derived from these effects either, as accuracy estimates show great 

uncertainty (note that in Chapter 5 responses to Semantic were uncertainly more 

accurate but negligibly slower). Hence, greater RTs from both experiments can be 

interpreted as an RT-accuracy trade-off for threatening speech, similar to previous 

research observing a slow-down of RTs for more anxious people but no evidence of 

accuracy effects (Wang et al., 2019). Although this trade-off has been observed to occur 

irrespective of threat (Robinson et al., 2013), more recent research on induced anxiety 

has observed that participants answering to faces in a go/no-go task tend to slow down 

their responses when under threat of electrical shock (Aylward et al., 2017). This was 

irrespective of stimuli emotional congruency, and had no effects on accuracy; which was 

interpreted as a trade-off between accuracy and RT. In other words, participants in the 

anxiety condition were more cautious with their responses, in particular because of 

fearful faces capturing their attention, resulting in slowing down responses to achieve 

better accuracy. This is clearly consistent with present results and the over-engagement 

interpretation, but could also imply that verbal repetitive thinking is not required for 

explaining such effects.  

However, stimuli length and magnitude increase or RT may explain why verbal 

repetitive thinking should not be discarded as possible explanation in the present 

context. Present research uses stimuli of durations ~2s on average and results show 

evidence of a continuous change from low to high trait anxiety of hundreds of 

milliseconds. Instead, aforementioned research focuses on stimuli of shorter duration 

(~250ms), and indicates changes of few dozens of milliseconds between anxious and 

non-anxious conditions (as opposed to continuous change). In addition, present 

experiments do not use an external stimulus to induce threat (i.e. shock), which turns the 

speech stimuli (sentences) themselves as the source of threat. This might indicate that 
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even when threat is potential and/or weaker (threatening speech instead of an 

electroshock) the effect is cumulative, inducing longer term disruptions in language 

processing. Namely, for such a strong continuous delay in less harsh conditions 

something might be directly disrupting language processing. Although not the only 

possible mechanism, verbal repetitive thinking is a good candidate, and permits to 

establish future hypotheses, such as whether verbal disruption tasks would even-out 

differences between anxious and non-anxious participants as opposed to visual 

disruption tasks.   

Even so, a relevant methodological limitation also needs to be acknowledged. 

Regarding experimental design, splitting the experiment (Semantic and Prosody) in 

order to allow a full go/no-go paradigm could reduce the comparability of results. Mainly, 

because observed data for Semantic and Prosody do not come from the same sample. The 

fact that previous results are replicated and main predictions were generally precise 

greatly ameliorates this issue. Future research could directly explore this issue by either 

increasing the number of non-targets (i.e. Neutral), or by using only congruent stimuli. 

Another possible limitation is that although verbal repetitive thinking is proposed as a 

plausible mechanism explaining present results, present experiments do not directly 

address such mechanism. Nevertheless, verbal repetitive thinking is a plausible proposal 

and is perfectly testable and falsifiable. As mentioned before, one possibility would be a 

‘language disruption’ experiment, where verbal interference before responses could help 

in blocking verbal repetitive thinking, thus allowing anxious participants to answer as 

fast as non-anxious participants; while visual disruption or no-disruption (baseline) 

conditions would hypothetically show anxiety-related RT increases as in present results.   

 To conclude, the present in-principle replication shows minor discrepancies with 

previous experiments and generally replicates previously observed effects. This 

replication works even with different stimuli, different presentation (non-dichotic), and 

using a different paradigm (full go/no-go in a split experiment). Therefore, the main 

interpretation involving an extended multiphasic emotional language processing model 

and a verbal repetitive thinking component of anxiety interfering at late phases remains 

a solid candidate for explaining this phenomenon. Even though there is no direct evidence 

for this yet, and further research needs to be conducted, the present study is a 

contribution to accumulated evidence in both methodological and experimental terms. 

These contributions imply that present stimuli are even further validated, as their 
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features are preserved across speakers, and that statistical models for both RT and 

accuracy, despite their possible limitations, are inferentially efficient. Withal, more 

complimentary replications are required for further confirmation of present results, 

together with electrophysiological measurements which can help in understanding the 

time-course of neural mechanisms associated with anxiety and emotional language 

processing. 
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Chapter 7 

EEG Evidence  

 Late Phase Effects of Anxiety on Threatening Speech Processing 
 

 

 

7.1 Introduction 

 As reviewed on Chapter 2, both anxiety and language processing are characterized 

by well-defined lateralization patterns. Anxiety has been widely associated to a dual 

processing pattern: while attention-related arousal and fear-related responses tend to 

involve greater right hemisphere (RH) processing, evaluation-related apprehension and 

inhibition-related responses tend to involve greater left hemisphere (LH) processing 

(Heller et al., 1997; Nitschke et al., 2000; Spielberg et al., 2013). According to current 

models of speech processing (i.e. dual stream model), speech comprehension recruits 

both LH and RH (Kemmerer, 2015). While more RH involvement for the slow rate 

suprasegmental processing of prosody and/or affect/attitude recognition is required, 

more LH involvement is required for fast rate segmental processing and/or lexical 

categorization (Belin et al., 2004; Liebenthal et al., 2016; Poeppel et al., 2008; Zatorre et 

al., 2002). These observations speak not only of general hemispheric activity, but also of 

very specific activity patterns and brain anatomical structures that, in many cases, are 

shared by language and anxiety processing. This opens the question of whether these 

processes simply co-occur, showing superficial similarities, or they actually interact with 

each other. 

The present chapter, also published as a preprint (Busch-Moreno et al., 2020b), 

seeks to elucidate this issue. Previous research suggests that attention processing, such 

as that required for fine-grained spatial recognition or recognition of emotional prosody, 

might be strongly associated to fear arousal, and anxiety responses (Vuilleumier, 2005; 

Sander et al., 2005). At the same time, worry has been associated with appraisal processes 

characteristic of environmental evaluation aimed at threat detection, which can be 

understood as a behavioural inhibition system (BIS) that parses approach or withdrawal 

responses (McNaughton and Gray, 2000; Corr and McNaughton, 2012). Indeed, 

neuroimaging evidence indicates that higher levels of arousal are associated to early 

over-attention to threat, while higher levels of worry are associated to later over-
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engagement with threat (Spielberg et al., 2013). Hence, it is plausible that these responses 

are not only modulated by intrinsic affect (i.e. trait anxiety), but also depend on the type 

of information being processed (i.e. semantics or prosody) and how this interacts with 

intrinsic affect by favouring either earlier over-attention or later over-engagement 

responses. This directly leads to the operative model presented in Chapter 2 (Figure 2.1), 

which includes three phases of emotional language processing (Kotz and Paulmann, 

2011) linked with three overlapping and additional fourth phase as in anxiety processing 

models (e.g. Bar-Haim et al., 2007). The present operative model was tuned to exclusively 

address the interaction between threatening speech and trait anxiety. Previous Chapters 

5 and 6 provide some behavioural evidence to support the inclusion of a fourth 

processing phase which is particularly affected by anxiety. However, these experiments 

do not show laterality differences at the behavioural level. These might be obscured by 

tasks requesting delayed response or by the length of stimuli. So, whether the time-

course of threat processing is affected by anxiety during sentence processing, and 

whether this involves laterality differences, are questions that need to be addressed 

through electrophysiology (i.e. EEG).  

On the anxiety side, recent EEG evidence indicates that a hyperactive BIS, signalled 

by higher scores in BIS psychometric scales, presents a right frontal hemispheric pattern 

(Gable et al., 2017; Neal and Gable, 2017), but not much information is provided about 

the phasic nature of these asymmetries. Also, some previous EEG studies have observed 

left or bilateral frontal alpha activity associated with anxious apprehension as measured 

by worry (Heller et al., 1997; Nitschke et al., 1999), bilateral alpha for rumination-

correlated BIS (Keune et al., 2012), and no evidence of hemisphericity patterns of delta 

or theta waves associated with BIS (De Pascalis et al., 2013). Indeed, recent models of 

anxiety (stated very generally), propose activation of dorsolateral pre-frontal cortex 

(dLPFC) inducing medial prefrontal cortex (mPFC) activity, together with hippocampus 

and insula, that will induce control over amygdala; where structures such as dLPFC show 

different lateralisation patterns (Robinson et al., 2019). Therefore, evidence suggests that 

BIS-related lateralization depends on task and stimulus (i.e. environmental conditions). 

Thus, higher BIS could particularly affect the processing of spoken threatening sentences 

at LH, especially if they contain semantic information.  

Given this, manipulating hemispheric input could reveal possible effects of anxiety 

on threatening speech processing at different processing phases. In other words, stimuli 
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that are processed first by LH or RH might be affected differently depending on: 1) their 

language informational properties (i.e. semantics or prosody) and/or 2) participants’ 

intrinsic lateralization differences when processing threatening stimuli (i.e. anxiety). 

Considering this, DL stands out as an ideal behavioural test to observe how anxiety-

related hemispheric asymmetries might influence emotional language processing 

hemispheric asymmetries. This relates to the frequently observed phenomenon of a right 

ear advantage (REA) for non-prosodic language stimuli (Hugdahl, 2011); this implies 

participants answering faster and/or more accurately to stimuli presented at their right 

ear when compared to stimuli presented at their left ear. On the other hand, prosody, in 

particular emotional prosody, has been observed to present either a left ear advantage 

(LEA) or a diminished REA (Godfrey and Grimshaw, 2015; Grimshaw et al., 2003). Few 

dichotic listening (DL) experiments have researched the effects of anxiety on emotional 

speech processing (Gadea et al., 2011). They either use speech/prosody as an emotion-

eliciting stimulus, or use DL mainly as an attentional manipulation technique (e.g. 

Leshem, 2018; Peschard et al., 2016; Sander et al., 2005).  

Behaviourally, using two DL experiments, recent research has observed that 

anxiety does not induce clear ear (laterality) differences and minor sentence type effects 

(Chapters 5 and 6). It was argued that as sentences were relatively long (near 1800ms on 

average), experiments allowed ample time for deliberation and thus effects of trait 

anxiety obscured other possible effects. Given this, it might be that processing differences 

are not reflected in the behavioural output, but may be measured by electrophysiological 

activity. The first experiment from the aforementioned task was intended for allowing 

deliberation, requesting participants to answer only after sentence’s end. Participants 

answered to threatening sentences of three types: 1) containing prosodic threat only, 2) 

containing semantic threat only, 3) containing both; all dichotically paired with neutral 

sentences (containing neither type of threat). In a second task, intended to measure 

possible attention effects, participants answered to the neutral pair instead. The present 

study aims to replicate this previous experiment by using the same procedure, but with 

newly recorded sentences and with trait anxiety measured by using the BIS scale from 

the Reinforcement Sensitivity Theory Personality Questionnaire (RST-PQ) (Corr and 

Cooper, 2016). In addition, the ERP technique could provide fine-grained temporal 

information, crucial for testing present operative model, as laterality effects might been 

obscured behaviourally but could still be observed through EEG activity.  
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Given this setup and the previously discussed theory and research, higher levels 

of trait anxiety (higher BIS scores) will induce early over-attention to threat but mid-late 

over-engagement with threat are expected. The first should be associated with anxiety 

induced arousal and BIS (McNaughton and Gray, 2000), which has been observed to be 

right lateralized (Heller et al., 1997; Neo et al., 2011). The second should be associated to 

a left lateralized or bilateral pattern (Nitschke et al., 1999), which might be due to mid-

stage LH thought-induced (e.g. worry or rumination) evaluation and inhibition (Spielberg 

et al., 2013), but a later RH involvement associated to sustained anxiety-induced arousal. 

The stages of this processing time-course can be understood thusly: 1) pre-attentive (50-

100ms), 2) attentive (150-250ms), 3) evaluative (250-500ms), 4) orientative (500-

750ms). Following multistep model predictions: the first stage should show a bilateral 

pattern for language, as early sensory processing of language might require the use of 

both hemispheres as prosody and semantics (even if neutral) need to be simultaneously 

processed. The second stage should be lateralized as a function of stimulus type, modality 

and emotion expressed. The third stage requires bilateral involvement due to evaluation 

and integration of different types of stimulus and emotion. The fourth proposed stage 

here should show an initial bilateral involvement with stronger RH persistent activity. 

This additional later stage can be understood as a deliberation phase, where participants 

decide (orientate) their responses to emotional stimuli. 

Following previous predictions, the following hypotheses can be specified: 1) 

Early (~100ms) and Mid-early (~200ms) effects of anxiety on speech processing (Pell et 

al., 2015), where over-attention to threat will show stronger RH involvement for prosody, 

facilitating detection. 2) Mid-late stage (~400ms) anxiety effects on LH due to over-

engagement with threat (Spielberg et al., 2013); this should particularly affect semantic 

stimuli by slowing down their processing. 3) A late stage (~600ms) effect of anxiety on 

goal orientation (Bar-Haim et al., 2007), where both LH and RH (more strongly) should 

be involved. This could be the results of a worry-arousal loop (McNaughton and Gray, 

2000) due to continued exposure to threatening stimuli. In other words, verbal repetitive 

thinking could take prevalence at this stage due to over-engagement with threat (see 

Chapters 5 and 6). No specific ERPs are predicted, as present research has no direct 

precedents in the literature. Hence, it is not clear whether observed ERPs, and their 

amplitude differences by condition, will be coincidental or not with those observed in 

previous research.    
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7.2 Methods 

7.2.1 Participants 

Participants (mean age = 28.6, age range = [19, 54], 19 females, 17 males) were 

recruited using Sona Systems’ (sona-systems.com) UCL platform. Only participants 

reporting being right-handed, having English as first language, without hearing problems 

and with no history of neurological/psychiatric disorders were recruited. Participants 

were remunerated £7.5/hour rate. All participants gave their informed consent before 

participating and were informed of their rights and that their data is protected under 

GDPR protocols. They were debriefed after the experiment. Note that the sample size is 

moderately big for an EEG experiment, as compared to previous literature (e.g. Paulmann 

et al., 2012; Pell et al., 2015; Wabnitz et al., 2015), which will serve to guarantee more 

precision in behavioural measures and a better distribution of BIS measures.  

 

7.2.2 Materials 

Stimuli for the present experiment are widely described on Chapter 4 (Study 2). 

As a reminder, four types of sentences were recorded: Prosody (neutral-semantics and 

threatening-prosody), Semantic (threatening-semantics and neutral-prosody), 

Congruent (threatening-semantics and threatening-prosody), and Neutral (neutral-

semantics and neutral-prosody). This resulted in 54 recorded sentences per threatening 

category and respective Neutral pairs (324 in total). As in Chapter 5, each threatening 

sentence was paired with a neutral sentence of similar length and adjusted by minimally 

extending silence periods (max 40ms) to match lengths exactly in Audacity 

(audacityteam.org). Table 7.1 provides a general summary of these stimuli. 

 

Table 7.1. Average number of words, duration and reaction time per stimulus type 
Type Words Threat Words Neutral Stimulus Duration Reaction Time 

Congruent 4.63 5.63 1838.63 522.37 

Prosody 4.24 4.93 1558.25 601.20 

Semantic 4.43 4.89 1543.53 593.40 

 

 

7.2.3 Procedure 

 Participants were introduced to the recording room (electrically and sound 

isolated chamber), signed consent, and sat at 1m distance from a 20” screen used to 
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display all tasks via PsychoPy2 (Peirce et al., 2019). Next, participants provided their 

demographic information (age and sex) and completed the BIS and FFFS questionnaires. 

Participants’ head dimensions were measured and EEG caps of according size were 

placed and centred, conductivity gel was placed and the Biosemi 64 Ag/Cl electrode 

system (biosemi.com) was connected. Two electrooculogram (EOG) electrodes were 

connected near left zygomatic bone and near right orbital bone to capture vertical EOG 

(VEOG) and horizontal EOG (HEOG) activity respectively. Impedance levels were kept 

below 20Ω and electrodes were checked to be working properly. While EEG recording, 

participants completed the direct-threat task and indirect-threat tasks as in Chapter 5, 

but sentences were played twice such that a threatening sentence was presented once at 

each ear. Participants were requested to swap response hand every other trial. Starting 

hand, ear and task were counterbalanced. 

 

7.2.4 EEG Data Processing 

 EEG recordings were pre-processed using Python’s MNE package (Gramfort et al., 

2014). A completely automated pre-processing pipeline was implemented (based on: Jas 

et al., 2018). This consisted in the following steps: 1) Importing data, checking events and 

fixing if misplaced. 2) Set data to average reference (Dien, 1998; Lei and Liao, 2017). 3) 

Preparing data for independent component analysis (ICA) only: low-pass filtering at 40hz 

to avoid aliasing artifacts, down sampling to 256hz, high pass filtering at 1hz for better 

artifact detection, and automatic rejection of noisy segments based on the Autoreject 

MNE package (Jas et al., 2017; Winkler et al., 2015). 4) Computing ICA components by 

using python Picard package (Ablin et al., 2018). 5) Removing components that are highly 

correlated with noise at Fpz channel to remove EOG artifacts from data. 6) Applying 

average reference to raw data (Dien, 1998; Lei & Liao, 2017) with excluded EOG artifacts 

and applying first a high pass (0.1hz) and later a low pass (100hz) filter (Luck, 2014; 

VanRullen, 2011; Widmann et al., 2015). 7) Epoching data from 0-1000ms using a pre-

stimulus onset 100ms baseline (10% of epoch), downsamplig to 512hz, and applying 

automatic detection, repairing and rejection of noisy epochs by using Autoreject’s 

Bayesian optimization (for details on procedure see: Jas et al., 2017). 8) Applying baseline 

correction (baseline subtraction) (Luck, 2014; Tanner et al., 2015), as integrating the 

baseline into the model as a regressor (Alday, 2019) could be detrimental for convergence and 

precision in this particular case. 9) Extracting trial by trial mean amplitudes at 4 a priori 

https://en.wikipedia.org/wiki/Omega
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defined time windows (to avoid double-dipping): 50-150ms, 150-250ms, 250-500ms, 

500-750ms; these time windows cover the time-windows proposed by the multistep 

model (Kotz and Paulmann, 2011), plus the proposed fourth time-window. ERP and scalp 

plots of processed data were produced using the MNE package. 

 

7.2.5 Data Analysis 

 Models for behavioural data were replications from those used in Chapter 5 

(Figure 5.1), all described in Chapter 3. Figure 7.1 shows the model used for EEG data, the 

diagram is based on Kruschke’s (2015) and Martin’s (2018) model specification and 

presentation, and their guidelines on robust regression. The model was sampled using 

Markov Chain Monte Carlo (MCMC) No U-turn Sampling (NUTS) as provided by PyMC3 

(Salvatier et al., 2016). All models were sampled with two chains of 2000 tuning steps 

and 2000 samples, and initialised using automatic differentiation variational inference 

(ADVI) as provided by PyMC3. Plots of results were produced using Arviz (Kumar et al., 

2019) and Matplotlib (Hunter, 2007). Results were assessed using a region of practical 

equivalence (ROPE) method (Kruschke, 2015; Martin, 2018), where high posterior 

density intervals (HDIs) were considered as presenting a considerable difference when 

far away from ROPEs defined as 1SD to 2SDs around zero.  

 

Figure 7.1. Diagram representation of hierarchical robust regression model. Arrows indicate the 

relationship between a parameter and priors/hyperpriors, where tilde (~) indicates a stochastic 

relationship and equal (=) indicates a deterministic relationship. Observations in the likelihood distribution 

are equivalent to mean amplitude at each single trial. 

γ1ji + γ2ji + α⋅A + β⋅B⋅x

×

Sentences = k1… k162

×

Subjects = j1… j36

×

Conditions = n1… n384

γ1 = Varying Intercept : Subjects 1… j
γ2 = Varying Intercept: Sentences 1… k  
α = Fixed Intercept: Channels 1… m
β = Varying Slope: Conditions 1… n 
A = Design Matrix: Pooled Channels
B = Design Matrix: Ear x Type x Channel
x = Continuous Regressor: BIS score 

Channels = m1… m64

~

=

==

=

~

~

Obs. = i1… i714,432
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The core idea of the model is to un-pool data from the individual level of subjects 

and items, the focus can be placed on group level slopes at each single interaction point. 

Given this, pooling at the electrode level through a normal non-varying prior helped us to 

define an offset for the other reparametrized priors (e.g. McElreath, 2020), which do not 

contain individual location parameters. In this way, intercepts from each electrode could 

be obtained, also improving sampling and convergence in a substantial manner. To be 

consistent with previous experiments, FFFS ratings were excluded from the analyses, as 

the present focus is on trait anxiety and not on trait fear. Fear measures (FFFS) were 

collected as they could be required for comparison in future analyses.  

 

7.3 Results 

7.3.1 Behavioural Results 

 All models sampled well, showing excellent convergence (�̂� ≅ 1, ESS > 200, BFMIs 

> 0.6); all summaries and plots can be found in present chapter’s Open Science 

Framework (OSF) repository (https://osf.io/n5b6h/), also linked the preprint version of 

this chapter (Busch-Moreno et al., 2020b). Accuracy results largely replicate results 

reported in Chapter 5. Table 7.2 and Table 7.3 summarise accuracy results from direct- 

and indirect-threat conditions. Note that these results consider BIS slopes (in log-odds) 

across all conditions, and all posterior distributions overlap zero, as clearly indicated by 

HDIs. For more details on this, please see the OSF repository (https://osf.io/n5b6h/) 

 

 

Table 7.2. Direct-threat accuracy estimates 

Type Ear BIS Score Posterior Mean Posterior SD HDI 5% HDI 95% Probability% 

Semantic Left 1 -0.01 0.02 -0.04 0.03 49.81 

Prosody Left 1 -0.01 0.02 -0.05 0.02 49.66 

Semantic Right 1 0.00 0.02 -0.03 0.03 49.93 

Prosody Right 1 0.01 0.02 -0.02 0.04 50.29 

Semantic Left 55 -0.42 1.08 -2.03 1.45 39.67 

Prosody Left 55 -0.74 1.06 -2.48 0.94 32.20 

Semantic Right 55 -0.15 0.94 -1.61 1.39 46.24 

Prosody Right 55 0.63 0.92 -0.88 2.07 65.19 

Note: All estimates are in log-odds. 

 
 
 
 

https://osf.io/n5b6h/
https://osf.io/n5b6h/


90 
 

 
Table 7.3. Indirect-threat accuracy estimates 

Type Ear BIS Score Posterior Mean Posterior SD HDI 5% HDI 95% Probability% 

Semantic Left 1 -0.008 0.017 -0.037 0.018 49.80 

Prosody Left 1 0.026 0.017 0.000 0.056 50.66 

Semantic Right 1 -0.006 0.014 -0.030 0.015 49.84 

Prosody Right 1 0.014 0.014 -0.009 0.038 50.36 

Semantic Left 55 -0.444 0.925 -2.059 1.013 39.07 

Prosody Left 55 1.441 0.947 -0.009 3.089 80.86 

Semantic Right 55 -0.344 0.782 -1.647 0.852 41.49 

Prosody Right 55 0.793 0.786 -0.474 2.103 68.85 

Note: All estimates are in log-odds. 

 

Results from RT data also replicate previous experiments. Table 7.4 and Table 7.5 

summarise results from direct- and indirect-threat conditions respectively. Note the big 

increase in estimates from lowest BIS scores to highest BIS scores, with HDIs well apart 

from each other. When intercepts are taken into account, the Direct-threat estimates 

portray an average effective increase of ~175ms from lowest (1 point) to highest (55 

points) BIS score by Prosody at the left ear, and ~164ms at the right ear. While for 

Semantic the increase is ~172ms at the left ear and ~150ms at the right. The apparent 

left ear advantage for Semantic can be discounted due to HDI overlap. However, overall, 

RTs were the shortest for Congruent. Indirect-threat results are similar, excepting that in 

this case slower responses are only for Semantic. For more details on these additional 

patterns see the OSF repository (https://osf.io/n5b6h/). 

 

Table 7.4. Direct-threat reaction time estimates 

Type Ear BIS Score Posterior Mean Posterior SD HDI 5% HDI 95% 

Semantic Left 1 3.20 0.40 2.54 3.84 

Prosody Left 1 3.25 0.39 2.62 3.90 

Semantic Right 1 2.79 0.33 2.25 3.35 

Prosody Right 1 3.04 0.34 2.49 3.60 

Semantic Left 55 176.09 21.76 139.95 211.20 

Prosody Left 55 178.50 21.64 143.94 214.60 

Semantic Right 55 153.21 18.25 123.59 184.04 

Prosody Right 55 167.04 18.87 137.08 198.26 

Note: All estimates are in milliseconds (ms). 

 

 

 

 

https://osf.io/n5b6h/
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Table 7.5. Indirect-threat reaction time estimates 

Type Ear BIS Score Posterior Mean Posterior SD HDI 5% HDI 95% 

Semantic Left 1 4.37 0.41 3.71 5.06 

Prosody Left 1 4.29 0.41 3.64 4.96 

Semantic Right 1 4.23 0.35 3.65 4.79 

Prosody Right 1 3.79 0.35 3.22 4.35 

Semantic Left 55 240.48 22.47 204.31 278.46 

Prosody Left 55 235.85 22.29 200.14 272.72 

Semantic Right 55 232.38 19.09 200.92 263.32 

Prosody Right 55 208.63 19.03 177.11 239.50 

Note: All estimates are in milliseconds (ms). 

 

 

 

 

 

7.3.2 EEG Results 

 All models sampled well, showing excellent convergence (�̂� ≅ 1, ESS > 300, BFMIs 

> 0.6). Main results indicate that in both the direct- and indirect-threat conditions, the 

effects of BIS were concentrated on window4 (500-750ms), irrespective of ear or 

sentence type (Figure 7.9). However, intercepts indicate smaller but clear general effects 

at all time-windows (Figure 7.8). Hence, for brevity, only results from the direct-threat 

condition will be presented. All other results’ summaries and plots can be found in the 

 
Figure 7.2. Average EOG and EEG activity. Left panels: high BIS. Right panels: low BIS. Up: VEOG and 

HEOG averages. Bottom: grand averages across all electrodes. Note that polarities of EOG and EEG are 

aligned and baselines tight around zero amplitude, so drifts are not artefactual (see: Luck, 2014). 
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OSF repository (https://osf.io/n5b6h/).  Figure 7.2 gives an account of EOG activity and 

raw average amplitude across electrodes given BIS level (median split for visualisation), 

and Figure 7.3 shows raw averages of ERPs’ topography by BIS score tertiles (Low: [1,15], 

Mid: [16,28], High: [29,55]). Figure 7.4 shows ERP’s topography by Ear (left and right and 

Figure 7.5 shows ERP’s topography by type (Congruent, Prosody, Semantic). 

 

 

 

 

  

 

Figure 7.3. Scalp distributions of ERPs by BIS. Red solid line: High BIS score (over 28 points). Yellow dashed 

line: Mid BIS score (between 16 and 28 points). Blue dotted line: Low BIS (below 16 points). Waves are raw 

averages.  

Evoked-potentials Topography by BIS Tertile

https://osf.io/n5b6h/
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Figure 7.4. Scalp distributions of ERPs by Ear. Blue solid lines: Left ear. Red dashed line: Right ear. Waves are 

raw averages.  

sbusc
Typewriter
Evoked-potentials Topography by Ear
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Figure 7.6 shows the two electrodes showing maximal increases from the lowest 

BIS score (1 point) to the highest BIS score (55 points). Plots represent amplitude waves 

as resulting from a robust regression (Student-t observed distribution) using sampled 

time-points (downsampled to 256hz) as varying intercepts and as varying slopes (282 

samples by BIS score), using reparametrized normal priors. Models, sampled with NUTS 

(1000 tuning, 1000 samples) passed all convergence criteria as main models. Although 

intended for display, these analyses further corroborate strong BIS effects at late time-

windows, showing a clearer and stronger late positive complex (LPC) at the left 

hemisphere. Thus, earlier general effects observed in average ERP waves (Figure 7.6 and 

Figure 7.7) and intercepts (Figure 7.8) are not present when accounting for BIS. This is 

strongly supported by varying slopes’ estimates (Figure 7.9). 

 

Figure 7.5. Scalp distributions of ERPs by type. Purple solid lines: Congruent. Red dashed line: Prosody. Blue 

dotted line: Semantic. Waves are raw averages.  

Evoked-potentials Topography by Type
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Figure 7.6. Hierarchically regressed amplitudes at TP7 and P10. Images show amplitude waves from a 
regression across 282 (26 baseline + 256 epoch) samples. Each estimated sample is a whole posterior 
distribution, shadows indicate 90% HDIs at each sample. Dotted lines in blue: lowest BIS (1 point). Dashed 
lines in yellow: sample’s median BIS (29 points). Solid line in red: highest BIS (55 points). Note that higher 
levels of BIS tend to be noisier (such as containing more energy/faster frequency), and that effects at right 
hemisphere (TP7) reach greater positive amplitudes and have fewer overlapping HDIs. Vertical dotted line at 
zero: sentence onset. 
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Figure 7.7 shows mean amplitude peaks selected by maximum local global field 

power (GFP). GFP indicates a spatial standard deviation quantifying electrical activity 

from all electrodes at specific time-points (Skrandies, 1990), reliably revealing peaks of 

greater amplitude. These peaks suggest the lack of earlier phases effects by BIS, only 

indicating sufficiently strong amplitudes from over 200ms for lower BIS levels (below 16 

points) and from over 400ms for higher BIS levels (over 15 points). Main analyses 

indicate that this might be due to very small effects in window1 (50-150ms), with no 

estimates over |0.5|μV for central electrodes (pooled by channel). These values 

progressively increase to up to around |1|μV and |2|μV for window2 (100-250ms) and 

window3 (250-500ms) respectively. Nevertheless, estimates by conditions (BIS, ear and 

type) indicate negligible increases, with amplitude consistently remaining around zero 

values. This can be seen in Figure 7.8 and Figure 7.9, which summarise intercepts and 

slopes respectively (direct-threat task posterior distributions). For brevity, only the 

condition of BIS by Congruent at left ear is shown, as all conditions evidenced similar 

patterns. Effects start to be noticed from window3 (250-500ms) and become 

considerable at window4 (500-750ms), indicating a bilateral temporo-parietal increase 

 

 Figure 7.7. Topoplots of average amplitude by BIS tertile. Images show raw mean amplitude across epoch 

by BIS tertile. Top: upper BIS score tertile. Middle: mid BIS score tertile. Bottom: lower BIS score tertile. 

Time-points were selected as the local maxim Global Field Power (GFP).  
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of ~0.05μV per BIS score point; consistent with Figure 7.4, where an increase of around 

3μV can be observed from the lowest BIS score (1 point) to the highest BIS score (55 

points). 

These results suggest general effects of threatening language, but also indicate 

that BIS highly modulates amplitude effects, in particular at late time-windows. Table 7.6 

gives a more thorough summary across all conditions for electrode TP7. It must be 

emphasised that the same pattern was observed in all electrodes showing strong 

amplitude increases. Whereas left-side temporo-parietal electrodes increase from near 

zero values (e.g. T7, TP7, P7, P7), right-side electrodes show increases from negative 

amplitudes (e.g. TP8, P10) and a less clear LPC. Figure 7.10 shows regression lines for 

TP7 across all conditions. 

 

 

Table 7.6. Estimates from TP7 across all conditions for lowest and highest BIS scores  

Channel Type Ear BIS score Mean SD HDI 5% HDI 95% ESS �̂� 

TP7 Prosody left 1 0.05 0.01 0.04 0.06 2273.18 1.00 

TP7 Semantic left 1 0.05 0.01 0.04 0.06 2138.45 1.00 

TP7 Congruent left 1 0.04 0.01 0.03 0.06 2161.74 1.00 

TP7 Prosody right 1 0.05 0.01 0.03 0.06 2140.95 1.00 

TP7 Semantic right 1 0.06 0.01 0.04 0.07 2168.43 1.00 

TP7 Congruent right 1 0.04 0.01 0.03 0.06 2314.09 1.00 

TP7 Prosody left 55 2.77 0.45 2.04 3.51 2273.18 1.00 

TP7 Semantic left 55 2.82 0.46 2.09 3.57 2138.45 1.00 

TP7 Congruent left 55 2.36 0.46 1.64 3.14 2161.74 1.00 

TP7 Prosody right 55 2.67 0.46 1.88 3.39 2140.95 1.00 

TP7 Semantic right 55 3.04 0.47 2.29 3.82 2168.43 1.00 

TP7 Congruent right 55 2.47 0.48 1.65 3.22 2314.09 1.00 

Note: All estimates are in microvolts (μV). ESS: effective sample size from centre of distribution (bulk). R̂: convergence statistic. 
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7.3.3 Exploratory Analyses 

Finally, two exploratory analyses were conducted. Firstly, amplitudes were 

analysed from epochs aligned with response execution. It has been suggested that this 

method is crucial for observing response preparation P600 ERPs (Sassenhagen et al., 

2014; Sassenhagen and Bornkessel-Schlesewsky, 2015). The rationale is assuring that 

the observed LPC reflects a deliberation phase and not response preparation. Thus, each 

epoch’s offset was locked to each trial’s RT (RT event), epoch’s onset was placed 1s 

previous to RT event with a 200ms baseline pre-onset. These analyses should show a 

P600 similar to the one observed in previous literature, which would corroborate that 

the observed LPC appearing ~600ms after sentence’s onset is a different ERP from the 

Figure 7.10. Regression lines for TP7 electrode at each condition. Each point in the line is a posterior 

distribution, faded lines are random samples from the posterior and express uncertainty. Grey circles 

indicate raw mean amplitude per participant. Black circles indicate estimated mean amplitude per 

participants. Dotted lines indicate shrinkage. 
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P600 appearing when epochs are RT locked. Analyses were performed exactly as for the 

main models, but restricted to as 600-800ms time-window. Both direct- and indirect-

threat conditions indicate strong amplitude increases. This confirms a response-aligned 

P600 which is different from the observed LPC, as average RT (555.21ms) and average 

sentence duration (1646.30ms) guarantee that responses will generally not overlap or 

the LPC would be captured by the baseline. Indirect-threat did not show any differences 

as modulated by stimulus type, ear presentation or BIS score. However, contrary to our 

expectations, direct-threat indicated small increases for Prosody at the left ear as BIS 

score increased (~0.025μV per BIS point) at few frontal electrodes, while Semantic at the 

right ear showed similar but more consistent increases at posterior electrodes (e.g. Oz, 

O2). Although very small, these effects might be associated with earlier BIS effects, which 

could be accumulated until near response execution. Figure 7.11 summarises these 

results for the Semantic/right-ear condition by using electrode Oz as example. See the 

OSF repository (https://osf.io/n5b6h/) for all summaries and plots 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

The second exploratory analysis consists of source-localising amplitudes from 

window4. The aim is to identify potential activity sources for the observed LPC. According 

to emotional acoustic and language processing (Frühholz et al., 2016a; Kotz and 

Paulmann, 2011) and anxiety models (Robinson et al., 2019), most probable sources of 

 

Figure 7.11. Exploratory results example at Oz electrode. Image at the left shows regressed amplitude waves 
from electrode Oz, shadows indicate HDIs. Vertical grey dotted line: RT-locked onset.  Note that there is almost 
or no overlap between highest and lowest BIS sores at later times in the epoch. Images at the right show 
regression lines containing posteriors from all conditions, faded lines express uncertainty. Note Semantic at right 
ear (bottom right), whose uncertainty does not overlap with other conditions at higher BIS scores.  
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activity should be in areas of emotional and language processing. On average across the 

500-800ms window, increases of left-temporal activity in association with basal ganglia 

(emotional language processing) and amygdala-hippocampal activity in association with 

right prefrontal activity (anxiety processing) are expected. To explore this possibility, 

source localization over the 500-800ms time window from sentence’s onset was 

performed. For simplicity, estimated activity was averaged across the temporal 

dimension to test whether activity at given voxel and/or anatomical areas increased as a 

function of BIS. 

 

 

 

Epochs from the direct-threat condition were sourced localized with exact low 

resolution brain electromagnetic tomography (eLORETA) (Pascual-Marqui et al., 2018), 

using standard values in the Pyhton package MNE (Gramfort et al., 2014), involving 

14629 voxels with a minimal distance of sources from skull of 5mm; coordinates in the 

Montreat Institute of Technolgy atlas (MNI). Due to lack of participants’ anatomical 

images, a Free Surfer average brain was used. The computed sources from the whole 

epoch, per participant (36) were averaged in the 500-800ms time-window over the time 

dimension, and extracted as images in NIFTI format. Data and plots from these images 

were handled using Python packages Nibabel and Nilearn (see: Abraham et al., 2014). For 

simplicity and to more easily achieve convergence, resulting estimated activation was 

analysed via Bayesian regression, simply using normal fixed priors and a normal 

distribution for log-transformed activation. Two analyses were conducted, one 

Table 7.7. Highest log-activation estimates from voxel by BIS interaction. 

Brodmann Area Activation MNI x MNI y MNI z Mean SD HDI 5% HDI 95% 

Left-BA21 0.487 -50 -50 10 0.020 0.007 0.008 0.031 

Left-Caudate (48) 0.199 -10 25 10 0.019 0.007 0.008 0.031 

Left-BA22 0.508 -50 -45 15 0.018 0.007 0.007 0.030 

Left-Insula (13) 0.218 -20 25 15 0.016 0.007 0.004 0.028 

Right-Caudate (48) 0.228 5 25 5 0.016 0.007 0.004 0.028 

Left-BA45 0.214 -20 30 15 0.016 0.007 0.003 0.027 

Left-PrimAuditory (41) 0.564 -45 -35 10 0.015 0.007 0.003 0.026 

Left-BA9 0.207 -20 25 20 0.014 0.007 0.003 0.026 

Right-BA9 0.115 10 35 20 0.014 0.007 0.002 0.025 

Left-BA10 0.278 -20 35 10 0.013 0.007 0.002 0.025 

Left-BA8 0.229 -20 20 25 0.013 0.007 0.001 0.024 

Note: Coordinates are in the Montreal Institute of Technology (MNI) system. Activation is the raw mean in log scale.  
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containing an interaction between 4877 voxels extracted from 38 regions of interest 

(ROIs) and BIS scores; the 38 ROIs were selected as the main areas composing emotional 

language and anxiety processing (see: Kotz and Paulmann, 2011; Robinson et al., 2019). 

The second model contains an interaction between the total 116 observed anatomical 

areas and BIS score, to attest for pooled activity across areas that might have been missed 

by the first model. Table 7.7 summarises results from effects in voxels showing HDIs over 

zero, showing peaks at cytoarchitecnotic Brodmann areas (BA). Note that they do not go 

over 2SD ROPEs, and few go over 1SD ROPEs.  

 

 

 

 

Voxel-based results confirm activity in left auditory cortex and temporal language-

associated cortex, the greatest increase is 1.08 log-activation a.u. from lowest BIS (0.02 

a.u.) to highest BIS (1.1 a.u.) score. In addition, bilateral mPFC, and bilateral caudate 

nucleus (CN) was observed. This goes in line with predictions of prefrontal, temporal and 

basal ganglia involvement, but they do not show amygdala or hippocampal activity (See 

Figure 7.12). As some imprecision is expected from source localization when using 

average anatomies, some portions of CN might be overlapping with hippocampus and/or 

 

Figure 7.12. Estimated log activation from voxel by BIS interaction. Images show estimated log-activation at 
the lowest BIS (bottom) and highest BIS (top) levels, plotted over inflated brain surfaces. The strongest 
increase from lowest to highest BIS happens at left superior temporal cortex (STC) and mid temporal cortex 
(MTC), followed by caudate nucleus (CN) and later by middle prefrontal cortex (mPFC) at very ventral and 
interior parts. 
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amygdala. The second analysis, summarized in Figure 7.13, shows that when pooling 

across anatomical region (average activity by area), estimates indicate strong increases 

of activity (~0.01 log-activation a.u. by BIS point) in areas such as mPFC, CN, 

hippocampus and amygdala, but also in portions of entorhinal cortex, which connects 

with temporal cortex. Indeed, some of the greatest increases as a function of BIS occur in 

the temporal pole, MTC and STC, extending to supramarginal gyrus (SMG). In addition, 

these analyses also indicate that activity in visual and motor areas tends to decrease as a 

function of BIS. This is in line with participants withholding responses during LPC 

activity, as response preparation will come later, signalled by a response-locked P600. 

Although these results are exploratory and would require further support from MEG 

and/or fMRI analyses, they are in line with emotional language processing and anxiety 

operating in tandem as predicted by current models. 

 

 

 

 

Figure 7.13. Estimated log-activations from BIS by anatomical area interaction. Threshold is placed at the 
biggest 2SD ROPE from all estimates (0.0042). Note that maximal increases occur at bilateral basal ganglia and 
left temporal cortex, followed by left amygdala, hippocampus, entorhinal cortex and insula and parts of right 
prefrontal cortex; while maximal decreases can be seen at left motor cortex, followed by parts of bilateral 
parietal and right occipital cortex. Scales are in arbitrary units. 

 



105 
 

7.4 Discussion 

 Present results indicate that threatening stimuli in both direct- and indirect-threat 

tasks induce longer RTs as a function of BIS (trait anxiety), but have no effects on 

accuracy, which only shows differences when selecting slopes by ear or type, indicating 

conventional dichotic listening effects (see the OSF repository: https://osf.io/n5b6h/). 

These results replicate the previous experiment very closely (Chapter 5, Experiment 1), 

consistent with the interpretation of trait anxiety disrupting orientation phases, as 

accuracy is minorly affected but RTs are strongly affected by trait anxiety levels. EEG 

results indicate that an LPC increases its amplitude as a function of BIS, this is also 

consistent with present hypothesis indicating late phase effects of trait anxiety on 

threatening language processing during orientative (deliberation) phases. However, no 

earlier effects can be observed as a function of BIS, which goes contrary to the hypotheses 

predicting the influence of trait anxiety at all time-windows from sentence’s onset.  

ERP exploratory analyses indicate that when epochs are locked to RT, a P600 

signals response preparation. This result rules out the observed LPC as a P600-like ERP, 

supporting the notion of its relationship with trait anxiety. In addition, the response-

locked P600 is modulated by BIS, showing small type by ear effects. Finally, a source 

localization exploratory analysis indicates that possible sources for the LPC are direct 

matches with areas involved with emotional language and anxiety processing, as 

predicted by the current implemented models, but not closely matching the present 

prediction. Instead of observing stronger RH activity at the ~600ms time-window, main 

analyses indicate stronger and clearer LH activity, and the exploratory source localization 

shows that this activity might come from left temporal cortex. Overall, results and 

exploratory results support the idea of trait anxiety influencing late phase processing 

(over 500ms), which is associated with response slowdown. Such effects could be 

explained by verbal repetitive thinking during a pre-response deliberation phase, though 

present results do not provide direct evidence of this and alternative mechanisms are 

possible.    

  Although some EEG studies show lateralization effects associated with emotional 

semantic and prosody variation (Kotz and Paulmann, 2007), recent research does not 

show much evidence for these effects (Chen et al., 2011; Paulmann et al., 2012). One 

proposed explanation is that concurrent multi-channel (prosody and semantic) 

information obscures laterality effects (Paulmann et al., 2012). Present results are 
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consistent with this interpretation, in particular when considering that when pooling 

amplitude by electrode the ERP pattern shows more canonical, though very small, ERP 

responses to emotional language at earlier time-windows. Most importantly, effects of 

anxiety at later time-windows in the form of an LPC are not modulated by stimulus type 

(semantic or prosody). This differs from previous research, which did not include anxiety 

measures, finding late positive amplitudes in association with prosody/semantic 

emotional variations and/or congruency effects (Astésano et al., 2004; Chen et al., 2011; 

Zhao et al., 2015). Thus, it may be the case that the distinct pattern of present LPC signals 

a more general anxious response to threatening language, similar to previously reported 

re-appraisal related LPPs (e.g. Hajcak et al., 2010).  

However, previous EEG research studying the effects of visually presented 

(written) abusive words on non-anxious people (Wabnitz et al., 2012) shows much 

earlier effects, modulating P100 (~100ms) and N400 (~400ms) amplitudes, both ERPs 

showed greater deflections for threatening words. When a similar procedure included 

socially anxious subjects (Wabnitz et al., 2015), results indicated a decreased P100 and 

an unaffected N400 for socially anxious people. Differently, present results indicate very 

weak evidence for anxiety effects at early or mid-phase time-windows. This aligns better 

with a study testing the effects of emotional syllables and vocalization, which found that 

trait anxiety is associated with a lower LPC when participants listened to emotional 

speech (Pell et al., 2015). This pattern, however, is the opposite of present observations, 

though both LPCs share very similar latencies and scalp distributions. One possible 

explanation is that when answering to more controlled stimuli, anxious participants 

resolve responses at much earlier time-windows, where larger components at an early-

mid stage (~100-300ms), such as P2 or EPN, are observed (Pell et al., 2015; Wabnitz et 

al., 2015).  

This could imply that the present LPC requires the deliberation time provided by 

present stimuli, namely long duration semi-naturalistic sentences. Trait anxiety has been 

strongly associated with patterns of repetitive thinking (McEvoy et al., 2010; McLaughlin 

et al., 2007). This has been also proposed as an explanation for lateralisation patterns in 

higher worriers (Spielberg et al., 2013). It is possible that predispositions to worry 

and/or rumination, elicited by an overactive BIS, induce verbal repetitive thinking, in 

particular when stimuli are threatening speech. In line with this interpretation, LPC has 

been understood as a marker of decision modulation in relation to evaluation through 
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memory processes (Finningan, 2002; Yang et al., 2019). This LPC was elicited in response 

to judgements on words, and it was a left-lateral central-parietal positive deflection. This 

partially aligns with present observations, though some differences might be expected as 

present research uses a higher density setup (64 electrodes) with average reference. 

Nonetheless, the role of BIS in present observations must be emphasised. That is, the 

present LPC would not only be associated with response control, but also with that 

response control in terms of behavioural inhibition. This would imply that trait anxiety, 

expressing an overactive BIS, would involve over-engagement with threatening stimuli 

and induce verbal repetitive thinking.  This would result in the involvement of left 

hemisphere, in particular of structures associated with auditory and language processing, 

understood as an inner speech phonological loop (Buchsbaum and D’Esposito, 2008; 

Vigliocco and Hartsuiker, 2002). Evidence from fMRI suggest that inner speech mainly 

involves areas such as inferior frontal gyrus (IFG), angular gyrus and SMG (Geva, 2018).  

Present exploratory source localisation analyses, differently, show weak IFG but 

strong left primary auditory cortex activity, MTC and STC extending to SMG. This might 

be associated with source localization capturing shorter time-frames as opposed to fMRI 

capturing longer processing, which might end up in the recruitment of articulatory areas. 

Also, this may respond to present inner speech, possibly associated with verbal repetitive 

thinking, being focused more on imagery than rehearsal, thus deriving towards areas 

involved in phonological and semantic representation (e.g. BA21, BA41). Also, these 

analyses indicate decreased motor activity (mainly BA6) and increased mPFC activity; 

which could imply greater inhibition during verbal repetitive thinking, explaining slower 

RTs and supporting the notion that present LPC occurs before response control. This is 

indicated by RT-aligned exploratory analyses, which show a positive deflection starting 

at around 300ms and sustained until over a second.  Similar ERPs have been associated 

with cortical re-orientation towards execution/inhibition of responses (Sassenhagen et 

al., 2014; Sassenhagen and Bornkessel-Schlesewsky, 2015); resulting from adrenergic 

secretion eliciting shifts between ventral and dorsal attention networks; where a right-

lateralized ventral network (including mPFC) orients attention to environment and 

inhibits a goal-oriented dorsal network (Corbetta et al., 2008; Vuilleumier and Driver, 

2007). Previous research suggest that BIS-related inhibitory control is linked to right 

hemisphere (RH) frontal cortex (e.g. mPFC) (Gable et al., 2017), in particular when tasks 

require refraining responses (Neo et al., 2011; McNaughton et al., 2013).  
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Nevertheless, when tasks are associated with rumination or worry, a strong RH 

pattern is not usually observed (De Pascalis et al., 2013; Keune et al., 2012). This might 

indicate an interplay between right and left hemispheres, where the latter works as an 

inhibitor of action (either approach or withdrawal) and the former as an inhibitor of 

ongoing deliberation. In other words, when responses need to be refrained, the ongoing 

required behaviour is response-withdrawal. Right-handed anxious participants might 

find difficult to refrain their responses due to left hemisphere interference (left-

lateralized movement control). Similarly, if the task induces language-related repetitive 

thinking, LH might interfere through rumination or worry, thus RH would need to inhibit 

that ongoing activity to permit responses. As present task did not involve a go-no-go 

paradigm, but all responses needed to be delayed, the additional inhibition time may have 

allowed for the interaction between behaviour control and evaluation mechanisms, 

effectively involving left hemisphere temporal structures, limbic system and prefrontal 

structures. This might imply that more networks could be involved, in particular those 

associated with behavioural inhibition as mediated by serotoninergic control through 

raphe nucleus and amygdala-hippocampal routes (Andrade et al., 2013). And, also those 

involving language areas and basal ganglia, the latter playing a role in verbal emotional 

language processing (Paulmann et al., 2009; Pell and Leonard, 2003). To note, 

exploratory analysis also showed strong activity in basal ganglia, in particular CN, 

accompanied by smaller degrees of amygdala, hippocampal and entorhinal activity. 

Hence, there could be an interplay between these systems, where attention control is also 

mediated by BIS in terms of learning and memory. For instance, by comparing current 

environment conditions with past experience; consistent with notions of worry and 

rumination as post-event processing repetitive thinking (McEvoy et al., 2010). Therefore, 

increased left hemisphere activity elicited by repetitive thinking related processes such 

as internal dialogue and categorization remains a plausible explanation for present 

results showing that anxiety has no major effects on accuracy but is associated with 

increased RTs preceded by an increased LPC during sentence processing. 

Under this notion, inhibition processes need to be transferred from right to left 

hemisphere, which would induce faster recession of right hemisphere activity, longer and 

stronger latency of left hemisphere activity, and different scalp distributions at each 

hemisphere. Although this is a parsimonious explanation when theories of callosal relay 

are taken into account (Friederici et al., 2007; Grimshaw et al., 2003; Steinmann et al., 
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2017; Westerhausen and Hugdahl, 2008), it becomes difficult to explain why there are 

not earlier ear or type differences in association with hemisphericity patterns. One 

possible explanation is the horse-race model of callosal transferring (Grimshaw et al., 

2003), which indicates that ear of presentation would privilege the contralateral 

hemisphere not as an immediate effect, but in the long run. This would be the effect of the 

delay caused by callosal transferring. Indeed, main analyses, using epochs locked to 

sentence onset, do not show amplitude differences of this sort. However, when epochs 

are locked to RT, these differences (though small) become evident, in particular for 

Semantic stimuli at right ear and with slight central-left posterior pattern (e.g. Oz, O2). 

Nonetheless, due to BIS effects, instead of creating an advantage, responses become 

slower. This would emphasise that deliberation is more effortful for people with higher 

trait anxiety, which is reflected by an increased LPC.  

Overall, differently from previous observations (Pell et al., 2015), main results 

show an LPC increase as a function of trait anxiety; indicating that anxiety can have 

different effects when task and stimuli change (i.e. whether they allow deliberation to 

occur). Thus, present observations indicate that core features of auditory and emotional 

language processing (Kotz and Paulmann, 2011; Frühholz et al., 2016a) might drastically 

or unexpectedly vary when taking individual differences into account (i.e. trait anxiety). 

In other words, BIS effects on threatening language processing may reflect a tight 

relationship between anxiety related processes (i.e. worry/rumination-induced verbal 

repetitive thinking) and language processes (i.e. phonological loop). Indeed, in 

anatomical terms, emotional auditory processing models (Früholz et al., 2016a) are 

strongly consistent with current models of anxiety processing (Robinson et al., 2019). In 

the time domain, anxious attention models (Bar-Haim et al., 2007; Cisler and Koster, 

2010) and models of emotional language (Kotz and Paulmann, 2011) also show 

similarities. Taking the similarities between these models and present results into 

account, it is possible to conclude that effects of trait anxiety evidence the relevance of 

including a late fourth deliberation phase in a model of threatening language processing. 

This expanded model would include the following phases: 1) Perception (~100ms), 2) 

Recognition (~200ms), 3) Evaluation (~400ms), 4) Deliberation (~600ms).  

Finally, some relevant limitations need to be addressed. Firstly, an obvious caveat 

is that there is no direct neutral control. Even though we used an indirect-threat task, this 

is usually intended to control for attentional differences (e.g. Sander et al., 2005; Peschard 
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et al., 2016), as participants still listen a threatening sentence at the contralateral ear. 

Although the experimental requirements of present task design do not allow for having a 

response to Neutral stimuli without threat interference, future research could include a 

proper neutral speech control by, for example, using between-groups designs. Secondly, 

although some patterns of right hemisphere activity associated with anxiety were 

identified in addition to left hemisphere patterns, it is important to address experimental 

designs that can directly induce response inhibition to differentiated stimuli. Previous 

research has indeed proposed that tasks such as go-no-go are better for understanding 

BIS processes as they directly involve inhibiting responses (e.g. McNaughton et al., 2013; 

Neo et al., 2011). Thirdly, the inherent caveat of semi-naturalistic sentences, where many 

lexical items appear later in the sentence than prosody acoustic changes, can be an 

important limitation for dichotic listening experiments. Amongst other things this could 

imply why canonical ERP patterns were weak and difficult to find on present results, 

differently from previous dichotic or non-dichotic research using more controlled stimuli 

(e.g. Pell et al., 2015; Wambacq and Jerger, 2004). So, additional experiments using 

controlled stimuli are required as a comparison to and extension of present research.   

Future research could include such tasks by, for instance, including responses to 

stimuli type instead to threat in general. In association with this, spotting effective 

hemisphericity differences requires the support of more precise anatomical 

measurements. Although previous fMRI studies (e.g. Sander et al., 2005; Spielberg et al., 

2013) partially match with the proposed extended model, they do not include tasks 

equivalent to present experimental task, so differences can be expected. This implies that 

fMRI or MEG research, or at least more precise source localization (i.e. using individual 

anatomies) are required for expanding present results and test the extended model on 

the anatomical side. Last but not least, the possible influence of verbal repetitive thinking 

needs to be directly tested, with tasks specifically designed to do so (e.g. Nalborczyk et 

al., 2017). Thus, experimental design using methods such as language interference could 

be relevant to address whether anxiety-induced verbal repetitive thinking has particular 

effects on threatening language.         

 In conclusion, present experimental results replicate previous behavioural results 

and provide strong evidence for trait anxiety effects. ERP analyses show that these 

responses are preceded by a clear positive amplitude deflection in temporal electrodes. 

This event was interpreted as an LPC, and was associated with trait anxiety affecting 
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deliberation processes through verbal repetitive thinking. As BIS scores increased, the 

LPC became more positive, suggesting a disruptive deliberation process, such as induced 

by over-engagement with threat, during an orientative stage. In other words, higher 

levels of anxiety due to their association with repetitive thinking (i.e. worry and 

rumination) induce a more effortful decision-making process after evaluation of 

threatening stimuli. Although this implies strong support for part of the present 

hypotheses, several limitations were discussed, and need to be addressed. The 

development of more sensitive tasks and alternative statistical models and approaches 

would help to understand earlier processes underpinning the presently proposed 

deliberation stage. In addition, the observed relationship between anxiety and language 

is not specific to speech information type. Hence, the effects of anxiety on prosody and 

semantics remain to be further explored. Overall, this experiment paves the way for 

future research on the relationship between speech, individual differences and emotional 

language in terms of information channels, anxiety and threatening language. This 

outlines an improved basis for reshaping models of emotional language processing by 

providing clear evidence on how anxiety can affect late processing phases.  
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Chapter 8 

Thesis Discussion 

A Model of Threatening Speech and Anxiety 
 

 

8.1 Evidence for The Operative Model 

The present thesis focusses on providing a theoretical background and 

supporting evidence for the interaction between trait anxiety and threatening speech 

processing. This has been guided by an operative model proposing that anxiety should 

induce diverse effects depending on processing phase (see Figure 2.1). However, both 

behavioural and electrophysiological evidence from previous chapters indicate that 

noticeable effects are mainly induced at late processing phases. These phases are 

theoretically defined from a multistep model of emotional language processing (Kotz 

and Paulmann, 2011). As explained in previous chapters, in particular in Chapter 2, this 

model proposes three processing stages that can be summarised as perception 

(~100ms), recognition (~200ms) and evaluation (~400ms). However, this model does 

not distinguish between different types of emotional stimulation or individual 

differences. To elucidate possible implications of singular emotional stimulation on 

individual differences, the present research project focused on testing specific effects of 

threatening speech meaning on trait anxiety. As stimuli are not presented as 

unconditioned stimuli (i.e. participants listened to threat continuously), it was 

theoretically considered that effects of threatening speech should have a clearer impact 

in anxiety processing rather than fear (McNaughton, 2011; Robinson et al., 2019). 

Furthermore, according to phasic models of anxiety (Bar-Haim et al., 2007; Cisler and 

Koster, 2010), it was considered that differentiated effects of anxiety should be evident 

as early over-attention to threat and later over-engagement with anxiety. Hence, the 

proposed operative model is an extension of the multistep model of emotional language 

processing with an additional phase, understood as an orientation or deliberation phase. 

Present behavioural and EEG results indicate that earlier (100-300ms) and even 

mid-late processing stages (~400ms) of language processing are not affected by anxiety, 

at least not directly. Only later processing stages (~600ms) evidence differences as a 

function of trait anxiety. Chapter 5 aimed to distinguish the effects of trait anxiety, or 

anxious apprehension measured as worry level (Heller et al., 1997; Nitschke et al., 1999; 
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Spielberg et al., 2013), on threatening semantics and prosody in two dichotic listening 

experiments. Participants listened to threatening sentences paired with neutral ones 

and had to indicate at which ear they heard the threatening sentence, which could 

contain prosodic threat, semantic threat or both (acoustically and lexically normed and 

classified in detail on Chapter 4). In the first experiment, participants answered only 

after sentences ended and in the second experiment they answered before sentences 

ended. The rationale of this approach was that responses without time pressure 

(delayed responses: after sentence end) would be affected by late-phase effects of 

anxiety (over-engagement with threat), while fast responses (before sentence end) 

would elicit over-attention to threat effects. Nevertheless, both experiments induced 

similar effects: response times increased as a function of worry level, independent of 

sentence type and with no detriment to accuracy. Chapter 6 showed that this reaction 

time increase also happened in a non-dichotic fast-response experiment (in-principle 

replication of Chapter 5’s fast-response task). This indicates no certain accuracy 

differences and no major influence of sentence type on responses. Finally, Chapter 7 

showed that in delayed-response task (directly replicating the delayed task in Chapter 

5), ERPs locked to sentence’s onset indicate an amplitude increase as a function of 

anxiety peaking around 600ms (LPC) and stronger at left temporal electrodes. This was 

accompanied by slower reaction times as a function of anxiety and by exploratory 

analyses indicating that reaction-time-locked ERPs are not associated with observed 

LPCs and a source localization showing strong basal ganglia, temporal and prefrontal 

activity at the LPC time-window.  

With this evidence in mind, presently hypothesised effects of trait anxiety on 

right-lateralised prosody at earlier processing stages or on left-lateralised semantics at 

mid-late stages were not observed. These hypotheses were derived from the multistep 

model (Kotz and Paulmann, 2011) by specifying differences in speech’s acoustic 

properties and how anxiety could affect their lateralisation patterns at aforementioned 

time-windows. These lateralisation patterns are mainly based on the anatomical 

patterns of segmental versus suprasegmental information types (Poeppel et al., 2008; 

Zatorre et al., 2002), and on dorsality/ventrality patterns of the dual stream model of 

speech processing (Hickok and Peoppel, 2007). When considering similar patterns of 

laterality/dorsality found in emotional attention models (Corbetta et al., 2008; 

Vuilleumier and Driver, 2007) and, in particular, anxiety models (Calhoon and Tye, 
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2015; McNaughton, 2011; Robinson et al., 2019), a possible relationship emerges. The 

proposed interaction between anxiety/attention and emotional speech processing was 

not observed at early- or mid-phase processing, but was shown to be constrained at later 

processing stages. This may be indicative of a dissociation between anxiety and fear and 

a partial dissociation between anxious arousal and anxious apprehension (Heller et al., 

1997; McNaughton and Corr, 2004), as mentioned above. More importantly, this 

indicates that trait anxiety, understood as an overactive behavioural inhibition system 

(BIS), is associated with over-engagement with threat, in particular when stimuli (i.e. 

long semi-naturalistic sentences) and/or task allow for this over-engagement to occur. 

Even so anxious delayed disengagement from threatening stimuli has been shown to 

happen after short and long stimuli presentation (Cisler and Koster, 2010), such 

response may be dependent on several factors such as length of inter stimulus interval, 

type of stimuli (i.e. modality, information type), or differences between fear and anxiety 

and between anxious arousal and anxious apprehension; all of which can affect over-

engagement with threat.  

For instance, EEG studies have observed that worry is associated with negative 

reappraisal of visual stimuli and parietal late positive potential (LPP) increases (Moser 

et al., 2014), namely late-phase processing associated with sustained attention (Hajcak 

et al., 2010). In other words: delayed disengagement, over-engagement, or deliberation. 

Studies using a cross-modal paradigm, priming words with emotional faces to observe 

implicit reappraisal have observed early-phase (e.g. N170) but not late-phase (i.e. LPP) 

effects (Liu et al., 2018), suggesting that explicit engagement (deliberation) or more 

engagement time is required for later phases to be affected. Indeed, EEG studies focusing 

on social anxiety have shown that abusive words (short duration stimuli) induce effects 

on early- or mid-phase ERPs (i.e. P1, N400) which could be better related with over-

attention to threat or threat evaluation issues (Wabnitz et al., 2015). Other studies have 

shown that angry vocalisations (prosody) are associated with early (i.e. P1) but not late 

(i.e. LPC) amplitude increases associated with anxiety (Pell et al., 2015). FMRI 

experiments using longer stimuli or tasks requiring sustained attention (e.g. emotional 

Stroop or dichotic listening) have shown increased activity in phonological loop and 

attention control-related areas in association with worry/rumination or BIS (Sander et 

al., 2005; Spielberg et al., 2013). In short, the broad architecture of the present operative 

model still holds, but the specific effects given anxiety type (i.e. arousal or apprehension) 
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need to be more precisely specified at each phase, such as was initially proposed for 

fear-anxiety dissociations and prosody-semantic processing differences. 

 

8.2 Revision of The Operative Model 

This leads to a revision of the proposed operative model, which indicates that 

trait anxiety, in particular given its worry and rumination effects, will be disruptive only 

at late processing phases where the stimulus has already been evaluated. Hence, the 

present model needs to either be revised phase-by-phase, indicating effects of different 

anxiety-types or states at each processing phase, or different more specific models need 

to be built for each anxious type. Opting for the latter option, a revised model will be 

presented only for the apprehensive anxious type, namely related with anxiety traits or 

states associated with rumination and/or worry. This revised model attempts to 

account for the phenomena observed in previous chapters, by explaining why trait 

anxiety has such strong effects at late phases, especially when stimuli allow for long 

periods before responses. The trend followed in the present thesis is to attribute these 

late phase effects to verbal repetitive thinking, as this could disrupt speech processing 

by dragging resources towards worry or rumination. Verbal repetitive thinking has been 

systematically associated with anxiety (McEvoy et al., 2010), and is thought to depend 

on inner speech; which occurs via the phonological loop, using speech production 

networks mainly involving left lateral SMG, STC, MTC, and IFG (Geva, 2018). Consistent 

with recent research observing that electromyographic activity (from speech 

production-related facial muscles) increases as a function of participants’ rumination 

levels (Nalborczyk et al., 2017). Even though this is aligned with the present 

interpretation of trait anxiety (i.e. BIS or worry) affecting late phase effects, no strong 

conclusion regarding repetitive thinking can be drawn yet, as verbal repetitive thinking 

has not been directly assessed.  

Nevertheless, although these late phase effects of trait anxiety have been 

associated with over-engagement or reappraisal (Hajcak et al., 2010), no proposal has 

attempted to demonstrate how this over-engagement happens. Furthermore, no focus 

has been placed on the fact that when studies use negative language of brief duration 

and emphasising fast or primed responses (e.g. Liu et al, 2018; Pell et al., 2015; Wabnitz 

et al., 2015), no evidence for or decreases of late phase ERPs (LPC/LPP) are observed in 

association with anxiety. But, as the present thesis suggests, when semi-naturalistic 
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longer sentences are used (and in particular when delayed responses are required), 

both reaction times and LPCs greatly increase as a function of worry and BIS (in addition 

to exploratory source localisation indicating engagement of both language and anxiety 

processing areas at LPC phase). Given this, verbal repetitive thinking is a good candidate 

for explaining late-phase effects of trait anxiety, not only because it is associated with 

rumination and worry in anxiety (McEvoy et al., 2010; McLaughlin et al., 2007), but also 

because it engages language processing and production networks (Nalborczyk et al., 

2017); which might be required for efficiently processing of complex utterances. In this 

way, present stimuli, well-defined as prosodically and semantically threatening by very 

specific acoustic (pitch and voice quality) and lexical (arousal and valence) 

characteristics, could induce over-engagement on participants with increased trait 

anxiety. These people would transiently worry or ruminate over the stimuli while 

deciding how to respond (deliberation) and this would be enacted through verbal 

repetitive thinking, thus engaging both anxiety-BIS-related and language-related 

networks. This would start when or after stimuli are evaluated near 300-400ms 

according to the multistep model of emotional language and be sustained for a longer 

period (i.e. LPC around 600ms), thus explaining over-engagement and subsequent 

slower responses.  

 

8.3 A Model of Threatening Speech Processing in Anxiety 

According to multiphasic models (Kotz and Paulmann, 2011; Bar-Haim et al., 

2007; Cisler and Koster, 2010), the processing of an emotional stimulus should 

technically start shortly after stimulus onset, when early (pre-aware, around 100ms, e.g. 

P1) recognition processes begin, which develop into stimulus recognition (awareness, 

around 200ms, e.g. N2) and evaluation (integration, around 300-400ms, e.g. N400). If 

tasks do not present strong time constraints, deliberation (from around 600ms, e.g. LPC) 

can take place and be sustained until responses are prepared/disinhibited (if responses 

are required). Note that this event might take place in several circumstances, such as if 

responses are locked to stimulus offset or stimulus is too short, in which case events 

such as response-related P300-P600 (e.g. Sassenhagen et al., 2014) could be observed. 

Evidence linking P300 and LPP responses indicates that starting from 300ms, if stimuli 

appraisal is required an LPP can develop, signalling both emotional and cognitive 

processing, which is sensitive to individual differences such as anxiety (Hajcak et al., 
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2010). Although not necessarily equivalent to LPP, the present LPC might be associated 

with similar appraisal processes, but more directly linked to speech processing 

deliberation phases and the behavioural inhibition system.   

Figure 8.1 details the revised model, highlighting the aforementioned phases and 

some possibly involved brain areas, as interpreted from emotional language (Kotz and 

Paulmann, 2011) and anxiety models (Robinson et al., 2019), but also from possible 

involvement of the phonological loop. The main implication is that when stimuli have 

longer durations (i.e. semi-naturalistic utterances), threat is understood as potential and 

not actual. This can be associated to the complexity of language stimuli, but also to the 

very nature of language (i.e. language cannot produce vital damage). This requirement 

is fundamental to any model of anxiety, as anxiety is sourced on behavioural inhibition 

due to approach-withdrawal assessment and not on the immediate flee/freeze/fight 

fear response to direct threat (McNaughton, 2011; Robinson et al., 2019). Therefore, 

during threatening speech processing higher levels of trait anxiety can induce inhibition 

and delay responses, as long as state/trait arousal is sufficiently low and/or sufficient 

processing time is allowed. As suggested by present research, some type of disruption 

occurs rapidly in the scale of hundreds of milliseconds. These burst of activity that delay 

responses for anxious people could be either induced by sudden brief concern about the 

upcoming response (worry) or short rehearsal of the past threatening stimulus 

(rumination).  

Either way, verbal repetitive thinking could take hold of the phonological loop 

(STC, MTG and IG in Figure 8.1) for a short time, while threat is re-assessed and the 

anxious response cycles (dlPFC, vmPFC, amygdala, hippocampus route in Figure 8.1). 

Mediating these two networks, entorhinal cortex (EC in Figure 8.1) links the amygdala-

hippocampal route with temporal cortex (densely connected with both) and mediates 

contextual fear learning (Calhoon and Tye, 2015), thus allowing BIS-related 

environmental assessment in relation to language. While basal ganglia (BG in Figure 8.1) 

might mediate responses as it is associated with vmPFC anxiety/reward mediation, 

maybe after dlPFC input (Robinson et al., 2019), by inhibiting amygdala or activating BG 

(Calhoon and Tye, 2015); BG involvement which has also been observed in emotional 

language evaluation (Paulmann et al., 2009). Thus, this BG involvement, in particular 

nucleus accumbens (Calhoon and Tye, 2015; Paulmann et al., 2009), may be linked to 

upcoming response execution, such as mediating appetitive/approach disinhibition 
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upon response evaluated as correct/incorrect (i.e. threatening or not threatening). This 

whole process occurring during an LPC time-window, however, might slightly differ 

from a long duration ruminative/worry process. Because, even if stimuli are long in the 

conventional experimental scale, where commonly used stimuli (e.g. faces, words, 

vocalisations) are very brief (few hundreds of milliseconds), they are short in terms of 

the normal verbal repetitive thinking process (i.e. minutes or more). Hence, the brief 

period of verbal repetitive thinking portrayed by the model, might be better 

characterised as transient brooding. 

This model is also consistent with anxiety driving later ear differences (response-

aligned), instead of earlier differences; aligned with callosal relay or horse-race models 

of dichotic listening (Grimshaw et al., 2003; Steinmann et al., 2017), as these models 

propose that information transferred between hemispheres through corpus callosum 

could make left or right hemisphere advantages to express at different processing 

phases depending on features of stimulus or task. This would explain small exploratory 

effects of semantic threat when ERPs are aligned with response-times. In addition, 

although not directly addressed through present research, callosal transferring could 

explain why present behavioural dichotic listening results show consistency with more 

conventional dichotic listening results when not accounting for anxiety (e.g. Wambacq 

and Jerger, 2004; Witteman et al., 2014). Hence, increases in anxiety could imply 

extended processing, facilitating callosal transferring, thus ‘evening out’ any possible 

ear advantage and early-phase ERP differences. This is also supported by exploratory 

results from Chapter 7, showing a strong positivity when aligning epochs with reaction 

times, which is consistent with models of response preparation ERPs (Sassenhagen et 

al., 2014). These models directly link with attention control models (e.g. Corbetta et al., 

2008), and show that anxiety could be indeed involved in delaying responses by 

extending deliberation periods. These models also propose right frontal (e.g. vmPFC) 

involvement, such as in anxiety models (Robinson et al., 2019), which could be involved 

in the regulation of amygdala and basal nucleus of the stria terminalis (BNST). So, 

intermediate areas such as BG and EC might mediate this right to left or left to right 

transferring, supporting processing associated with both speech (Paulmann et al., 2009) 

and anxiety (Robinson et al., 2019). This completes a very precise anatomical network 

which is proposed to be involved in late phase processing from 500-600ms up to 1000-

1200ms if threatening speech is sustained for long enough. 
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Figure 8.1. A model of threatening speech processing in anxiety. Image above shows the hypothesised 

pattern of a late deliberation phase, starting from around 600ms. The proposed pattern is understood to 

be the result of a link between anxiety and language through transient brooding. Note that LPC is preceded 

by an integration phase (~300-400ms) and followed by a response preparation phase (~300-600ms), this 

overlap occurs because if time is constrained evaluation is faster (i.e. less or not explicit) or directly precedes 

response preparation. Otherwise, deliberation can happen or is noticeable until response disinhibition 

begins (e.g. stimulus offset). Also note that these responses are assumed to be locked to stimulus onset. 

Below, areas proposed to be involved during deliberation. Purple ellipses indicate areas commonly 

associated with anxiety. Green ellipses indicate areas commonly associated with emotional language 

processing. Entorhinal cortex is proposed as an additional structure associating environment evaluation and 

language, e.g. though environmental scanning and comparison to past experience. dLPFC: dorso-lateral 

prefrontal cortex. vmPFC: ventro-medial prefrontal cortex. BG: basal ganglia. Am: amygdala. Hip: 

hippocampus. EC: entorhinal cortex. STC: superior temporal cortex. MTG: middle temporal gyrus. IFG: 

inferior frontal gyrus. 
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Having proposed a new processing model there are some limitations that need 

to be addressed. The most salient one of these is that the present research project lacks 

experiments providing a direct measure of verbal repetitive thinking (e.g. Nalborczyk et 

al., 2017). This is a hypothesis in and of itself, which needs to be tested by new research. 

Experiments testing the effects of disruptive intermediary tasks placed between 

threatening speech stimuli and response will be required for this. A possible experiment 

would simply imply occupying speech-related processes with a rhyming task as 

compared to a visual rotation task and a baseline (no task). Hypothetically, the rhyming 

task should block the effects of trait anxiety by blocking transient brooding, so reaction 

times and ERPs in this condition should not change as a function of anxiety. Further 

behavioural research could also involve induced state anxiety measurements, such as 

threat of shock or similar manipulations (e.g. Aylward et al., 2017). Other important 

limitation is the lack of passive listening research, which could involve the analysis of 

both ERP and brain waves, helping to elucidate effects on sustained brain activity (e.g. 

McNaughton et al., 2013). For instance. this could allow to determine whether anxiety-

related theta-waves are also associated with processes specific to language. This would 

complement current ERP and source-localisation analyses. Finally, replicating or 

extending current research in MEG, fMRI or transcranial stimulation settings could 

reveal whether present speculation on involved anatomical networks are appropriate. 

All these approaches would put the here presented model to the test and see whether it 

holds or needs to be amended or replaced. 

In addition, there are more practical limitations that need to be addressed. For 

instance, stimuli norming could have been affected by un-even samples (i.e. more 

females than males). Further research, with a more diverse sample needs to address this 

issue, especially by testing the predictive accuracy of present data (coming from un-even 

samples). This predictive capacity could also ameliorate the issue of present small 

sample sizes, which though not necessarily uncommon in previous research (e.g. Banse 

and Scherer, 1997; Hammerschmidt and Jurgens, 2007), may be a relevant limitation. 

Similarly, sample sizes of present behavioural experiments, although in close proximity 

to recent literature (e.g. Leshem, 2018; Peschard et al., 2016), could be increased to 

improve the certainty of accuracy estimates and possible compliance and error issues 

that may have arose due to the web-based nature of present behavioural experiments. 

It is also possible that variance and error were induced by the lack of temporal 
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alignment between prosody and semantics, as lexical items were placed anywhere 

within sentences but prosody always started at sentence onset. This uneven comparison 

between prosody and semantics may have obscured both behavioural and EEG 

measurements, and needs to be addressed by new experimental designs using more 

controlled stimuli to provide a contrast to present semi-naturalistic stimuli. Finally, the 

change of scales (used as a proxy of trait anxiety) from PSWQ to BIS could have induced 

measurement errors. Although this issue might not be so serious, given that estimates 

across experiments are very similar, more direct and explicit correlation measures 

across scales could have helped. Also, experiments exploring the effects of induced state 

anxiety could help to establish a more straightforward causal relationship between 

anxiety and present RT and ERP results (if they can be replicated in such experiments). 

This is relevant, as present results do not directly attest for a special effect of threatening 

language on anxiety, a possible over-engagement with threat effect could be explained 

by a more general mechanism and not necessarily by verbal repetitive thinking. Hence 

present interpretation of results is a good explanation, but needs to be addressed more 

directly by further experimental research. 

With these limitations in mind, it is clear that the presently proposed model 

(Figure 8.1) is not definitely supported yet. This means that the fourth deliberation-

related phase, as proposed here, could not be particularly distinct from an evaluation 

phase. Regarding behavioural effects, the RT-accuracy trade-off could be explained as a 

general cumulative effect in responses slow down (Robinson et al., 2013) rather than as 

a consequence of over-engagement with threatening speech. Even so, the effects on 

reaction times shown in the present experiments indicate particularly big delays of 

hundreds of milliseconds as a function of anxiety, which may indicate that whatever 

causes this effect affects anxious people strongly. Although present results do not 

provide direct evidence for a verbal repetitive thinking mechanism causing this 

response slow-down, this mechanism may be a reasonable explanation. This implies 

that the present model is testable and falsifiable, which could be done via the future 

research directions mentioned in the previous two paragraphs. 

Even so, the proposed fourth deliberation phase might be an extended evaluation 

phase instead of a particularly distinct processing stage, where ERPs such as LPC simply 

reveal extended evaluation phases (Kotz and Paulmann, 2011). However, the present 

LCP pattern seems to be strongly associated with anxiety, where preceding ERPs are 
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very unclear or have very small amplitudes. This may be an artefactual effect in present 

data, due to misalignment between lexical items in Semantic sentences and emotional 

prosody in Prosody items; or due to another unidentified problem. This implies that 

replications and re-analyses are important for testing the feasibility of a fourth phase in 

emotional language processing. In addition, experiments testing possible differentiated 

effects of anxiety on semantics and prosody processing could include the effects of 

anxiolytics on clinical or subclinical populations, such as anti-anxiety drugs (e.g. 

McNaughton et al., 2013), or the effects of angiogenesis, such as threat of electrical shock 

(e.g. Robinson et al., 2013). These could also involve the use of more controlled complex 

stimuli with more precise prosody-semantic alignment, accompanied by clearer 

predictions of ERPs and/or other measures (e.g. Paulmann et al., 2009).  If the present 

model does not hold to theses tests, alternative models can be implemented. For 

instance, models where the effects of language on anxiety appear and are sustained on 

the long term (e.g. rumination induced by sentential context), or models explaining 

differentiated effects of fear and anxiety on speech processing.  

To conclude, this thesis proposes an operative model of threatening speech 

processing in trait anxiety. Three behavioural and one EEG experiments, together with 

two exploratory analyses, brought evidence for strong effects of trait anxiety on the 

processing of semi-naturalistic spoken threatening sentences, or at least on reactions to 

speech detection. The clear prosodic and semantic characteristics of these stimuli, as 

evidenced by acoustic measures, lexical norms, and sentences’ ratings, provide stimuli 

with well-defined verbal aggression. This type of threat (potential threat) induces 

anxious responses characterised by relatively good accuracy but slow reaction times. In 

neurophysiological terms, event-related potentials (a late positive complex) strongly 

increase their amplitude as a function of anxiety. This possibly reveals an excitatory 

neural response that is sustained until behavioural responses are prepared, possibly 

indicating increased deliberation (over-engagement with threat) while behaviour is 

inhibited. From this, a model of transient brooding is proposed, where speech and 

language play a major role. Several hypotheses arise from this model, opening a wide 

path for future research on the relationship between anxiety and language. 
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