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Abstract
New electronic devices fabricated from organic molecules have been greatly improved over

the past two decades. Yet, understanding the electronic transport mechanism of free carriers

and excitons (bound electron-hole pairs) in organic semiconductors (OSs) is still a pertinent

challenge. The soft molecular nature of these materials gives rise to an intricate interplay

between electronic and nuclear motion as well as unique solid-state physical properties.

Standard (analytic) treatments describing electronic transport often rely on one of two ex-

tremes: a travelling wave propagating through the material or a particle hopping from one

molecular unit to the next. These are often unsuitable to fully describe the complex dynam-

ics, which falls in between these regimes. In this regard, non-adiabatic molecular dynamics

simulations permit a direct view into the transport mechanism, thus providing new impor-

tant insights.

In this thesis, I have further developed and improved in terms of efficiency and accu-

racy a fully atomistic non-adiabatic molecular dynamics algorithm, called fragment orbital-

based surface hopping (FOB-SH). This allows the propagation of the coupled electron-

nuclear motion in large nano-scale systems. After validating the accuracy of this method-

ology and discussing important physical requirements (i.e. energy conservation, detailed

balance and internal consistency), I will present the application of FOB-SH to the calcu-

lation of room temperature charge mobility of a series of molecular organic crystals. I

will discuss the agreement with experimental mobility values and the role of the disorder,

induced by thermal fluctuations, on the delocalization of the states and the subsequent for-

mation of a polaronic charge state. This polaronic charge propagates through the crystal by

diffusive jumps over several lattice spacings at a time during which expands to more than

twice its size. I will show that FOB-SH can recover the crossover from hopping to band-

like transport depending on the strength of the electronic coupling and the temperature, thus

successfully bridging the gap between these two extreme transport regimes. Finally, I will

discuss a further extension of FOB-SH to the treatment of exciton transport in OSs. This

opens up new exciting avenues for the application of FOB-SH to the study of electronic

processes occurring in organic photovoltaic cells.
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Impact Statement
Organic semiconductors (OSs) are emerging as a viable semiconductor technology for dis-

plays, electronic devices, renewable energies and many more profitable industries. The

work presented in this thesis tackles important and long-debated topics in this field that

may help optimizing and improving OSs for application relevant devices.

In particular, this work is concerned about important experimental observables such

as charge mobility and exciton diffusion length. These fundamental transport properties

of the material should be further pushed and increased to obtain more efficient OSs with a

greater impact on the market and large-scale applications. So far this aim has been pursued

mainly by means of experimental trial and error approaches. Here, using advanced com-

puter simulations, new design rules and principles to achieve this goal will be presented and

discussed.

This work also provides new insights into the underlying transport mechanisms in OS

materials by directly solving the time dependent electronic Schrödinger equation coupled

to nuclear motion in experimentally relevant nano-scale systems. The approach presented

in this thesis helps, for example, to reconcile the evidence from various experimental tech-

niques of a coexistence of localized and delocalized charge carriers in OSs. The apparent

contradiction between a band-like temperature dependence of the mobility (usually charac-

teristic of delocalized band states) and the presence of localized carriers is rationalized here

in terms of the relative strength of important parameters, such as electronic couplings, local

electron-phonon coupling and their thermal fluctuations.

Finally, this work lays down a general framework that can be extended beyond elec-

tronic transport processes to include, for example, electron-hole separation and possible

charge recombination processes taking place at the donor-acceptor heterojunction interface

of organic solar panels. Renewable energies like the latter are becoming very important in

our modern society and they account nowadays for a third of the global power capacity.

Scientific advance in this field is therefore paramount.
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Chapter 1

Introduction

1.1 Organic semiconductors

Organic energy materials (carbon-based molecules) capable of conducting electrical current

have nowadays many applications for solar power conversion, energy generation, electron-

ics and displays. The development of electronic devices fabricated from organic molecules

constitutes a vibrant and active field of research. These conducting materials are generally

called organic semiconductors (OSs) and the name organic underlines the difference with

respect to more conventional semiconductors based on inorganic materials such as silicon,

germanium and gallium arsenide. OSs can be roughly classified into two main categories:

relatively small single molecules (e.g. molecular crystals of anthracene) and polymeric

semiconductors, very long molecules made of covalently bonded repeat units (e.g. hetero-

cyclic polymers). Both these classes of OSs are commonly characterized by π-conjugated

orbitals delocalized over the individual aromatic units. It is this electronic delocalization

what makes organic molecules capable of conducting electrical current [1]. In addition, the

extended π-conjugation places the energy difference between the highest occupied and the

lowest unoccupied molecular orbital (HOMO-LUMO gap) in the visible range and gives

conjugated molecules photoactive properties such as the ability to absorb or emit light.

These electronic characteristics along with the low synthesis and device fabrication cost,

chemical tunability via multiple functionalization routes, and their compatibility with other

soft materials, have contributed to the wide spread use of OSs for electronics and opto-

electronics devices [2, 3]. For example organic materials have nowadays been employed to

make organic field effect transistors (OFETs) [4], organic photovoltaics (OPVs) [5, 6], and

organic light emitting diodes (OLEDs) [7] as represented in Figure 1.1.

OFETs are one of the most common technologies used to induce and measure charge

transport in OSs. In such devices, organic molecules are used as semiconducting substrate to

sustain migration of free carriers (holes or electrons). Since the first publication on OFETs

dating back to 1986 [8], device architecture optimization and the discovery of better semi-

conducting molecules, largely lead by experimentalists via trial and error approaches, have

enabled several breakthroughs in term of OFETs conductivity [3, 4, 9]. These days, they
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Chapter 1. Introduction

Figure 1.1: Illustration of the three main applications of organic semiconductors: organic field effect
transistors (OFETs), organic photovoltaics (OPVs), organic light emitting diodes (OLEDs).

play an important role in organic electronics, e.g., as inverters and integrated circuits for

logic operations. Despite these achievements, the rational design of OSs with high charge

carrier mobility to permit a lower power consumption and a faster operation of organic

circuits remains a central challenge [4].

The charge carrier mobility, µ (cm2 V−1 s−1), which is related to the transport of free

hole or electron carriers, is a fundamental metric for the performance of the OS material

(and it will be a central quantity considered in this thesis). To contextualize the mobility of

OSs in relation to more common inorganic semiconductors, to date the highest reproducible

values for hole mobility of a well-known crystalline organic semiconductor, i.e. rubrene,

lays in the range of 15-20 cm2 V−1 s−1 at room temperature and, the same quantity, is usu-

ally an order of magnitude smaller for semiconducting polymers [2]. Despite the mobility

of OSs is higher than that of thin films of amorphous silicon (around 1 cm2 V−1 s−1), a fact

that makes OSs technologically interesting, it is still few orders of magnitude smaller than

that of top inorganic semiconductors (e.g. monocrystalline silicon, and gallium arsenide

with mobilities of about 1,000 and 8,000 cm2 V−1 s−1, respectively). One reason for the

modest mobility of OSs is that design approaches are still hampered by our incomplete fun-

damental understanding of the elusive charge dynamics and transport mechanism in these

materials.
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There is still a considerable debate both experimentally [2, 10, 11] and theoreti-

cally [12–16] about the true nature of the charge carriers in OSs. The propagating charge

seems to be neither a wave, like in most inorganic semiconductors, nor a particle, as in

strongly disordered systems (e.g. solution-processed polymers), but rather a mixture of the

two [17, 18]. Examples of this intriguing dichotomy between localized and delocalized

charge carriers are the evidence from electron spin resonance (ESR) [19, 20] and optical

charge modulation spectroscopy (CMS) [21–23] measurements that point to a finite exten-

sion for the carrier wavefunction, typically delocalized over a few molecular units in differ-

ent OSs depending on the temperature and the degree of thermal disorder. As I will point

out in the following, this intermediate regime poses a challenge to most of the traditional

transport pictures and existing theories [12, 15] making the charge transport mechanism not

yet fully understood. Addressing some of the underlying features of the charge transport

mechanism in OSs will constitute one of the major results of this thesis (see Chapter 4 and

Chapter 5).

Another ground-breaking innovation enabled by organic semiconductors, are organic

photovoltaic (OPV) cells. They have a much lower cost than conventional silicon solar

panels and a wider range of potential applications (due to their semi-transparency and flexi-

bility) [24, 25]. After light harvesting and absorption processes, the three fundamental steps

enabling a typical donor-acceptor solar cell to convert light into electricity are: the diffu-

sion of bound-electron hole pairs (excitons diffusion) towards the donor-acceptor interface

(heterojunction), the dissociation of excitons into free electrons in the acceptor material

and a free holes in the donor material and finally their transport towards the electrodes

generating current. Although this thesis will not be concerned with the exciton separation

process, it will computationally explore the transport mechanism of free charges [1, 10] and

excitons [26, 27] in OSs at the nano-scale level. One quantity of particular importance in

photovoltaic materials is the exciton diffusion length (see Chapter 6). This is defined as

the distance travelled by excitons before recombining to the ground state. A long diffusion

length is a prerequisite for efficient organic solar cell, where excitons should travel towards

the donor-acceptor interface in order to initiate the separation process.

The soft molecular composition of OSs due to the weak van der Waals intermolecular

interactions has allowed their use as flexible OLED displays and other hugely profitable ap-

plications currently being launched on the market by several companies. Nevertheless, this
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feature is also one of the major performance-limiting factors for both their charge transport

and optoelectronic properties [2, 12]. A detailed understanding of the interplay between

strong thermal nuclear motion and electronic transport is also elusive, as we will see in the

following. Theory and computation are, therefore, expected to play a prominent role in

providing design rules and physical insights that might help experimentalists to push charge

mobilities and exciton diffusion lengths further which are paramount requisites for efficient

organic electronics and photovoltaics materials.

1.2 Electronic transport and current challenges

A particularly important challenge in understanding electronic transport processes from a

computational perspective is the fact that relevant transport parameters are on very similar

energy scales, typically around 10-600 meV (in efficient OSs). This is due to the dynami-

cal disorder caused by the molecular nature of the OSs and results in the inapplicability of

perturbative approaches based on energy scale separation [2, 12, 15, 16, 28–30]. The most

common parameters entering the Hamiltonian of the system are: the electronic couplings,

V (normally about 10-200 meV), i.e. the interactions between the relevant electronic states

localized on different molecular sites; and the electron-phonon couplings, i.e. the interac-

tions of the charge carrier (or exciton) with nuclear degrees of freedom. The local part of

the electron-phonon coupling is also called reorganization energy, λ , and it is usually about

100-600 meV, while the non-local electron-phonon coupling is related to the dynamical dis-

order of the system modulated by its fluctuations and it is about 10-100 meV [31]. Notably

the aforementioned quantities are also in the same order of magnitude of the thermal energy

(kBT ≈ 25 meV at room temperature), meaning that thermal motion plays a non-negligible

role in the dynamics.

Importantly, the relative magnitudes of electronic coupling V and reorganization en-

ergy, λ , can be used to distinguish between the two limiting transport regimes of both

charge and exciton transport (though the nomenclature and theories developed to describe

these two processes are somewhat different) [1, 27]. I refer to Figure 1.2 for a visual illus-

tration of the different regimes. On the one hand, when V << λ , the hopping or incoherent

regime is applicable, namely the local electron-phonon coupling is strong enough for the

wavefunction to be localized on one molecule at a time. Notably, in this regime golden-rule

rates theories are well defined [16]. On the other hand, when V >> λ , the wavefunction

is completely delocalized over the system and its eigenstates completely delocalized. In
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Figure 1.2: Adiabatic (coloured) and diabatic (black) free energy surfaces for electron transfer. The
adiabatic surfaces, A0,1(∆E) = Ak(∆E)+Al(∆E)

2 ± 1
2

√
∆E2 +4V 2, are plotted for three different values

of the electronic coupling V for constant reorganization free energy λ of 250 meV. ∆E is the dia-
batic energy gap (or site energy difference) working as reaction coordinate for the electron transfer
reaction. The diabatic free energy surface are written as two parabolas: Ak(l)(∆E) = 1

4λ
(∆E±λ )2

valid for self-exchange reactions [32].

this regime Redfield theory [33] and band theory [15] have been respectively applied in the

context of exciton and charge transport in various materials.

Another important factor to account for when studying electronic transport processes

in nano-scale systems is the dimensionality of the problem. In fact, individual organic

molecules forming the active layers of real OSs are often already quite large, and con-

tain tens of atoms, if not more. Therefore any method such as density functional theory

(DFT) which attempts to simulate a realistically large systems (at least a few thousand

atoms, and possibly more to properly converge transport properties) will correspondingly

be extremely slow [34]. As I will explain below, this observation along with the fact that

standard theories are not always justified and applicable when it comes to technologically

relevant high-mobility OSs, has triggered the need of developing new theories, such as the

transient localization theory (see Section 1.3.3), and also alternative more powerful and

efficient numerical propagation schemes that give insight into the actual electron-nuclear

dynamics (see Section 1.4) [35–43], that may be then used to formulate more appropriate

theories. The development/improvement of such a scheme will be a central topic of this

work (see Chapter 2).

1.3 Standard and new theories for charge transport

I will summarize here some of the most important aspects of the so-called standard theories

(i.e. hopping and band theories) and briefly discuss their regimes of validity as well as
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the emergence of an alternative transport scenario for OSs. For the sake of brevity I will

keep the discussion focussed only on the charge transport mechanism, which is an essential

theme of this thesis. Nevertheless, I note that similar arguments would be applicable to the

theories describing excitons and excitation energy transfer processes [1, 27].

1.3.1 Incoherent hopping mechanisms

One of the most common and still widely used approaches for the evaluation of the mobil-

ity is based on rates and related perturbative theories (the most well-known is the Marcus

theory [44]). Some of the reasons for their fame are their simplicity and the possibility

of a straightforward combination with kinetic Monte-Carlo schemes or Master equations

approaches for the efficient solution of coupled kinetic equations and multiscale mod-

elling [45, 46]. The common assumption of rate theories is the existence of a finite acti-

vation barrier ∆A‡ for the electron transfer from an initial to a final states (∆A‡ = λ/4 for

self-exchange reactions), and that the charge must relax in the initial configuration before

the transfer from one potential well to the other takes place. The violation of these condition

makes the concept of rate constant undefined and inapplicable.

The common Marcus rate [44] reads:

kna =
2π

h̄
|V |2 1√

4πλkBT
exp(−∆A‡

kBT
) (1.1)

where kB is the Boltzmann constant and T the temperature. This equation assumes also that

V << λ (i.e. so-called non-adiabatic electron transfer (ET) regime) [32]. Other equivalent

expressions exist for the intermediate and adiabatic ET, in which the latter assumption is

relaxed and V becomes as large as≈ λ/2 [16, 32] (see Figure 1.2). A generalized semiclas-

sical rate expression will be used in this work and it is presented in Appendix B.1.

I note at this point that using the harmonic approximation, if vibrations were treated

quantum-mechanically, the zero-point energy would correspond to adding 1
2 h̄ω (with ω a

characteristic high-frequency mode) to the energy of the ground state. This further reduces

the distance between the ground state minimum and the energy barrier. The zero point

energy is typically in the order of 60− 90 meV for common organic crystals. Thus, it can

be sometime larger than the energy barrier between the two energy minima (see Figure 1.1),

making hopping rate undefined.

Notably, Troisi in Ref [47], only basing his analysis on experimental quantities and
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elementary arguments, has shown that an incoherent hopping mechanisms is strictly valid

and justified only when the room temperature mobility falls below 0.1 cm2 V−1 s−1, thus

ruling out Marcus and similar theories for describing high-mobility semiconductors.

1.3.2 Band transport and extended polaronic theories

In the band regime, V >> λ , the charge carrier delocalizes in a perfect molecular lattice

to form a propagating Bloch wave with a well defined momentum k and energy dispersion

E(k) [12, 16]. This wave may be scattered by lattice vibrations or defects. In this picture the

carriers diffuse quickly through the crystal and molecules do not have time to relax to ac-

commodate the travelling charge. In OS solids where non-covalent interactions are present

and thermal molecular motion is strong, e.g. at room temperature, there is a substantial

electron scattering [12, 15]. Consequently, band transport theory breaks down due to the

progressive loss of momentum conservation and because the mean-free-path of the travel-

ling wave becomes smaller than intermolecular spacing a, i.e., below the Mott-Ioffe-Regel

(MIR) limit.

Considering the semiclassical Drude expression as a starting point (µ = eτs/m∗, where

τs is the time interval between two successive scattering events and m∗ the effective mass

of the carrier), Fratini et al. [15] evaluated the minimum mobility value at the MIR limit for

a 1D OS lattice, under which band transport becomes undefined. In particular, by writing

the effective mass m∗ = h̄2/2Va2 and imposing the equipartition principle to express the

diffusion coefficient in terms of τs and m∗, Fratini et al. [15] wrote:

µMIR ≈
ea2

h̄

√
2V
kBT

. (1.2)

This means that taking V ≈ 150 meV (i.e. within the range previously defined) at T = 300K

and a lattice spacing of about 7 Å (as, e.g., in rubrene), gives a µMIR ≈ 27 cm2 V−1 s−1.

This value is already higher than the mobility of rubrene (about 15-20 cm2 V−1 s−1), which

is, to date, one of the highest mobility OS materials. At room temperature, therefore, band

theory is unattainable for most OSs (though it may be still valid at lower temperature).

There are other successful approaches that reconcile the effects of electronic and nu-

clear motion in polaronic band theories [48]. In particular, these theories introduce the

concept of “polarons”, i.e. charge carriers and associated (phonon) deformations. Since the

polaron is delocalized (and the system has translational symmetry), one can describe the
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polaron states by a band and its propagation in a similar way as the propagation of a single

carrier in a band. It is also possible to include both local and non-local electron-phonon

couplings at the level of model Hamiltonians (Holstein-Peierl Hamiltonians) [13, 48–50].

These theories predict that, in response to an increase in electron-phonon couplings and

scattering events, the charge carrier becomes increasingly more localized (higher effective

m∗) as the temperature increases, leading to narrower bands at high temperature. The con-

sequence of this effect is that the mobility decreases with increasing temperature following

a power-law, µ ∝ T−n normally with 0.5 < n < 3 (in agreement with experimental ob-

servations from time-of-flight (TOF) [10] and angle-resolved photoemission spectroscopy

(ARPES) [51]). Thus, with polaronic theories, a band-like behaviour is recovered at low

temperatures, while at high temperatures a more hopping-like behaviour is observed (be-

cause of the stronger lattice deformation). Already at room temperature though, polaronic

theories suffer the same shortcomings as band theory, i.e., the mean-free-path becomes

shorter than the lattice spacing and the mobility falls below the MIR limit [12].

1.3.3 An alternative scenario for organic semiconductors

The underlying assumption of both band and polaronic theories on the one hand, and

hopping-like theories on the other, is that the states of the OS system “seen” by the travelling

charge carrier are either delocalized states over the full OS solid (as in perfect crystal), or

completely localized on a single site (as assumed by Marcus theory). However, as shown by

Fratini et al. [15, 52] and anticipating what is found in Chapter 4 of this thesis, in OSs there

is rather a coexistence between extended states and more localized states in different regions

of the thermally accessible excitation spectrum. Delocalized states characterize the bulk of

the spectrum, while localized states, which are formed as a results of thermal motion, are

found in the tails. Thus, the charge carrier will be subject to a transient localization and de-

localization scenario depending on whether it can thermally access localized or delocalized

states. This view, that is in agreement with several experimental observations [19, 21–

23, 53], has led Fratini and co-workers to develop a more “appropriate” theory to describe

the charge transport in OSs, that is called transient localization theory (TLT) [15, 54–56].

This theory is based on the observation that OSs are disordered systems where the

carrier can be transiently localized (i.e. it can assume a finite localization length) to some

extent depending on its energy in the excitation spectrum and the degree of disorder in-

duced by thermal vibrations [52]. On a longer timescale than a characteristic timescale τ ,
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the transiently localized charge carrier undergoes diffusive motion driven by the ripples of

the molecular lattice. The model is thus able to reconcile the experimental observation of

concomitant delocalized and localized transport signatures. The timescale τ is taken as the

inverse of a characteristic vibrational mode frequency ω (1/τ) characterizing the timescale

of the electronic coupling fluctuations (non-local electron-phonon couplings). Fratini et

al. [15, 54–56] were able to formalize this picture by using the relaxation time approxima-

tion (RTA) and a suitably chosen disordered reference system from which the charge starts

spreading. The transient localization theory assumes that the charge will diffuse, with dif-

fusion coefficient DRTA = L2
τ/2τ . Where the so-called transient localization length (L2

τ ) is

the wavefunction spreading at time τ reached before the thermal disorder (in this case given

by coupling fluctuations) sets back in.

The main result of TLT is that the mobility, obtained from the Einstein diffusion rela-

tion (µTLT = eDRTA/kBT ), is related to the transient localization length of the carrier wave-

function, L2
τ , by

µTLT =
eL2

τ

2kBT τ
(1.3)

where e is the unit charge, kB the Boltzmann constant and T the temperature. The transient

localization length, L2
τ , can be numerically found as described in the Appendix B.2. The

theory predicts transient localization length and the mobility to decrease with increasing

temperature due to stronger localization, result of increased thermal molecular disorder. It

was successfully used to show that charge transport in the high mobility planes of typical

single-crystalline OSs is enhanced if electronic couplings between the molecules within the

plane are isotropic and are of specific sign combinations [15, 31, 54, 56, 57]. TLT has

also recently been connected to the standard band transport description in the case of small

disorder [58].

Yet, I note that TLT does not give information on how the charge carrier moves across

the material in real time due to the assumptions of this theory with regards to the pre-

conceived dynamics. Moreover, it is currently unclear how this theory is extended to the

small polaron hopping regime where the mobility is no longer proportional to localization

length [2]. Hence, although it is extremely useful to have analytic theories such as TLT, it

is also important to develop numerical schemes that can track the actual dynamics of the

wavefunction and seamlessly bridge the gap between different mechanistic regimes without

restrictive model assumptions. With this purpose in mind, I will describe in the the next
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section a set of mixed-quantum classical methods that have been developed and used to

propagate coupled electron-nuclear motion in time.

1.4 Mixed quantum-classical methods

A complete understanding of electronic processes occurring in OSs and analytic models

fully capable of capturing the physics of these processes is still missing. Arguably a di-

rect propagation of the electron-nuclear dynamics is one of the most appealing approaches

to study charge and exciton transport in OSs as it is, in principle, free of model assump-

tions and permits an “ab initio” view into transport mechanisms. As already mentioned

though, the problem is that even using the most powerful supercomputers, it is not yet com-

putationally feasible to perform full atomistic quantum dynamics of electronic processes

occurring in systems formed by more than a dozen atoms, especially when these processes

occur on a picoseconds or even longer time-scale. Molecular dynamics (MD) and the use of

classical force fields (FF) have often been the methods of choice to perform large scale sim-

ulations [32, 59]. However, classical MD has two important limitations to be considered.

The first is the assumption that the atomic motion can be described by classical mechan-

ics (Newtonian equations of motion) and the second, which is possibly the most stringent

in many cases, is that this motion takes place on a single potential energy surface (PES).

The latter is also called Born-Oppenheimer (or adiabatic) approximation. There are a huge

number of processes especially related to energy materials, including the ones that will be

discussed in this thesis such as charge and energy transport, for which one or both these

approximations are not valid [41, 60].

Mixed quantum-classical approaches (MQCD) have been developed to deal with these

problems [35–41]. As the name suggests, the strategy is to select some degrees of freedom

of the system to be treated quantum mechanically while keeping others at a classical level

of description. Within such methods, normally all the nuclei in the system are treated clas-

sically and the electronic degrees of freedom are the ones dealt with quantum-mechanically

by solving the time dependent Schrödinger equation (except when the physics of the prob-

lem requires to treat quantum mechanically some of the fast moving ions as well, like for

example in proton transfer reactions [61]). In MQCD methods, the electron density of the

system and therefore the electronic potential depends on the the position of the nuclei at

a given time along the dynamics. Importantly, the nuclear motion, in turn, can be influ-

enced by the potential change induced by the electronic motion (via quantum transitions
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between PESs). Thus, the majority of MQCD methods can couple electron and nuclear

motions treating both directions of the feedback, i.e. the classical subsystem influences the

quantum subsystem, and also vice versa (see Figure 1.3). In this way MQCD goes beyond

the standard Born-Oppenheimer approximation, that does not include the second direc-

tion of the response from the electronic degrees of freedom onto the nuclei. Nevertheless,

the classical treatment of some or all nuclei of the systems in MQCD approaches remains

an approximation compared to full quantum dynamics treatment (e.g. multiconfigurational

time-dependent Hartree (MCTDH) [62] or the full ab-initio multiple spawning (FMS) [63]).

Nevertheless, this approximation not only is necessary to study condensed phase systems

but, as it will be clearer in the following, it is also very well justified by the physics of the

problem in many cases [40, 41]. For example, when dealing with van der Waals bonded

organic semiconductors the intermolecular nuclear vibrations are usually slow and low fre-

quency, thus justifying their classical treatment (at least at room temperature).

In general, MQCD approaches are divided in two categories: mean-field (MF) dynam-

ics (such as the Ehrenfest method) and surface hopping (SH) methods [35–37]. There are

alternative methods which do not fit into neither of these two, such as the exact factoriza-

tion approach published by Gross et al. [64], used to developed methods like the coupled-

trajectory mixed quantum/classical (CT-MQC) approach [65, 66], or the quantum-classical

Liouville method [67, 68] and Bohmian dynamics [69], just to mention a few. From the

practical point of view, MQCD methods have received a huge amount of attention and

have been applied in many different fields (mainly because of their simplicity and accu-

racy) [39, 70, 71]. Few, but significant, applications of both MF and surface hopping ap-

proaches regarding the investigation of charge and energy transport mechanisms (the main

topics of this thesis) in molecular materials can be found [30, 72–77].

1.4.1 Mean-field Ehrenfest dynamics

In brief, when it comes to the feedback from the electronic (quantum) subsystem to the

nuclei, the Ehrenfest approach evolves the nuclei on a mean-field potential energy surface

which corresponds to a weighted average of the energy surfaces associated with each adia-

batic electronic state of the system (see Figure 1.3). In practice, the weightings are given by

the instantaneous quantum populations of the electronic states. There are important well-

known shortcomings in this method, such as the lack of detailed balance [78, 79] (namely,

the correct thermal Boltzmann population of the adiabatic states) and the failure in capturing
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Figure 1.3: Illustration of two MQCD approaches: Ehrenfest method and fewest switches sur-
face hopping (FSSH). In Ehrenfest the wavepacket moves on an average potential. In FSSH the
wavepacket is represented by a swarm of classical trajectories that can switch potential energy sur-
faces.

the physical branching associated with diverging wave-packets on difference surfaces. As

discussed below, this makes Ehrenfest method less accurate compared to surface hopping in

many situations [35, 36, 80]. When considering charge transport in organic semiconductors,

Wang and Beljonne, for example, have highlighted the superiority of surface hopping to ac-

count for charge localization and polaronic effects [72, 73]. In this thesis, I shall not discuss

Ehrenfest method any further and I will focus the attention on the surface hopping approach.

The latter will be the method of choice on which a novel fully atomistic and very efficient

mixed quantum-classical method called fragment orbital-based surface hopping (FOB-SH)

is based (see Chapter 2).

1.4.2 Fewest switches surface hopping

The (fewest switches) surface hopping (FSSH) algorithm was developed by John C. Tully

[81]. With this algorithm, rather than constructing an average potential energy surface like

in the Ehrenfest approach, the wavefunction of the system is constructed by considering

all its possible quantum states. The nuclei evolve according to Newton’s law on single

PES and non-adiabatic effects, namely the feedback from the electrons on to the nuclei,

are included by allowing instantaneous hops from one adiabatic surface to another (see

Figure 1.3). These hops occur stochastically. In the common fewest switches version of

surface hopping [81], the probability to hop is proportional to the variation of the rela-

tive populations of the electronic states obtained solving the time dependent Schrödinger
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equation (TDSE) (see Section 2.1.5). Along a single surface hopping trajectory, the nuclei

switch between potential energy surfaces multiple times in proximity of regions with high

non-adiabatic coupling (i.e. the coupling between different electronic states of the system).

I refer to Figure 1.3 for a graphical representation of this method.

The idea of a sudden state switch of a single trajectory can appear a severe approxi-

mation of the smooth quantum mechanical transition between two electronic PESs, but the

Tully’s algorithm relies on a swarm of trajectories to correctly describe the dynamics of

the wavepacket. In this way, even if a single trajectory makes a sudden switch, the over-

all transition is represented by a gradual flow of trajectories changing electronic state and

possibly branching in proximity of avoided state crossing regions, effectively reproducing

the dynamics of a quantum wavepacket. Importantly, once a surface hop is assigned, en-

ergy conservation needs to be taken into account. If the classical kinetic energy is enough

to afford the energy cost of the quantum transition, the nuclei switch simultaneously to

the new PES. The nuclear positions are kept unchanged and the nuclear velocities are ad-

justed to conserve total energy (see Section 2.1.5 and Section 2.2.1). On the other hand,

if the system does not have enough energy to “hop” to the new PES (i.e. rejected hop or

frustrated hop) the dynamics continues to the current active PES. Practically, if a single

trajectory can conserve energy, the entire swarm will fulfil this requirement. It is worth

noting that, the energy conservation procedure and the presence of frustrated hops make

surface hopping capable of approximately reproducing the Boltzmann distribution of the

quantum states (i.e. the detailed balance), which is important for an accurate description

of equilibrium and thermodynamic properties [79, 82] as well as for transport properties

[83–86] (e.g., charge carrier mobility and wavefunction delocalization) as it will become

more clear in Section 2.2 of this thesis. In contrast to this, as mentioned before, the mean

field approximation lacks these important features [79, 80].

Last but not least, provided that the so-called decoherence correction (DC) is included,

surface hopping probabilities obey approximately internal consistency [87], which means

that the portion of trajectories on a given state at any time equals the corresponding quantum

population obtained by the TDSE (see Section 2.2.2).

1.5 Scope and structure of this thesis

As seen in the Introduction, although there are several lines of evidence that weak van der

Waals interactions between the molecules of OSs give rise to slow molecular motions that
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impact charge carrier mobility and exciton diffusion [2, 12, 15, 88], it is currently debated

and poorly understood how this (dynamical) disorder and thermal vibrations actually affect

the underlying dynamics of free carriers and excitons. It is also unclear how to best explain

the intermediate transport scenario that was seen as in “between” the well-established band

and hopping limits and interpreted as a coexistence regime of localized and delocalized

carriers by experiments [19, 21–23, 53].

The goal of this thesis is to shed light on the interplay between nuclear and electronic

motion in OSs and to provide a better understanding about the influence of this complex

dynamics on charge and exciton transport mechanisms. The aim is to go beyond common

limiting approximations of analytic theories and also reduced dimensionality of first princi-

ple quantum schemes, in terms of model coarse-graining and number of degrees of freedom.

This has been done by means of further developing, improving and applying a novel fully

atomistic non-adiabatic molecular dynamics approach, called fragment orbital-based sur-

face hopping (FOB-SH) [42], which allows to propagate the electron-nuclear motion in real

time for large nano-scale systems.

In Chapter 2, I report the main working equations and give an overview of the FOB-

SH method (with particular focus on the charge transport process) and I will discuss its

advantages compared to other methods. I will present the implementation of important al-

gorithms already available in the literature (e.g. the decoherence correction), as well as new

ones conceived by myself, specifically tailored to tackle issues arising from the simulation

of large systems with a high density of states (e.g. the trivial crossings problem and the

spurious long-range wavefunction transfer). Important properties, that any surface hopping

scheme should fulfil for a reliable and accurate dynamics, such as energy conservation, de-

tailed balance and internal consistency as well as fundamental quantities such as mobility

and wavefunction delocalization will be presented and discussed.

In Chapter 3, I will present the validation of the improved FOB-SH approach and

discuss its accuracy when considering both thermodynamic equilibrium properties as well

as transport properties for two different class of systems (i.e., atomistic OS models and

real OS systems). After testing various parameters and algorithmic improvements for a

broad range of transport regimes (going from localized to delocalized transport), I will

devise in this Chapter the best FOB-SH set-up for accurate dynamics with regards to energy

conservation, detailed balance and internal consistency. I will also discuss the correct way to
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evaluate important electronic and transport properties such as electronic populations, mean

squared displacement of the wavefunction and mobility from surface hopping dynamics.

Chapter 4 will be devoted to the study of charge carrier transport at room temperature

in experimentally well-characterized organic semiconducting crystals. I will benchmark

FOB-SH carrier mobilities against experiments and extract the full 2D mobility tensor for

systems with more than a thousand molecules. I will also compare the computed FOB-SH

mobilities with other theories, including the newly proposed transient localization theory.

This Chapter will give new important insights about unique and fascinating phenomena

intimately related to the molecular nature of OSs, such as the quantum localization and

delocalization steps that charge carriers undergo during their dynamics in OSs. Design

rules to further improve OS devices performance will be discussed as well.

In Chapter 5, I will tackle another long-debated topic in the charge transport realm,

namely the temperature dependence of the charge mobility. The different trends that mo-

bility exhibits with increasing or decreasing temperature are often taken as a signature to

distinguish between hopping and band-like transport. I will analyse the dichotomy between

these two regimes as a function of temperature and describe the crossover between the two

from the perspective of the non-perturbative FOB-SH approach. I will also show the com-

parison between the mobility temperature dependence of FOB-SH and experiments and

discuss some limitations of FOB-SH when simulating low temperature mobilities.

In Chapter 6, I will present an extension of the FOB-SH Hamiltonian and its implemen-

tation to treat Frenkel exciton diffusion in OSs. I will discuss and validate few approximate

(yet efficient) ways for computing excitonic couplings against reliable electronic structure

calculations. I will also present the comparison between calculated diffusion length with

other computational schemes as well as experimental estimates. This work will constitute

an additional step towards the development of an extended Hamiltonian to study exciton

separation and recombination processes occurring in organic photovoltaic cells.

Finally, I will conclude the work in Chapter 7. In light of the results obtained, I

will argue that FOB-SH shows promise for future investigations into charge transport and

other electronic processes occurring in organic semiconductors. I will also outline ongoing

projects and how I believe the method may be extended and used in future works to help

advancing the field of optoelectronics.
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Chapter 2

Non-adiabatic molecular dynamics in

atomistic nano-scale systems

Explicit coupled electron-nuclear propagation schemes are expected to play a prominent

role in describing of the complex interplay between nuclear and electron motion within

the dense manifold of electronic states characterizing nano-scale organic materials, with

important applications in molecular electronics, solar harvesting and power conversion. As

seen in the Introduction, fascinating quantum localization and delocalization phenomena

affect travelling particles and the processes of charge (electron and hole) transport, exciton

(bound electron-hole pair) transport and exciton separation are the key to rationally design

new materials and improve their properties.

To obtain insights into these processes at the atomic level, it is important to use method-

ologies that (i) can account for multiple electronic states and transitions between them, (ii)

can describe the coupling and the interplay between electronic and nuclear degrees of free-

dom (i.e. electron-phonon couplings) and (iii) can give a real-time dependent picture of the

dynamics. It is however very challenging to develop accurate methodologies that can meet

all these criteria and that allow large scale simulations at the same time. To this end, I have

improved and further developed a novel fully atomistic non-adiabatic molecular dynamics

approach, called fragment orbital-based surface hopping (FOB-SH) previously devised in

our group [42] and based on the original Tully’s fewest switches surface hopping (FSSH).

In this regard, the main FOB-SH equations previously implemented by Dr. Jacob Spencer

and Dr. Antoine Carof [42, 82] are presented in Section 2.1. I have subsequently refined

and made important improvements to this original algorithm as detailed in Section 2.2 and

made substantial advances in the efficiency of the code (see, e.g., Section 2.1.7) in order to

treat realistic systems [43, 84–86]. I also extended the FOB-SH formalism and code to treat

exciton diffusion, which will be the main theme of Chapter 6. I will argue that FOB-SH

is now a very good method to effectively meet objectives (i)-(iii). To keep the presentation

not too cumbersome with regard to technical details, I shall refer to our recent publications

[42, 43, 82–86, 89] for some more technical aspects and derivations.
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Chapter 2. Non-adiabatic molecular dynamics in atomistic nano-scale systems

2.1 Fragment orbital-based surface hopping (FOB-SH)
The FOB-SH code is tailored to propagate the wavefunction in condensed phase systems

without assuming any prior transport model, thus bridging the regime where standard ana-

lytic models, i.e. hopping or band transport theories, are less justified or invalid. The FOB-

SH methodology rests on a DFT parametrized tight-binding representation of the electronic

Hamiltonian (updated on-the-fly along the molecular dynamics) to naturally incorporate lo-

cal and non-local electron-phonon couplings and their fluctuations (see Section 2.1.2). This

Hamiltonian constitutes the main difference compared to other FSSH approaches present in

the literature [39, 41, 70, 71, 90]. The latter are usually based, on the one hand, on elec-

tronic structure methods performed at each step along the dynamics to retrieve energies and

forces (e.g. by time dependent density functional theory (TDDFT) or post-Hartree-Fock

methods) [39, 60, 90] and, on the other, on model Hamiltonians [30, 40, 73, 74, 81] that

give a coarse grained representation of the system (as opposed to FOB-SH where the full

atomistic representation of the system is used).

A cornerstone of the FOB-SH is an efficient computation of the electronic Hamilto-

nian and the forces acting on the atoms of the system, evaluated by using a combination

of parametrized force fields and approximate electronic interactions between the different

molecular sites (for the off-diagonal elements of the Hamiltonian) as discussed in Sec-

tion 2.1.2 (for charge transport) and Section 6.1.1 (for exciton transport). This allows to

simulate electronic transport in large and realistic nano-scale systems (up to few thousand

molecules), thereby providing unprecedented insights into the actual dynamics and the time

propagation of the wavefunction in these systems. A flowchart of the algorithm can be

found in Figure 2.1.

2.1.1 Electronic propagation in a site basis representation

The FOB-SH approach for charge (exciton) transport relies on the notion of an excess charge

carrier (exciton) moving in an effective, time-dependent potential due to the other electrons

and the nuclei. The complicated many-body or multi-determinantal electron dynamics can

be effectively described by a one-particle wavefunction for this excess charge (or a localized

exciton as we will see in Chapter 6). The interactions with the effective potential are then

included through parametrization of the electronic Hamiltonian.

Focussing for the moment on charge carrier transport, in organic π-conjugated molec-

ular crystals, hole transport occurs in the highest valence band state and electron transport
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2.1. Fragment orbital-based surface hopping (FOB-SH)

Figure 2.1: Scheme of the fragment orbital-based surface hopping (FOB-SH) algorithm. Differ-
ent colors represent improvements of the algorithm necessary to fulfil: trivial crossings detection,
detailed balance and energy conservation and internal consistency (see Section 2.2). The code is
implemented in an in-house version of CP2K program package [91]. Symbols are defined according
to equations in the text. RK: Runge-Kutta algorithm, EFH: Elimination of forbidden hops (for a
discussion on this algorithm I refer to Ref. [83]), AOM: Analytic overlap method for charge trans-
fer couplings (Section 2.1.4), TrESP: Transition electrostatic potential charges for exciton transfer
couplings (Section 6.2), SC-FSSH: self-consistent surface hopping, FSSH: fewest switches surface
hopping, NACV: non-adiabatic coupling vectors, SCTC: Spurious charge transfer correction, MSD:
mean squared displacement (Eq. 2.33), IPR: inverse participation ratio (Eq. 2.38).
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Chapter 2. Non-adiabatic molecular dynamics in atomistic nano-scale systems

in the lowest conduction band state. Since the interaction between molecules in organic

crystals is weak (typically in the order of 10−200 meV) as opposed to conventional inor-

ganic semiconductors, the electronic structure of typical OSs exhibits narrow bands across

the entire Brillouin zone and a minimal band dispersion. Hence, the highest valence band or

lowest conduction band states of these materials can approximated by a combination of the

highest occupied (HOMOs) or lowest unoccupied molecular orbitals (LUMOs) of the iso-

lated molecules, respectively, as observed in Ref. [12, 31, 56] as well. Therefore, a natural

way of constructing the charge carrier wavefunction Ψ(t) is to use a set of molecular orbitals

as suitable basis ({ϕm}). Considering one orbital per molecular site already provides a very

accurate description of the electronic band structure of the material [12, 31, 56]. Neverthe-

less, The accuracy of this tight-binding description will be further investigated in Chapter 4

for real OSs. I note that, more orbitals could be added in the case of (quasi-) degeneracy.

The extension of this picture to excitons will be discussed in Chapter 6.

Depending on whether the excess hole or excess electron transport is taken into con-

sideration, the charge carrier wavefunction Ψ(t) can be expanded in the localized basis set

formed by the HOMOs or LUMOs of each molecule of the system, respectively. Ψ(t) takes

the form:

Ψ(t) =
M

∑
m=1

u′m(t)ϕm(R(t)) (2.1)

where R is the 3N vector of nuclear positions and M is the number of fragment orbitals

mediating the charge transfer at a given time t. This non-orthogonal set of orbitals is di-

rectly available by a single calculation of an isolated molecule prior the simulation in a

parametrization step (see Section 2.1.4). As it will become clearer in Section 2.1.8, employ-

ing a charge localized state basis to represent the wavefunction and propagate the dynamics

has few other advantages as well (e.g. a greater stability and accuracy for the integration of

the time dependent Schrödinger equation). Since several transformations between different

bases will be required in the FOB-SH formalism, I summarize the notation I use for the

different representations in Table 2.1.

To facilitate the forthcoming propagation equations, Löwdin orthogonalization of the
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2.1. Fragment orbital-based surface hopping (FOB-SH)

Table 2.1: Notation used in the three different representations of the carrier wavefunction. NACE
stands for non- adiabatic coupling elements and NACV for non-adiabatic coupling vectors. Note, the
diabatic representation is not strictly diabatic in the sense that the NACE vanishes; hence, it should
in fact be considered as quasi-diabatic.

Basis Expansion Electronic
Represen. Indices functions coefficients Hamiltonian NACE NACV

Non-orthogonal
m,k, l ϕl u′l H ′kl ≡ [H′]kl d′kl ≡ [D′]kl d′I,kldiabatic

Orthogonal
k, l φl ul Hkl ≡ [H]kl dkl ≡ [D]kl dI,kldiabatic

Adiabatic i, j,a,n ψ j c j E j dad
i j dad

I,i j

basis set {ϕm} is applied to define the orthogonal localized basis set {φl},

φl =
M

∑
m=1

Tmlϕm (2.2)

where Tml =
[
S−1/2

]
ml , with S the overlap matrix of the fragment orbital basis set (S̄ml =

[S]ml = 〈ϕm|ϕl〉). The excess charge wavefunction is now:

Ψ(t) =
M

∑
l=1

ul(t)φl(R(t)). (2.3)

Inserting Eq. 2.3 into the time-dependent Schrödinger equation, one can write the electronic

equation of motion as,

ih̄u̇k(t) =
M

∑
l=1

ul(t)(Hkl(R(t))− ih̄dkl(R(t))) (2.4)

where Hkl ≡ [H]kl = 〈φk|H|φl〉, with H the electronic Hamiltonian and dkl ≡ [D]kl =〈
φk|dφl

dt

〉
are the non-adiabatic coupling elements (NACEs) of the localized orthogonal basis

set. As those NACEs are generally close to zero (see Section 2.1.7), I label the orthogonal

localized basis as diabatic basis (see Table 2.1). I will discuss in-depth the construction of

the Hamiltonian in Section 2.1.2 and the calculation of the dkl terms in Section 2.1.4.

From an algorithmic point of view, Hkl and dkl terms can be calculated at t and then at

t +∆t when the nuclear positions have been updated by the first half of the velocity-Verlet

algorithm (see Figure 2.1). The expansion coefficients of the charge carrier wavefunction

in the diabatic basis, uk, are propagated according to Eq. 2.4 from time t to t +∆t in N steps

of length δ t using the fourth-order Runge-Kutta algorithm. At each electronic integration
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time step m, the Hkl and dkl elements are linearly interpolated between t and t +∆t, Hkl(t +

mδ t) = Hkl(t)+[Hkl(t +∆t)−Hkl(t)](mδ t/∆t) for m = 1, ...,(∆t/δ t), and similarly for dkl .

2.1.2 Tight-binding Hamiltonian for charge transport

Considering the transport of charge carriers, as discussed in Section 2.1.1, the valence (or

conduction) band of OSs can be described by a tight-binding representation. The Hamilto-

nian matrix elements in Eq. 2.4 are given by,

H =
M

∑
k

εk|φk〉〈φk|+
M

∑
k

M

∑
l 6=k

Hkl|φk〉〈φl| (2.5)

where, φk =φk(R(t)) is the orthogonalized HOMO (LUMO) of molecule k for hole (elec-

tron) transport, R(t) are the time-dependent nuclear coordinates, εk =Hkk(R(t)) is the site

energy, that is, the potential energy of the state with the hole (excess electron) located at site

k and Hkl =Hkl(R(t)) is the electronic coupling between φk and φl . All Hamiltonian matrix

elements, i.e. site energies and couplings, depend on the nuclear coordinates which, in turn,

depend on time, R=R(t) as determined by the nuclear dynamics (i.e. the first direction of

the feedback from nuclear to electronic motion as discussed in Section 1.4). Note also that

an analogue expression for Hamiltonian will be given in Section 6.1.1 in the case of exciton

transport.

As mentioned before, to carry out simulations on large systems and long time scales, a

parametrized approach to determine the electronic Hamiltonian was designed in Ref. [42],

thus avoiding explicit expensive electronic structure calculations. The diagonal elements

Hkk = 〈φk|H|φk〉, that correspond to the energy of a charge localized on molecule k, are

calculated via a classical force field where the molecule k is charged and all the other

M−1 molecules are neutral. The off-diagonal elements Hkl = 〈φk|H|φl〉, that corresponds

to the electronic coupling matrix elements or transfer integrals, are calculated using a re-

cently developed analytic overlap method (AOM) [92]. I shall describe both the classical

force field parametrization for the diagonal elements and the AOM method in the Section

2.1.3 and 2.1.4, respectively. It is worth to note the analogy between the calculation of

the FOB-SH electronic Hamiltonian and the empirical valence bond approach of Warshel

and co-workers [93], where electronic Hamiltonian is also built from classical force fields

for the diagonal elements and different parametrization for the off-diagonal elements. As

mentioned before, this tight-binding Hamiltonian is a key feature of FOB-SH method that
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allows fast computation and I will validate its accuracy for several organic semiconducting

systems in Section 4.1.3.

2.1.3 Site energies and force field parametrization

In the case of charge transport (hole or electron) each molecule of the simulated systems

can exist in two charge states: neutral and charged. Throughout this thesis, the intra- and

inter-molecular interaction terms for the neutral state are taken from the Generalized Amber

Force Field (GAFF) [94] and the parametrization for the charge state of the investigated

systems will follow the present protocol, unless stated otherwise. For the charged state, the

equilibrium bond lengths of the molecule are displaced with respect to the neutral state so

that the reorganization energy λ obtained from the force field is equal to the value obtained

from DFT calculations,

λ = [EC(RN)+EN(RC)]− [EC(RC)+EN(RN)] (2.6)

where EC(N)(RN(C)) is the energy of the charged (neutral) molecule in the optimized neutral

(charged) state and EC(N)(RC(N)) is the energy of charged (neutral) molecule in the opti-

mized charged (neutral) minimum. The geometry of charged and neutral molecules are

optimized with the B3LYP functional and the 6-311g(d) basis set using the Gaussian pro-

gram [95]. Hybrid functionals are known to give good equilibrium structures and better

energies for bond stretching than GGA functionals, which is important for the calculation

of reorganization energies [96, 97]. Taking anthracene as an example of a common organic

semiconducting crystal [98], I obtain similar values for two of the most popular hybrid func-

tionals, λ =142.1 meV for B3LYP and 149.9 meV for PBE0, but a smaller value for the

GGA functional BLYP, 102.4 meV, due to the well known deficiency of the latter functional

to underestimate the energy for bond stretching. The results are usually robust with respect

to the basis set choice. Only very small changes in λ are obtained as the basis set is in-

creased: 138.1, 142.1 and 138.5 meV for the 6-31G(d), 6-311G(d) and 6-311G+(d,p) basis

sets, respectively, using the B3LYP functional.

The force field equilibrium bond lengths of the charged state, RC,k, is adjusted by

scaling the DFT displacements, ∆RDFT
k , namely: RC,k = RN,k +β∆RDFT

k , until force field

and DFT reorganization energies (Eq. 2.6) match. When the scaling constant β is close to

unity this means that the displacements in the force field and in DFT are almost identical.
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All other intra- and inter-molecular parameters were chosen to be the same as for the neutral

state. In Section 4.1.1, I report the parametrized force field for different organic molecules

that will be considered in this work.

The site energies Hkk of the Hamiltonian (first term on the RHS of Eq. 2.5) and their

nuclear gradients ∇IHkk are obtained by assigning molecule k the force field parameters for

the charged state and all other molecules l 6= k the parameters for the neutral state.

2.1.4 Fast analytic overlap method for charge transfer couplings

The off-diagonal elements Hkl = 〈φk|H|φl〉, that correspond to the electronic coupling

matrix elements, are calculated using the recently developed analytic overlap method

(AOM) [92]. The AOM relies on two assumptions: (i) a linear relationship between off-

diagonal Hkl and the overlap S̄kl (overlap between the projected (non-orthogonal) fragment

orbitals into Slater-type functions, S̄kl = 〈ϕk|ϕl〉) and (ii) an analytical expression to calcu-

late S̄kl (see below). The AOM coupling is written as:

Hkl =CS̄kl (2.7)

C is a fitting parameter and can be obtained by correlating the overlap S̄kl against DFT

calculations, e.g. scaled fragment orbital density functional theory (sFODFT) [99–101]

as done in Refs. [85, 89, 92], or wavefunction based methods [102, 103]. AOM allows

the calculation of Hkl for a cost several orders of magnitude lower than explicit electronic

structure calculations [92].

In the first step of the parametrization of AOM couplings, the (non-orthogonal) molec-

ular frontier orbital, ϕk (Table 2.1), is obtained by DFT calculation on an isolated molecule

(HOMO is used for hole transfer and LUMO for electron transfer). This orbital is then

projected on a minimum Slater basis of p orbitals with optimized Slater decay coefficients

as proposed in Ref. [92]. Since π−conjugated systems are the main focus of this work (and

they have hybridization sp2), the p j orbitals of each atom, with j = x,y,z, are projected onto

a locally defined (pσ1, pσ2, pπ ) atomic basis set. The pπ,i direction is determined by the

nearest neighbours of the i atom on which it is centred. In the case of sp2 carbons, this

means three connected atoms. These three neighbours determine a plane and the normal

vector of this plane is chosen to be the pπ,i direction. When heteroatoms participate in the

delocalised π systems, the plane is determined by the two neighbouring atoms and the het-
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eroatom itself instead. Importantly, when AOM is combined with FOB-SH, the orientation

of these orbitals is updated after each nuclear time step (following the intramolecular mo-

tion) so that pπ,i remains orthogonal to its plane. Hence, the atomic orbitals comprising the

molecular orbital follow the motion of the atoms and are expanded as:

ϕk =
atoms

∑
i∈k

cpπ,i pπ,i (2.8)

where i runs over all π−conjugated atoms in molecule k and pπ,i is the Slater type orbital p

on atom i, cpπ,i is the corresponding (normalized) expansion coefficient obtained by projec-

tion of the DFT molecular frontier orbital (completeness of projection should be close to 1

to have an accurate orbital representation). In the current AOM version the projection coef-

ficient are calculated once, for the minimum energy structure of molecule k in vacuum and,

in contrast to the orientation of pπ,i, they do not change along dynamics. In this minimum

Slater basis the overlap between the (non-orthogonal) HOMO (LUMO) orbitals (ϕk,ϕl) of

two monomers forming a dimer, S̄kl , is calculated analytically and is very fast due to the

small number of basis functions involved:

S̄kl = 〈ϕk|ϕl〉=
atoms

∑
i

atoms

∑
j

cpπ,icpπ, j〈pπ,i|pπ, j〉. (2.9)

The overlap 〈pπ,i|pπ, j〉 can be calculated extremely efficiently using the analytic formulas

provided by Mulliken [104]. I refer to the original publication [92] for an even more detailed

description of the AOM method.

The second step in the AOM procedure involves the calculation of electronic couplings

to use as a reference for the parametrization of C on a set of molecular dimer geometries

(taken in this work from MD). Since AOM couplings are parametrized for several snapshots

along a MD trajectory, the parametrization of C actually takes into consideration different

configurations that the interacting pairs of molecules assume during the dynamics. In

this thesis, I obtained the reference couplings from scaled FODFT calculations [99–103] (I

will discuss the electronic structure in more detail in Section 3.1.2 when considering the

parametrization of anthracene crystal). In brief, the FODFT calculations are carried out

with the CPMD program package [105] using the PBE exchange correlation functional.

Core electrons are described by Troullier-Martins pseudo potentials and the valence elec-

tron states are expanded in plane waves with a reciprocal space plane wave cutoff of 90
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Ry (see Section 3.1.2). The accuracy of FODFT couplings was benchmarked before on the

HAB11 [102] and HAB7- databases [103] for electronic couplings for hole and electron

transfer in π-conjugated organic dimers. While the mean relative unsigned error with re-

spect to high-level ab-initio reference values was found to be reasonably small (37.6% [102]

and 27.9% [103]), the values were slightly but uniformly underestimated. Hence, it was

recommended in the previous studies to scale the FODFT couplings for hole and electron

transfer systems by a factor of 1.348 and 1.325 to obtain best estimates. I report a com-

parison between the scaled FODFT (sFODFT) couplings for a set of organic crystals that

will be studied in this work and literature values found with other computational methods

in Table A.1.

Importantly, good linear correlation between S̄kl from Eq. 2.7 and Hkl from sFODFT

was found for several different organic molecules and HAB7- databases [92, 103] allowing

the fitting of a simple linear function as in Eq. 2.7 , |Hkl|=C|S̄kl|, and C is a constant of

proportion. AOM couplings were also tested against approximate coupled cluster (SCS-

CC2)/Generalized Mulliken Hush calculations [103]. It was found that errors are less than

29%, translating in an error in the non-adiabatic electron transfer rate of a factor of 1.7.

When I applied AOM to relevant organic crystals studied in this thesis (e.g., as reported in

Chapter 4), the fits of the scaling factor C was done either by minimization of residuals of

log(Hkl) to weight the error of couplings over all orders of magnitude uniformly (giving C=

Clog), or by minimization of residuals of Hkl to weight more strongly the error of the largest

couplings (giving C=Clin). I report these fitting results in Appendix A.1. For the systems

analysed in this work both methods give very similar results with mean relative unsigned

errors (considering all coupling pairs) of 36 % (Clog) and 44 % (Clin) for AOM couplings

with respect to sFODFT couplings. This error is not insignificant though it translates into

only a relatively small error in the non-adiabatic electron transfer rates of about a factor

1.8 and 2.0, respectively. Hence, AOM offers a good compromise between accuracy and

efficiency (note that billions of electronic coupling matrix elements need to be computed

for a single mobility calculation, as I will present Chapter 4, thereby the need of an ultrafast

parametrized method).

When using AOM within FOB-SH, each MD time step the HOMO (LUMO) on each

molecule is updated and Hkl between molecular pairs is estimated from S̄kl via the above

linear relationship. Possible shortcomings of AOM arise from the fact that, although atomic
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orbitals comprising the HOMO (LUMO) follow the motion of the atoms during the dynam-

ics, the expansion coefficients in Eq. 2.9 are otherwise frozen. However, some checks [92]

indicated that this is a very good approximation, especially for rigid molecules, where or-

bitals are stable against intermolecular vibrations. To improve reconstruction of the orbitals

along the dynamics, for example for flexible molecules, AOM could be supplemented with

more sophisticated interpolation schemes (e.g. machine-learning techniques), nowadays

used to develop a new generation of force fields.

AOM allows also an efficient calculation of the nuclear derivatives ∇IHkl =C∇I S̄kl and

the orthogonal NACE dkl in Eq. 2.4. These quantities are obtained from finite differences of

the overlap Eq. 2.9 with respect to nuclear displacements and time increments, respectively

[42]. In particular, the latter orthogonal NACEs dkl in Eq. 2.4 can be related to the non-

orthogonal NACEs (d′kl ≡ [D′]kl = 〈ϕk|ϕ̇l〉) by,

dkl =
[
T†D′T

]
kl +

[
T†SṪ

]
kl . (2.10)

Both D′ and Ṫ are obtained from finite difference between t and t + ∆t (note that T =

S−1/2, where [S]kl ≡ S̄kl = 〈ϕk|ϕl〉). For a more technical details regarding the actual finite

difference implementation I refer to Ref. [42]. If Eq. 2.10 allows to calculate the dkl terms

and to integrate exactly Eq. 2.4, I will point out in Section 2.1.7 that neglecting them gives

essentially the same dynamic but for much smaller simulation cost.

2.1.5 Non-adiabatic transitions

When the electronic propagation is completed from t to t+∆t, the nuclear velocities need to

be consistently evaluated according to the new electronic potential energy and related forces.

As mentioned in Section 1.4.2, the core of any method based on FSSH is the choice of the

active adiabatic potential energy surface Ea on which the nuclei evolve and the inclusion of

the feedback from the electronic dynamics onto the nuclear motion (see also Figure 1.3).

The energy of the active PES a is calculated as Ea =
[
Had
]

aa, with Had =U†HU and U

the unitary transformation matrix that diagonalizes H in the diabatic representation to Had

in the adiabatic representation (eigenvectors basis).

In Tully’s approach [81], the active surface is decided in two steps: (i) a new state

is chosen via a stochastic process and (ii) the energy conservation requirement is applied

to determine whether the change of active state is energetically possible. The stochastic
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process (i) is based on the hopping probabilities calculated at each time step t between the

active surface, a, and all the other states j:

g ja = max

[
0,−

2Re(c∗jcadad
ja)

|ca|2
∆t

]
(2.11)

where dad
ja =

〈
ψ j|dψa

dt

〉
=
〈
ψ j|ψ̇a

〉
are the NACEs in the adiabatic basis (see Table 2.1).

The higher the NACE values, the more probable the non-adiabatic transition from the active

PES to a new one. One can write any adiabatic state j of the system, ψ j, in terms of the

localized basis (see Table 2.1) as

ψ j =
M

∑
k=1

Uk jφk. (2.12)

In this way the adiabatic NACEs are calculated (in FOB-SH) from the NACEs in the diabatic

basis (dkl ≡ [D]kl =
〈
φk|φ̇l

〉
) via,

dad
ja =

[
U†DU

]
ja +

[
UU̇
]

ja . (2.13)

The adiabatic coefficients c j are the expansion coefficients of the electronic wavefunction

in the adiabatic basis, {ψ j} (see Table 2.1),

Ψ(t) =
M

∑
j=1

c j(t)ψ j(R(t)). (2.14)

The probability to remain on state a is simply gaa = 1−∑ j 6=a g ja. After the calculation of

the probability g ja, a random number is drawn to decide whether a hop can be attempted to

a new state n. If so, the following condition should hold to ensure energy conservation,

Etot(R) = Ta(R)+Ea(R) = Tn(R)+En(R) (2.15)

where Ea and En are the potential energies and Ta and Tn are the nuclear kinetic energies

before and after the hop. When a hop is attempted from state a to n, all quantities Ea, Ta

and En are already known. To ensure Eq. 2.15 is satisfied, the nuclear kinetic energy (i.e.

the nuclear velocities) must be adapted. Based on the theoretical work of Pechukas [106]

and Herman [107], Tully prescribes to adjust the velocity component in the direction of the

non-adiabatic coupling vectors (NACVs) dad
I,an = 〈ψa|∇Iψn〉 [81] (see Section 2.2.1). I note

in passing that, the NACEs and NACVs are related by the chain rule dad
an = ṘI · dad

I,an. If
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there is not enough kinetic energy along the NACVs to satisfy Eq. 2.15, the hop is rejected,

the active state remains state a and the velocity components along the NACVs direction are

reversed [61]. To apply the NACV-oriented adjustment in the FOB-SH framework, an exact

expression for the NACVs in terms of available nuclear gradients in the diabatic basis was

derived by Carof in Ref. [82] and will be discussed in Section 2.2.1.

2.1.6 Forces and nuclear equation of motion

I now turn to the propagation of the nuclei along the MD according to the Velocity-Verlet

algorithm as shown in Figure 2.1 and to the force calculation. In the FSSH algorithm,

the nuclei evolve on one adiabatic energy surfaces Ea chosen as described in the previous

Section. The nuclear force acting on nucleus I, of the active state a, is FI,a =−∇IEa and is

obtained from the Hellmann-Feynman theorem

FI,a = −〈ψa|∇IH|ψa〉=−
[
U†(∇IH)U

]
aa (2.16)

= −∑
k,l

[
U†]

ak [∇IH]kl [U]la

= −∑
k
|Uka|2 [∇IH]kk−∑

k 6=l
UkaUla [∇IH]kl

where [∇IH]kl = ∇I 〈φk|H|φl〉. I refer to our previous papers [42, 82] for the derivation of

Eq. 2.16. Importantly, the nuclear forces on a given adiabatic state a obtained in Eq. 2.16

consist of a linear combination of the diagonal forces (∇IHkk), and off-diagonal forces

(∇IHkl) on the diabatic states. The weighting UkaUla is proportional to the projection of

the active adiabatic state on the diabatic states and therefore it incorporates the effect of

wavefunction delocalization on the adiabatic forces.

Notably, even a finite difference calculation of the off-diagonal gradients requires an

order of NatomM2 calculations of Hkl elements that would make explicit electronic structure

calculations unaffordable. I discussed the use of a fast analytic overlap method (AOM)

for the evaluation electronic coupling elements (off-diagonal matrix elements) and related

gradient calculations in Section 2.1.4 in case of charge transport simulations. In addition,

a multiple time step scheme for an even more efficient calculation of the off-diagonal gra-

dients when simulating large organic semiconducting systems will be presented in Sec-

tion 2.1.7.

On a similar note, in Section 6.2, I will discuss an alternative and equally efficient

strategy, still based on analytic expressions, to calculate excitonic couplings and related
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gradients in case of exciton transport simulations based on transition electrostatic potential

charges (TrESP).

2.1.7 Efficient optimizations for large systems

The calculation of the nuclear forces FI,i on a given adiabatic state i and nucleus I via

Eq. 2.16, needs the gradients of both diagonal elements (∇IHkl with k = l) and off-diagonal

elements of the Hamiltonian (∇IHkl with k 6= l). The latter, in the case of charge transport,

are found by finite differences of the orbital overlap that comes from AOM, namely ∇IHkl =

C∇I S̄kl [42]. As the number of atoms in the system increases and the off-diagonal elements

to evaluate becomes larger, the calculation of the off-diagonal gradients of the Hamiltonian

becomes the time-limiting step.

I have developed a multiple time step algorithm (MTS) to reduce the computational

cost and allow large scale simulations. In practice, all the gradients ∇IHkl , with k 6= l, are

updated only every N MD time steps and kept unchanged between two updates. N must be

chosen small enough to reproduce the time oscillations of the off-diagonal gradients well.

Since the electronic couplings in OSs (which are the systems of interest of this thesis) gen-

erally fluctuate with an oscillation period of ≈ 1 ps [57], one can expect the gradients of

the couplings to oscillate on the same time scale. It is worth mentioning that similar MTS

approaches are often used in MD codes to efficiently speed-up different parts of the com-

putation [91]. I assessed the quality of this algorithm in Appendix A.3 and in Ref. [86].

Unfortunately, the same approach cannot be applied to the diagonal gradients without bi-

asing the whole dynamics, as the site energies fluctuate in the order of the aromatic carbon

stretching frequencies (≈ 20−30 fs).

In addition to the aforementioned optimization, it can be noted that the non-adiabatic

coupling elements (dkl) in the localized orthogonal orbital basis (Eq. 2.10), that would need

to be evaluated together with the Hamiltonian at each nuclear time step, can be neglected

in the propagation equation to a very good approximation. This is somewhat expected as,

in practice, dkl in the orthogonal basis (see Table 2.1) is always small (typically below 0.04

meV/h̄ for the investigated OSs) and smooth along the entire dynamics since the localized

orthogonal basis {φk(t)} is, in fact, quasi-diabatic. I note that in a truly diabatic basis, dkl

would be zero by definition. In addition, the second term on the RHS of Eq. 2.4 includ-

ing dkl is, on average, only 0.5% of the first term including electronic couplings for the

OSs investigated here. Hence, for most practical purposes the term including dkl can be

52



2.1. Fragment orbital-based surface hopping (FOB-SH)

safely neglected. Importantly, avoiding the calculation of dkl means bypassing a matrix-

matrix-matrix multiplication at each nuclear time steps (Eq. 2.10) and it permits a speed-up

of almost a factor of 1.5 compared to the usual interpolation scheme when the OS system

size reaches more than a thousand molecules [86]. This efficient optimization combined

with the MTS algorithm allows us to almost double the system size at the same computa-

tional cost without sacrificing accuracy of transport properties, such as charge mobility and

wavefunction delocalization. I refer to Appendix A.3 for a validation of these algorithmic

optimizations.

2.1.8 Stable electronic propagation in the diabatic basis

On a final technical note, I highlight that in contrast with standard FSSH approaches [39,

60, 90] in which both the electronic and the nuclear equation of motions are solved in the

adiabatic basis (due to the fact that energy and forces are common output of electronic struc-

ture calculations), in FOB-SH only the nuclear propagation is carried out in the adiabatic

basis while the electronic propagation is solved in the diabatic site basis (Section 2.1.1).

As aforementioned, solving the electronic Schrödinger equation in the diabatic representa-

tion has some advantages. Most notable is the fact that, at avoided crossings, the adiabatic

NACE, dad
ja , can be strongly peaked (because of the strong mixing of the adiabatic PESs).

Thus, they could be easily missed because of the finite nuclear time step unless the latter is

chosen very small. This could lead to serious artefacts called trivial crossings as I will point

out in the Section 2.2.4. By contrast, the NACEs between the diabatic states, dkl , remain

small and negligible at avoided crossings (see Section 2.1.7) ensuring a more stable and

accurate propagation [108, 109].

This practical advantage has led to the development of “local diabatization” in quan-

tum chemical applications of FSSH [108, 109]. At each nuclear time step, the adiabatic

states obtained from quantum chemistry are transformed to a diabatic basis in which the

electronic wavefunction is propagated, followed by transformation back to the adiabatic

basis. The first transformation is not needed in FOB-SH approach as the Hamiltonian is

directly constructed in a diabatic basis. Nevertheless, an additional issue comes from the

fact that, although the electronic propagation is accurately done in the diabatic basis taking

advantage from the smoothness of the NACEs, the probability to hop (Eq. 2.11) is still cal-

culated in the adiabatic basis where NACEs peak in avoided crossing regions, in some cases

causing trivial crossings to be missed and other important consequences that I will discuss
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in detail in Section 2.2.4.

2.2 Shortcomings and improvements of original surface hop-

ping

As mentioned in Section 1.4.2, FSSH in its original formulation has a number of more or

less known shortcomings. A plethora of variants appeared in the literature [38, 39, 70, 110],

to address the most common issues, such as the correct rescaling of the velocities after a

successful hop to reach detailed balance and the decoherence correction (DC) to attain in-

ternal consistency [87, 111–117] (see Section 2.2.2). Yet several open questions remain,

especially in relation to electronic transport simulations. What is the impact of the different

DC schemes on the equilibrium distribution of states? How important is the DC to calcu-

late the electronic mobility using FSSH simulations? I will discuss different decoherence

approaches in 2.2.3 and I will answer these questions later in Section 3.2 and Section 3.3,

where I will provide a detailed account on the role of the decoherence in modelling elec-

tronic transport dynamics.

Other less known shortcomings of FSSH are mainly related to the simulation of large

condensed phase systems with a high density of states [40, 72, 118–120], e.g. the presence

of trivial crossings causing unphysical long-range wavefunction transfers hampering the

correct dynamics as I will explain in detail in Section 2.2.4. Only very recently, I have

discovered in Ref. [84] that along with these trivial crossing events, an additional source

of spurious long-range charge transfers comes from the common DC schemes applied to

FSSH. Wang and coworkers [121] independently reported at the same time the same issue

in their simulations. I will discuss the problem in Section 2.2.5 and I will demonstrate that,

if not removed, the decoherence induced spurious long-range charge transfer (DCICT) will

render any mobility calculation and the dynamics erroneous.

The last shortcoming characterizing all semiclassical approaches, like FSSH, is the

fact that nuclear quantum effects that are particularly important at low temperatures, such

as zero-point energy and tunnelling, are missing. I will not discuss this problem in too much

depth in this thesis, since soft organic semiconducting materials are generally characterized

by slow and low-frequency vibrations, that can be to some extend approximated by classi-

cal dynamics at least at room temperature [15] (see also Chapter 4). Nevertheless, I refer

the interested reader to our recent publication about a possible way of including nuclear
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quantum effects in FOB-SH simulations of hole transfer by combining it with ring-polymer

molecular dynamics (RPMD) (see Ref. [122] and reference therein). This new implemen-

tation will hopefully allow an in-depth analysis about the role of zero-point energy as well

as tunnelling when computing charge carrier mobilities and/or exciton diffusion lengths in

molecular semiconductors.

2.2.1 Energy conservation after a successful hop

As prescribed by Tully [81, 123] and explained in Section 2.1.5, whenever a surface hop

occurs the velocities must be adjusted in the direction of the non-adiabatic coupling vectors

(NACVs), dad
I,an = 〈ψa|∇Iψn〉= 1

En−Ea
〈ψa|∇IH|ψn〉, between the adiabatic electronic states

in order to conserve energy in Eq. 2.15. This adjustment is performed by modifying the

velocities on the new state as ṘI,n = ṘI,a + γ
dad

I,na
MI

(with M mass of Ith nucleus). γ is found

by inserting this expression in Eq. 2.15 and solving the related quadratic expression as

described in detail in Ref. [82].

Employing the diabatic to adiabatic transformation matrix U, Carof et al. in Ref. [82]

express the adiabatic NACV (in a diabatic basis) on atom I between any two adiabatic states

i and j (this could be active state, a, and new state, n, as before) as:

dad
I,i j =

1
E j−Ei

[U†(∇IH)U]i j +[U†DIU]i j (2.17)

where E j and Ei are adiabatic energies. Notably, the last term in Eq. 2.17 is numerically

small and can be ignored (so-called “Fast NACV” approximation). Therefore, NACVs can

be rigorously computed in terms of nuclear gradients of the (non-orthogonal) diabatic states

{ϕm} (Eq. 2.16).

As I will show in Section 3.2.1, this adjustment in the velocities massively improves

energy conservation and also detailed balance [82], compared to an isotropic rescaling,

where the velocities are all rescaled by the same value κ , ṘI,n = κṘI,a. using

κ =

√
1− En−Ea

Ta
(2.18)

where the notation follows the one in Eq. 2.15. Velocities adjustment along the direction of

the NACVs allows also to obtain very accurate results for the surface population, namely

the number of trajectories on a certain state (see Section 3.2).
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2.2.2 Adiabatic populations and internal consistency

Tully’s hopping probability (Eq. 2.11) was designed to ensure, for a two-states model sys-

tem, that –within the fewest number of switches– the population of an adiabatic potential

energy surface is equal to the amplitude of that adiabatic wavefunction. However, the energy

conservation criteria leads to rejecting some hops along the dynamics (so-called frustrated

hops). Without any correction, the electronic wavefunction will over-populate excited states

that are high in energy and therefore unreachable for the classical nuclei (see Figure 2.2).

In addition to the presence of frustrated hops, that are necessary to maintain detailed

balance and energy conservation, a more fundamental problem affecting SH is the overco-

herent propagation of the off-diagonal elements of the density matrix (i.e., the coherence

terms c∗i c j) along the classical trajectory. [87] In reality, after leaving an avoided cross-

ing where the adiabatic states mix, the full electronic-nuclear wavefunction splits in two

sub-wavepackets χi(R) and χ j(R) which evolve on different adiabatic surfaces Ei and E j.

Immediately after the crossing, the center and/or the phase of each wavepacket may di-

verge in phase space, decreasing the wavefunction coherence between the surfaces i and j,∫
dRχ∗i (R)χ j(R). This effect is not taken into account in standard FSSH, where the coher-

ence term (c∗i c j) remains finite (see Figure 2.2).

This yields the so-called SH internal inconsistency, i.e. a divergence between Ψ(t)

and ψa(t). Importantly, due to this internal inconsistency, two different adiabatic popula-

tions coexist in the SH algorithm, the quantum amplitude averaged over many trajectories

(adiabatic wavefunction population),

Pad−wf
i (t) =

1
Ntraj

traj

∑
n=1
|cin(t)|2, (2.19)

and the surface population,

Pad−surf
i (t) =

1
Ntraj

traj

∑
n=1

δi,an(t) , (2.20)

where an(t) is the index of the active state at time t of the trajectory n, and δi,an(t) = 1 if

the state i is the active state a on which the nuclear dynamics is running at time t. The

internal inconsistency of FSSH leads to a divergence of these two adiabatic populations.

In Section 2.2.3, I will discuss different remedies (e.g., electronic decoherence correction

(DC) schemes) to attenuate the inconsistency of FSSH and the importance of restoring
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the consistency between adiabatic wavefunction and surface populations. In Chapter 3, I

will examine the huge negative impact that a lack of internal consistency can have on both

(thermodynamic) equilibrium and transport properties of the material.

2.2.3 Decoherence corrections

The lack of a inherent decoherence mechanism is a long-standing issue of FSSH, already

mentioned in Tully’s original paper [81] and often advocated in the literature when studying

excited state dynamics and relaxation processes [124]. The missing decoherence ruins the

dynamics of the system leading to the failures of FSSH for some important processes. For

example, Rossky and co-workers [124] found that, in absence of decoherence, decay rates

from excited states to ground state are too fast yielding incorrect excited state dynamics.

Landry and Subotnik [110, 125] have later shown that the decay in the charge transfer rate

between two molecules obtained with FSSH does not follow the behaviour predicted by

Marcus theory.

Figure 2.2: Decoherence problem illustration. The lack of decoherence biases the electronic wave-
function Ψ(t) that becomes inconsistent with the active state wavefunction ψa(t) after passing
through an avoided crossing.

Since the pioneering work of Rossky and collaborators [111], numerous correction

schemes have been suggested in the literature to tackle the decoherence problem (deco-

herence corrections (DCs)). The most common can be divided in three main categories:

(i) collapsing approaches, in which the electronic wavefunction is reset to the active state

Ψ(t) = ψa(t) when a given criterion is fulfilled. Criteria suggested in the literature rely on

collapsing events after each attempted or successful hop, after each successful hop [117]

or when the adiabatic NACEs fall below a threshold [112]. (ii) Exponential damping ap-

proaches, in which all non-active adiabatic coefficients ci are damped at each time step

ci→ ci exp(−∆t/τia) (2.21)
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while the active state coefficient is scaled to ensure norm conservation [87]. τia is the de-

coherence time [87, 113, 114]. (iii) Stochastic damping approaches that rely on random

numbers to determine whether the wavefuntion is collapsed [115, 125, 126]. In the latter,

each component of the wave-vector containing the expansion coefficients ci with i 6= a (a is

the active state index), is reset to zero whenever the collapsing probability is larger than a

given random number (η ∈ [0,1]) drawn at each time step). The relative population is trans-

ferred to the active state in order to conserve the norm. Within this method, the probability

of a collapsing event can be expressed as γ
collapse
i = ∆t/τia in which ∆t is the MD time step.

A longer decoherence time τia results in a lower probability to collapse γ
collapse
i . It is worth

mentioning the existence of other decoherence approaches which do not fit in none of these

groups and some of them are reviewed in Refs. [39, 40, 60]

As far as I know, no exact expression was derived in literature to calculate the

decoherence time τia in the context of mixed-quantum classical approaches. However

different formulations were proposed based either on physically grounded justifications

[113, 114] or derived using approximations for the evolution of frozen nuclear wavepack-

ets [111, 124, 127]. More recently, using controlled assumptions, a decoherence time has

been derived from quantum classical Liouville equations (QCLE) formalisms [128]. The

most common expression relies on the absence of decoherence when the potential energy

surfaces are close to each other or when nuclei are fixed. The energy-based decohererence

time (EDC) proposed by Persico and Granucci [87] has the aforementioned characteristics

and is widely used in literature,

τia =
h̄

|Ei−Ea|

(
C0 +

E0

Ta

)
. (2.22)

Here Ta is the nuclear kinetic energy and C0 and E0 are parameters to determine [87]. I note

that the system size implicitly enters into Eq. 2.22 through the nuclear kinetic energy Ta (an

extensive quantity). Therefore, when studying large condensed phase systems, like the ones

presented in this thesis, I suggest to normalize the nuclear kinetic energy by the number of

degrees of freedom involved in the FSSH algorithm Ta→ Ta/Ndof. By taking only the first

term of Eq. 2.22, one obtains

τia =
h̄

|Ei−Ea|
, (2.23)

i.e. the fastest decoherence time possible (due to Heisenberg uncertainty principle) and free
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of any ad-hoc parameters.

Other expressions for the decoherence time, derived for condensed phase systems and

frozen Gaussians travelling on different potential energy surfaces, involve nuclear forces

rather than the energy. For instance Rossky and co-workers [111, 124] derived:

τia =

(
N

∑
I=1

|FI
i (t)−FI

a(t)|
2h̄
√

aI

)−1

, (2.24)

where the sum goes over the N nuclei of the system, FI
i (t) and FI

a(t) are the instantaneous

forces on decoherent and active state respectively and aI is a parameter dependent on the

frozen Gaussians width, which has a simple expression in the high temperature limit, aI =

6MIkBT/h̄2, where MI is the mass of the Ith nucleus.

Finally, Subotnik and co-workers developed an extension of FSSH, the augmented-

FSSH (A-FSSH), directly from QCLE to incorporate the decoherence mechanism more

rigorously. New dynamical variables are propagated along the nuclear and electronic de-

grees of freedom to calculate an instantaneous decoherence time [116, 125]. Yet propaga-

tion with this method is more expensive than FSSH and might not be suitable to study large

systems with several hundred molecules.

2.2.4 Trivial crossings and state tracking

The presence of trivial (or unavoided) crossing becomes a substantial limitation in perform-

ing FSSH simulations in condensed phase systems. A trivial crossing event occurs when

two energy surfaces cross with zero couplings between them leading to an actual reordering

of the state indices (as shown in Figure 2.3). Physically, such crossings occur when the

adiabats are not interacting, i.e. when the adiabatic wavefunctions are localized at distant

regions in space. If the state reordering is not taken care of, the dynamics is continued on

the wrong surface. Major consequences of such situations are: discontinuity in the nuclear

forces, deteriorating energy conservation, unwanted bias in the population of excited elec-

tronic states, causing degradation of detailed balance and most seriously in the context of

charge and energy transport, spurious long-range charge transfer events (see Figure 2.3).

The problem is greatly amplified in systems with many adiabatic states in a narrow

band of energy (e.g. in OSs), where adiabatic energy surfaces can frequently cross each

other. In practice, the FSSH algorithm is implemented with a finite time step during which

two adiabatic potential energy surfaces can cross. If this swap is not detected the FSSH
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Figure 2.3: Trivial crossing problem illustration. Representation of a two states crossing region in
which there is a change in state ordering causing spurious long-range charge/energy transfer between
molecules far away in space. The localization of the active state is represented by a blue function
at time t−∆t and t. The correct wavefunction evolution is reported within green circles and can be
achieved with the implemented corrections mentioned in the text. Whereas the wrong behaviour in
absence of these corrective algorithms is represented within the red circle.

propagation continues on the wrong surface. Moreover, the distinction between a trivial

crossing and an avoided crossing with a very small energy gap (weakly avoided crossings)

is unclear with a finite time step. This inherent issue of the FSSH algorithm was often

overlooked, as it only arises for systems with dense adiabatic states as is the case for charge

and exciton transport in condensed phase materials.

Recently, different solutions emerged in the literature to tackle the missed trivial cross-

ings. Most of them resort to a state tracking algorithm [72, 118–120, 123]. At each MD

time step, a map is drawn between the index of the adiabatic states at time t−∆t and at time

t. To build that map, Thiel and co-workers have relied on energy criteria and maximum of

overlap between adiabats at time t−∆t and time t [123], whereas Tretiak and co-workers

have used the more sophisticated min-cost algorithm [118, 129]. Another innovative ap-

proach, suggested by Wang and Beljonne, is their flexible surface hopping method (FSH),

where the size of the “active” region of the OS that carries the charge evolves at each MD

time step [72]. Such an approach permits to maintain the number of adiabatic states rela-

tively small (provided that the charge carrier remains localized in space) and to diminish the

number of trivial crossings, but also requires new criteria and rules to decide at each MD

time step which part of the OS should be included in the active region.

An alternative route is trying to improve the calculation of the hopping probability to

capture such trivial crossings. For example, a norm-preserving interpolation of the adiabats

between the time t−∆t and time t can provide a better estimation of the NACV dad
i j [130].
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Subotnik and co-workers generalized the norm-preserving interpolation to multiple states

crossing using the logarithm of the overlap matrix (Eq. 2.27) [126]. Wang and Prezhdo

proposed few years ago an alternative straightforward improvement of the probability to

hop [131]. They introduced a simple self-consistency test to the calculation of the hopping

probability from the current state to the energetically closest state (and called the algorithm

self-consistent fewest switches surface hopping (SC-FSSH)). Trivial unavoided crossings

are detected as a significant discrepancy between the summation of probabilities to hop

from the current state to all other states according to the FSSH prescription, and the value

of the effective change in population of the current state evaluated at the same time interval.

In particular, they invoked the exact sum rule (considering all possible probabilities gia with

i 6= a),

∑
i6=a

gia =−
d|ca|2/dt
|ca|2

dt, (2.25)

to correct the probability to hop to the state the closest in energy,

g ja =−
d|ca|2/dt
|ca|2

dt− ∑
i6=a, j

gia. (2.26)

I implemented this simple correction in our previous work in Ref. [82]. This algorithm was

found to be quite effective in improving detailed balance, energy drift and allowing for a

larger time-step in a small 2-state ELM dimer system. However for larger system with a

higher density of states, where more than two states may cross with each other, SC-FSSH

alone could not completely solve the trivial crossing problem [84].

Therefore, when study large systems a combination of the mapping approach and the

self-consistent correction (Eq. 2.26) for surface hopping was adopted and implemented in

FOB-SH. In particular, a map M between the adiabatic states j at time t and adiabatic states

i at time t−∆t with a maximum overlap criteria is built. First, the overlap Oi j is calculated

as,

Oi j =
〈
ψi(t−∆t)|ψ j(t)

〉
. (2.27)

For each state j = l, the state il with the maximum overlap, |Oil l|= maxi|Oil| is identified.

If |Oil l| > 1− ε (ε is a constant set to 0.1), the state l at time t is mapped with state il at

time t−∆t, M (l) = il . After that step, all remaining states j = k at time t that could not

be mapped to states at t−∆t (since |Oik |< 1− ε for all unmapped states i) are arranged by

index (i.e. by increasing adiabatic energy) and mapped onto one another. As the function
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map M is a bijection between states at t and states at t−∆t, the reverse map M−1 (that

associates states at t−∆t with states at t) is easily found. One can track the index of the

active state at t, knowing its value at t−∆t, at = M−1(at−∆t). This step permits to change

the index of the active state without an actual surface hopping.

This algorithm maps all the states at t with the states at t−∆t, not only the active state,

as required by the calculation of the NACEs (Eq. 2.13). After the mapping, the phase of

the eigenvectors is made consistent along the trajectory by checking the sign of the overlap

matrix element OiM (i) and by reversing the sign of ψi if OiM (i) < 0 (as I underlined in

Figure 2.1 with the comment “check sign”). The correct hopping probability (Eq. 2.11), that

requires the adiabatic NACEs (Eq. 2.13) and in particular the second term
[
U†U̇

]
ja is finally

determined. As suggested by Hammes-Schiffer and Tully [61], we can take advantage of

the anti-symmetry of this term. After mapping, this term now is,

[U†U̇](t) ja =
1
2
(
[U†U̇](t) ja− [U†U̇](t)a j

)
(2.28)

=
1

2∆t

(
[U†(t)U(t)] ja− [U†(t)U(t−∆t)] j,M (a)

)
− 1

2∆t

(
[U†(t)U(t)]a j− [U†(t)U(t−∆t)]a,M ( j)

)
=

1
2∆t

(
−[U†(t)U(t−∆t)] j,M (a)+[U†(t)U(t−∆t)]a,M ( j)

)
.

Finally, I apply the self-consistent correction (SC-FSSH) to improve the probability to hop

(as in Eq. 2.26) towards the closest state in energy, i.e. the one likely to be affected by

numerical inaccuracies due to finite time steps. I will discuss the overall efficiency of this

approach to remove the trivial crossings in Section 3.3.2.

2.2.5 Decoherence correction-induced spurious long-range charge transfer

In small systems with only a few electronic states surface hops between localized but spa-

tially distant electronic states are unlikely due to the small NACEs (entering the probability

Eq. 2.11). In large systems with a high density of electronic states the probability for a

single transition is still small, but since many of these transitions are attempted, they are

more likely to take place (because of the stochasticity of the surface hopping algorithm).

If such unlikely transitions occur, the active adiabatic electronic state is reassigned from an

adiabatic wavefunction localized in one region of space, say ψ ′a(t −∆t), to another adia-

batic wavefunction localized in a different region of space, ψa(t). While such transitions

are not an artefact of the SH algorithm per se, the problem is that the decoherence cor-
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rection (Eq. 2.21 or instantaneous decoherence approaches) tends to quickly collapse the

charge carrier wave function (Eq. 2.2) from Ψ′ ≈ ψ ′a to Ψ≈ ψa. This results in unphysical

long-range charge transfer and yields charge mobilities that increase with system size.

I recently pointed out this problem in Ref. [84] and labelled such events decoherence

correction-induced spurious charge transfers (DCICTs). These spurious transfers arise be-

cause the different DC schemes act on the adiabatic (i.e. non-local) representation. Note

that, since the mean squared displacement (MSD) depends on the square of the distance

(see Section 2.3.2), this will have a strong impact on the diffusion coefficient and on the

mobility (see Section 3.3.2).

Figure 2.4: Decoherence correction-induced spurious charge transfer (DCICT). An algorithm called
spurious charge transfer correction (SCTC) algorithm was developed to solve the DCICTs as de-
scribed in the text.

Wang and collaborators [121] that, independently from my work in Ref. [84], found the

same issue, proposed to switch-off the DC when the surface population is below a certain

threshold and showed that the spurious transfer is indeed alleviated [121]. However, this

formulation can reduce the internal consistency of surface hopping as some decoherence

events are actually removed. By contrast, I developed in Ref. [84] a three-step strategy to

remove the DCICTs as illustrated in Figure 2.4: (i) at each time step, an “active” region

that encloses 99.5% of the electronic density |Ψ(t)|2 is determined, (ii) the DC is applied

and (iii) any change of diabatic population ∆|ul|2 outside the active region is reset to zero,

while the diabatic populations inside the active region are scaled accordingly to preserve

the norm. Consequently, the wavefunction Ψ(t) propagates physically (i.e. according to

the TDSE, Eq. 2.4) towards the adiabatic wavefunction on the new surface, and not near-

instantaneously (i.e. unphysically) via the DC.

This strategy was called spurious charge transfer correction (SCTC). In practice, it
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Chapter 2. Non-adiabatic molecular dynamics in atomistic nano-scale systems

amounts to a local DC within the active region, while outside the active region the diabatic

populations remain unchanged. All DCICTs are removed while DC is still applied at each

time step. Note that the propagation of the wave function according to Eq. 2.4 remains

unaffected by the presence of the active region.

2.3 Electronic properties

2.3.1 Electronic populations

The calculation of electronic properties (such as charge mobility) from FOB-SH simula-

tions is one of the major objective of this thesis. Electronic-based properties are however

ambiguous in standard FSSH, as different definitions can be found for the electronic pop-

ulation. Landry and Subotnik have provided a detailed account of the existing definitions

in Ref. [132] and they have highlighted that these populations can produce divergent prop-

erties. In the most common approach (“Method 1” in Ref. [132] or “surface method”)

electronic properties are calculated using the active adiabatic state ψa(t). To avoid confu-

sion with Eq. 2.20 (which is the adiabatic surface population), I prefer to call this population

projected active state population (PAS). The electronic population on site k is

PPAS
k = | 〈φk(t)|ψa(t)〉 |2 = |Uka|2(t) . (2.29)

Note that the same kind of population can be written for any adiabatic state with i 6= a,

namely P(i)
k = |Uki|2(t) (as it will be done in Section 2.3.3 when considering the inverse

participation ratio of the adiabatic states).

Other authors use the intrinsic FSSH wavefunction Ψ(t) (“Method 2” in Ref. [132] or

“wavefunction population”) to obtain electronic properties and the local population on site

k is [84, 133, 134]

Pwf
k = | 〈φk(t)|Ψ(t)〉 |2 = |uk|2(t) . (2.30)

This population definition relies on the propagated electronic wavefunction Ψ(t) that, in

general, does not observe detailed balance in absence of DC. I will demonstrate in Sec-

tion 3.3 that this definition fulfils detailed balance as well as Method 1 when DC is in-

cluded. Projected active state Method 1 has the advantage to give the correct detailed

balance distribution (electronic states distribution follows approximately Boltzmann pop-

ulation in FSSH). However, this method is also more sensitive to trivial crossings, as any
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missed trivial crossing will instantaneously modify ψa(t). On the contrary Ψ(t), in Method

2, would not be directly impacted by a missed trivial crossing, although in the long term

there will be a bias in the dynamics. With a DC, the different definitions coincide on aver-

age, except in proximity of a crossing region, where the surface Method 1 cannot capture the

delocalization of the wavefunction over two or more adiabatic surfaces (see Section 3.3.3).

Therefore, in this work I will always adopt Method 2, Pwf
k (supplemented with a DC) to

define the mobility and wavefunction delocalization. Nevertheless, for completeness, I will

compare the two Methods (1 and 2) in Section 3.3.3.

2.3.2 Diffusion coefficient and charge mobility

The charge carrier wavefunction as a function of time, Ψ(t), can be obtained by solving

Eq. 2.4. This gives access to key dynamical properties, e.g. the (2nd rank) mobility tensor

(Eq. 2.31), the extent of localization or delocalization of the charge carrier as a function of

time and the mechanism by which the charge carrier moves within the material. A partic-

ularly common expression for the charge mobility is given by the Einstein-Smoluchowski

relation,

µαβ =
eDαβ

kBT
(2.31)

where α(β ) represent the Cartesian x,y,z coordinates. e is the elementary charge, kB the

Boltzmann constant and T the temperature. This relation provides an important connection

between the general concept of charge carrier mobility as the velocity response of a charge

carrier to an external electric field, µαβ = 〈v〉α
Eβ

(where 〈v〉α denotes the α component of

the time-averaged velocity of the carrier and Eβ a component of the electric field vector E),

and the classical kinetic theory based on a statistical treatment of the random walk of the

carrier through the medium [135]. Eq. 2.31 coincides with the general definition of carrier

mobility when the transport occurs in the diffusion regime and in the limit of zero electric

field (see Section 4.2.1 for a further discussion on the dependence of the mobility on the

field strength).

The diffusion tensor components, Dαβ , can be obtained in the long time limit as the

time derivative of the mean squared displacement along the nine Cartesian components

(MSDαβ ),

Dαβ =
1
2

lim
t→∞

dMSDαβ (t)
dt

(2.32)
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where the MSD is chosen as the expectation value of the operator [(α−α0,n)(β −β0,n)],

MSDαβ (t) =
1

Ntraj

Ntraj

∑
n=1
〈Ψn(t)|(α−α0,n)(β −β0,n)|Ψn(t)〉

≈ 1
Ntraj

Ntraj

∑
n=1

M

∑
k=1
|uk,n|2(t)(αk,n−α0,n)(βk,n−β0,n).

(2.33)

In Eq. 2.33, Ψn(t) is the time-dependent charge carrier wavefunction in FOB-SH tra-

jectory n, α(β ) are the Cartesian coordinates, α0,n(β0,n) are the initial positions of the

center of charge in trajectory n, α0,n = 〈Ψn(0)|α|Ψn(0)〉, and the square displacements

are averaged over Ntraj FOB-SH trajectories. In the second equation the coordinates of

the charge are replaced by the center of mass of molecule k in trajectory n, αk,n, and

α0,n =∑
M
k=1 |uk,n|2(0)αk,n(0), where |uk,n|2(t) is the time dependent charge population of

site k in trajectory n as obtained by solving Eq. 2.4. Note that in case of 1D system ori-

ented along a specific direction the MSD will be different from zero only along the studied

direction, and the tensor will be therefore simplified.

I note at this point that while for a classical particle the MSD is well defined as, e.g. in

Ref. [59], different definitions of MSD have been used in the literature for the calculation

of charge mobility from explicit wavefunction propagation in addition to Eq. 2.33 (see also

Ref. [83] for a discussion). In particular, one could first determine the expectation value of

the “position” of the quantum particle, 〈α−α0,n〉= 〈Ψn(t)|(α−α0,n)|Ψn(t)〉, and then use

it with the classical definition [42, 59] to obtain the displacement of the center of charge

(COC) of the wavefunction as

MSDcoc
αβ

(t) =
1

Ntraj

Ntraj

∑
n=1

(〈Ψn(t)|(α−α0,n)|Ψn(t)〉〈Ψn(t)|(β −β0,n)|Ψn(t)〉) . (2.34)

On the other hand, one could define the spread of the wavefunction (see Ref. [74]). This is

given by:

MSDvar
αβ

(t) =
1

Ntraj

Ntraj

∑
n=1
〈Ψn(t)|(α−〈α〉)(β −〈β 〉)|Ψn(t)〉. (2.35)

In general, Eq. 2.33 is always recommended because it accounts for both types of diffusion,

center of charge motion (Eq. 2.34) and spreading of the charge distribution (Eq. 2.35). In

fact, it is possible to related the three definitions, Eqs. 2.33-2.35, as:

MSDαβ (t) = MSDcoc
αβ

(t)+MSDvar
αβ

(t). (2.36)
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Hence, the mobilities can be interpreted in terms of these two contributions as well,

µαβ (t) = µ
coc
αβ

(t)+µ
var
αβ

(t) (2.37)

I will show in Section 3.3.1 that µαβ (t) ≈ µcoc
αβ

(t), to a very good approximation

since the average size of the polaron remains virtually unchanged after initial relaxation

(MSDvar
αβ

(t)≈ const).

2.3.3 Inverse participation ratio

The inverse participation ratio (IPR) is a common measure to describe the delocalization of

the charge carrier wavefunction Ψ(t),

IPR(t) =
1

Ntra j

Ntra j

∑
n=1

1
M
∑

k=1
|uk,n|4(t)

(2.38)

where |uk,n|2 is the time dependent wavefunction population from Eq. 2.4. The numerical

value of the IPR is about equal to the number of molecules the wavefunction is delocal-

ized over. With a simple calculation indeed one can show that a wavefunction (of a single

trajectory) fully localized on a single molecule gives an IPR of 1, while a wavefunction

homogeneously delocalized over M molecules gives an IPR of M.

A similar definition is used to describe the delocalization of the adiabatic states or

eigenstates of the Hamiltonian Eq. 2.5, ψi(t),

IPRi(t) =
1

Ntra j

Ntra j

∑
n=1

1
M
∑

k=1
|Uki,n|4(t)

, (2.39)

where Uki,n are the components of the eigenvector i of the Hamiltonian Eq. 2.5 in trajec-

tory n.
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Chapter 3

Validation of FOB-SH for condensed phase

systems

In this Chapter*, I discuss and critically asses the fundamental extensions of the original

Tully’s FSSH method implemented in FOB-SH and already described in Chapter 2. In par-

ticular, here I focus on the impact that the correction for missing electronic decoherence

(DC), the detection of trivial crossings and removal of decoherence correction-induced spu-

rious charge transfer, have on important physical properties (i.e. energy conservation, ther-

mal Boltzmann population of the adiabatic states (detailed balance), internal consistency

and mean squared displacement of the charge and mobility). These algorithms will be vi-

tal to the study of realistic nano-scale organic semiconductors that will be presented in the

remaining Chapters of this thesis. As I will clarify here, if any one of these corrections is

not included, the time evolution of the wavefunction is biased and transport properties such

as charge mobility (see Section 2.3.2) and inverse participation ratio (see Section 2.3.3) di-

verge with system size. Yet if they are included, convergence with system size, detailed

balance and good internal consistency are achieved.

This Chapter is organized as follows, in Section 3.1 I provide the details (and

parametrization) of the molecular systems that I will use in this work. I stress that, un-

less pointed out otherwise, the set-up established in this Section, in term of parametrization

protocol and employed algorithms, will be used throughout the whole thesis for similar OSs

as well (see e.g. Chapter 4 and Chapter 6). In Section 3.2 and Section 3.3, I investigate the

effect of the aforementioned improvements on both thermodynamic equilibrium and trans-

port properties, respectively. Then, I draw some conclusions and outline some recommen-

dations for the best “set-up” or “flavour” of FOB-SH simulations for reliable calculations

of electronic properties in molecular materials in Section 3.4.

*The basis of this chapter has been published in Carof, A., Giannini, S. and Blumberger, J. “Detailed balance,
internal consistency, and energy conservation in fragment orbital-based surface hopping.” J. Chem. Phys. 147,
214113 (2017) and in Carof, A., Giannini, S. and Blumberger, J. “How to calculate charge mobility in molecular
materials from surface hopping non-adiabatic molecular dynamics –beyond the hopping/band paradigm.” Phys.
Chem. Chem. Phys. 21, 26368-26386 (2019). The following figures and corresponding calculations have been
performed by Dr. Antoine Carof: Figure 3.2(B), Figure 3.4 and Figure 3.5(A-C).
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3.1 Numerical details and investigated systems

I have generally considered two classes of molecular systems through the whole thesis. On

the one hand, I studied atomistic models of organic semiconductors, which have the same

geometry as real ethylene molecules, but whose parameters are chosen to resemble realistic

materials and, on the other hand, real application relevant organic semiconducting crystals.

The former model systems are formed by a chain of ethylene-like molecules (ELMs), as

shown in Figure 3.1(A). The name “ethylene-like” stresses that only the nuclear geometries

correspond to a real ethylene molecule, while the charge transport parameters (namely the

reorganization energy λ and the AOM scaling value C) are chosen freely to explore a wide

range of physical behaviours and situations. This constitutes the main advantage of consid-

ering these kind of atomistic models, since they allow to explore many different physical

cases by keeping the structural model unchanged. On the other hand, real OS crystal struc-

tures are taken from the Cambridge Crystallographic Data Centre (CCDC) and they form

the semiconducting layer of real devices used in organic electronics. These organic crystals

have generally been experimentally well characterized and their transport properties, i.e.

charge mobilities and/or exciton diffusion lengths are available in the literature (an example

is the anthracene system in Figure 3.1(B), and other OSs in Figure 4.1 and Figure 6.1).

Figure 3.1: Two classes of atomistic systems investigated in this thesis. Namely (A) an organic
semiconductor model in the form of a chain of ethylene-like molecules (ELM) embedded in a Neon
bath, and (B) real OSs, in this case anthracene crystal, where the crystallographic b direction has
been activated to the transport.
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3.1.1 Chains of ethylene-like molecules as OS model

To assess detailed balance and other equilibrium properties of FOB-SH, I used one-

dimensional chains of two (dimer) or more ethylene-like molecules (ELMs), as shown in

Figure 3.1(A) in order to investigate the aforementioned properties as a function of elec-

tronic coupling strength. Within a chain, the ELMs are spaced by 4 Å and a weak center of

mass restraint potential (force constant of 11 kcalmol−1 Å−2) is applied to keep the chain

straight. Because the NVE ensemble is used in all the FOB-SH simulations to avoid any

dynamical bias introduced by the thermostat, the chain is embedded in a bath of Neon atoms

that mimics the role of a thermostat and reduces the fluctuations of the temperature (espe-

cially for the short chains with few degrees of freedom). In particular, I believe that two

criteria should be fulfilled to decide which thermostat to choose in the calculation of elec-

tronic mobility in OSs: (i) possibly avoiding any bias due to artificial thermostat added in

the simulation (e.g. by introducing friction constant) and (ii) ensuring temperature conser-

vation and reducing its fluctuations. The first criteria imposes the use of NVE ensemble for

the calculation of electronic mobility, as any other ensemble (such as NVT) would require

an artificial bias (e.g. Nosé-Hoover thermostat). To fulfil the second criteria, a large number

of degrees of freedom are needed to reduce the temperature fluctuations (that scales in the

order of N−1/2). Thus, the choice of using a heat bath of Neon. The simulation boxes in

Section 3.2 are cubic with size a = 60 Å and contain one chain of ELMs and 124 Neon

atoms.

Periodic boundary conditions (PBC) are applied in all directions of the simulation box.

I point out here that the electronic propagation occurring within the chain of ELMs is not

periodic: when the charge reaches the edges of the chain, it is scattered backward and it does

not continue at the other end of the chain. In particular, in the present model, hole transfer

is mediated by a set of (orthogonalized) HOMO orbitals of the ethylene molecules, φk,

k = 1..M, that are used to construct the electronic Hamiltonian H (Eq. 2.5). The molecules

at each end of the chain do not interact with each other (i.e. no cyclic boundary interaction

is applied to the tight-binding Hamiltonian in Eq. 2.5). In addition, as I will explain in

more detail in Section 4.1.1, when considering real systems, electrostatic interactions in the

form of fixed point charges do not significantly alter the energetics of this system because

only one ELM carries a net charge and the other ELMs and Ne are charge neutral. Hence,

for convenience, electrostatic interactions were switched off in all simulations. This avoids

71



Chapter 3. Validation of FOB-SH for condensed phase systems

possible problems related to charge-image interactions in PBC. Note that longer chains of

ELMs will be used in Chapter 5 to explore the temperature dependence of the mobility as a

function of different coupling strengths.

Digonalization of the Hamiltonian H gives the M adiabatic electronic states. For a

detailed explanation of how the orbitals φi(R(t)), are reconstructed along the trajectory I

refer to Section 2.1.4 and to Ref. [42]. The diagonal elements Hkk are calculated with a

force field energy function whose parameters for neutral and positively charged ELMs are

chosen as explained in Section 2.1.3 and done in previous works [42, 82]. For the charged

ELM, the equilibrium distance of the C=C bond is displaced (1.387 Å) with respect to the

one in the neutral state (1.324 Å) corresponding to a reorganization energy for hole transfer

between two ELMs of λ =200 meV, unless otherwise stated. These reorganization energies

are typical for organic semiconductors and an order of magnitude smaller than e.g. for

redox processes in aqueous solution [136–138] or oxide materials [139]. Intra-molecular

interactions for the neutral ELM are taken from the Generalized Amber Force Field (GAFF)

[94]. The intermolecular interactions among the ELMs and between ELMs and Ne atoms

are modelled by Lennard-Jones terms with parameters taken again from the GAFF database

for neutral and charged ELMs and from Ref. 140 for Ne and applying the Lorentz-Berthelot

mixing rules.

For the results presented in Section 3.2, initial configurations are built with the inves-

tigated chain in its energy-minimized geometry and the Neon atoms positioned on a regular

grid. The system is equilibrated with a 1 ns NVT run at 298 K using a Nosé-Hoover ther-

mostat [141, 142] and using a force field energy function where the first molecules of the

chain is charged (see also Section 2.1.2). From the last configuration of the NVT run, 100 ps

Born-Oppenheimer molecular dynamics (BOMD) trajectories are started for the adiabatic

electronic ground state. This is done for each of the six AOM scaling values C that deter-

mines the strength of electronic coupling according to Hkl =CS̄kl . For the dimers in Section

3.2, unless otherwise stated, I chose C = 14, 82, 272, 381, 816 and 1360 meV that corre-

sponds to an average coupling values V =
√
〈|Hkl|2〉 of about 2, 10, 34, 51, 130 and 220

meV. I removed the first 20 ps where the system equilibrates and used the last 180 ps of the

BO trajectories on the different states to calculate free energy differences for consecutive

adiabatic electronic states, depending on the size of the system

∆Ai,i−1(C) =−kBT ln〈exp[− (Ei−Ei−1)/kBT ]〉Ei−1
(3.1)
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where i represents the given state, for each scaling value C. The corresponding numerically

“exact” excited state populations are determined according to the Boltzmann population of

each state i:

PB
i (C) =

e−β∆Ai,0

∑
M−1
i=0 e−β∆Ai,0

. (3.2)

I extracted Boltzmann-weighted configurations (nuclear coordinates and velocities) from

such BOMD runs as starting configurations for the FOB-SH runs, to ensure the correct dis-

tribution of excited state populations at the start of the run (at t = 0) and a well-sampled

phase space. The electronic wavefunction is initialized in the corresponding adiabatic state

i (Ψ(0) = ψi) to ensure perfect internal consistency at t = 0. For each set of parameters

(velocities adjustment, C value, decoherence correction (DC)), I generated 1000 indepen-

dent FOB-SH trajectories starting from the initial configuration evenly sampled from the

corresponding BOMD trajectories. Each trajectory is run for 10 ps in the NVE ensemble.

The nuclear dynamics in FOB-SH is propagated with the velocity-Verlet algorithm

with forces calculated according to Eq. 2.16 and with an MD time step ∆t = 0.1 fs. The

wavefunction of the excess charge carrier Ψ(t) was propagated by integrating Eq. 2.4 using

the Runge-Kutta algorithm of 4th order and an electronic time step δ t = ∆t/5 = 0.02 fs. An

interpolation scheme is used to calculate the Hamiltonian matrix elements at each electronic

time step [42]. Error bars were determined by block averaging over the 1000 trajectories

with a block size of 200 independent runs.

3.1.2 Chains of embedded anthracene molecules

To investigate mobility and IPR of a real system (see Section 3.3 below), hole transfer was

modelled in a chain of “electronically active” anthracene molecules, embedded in a larger

crystal comprised of electronically inactive anthracene molecules, see Figure 3.1(B). As

for the ELMs model system described before, the selected active molecules form the basis

for the electronic Hamiltonian (Eq 2.5), i.e. the HOMOs of these sites contribute to the

expansion of the carrier wavefunction in Eq. 2.1. I refer to Section 4.1.3 for a discussion on

the accuracy of this assumption.

The transport of the hole wavefunction was modelled in different chains of length: 12,

24, 36 and 48 molecules. The simulation boxes are monoclinic, with angles α = 90.0◦,

β = 124.7◦ and γ = 90.0◦ and with size a = 8.562 Å and c = 11.184 Å. The box length in

the b direction was adapted to ensure that the distance between the chain and the edges of

the box is above 8 Å (i.e. from 97.3 Å for the smallest system to 316.2 Å for the largest).
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Periodic boundary conditions are applied in all directions of the crystal, but, similarly to

the chains of ELMs, the electronic dynamics occurs along non-periodic chains. To check

the convergence of mobility with respect to the length of the chains, different number of

molecules forming the chain are investigated.

The M diagonal elements, Hkk, of the Hamiltonian are, again, estimated using M clas-

sical force field energy functions. In the kth energy functions, anthracene molecule k is

positively charged while all the others are neutral. Intra-molecular interactions for the neu-

tral anthracene molecule are taken from the Generalized Amber Force Field (GAFF) [94].

These intramolecular parameters are used also for the charged anthracene, except for the

carbon-carbon bond length which was chosen instead to reproduce the reorganization en-

ergy λ as described in Section 2.1.3. The geometry of charged and neutral molecules were

optimized with B3LYP functional [143] and 6-311g(d) basis set. The intermolecular in-

teractions between anthracene molecules are also taken from the GAFF database. As in

each classical force field all but one molecule are neutral and the anthracene has zero dipole

moment, electrostatic interactions were not included just like for the ELMs.

The off-diagonal elements of the electronic Hamiltonian Hkl are calculated using

AOM [92]. First, as explained in Section 2.1.4, the HOMO of anthracene (which is non-

degenerate) is projected onto an atomic Slater basis consisting of one atomic p orbital per

carbon atom. The calculation of the HOMO and its projection was done using CPMD

software [105] using the PBE exchange correlation functional [144]. The dimers are cen-

tered in the simulation box at 4 Å away from the box edges. After that, the electronic

coupling Hkl is calculated using the sFODFT method [102] for different dimers extracted

from the crystal structure and along a classical MD trajectory, while the HOMO-HOMO

overlap S̄kl = 〈ϕk|ϕl〉 is calculated using the AOM for the same dimers. A linear regres-

sion is applied between |Hkl| and |S̄kl| to determine the AOM scaling value C = 3.1 eV (see

Appendix A.1). Note that the same protocol will be used for the parametrization of other

organic crystals in Chapter 4. In the latter Chapter, I will comment more in detail about the

accuracy of the electronic coupling calculations, the importance of their relative signs and

the reliability of the tight-binding representation of the FOB-SH Hamiltonian.

Each FOB-SH simulation involves 1000 independent trajectories initialized from 100

different initial conditions (10 trajectories repeated with a different random seed for each

initial condition). Starting from the crystal structure, the system is equilibrated 500 ps in the
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NVT ensemble using a Nosé-Hoover thermostat [141, 142]. Then a MD run of length 500

ps is carried out in the NVE ensemble from which 100 configurations are chosen at equidis-

tant intervals. These are used as initial configurations for subsequent FOB-SH runs. The

initial wavefunction is fully localized on the first molecule of the chain, Ψ(t = 0) = φ1(0)

and the initial active state is randomly drawn from all adiabatic states with a probability

〈ψi(0)|φ1(0)〉2. Each trajectory is run for 2 ps in the NVE ensemble. This ensemble is used

to avoid any artificial thermostat that may bias the calculation of the electronic mobility. The

large number of degrees of freedom due to the “inactive” part (inactive for electronic propa-

gation, as depicted in Figure 3.1) of the anthracene crystal plays the role of a thermostat and

ensures small temperature fluctuations. The nuclear dynamics is propagated, as in the ELM

system, using the velocity-Verlet algorithm and different MD time steps are tested to check

for convergence (∆t = 0.025,0.05,0.1 and 0.5 ps). The electronic wavefunction is propa-

gated using the Runge-Kutta algorithm of 4th order and electronic time step δ t = ∆t/5. The

same algorithm and electronic step will be use through the whole thesis.

3.2 Detailed balance, energy conservation and internal consis-

tency

Before investigating charge transport properties, I focus in this Section on the influence that

different velocities adjustment algorithms and various DC schemes, have on key equilibrium

properties (energy conservation and detailed balance) and internal consistency. I exclude,

here, the analysis of trivial crossings or decoherence correction-induced long-range spurious

charge transfers (DCICTs), as these issues arise only when considering large systems and

transport properties (see Section 3.3 for a detailed discussion).

3.2.1 Effect of velocities adjustment

The investigation is started by comparing the two main different criteria used in the literature

to determine whether a hop is energetically allowed: isotropic rescaling of the full velocity

vector (Eq. 2.18) and adjustment of the component parallel to the NACV (Eq. 2.17) to

conserve total energy. FOB-SH simulations were carried out for these two prescriptions,

with all other simulation details given in Section 3.1.1 (however, note that here the scaling

factor C was set to 0.03, 0.02, 0.01, 0.008, 0.003, 5×10−4 and 5×10−5, and reorganization

energy was set to 100 meV). Figure 3.2(B) shows the excited state populations obtained

as a function of electronic coupling, together with the exact populations obtained from
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the free energy calculation described in Section 3.1.1. The latter decreases by four orders

of magnitudes when the electronic coupling (and thus the gap between the surfaces) is

increased from 0.2 to 100 meV (see Figure 3.2(A)).

Figure 3.2: Effect of velocity adjustment on the ELM dimer. (A) Representation of the model
system investigated and adiabatic energy surfaces against site energy difference. Three electronic
coupling values are indicated with different colours, λ = 100 meV in this case. (B) Influence of the
rescaling prescription used to ensure energy conservation on excited state population for different
diabatic electronic couplings. “Isotropic” results use the isotropic rescaling with the factor given
in Eq. 2.18. “Fast NACV” and “Total NACV” refer to rescaling along the direction of the NACV,
Eq. 2.17. In the former case, the second term in the RHS of Eq. 2.17 is neglected. Error bars are
shown for the default option (Fast NACV) and represent standard deviations over five independent
blocks of 200 trajectories. Error bars for the numerically exact population indicate standard deviation
over three blocks of 20 ps.

The energy criterion based on the NACV reproduces the exact populations very well

in all coupling regimes both when the second term in the RHS of Eq. 2.17 is neglected

(“Fast NACV”) in solid blue lines and also when the full expression is considered, dashed

blue lines. The deviation is typically within the error bars of these simulations. Turning to

isotropic rescaling, we can see that the excited state populations are well reproduced only for

a small coupling value of up to 2 meV. For larger coupling values, the populations increase

rather than decrease, strongly overestimating the exact results. This unphysical behaviour

can be rationalized as follows. In the isotropic rescaling method, a hop is successful if the

kinetic energy of the quantum subsystem is larger than the adiabatic energy gap between the

states. Estimating the average kinetic energy for the 2 ELMs as Ta ≈ 12×3×kBT/2 = 450

meV, it was found this to be larger than the average adiabatic energy gaps at the crossing
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regions, 2H12 = 0.4−200 meV, for the range of coupling values investigated. Hence, virtu-

ally all attempted hops will be energy-allowed, even for the systems with large energy gaps.

Whereas, the rescaling of the velocities along the component parallel to the NACV repre-

sents a much more stringent and rigorous criteria and is a key feature of the original Tully

method [81]. This feature was shown essential to compare the FSSH results with quantum

calculation [145]. The results presented here complement the previous literature analysis

and demonstrates that adjusting the velocities along the NACV is also required to increase

the number of frustrated hops, thereby allowing to achieve detailed balance.

3.2.2 Effect of decoherence correction

Despite the lack of decoherence is a well-known issue of FSSH, the role of the DC on de-

tailed balance has been only partially considered in the literature [146]. To investigate to

what extent DC influences the thermal population of each state, I have carried out FOB-SH

simulations using a dimer of ELMs in a bath of Neon atoms employing several commonly

used DC algorithms: instantaneous DC after each attempted hop (IDA) [117], energy-

based decoherence correction (EDC, Eq. 2.22) [87], pure dephasing decoherence correction

(PDDC, Eq. 2.23), force-based decoherence correction [111, 115, 124] using a damping

algorithm (FDC, Eq. 2.24) and a stochastic algorithm (SC-FDC), and finally the absence

of a correction scheme (NO DC). Simulations are initialized as described in the previous

Sections. Figure 3.3(A) shows the energy drift averaged over 1000 FOB-SH NVE runs as

functions of electronic coupling. We can observe a monotonic decrease of the energy drift

from 10−5 Ha/ps/QM atom to 10−7 Ha/ps/QM atom. This behaviour can be explained by

observing that, for increasing electronic couplings, the number of successful hops dimin-

ishes while the potential energy surface softens, thus improving total energy conservation.

The notable fact is that the energy drift is independent of the DC scheme used. This can

be expected as the DC only affects the electronic wavefunction, not directly the nuclear

degrees of freedom whose total energy is conserved along the simulation.

A similar conclusion holds for the detailed balance. In Figure 3.3(B), I show the elec-

tronic population of the excited state (Eq. 2.19), averaged over the 1000 trajectories and

over time, against the time average electronic couplings. The exact result (Eq. 3.2) obtained

from BOMD simulations as described in Section 3.1.1 is also indicated. Since the work of

Tully and collaborators [78, 79], the ability of the “vanilla” FSSH (i.e. without DC) to reach

detailed balance is well-known. As seen in Section 3.2.1, Carof et. al recently reinforced
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Figure 3.3: Equilibrium properties of the ELM dimer at T = 300 K. The conserved energy drift (A),
excited state population (B) and internal consistency (C,D) are shown as a function of the diabatic
electronic coupling strength between the two ELMs. Different electronic decoherence corrections
(DC) are compared: damping of adiabatic electronic populations with force-based (FDC, Eq. 2.24),
stochastic force-based (SC-FDC), energy-based (EDC, Eq. 2.22), and pure dephasing decoherence
times (PDDC, Eq. 2.23), instant collapse (IDA) and no DC. Numerically “exact” populations (PB

1 ,
Eq. 3.2) in (B) are obtained as described in Section 3.1.1 The internal consistency in (C) is measured
in terms of the root-mean-square error (RMSE, Eq. 3.3), and divided by the excited state population
PB

1 in (D).

the point that the NACV-oriented adjustment of velocities after a hop is paramount for this

agreement to hold and I refer to our work in Ref. [82] for a discussion on this. Remarkably,

I find here that the bias introduced by the DC in the electronic dynamics is almost negligible

in term of equilibrium distribution. This can be readily explained in the case of EDC, PDDC

and FDC, for which the decoherence time is small (i.e. fast decoherence) far from the cross-

ing region and it is large (i.e. slow decoherence) within the crossing region. For this reason,

such corrections have only a minor effect in the proximity of an avoided crossing, which is

where the probability for hops sharply increases and the thermal equilibration between the

electronic states occurs. Thus, DC only affects the dynamics away from the crossing region,

where, in any case, the surfaces are quite well separated in energy and the number of hops
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is small. Therefore, damping-based schemes maintain the correct flux between states and

do not ruin the detailed balance.

It is important to notice that such an argument does not apply to instantaneous DC

algorithms, that do not depend on any decoherence time and require by definition to be in

the crossing region for the algorithm to be applied (i.e. there must be either an attempted

or a successful hop in order to collapse the wavefunction) [117]. This explains why, for

the latter algorithms we can observe larger deviations both for energy drift and excited state

population, even though the DC is still small due to the small number of collapsing events

with respect to the total number of steps in the dynamics. I can conclude by saying that all

the DC schemes investigated here can approximately reach detailed balance, meaning that

the bias introduced in the electronic dynamics does not affect the flux between adiabatic

states.

While the different DC algorithms give virtually identical results for energy drift and

detailed balance, they give very different results for internal consistency. The internal con-

sistency criteria can be measured by calculating the time-averaged root mean square error

between the surface population and the quantum amplitude of the excited state i, Pad−surf
i (t)

(Eq. 2.20) and Pad−wf
i (t) (Eq. 2.19), respectively,

RMSEi =

(
1
T

∫ T

0
dt
(
Pad−surf

i (t)−Pad−wf
i (t)

)2
)1/2

, (3.3)

where the populations are averaged over trajectories. In case of perfect internal consistency,

RMSEi = 0 for all i. Figure 3.3 (C) shows the RMSE obtained for the usual range of

coupling values and Figure 3.3 (D) shows the RMSE normalised with respect to the exact

excited state population, RMSEi/Pad−surf
i . We can observe that RMSEs follow the same

trend for all the DC methods (an increase from low couplings to medium-sized coupling

values (maximum around 50 meV) and a slight decrease thereafter. The damping methods

show very good internal consistency, with FDC and PDDC giving best performance for

all coupling strengths, and significantly improving over wavefunction collapse and no DC

(Figure 3.3 (C)). Hence, the particular choice of damping time seems rather unimportant for

good average internal consistency, i.e. in the long time limit (Eq. 3.3).

However, Figure 3.3(D) reveals that the internal consistency, normalized with respect

to the excited state population PB
i , deteriorates with increasing coupling strength. The quan-

tum populations of excited states are generally overestimated in this regime. In our previous
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paper [82], it was shown that for couplings V > kBT/2, adiabatic NACEs still transfer elec-

tronic population from the ground state to the excited state, while attempted hops become

increasingly energy-forbidden. Therefore, the wavefunction population on the excited state

is overestimated compared to the surface population. While for no DC and collapse the er-

ror is substantial to the extent that there is no longer any consistency between quantum and

surface amplitudes in the high coupling regime, the damping methods significantly improve

on this situation, albeit not perfectly. For a large coupling value of 100 meV, the excited

state surface population is about 10−4 (Figure 3.3(B)), while the quantum populations are

about 10−3 giving RMSE1/PB
1 ≈ 10. This deviation is expected not to be relevant in many

practical situations for OSs with a higher density of states and smaller energy gaps between

the adiabatic states (see Section 3.3.3).

Nevertheless, I note in passing that to further reduce the internal inconsistency in the

high coupling region (and a large gap between the states), I explored and implemented an

alternative electronic propagation scheme (called elimination of classically forbidden hops

- EFH) in Ref. [83]. In this approach, the electronic population transfer between adiabatic

states is removed in case of classically forbidden transitions for the nuclei (namely, those

hops that do not fulfil the energy conservation criteria). I will not discuss the EFH in this

thesis because, despite this alternative algorithm massively improves internal consistency

at high coupling, the agreement with the detailed balance deteriorates due to the bias intro-

duced in the electronic dynamics by removing population transfer between the states. Thus,

I concluded that this algorithm was not suited to study transport properties in large systems,

in which, in any case, the internal consistency can be largely corrected with the introduction

of a more common DC scheme (see Section 3.3.3).

3.3 Charge transport properties

I now focus on building and describing the best FOB-SH set-up to calculate the mobility and

delocalization of a charge carrier in organic semiconductors. I will use this set-up through

the course of the whole thesis, unless stated otherwise. To this end, I make use of the system

described in Section 3.1.2, a hole diffusing in a chain of anthracene molecules embedded

in a larger crystal. Several parameters and set-ups need to be assessed: the role of the state

tracking algorithm and/or the spurious transfer correction (SCTC), the convergence with

respect to the size of the system, the impact of the DC scheme and the definition of the

electronic population.
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3.3.1 Mean squared displacement definitions

I first clarify how to determine the charge mobility from the diffusion coefficient in Eq. 2.32.

The latter depends in turn on the mean squared displacement (MSD). As I have indi-

cated in Section 2.3.2, different definitions of the MSD have been used in the litera-

ture [72, 74, 84, 134]. To asses these various definitions, FOB-SH simulations for a chain of

48 anthracene molecules were run for 2 ps and using what will be defined as the best set-up

in the following Sections, namely state tracking and spurious transfer correction switched-

on, the DC scheme actived and the diabatic population Pwf (Eq. 2.30) used to calculate the

MSD. Figure 3.4(A) shows the three MSD definitions against time. MSDcoc (Eq. 2.34) and

MSD (Eq. 2.33) quickly rise simultaneously until 200 fs, then they diverge slightly and

end up in a linear regime with the same slope, clearly visible after 0.5 ps. On the con-

trary, MSDvar (Eq. 2.35) increases more slowly and reaches a plateau regime after 1 ps.

In fact, as shown by different authors using simulation tools [72, 77, 84, 85, 121] and by

experiments [20–22], in OSs the electronic wavefunction is delocalized over few molecules

and the charge spreading remains approximately constant in time (see also Chapter 4 and

Chapter 5 for an in-depth discussion on this point).

As described in Section 2.3.2, the mobility is related via the diffusion coefficient

(Eq. 2.32) to the slope of the MSD at long times. In Figure 3.4(A), the best linear fit is

indicated by a black dashed lines for all three MSD definitions. I conclude that to determine

the mobility, both MSDcoc and MSD will give the same value for the diffusion constant,

whereas MSDvar will give a zero value for this coefficient and so for the mobility.

Beside mobility, it is also interesting to measure the delocalization of the wavefunction.

The inverse participation ratio (IPR) was evaluated according to Eq. 2.38. In particular,

IPRn(t) measures the number of sites over which the wavefunction is delocalized at time t

for a trajectory n. This quantity can be averaged over time and over trajectories to obtain

the equilibrium converged value. In Figure 3.4(B) I show the evolution of IPR against

time. At t = 0, the wavefunction is initially localized on the first molecule of the chain and

IPR(t = 0) = 1. The IPR increases rapidly during the first few hundreds of femtoseconds

before reaching a plateau at around 1 ps. The initial transient increase corresponds to the

wavefunction spreading until the equilibrium polaron width is reached (see Chapter 4 for

a more detailed discussion on this property). In fact, this behaviour of the IPR resembles

closely the time evolution of MSDvar.
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Figure 3.4: (A) Mean squared displacement (MSD) and (B) inverse participation ratio (IPR,
Eq. 2.38) for hole transport in anthracene, from FOB-SH simulations. In (A) the MSD (Eq. 2.33) is
broken down in the MSD for the centre of charge, MSDcoc(Eq. 2.34), and the MSD due to changes
in the spread or variance of the wavefunction, MSDvar (Eq. 2.35). FOB-SH simulations were carried
out for an embedded chain of 48 anthracene molecules, applying a MD time step of 0.1 fs. Error
bars are obtained by block-averaging over five independent blocks of 200 trajectories each.

3.3.2 Trivial crossings and spurious charge transfers

I now investigate the need of the state tracking algorithm and decoherence correction-

induced spurious charge transfer correction (SCTC) described respectively in Sections 2.2.4

and 2.2.5 in order to obtain convergence for the MSD and the mobility as a function of chain

length.

Figure 3.5 shows the MSDs for different chain lengths and the wavefunction popu-

lation of sites k, (Pwf
k , Eq. 2.30) for representative FOB-SH trajectory for three different

set-ups: (A) state tracking and SCTC both active, (B) state tracking and no SCTC and (C)

no state tracking and no SCTC. If both state tracking and SCTC are swichted-on, the MSDs

are identical for the different chain lengths (except for the chain with 12 molecules where

the MSD is slightly below the MSD of longer chains as the diffusive charge starts to feel the

non-periodic boundary and to bounce back at the end of the chain). The smooth evolution of

the polaronic charge carrier is illustrated for one representative trajectory in Figure 3.5(D),

where no spurious charge transfer event is present. When the SCTC is switched-off (panel

(B)), MSDs as function of chain lengths start to diverge after few femtoseconds, indicat-

ing that frequent decoherence correction-induced spurious transfer events bias the charge

dynamics. It is worth noticing that spurious charge transfers induce a much larger displace-
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Figure 3.5: Importance of state reordering and spurious charge transfer correction in FOB-SH
simulations of hole transport along an embedded chain of anthracene molecules. (A, B, C) MSD
(Eq. 2.33) for hole transport with chain length as indicated (12, 24, 36 and 48 molecules). (D, E,
F) Time evolution of the hole carrier wavefunction population (Pwf

k , Eq. 2.30) along a representative
FOB-SH trajectory. The MSD and the wavefunction population are compared for three different
set-ups : (A, D) adiabatic electronic states are reordered using the state tracking algorithm (see
Section 2.2.4) and the decoherence correction-induced spurious charge transfer correction is active
(SCTC, see Section 2.2.5); (B, E) state reordering is active, SCTC is switched off; (C, F) state or-
dering and SCTC are switched off. Note, the MSD is independent of system size only in (A). For all
set-ups, DC keeps the charge localized over about 2 molecules. Long-range spurious transfer events
are highlighted with red arrows in (E) and (F), note that charge transport in (C) is completely biased
by unphysical jumps of the charge. The MD time step is 0.1 fs and the DC is damping with pure
dephasing decoherence time. Error bars represent standard deviation over five independent blocks
of 200 trajectories each.

ment of the charge, as in a few time steps the charge can completely change its localization.

A spurious transfer is shown in panel (E) for a representative FOB-SH trajectory without

SCTC, where the charge carrier unphysically “jumps” from molecule 7 to molecule 13 in a

few femtoseconds. I also note that the order of magnitudes spanned by these MSDs and the

presence of a linear regime may be deceptive, but the divergence with system size underlines

the unphysical aspect of the charge displacement. In Figure 3.5(C), I show the MSDs for

different chain lengths when both SCTC and state tracking are switched-off. In a few fem-

toseconds, the MSDs reach a plateau that depends on the size of the system (i.e. the larger

the system the larger the plateau value). Such dynamics for the charge corresponds to an

unphysically fast diffusion in which the numerous missed trivial crossings yield an almost

stochastic motion of the charge along the chain. This is well exemplified in Figure 3.5(F)
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for a FOB-SH trajectory without SCTC and state reordering. Missing index updates cause

numerous jumps of the charge carrier at long distance (tens of molecule). Only the use of a

state-tracking algorithm to detect the trivial crossings and the SCTC to eliminate the deco-

herence correction-induced spurious charge transfers leads to a physical MSD independent

of the system size.

3.3.3 The importance of a decoherence correction for transport

Figure 3.6: Importance of decoherence correction for accurate simulations. Illustrative FOB-SH
hole transport trajectories have been carried out for anthracene crystal (ANT). (A) Electronic eigen-
state (Pad−wf

i , Eq. 2.19) and surface (Pad−surf
i , Eq. 2.20) population with DC (data in blue) and with-

out DC (green dashed). In the latter case the electronic eigenstates (also denoted adiabatic states)
are almost equally populated, i.e. the electronic temperature tends to infinity. (B) Ground state pop-
ulation vs time with DC (blue) and without DC (green). Note that, without decocherence, despite
the surface population reaches the correct equilibrium distribution after 300 fs, the ground state pop-
ulation remains severely underestimated. (C) Convergence of IPR with and without DC (blue and
green lines). The IPR diverges without DC because of the near equal population of all electronic
eigenstates (panel (B)). (D) MSD of the charge carrier (Eq. 2.33), with and without DC along the
crystallographic b direction (blue and green lines). Without DC the slope of the MSD and mobility
are strongly overestimated.

Here I highlight the paramount importance of including DC when studying transport

properties in condensed phase systems. I show results for hole transport in anthracene when
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the DC is switched off (green lines in Figure 3.6). The reference Boltzmann population

(dash-dotted magenta line) is obtained similarly to what explained in Section 3.1.1 for the

ELM chain. In this case however, I run 1000 independent equilibrium BOMD trajectories

of length 1 ps in the electronic ground state E0 to sample the exponential average in the

free energy expression, Eq. 3.1. First we can see that, when the DC is active (in this case

the PDDC time, Eq.2.23, was used), both the adiabatic wavefunction population (Pad−wf
i ),

Eq. 2.19, dashed blue lines and the surface population (Pad−surf
i ), Eq. 2.20, solid blue lines,

agree very well with each other and also with the reference Boltzmann population (down to

populations of 10−2), with some minor deviations for higher lying states. These are maybe

be due to the residual small internal inconsistency associated with frustrated hops. Yet,

since the small deviations only occur for states with low population this small discrepancy

should have no significant effect on these results. As a further note, the population of excited

states within the narrow band that is formed by the frontier orbitals of these molecules is

significant for this system suggesting that thermal excitations of the charge carrier cannot

be neglected (this point will be extensively discussed in Chapter 4). This aspect underlines

the importance of including non-adiabatic transitions for transport processes.

On the other hand, when the DC is switched-off, I note that there is no longer internal

consistency (Figure 3.6(A) and (B)), quite the opposite: the quantum population (dashed

green line) is almost the same for all electronic states, i.e., the temperature of the elec-

tronic subsystem becomes infinite, the infamous problem of the original Ehrenfest and SH

methods [38]. As a consequence, the polaron size (IPR) and the mobility are strongly over-

estimated because most of the higher lying electronic states that are now occupied are more

delocalized than the lower lying states (Figure 3.6(C)). Even more seriously, the IPR and

the MSD (and so the charge mobility) do not converge with system size and are therefore

overestimated. For all these reasons it is of utmost importance to apply DC, otherwise the

energy level population and the charge transport dynamics becomes unphysical.

3.3.4 Impact of decoherence on electronic populations

I now discuss the choice of the diabatic population definition (see Section 2.3.1 for details

about the definitions), in relation to the effect of the DC on the mobility and system size

convergence. Using the best set-up described in the previous Sections (state tracking, SCTC

and 0.1 fs for the MD time step), FOB-SH simulations were run for different chain lengths

(12, 24, 36 and 48) either without DC or using the pure-dephasing decoherence correc-
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Figure 3.7: Importance of decoherence correction for convergence of (A) charge mobility and (B)
IPR with system size. Results are shown of different choices for the diabatic populations used to cal-
culate the charge mobility µ and the inverse participation ratio (IPR): wavefunction (Pwf, Eq. 2.30)
with DC and without DC (solid and dashed blue lines, respectively) and projected active state pop-
ulation (PPAS, Eq. 2.29) with DC and without DC (solid and dashed red lines, respectively). The
data were obtained from FOB-SH simulations of hole transport along an embedded chain of an-
thracene molecules with a MD time step of 0.1 fs. Error bars are obtained by block-averaging over
five independent blocks of 200 trajectories each.

tion schemes (PDDC, Eq. 2.23). For each FOB-SH run, the mobility and IPR for the two

different diabatic population definitions Pwf and PPAS were calculated (see Section 2.3.1).

The results are reported in Figure 3.7 against number of molecules forming the chain. In

the original FSSH implementation [81], no DC and PPAS are used to calculate different

properties, this set-up corresponds to the dashed red lines in Figure 3.7(A) and (B). We

can immediately see that the mobility does not converge with increasing system size. In

that case, when the the electronic wavefunction Ψ(t) delocalizes equally over all the avail-

able adiabatic states, the corresponding adiabatic populations appearing in the denominator

of the hopping probability (Eq. 2.11) are the same for all states (see also Figure 3.6(A)), so

hops can be attempted between states localized in completely different positions. The larger

the chain, the farther apart the charge can jump after such unphysical (but allowed by FSSH)

hops. Thus the mobility for the two different diabatic population definitions increases with

the number of molecules. Conversely, the IPR for PPAS (dashed red line) is independent on

the system size, showing that the delocalization of the eigenfunction of the active state (ψa)

is size independent as well. On the contrary, the IPR for Pwf (dashed blue line) increases

with the chain length, mirroring the delocalization of the electronic wavefunction on the

adiabatic states. These results prove that without DC, the mobility cannot converge with

different system size whatever the diabatic population definition.
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Mobility and IPR obtained with a DC (PDDC time) are shown with solid lines in

Figure 3.7(A) and (B) respectively. In contrast with the results obtained without DC, the

mobility is well converged with respect to chain length. Adding a DC permits to localize (in

adiabatic and diabatic space) the electronic wavefunction Ψ(t), to eliminate the undesired

hops present without DC and to converge with system size. The DC also ensures the internal

consistency of the method, explaining why the two population definitions behave similarly.

The IPR results are similar to the ones for the mobility: convergence for the different system

sizes and similar values for all population definitions. In general, I recommend to use

the wavefunction population (Pwf, Eq. 2.30) as it is generally less affected by potentially

undetected trivial crossings. Based on these results, I conclude that a DC is mandatory for

calculation of mobility and IPR.

3.4 Conclusion

In this Chapter, I have explored and discussed several possible improvements applicable to

any surface hopping code when calculating equilibrium and dynamical properties, i.e. ve-

locity adjustments, decoherence correction (DC) with various decoherence times, spurious

charge transfer correction (SCTC), trivial crossings detection and state tracking algorithm.

I also discussed the correct way to retrieve important observables from FSSH simulations

such as electronic population and charge carrier mobility. I summarize in Table 3.1, the

impact that each of these improvements has on the properties of interest for this work.

Table 3.1: Importance of various improvements for accurate properties.

Energy Detailed Internal
Improvements conservation balance consistency Mobility IPR

Velocity rescaling XX XX - XX XX
Velocity reversal - - X - -

Decoherence correction - - XX XX XX
Spurious charge

- - - XX X
transfer correction
Trivial crossings

X X - XX X
detection

XX, the correction is very important for a given property. X, the correction is reasonably important
for a given property. − the correction has no effect on a given property. All the corrections above
are implemented in FOB-SH.

Using an organic semiconductor model formed by a dimer of ethylene-like molecules
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(ELMs), I have first looked at velocity rescaling after successful hops, equilibrium pop-

ulation of electronic states (i.e. detailed balance), internal consistency and total energy

conservation over three orders of magnitude of electronic couplings to cover a broad range

of regimes relevant for organic semiconductors (see, e.g., Chapter 4 for simulations of ex-

isting OSs). I have shown that good energy conservation and detailed balance is obtained

regardless of the decoherence time and algorithm used. In fact, generally speaking, the

decoherence biases the dynamics only away from the crossing region and it does not sig-

nificantly modify the flux between adiabatic states. On the other hand, when comparing

the effect of different DCs in restoring the consistency between surface and wavefunction

populations, I have shown that the damping-based algorithms with fast decoherence times

produce far better results than instantaneous collapsing events and maximize internal con-

sistency across several orders of coupling strengths.

Then, focussing on charge transport in a real organic crystal (i.e. anthracene), I have

discussed the influence of the different correction algorithms on two fundamental proper-

ties related to the actual efficiency of organic semiconductors: the electronic mobility and

the inverse participation ratio (the latter measures the size of the charge carrier). State-

tracking algorithm has proven mandatory in case of large number of states to detect the

trivial crossings and to map the adiabatic states between two different MD time steps, thus

improving the electronic and nuclear dynamics and avoiding spurious long-range charge

transfers. Without a state-tracking procedure, the mean squared displacement (MSD) does

not reach a diffusive linear regime, prohibiting mobility calculation. In addition, to ensure a

convergence of the electronic mobility with the size of the system and the number of excited

states, I have shown that a combination of DC scheme and decoherence-induced spurious

charge transfer correction (SCTC) is required. Besides these paramount improvements to

the surface hopping algorithm, different definitions used in the literature for the MSD and

for the electronic population definition have been compared. I have shown that two com-

monly used definition for the mean squared displacement (MSD, Eq. 2.33, and MSDcoc,

Eq. 2.34) give the same diffusion coefficient and the same mobility, whereas the third one

(MSDvar, Eq. 2.35), which is related to the spreading of the wavefunction, rather then to

the diffusion of the charge carrier, yields always a zero slope as the polaron reaches a fi-

nite equilibrium size and does not grow indefinitely. Regarding the choice of the electronic

population to use in FSSH, I have compared the two electronic populations suggested in
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the literature (Pwf, Eq. 2.30, and PPAS, Eq. 2.29) and shown that these definitions coincide

when a DC is active. Nevertheless, the use of Pwf is recommended for transport property

calculations as it is in general less affected by trivial crossings.

In conclusion, a well-founded set-up to run fewest switches surface hopping simu-

lation of charge transport that converges electronic mobilities for different time steps and

system sizes and that achieves detailed balance and good internal consistency, have been

established. The actual physics of charge/exciton transport dynamics will be considered in

the following Chapters of this thesis.
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Chapter 4

Room temperature mobilities in molecular

semiconducting crystals

In this Chapter*, which is the central result of my work, I present the application of FOB-

SH to the calculation of room temperature charge mobilities of a series of experimentally

well-known molecular crystals.

I will show that FOB-SH –when supplemented with the algorithmic improvements

considered in Chapter 3– is able to give near-quantitative agreement with experimental room

temperature mobilities over three orders of magnitude successfully bridging the regime

where hopping and band models are not well-justified or invalid (Section 4.2). I will care-

fully discuss the role of the disorder, induced by local and non-local electron-phonon cou-

plings fluctuations, on the delocalization of the states and the subsequent formation of a

polaronic charge state (extended over several molecules in the most conductive crystals)

and its motion within the crystal (Section 4.3 and Section 4.4). Importantly, I will show

that thermal intra-band excitations from modestly delocalized band edge states (up to 5 nm

or 10-20 molecules) to highly delocalized tail states (up to 10 nm or 40-60 molecules in

the most conductive materials) give rise to short, ≈ 10 fs-long bursts of the charge carrier

wavefunction that drives the spatial displacement of the polaron, resulting in carrier diffu-

sion and mobility. I refer to these wavefunction displacements as “diffusive jumps” and I

will show that they are at the heart of the transport mechanism in OSs. I will discuss the

implications of this work for the search of new efficient organic semiconducting materials

and I will establish some design principles that will hopefully help to advance the field of

organic electronics.

*The basis of this Chapter has been published in Giannini, S. et al. Quantum localization and delocalization
of charge carriers in organic semiconducting crystals. Nat. Comm. 10, 3843 (2019) and in Giannini, S. et
al. Flickering Polarons Extending over Ten Nanometres Mediate Charge Transport in High Mobility Organic
Crystals. Adv. Theory Simul. 3, 2000093 (2020). The Kohn-Sham DFT calculations in Figure 4.4 have been
performed by Dr. Orestis G. Ziogos as well as the AOM scaling factor parametrization of pyrene and DATT
crystals. Matthew Ellis developed the python code for the wavefunction visualization and movie making, which
I have extensively used to plot wavefunction delocalization and its time dependent dynamics.
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4.1 Objectives and investigated molecular crystals

As discussed in the Introduction, OSs differ from inorganic semiconductors in two im-

portant aspects: they are made of small or polymeric molecules that are held together by

weak van der Waals interactions rather than covalent bonds. Hence, thermal motions of the

molecules around their lattice positions is very pronounced already at room temperature and

leads to large fluctuations of electronic coupling, also termed off-diagonal electron-phonon

coupling that impacts negatively the charge mobility (see also Chapter 5). Secondly, the

static dielectric constant of OSs is typically very small and, as a consequence, the reorga-

nization energy λ or local electron-phonon coupling is small, too (0.2 eV or less). These

two material properties place charge transport in OSs in a regime that challenges traditional

transport descriptions [12, 15, 16, 135, 147, 148]. It is in these conditions that a numerical

scheme to explicitly solve the time dependent evolution of the wavefunction, like FOB-SH,

can prove extremely useful and give insights into the actual wavefunction dynamics bridg-

ing the gap between different mechanistic regimes and permitting to go beyond existing

analytic theories. FOB-SH results could serve in turn as a benchmark for existing and new

theories for describing the transport in OSs.

The OSs investigated in this work are 1,4-bis(4-methylstyryl)benzene (pMSB-

h+) [149], pyrene (PYR-e−), naphthalene (NAP-h+) [150], anthracene (ANT-h+) [151],

perylene (PER-e−) [152], rubrene (RUB-h+) [153], dianthra[2,3-b:20,30-f]thieno[3,2-

b]thiophene (DATT-h+) [154] and pentacene (PEN-h+) [155] (polymorph I and d(001)-

spacing of 14.1 Å according to the classification in Ref. [156]) (see Figure 4.1 and Table 4.1

for the crystal structures). The appendix -h+ and -e− is used to distinguish between hole

and electron transfer systems. I chose these systems as they have been well characterized

experimentally and in order to represent low, medium and highly conductive OSs (e.g.

pMSB, PER and RUB, respectively) with their experimental mobilities spanning three or-

ders of magnitude, thus providing an ideal benchmark for the performance of the FOB-SH

method in various transport regimes. In particular, for NAP, ANT and PER reliable ex-

perimental time of flight (TOF) bulk mobilities can be found in Ref. [98, 157, 158]. The

experimental conditions of this technique match particularly closely the FOB-SH simu-

lation conditions (see Section 4.2.1 for a discussion on this point). pMSB, DATT, PEN

and RUB mobilities have been measured via fabrication of organic field effect transistors

and other techniques [149, 154, 159, 160] such as space-charge limited current (SCLC)
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Figure 4.1: Molecular herringbone layer packing for all investigated OSs. The unit cell axes a, b, c
are shown in red, green and blue, the herringbone layer is in the a-b plane, other specific directions
discussed in the text are shown in yellow. The main coupling directions (values reported in Table 4.3)
are indicated by arrows. Same colors are used when symmetry elements are present along T1 and T2
directions. The DFT highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) of single molecules are depicted as isosurfaces for OSs where hole transfer and
electron transfer is studied, respectively.

and Hall-effect [11, 161]. RUB and PEN are certainly the most widely studied crystals.

While there is a large consensus about the intrinsic mobility (above 15 cm2 V−1 s−1) of

RUB [29, 159, 160], the same quantity is less reproducible in PEN (presumably due to the

presence of different polymorphs [162, 163] and the technical difficulties in handling this

crystal which is easily crackable [164]). Interestingly, Marumoto et al. in Ref. [19] have

been able to measure the spatial extend of the carrier wavefunction in PEN that can be

compared with FOB-SH calculated IPR (see Section 4.2.2 below).

As common to many organic crystals (with the notable exception of fullerene), the
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molecules pack into crystal structures where a clear high-mobility a−b plane can be iden-

tified (i.e. the plane featuring the largest π-stacking interactions). Indeed the electronic

couplings and also the mobility perpendicular to this plane (c∗ direction) are usually smaller

by one to two orders of magnitude [45, 56, 85] (see Section 4.2.2). In the following, I will

use the FOB-SH methodology to uncover the nature and transport mechanism of charge

carriers in the aforementioned eight single crystalline OSs, I will present both the transport

in embedded 1D chains of molecules (similarly to what was done in Section 3.1.2 for an-

thracene) and I will go one step further by analysing the transport and mobility in the 2D

high conductive planes of these OSs.

4.1.1 Simulation details

Figure 4.2: Force field parametrization
charged states. Changes in bond length
upon change from neutral to charged state,
as obtained from DFT calculations. Dis-
placed bond distances in Å are reported
with different colours according to the dis-
placed bonds. The + and − signs indicate
an increase and decrease in bond length
going from the neutral to the charged sys-
tem, respectively. The displacements are
used to parametrize the force field for the
molecules in their charged state. For clar-
ity, displacements symmetric to the ones
indicated are not shown. Scaling factor
β for force field parametrization of re-
organization energy, as described in Sec-
tion 2.1.3, is also reported for each system.

The force field parameters for calculation of the site energies of the Hamiltonian

Eq. 2.5, εk, are parametrized to reproduce the intramolecular reorganization energy from

DFT calculations (Eq. 2.6) as reported in Table 4.1 and explained in Section 2.1.3. I note in

passing that reorganization energy is assumed to be equal to the intramolecular (or “inner-

sphere”) contribution. The intermolecular (or “outer-sphere”) contribution is typically very

small in apolar OSs [100, 165] studied here and is neglected. For the parametrization I
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followed the same protocol established in Section 2.1.3 and validated for the calculation of

transport properties in an embedded chain of anthracene in Section 3.1.2. Reorganization

energies and the other force field parameters used are reported in Table 4.1 and Figure 4.2,

respectively.

Notably, electrostatic interactions have been left out of the intermolecular interaction

model, as already done for anthracene chains in Chapter 3, for few reasons. Firstly, for the

systems investigated here, electrostatic interactions in the form of fixed point charges do

not significantly alter the energetics of the charge localized states because only the charged

molecule carries a net charge while the other molecules are charge neutral and apolar. In

addition, it is well known that site energy fluctuations and hence reorganization free ener-

gies are overestimated for fixed point-charge models [99, 136, 137]. Therefore, one should

include electronic polarization as well to counteract this overestimation, thereby adding an

additional layer of complexity and computational cost (as induced polarizability usually

means performing self-consistent iterations). Hence, for the purpose of computational ef-

ficiency, electrostatic interactions were switched off. I expect that this is no longer a good

approximation for crystals formed of polar or hydrogen bonded molecules. In this case the

full electrostatics including electronic polarization of the molecules should be included.

The protocol for the calculations of the reference electronic couplings via sFODFT

was, again, described in Section 2.1.4 (and for anthracene in Section 3.1.2). In brief, several

crystal pairs are extracted from an MD trajectory for each system and sFODFT calculations

performed on each of these pairs. These values are used to extract the AOM scaling factor C,

Hkl =CS̄kl in Eq. 2.7, to be used within FOB-SH simulations. Reference sFODFT electronic

couplings, AOM electronic couplings and C values are summarized in Table 4.3 for all

systems investigated. The reliability of the tight-binding Hamiltonian constructed in this

way will be tested and discussed in Section 4.1.3.

For each OS, I built a series of supercells of increasing size from the experimental

crystallographic unit cell (Table 4.1). The dimensions of some of the largest supercells

constructed are summarized in Table 4.2 for both embedded 1D chains and full 2D planes.

These supercells were equilibrated in periodic boundary conditions for the neutral state for

at least 250 ps in the NVT ensemble to a target temperature of 300 K using a Nosé-Hoover

thermostat, followed by at least 250 ps equilibration in the NVE ensemble (similarly to

what was done in Section 3.1.2). From the NVE trajectory an uncorrelated set of positions
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Table 4.1: Unit cell parameters (Å) and reorganization energies (meV) for the OSs investigated in
this work

System a b c α β γ λ (meV)

RUB-h+ 7.184 14.433 26.898 90.00 90.00 90.00 152
PEN-h+ 6.275 7.714 14.442 76.75 88.01 84.52 98

DATT-h+ 6.259 7.569 20.826 90.00 92.78 90.00 88
ANT-h+ 8.562 6.038 11.184 90.00 124.70 90.00 142
NAP-h+ 8.098 5.953 8.652 90.00 124.40 90.00 187
PER-e− 11.277 10.826 10.263 90.00 100.55 90.00 177
PYR-e− 13.649 9.256 8.470 90.00 100.28 90.00 222

pMSB-h+ 7.362 5.883 38.950 90.00 90.00 90.00 255

and velocities were chosen as starting configurations for FOB-SH simulations. Molecules

along a 1D chain (of length given in Table 4.2) or within a rectangular region of the a−b

high mobility plane were treated as electronically active, i.e., as molecular sites or frag-

ments for construction of the electronic Hamiltonian (Eq. 2.5), with their frontier orbital

(HOMO or LUMO) contributing to the expansion of the carrier wavefunction (Eq. 2.3).

All other molecules of the supercell were treated electronically inactive. The initial car-

rier wavefunction is chosen to be localized on a single active molecule m, Ψ(0) = φm and

propagated in time according to the FOB-SH algorithm in the NVE ensemble. All FOB-SH

simulations applied a decoherence correction (DC), state-tracking for detection of trivial

crossings, a projection algorithm for removal of decoherence correction-induced artificial

long-range charge transfer (SCTC) and adjustment of the velocities in the direction of the

non-adiabatic coupling vector in case of a successful surface hop as found in Chapter 3. The

nuclear time step, ∆t, ranged from 0.01 fs to 0.1 fs depending on the size of the systems. For

each system and each simulation presented here at least 300 FOB-SH trajectories of length

1 ps were run (owing to the lower computational cost, from 600 to 1000 trajectories could

be run when simulating 1D chains). The components of the diffusion tensor Eq. 2.33 were

block averaged over 3 or 5 blocks depending on the number of trajectories (with an equal

number of trajectories for each block) for calculation of error bars.

Here I note that for all crystals except pentacene the Cartesian coordinates (x,y) of

the supercell were chosen parallel to the crystallographic directions (a,b) that define the

high mobility plane (this was possible since they form either orthorhombic (pMSB, PEN) or

monoclinic crystals (NAP, PER, PYR, ANT, DATT)). In this representation the off-diagonal

components of the diffusion tensor characterizing the 2D high conducting plane are zero
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Table 4.2: Supercell details for the investigated systems.

System Geom. Z Dir.a Super cellb Tot. atomsc Active moleculesd

RUB Orthorombic 4
a 44x2x2 49280 30

a−b 30x17x1 142800 900

PEN Triclinic 2
T1 31x31x1 69192 61

a−b 20x30x1 43200 800

DATT Monoclinic 2
a 90x3x1 25920 88

a−b 14x14x2 37632 216e

PER Monoclinic 4

c∗ 2x2x22 11264 20
a 17x2x2 8704 20

a−b 15x15x2 57600 564

PYR Monoclinic 4 c∗ 2x2x28 11648 25

ANT Monoclinic 2

a 28x4x2 10752 30
b 4x28x2 10752 24

a−b 18x28x2 48384 378

NAP Monoclinic 2
b 4x24x4 13824 20

a−b 15x18x2 19440 284

pMSB Orthorombic 2
b 4x25x1 18400 13

a−b 14x14x1 36064 170

a Super cell direction along which mobilities and IPR as reported in Figures 4.5 and 4.7 are cal-
culated. b Largest supercell size used in this work. c Total number of atoms in some of the largest
supercells used. d Number of electronically active molecules required for converged FOB-SH mobil-
ities and IPR as reported in Figures 4.5 and 4.7. When considering c∗ direction the IPR is evaluated
along the single chain. Note that larger electronically active regions than the ones reported here
have been used for convergence tests for MD time step, Figure 4.6. e This size is only used for IPR
calculation for which this value is converged, not for mobility calculation.

due to symmetry (note that the full 3D tensor is fully diagonal in the Cartesian reference

framework only for orthorhombic systems but not for monoclinic ones). For pentacene

(triclinic) the diffusion tensor was diagonalized when calculating mobility within the 2D

plane. The number of active molecules required for convergence of charge mobility and the

largest number of active molecules considered for each OS are summarized in Table 4.2.

All simulations were carried out with our in-house implementation of FOB-SH in the CP2K

simulation package [91].

4.1.2 Importance of the sign of the coupling matrix elements Hkl

Coupling (or off-diagonal) matrix elements, Hkl , are obtained for molecular dimers forming

the crystal using the AOM [92] as described already in Section 2.1.4 and Section 3.1.2. As
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explained before, this method is based on the observation that for conjugated molecules

the coupling depends linearly on the orbital overlap, to a good approximation, Hkl = CS̄kl

where C is a constant determined from DFT calculations and S̄kl is the overlap between

HOMO (LUMO) orbitals on molecules k and l projected on a minimum Slater basis (see

Section 2.1.4). Considering the actual coupling-overlap sign relationship (and not just the

respective absolute values as done in Section 3.1.2), sFODFT gives C < 0 for these systems

(see below).

For 1D systems (e.g. 1D embedded chains like anthracene in Section 3.1.2) with 2

nearest neighbour couplings per site, the eigenvalues and eigenvectors of the tight-binding

Hamiltonian (Eq. 2.5) found with these couplings are invariant with respect to a change

of sign of any nearest neighbour off-diagonal element Hkl . Therefore the sign of Hkl and

the constant of proportion, C, between overlap, S̄kl , and coupling matrix element in the

AOM [92] can be chosen arbitrarily at the beginning of the non-adiabatic dynamics simu-

lation (t =0). Indeed, for this simple situation (i.e. Hückel model) a well-known analytic

expression for the eigenvalue spectrum exists depending only on the magnitude of elec-

tronic coupling, |Hkl|, not on the sign. This is no longer generally true for 2D and 3D

systems, particularly not for the 2D simulations within the herringbone layer of the systems

in Figure 4.1 with at least three unique couplings per site and translational symmetry [56].

Figure 4.3: Herringbone layer (a−b) plane of rubrene, in which three coupled nearest neighbours
are indicated and 1,2,3.

Considering e.g. rubrene (Figure 4.3), the phase or sign of the HOMO orbitals φl on

the two molecules part of the unit cell of rubrene, l=1 and 3, can be chosen arbitrarily at

the beginning of the non-adiabatic dynamics simulation (t =0) as they can be considered

merely as basis functions for expansion of the carrier wavefunction, Ψ(t), according to
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Eq. 2.2. Hence the sign of the coupling between, P and T2 can be freely chosen via a

suitable choice of the sign of the orbitals on each of the two molecules 1 and 3. Importantly,

this choice then fixes the sign of the coupling along T1 because the unit cell is replicated

along a and molecule 2 gets the same orbital as molecule 1. If one wanted to change the

sign of T1, one would also need to change the sign on molecule T2 as well. Therefore,

the eigenvalues and eigenvectors of the Hamiltonian remain invariant upon simultaneous

change of sign of two couplings T1 and T2 (i.e. sign combination (+,-,-) for the pairs P, T1

and T2 respectively, is equivalent to the one (+,+,+)), but they no longer remain invariant if

the sign of all three couplings are simultaneously changed (i.e. sign combination (-,-,-) will

produce an inverted eigenvalues spectrum with respect to (+,+,+)). An inconsistent sign

of any one of the three couplings has a major effect on the eigenvalues and eigenvectors

affecting the symmetry of the electronic density of states (DOS), the extent and degree of

anisotropy of the delocalization of the eigenstates (see Section 4.1.3), and ultimately the

charge carrier dynamics and mobility, see also Refs. [56–58]. I also emphasize that it is

important to maintain the sign of the orbitals between two MD time steps, otherwise the

carrier dynamics (Eq. 2.4) becomes erroneous.

What remains to be investigated is the sign consistency between the site energies, εk,

and the coupling matrix elements Hkl in the Hamiltonian (Eq. 2.5). For FOB-SH simulation

of excess electron transport, the site energies, εk, that I obtain from the force field, corre-

spond to electronic energy levels of the excess electron and the electronic coupling between

them should have the same sign as the one obtained from electronic structure calculations.

As mentioned before, it turns out that in electronic structure calculations, e.g. constraint

DFT (CDFT) or sFODFT, the sign relation between Hkl and the overlap Skl between the

charge transfer states (charge transfer determinants in CDFT and simply frontier orbitals

in sFODFT) is antisymmetric for the systems investigated, see Table 4.3. Therefore in

the AOM estimate of the sFODFT electronic couplings for excess electron transport, the

constant of proportion C < 0. At finite temperature, the occupation of each eigenstate i of

the electronic Hamiltonian (also denoted conduction band state in the following) is propor-

tional to exp[−Ei,e/(kBT )], where Ei,e is the corresponding electronic eigenvalue, kB the

Boltzmann constant and T the temperature.

For FOB-SH simulation of hole transport, the site energies are obtained from the force

field correspond to hole energy levels, not electronic energy levels. This is evident if one
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Table 4.3: Computed electronic couplings and orbital overlaps for crystal structures and along MD
trajectories at room temperature

sFODFT (crystal)a AOMb (crystal) AOMb (MD)

Dist. Hkl Skl Hkl S̄kl 〈Hkl〉c σd Ce

(Å) (meV) (meV) (meV) (meV)

RUB-h+
P 7.18 113.4 -0.0186 92.3 -0.0441 73.7 23.4 -2.1
T2 8.03 -21.0 0.0039 -21.9 0.0105 -17.8 6.2 -2.1
T1 8.03 -21.0 0.0039 -21.9 0.0105 -17.8 6.2 -2.1

PEN-h+
P 6.28 48.7 -0.0068 34.5 -0.0140 25.7 14.1 -2.5
T2 5.2 -69.3 0.0108 -66.0 0.0268 -61.1 27.1 -2.5
T1 4.73 116.1 -0.0193 116.7 -0.0474 110.7 24.1 -2.5

PER-e−

A 6.1 59.6 -0.0181 53.1 -0.0166 41.7 18.2 -3.2
B 6.47 -27.2 0.0114 -39.4 0.0123 -33.1 21.7 -3.2
C 8.1 51.9 -0.0132 57.7 -0.0180 54.0 13.8 -3.2
D 3.88 46.8 -0.0020 38.9 -0.0122 62.1 85.3 -3.2

PER-e−
f c∗ 10.26 8.3 -0.00160 7.0 -0.00219 -8.3 6.4 -3.2

PYR-e−
f c∗ 8.47 26.7 -0.07882 18.7 -0.0049 16.2 11.9 -3.8

DATT-h+ P 6.26 94.9 -0.0137 74.8 -0.0122 69.1 24.1 -6.1

ANT-h+
P 6.04 -57.0 0.0090 -57.5 0.0186 -50.5 30.2 -3.1
T2 5.24 -25.2 0.0038 -30.7 0.0099 -27.3 45.3 -3.1
T1 5.24 -25.2 0.0038 -30.7 0.0099 -27.3 45.3 -3.1

NAP-h+
P 5.95 -46.2 0.0076 -35.7 0.0170 -30.1 17.6 -2.1
T2 5.03 10.8 -0.0027 16.2 -0.0077 21.0 24.6 -2.1
T1 5.03 10.8 -0.0027 16.2 -0.0077 21.0 24.6 -2.1

pMSB-h+
P 5.88 -21.5 0.0034 -15.6 0.0068 -11.6 5.5 -2.3
T2 4.71 41.7 -0.0061 30.1 -0.0131 33.5 16.7 -2.3
T1 4.71 41.7 -0.0061 30.1 -0.0131 33.5 16.7 -2.3

a sFODFT couplings have been calculated as detailed in the text. b Hkl =CS̄kl and the scaling factor
C parametrized as explained in Section 2.1.4. c 〈. . .〉 indicates averaging over 100 2ps-long MD
trajectories. d σ =

√
〈(Hkl−〈Hkl〉)2〉. Note that V 2 = 〈|Hkl |2〉 = 〈Hkl〉2 +σ2. e For hole transport

systems, C=−Clog is generally used for plane simulations as done in Ref. [86] and explained in
Section 2.1.4, whereas C =−Clin is generally used for chains simulations to further improve the
accuracy of AOM couplings along the high mobility direction (the corresponding coupling values
V =

√
〈|Hkl |2〉 related to C=−Clin are reported in Ref. [85] and omitted from this table for clarity).

f Only 1D chains have been considered along c∗ direction perpendicular to the herringbone layer.

bears in mind that the site energy εk(R) is minimum when site k is in the minimum energy

geometry of the charged state (+1) and all other sites l 6= k in the minimum energy geometry

of the neutral state (if it was an electronic energy level the energy of this state would be max-

imum). Therefore the couplings between these states should be the coupling between hole
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states, not electronic states. Hence, the sign of the electronic couplings obtained from DFT

electronic structure and AOM calculations needs to be inverted for FOB-SH simulation of

hole transport, which I do by inverting the sign C→−C (see also Ref. [166] for an indepen-

dent discussion on this point). The occupation of the hole eigenstate i is thus proportional to

exp[−Ei,h/(kBT )], where Ei,h is the ith hole eigenvalue. In the simulations on hole transport

the hole Hamiltonians were constructed in this way and inverting the sign of Hkl obtained

from electronic structure calculations by changing the sign of C from negative to positive

values [85, 86]. This allows to use the standard hopping procedure and forces expression

presented in Section 2.1.5 and Section 2.1.6, respectively (see Ref. [166]). For comparison

to DFT band structure calculations (see Section 4.1.3) one needs to go back from hole to

electronic energy levels by reversing the sign of the hole energy levels, Ei,e =−Ei,h. This

was done for the hole transport systems in Figure 4.4 further below. The occupation of the

electronic level i by the hole is then proportional to exp[Ei,e/(kBT )].

4.1.3 Benchmarking the tight-binding Hamiltonian and DOS

Before calculating mobility and wavefunction delocalization, I assess the quality of the

electronic Hamiltonian in Eq. 2.5 by comparing the density of its eigenstates against the

density of states (DOS) obtained from Kohn-Sham DFT band structure calculations and

looking at the effect of the disorder on the states delocalization as a function of energy. The

DOS is usually defined as:

DOS(E) = ∑
i

δ (E−Ei) (4.1)

with {Ei} the set of eigenvalues of the electronic Hamiltonian. I constructed a static (i.e.

time-independent) electronic Hamiltonian of the form of Eq. 2.5 for the high-mobility plane

of the OSs, comprised of 5,000 sites and using the atomic coordinates from the experimen-

tal crystal structure. All the molecules in the plane are equivalent due to symmetry, hence

all the site energies, εk, can be set to zero. In PEN the two molecules in the unit cell are

not equivalent but the site energy is expected to be very similar. In pMSB, NAP, ANT,

PEN and RUB each molecule is surrounded by 6 closest neighbours and there are only 3

sizeable couplings, Hkl , that we include along the P, T1 and T2 directions, denoted in the

following HP, HT 1 and HT 2 (see Figure 4.1). All other couplings are set to zero. In PER the

herringbone layer is more complicated and 4 sizeable couplings are included. Couplings

were calculated with sFODFT [99, 102] and AOM [92] (AOM is then use to recompute the

Hamiltonian along FOB-SH dynamics). In particular, sFODFT calculations were carried
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out as already described in Section 3.1.2 with the CPMD program package [105] using the

PBE exchange correlation functional [167, 168]. The sign consistency of the couplings be-

tween molecules was ensured by imposing consistent phase relationships between orbitals

that are coupled in a given pair.

Figure 4.4: Normalized density of states (DOS) of HOMO and LUMO bands for hole and electron
transfer systems, respectively. DOS for sDFT (dashed black), sFODFT (dashed red) and AOM
(dashed green) are calculated for the static crystal structure as described in the text, by using only
the coupling interactions represented in Figure 4.1 for each of the OSs analysed in this work. DOS
for AOM (300 K), indicated with solid green lines, are computed from Hamiltonians extracted from
a representative FOB-SH trajectory and including the effect of thermal disorder. The latter DOS
are smoother than the DOS of the static (frozen) Hamiltonian, due to the fluctuations of electronic
couplings and site energies. Bottom panels display 2D histograms correlating the delocalization
of the band states, quantified by the inverse participation ratio IPR (Eq. 2.39), and their energies.
Dashed red lines are used to indicate time averages of the band active state energy Ea and the active
state delocalization IPRa, with a being the active state index. Double white arrows indicate the
thermally accessible (valence or conduction) band tail regions for the excess hole or electron.

Reference periodic Kohn-Sham DFT band structure calculations were carried out on

the crystallographic unit cells with k-point sampling. Orbitals were expanded in plane-

waves using the PBE exchange correlation functional [167, 168] and ultrasoft Rappe-Rabe-

Kaxiras-Joannopoulos pseudopotentials [169] with a wavefunction cutoff of 40 Ry. The

Blöchl tetrahedra method [170] was employed for reciprocal space sampling using k-point
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meshes of 8× 8× 1 for ANT and PER, 10× 10× 1 for RUB, 12× 12× 1 for PEN, and

15× 15× 1 for NAP and pMSB. A slab vacuum larger than 1 nm was used for all DFT

simulations. All plane-wave DFT calculations were carried out using the Quantum Espresso

code [171]. The DFT eigenvalues for hole and electron transfer systems were scaled by

a factor of 1.348 and 1.325 (referred to as sDFT in Figure 4.4), respectively, to remain

consistent with the scaling of electronic coupling values in sFODFT as recommended in a

previous ab-inito benchmark study [102, 103] .

The DOS profiles are shown in Figure 4.4. The agreement between the electronic

Hamiltonian (Eq. 2.5) with AOM/sFODFT couplings (data in dashed green/red lines) and

sDFT band structure calculations (data in dashed black lines) is generally good, most of

the peaks are reproduced, even though with some differences in height and deviations in

positions of typically a few 10 meV. The bandwidth also compares very favourably with

the reference sDFT data with typical errors of less than 50 meV. I note in passing that the

bandwidth is related to electronic couplings by Wband=a
√

H2
P +H2

T 1 +H2
T 2 [15], where a is

a system dependent prefactor, a> 4 (Wband=4Hkl for a chain of molecules with only nearest

neighbour couplings Hkl). The computed DOS also validates the sign of the couplings in

sFODFT and AOM calculations reported in Table 4.3. Generally, if one of the signs (that

is symmetry related with the other) is inverted, the DOS significantly differs from the one

obtained from sDFT [57]. Related to this, we can notice a clear asymmetry in the DOS for

the systems considered here. All hole transport materials except RUB exhibit large peaks

at the top of the valence band whereas RUB exhibits a prominent peak at the bottom of the

valence band. As shown by Fratini et al. [56] this is a particular feature of the electronic

Hamiltonian that characterizes transport in the 2D planes of the hole transfer materials stud-

ied: when the product of the three electronic couplings HP, HT 1, HT 2 is positive, as e.g. in

RUB, the DOS peaks at the bottom edge of the valence band and vice versa if the product is

negative (pMSB, NAP, ANT and PEN). The opposite is valid for electron transfer systems

(e.g. PER).

The Hamiltonian investigated so far is for T = 0, all eigenstates are delocalized. To

investigate the effect of finite temperature on DOS and eigenstate localization I have carried

out 1 ps FOB-SH molecular dynamics at 300 K and averaged over 500 configurations (data

in solid green lines). During the FOB-SH run both the site energies and coupling matrix el-

ements of the Hamiltonian (Eq. 2.5) fluctuate in time, hence both diagonal and off-diagonal
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thermal disorder are included. As expected, the DOS (data in solid green lines) are now

much broader (up to 3 times for some systems) and the sharp band edges have changed into

smooth tails, while the aforementioned asymmetry in the DOS is still clearly visible.

Importantly, the thermal disorder in the electronic Hamiltonian leads to localization

of all eigenstates. This dynamical localization is short lived (transient localization) and

survives only up to the timescale of the molecular vibrations (see Section 1.3.3). This

constitutes a fundamental difference from the static chemical or structural disorder, which

instead can cause full localization of the carriers via a quantum process known as Anderson

localization [172]. Here I analyse the degree of localization in some detail as it profoundly

impacts the charge mobility of these materials (see, e.g., Section 4.3.1). Specifically, I re-

solve the DOS in terms of the inverse participation ratio of the states at a given energy

(Eq. 2.39) resulting in the IPR-resolved DOS shown in Figure 4.4 (bottom panels). For all

hole conducting materials except RUB, the top of the valence band is exclusively formed

by a dense manifold of relatively localized states (average 〈IPRa〉 = 2 for pMSB to 20 for

PEN at E =−1.5 kBT , T =300 K, horizontal dashed red lines), while the most delocalized

states can be found in the middle of the valence band at E≈−300 meV and are thus ther-

mally inaccessible (IPR≈ 30 for pMSB and 200 for PEN). Strikingly, in RUB the pattern of

eigenstate localization is inverted. Thermally accessible states with a relatively high degree

of delocalization can be found at the top of the valence band (〈IPRa〉 = 15 at E =−1.5 kBT ,

T =300 K) and a dense manifold of localized states at the bottom of the valence band. The

same trend was previously observed by Fratini et al. [56] who showed that this is again a

particular feature of the Hamiltonian (Eq. 2.5) for 2D transport with three couplings HP,

HT 1, HT 2: if the product is positive, as e.g. in RUB, eigenstates tend to be more delocal-

ized at the top than at the bottom of the valence band and vice versa for a negative sign

combination. The opposite is true for electron transfer systems as well. This observation

provides a rational for the high hole mobility in rubrene compared to the other materials

studied since the charge can access more delocalized states at the same thermal energy cost,

as I will discuss in the following Sections.

4.2 Charge mobility and wavefunction delocalization

After addressing some of the details concerning experimental measurements of charge mo-

bility, I present in this section mobility results (in embedded 1D chains and 2D high mobil-

ity planes) and the charge transport mechanism in organic semiconductors obtained using
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FOB-SH. I will also compare these numerical results with alternative analytic theories and

discuss some design rules and principles to achieve higher mobilities in OSs.

4.2.1 Experimental mobility measurements

Charge carrier mobility measurements are of great importance to gain insights about the

influence of morphology and chemical structure of a given material on charge transport

properties and the efficiency of a particular semiconductor. In particular, the conductivity

of the material is generally determined by charge mobility (as well as the density of mobile

carriers [16]).

Different experimental techniques, for example time time of flight (TOF) [10], Hall-

effect and field effect transistor (FET) [11, 173], space-charge limited current (SCLC) [161]

and so on, exist to measure the mobility of a material (in this thesis an OS). However, these

measurements not always yield the same value for the mobility as they probe different

physical processes and they are, in some cases, affected by the actual morphology of the

sample, the presence of structural defects and the device structure at the interface between

different layers of the device (e.g. at the interface between the conductive layer and the

substrate in FET). Nevertheless, in some cases, reliable and reproducible mobility values

across different groups and experimental set-ups have been reported [4, 17, 29] (important

reliability factors that needs to be considered when reporting mobility measurements have

been described in Ref. [174]).

Among these different measurements, the ones that most closely resemble the FOB-SH

set-up are the TOF measurements. These measurements monitor the time it takes for charge

carriers to travel through a given semiconducting sample. The sample is placed between

two non-injecting electrodes, which are used to apply a small electric field. Both electrodes

are semi-transparent to allow photogeneration of charges by absorption of short laser light

pulses. Upon generation, the charge carrier travels through the medium from one electrode

to the other. The monitored current reveals the transit time of the carriers allowing calcula-

tion of the mobility in the sample. Depending on the side chosen for photogeneration, hole

or electron mobilities may be measured. Importantly the number of generated charges must

be small enough (1014− 1017 cm−3) not to distort the external electric field, which must

be also very small (103− 105 V cm−1) [98]. Thus, the TOF mobilities give access to bulk

properties achieved at low charge carrier concentration and electric field. This is precisely

what is modelled in FOB-SH, where a single excess carrier is simulated (dilute carrier ap-
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proximation) and mobilities are calculated in the limit of zero external electric field. I note

that the effect of electric field on carrier mobility in a simple 1D chain of chemically iden-

tical molecules was previously investigated in Ref. [16]. It was found that for a typical set

of parameters for OSs, 50 meV coupling and 150 meV reorganization energy, the mobility

remains independent on the applied external field up to field strengths of about 106 V cm−1.

This is at least an order of magnitude higher than typical field strengths in time-of-flight

(TOF) measurements. Non-linear transport behaviour may occur at higher field strengths,

in which case the (field-dependent) diffusion coefficient in Eq. 2.31 could be obtained from

the velocity-drift autocorrelation function or from the derivative of the drift velocity with

respect to the electric field strength [16].

In the course of this thesis, I will extensively make use of the TOF mobility mea-

surements performed by Karl’s group on OSs like ANT, NAP, PER [10, 98, 175, 176]

as a reference for FOB-SH. These TOF measurements are some of the most careful mea-

surements ever performed on OS materials as it was very recently recognised in Ref. [4].

The exceptional results achieved by Karl et. al come from the extreme purification and care

taken during sample fabrication in order to access ultra-high purity and low structural defect

content and they constitute an ideal benchmark for any new theoretical and computational

model.

4.2.2 FOB-SH mobilities vs experiments

I started the investigation by calculating mobility along 1D chains of the embedded systems

in Figure 4.1 in order to asses the quality of FOB-SH mobilities compared to experimental

data for a broad range of OS samples. To this end I run 1000 FOB-SH trajectories for each

system to obtain the mean squared displacement (MSD) of Ψ(t) (Eq. 2.33) as a function

of time. After a short initial relaxation period I observe a linear increase of the MSD with

time, implying that the Einstein diffusion approximation is valid (MSD for 1D chains are

given in Ref [85]). The charge mobilities obtained from the Einstein relation are shown in

Figure 4.5(A) (data in blue). They are in excellent agreement with experiment or within the

experimental error bar where uncertain, with typical deviations of less than a factor of two

for mobilities spanning 3 orders of magnitude. I find that charge mobility correlates very

well with both: average polaron size, as defined by the inverse participation ratio (IPR) in

the highly conductive plane, in Eq. 2.38 (Figure 4.5(B)), and the order parameter ξ = 2V/λ

(Figure 4.5(C)) determining the existence and height of the free energy barrier for charge
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transfer between nearest neighbours, as illustrated in Figure 4.5(D). As discussed below,

traditional hopping and band models fail to provide a uniformly good description of charge

transport in the OSs investigated.

Figure 4.5: Charge mobility along 1D chains and IPR in the high-mobility plane for of all inves-
tigated OSs. (A) Computed versus experimental charge mobilities for the OS materials shown in
Figure 4.1; pMSB-h+-b denotes hole transport along the b crystallographic direction, and a similar
notation is used for the other systems. Charge mobilities from FOB-SH (data in blue) are obtained by
averaging the MSD of the charge carrier wavefunction Ψ(t) over 1000 trajectories and inserting the
corresponding diffusion coefficients in the Einstein relation (see Section 2.3.2). Statistical error bars
indicate the standard deviations over five independent blocks of 200 trajectories. Experimental error
bars for RUB, PEN and PER are based on the measurements cited in Table 4.4. Predictions from
band theory calculations are taken from the literature (data in red, see Ref [177–179]). Charge mobil-
ities from a small polaron hopping model (data in green) are obtained by solving a chemical Master
equation for nearest neighbour hopping in the specified direction using semi-classical ET rates (see
Appendix B.1). As a guide to the eye, perfect agreement is indicated by a thick solid line and devi-
ations in mobility by a factor of 2 by thin dotted lines. (B) Correlation between time-averaged IPR
and measured mobilities. The experimental estimate for the size of the hole polaron in pentacene
was taken from Ref. [19]. Error bars were obtained by block averaging the equilibrated region of the
IPR. (C) Influence of the thermal fluctuations of electronic coupling (off-diagonal electron-phonon
coupling) on charge mobility. Data in olive are obtained from FOB-SH with electronic coupling be-
tween the molecules frozen to the thermal average. Data in blue are taken from panel (A) and shown
for comparison. Note the significant increase in charge mobility for systems forming large polarons.
(D) Diabatic (black dashed) and adiabatic free energy profiles (solid) for electron transfer between
a donor and an acceptor, defining reorganization free energy, λ , average electronic coupling, V , and
the parameter ξ determining existence and height of the barrier.

FOB-SH mobilities up to ≈ 1 cm2 V−1 s−1 including the one for pMSB (ξ < 0.2), are

well reproduced by a chemical Master equation for small polaron hopping between near-

est neighbours with hopping rates from electron transfer (ET) theory (data in dark green
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in Figure 4.5(A)), despite that for pMSB that the actual mechanism is more intricate than

simple nearest neighbour hopping as I will discuss in detail in Section 4.3.1. The algorithm

that I developed to solve the chemical Master equation with Marcus-like ET rates is de-

scribed in Appendix B.1. For OSs with larger mobilities,≈ 1-5 cm2 V−1 s−1 (0.2 < ξ < 1),

the free energy barrier is small, causing the polaron to delocalize over 2-5 molecules ac-

cording to FOB-SH simulations. Hence, in this regime the small polaron hopping model

assuming nearest neighbour hops of a fully localized charge carrier is no longer a good

physical model of the charge transport process. Nonetheless, if one solves the chemical

Master equation with nearest neighbour hopping rates from ET theory, the resultant mobil-

ities are in good agreement with FOB-SH and experimental values (data in shaded green).

This agreement appears to be coincidental as the small polaron hopping mechanism bears

no resemblance with the actual mechanism obtained from FOB-SH (see Section 4.3.1 for

a detailed explanation of the actual transport mechanisms). Indeed, it is well known that

a small polaron hopping model may give the same order of magnitude in mobility or cur-

rent as a larger polaron model [180] - agreement with the experimental mobility gives no

sufficient information on the mechanism.

At even higher mobilities, ' 5 cm2 V−1 s−1 (ξ ≥ 1), the free energy barrier disap-

pears completely and polarons are delocalized over several to many molecules, as observed

above for pentacene. It is worth noticing at this point that there is an excellent agreement

between polaron size calculated from FOB-SH, which gives an IPR (Eq. 2.38) of about

17-18 molecules in the 2D herringbone layer plane of pentacene, and estimates based on

experimental electron spin resonance data, which gives a polaron size of 17 molecules at

290 K [19]. In this high-mobility regime band theory [177–179] does not give an adequate

description either: experimental mobilities are overestimated due to strong thermal motions

violating basic assumptions of this theory (data in shaded red; only for still higher mobil-

ities this theory becomes valid). By contrast, FOB-SH describes all regimes relevant to

OSs accurately and seamlessly bridges the gap between small polaron hopping and band

transport.

Introducing what will be a more in-depth discussion in Section 4.4, I would like to

briefly mention here that an important objective in the discovery process of efficient OSs

is the understanding of the aspects limiting polaron delocalization and ultimately charge

mobility. According to Troisi and co-workers the major limiting factor are the thermal
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fluctuations of electronic coupling between the molecules leading to localization of the

electronic eigenstates and hence to reduction in mobility [12, 54, 56, 74]. Indeed several

attempts have already been made experimentally to reduce off-diagonal disorder, with some

success [53, 181]. To estimate the maximum possible boost in charge mobility that one

could achieve via complete removal of off-diagonal electron-phonon coupling, I carried out

FOB-SH simulations with electronic couplings frozen to their mean values (Figure 4.5(C),

data in olive). While in the small polaron hopping regime (ξ < 0.2) the mobility slightly

decreases, as one would expect from non-adiabatic ET theory (see also Section 4.4.1 for a

more detailed discussion), in the medium and large polaron regime (ξ > 0.2) the mobility

increases significantly, by up to a factor of 7 for rubrene. Yet, the charge carrier is still

polaronic due to the thermal fluctuations of the site energies (diagonal electron-phonon

coupling). If the latter are frozen as well, the polaron fully delocalizes and the band transport

regime is reached. I will come back to the impact that the thermal disorder has on the

transport properties on OSs in more detail in Section 4.4.

4.2.3 Mobility anisotropy in 2D high-mobility planes of OSs

Owing to the algorithmic optimizations described in Section 2.1.7 to reduce the computa-

tional cost without sacrificing accuracy of FOB-SH dynamics, namely an effective multiple

time step algorithm (MTS) and a more efficient propagation of the electronic Schrödinger

equation Eq. 2.4, I was able to converge the full 2D mobility tensor for the high conductivity

plane of some of the organic crystals in Figure 4.1.

The mean squared displacement (MSD) for the centre of charge of Ψ(t) in the a-b

high-mobility plane of PER-e− and RUB-h+ is shown in Figure 4.6(A) and (B), where

again the appendix “e−” and “h+” indicates as before electron and hole transport, respec-

tively (the MSD of the other systems is given in Ref. [86]). At short times the MSD tends to

increase rapidly until after a few 100 fs the increase is linear in time within the error bars of

these simulations. The initial dynamics is due to the relaxation of the fully localized charge

carrier, which is a mixture of excited band states, to states close to the valence or conduc-

tion band edge (see Figure 4.4). During this quantum relaxation process the charge carrier

“equilibrates” to form a polaron within the a-b plane accompanied by a non-linear increase

in the MSD. A similar relaxation dynamics was found by Schnedermann et al. [182] by us-

ing optical transient absorption spectroscopy in the context of exciton and charge transport

in a thin pentacene film. As I will describe in Section 4.3 the polaron is a highly dynamical
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species constantly changing shape and extension. A representative snapshot is depicted in

Figure 4.7(lower panels) where the carrier delocalization is larger than 10 molecules in the

most conductive materials. I verified that the average polaron size and shape is insensitive

to the choice of the initial carrier wavefunction while the time for relaxation to this state

may, of course, vary. This is because FOB-SH maintains detailed balance in the long-time

limit to a good approximation [82, 83] ensuring that after initial relaxation, the equilibrium

(Boltzmann) populations of electronic band states are reached, independently on the initial

starting point. It should be noted that the finite size of the polaron is due to the thermal diag-

onal and off-diagonal disorder in the electronic Hamiltonian Eq. (2.5). Without the disorder

the carrier wavefunction would be a delocalized band state.

As shown in Figure 4.6(C), system sizes of almost 1000 electronically active molecules

within the a-b plane are necessary to converge charge mobility for the most conductive

materials, while the polaron size defined by the inverse participation ratio (IPR), Eq. (2.38),

converges significantly faster, Figure 4.6 (D).

Figure 4.6: Charge carrier diffusion in organic single crystals from FOB-SH simulations and conver-
gence with system size. The mean squared displacement (MSD) of the charge carrier wavefunction
is shown for perylene (A) and rubrene (B) along the a (blue) and b (green) crystallographic direc-
tions. The diffusion coefficient is obtained from linear fits to the MSD after initial relaxation, as
indicated by dashed black lines. The convergence of charge mobility and IPR with respect to the
number of electronically active molecules is shown in (C) and (D), respectively. Mobilities are re-
ported along the two eigendirections within the plane, coinciding with the a and b crystallographic
directions for all systems except pentacene. For the latter the eigen-directions T ′1 and T ′⊥1 are close to
the crystallographic directions T1 and T⊥1 . The experimental polaron size for pentacene, as obtained
from electron spin paramagnetic resonance, is depicted in green dashed lines [19].
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The computed charge mobilities for the a-b planes are shown in polar representation

in Figure 4.7 (top panels). As one might expect, the mobility in a given direction correlates

well with the delocalization of the polaron in that direction as both depend primarily on the

strength of electronic coupling between the molecules. Overall, I observe again as in the

previous Section good to near quantitative agreement between FOB-SH (data in blue) and

experimental mobilities (data in black) for both magnitude and anisotropy within the plane,

especially when comparing to Karl et al.’s time of flight (TOF) data for NAP, ANT and PER

(panels (B), (C) and (D), relative error averaged over a and b direction is 24%, 31% and

30%).

Unfortunately, to the best of my knowledge, TOF data are not available for pMSB,

RUB and PEN. Here comparison must be made to field-effect-transistor (FET) data, which

are more characteristic of surface mobilities and may depend on the nature of the gate

insulator (see Section 4.2.1). With these caveats in mind, I find good agreement between the

computed highest in-plane mobility for RUB, 16 cm2 V−1 s−1 along the a-direction, and the

most reproducible experimental FET measurements, in the range 10-20 cm2 V−1 s−1 [11,

159, 160]. The anisotropy is also reasonably well captured albeit somewhat underestimated.

The computed mobility along the b-direction is 10 cm2 V−1 s−1 compared to 4-8 cm2 V−1

s−1 from experiment [11, 159, 160]. At first sight, this may be somewhat surprising because

rubrene forms a slipped pi-stacked structure with electronic couplings along the b-direction

(T1 and T2) about factor of 4 smaller than along the a-direction (P pair). However, the

thermal fluctuations of the electronic couplings T1 and T2 are also a factor of 3 smaller

than for P (see Table 4.3). In addition, the lattice spacing is larger along b and, since the

mobility is proportional to the square of the lattice spacing [186], all this might partly offsets

the smaller mean couplings leading to comparable mobilities in a and b directions.

In pMSB, NAP and ANT the electronic couplings are smaller than half the reorga-

nization energy (see Table 4.3), hence as seen before finite barrier for site-to-site hopping

of a fully localized polaron exists and ET rates may be defined. The mobility obtained by

solving such a hopping model is shown in Figure 4.7 (green lines), see Appendix B.1 for

detail on the Master equation solved. It gives relatively accurate results for the OSs with the

lowest mobilities, pMSB and NAP, but significantly overestimates the mobility for ANT.

However, it is clear from the FOB-SH simulation that even in the system with the lowest

mobility (i.e. pMSB) the charge carrier does not simply transfer via site-to-site hopping as
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Figure 4.7: Polar representation of mobility anisotropy and snapshots of the charge carrier wave-
functions (polarons). Charge mobilities from FOB-SH (blue) and from a site-to-site hopping
model using electron transfer rates (green) are compared to experimental mobilities (black). For
NAP [157, 175], ANT [98] and PER [158, 176], time-of-flight (TOF) data along a and b direc-
tions are indicated by black circles. For pMSB, the field-effect transistor (FET) mobility is taken
from Ref. [183]. For RUB, FET mobilities are taken from Ref. [159] , Ref. [184] and Ref. [160]. For
PEN, FET mobilities are taken from Ref. [164] and Ref. [185] and SCLC mobilities from Ref. [161].
Where possible, the experimental in-plane mobility tensors are reconstructed and shown in dashed
black lines. In Refs. [161, 164, 183, 185] the experimental mobility direction was not reported and
was assumed to align with the computed high mobility direction. Isosurfaces of the magnitude of
the wavefunction, |Ψ(t)|=1.5×10−3, are coloured according to the phase θ , Ψ(t)= |Ψ(t)|exp(iθ):
−π/4≤ θ ≤ 3π/4 in blue and 3π/4 < θ < 7π/4 in red.
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in donor-acceptor electron transfer reactions. Moreover, as pointed out before [56], since

the hopping rates depend on the magnitude of the couplings, the effect of the sign relation-

ship between the different couplings on the symmetry of DOS is not accounted for in this

approach (see Section 4.1.3). At the other extreme, standard band theory calculations tend

to strongly overestimate mobility in all systems, as previously discussed.

4.2.4 Comparison 1D vs 2D mobilities

It is important to note that all mobilities reported from FOB-SH simulations for the full 2D

planes in Figure 4.7 are larger than the mobilities in Figure 4.5(A) for 1D models along the

same crystallographic direction, typically by a factor of 2-3 (see Table 4.4 for a summary).

Table 4.4: Comparison between FOB-SH mobilities and IPR obtained from simulation of the full
2D planes and from reduced 1D models along the specified directions within the 2D planes, and
experimental results (µ (exp)). All values for mobility are in cm2 V−1 s−1.

Dir. µ (1D) µ (2D) µ (exp) IPR (1D) IPR (2D)

pMSB
a - 1.1± 0.02

0.17a,b
-

1.7± 0.05b 0.21± 0.03 0.61± 0.01 1.1± 0.01

NAP
a - 1.0± 0.01 0.9c -

2.5± 0.07b 1.3± 0.05 2.1± 0.01 1.3d 1.6± 0.02

ANT
a 0.86± 0.05 2.0± 0.02 1.1e 2.0± 0.02

5.0± 0.13b 1.9± 0.17 3.5± 0.02 2.9e 2.2± 0.03

PER
a 2.4± 0.09 4.7± 0.03 2.3 f 1.7± 0.02

11.6± 0.28b - 6.0± 0.11 5.5g -

RUB
a 4.9± 0.18 16± 0.43 9.6,h 15.4,i 20 j 3.2± 0.03

13.7± 0.04b - 10± 0.26 3.7,h 4.4,i 7.8 j -

PEN
T⊥′1 - 0.92± 0.24o

5a,k,l , 5.6a,m 10.5a,n
-

17.1± 0.54p
T ′1 9.6± 1.8 9.6± 1.7o 6.8± 0.11

a Transport direction unknown. b Ref. [183]. c Ref. [157]. d Ref. [175]. e Ref. [98]. f Ref. [176].
g Ref. [158]. h Ref. [159]. i Ref. [184]. j Ref. [160]. k Ref. [185]. l Polymorph I, see text for
discussion. m Ref. [187]. n Ref. [161]. o Mobilities along the eigendirections of the 2D mobility
tensor, T ′1 and T⊥′1 . p Ref. [19] estimates 17 molecules from ESR spectroscopy.

This result is in line with the finding of Fratini et al. who concluded that 2D systems

with isotropic couplings exhibit higher mobilities than anisotropic systems and noting that

1D models are perfectly anisotropic [56]. As previously discussed in Section 4.1.2 and

Section 4.1.3, in contrast to 1D systems, 2D mobilities are influenced by the fact that the

states delocalization is not symmetrical with respect to the band center and the relevant ac-

cessible states for hole transport are in the high energy tail of the DOS and vice versa for
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Chapter 4. Room temperature mobilities in molecular semiconducting crystals

electron transport. This asymmetry is a consequence of the coupling-sign relationship that

influences the degree of localization of the thermally accessible states and, thus, charge de-

localization and dynamics. From a more intuitive (and less formal) perspective, the charge

carrier wavefunction can delocalize in a 2D plane more effectively than in a 1D chain be-

cause of the larger number of nearest neighbours. Therefore, when possible bottlenecks are

present (e.g. neighbouring molecules in a pose with unfavourable couplings), the charge

carrier may bypass them in other directions [45]. Nevertheless, rapid evaluations of mobil-

ities from 1D models can already provide good estimates of the intrinsic mobilities of the

system at hand [85, 166].

4.2.5 Comparison with transient localization theory

The results presented in the previous Sections obtained from explicit time propagation

of the electron-nuclear dynamics can be used to test more recent theoretical models of

charge transport in OSs, e.g., the transient localization theory (TLT) proposed by Fratini

and Ciuchi [15, 31, 54, 56, 57] (see Section 1.3.3). I have calculated µTLT (Eq. 1.3) from L2
τ

using the electronic Hamiltonians sampled along present FOB-SH trajectories and setting

the site energies to zero (see Appendix B.2 for details).

Figure 4.8: Comparison between 2D FOB-SH mobilities and transient localization theory. (A)
Charge mobilities obtained from TLT vs experiment. The squared transient localization length L2

τ is
calculated as described in Ref. [57] using electronic Hamiltonians from present FOB-SH trajectories,
firstly, without modification of the onsite energies and their thermal fluctuations (data in red) and, in
addition, after removal of onsite energy fluctuations by setting all diagonal matrix elements to zero
(data in green). FOB-SH mobilities in blue are for 2D plane simulations as in Figure 4.7 and shown
for comparison. (B) Correlation between IPR and L2

τ/A, where A is the area per molecule within the
herringbone layer.

Mobilities from TLT are reported in Figure 4.8 and compared to mobilities from FOB-

SH and experiment. I note that the TLT mobilities correlates very well with FOB-SH and

experiments but only if the diagonal disorder is excluded in the calculation of the localiza-
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4.2. Charge mobility and wavefunction delocalization

tion length (green symbols). When diagonal disorder is included to ensure a like-for-like

comparison with FOB-SH, TLT mobilities tend to underestimate FOB-SH and experimen-

tal mobilities (red symbols). The deviation tends to become larger, in some cases up to an

order of magnitude, for the OSs with the lowest mobilities. This is expected because TLT,

at least in its present form, does not extend to the low mobility/strong localization regime.

Another interesting point is that the average IPR (with which I quantify the extension of the

polaron in a statistical manner) generally correlates well with the localization length. This

was pointed out by Fratini et al. [56] and further investigated for real systems in this thesis

(see Figure 4.8(B)). However, it is important to mention that the IPR per-se does not give

dynamical information while the localization length is directly related to charge mobility by

Eq. 1.3.

4.2.6 Possible sources of error in FOB-SH results

In this Section I briefly review the main sources of error in semi-quantitative predictions

of polaron diffusion from FOB-SH simulations (note that analogue arguments apply to ex-

citon diffusion results and will be discussed in Chapter 6). These numerical simulations

require and combine two main different components: the time evolution of the coupled

electronic-nuclear equation of motion according to the surface hopping algorithm and the

re-construction of the (DFT-parametrized) Hamiltonian at each time step along the MD

dynamics.

With regards to the possible errors coming from the dynamics part, I stress that crucial

criteria such as energy conservation, detailed balance of the states and internal consistency

have been addressed extensively in Chapter 3, and (to some extent) ensured by applying

important algorithmic improvements. As the system size increases, the density of states

becomes higher along with the number of potentially missed trivial crossings or unlikely

hops (see Section 2.2.4 and 2.2.5, respectively). This stresses the effectiveness, e.g,. of

the state tracking algorithm and one has to compromise between the simulation cost and its

accuracy (e.g., by reducing the nuclear time step). Nevertheless, I note in passing that the

good convergence of mobility and IPR with system size (Figure 4.6(C) and 4.6(D)) as well

as with time step (see Ref. [86]) implies that spurious long-range transfers due, for example,

to trivial crossings have been largely eliminated from the simulations presented here.

With regards to the Hamiltonian re-construction, all the parameters entering the FOB-

SH Hamiltonian, such as the reorganization energies and the couplings are, in this work,

115



Chapter 4. Room temperature mobilities in molecular semiconducting crystals

parametrized against DFT calculations. As any other parametrized approach, these values

can only be as good as the reference data and they are not exempt from (small) errors.

I refer to Section 2.1.3 and Section 2.1.4 for a detailed account of the accuracy of site

energies and electronic couplings and their limitations. I remark, though, that the good

agreement in shape and bandwidth of the DOS of the FOB-SH Hamiltonians compared

with KS-DFT (Figure 4.4) attests to the reliability of the Hamiltonians used in this thesis.

A challenge (rather than a shortcoming) is the inclusion of electronic polarization effects

in the calculation of the site energies, in particular when the crystal is formed of polar or

hydrogen-bonded molecules (which is not the case in the current systems studied). I refer

to Section 4.1.1 for a discussion on this point.

Other possible sources of error on mobility estimates as the temperature changes are

discussed in detail in Section 5.3.3. In particular, I will point out that nuclear quantum ef-

fects are expected to become increasingly important at low temperature [122, 177], whereas

thermal expansion/contraction would need to be considered when the temperature varies.

4.3 Charge carrier transport mechanism

The initial dynamics of the hole carrier wavefunction Ψ(t) and the polaron size (defined by

the IPR) over the first 100 fs are shown in Figure 4.9 for two representative OSs (T =300

K): panels (A)-(E) for the low mobility OS pMSB and panels (G)-(L) for the reasonably

high mobility OS pentacene. Starting from an electronic wavefunction that is initially lo-

calized on a single pMSB molecule (Figure 4.9(B)), we can observe frequent hops of the

electron hole, each involving rapid delocalization of the hole carrier wavefunction over a

few molecules (Figure 4.9(C) and (E)) and re-localization on a single molecule that is one

or a few molecular spacings (0.3-0.5 nm) apart (Figure 4.9(F)). The average IPR in the

herringbone plane is equal to 1.7 and the root-mean-square fluctuation σIPR equals 0.9 (see

Table 4.5). The observed hole hopping mechanism is not unexpected for this OS because

the thermal average of electronic coupling between the molecules, V = 〈|Hkl|2〉1/2, is sig-

nificantly smaller than reorganization energy, ξ = 2V/λ = 0.1 (see Table 4.3). However,

the mechanism differs from the Marcus picture often used to model small polaron hopping

in OSs [16], in that several molecules bridging initial donor and final acceptor may come

simultaneously into energetic resonance resulting in hole transfer to a molecule beyond

the nearest neighbour in a single hopping event. This is more reminiscent of the flicker-

ing resonance mechanism recently proposed by Skourtis and Beratan for hole transport in
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DNA [188], though it should not be confused with it as in the present case the dynamics is

the result of explicitly solving the time-dependent electronic Schrödinger equation coupled

to nuclear motion and not the outcome of an analytic model.

Figure 4.9: Time evolution of the charge
carrier wavefunction in the first 100 fsa.
The number of molecules over which the
polaron is delocalized, defined by the in-
verse participation ratio (IPR) (Eq. 2.38) is
shown in (A) and (G) for pMSB and pen-
tacene, respectively, against time. Black
dashed lines are used to indicate repre-
sentative single FOB-SH trajectories and
gray solid lines are averages over 300 tra-
jectories. In (B)-(F) and (H)-(L) snap-
shots of the hole carrier wavefunction Ψ(t)
(Eq. 2.3) in the respective herringbone lay-
ers are shown starting from a fully local-
ized wavefunction at time t=0. The snap-
shots are taken from the same single tra-
jectories in (A) and (G) at the times indi-
cated by vertical dotted lines with different
colors. Isosurfaces of the magnitude of the
wavefunction, |Ψ(t)|=2×10−3, are shown
and coloured according to the phase θ ,
Ψ(t)= |Ψ(t)|exp(iθ): −π/4 ≤ θ ≤ 3π/4
in blue and 3π/4 < θ < 7π/4 in red. Only
a zoomed-in region of the simulated her-
ringbone layer is shown and the molecules
perpendicular to the herringbone layer are
removed to enhance visibility.

aThe charge transport animations for
the full representative FOB-SH trajec-
tories are provided at https://www.
dropbox.com/sh/a9jtv83sand4er9/
AACWW2M0MefPIg9Sm3TOZ7Wya?dl=0
and/or as supplementary material at https:
//onlinelibrary.wiley.com/doi/
full/10.1002/adts.202000093

The situation is strikingly different for pentacene. The initially localized electronic

wavefunction Ψ(t) (Figure 4.9(H)) rapidly spreads over several molecules (Figure 4.9(I))
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to form a polaron that is preferentially delocalized along the T1 direction where π-orbital

overlap and hence electronic coupling between neighbouring molecules is the largest (Fig-

ure 4.9(J)). On average, the polaron, in agreement with estimates based on experimental

electron spin resonance data at 290 K [19], is delocalized over 17 molecules (σIPR=10.3).

Delocalization occurs because electronic coupling is now on the same order of magnitude

as reorganization energy, ξ =2.2, which brings several molecules simultaneously into en-

ergetic resonance at any point in time. Yet, disorder in the site energies and electronic

couplings prevent the wavefunction from further delocalization. As I will explain in more

detail in Section 4.3.1, in FOB-SH this effect is born out by the wavefunction Ψ(t) pro-

jecting on the ground or low energy hole eigenstates (valence band states), i.e., states close

to the valence band edge which are delocalized over no more than a dozen molecules (see

Figure 4.4). The motion of the polaron within the herringbone layer of pentacene is par-

ticularly intriguing. Neighbouring clusters of molecules frequently come into energetic

resonance with the polaron causing Ψ(t) to expand to about twice its size for short dura-

tions of time (Figure 4.9(K)). At this point Ψ(t) projects on higher-lying hole eigenstates

(i.e., states closer to the middle of the valence band), which are more extensively delocal-

ized, typically over 20-50 molecules. Some of these sudden bursts of the wavefunction are

successful, meaning Ψ(t) returns to a low-lying hole eigenstate that is localized on a neigh-

bouring cluster of molecules (Figure 4.9(L)). The remarkable correlation between these

so-called “diffusive jumps” and the delocalization of the electron adiabatic states that are

thermally accessed by the charge carrier during its dynamics will be carefully investigated

and discussed in Section 4.3.1.

The dynamics at longer times, up to a few picoseconds, is shown in Figure 4.10 for

both materials. I found that the average duration of a “resonance”, defined here by the time

it takes for the IPR to exceed and subsequently return below 〈IPR〉+σIPR is 7 and 12 fs for

pMSB and pentacene, respectively, see Figure 4.10(A) and Figure 4.10(B), which is close to

the characteristic oscillation time of intramolecular vibrations and site energy fluctuations.

The average time between two resonances is about an order of magnitude larger, 52 fs for

pMSB and 114 fs for pentacene. Similar values are obtained for the other compounds,

see Table 4.5. These resonances give rise to spatial displacements as described qualitatively

above and shown in Figure 4.10 by way of projecting Ψ(t) on the crystallographic directions

b and T1 of pMSB (Figure 4.10(C)) and pentacene (Figure 4.10(D)), respectively. Yet,
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Table 4.5: Characterization of polaron size (IPR) and its thermal fluctuations.a

crystal 〈IPR〉b σ c
IPR (IPR) td

r (fs) τe
r (fs) τ f (fs rad−1)

DATT-h+ 15.9 10.8 15 133 159
RUB-h+ 13.7 8.2 9 71 333
PEN-h+ 17.4 10.3 12 114 202
ANT-h+ 4.9 2.6 9 73 398
NAP-h+ 2.5 1.4 8 58 114
PER-e− 11.6 6.5 10 81 199

PER-e−-c∗ 1.1 0.1 12 277 -
PYR-e−-c∗ 1.2 0.3 9 164 -
pMSB-h+ 1.7 0.9 7 52 159

a All values are averaged over 600 FOB-SH trajectories of approximate length 1 ps. The first 200 fs
of dynamics were discarded. b Average of IPR. c Root-mean-square fluctuations of IPR. d Average
duration of a resonance. The duration of a resonance is defined by the time it takes for the IPR to
exceed and subsequently return below 〈IPR〉+σIPR. e Average time between two resonances. f

Characteristic oscillation time of electronic coupling, corresponding to the peak of highest intensity
at ω0 in the power spectrum of electronic coupling fluctuations from a MD trajectory (5 ps long),
τ =ω

−1
0 , where ω0 is the angular frequency.

significant displacements along these directions occur at somewhat longer times than the

time between two resonances, more characteristic of the oscillation time of the electronic

coupling fluctuations, τ =159 and 202 fs rad−1 for pMSB and pentacene, respectively, see

Figure 4.10(C) and Figure 4.10(D). Hence, as one would expect, only a fraction of the

diffusive jumps (estimated to be about 0.2-0.5) leads to a successful displacement. Notably,

the wavefunction displacements in pentacene are over several lattice spacings at a time,

3-5 nm, that is about an order of magnitude larger than the (mostly nearest-neighbour)

displacements in pMSB. This difference gives rise to a ≈ 50-fold higher charge mobility in

pentacene relative to pMSB as seen in Section 4.2.2.

4.3.1 Investigation of the diffusive jumps motion

In Section 4.3, watching the real-time trajectories generated by FOB-SH, I found that the

charge carrier wavefunction Ψ(t) may be best described as a flickering polaron continuously

changing its shape and extensions though with preference to delocalize in the direction with

the highest coupling. Remarkably, I frequently observe events where the polaron expands

to about 2-3 times its average size, followed by relocalization at a position about a polaron

diameter apart from the original position (Figure 4.9). I now would like to answer the

question what is actually causing the diffusive jumps and wavefunction displacement in

the investigated organic crystals? Therefore, here I analyse the origin of the resonances and
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Figure 4.10: Time evolutions of IPR and carrier wavefunction on a picoseconds time scale. A
single representative FOB-SH trajectory at T =300 K in the herringbone layer of pMSB (A)-(C) and
pentacene (B)-(D) is illustrated. In (A) and (B), the IPR is reported with black lines and the average
IPR, given in Table 4.5, with dashed red lines. In (C) the quantum amplitudes of the molecules
within the herringbone layer, |ui(t)|2, are projected on the b direction, q(xb, t) = ∑

molecules
i,xb,i=xb

|ui(t)|2,

and in (D) the projection is on the T1 direction, q(xT1, t) = ∑
molecules
i,xT1,i=xT1

|ui(t)|2. The charge carrier is
strongly localized in regions coloured in red and delocalized in regions coloured in light blue. The
time scale characteristic for electronic coupling fluctuations, τ (see Table 4.5), is indicated by white
bars. At t=0, Ψ(t) is fully localized on a single molecule (q=1) in both materials. In pMSB small
polaron hopping events (motion along xb) and in pentacene large diffuse jumps of a delocalized
polaron are observed (motion along xT1).

diffusive jump motion from the perspective of the charge-nuclear dynamics in the valence or

conduction band, as simulated by FOB-SH. In essence, I will show that short-lived thermal

intra-band excitations to delocalized band states drive the dynamics of the charge. To this

end I consider two other OSs, i.e. NAP and RUB, still respectively representing a poor and

a good mobility semiconductor at room temperature.

At first I consider the potential energy, Ea, of the active valence band state, ψa, on

which the nuclear dynamics is run in FOB-SH, (lines in red in Figure 4.11(A-B), top of

valence band at 0 meV). We can observe frequent surface hopping events (dashed black
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lines) that ensure approximate Boltzmann population of the active valence band state on the

fast ps time scale of present simulations (see Section 3.3). The average electronic energy is

〈Ea〉 ≈ −1.5 kBT (T =300 K) and low-lying valence band states up to ≈−200 meV below

the top of the valence band are occupied for very short durations of time. Notably, there is

a good correlation between energy and delocalization of the band states: the lower Ea the

higher the IPR of the active state, IPRa (blue lines). This is in accord with the analysis of

the DOS (Figure 4.4) and the well known fact that the states in the middle of the valence

band are more delocalized than at the top of the valence band.

The actual hole carrier wavefunction of RUB and NAP, Ψ(t), closely tracks the active

valence band state of the system, Ψ(t)≈ ψa(t), due to the DC, except, of course, when the

non-adiabatic couplings are large and two (or more) band states interact. Consequently, the

IPR of Ψ(t) (blue lines in the middle panels of Figure 4.11(A) and 4.11(B)) also closely

follows IPRa, though we can observe that the former is smoother and peaks with a certain

delay compared to the latter due to the finite decoherence time.

Crucially, the IPR of Ψ(t) correlates very well with the instantaneous rate of charge

carrier displacement or classical drift velocity vda(t)(vdb(t)) contributing to the MSD (green

lines (see Eq. 4.3), subscript denoting displacement along the a-direction (b-direction) of

RUB (NAP)). I have evaluated this quantity by defining first the center of charge (COC) of

the carrier wavefunction as:

〈r〉(t) =
M

∑
k
|uk(t)|2rk (4.2)

where the sum goes over the M site of the systems, rk represent the center of mass of a

given site. This quantity is projected along the a-direction (b-direction)) for RUB (NAP),

〈xa(b)〉(t)= 〈r〉(t) ·ea(b), where ea(b) is the unit vector in a or b direction. Finally the classical

drift velocity can be calculated by taking the time derivative of the charge displacement:

vda(b)(t) =
d〈xa(b)〉(t)

dt
(4.3)

The peaks in the IPR give rise to peaks in the instantaneous drift velocity in about 75%

of cases - these are the productive resonances resulting in charge carrier displacement and

mobility, as exemplified in Figure 4.11(C) and (E) at about 200 fs. There are also unproduc-

tive resonances where a peak in the IPR does not lead to a corresponding increase in drift

velocity, e.g. at 160 fs and 260 fs in Figure 4.11(B) for NAP. This happens, e.g., when the
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Figure 4.11: Diffusive jumps motion correlated with the delocalization of the adiabatic band statesa.
Panels (A) and (B) show time series along a single representative FOB-SH trajectory for rubrene
(RUB) and naphtalene (NAP), respectively. Top panels: potential energy of the active valence band
state on which the nuclear dynamics is run in FOB-SH simulations, Ea (red lines), time average of Ea
(red dashed lines), IPR of the active valence band state, ψa, IPRa (blue lines) and eigenstate index of
the active valence band state, a (dashed black lines, index a=0 corresponds to the hole ground state
= top of valence band). Bottom panels: IPR of the charge carrier wavefunction, Ψ(t) (blue lines), the
classical drift velocity, vd (green lines), calculated from the charge displacement along the highest
mobility directions (direction a for RUB, vda , and direction b for NAP, vdb ), average IPR of Ψ(t) over
the swarm of FOB-SH trajectories (horizontal dashed blue lines) and eigenstate index (black lines,
replicated from upper panel. Note the correlation between the intra-band excitations, i.e. eigenstate
index a, the IPR of Ψ(t) and the drift velocity. Panels (C)-(E) depict a representative “diffusive jump”
of the charge carrier wavefunction Ψ(t) resulting in drift velocity and charge mobility. Initially the
polaron is of average size, about 5 nm (C); upon thermal excitation it extends to about 10 nm (D)
and finally re-localizes at a position about 5 nm apart from the original position. For comparison, the
unit cell of rubrene is schematically indicated in (D). Isosurfaces for Ψ(t) are chosen as described in
Figure 4.7.

aThe charge transport animations for the full representative FOB-SH trajectories are provided at https:
//www.dropbox.com/sh/a9jtv83sand4er9/AACWW2M0MefPIg9Sm3TOZ7Wya?dl=0 and/or as
supplementary material at https://onlinelibrary.wiley.com/doi/full/10.1002/adts.
202000093

polaron undergoing an expansion returns to its original position or when the expansion is

near symmetric around the original position so that the center of charge does not move.

4.4 Charge mobility limiting factors

As mentioned before in Section 4.2.2 and in agreement with other works [29, 189], the

delocalization of the polaron and hence its mobility is limited by the detrimental effect

122

https://www.dropbox.com/sh/a9jtv83sand4er9/AACWW2M0MefPIg9Sm3TOZ7Wya?dl=0
https://www.dropbox.com/sh/a9jtv83sand4er9/AACWW2M0MefPIg9Sm3TOZ7Wya?dl=0
https://onlinelibrary.wiley.com/doi/full/10.1002/adts.202000093
https://onlinelibrary.wiley.com/doi/full/10.1002/adts.202000093


4.4. Charge mobility limiting factors

of diagonal and off-diagonal electronic disorder. While the diagonal disorder is due to

intramolecular vibrations, the off-diagonal disorder is due to intermolecular vibrations and

several attempts have been made to suppress them, e.g. by introduction of bulky side chains

or by inducing strain to limit the amplitude of these fluctuations [53, 181, 190]. Moreover,

Schweicher et al. recently reported that in one OS, C8-DNNT-C8, 75% of the off-diagonal

disorder is due to a single “killer mode” associated with a long-axis sliding motion [191]. It

is therefore pertinent to explore whether such “killer modes” also exist in the OSs presented

in this thesis.

4.4.1 Filtering out off-diagonal electron-phonon couplings

In order to investigate the nature of the intermolecular modes that give rise to off-diagonal

disorder limiting charge transport and the effect on carrier delocalization when these modes

are suppressed, I calculated the Boltzmann and time averaged IPR of the band states,

〈IPR〉B, as

〈IPR〉B =
1
T

∫ T

0
dt

∑i IPRi(t)e−Ei(t)/kBT

∑i e−Ei(t)/kBT
(4.4)

in which i runs over the eigenstates of the system and the IPRi(t) is calculated according to

Eq. 2.39 for all the i band states.

The change in the 〈IPR〉B is then a proxy for the expected change in mobility, as the

wavefunction delocalization is directly related to the extension of the band tail states as

seen in Section 4.3.1 (and predicted by transient localization theory). In this analysis all

off-diagonal thermal fluctuations larger than a given cutoff-frequency, ωmax, are removed

(so-called “filtering analysis”) to test their importance for the delocalization of the states.

In brief this procedure works in this way: (i) MD trajectories (at least 10 ps) are run for

converged supercell sizes and the complete Hamiltonians is computed every 2 fs along these

trajectories. (ii) From these Hamiltonians the time series of the electronic couplings are

calculated and subsequently Fourier transformed to obtain the frequency resolved spectra

for each of the couplings. (iii) The Fourier components above a given frequency cut-off

(ωmax in Figure 4.12) are set to zero, and the spectra transformed back to the time domain

for reconstruction of the time-dependent Hamiltonians with the off-diagonal frequencies

larger than ωmax missing. (iv) Finally, these Hamiltonians are diagonalized at each time

step giving the frequency-filtered band energies Ei(t) and the Boltzmann and time-averaged

IPR according to Eq. 2.39.

These values have been reported in Figure 4.12 for pMSB, NAP, PEN and RUB as a
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Figure 4.12: Influence of removal of off-diagonal electron-phonon couplings on polaron delocal-
ization. The Boltzmann and time-averaged IPR of the valence band eigenstates, ψi, 〈IPR〉B (Eq 4.4,
blue lines), is plotted against the angular cut-off frequency, ωmax, for low mobility OSs pMSB, NAP
(A) and (B) and high-mobility OSs RUB and PEN (C) and (D). The data are obtained by removing
(“filtering”) all thermal fluctuations of all off-diagonal coupling matrix elements Hkl with an angu-
lar frequency ω > ωmax. For comparison, the average IPR of the charge carrier wavefunction from
FOB-SH trajectories, Ψ(t), is shown in dashed grey lines. Notice the different trends for low and
high-mobility OSs, see the text for an explanation.

function of ωmax (blue lines). For comparison, the average IPR of Ψ(t), 〈IPR〉, obtained

from FOB-SH runs with all frequencies included is shown in dashed grey lines. For OSs

with medium to high mobilities, such as PEN, and RUB, I found that 〈IPR〉B indeed strongly

increases when coupling fluctuations slower than 50 cm−1 are removed, e.g. Figure 4.12(C)

and (D). Hence, removing coupling fluctuations for these materials will increase the trans-

port efficiency. Yet, the increase in 〈IPR〉B is smooth and appears to be a collective effect

of many modes - it is not possible from this analysis to single out a small set of discrete

phonon frequencies that would be particularly important in increasing the delocalization.

I also note that even when all coupling fluctuations are filtered out (ωmax = 0) the charge

remains localized over a finite number of molecules due to diagonal disorder.

The situation is qualitatively different for the low mobility OSs pMSB and NAP:
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〈IPR〉B now slightly decreases as the coupling fluctuations are removed, e.g. Figure 4.12(A)

and (B). In these materials the magnitude of electronic coupling is small and the low fre-

quency fluctuations increase, but only very slightly, the delocalization of these states (see

also Figure 4.5) thereby favouring formation of resonances and facilitating charge trans-

port [30]. If one applies Marcus theory for these OSs (with the above caveats), this trend

becomes immediately obvious: the hopping rate is proportional to 〈|Hkl|2〉= 〈Hkl〉2 +σ2

and therefore increases with increasing off-diagonal thermal fluctuations σ2. This analysis

shows that the mobility of high-mobility OSs can be further increased by removing off-

diagonal thermal disorder, but that low mobility OSs cannot be turned into high-mobility

OSs via this strategy.

4.4.2 Discussion on design rules for high-mobility OSs

In the previous sections I have shown that key to high-mobility OSs is a high density of

thermally accessible delocalized states at the top of the valence band (hole) or bottom of

the conduction band (electron). For OSs this is only the case when several conditions are

met (1) electronic couplings larger than half the reorganization energy, V > λ/2, where

V =
√
〈|Hkl|2〉 is the mean coupling, to avoid trapping and formation of small polarons, (2)

small thermal fluctuations of electronic coupling (i.e. low off-diagonal disorder), σ <V . (3)

For 2D and 3D conduction, isotropic couplings with specific sign combinations favouring

low-energy delocalized electronic states. Importantly, I note that the same consensus on

design rules has been reached before on the basis of transient localization theory [56].

The problem with most OSs is that one or more of these requirements are not fulfilled.

While many OSs exist where (1) is fulfilled, it is still an open question how to best reduce

off-diagonal disorder (2) without simultaneously diminishing the mean electronic coupling

V . As mentioned before, reduction of thermal fluctuations has been attempted with var-

ious degree of success via core functionalization of organic molecules [53, 191] and by

application of external crystal strain and pressure [181, 190, 192]. Even more challeng-

ing is the design of specific sign combinations of couplings due to the complicated nodal

shape of the relevant frontier orbitals. Consequently, the thermally accessible states in most

materials tend to be rather localized resulting in modest instantaneous drift velocities and

mobilities, as illustrated for pMSB and NAP in Figure 4.12. Arguably, among all known

molecular OSs, RUB fulfils these criteria best, though its mobility would be even greater if

the couplings were more isotropic and the off-diagonal electronic disorder was smaller (see
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Chapter 4. Room temperature mobilities in molecular semiconducting crystals

Figure 4.5(C) for the extreme case of zero off-diagonal disorder). Nevertheless, the quan-

tities appearing in rules (2)-(3) can be relatively straightforwardly calculated from DFT

and used to refine high throughput screening studies that have previously focused on rule

(1) [193, 194].

4.5 Conclusion
In conclusion in this Chapter, I have demonstrated that FOB-SH enables unprecedented

insight into the elusive, intricate and long-debated nature and dynamics of charge carrier

transport in crystalline OSs, based on rigorous physical principles. Computed values for

polaron size and charge mobility are in excellent agreement with reliable experimental ex-

perimental estimates. I have also reported the full 2D charge mobility tensors for six or-

ganic crystals in their highly conductive planes and uncovered the real-time dynamics of

the charge carriers. In contrast to traditional transport theories, FOB-SH provides a sound

description of the notoriously challenging but practically important charge transport regime

of room temperature high-mobility OS materials and correlates very well with the recently

proposed transient localization theory. I found that the charge carrier wavefunction forms

a flickering, highly dynamic polaron that is delocalized over many molecules in the most

conductive crystals and of finite size due to thermal energetic disorder. Thermal intra-band

excitations lead to short expansion (“diffusive jumps”) of the polaron during which it trav-

els several lattice spacings at a time in highly conductive crystals, followed by de-excitation

and relocalization. It is these short bursts that drive charge carrier diffusion in these mate-

rials. Hence, from this dynamical perspective, it is more suitable to describe charge carrier

transport in OSs as a transient delocalization (rather than transient localization) process.

These findings are in agreement with the experimental evidence of a coexistence between

delocalized and localized carriers in OSs.
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Chapter 5

Temperature dependence of the mobility in

organic semiconductors
In this Chapter*, I consider the trend of the charge carrier mobility as a function of tem-

perature and study the crossover from hopping to band-like transport in organic semicon-

ductors using the FOB-SH code. The relationship between the temperature dependence of

the charge mobility and the underlying transport mechanism in organic semiconductors has

been a widely visited and debated topic in the literature [4, 15, 58, 173]. The advantage

of non-pertubative methodologies, like FOB-SH, thereby one solves explicitly the coupled

charge-nuclear motion, is that the mechanism is directly observable from the simulation,

without reference to its temperature dependence (see also Chapter 4). The latter, in fact,

is often used to discern a hopping-like mechanism (commonly thermally activated) from a

more delocalized transports (characterized by a negative power law).

The question I would like to answer in this Chapter is whether FOB-SH is able to

recover the two extreme regimes and how the crossover between hopping transport at low

electronic coupling to a power law band-like temperature dependence at high coupling takes

place. I also investigate to what extent FOB-SH is able to capture the temperature depen-

dence of the mobility measured for real OS materials.

5.1 Background on the mobility temperature dependence

An increase in mobility with decreasing temperature that obeys a power-law relation,

µ ∝ T−n with 0.5 < n < 3, has been often seen as a signature of band-like transport

[12, 195] as found in high-quality single-crystal devices from time-of-flight [10, 98, 176],

time-resolved terahertz pulse spectroscopy [196], and space-charge-limited current mea-

surements [161]. The modelling of this kind of transport has usually been done by assuming

that the electronic coupling is much larger compared to the reorganization energy (or local

electron-phonon coupling), V >> λ/2, and therefore describing the adiabatic states of the

*The content of this Chapter related to Section 5.2 is published in Giannini, S., Carof, A. & Blumberger,
J. Crossover from Hopping to Band-Like Charge Transport in an Organic Semiconductor Model: Atomistic
Nonadiabatic Molecular Dynamics Simulation. J. Phys. Chem. Lett. 9, 31163123 (2018). The following
figures and related equations have been derived by Dr. Antoine Carof: Figure 5.5 and Figure 5.6. The last part
in Section 5.3 regarding the temperature dependence of the mobility in real OSs is currently unpublished work.
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Chapter 5. Temperature dependence of the mobility in organic semiconductors

systems as delocalized Bloch states and treating the relaxation due to the interaction of the

charges with the lattice vibrations as a small perturbation. On the other hand, a thermally

activated mobility, described by an Arrhenius-like relation, is generally seen as a signa-

ture of hopping transport typical of disordered systems (polymeric and solution-processed

semiconductors). In these materials, the charge is trapped in a localized state and it needs

some thermal activation energy to be transferred to a neighbouring site. The trapping can

originate, e.g., from a disordered morphology, giving rise to a broad distribution of site en-

ergies. In this case Marcus and related rate theories have been widely considered and it was

assumed that V << λ/2.

However, both these interpretations are not always valid. In fact, as seen in the Intro-

duction, it is now accepted that in OSs there is often a coexistence of localized and more

delocalized states as seen by experiments [18]. Moreover, although the band-like transport

proposed for high-mobility organic semiconductors has some common features with the

classical band transport found in many inorganic semiconductors, as seen in Chapter 4, it

is fundamentally different due to the fact that, in organic crystals, the charge carrier is de-

localized only over a few molecules, since the states thermally accessible by the charge are

localized tail states (see Figure 4.4). In addition, it is also known that for certain combina-

tions of parameters characterizing OSs also the hopping mechanism can produce a negative

slope [100].

5.2 Crossover from hopping to band-like charge transport

I will show in the following Section that non-adibatic molecular dynamics is a powerful

tool to investigate the dichotomy between the hopping-like and the more delocalize band-

like transports as a function of temperature and other important parameters (i.e. local and

non-local electron-phonon couplings and related fluctuations). To this end, I have used an

analogue OS model as the one adopted in Chapter 3, i.e. a chain of ethylene molecules. This

model allows me to span a wide range of transport parameters (e.g. electronic couplings)

without changing the actual characteristic of the system, thus making the investigation con-

sistent across all different transport regimes.

5.2.1 Simulation details

FOB-SH calculations presented here are carried out for hole transport along linear 1D chains

of ethylene-like molecules (ELMs). The set-up and parametrization of the organic semicon-
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5.2. Crossover from hopping to band-like charge transport

ductor model formed by of ELMs follows the description given in Section 3.1.1.

The reorganization free energy λ for hole transfer between two ELMs is fixed to 200

meV. FOB-SH simulations are carried out for three different coupling strengths, C = 75.0,

354.0, 1414.0 meV giving average coupling values V = 〈|Hkl|2〉1/2 = 8, 30, 120 meV, de-

noted in the following as “small”, “medium” and “large” coupling. The required length of

the chain, i.e. number of ELMs, depends on the coupling strength: 5, 30, 50 molecules are

used for small, medium and large coupling, respectively, which were shown to give con-

verged mobilities. The chains are placed in rectangular boxes of length 60, 160, 300 Å,

lateral size 60× 60 Å2, and are embedded in 123, 505, 993 neon atoms, respectively. The

neon atoms take the role of a heat bath facilitating energy exchange with the ELMs while

running the FOB-SH simulation in the NVE ensemble. This way I avoid the introduction of

artificial bias forces due to the thermostat.

For preparation of initial configurations with the hole localized on ELM 1, the system

is equilibrated for 1 ns in the NVT ensemble on the diabatic potential energy surface H11,

where ELM 1 is described with the force field parameters for the charged state and all

other ELMs with the ones for the neutral state. The last configuration is used to run a 1

ns NVE trajectory on the same diabatic surface to retrieve initial positions and velocities

for the FOB-SH simulations. The hole carrier wavefunction is initially placed on ELM 1,

Ψ(0) = φ1(0). The MD time step is chosen to be 0.1 fs unless stated otherwise, which was

shown to give converged mobilities (see Figure 5.3 below), and the electronic time step was

set to 0.02 fs. The mean squared displacement of the charge MSD (Eq. 2.31) was averaged

over 1000 trajectories of variable length that was chosen to reach the diffusive regime for

each coupling strength and temperature. For large coupling, trajectories are run for 1 ps

at all temperatures. For medium coupling, trajectories are run for 5 ps at all except the

lower temperatures 100, 75, 50 K, where longer trajectories of lengths 10, 15 and 25 ps

were required. For small coupling, I generated 5 ps trajectories for all except the lower

temperatures 140, 124, 105, 87 K, where 15, 25, 25 and 80 ps were required. Error bars for

mobility were estimated from blocks of 200 trajectories.

5.2.2 Impact of algorimitc improvements at various temperatures

First of all, I briefly consider again the role of the implemented algorithms, already ex-

tensively discussed in Chapter 3, namely the state tracking procedure, the DC method and

spurious charge transfer correction (SCTC) in tackling the trivial crossings problem and re-
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lated unphysical long-range charge transfers (see Section 3.3). Compared to Chapter 3, I go

one step further here by considering the convergence of mobility, not only with system size,

but also with time step, and more importantly I investigate the impact of the decoherence

time on the mobility and wavefunction delocalization as a function of coupling strength and

temperature.

I have previously pointed out that the DC is very important to keep the localization of

the wavefuntion similar to that of the active state (i.e. the wavefunction should resemble the

active state whenever it leaves the non-adiabatic coupling region as seen in Section 2.2.3).

As mentioned before, different DC approaches are available in the literature and I have im-

plemented some of them within our code. A very good consistency between the quantum

probabilities and the fraction of trajectories in each state can be retrieved by using the damp-

ing algorithm (see benchmark in Section 3.2). Here, in Figure 5.1 I compare the mobility

(blue bars) and the IPR (red bars) obtained with three decoherence times: the Heisenberg

uncertainty principle-related decoherence time, Eq. 2.23 (termed PDDC in Chapter 3), the

energy-based decoherence time with C0 = 0.1 Ha [87], Eq. 2.22 (EDC) and and the force-

based decoherence time, Eq. 2.24 (FORCE-BASED), with the result obtained without any

DC. I performed this analysis for the two extreme temperatures (100 and 1000 K) and two

coupling regimes (30 and 120 meV).

Importantly, I observe that, provided that the DC is included, the actual decoherence

time in the damping procedure (Section 2.2.3) does not significantly influence the mobility

or the IPR for this system (the variations are within the error bars). This means that, al-

though the decoherence events are paramount to relocalize the wavefunction and recover an

adiabatic state, the time with which this happens is not so relevant for mobility calculations,

as long as the internal consistency is maintained (see also Figure 3.3). It is worth to point

out that, in all temperature regimes, the polaron size (IPR) is strongly overestimated without

DC. Indeed, in the absence of DC, when the wavefunction delocalizes after passing through

the crossing region it cannot relocalize again and the higher lying electronic states (gener-

ally more delocalized as seen in Figure 4.4) remains occupied. That is, the temperature of

the electronic subsystem becomes infinite, the problem of the original Ehrenfest and surface

hopping methods. Interestingly, the difference between mobility results with and without

DC is large at low temperature (factor 5-10 at 100 K) and much smaller at high temperature

(factor 1.3-1.6 at 1000 K). A possible explanation is that in the high temperature regime
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5.2. Crossover from hopping to band-like charge transport

Figure 5.1: Decoherence as a function of electronic coupling and temperature. Hole mobility (blue
bars) and IPR (red bars) using no DC, and three decoherence times as reported in Section 2.2.3:
Eq. 2.23 (PDDC), Eq. 2.22 (EDC) and Eq. 2.24 (FORCE-BASED). These values are shown for
medium and large coupling at 100 K in (A) and (B) respectively and at 1000 K in (C) and (D)
respectively.

the wavepacket remains always coherent (due to the larger number of hops between states),

thus the actual decoherence mechanism is less important and so it is the time with which it

occurs.

Turning the attention to the trivial crossing problem, it is important to stress again, that

even when the identity of states is properly tracked and the trivial crossing events are effec-

tively corrected using both tracking algorithm and self consistence correction (SC-FSSH)

(Section 2.2.4), the ad-hoc decoherence damping procedure itself could induce spurious

long-range charge transfers. The reasons behind the decoherence-induced spurious charge

transfer (DCICT) problem was extensively discussed in Section 2.2.5, alongside a useful

correction to counteract this issue called spurious charge transfer correction (SCTC). Both

these algorithms help to properly converge mobility results with time step as well as system

size for different coupling regimes as explained below. In particular, I briefly investigate
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Figure 5.2: Convergence of hole mobil-
ity with respect to size and MD time step
for a chain of ELM as a function of cou-
pling strength. FOBSH simulations were
carried out for (A) large, (B) medium and
(C) small electronic coupling strengths V ,
with average values 120, 30, 8 meV, re-
spectively, for 3 MD time steps (0.5, 0.1,
0.05 fs). λ =200 meV and T =1000 K in
all simulations. In panel (B) I show results
if reordering of states via the state tracking
algorithm (NO REORD) or decoherence-
induced spurious charge transfer correction
is switched off (NO SCTC).

again here the convergence of mobility with chain length and MD time step for the the dif-

ferent electronic coupling strengths (i.e. low, medium and high coupling), the results are

reported in Figure 5.2. I find that in all cases the mobility converges at a time step of 0.1 fs.

The minimum chain length required for convergence increases with increasing coupling or

mobility values from 5 ELMs for low coupling to 50 ELMs for high coupling strengths. The

excellent convergence behaviour is due to the state tracking algorithm applied for detection

of trivial crossings and the STCT algorithm applied to remove decoherence correction-

induced artificial long-range charge transfers. When either one of the two is switched off

the mobility steadily increases and diverges with chain length (dashed and dashed-dotted

lines in Figure 5.2) for the reasons explained above. The two algorithms I employed here

can deal with trivial crossings and spurious long-range transfers very effectively, in partic-

ular when considering that the results shown in Figure 5.2 are for very high temperatures

(1000 K), which is the most challenging regime as nuclear motion is fast and the probability

to miss a trivial crossing is high.
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5.2.3 Mobility crossover from activated to band-like transport

I now come to the main result of this Chapter, the hole mobilty as a function of temperature,

shown in Figure 5.3(A) for small, medium and large electronic coupling strength. For small

and medium coupling values I observe thermally activated transport at low temperatures and

band-like decay at higher temperatures. As the coupling strength is increased the activated

regime gradually disappears. For the largest coupling strength investigated the mobility

exhibits a band-like decrease for all temperatures according to a power law µ ∝ T−1.2. These

results, obtained here for a fully atomistic model with electronic structure detail, are similar

to the ones reported in the model Hamiltonian studies by Wang and co-workers [72, 121]

implying that the latter provides a realistic coarse-grained description for charge transport.

Figure 5.3: Temperature dependence of (A) hole mobility and (B) inverse participation ratio (IPR,
Eq. 2.38) for small (red), medium (blue) and large (green) electronic coupling strengths V . The MD
time step is 0.1 fs and λ = 200 meV in each case. FOB-SH mobilities are indicated by circles (©
symbols), FOB-SH mobilities with off-diagonal elements Hkl frozen to V are indicated by squares
(“Frz. V ”, � symbols). Error bars are obtained from 5 blocks of 200 trajectories each. Hopping
mobilities, obtained by solving a master equation with semiclassical ET rate constants, are indicated
in solid lines for medium and low coupling strengths, see Appendix B.1 for details. Best fit to an
inverse power law is indicated by dashed line for V =120 meV.

To obtain some insight into the molecular mechanism of charge transport I characterize

the localization length of the hole wavefunction by using the inverse participation ratio

IPR(t) (Eq. 2.38). It converges rather quickly in these simulations, after 400 fs at high

coupling and after 2 ps at medium and low coupling strengths. The converged values, in the
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following simply denoted as IPR, are shown in Figure 5.3(B).

For small coupling, IPR=1 for all temperatures, indicating that hopping of a fully lo-

calized hole is the charge transport mechanism in this regime (according to what assumed

in Marcus theory). Hole hopping from one molecule to the next is driven by thermal fluc-

tuations in the site energies. When the energy of the site carrying the hole (say, site 1, H11)

becomes resonant, i.e. within about H12 of the energy of the neighbouring site 2, H22, the

charge starts to oscillate between the two molecules and surface hops may take place. At

the end of the lifetime of the resonance the hole may settle on site 2, followed by thermal

relaxation to a lower site energy as determined by reorganisation energy λ . During this

process the active adiabatic electronic state that drives the nuclear dynamics remains very

localized and changes from a state close to diabatic state φ1 to a state close to diabatic state

φ2. As seen before, the DC is paramount to achieve good internal consistency and local-

ization of the hole wavefunction Ψ(t) ≈ φ2 after the hopping event has taken place. If the

DC is switched off Ψ(t) spreads unphysically causing the IPR to diverge with time (see

Figure 5.2).

The above observations suggest that charge transport in this regime may be well de-

scribed by a simple hole hopping model,

ELM1+–ELM2–ELM3–
k21

GGGGGGBFGGGGGG

k12

ELM1-ELM2+–ELM3–
k32

GGGGGGBFGGGGGG

k23

· · ·

with ET rates k ji obtained from electron transfer theory and evaluated for the same values

of electronic coupling and reorganization energy that were used in the FOB-SH simula-

tions. To this end, I have solved a chemical master equation for hole hopping to obtain the

time-dependent hole population of each site and the corresponding hole hopping mobility

(see Appendix B.1 for details on the algorithm that I have developed to solve the Master

equation characterizing the hole hopping). The results are shown in Figure 5.3(A) for the

two coupling strengths where hole hopping is observed (low and medium coupling, solid

lines). The agreement with the FOB-SH mobilities is very good with deviations that are

typically less than a factor of 3. The mobility saturation at around room temperature is

because the ET activation free energy ∆A‡ [197] becomes comparable to thermal energy at

this point, ∆A‡=λ/4− (V −V 2/λ )≈1−2kBT at T =300 K and λ =0.2 eV (see Eq. B.5).

For higher temperatures the ET rate and diffusion coefficient become nearly temperature

independent (T−1/2 for non-adiabatic ET, T 0 for adiabatic ET) and the mobility decay is

dominated by the T−1 dependence of mobility on the diffusion coefficient in the Einstein
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equation (Eq. 2.31).

Figure 5.4: Snapshots of a FOB-SH simulation for a chain of 50 ELMs at large electronic coupling
strength (V =120 meV, λ =200 meV) at (A) 50 K and (B) 1000 K. The real part of the charge carrier
wavefunction Ψ(t) Eq. 2.4 is shown in red and blue isosurfaces and the imaginary part in yellow and
green isosurfaces. Note, the increased localization of the polaron at higher temperature (panel (B)).

The situation is strikingly different for large coupling strength where a finite activation

barrier for hole transfer no longer exists (V > λ/2) [12, 16, 32]. At low temperatures the

hole is delocalized over 4 ELMs on average and as the temperature is increased the IPR

steadily decreases to 2. This decrease in IPR correlates remarkably well with the decrease

in hole mobility.

In Figure 5.4, I show a few snapshots of the hole wavefunction Ψ(t) along a randomly

selected FOB-SH trajectory. At low temperature, the hole can quickly spread over several

molecules to form a polaron that moves along the chain on the 100 fs time-scale. By con-

trast, at high temperature the hole wavefunction remains trapped over a smaller number of

sites and cannot move as easily along the chain. What is perhaps surprising is that the ex-

tent of polaron delocalization is not very pronounced in this model, even at temperatures as

low as 50 K. This is not an artefact of the finite size of the simulation system (all IPRs are

well converged with respect to system size), but an indication that small thermal fluctua-

tions are sufficient to prohibit the formation of extensively delocalized, band-like electronic

states. Previously, localization of the polaron has been attributed to thermal fluctuations of

electronic coupling (non-local electron-phonon coupling) [12, 56, 74] and site energy (lo-

cal electron-phonon coupling) [72, 121]. To better understand the importance of these two

contributions, I recomputed the mobility with the off-diagonal Hamiltonian matrix elements

Hkl frozen to the thermal average V . The results are shown in Figure 5.3 (squared symbols

in green). I find that the qualitative trends in mobility and IPR are already well reproduced
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for frozen electronic couplings. Inclusion of coupling fluctuations enhances polaron local-

ization and reduces mobility but does not change the qualitative picture. This means that

the temperature-induced localization is strongly related to both site energy fluctuations and

coupling oscillations.

5.2.4 A simple resonance model

In order to better understand the role of site energy fluctuations and temperature-induced lo-

calization of the wavefunction, I show in the following that the trends observed for an M-site

chain, change in slope of mobility versus temperature at low couplings, and power-law de-

crease at high couplings, correlate well with the temperature-dependence of resonance in a

simple two-site model. We can consider the standard ET model comprised of two parabolic

free energy curves for donor and acceptor diabatic states, A1(∆E) and A2(∆E), respectively

(see also Figure 1.2), as a function of the site energy difference ∆E =H22−H11 and as-

sume constant electronic coupling V =H12. The free energy profile for the corresponding

adiabatic electronic ground state can be written as [32]:

A(∆E)≈ A1(∆E)+A2(∆E)
2

− 1
2

√
∆E2 +4V 2 (5.1)

From the equation above, we can determine the corresponding probability of the site ener-

gies difference P(∆E),

P(∆E) =
exp(−A(∆E)/kBT )∫

exp(−A(∆E)/kBT )d∆E
. (5.2)

Defining the ET resonance region (region of transition state and avoided crossing) as−2V <

∆E < 2V , we can obtain the probability to be in resonance, Pres, by solving the integral

Pres =
∫ 2V

−2V
P(∆E)d∆E. (5.3)

The probability distributions Eq. 5.2 are shown in Figure 5.5 for small and large coupling

strengths and for three different temperatures. The resonance probability Eq. 5.3 is indicated

by the shaded areas in each case and Pres/T plotted on the secondary axes in Figure 5.6

(dotted lines).

For small coupling the peaks of the probability distribution are at ±λ for all tempera-

tures, well outside the narrow resonance region explaining the low mobilities in the hopping
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Figure 5.5: Probability density distributions Eq. 5.2 for the site energy difference ∆E =H22−H11
of a 2-state model, λ = 200 meV. The resonance region for the charge transfer, ±2V is indicated
by black dashed vertical lines. (A) For small electronic coupling strength V << λ/2, temperature
broadening of ∆E increases the resonance probability Pres (Eq. 5.3, shaded area under curves). (B)
For large coupling strength V ≥ λ/2 the temperature broadening reduces resonance probability.
Pres/T correlates well with the computed mobilities for the ELM chain (dotted lines in Figure 5.6)

regime (Figure 5.5(A)). Increasing the temperature widens the energy gap distributions and

increases the resonance probability and therefore the hopping mobility. However, this effect

saturates at around room temperature causing the curve Pres/T to flatten and to crossover

from a positive to a negative slope (Figure 5.6 (red and blue dotted lines)).

The situation is markedly different at high coupling, see Figure 5.5(B). In this case

the barrier for ET no longer exists and the transition state at ∆E =0 becomes a minimum

on the adiabatic free energy surface Eq. 5.1. Therefore the peak of P(∆E) is centered

at ∆E = 0 for all temperatures, well within the resonance region. As the temperature is

increased the distributions again broaden, but this leads now to a reduction in resonance

probability. The downward slope that the model predicts is in excellent agreement with the

results from FOB-SH simulations, see Figure 5.6 (green dotted lines). It is remarkable that

this very simple two-state model can reproduce the trends in mobility for a M-site chain

in all relevant mobility regimes bearing in mind that no dynamical effects are included,

only equilibrium free energies. A natural extension of this model would be to include the

possibility for M-site resonances (with M > 2) [32, 188] and to derive an expression for the

average drift velocity as required for prediction of mobilities.
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Figure 5.6: Probability resonance as a function of temperature. FOB-SH mobilities reported (from
Figure 5.3) are compared with the probability resonance (dotted lines) divided by temperature
(Pres/T ) results obtained with the two states resonance model as explained in the text.

5.2.5 Discussion on the duality between hopping and band-like transport

Spanning four order of magnitude in the mobility and very different behaviours in the lo-

calization/delocalization of the charge with temperature going from hopping to band-like

transport, the results obtained in this Section can provide an overall view regarding the un-

derlying mechanisms leading the charge transport. When the coupling is small compared to

reorganization energy FOB-SH recovers the activation regime characterizing small polaron

theories often successfully applied to deal with structural disordered systems [12, 198]. The

charge transport is mainly guided by disorder in the site energies created by the localized

charges. The charge has to overcome the energetic barrier between diabatic surfaces in order

to hop from one molecule to the other. Once this happens, the wavefunction is transferred

to the nearby molecule along with its structural deformation.

The situation becomes quite different and possibly more interesting at high coupling,

where there is a coexistence between delocalized and localized charges depending on the

temperature. This is in agreement with the results obtained by Fratini and Ciuchi [52] where

they employed Green’s function to solve the Kubo formula and determined the carrier mo-

bility in rubrene as a function of temperature. When V > λ/2, small polarons cannot be

formed at any temperature preventing the existence of activation regime and the states are
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more delocalized. In this regime off-diagonal fluctuations become detrimental for the trans-

port and further localize the charge. In OSs such delocalization includes only a handful of

molecules, in accordance with the findings of Wang and Beljonne in Ref. [72] where they

used a modified surface hopping based on model Hamiltonians. Evidence from many ex-

perimental measurements have also pointed to the existence of finite size polarons typically

localized on a few molecular sites [19–22].

5.3 Mobility temperature dependence in real OS crystals

I investigate at this point the temperature dependence of the mobility across the 2D her-

ringbone layer of some of the OSs presented in Section 4.1 (i.e. naphthalene (NAP-h+),

anthracene (ANT-h+), perylene (PER-e−) and rubrene(RUB-h+)). The objective is to ex-

plore the origin of the band-like dependence of the mobility as a function of temperature as

found by experiments in these OSs [11, 98, 157, 160, 176, 199, 200]. In fact, it is now clear

from the previous Chapters, that both band and hopping-like transport are hardly justified

in explaining the temperature dependence in organic crystals (where the electronic coupling

is commonly close to half the reorganization energy). I also would like to explore here

whether FOB-SH can capture the experimental slope of the mobility versus temperature.

5.3.1 Simulation details

The systems set-up and parametrization are the same as detailed in Section 4.1.1 unless

otherwise stated. Supercells were equilibrated at different temperatures in the range from

150 to 350 K for each system following the previously established protocol. The number

of active molecules considered was 493 for NAP, 696 for ANT, 660 for PER and 1020 for

RUB. Note that the active regions are larger then the ones reported at 300K in Table 4.2 in

order to converge larger charge delocalization and mobility when lowering the temperature

(see below). To counteract as much as possible the trivial crossing problem in these large

cells the time step for FOB-SH was normally chosen as small as 0.05 fs. As a further

note, the present simulations do not include the effect of lattice expansion/contraction as a

function of temperature or the effect of possible polymorphisms that might be present in

different conditions. These effects may change some of the parameters of the Hamiltonian

(e.g. electronic couplings) in non-trivial ways. In particular, it was found that upon thermal

expansion the phonon frequencies soften as the molecules move apart resulting in a shift

toward lower frequencies [201, 202]. This may impact the amount of dynamic disorder
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and ultimately the mobility. Some work, that may provide additional insights into this

problem, is currently ongoing in our laboratory. The effect of compressive strain on off-

diagonal disorder in a rubrene crystal is being scrutinized by using DFT-MD simulations

(see Section 7.2) . In the present context, I was not interested in exploring these effects, but

rather in investigating whether FOB-SH can recover to some extent the negative temperature

dependence slope that is commonly observed in experiments.

5.3.2 Effect of thermal motion on the Hamiltonian

Before looking at the temperature dependence of the mobility, I focus here on the impact

that thermal disorder has on key Hamiltonian parameters such as electronic coupling and

site energy fluctuations. To this end, I have calculated average couplings and related stan-

dard deviations for two crystal pairs (P and T in Figure 4.1, except for PER where the pairs

6.1 Å and 8.1 Å apart with respect to each other, where considered). These averages were

obtained by sampling the AOM couplings for all possible crystal P(T ) pairs in the crystal

along 10 FOB-SH trajectories of length 1 ps at 200 and 350 K. At least 300 trajectories were

used instead to calculate the variance σ∆E of the site energy difference ∆Ekl = Hkk−Hll at

the same two temperatures. The distributions are generally Gaussian to a good approxima-

tion so that the fluctuation of the couplings and site energies can be well characterised by

their averages and standard deviations. All values are reported in Table 5.1.

Table 5.1: Temperature dependence of Hamiltonian parameters

T pair P pair

System Temp. (K) σ∆E
a 〈Hkl〉 b σH

b V d 〈Hkl〉 b σH
c V d

NAP
200 81.5 20.2 20.1 28.5 -29.6 14.4 33.7
350 102.6 19.7 26.4 32.9 -29.4 18.8 33.4

ANT
200 73.3 -27.4 33.9 43.6 -49.0 22.7 51.6
350 95.1 -24.7 43.4 50.0 -48.1 28.6 50.7

PERe
200 78.8 54.8 12.2 56.1 42.2 15.5 45.1
350 100.4 52.9 15.2 55.0 40.8 19.2 43.8

RUB
200 71.9 -19.4 4.8 20.0 73.5 20.3 75.2
350 93.1 -18.2 6.6 19.3 75.9 25.9 77.5

a Site energy fluctuations (meV), σ∆E =
√
〈∆E2

kl〉−〈∆Ekl〉2. b Average couplings (meV). c Coupling

fluctuations (meV), σH =
√
〈(Hkl−〈Hkl〉)2〉. d V =

√
〈|Hkl |2〉=

√
〈Hkl〉2 +σ2

H . e For PER, T pair

corresponds to 8.10 Å crystal pair, whereas P pair corresponds to 6.10 Å crystal pair.
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5.3. Mobility temperature dependence in real OS crystals

I note that the standard deviation of the site energy difference σ∆E increases with

increasing temperature. This is in agreement with Marcus linear response theory, where

σ∆E =
√

2KBT λ . Notably, quantization of high frequency quantum modes is not captured

by the present semiclassical (FOB-SH) dynamics and this may have some impacts on the

mobility (see below for a discussion). The same trend characterises the coupling, σH , which

modestly increases with increasing temperature, with σH ∝
√

T consistently to what found

in Ref. [57]. Whereas, the average coupling 〈Hkl〉, although slightly decreasing (in absolute

value) with increasing temperature, remains essentially temperature independent for all the

systems. These trends are in line with the findings of Troisi et. al in Refs. [203, 204]

Figure 5.7: Valence band states delocalization at different temperatures for NAP (A) and RUB (B)
depicted in a 2D histogram correlating IPRi (Eq. 2.39) against energy of the band states, ψi. On the
left panels the temperature is 200 K, while on the right panels is 350 K. The energy averaged IPRi
is shown in magenta lines. Notice that thermal disorder leads to (more strongly) localized thermally
accessible states at the top of the valence band in RUB (see 〈IPR〉B, Eq. 4.4), but the same effect is
quite small in NAP. White arrows exemplify the thermally accessible states.

To quantify the effect that smaller site energy fluctuations and smaller coupling fluc-

tuations have on the delocalization of the states at lower temperature, I have reported in

Figure 5.7 the valence band states of two very distinct OSs: NAP, where the couplings are

small compared to the reorganization energy, and RUB, where the couplings are comparable

to the latter. In particular, I have considered 2D histograms correlating the IPRi (Eq. 2.39) of
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the eigenvectors of the FOB-SH Hamiltonian against their energy for two different temper-

atures (i.e. 200 K and 350 K). We can observe that the characteristic asymmetry in the DOS

observed before in Figure 4.4 at 300 K is preserved at these two different temperatures.

Importantly, at lower temperature the band states tend to become more delocalized espe-

cially in the middle of the valence band consistently with the fact that the thermal disorder

is actually reduced (both site energies and couplings fluctuations decrease with decreasing

temperature). This effect also causes the band tails to shrink, thus more delocalized states

appear closer to the top of the valence band (or the bottom of conduction band if one would

consider electron transport) [204]. In RUB this effect is quite pronounced as shown in Fig-

ure 5.7(B), whereas it is much weaker in NAP Figure 5.7(A). I have quantified this result

by calculating the Boltzmann and time averaging IPR of the band states, 〈IPR〉B (Eq. 4.4,

introduced in Chapter 4). The 〈IPR〉B, gives a measure of the delocalization of the thermally

accessible states at the top of the valence band for hole transport (bottom conduction band

in the case of electron transport). In RUB, 〈IPR〉B is around 12.5 at 350 K and it increases

to 20.2 upon lowering the temperature to 200 K. In contrast, in NAP the delocalization is

quite modest for the thermally accessible state and the 〈IPR〉B remains quite independent

with temperature (〈IPR〉B about 2.4). The state in the middle of the band, despite being

more delocalized, are not easily thermally accessed by the charge.

Figure 5.8: States and wavefunction delocalization versus temperature for the investigated OSs are
reported in (A) and (B) respectively. 〈IPR〉B is calculated using Eq. 4.4, introduced in the previous
Chapter, while IPR with Eq. 2.38.

As a further result on the effect of thermal disorder, for all the investigated OSs I

compare in Figure 5.8 the influence of the temperature on the delocalization of the states

thermally accessible by the charge 〈IPR〉B (Figure 5.8(A)) with the temperature dependence

of the IPR of the carrier wavefunction, Ψ(t) (Figure 5.8(B)). The latter IPR is an average
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over 600 FOB-SH trajectories (with the exception of RUB where 300 trajectories were con-

sidered instead due to the higher computational cost). In the case of of PER and RUB,

the extension of the wavefunction (IPR) decreases with increasing temperature, in line with

the delocalization of the 〈IPR〉B of the band states. Notably, both PER and RUB have a

favourable sign combination that guarantee a higher delocalization of the thermally accessi-

ble states at the bottom of the conduction band in case of PER and at the top of the valence

band in case of RUB (see Figure 4.4). While the IPR of ANT and NAP is almost temper-

ature independent (the states remain quite localize at top of the valence band for these two

systems). This observation might be a reason for the weak temperature dependence of NAP

as I will show in the next Section. In fact, as seen in Chapter 4, wavefunction delocaliza-

tion correlates very well with mobility (Figure 4.5(B)). A higher delocalization is also a

prerequisite for a larger mobility using the transient localization theory [56] in which the

mobility is actually proportional to the square of the localization length of the charge (see

Section 1.3.3).

5.3.3 2D Mobility tensor components versus temperature

FOB-SH mobilities (blue symbols) are compared with the best available experimental data

(black symbols) as a function of temperature in Figure 5.9. When possible, I chose reference

mobility data from TOF measurements performed by Karl and coworkers [98, 157, 176]

which correspond more closely to FOB-SH simulation conditions (see Section 4.2.1 for

a discussion). TOF mobilities show a characteristic power-law relation, µ ∝ T−n with n

going from 2.50 in NAP to 1.22 in ANT. For RUB crystal, where TOF mobilities are not

available, I report a series of FET measurements (with various colors) obtained by different

groups [11, 160, 199, 200]. FOB-SH mobilities are shown along the same crystallographic

direction used in the experiments (when this was given in the experimental reference).

Overall, I note that FOB-SH is able to capture the negative slope in the temperature

dependence of the mobility often taken as a signature of band-like transport, although as

shown in Figure 5.8 the IPR remains localize at most on 15-20 molecules in the highly con-

ductive RUB crystal. In some cases (e.g. ANT along b), FOB-SH reproduces very well the

experimental slope, but for other systems the agreement is less good (e.g. in NAP). A gen-

eral feature for all the systems is the fact that the mobility temperature dependence obtained

by FOB-SH is weaker and less steep then the corresponding experimental estimates. As

mention before, there might be several reasons for this discrepancy. I discuss few of them
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in the following.

Figure 5.9: Mobility temperature dependence of relevant OSs. TOF measurements used for NAP,
ANT and PER are taken from Ref. [98, 157, 176] and shown along the directions mentioned in
the experimental works. For RUB, FET mobilities are given with different colors and taken from
Ref. [11, 160, 199, 200]. FOB-SH charge mobilities are given with blue symbols. In all the plots,
upper triangles are used for b crystallographic direction, while right pointing triangles are used for a
direction. When the direction is not specified square symbols are used. The linear fitting is applied
only to the points under the coloured solid line.

First of all, it is important to note that the power law coefficient n is quite dependent on

the linear fitting and the number of points used. In this regard, the number of points should

be quite high to minimize the uncertainty. When considering that FOB-SH simulations in

extended 2D systems are computationally very challenging, n should be taken as indicative.

On the one hand, the system dimensionality –on the order of thousands of molecules are

required at low temperature to converge the mobility tensor– and the high density of states
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stress the trivial crossing correction and the SCTC, due to the high number of state crossings.

On the other hand, the computational burden of FOB-SH allows only a handful of mobility

values to be calculated for the largest systems.

Secondly, as mentioned before the thermal expansion of the crystal upon increasing

temperature has not been considered here. It is known that the lattice parameters in organic

semiconductors may change to some extent with temperature, which is accompanied by

changes in the electronic couplings (in the order of about 10 meV according to Ref. [205]

for rubrene and pentacene). Obviously, such changes can also affect the behaviour of the

mobility and its temperature dependence. However, I note that this reasonably small effect

is unlikely to account, e.g., for the n = 2.50 slope going from low to high temperature in

NAP crystal in experiment. So that, despite this effect might play a role when seeking

quantitative agreement with experiments, it is not likely to be a determinant factor in the

qualitative behaviour of the mobility temperature dependence.

A more relevant point, is the fact that nuclear quantum effects, such as nuclear tun-

nelling and zero point energy, are missing in the semiclassical FOB-SH description. These

effects have been shown by Shuai and co-workers to be reasonably important in OSs es-

pecially at low temperatures [14, 177]. The authors also showed that the nuclear quantum

effect can linearly increase with increasing reorganization energy [177]. This point might

partially explain why the system whose temperature dependence is the least in agreement

with experiments (from FOB-SH simulations) is NAP, for which the reorganization energy

is the largest compared to the other investigated systems (λ = 187 meV). Additionally, for

NAP the activation barrier for the transport is also the largest compared to the other OSs

considered here, ≈ 19.3 meV (estimated using Eq. B.5). This means that in reality at low

temperature the charge might partially tunnel through the barrier rather then going over it

(this effect is not captured in FOB-SH). In other systems, like RUB, where there is no ac-

tivation barrier for the charge transfer, the agreement between FOB-SH and experiments

is actually better, despite the difficulties described above related to the dimensionality of

RUB system and the additional uncertainties in the experimental FET measurements. In

fact, these measurements yield quite different values for the power low n: from about 0.6 to

1.5, making difficult a quantitative comparison.

It is worth noting that many of the aforementioned results given by Shuai et. al were

obtained by using quantized Marcus rate expressions (i.e. expressions analogue to Eq. 1.1,
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but supplemented with quantum vibrational modes to account for nuclear quantum effects).

For this reason, despite these perturbative rate-related results are helpful to give a reasonable

qualitative picture of the importance of nuclear quantum effects in OSs, they still rely on the

charge hopping from site to site assumption at any temperature. This is definitely not the

case as shown in Figure 5.8 since the charge is delocalized over several molecules. Most

importantly, rates theories do not capture correctly the asymmetry of the DOS as the rate

depends on the absolute value of the electronic couplings but not on their relative signs (see

Section 4.1.3 for a discussion).

By combining FOB-SH with path integral based simulations (using the framework of

ring-polymer molecular dynamics), we have recently attempted to give more sensible pic-

ture on the importance of tunnelling and zero point energy effects on hole transfer rates in

OSs [122]. It was shown by Ghosh et. al that the transfer rate between the two diabatic

states of an ELM dimer (the usual OS model) is higher when nuclear quantum effects are

included compared to the semiclassical case by more than an order of magnitude at low

temperature. By contrast, at room temperature nuclear quantum effects have turned out to

be quite modest. The importance of nuclear tunneling was supported by the fact that, for

the ring polymer, the mean radius of gyration of all the atoms increases upon lowering the

temperature [122]. I expect this conclusion obtained for a small OS model to be, to some ex-

tent, transferable to the real OSs investigated in the present Section. This might improve the

agreement with experimental slopes in the mobility temperature dependence, since FOB-

SH connected to ring-polymer molecular dynamics should be capable of accounting for two

important effects at the same time: wavefunction delocalization and quantization of the nu-

clei. Work is currently on-going to extend and apply the FOB-SH code with quantum nuclei

in this direction.

5.4 Conclusion

In conclusion, I have shown that FOB-SH is a powerful simulation tool that can be used for

prediction of charge carrier mobilities as well as transport mechanisms in different regimes

(i.e. localized, intermediate and delocalized transport regimes). Remarkably, FOB-SH can

capture the crossover from slow activated hopping of a fully localized charge to fast dif-

fusion of a polaron delocalized over several molecules as electronic coupling between the

molecules exceeds the critical threshold V > λ/2.

I found that in the high coupling regime the mobility decreases with increasing tem-
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perature. In this regime, the band-like temperature dependence of the mobility has been

attributed to the presence of a dynamic disorder by both experiment [53] and theory [15].

Thermal motion and weak intermolecular interactions are often seen as the main source of

dynamic localization for the charge carrier [15]. Some of the first theoretical evidence of

the existence of this kind of disorder were given by Troisi and Orlandi [12, 74] and were

ascribed to the increase of intermolecular coupling fluctuations and displacement between

molecules as the temperature increases (in line with what found in this Chapter). I have

shown here that, in these OSs, also the diagonal disorder (induced by site energies oscilla-

tions) is a leading process in the localization of the thermally accessible band states and thus

of the charge carrier wavefunction [72, 135]. Increasing temperature increases the strength

of such oscillations and decreases the probability of the charge to be in the favourable res-

onance region for the transfer, thus reducing the mobility (in the high coupling regime).

Nevertheless, these fluctuations are usually related to high frequency intramolecular modes,

which should be generally treated as quantum vibrations. This effect is missing in the

present FOB-SH simulations and this is likely one of the reasons for the weaker temper-

ature dependence of FOB-SH mobilities compared to experiments, especially in systems

where there is an activation barrier for the transfer that the charge has to overcome. While a

definitive answer to the question of why FOB-SH tends to underestimate the experimental

slope in real OS crystals is not yet reached, I believe that this analysis has given several

suggestions on why this might be the case and it has opened some avenues for further ex-

ploration and research.
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Chapter 6

Exciton diffusion in molecular

semiconducting crystals

In this Chapter*, I present the extension of the FOB-SH to effectively treat singlet exciton

diffusion in molecular materials. The main motivation behind this work is the fact that long

exciton diffusion lengths, along with efficacious free carrier transport and exciton separa-

tion processes at the donor acceptor heterojunction, constitute three of the most important

requisites for technologically relevant organic photovoltaic (OPV) materials. In this regard,

charge carrier transport in OSs has been investigated in previous Chapters, while the study

of exciton separation processes occurring at the donor-acceptor interface is currently ongo-

ing in our group and will be subject of future works.

The inability to systematically improve the power conversion efficiency of OPVs is

a long-standing problem that hinders their development and use as efficient alternative to

conventional solar panels. Similarly to the free carrier transport previously discussed, this

problem partially originates from a lack of theoretical methods that can reliably predict the

excited state dynamics of OS materials subjected to strong thermal disorder or irregular

morphologies [88, 206]. Accurate modelling also requires the ability to study system large

enough to fully accommodate delocalized excitons, and to account for effects arising from

the interplay of thermal vibrations and electronic motion. If excitons delocalize over more

than a few molecules, standard electronic structure methods, such as those based on (time

dependent) density functional theory, are generally too computationally expensive to fully

meet these requirements. On the other hand, it is possible to reconstruct, with reasonable

accuracy, delocalized excitons from the properties of localized transitions. Here, I present

an efficient way to use FOB-SH in combination with a site-based Hamiltonian, termed

Frenkel exciton Hamiltonian. Within this model the excited state electronic structure of

the system is described in a reduced basis of single molecule excitations, thus allowing the

simulation of exciton diffusion in extended systems.

*The content of this chapter is currently unpublished. The diabatization program used for the excitonic
coupling calculations was developed by Dr. Lorenzo Cupellini (University of Pisa).
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6.1 Excitons in organic semiconductors

When an OS absorbs light, electrons can be excited from the valence to the conduction band

forming Coulombically bound electron-hole pairs. Usually the optoelectronic properties of

molecular semiconductors are dominated by low-lying electronic excitations (in the range

of 2-3 eV) [1]. These excitations were described by Frenkel [207, 208] as energetic quasi-

particles, that he named excitons. The microscopic properties of excitons, such as their

spatial extension and energy are reflected in the macroscopic optoelectronic material prop-

erties. As seen in Chapter 4, OSs are characterized by a relatively small dielectric constant,

thus the interaction between the bound electron-hole pair is quite strong and related exci-

tations can be well-described by singlet excitations spatially confined on molecular sites of

the aggregate (known as Frenkel excitons) [207, 208].

In an extended system such as a crystal or aggregate, the excitation energy can be

shared between molecules or fragments, the interactions between different molecular sites

lead to delocalization of the excitons and the excited state spectrum of the aggregate will

differ from that of the isolated molecule. As I will explain below, the properties of delo-

calized excitons depend in particular on the strengths of electronic couplings (also termed

excitonic couplings in this context) and how they fluctuate in time. The diffusion process

of singlet excitons is driven by the excitonic couplings and the molecular relaxation upon

excitation energy transfer (local exciton-phonon coupling or reorganization energy). I will

present in Section 6.2 an approximate (yet very efficient) way of calculating these inter-

actions based on transition electrostatic potential (TrESP) charges and parametrized force

fields (in the same spirit of what was done in previous Chapters for charge transport) and I

will discuss the accuracy of the model.

Notably, excitons generated by photo-absorption undergo different pathways (e.g. fluo-

rescence, intersystem crossings, phosphorescence, non-radiative transitions etc.) depending

on the energetics of the system and its interactions. In particular, along with singlet exciton

diffusion, triplet exciton migration is another important process in many organic semicon-

ductors. Triplet excitons cannot be directly generated following light absorption in these

materials due to spin related selection rules and they are produced by intersystem crossing

from the singlet to the triplet manifold of states. Triplets may have exciton lifetimes few

order of magnitudes larger than the corresponding singlet lifetimes, potentially prompting

to larger diffusion lengths [26]. At the current development stage, triplet states are not in-
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cluded in the excitonic Hamiltonian that I will present in this Chapter and their formation

neglected (see Section 6.1.1 for a more detailed discussion).

6.1.1 Frenkel Hamiltonian

The Frenkel Hamiltonian describes the excited electronic properties of a system with M

molecules as:

Ĥ =
M

∑
k

εk(t)|ξk〉〈ξk|+
M

∑
k

M

∑
l 6=k

Hkl(t)|ξk〉〈ξl| (6.1)

where |ξk〉 represents a state with an exciton localized on molecule k, εk(t) denotes the en-

ergy of that state and Hkl(t) denotes the intermolecular excitonic coupling between states

|ξk〉 and |ξl〉. The eigenstates of this Hamiltonian are the adiabatic excitonic states which

can be delocalized over several molecules if the couplings between them are strong enough.

Notably, this formalism is equivalent to the one used in Chapter 2 to describe charge trans-

port and the Frenkel Hamiltonian is the analogue to the tight-binding Hamiltonian in Eq. 2.5.

As done before, the excitonic wavefunction can be written as a linear combination of

Frenkel excitons, Ψ(t) = ∑
M
l=1 ul(t)|ξl〉. This allows one to use an equivalent electronic

propagation to the one in Eq. 2.4 for charge transport. Obviously, the last term in Eq. 2.4,

i.e. the non-adiabatic coupling between localized excitations dkl =
〈

ξk|ξ̇l

〉
is again, to a

very good approximation, negligible (see Section 2.1.7). In fact, for excitations on different

molecules, this term is roughly proportional to the change in overlap of the two quasi-

diabatic states and it is small since the overlap of states localized on different molecules is

also very small, as discussed in Section 2.1.7. It is worth noticing that the phenomenologi-

cal Frenkel Hamiltonian neglects by construction the interaction between different excited

states of the same molecules (e.g., the first and the second excited state and/or other charge

transfer states). These kind of non-adiabatic interactions can be important for some photo-

physical processes (e.g. internal conversion and intersystem crossing etc.) [75]. However, to

account for non-adiabatic couplings between states of the same molecule, high-level quan-

tum chemical methods would be required [90], defeating the purpose of using FOB-SH to

study nano-scale systems. As an example, the inclusion of intersystem crossing to account

for triplets formation requires the introduction of a spin-orbit coupling component inducing

transitions between states with different multiplicities. The best way of doing this within

the surface hopping approach is still an area of active research [90] and will not be discussed
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in this work.

On the upside, using Frenkel-type Hamiltonians avoids the problem of describing

for example charge transfer (CT) states, whereby excited electron and hole occupy dif-

ferent sites, by constructing supermolecular excitations from locally excited states of single

molecules (e.g. the mixing between Frenkel exciton states and CT states are not included).

The energies of these CT states are usually underestimated by TDDFT (unless adequate

long-range corrected functionals are employed), giving a poor description of low-lying ex-

citations, which are arguably the most important for long time diffusion processes (occur-

ring after the initial ultrafast internal relaxation –following Kasha’s rule). Neglecting CT

states makes this model inappropriate for describing phenomena such as exciton dissoci-

ation along the dynamics. Nevertheless, extending the Frenkel Hamiltonian to include a

potential dissociation pathway is possible [209], provided that an efficient way for comput-

ing the interaction between Frenkel excitons and charge separated states is found and the

electron-hole interaction is considered. This extension, in the context of exciton dissocia-

tion at the donor-acceptor interface of organic photovoltaics, will be the subject of future

work (see Section 7.2).

Assuming that all the molecules have the same excitation energy εk, one can

parametrize the local exciton-phonon coupling (reorganization energy) upon excitation en-

ergy transfer using classical force fields to reproduce the TDDFT reorganization energy

(analogously to what done in Section 2.1.3 for the charge transport). In an exciton transfer

process, reorganization energy can be calculated using a four point scheme similar to the

one already employed in Section 2.1.3 for the calculation of λ related to an electron transfer

process [88, 210]. In particular, the following equation has been used:

λ = [EEX(RN)+EN(REX)]− [EEX(REX)+EN(RN)]. (6.2)

Firstly, one optimizes the geometry of the system and calculates the energy of the ground

state (EN(RN)) at the optimum geometry (RN). Then, using the optimized structure one can

perform a (single point) TDDFT calculation to compute EEX(RN) and optimize the excited

state geometry to find EEX(REX). Finally, the energy of the ground state corresponding to

the optimum excited state geometry (EN(REX)) is computed to complete the four points.

The level of theory adopted for these calculations will be discussed in more details in Sec-

tion 6.3.1. I note in passing that, for the usual anthracene molecule the reorganization energy
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obtained from TDDFT (with a long-range corrected hybrid functional, i.e. ωB97xD [211])

gives an error of just about 5% compared to ab-initio SCS-CC2 method [210, 212], proving

to be a much cheaper, yet accurate, calculation.

The exciton transport problem is, so far, essentially analogue to the charge transport

discussed before in Chapter 2. The main difference is due to the evaluation of excitonic

couplings and related gradients as I will explain in the following Section.

6.2 Theory of the excitonic coupling

The excitonic coupling Hkl (called V in the following for generality) between the (diabatic)

states |D∗A〉 and |DA∗〉, where D and A are the donor (k) and acceptor (l) molecules of a

given pair, can be generally written as,

V =VCoulomb +VShort (6.3)

This is a sum of a long-range contribution, termed Coulomb coupling, because of its re-

semblance with the classical interaction between two density distributions (see below), and

a short-range contribution that is dependent on the degree of overlap between donor and

acceptor wavefunctions and decays exponentially with the distance [213, 214]. VCoulomb

is the main coupling ingredient of the Förster theory [215] for excitation energy transfer

and it is generally by far the most important. On the other hand, the VShort component is a

quantum mechanical term and it was initially related by Dexter (some years after Förster)

to an exchange mechanism between donor and acceptor wavefunctions (originated from the

indistinguishably of the electrons) [216].

6.2.1 Coulomb contribution

The VCoulomb is the usually the biggest contribution to the excitation energy transfer between

singlet states. It can be written as the interaction between the transition densities of isolated

donor and acceptor (singlet) states [213]:

VCoulomb =
∫

dr
∫

dr′ρT ∗
k (r′)

1
|r− r′|

ρ
T
l (r) (6.4)

where ρT
k(l) is the diagonal part of the one-particle density matrix constructed from the

ground and excited-state wave functions (i.e. many-body wavefunctions Ψi and Ψ0, re-
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spectively) [213],

ρ
T (r) = N

∫
..
∫

Ψ
∗
i (r,r2..rN)Ψ0(r,r2..rN)dr2dr3..drN . (6.5)

The transition densities of each molecule can be computed efficiently through an atomic or-

bital expansion in combination with configuration interaction singles (CIS), time-dependent

density functional theory (TDDFT) and other electronic structure methods [214], as imple-

mented, e.g., in Gaussian 16 software package [95, 217].

By definition, the total integrated transition density ρT
k(l) is zero. As it is costume in

Förster theory, at sufficiently large distances between sites (i.e. distance larger than the

dimension of the interacting molecules), the transition densities of donor and acceptor can

be approximated with the first non-zero term in a multipole expansion, i.e. the transition

dipole moment. This approximation is referred to as point dipole approximation (PDA) and

the related excitonic coupling, VPDA, can be written as,

VPDA =
µk ·µl

r3
kl
− 3(µk · rkl)(µl · rkl)

r5
kl

(6.6)

where rkl is the vector distance between k and l molecules and µk and µl their respective

transition dipole moments. The dipolar term in Eq. 6.6 yields the well known r−3 asymp-

totic dependence of the singlet electronic coupling. Importantly, while VPDA has the clear

advantage of only needing experimental data, i.e. the transition dipole moments and the

distance between the molecular centers, this approximation breaks down at close molecular

separations, when short-range effects and higher-multipole contributions become sizeable

and the actual shape of the transition densities matters (see Section 6.4 below).

A more suitable approximate way of computing Eq. 6.4, without involving electronic

structure calculations at run time, that has found widespread use, relies on the transition

charge approximation. The transition densities are represented by a set of point charges

located on the atoms of the donor and acceptor molecules, respectively. The Coulomb

coupling is computed as the electrostatic interaction between these charges:

VTrESP =
N

∑
A∈k

N

∑
B∈l

qAqB

|rA− rB|
(6.7)

where the indices A and B run over the atoms of k and l molecules, respectively. qA and qB

154



6.2. Theory of the excitonic coupling

are the transition charges of atoms A and B, with positions rA and rB, respectively. Herein,

I use the transition charges obtained from the fitting of the electrostatic potential (ESP), the

so-called TrESP charges. TrESP charges are obtained as proposed by Renger et al. [218],

using the fitting of the electrostatic potential generated by the transition density, as it is

typically done to parametrize point charge models in common force fields (see a detailed

description of the procedure followed here in Section 6.4). Usually, TrESP charges are

computed once, prior production run, and then used to compute couplings at different ge-

ometries. This scheme is computationally very efficient and the gradients, ∇IHkl , necessary

for computing adiabatic forces (Eq. 2.16) in FOB-SH are straightforward and analytic. As

a downside, this approach neglects any possible dependence of the transition density on

the geometry, which is generally a good approximation for rigid π-conjugated molecules

forming OS crystals, but it may be less appropriate for more flexible molecules. In this case

one would need to update transition charges along MD or use more refined interpolation

schemes. I will discuss the accuracy of this approximation in Section 6.4.

6.2.2 Diabatization schemes

Short-range coupling terms, VShort, (which, besides Dexter’s exchange, include wavefunc-

tion overlap and polarization contributions as well [213]) are small especially when the

donor acceptor distance is larger than 3-4 Å like in OSs [219] and there is no covalent

bond between the sites. Nevertheless, these interactions become important when the trans-

fer involves spin-forbidden transitions and the first Coulomb term is null (e.g. in triplet-

triplet energy transfer) or when donor and acceptor moieties are bonded. In the latter case

a through-bond interaction may enhance the short-range part [219]. Despite none of these

factors is present in the investigated OS systems, it is worth exploring to what extent VShort

is negligible compared to the long-range part, so that V ≈ VCoulomb, thus allowing for an

efficient computation of VCoulomb as seen in Section 6.2.1.

An accurate strategy to evaluate the total coupling V , including both the Coulomb and

short-range contributions, relies on a diabatization approach [213]. Starting from a super-

molecule electronic structure calculation of the excited states in the donor-acceptor system,

which are a combination of diabatic (i.e. charge- or excitation- localized) electronic states,

the resulting electronic Hamiltonian is finally transformed into the diabatic basis to extract

the coupling. Within this context, the main requirement is the definition of the diabatic states

for the energy transfer process. Some of these diabatization strategies rely on constraints
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imposed on the electron density, e.g., constrained density functional theory (CDFT) [220],

while others use additional operators to define diabatic states [221, 222]. Although a de-

tailed account of these approaches is beyond the scope of this thesis, I briefly describe here

one of such a scheme, termed fragment excitation difference (FED) method [219, 221, 223],

that I will employ herein to calculate the reference total coupling, V .

The FED scheme can recover the diabatic (localized) basis from delocalized excited

states by using an additional operator ∆x, which measures the difference in excitation num-

ber between the donor (k) and acceptor (l) molecules. The elements of the ∆x matrix are

given in terms of “excitation densities”, defined as the sum of attachment (electron) and

detachment (hole) densities [213]:

∆xi j =
∫

r∈k
ρ

ex
i j (r)dr−

∫
r∈l

ρ
ex
i j (r)dr (6.8)

where i and j are two adiabatic states and ρex
i j is the excitation density, defined as,

ρ
ex
i j (r) = ρ

Att
i j (r)+ρ

Det
i j (r) (6.9)

The quantity ∆x has its extrema when the excitation is entirely localized on either the

donor (k) or acceptor (l). Without loss of generality, assuming that the adiabatic states i and

j are the combination of two diabatic states, |D∗A〉 localized on k, and |DA∗〉 localized on l,

the eigenvectors of the 2×2 ∆x matrix represent the transformation from the adiabatic to the

diabatic basis (U), and the eigenvalues are either 1 or -1 for |D∗A〉 and |DA∗〉 [219, 221, 223].

The diagonal matrix of adiabatic energies (Had) can be transformed into the diabatic basis

of |D∗A〉 and |DA∗〉 by U†HadU=H. The electronic coupling between these states is found

as the off-diagonal element of H.

In many cases, a 2 state adiabatic basis is not sufficient to retrieve completely local-

ized states: in fact, an adiabatic state could be the combination of many diabatic states of

both donor and acceptor. Moreover, charge-transfer states can mix with Frenkel exciton

states, and viceversa [219, 224]. To overcome this difficulty and recover the coupling be-

tween completely de-mixed and localized (Frenkel) exciton states –which form the state

space for the Frenkel Hamiltonian in Eq. 6.1– I employed in this thesis a multi-state vari-

ant of the FED approach which I will call herein multi-state FED (MFED). This approach

is a generalization of the FED method described so far [219, 223, 224] and can make use

156



6.3. Investigated molecular crystals

of multiple adiabatic eigenstates (of the donor-acceptor supermolecular system) to recover

maximally localized and decoupled diabatic states. The code that I will use in the fol-

lowing was developed by Dr. Lorenzo Cupellini (University of Pisa). This strategy was

previously successfully employed to recover excitonic couplings in light-harvesting and bi-

ological systems [214, 223] as well as bridged donor-acceptor moieties [219]. For a more

detailed description of this approach I refer to Ref. [223, 224].

6.3 Investigated molecular crystals

The systems investigated in this Chapter are anthracene (ANT) [151], α-sexithiophene

(OT6) [225], perylenetetracarboxylic diimides (PTCDI-H) [226] and dicyanovinyl-capped

S,N-heteropentacene (DCVSN5) [227] in their crystalline form as depicted in Figure 6.1.

Figure 6.1: Crystal structures of investigated OSs. Few of the closest crystal coupling pairs (with
the strongest excitonic coupling) are indicated with coloured arrows.

These systems are chosen in order to span a wide range of diffusion regimes (from

incoherent to a coherent exciton transport) using the FOB-SH approach and for several rea-

sons given below. ANT has been chosen primarily because its exciton transport properties

were investigated experimentally before [228–230] and using both Marcus theories [88]

as well as non-adiabatic molecular dynamics coupled to DFTB [231] electronic structure.
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Therefore, ANT is ideal to test the approach and protocol developed here. OT6 is cho-

sen because its optoelectronic properties are similar to those of polythiophene, making it

a good prototype model system for studying thiophene-based polymeric semiconductors

(e.g. P3HT), which are particularly important as electron donor system in organic photo-

voltaic heterojunctions. PTCDI-H is representative of another important class of organic

semiconductors based on perylene-diimide (PDI) molecules [232]. The latter are arguably

one of the most intensely studied class of semiconductors due to their high degree of chem-

ical tunability and ability to form highly organized supramolecular assemblies via wet and

dry processing methods [233]. PDI derivatives have recently found use in high-efficiency

organic photovoltaic cells as replacements for fullerenes [25]. It is therefore important to

study their electronic properties. Finally, DCVSN5 is technologically very interesting as

it was found to give a remarkable power conversion efficiency of 6.5% when employed

together with fullerene in bulk heterojuction solar cell. Additionally, this system was pre-

viously studied in Ref. [88] by Aragó et. al by means of Ehrenfest dynamics coupled to

model Hamiltonians, thus providing a further comparison for FOB-SH dynamics.

6.3.1 Excitation energies

All quantum chemical calculations in the following Sections have been performed using the

TDDFT implementation of Gaussian 16 software [95]. I computed the excitation energies

of ANT, OT6, PTCDI-H and DCVSN5 single molecules with two different long range-

separated hybrid functionals CAM-B3LYP [234] and ωB97xD [211]. These functionals

are often required for organic molecules to get the correct asymptotic behaviour of the

functional and because of their balanced description of locally excited and charge-transfer

states. The basis-set was fixed to 6-31g(d,p) as commonly used in the literature for similar

systems [88, 235, 236].

The vertical excitation energies as well as the adiabatic excitation energies for the low-

est singlet excited state (S1) of ANT, OT6, PTCDI-H and DCVSN5 molecules are reported

in Table 6.1. These data refer to optimized geometries of the single molecules in gas-phase.

The reorganization energies (of the first excited state) obtained from the four-point scheme

(Eq. 2.6), as described in Section 6.1.1, are reported in Table 6.1 as well.

The first important observation is the fact the two long-range corrected functionals give

very similar values both for the energies and the oscillator strengths ( f ) of the lowest-energy

excitation, pointing to a robust description of the transition density of this excitation. As
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Table 6.1: Excitation and reorganization energies (eV) for the lowest-energy (singlet) state of ANT,
OT6, PTCDI-H and DCVSN5.a

Functional S1 vert. f c S1 adiab. S1 Exp. d λ

ANT
CAM-B3LYP 3.70 0.086 3.41

3.3-3.4
0.572

ωB97xD 3.71 0.089 3.43 0.561

OT6b CAM-B3LYP 2.96 2.042 2.68
2.5

0.558
ωB97xD 3.03 2.060 2.74 0.562

PTCDI-H
CAM-B3LYP 2.85 0.752 2.65

2.37
0.390

ωB97xD 2.89 0.758 2.68 0.405

DCVSN5
CAM-B3LYP 2.79 2.049 2.64

2.13
0.294

ωB97xD 2.86 2.061 2.69 0.320

a Basis set is fixed to 6-31g(d,p) as commonly used in the literature for similar systems [88, 235,
236]. b The geometry for OT6 was kept coplanar as done in Ref. [235] since oligothiophenes tend
to crystallize in the solid state with coplanar thiophene units [235]. c The calculated oscillator
strengths are reported in a.u. d Experimental values are taken for solution and gas-phase molecules
from Ref. [237, 238] in the case of ANT, Ref. [239, 240] for OT6, Ref. [241] for a similar PTCDI
derivative and Ref [227] for DCVSN5.

the following calculations are aimed at estimating correctly electronic couplings, as I will

explain below, a good evaluation of the transition densities is the most important issue. It

is also worth noting that the second lowest (singlet) excited state as found from both func-

tionals is about 0.7-1.0 eV above S1. This means that the Frenkel approximation describing

the excited state of the system as a combination of locally excited S1 states is likely to be

a good approximation for these OSs. I further investigate this point by plotting the Natural

Transition Orbitals (NTOs) [242] corresponding to the S1 excited state in Figure 6.2 for

the investigated molecules. The NTOs offer a useful way of visualizing which orbitals give

the largest contribution to a given single-particle excitation (the NTOs are obtained here

by using the NTOBuilder tool [243]). For all systems we can see that the NTOs with the

largest contributions are indeed essentially the same as the HOMO and LUMO orbitals of

the single molecules. This rules out a possible mixing with other high-lying excited states

(at least for the isolated molecule) and attests to the validity of the Frenkel Hamiltonian in

describing the excitations of single sites as localized excited states.

As a final note, I observe that the reorganization energies in Table 6.1 for the excitation

to S1 is much larger than the reorganization energies I have generally found for holes and

electrons in Chapter 4 for similar OSs. Taking as an example the anthracene molecule, the

hole reorganization energy is ≈ 140 meV while the relaxation of the exciton is about four

times larger. This is due to the large charge redistribution occurring upon excitation. In
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Figure 6.2: Natural transition orbitals for the first singlet excited state of ANT, OT6, PTCDI-H and
DCVSN5. The contribution from the NTOs taking part to the main transition is also given. Notably
these orbitals are essentially the same as the HOMO and LUMO of each molecule.

particular, just by looking at the NTOs, it is evident that almost every bonding interaction

in the HOMO becomes an anti-bonding interaction in the LUMO and vice versa. This

causes each bond to become stronger (in case of a bonding interaction) or weaker (for an

anti-bonding one) changing the length of the actual bond and causing a large structural

modification upon excitation (see also Figure 6.3). These sizeable reorganization energies,

that in FOB-SH are used to re-parametrize the classical FF as explained in Section 2.1.3

and Section 6.1.1, are responsible for the strong exciton localization in these systems (see

Section 6.5). Bond lengths displacement used for the parametrization of the force field of

the excitonic state are reported in Figure 6.3.

6.4 Excitonic coupling results

I now turn to the excitonic coupling, which is one of the main ingredients of the Frenkel

Hamiltonian. I evaluated excitonic couplings using the full Coulomb integral, VCoulomb, in

Eq. 6.4, the TrESP approach, VTrESP, in Eq. 6.7 and the point-dipole approximation (PDA),

VPDA, in Eq. 6.6 for all the systems considered here. These values have been compared with
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Figure 6.3: Force field parametrization singlet excitons. Changes in bond length upon change from
neutral to excitonic state, as obtained from DFT calculations. Displaced bond distances in Å are
reported with different colours according to the displaced bonds. The + and − signs indicate an
increase and decrease in bond length going from the neutral to the excited system, respectively. The
displacements are used to parametrize the force field for the molecules in their lowest energy singlet
state. For clarity, displacements symmetric to the ones indicated are not shown. Scaling factor β for
force field parametrization of reorganization energy, as described in Section 2.1.3, is also reported
for each system.

the total excitonic coupling, V (Eq. 6.3), obtained using the multi-state fragment excitation

difference approach (MFED) described in Section 6.2.2. This was done in order to assess

the extent of the short-range coupling in these closely packed OS solids and the different

levels of approximation of the long-range Coulomb interaction.

For the calculation of MFED couplings (V ) and Coulomb contributions (VCoulomb) I

have used CAM-B3LYP [234] functional for OT6 and PTCDI-H (as suggested in Ref. [244])

and ωB97xD [211] for ANT and DCVSN5 (for a more consistent comparison with

Ref [88]). As pointed out before, I found these two functionals to give very similar val-

ues for the Coulomb couplings of these systems (i.e. maximum discrepancies less than 5

meV in OT6). This is because the transition densities are described similarly by both func-

tionals. The MFED diabatization procedure was carried out employing 20 excited states of

the supermolecular donor-acceptor system to ensure a complete de-mixing between exci-

tations of different nature (e.g. charge transfer and other excitonic states) and an optimal

reconstruction of localized Frenkel exciton states and related couplings. The results are

reported in Table 6.2 for three of the closest crystal pairs of the investigated OSs.

We can observe that VCoulomb is generally very close to the total coupling V . The mean
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relative unsigned error (MRUE) is about 6%. This small discrepancy can be attributed to

the missing short-range part, VShort. The observation that V ≈VCoulomb lays the groundwork

for further approximations of the long-range Coulomb interaction (see Section 6.4.1). No-

tably, for ANT, the coupling found here from TDDFT compares very well with excitonic

coupling found by using high-quality coupled cluster (SCS-CC2) methods (i.e. 26 meV for

A pair [212]). Although such a good agreement might not be general for all systems, it is

encouraging in this particular case.

6.4.1 Validation of approximate Coulomb interactions

The first order approximation of VCoulomb is the point-dipole approximation (PDA). In Ta-

ble 6.2, the VPDA couplings are evaluated by using the transition dipoles obtained by the

previous electronic structure calculations for the same crystal pairs (using the EXAT anal-

ysis tool [245]). We can see that PDA gives strongly overestimated couplings compared

to the Coulomb interaction especially for OT6 and DCVSN5 molecules, where VPDA cou-

plings are factors 7 to 9 higher than the Coulomb integral. This means that considering the

full transition density and not only the first order term in the multipole expansion is actually

important to get a reliable coupling estimate. For this reason, despite being a very widely

used and simple approach, the PDA should be used with great care, especially for closely

packed solids, e.g. OS crystals. The reason for the overestimation of VPDA compared to the

VCoulomb will be investigated in more detail further below.

In order to evaluate the Coulomb coupling using TrESP charges (VTrESP, Eq. 6.7), an

initial parametrization of the partial transition charges on each atom of the donor-acceptor

pair is required (see Section 6.2.1). Similarly to what is commonly done for partial atomic

ground state charges, I started by fitting the electrostatic potential (ESP) generated by the

density distribution of the molecule. To this end, the same functionals employed so far

and basis-sets have been used to get the charge density and the Merz-Singh-Kollman (MK)

scheme has been adopted for the fitting. In case of excited state calculations though, the

density distribution is actually a transition density related to the transition from the ground

to the first excited state (Eq. 6.5), therefore the nuclear contribution to the ESP charges

should be ignored [218]. Importantly, to check that the TrESP charges found from the ESP

fitting procedure are meaningful, I have made sure that the sum of the TrESP charges is zero

(as it would be the case if the full transition density were integrated over all space) and also

that the dipole moments obtained directly from the charge densities, µ =
∫

drIρ
T (rI)rI , are
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Table 6.2: Excitonic couplings (meV)a for crystal structure pairs using the MFED diabatization
scheme for the total excitonic coupling V , VCoulomb, Eq. 6.4, VTrESP, Eq. 6.7 and VPDA, Eq. 6.6.

Pairs Dist. (Å) |V | b |VCoulomb| |VPDA| |VTrESP| c

ANT
A 6.04 27.88 25.95 26.79 26.34
B 5.24 6.40 4.53 1.75 4.47
C 8.56 4.35 4.26 4.13 4.17

OT6
A 5.68 91.92 88.01 644.99 86.89
B 5.38 101.15 96.14 256.15 95.45
C 9.14 42.01 41.83 12.52 41.60

PTCDI-H
A 4.87 100.06 85.74 152.22 85.46
B 9.47 31.97 31.88 43.85 31.84
C 9.40 17.89 17.05 1.36 17.09

DCVSN5
A 3.64 137.65 135.61 1264.63 134.97
B 4.46 151.93 141.59 258.12 142.04
C 14.20 24.14 24.36 44.04 24.29

MUEd 3.40 173.10 3.59
MRUEe 6.38% 171.63% 6.71%

a Basis set is fixed to 6-31g(d,p) for the calculation of V and VCoulomb, CAM-B3LYP is used for OT6
and PCTDI-H, whereas ωB97xD [211] is employed for ANT and DCVSN5 as done in Ref [88]. No-
tably since the dipole moment is quite robust with different functionals, the transition densities of the
molecules and so the couplings are also very similar. b V couplings are evaluated using MFED diaba-
tization approach (using the first 20 excited states for the diabatization procedure, see Section 6.2.2).
c TrESP are parametrized using a single crystal structure (the same basis set and functionals reported
above are employed). d Mean unsigned error (meV): MUE= (∑n |ycalc− yre f |)/n. e Mean relative
unsigned error (%): MRUE= (∑n(|ycalc− yre f |/yre f ))/n.

identical with those calculated from the atomic TrESP charges, µ = ∑I qIrI .

Remarkably, VTrESP (Table 6.2) obtained by using the aforementioned charges are in

very good agreement with VCoulomb for all systems and crystal pairs. The notable differ-

ence is the fact that TrESP couplings are readily calculated without the need of repeating

an electronic structure calculation when the charges have already been parametrized. This

constitutes a huge advantage of using TrESP approach in combination with FOB-SH, as it

permits to calculate many thousands of coupling elements (and related nuclear gradients)

at each step along the MD, thus allowing the study of large nano-scale systems (see Sec-

tion 6.5). Additionally, this approach permits to efficiently calculate both couplings and

coupling fluctuations even beyond nearest neighbour pairs, thus allowing to account for all

interactions when constructing the (Frankel) Hamiltonian of these systems. This approach

can help going beyond model Hamiltonians where only (fixed) nearest neighbour excitonic

couplings are commonly considered [88, 246].
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6.4.2 Distance dependence of excitonic couplings

In order to explore the distance dependence of the excitonic couplings and how well the ob-

servations made before for the closest crystal pairs can be generalized to molecules further

apart, I performed coupling calculations displacing the the two molecules forming the A pair

at various distances. The results are reported in Figure 6.4 for all the present systems. This

investigation will also allow to find a plausible threshold over which to set the long-range

Coulomb coupling to zero to speed up the TrESP computation even further without loosing

in accuracy.

Figure 6.4: Excitonic couplings as a function of distance for the A pairs of ANT, OT6, PTCDI-H
and DCSN5. Couplings are given in absolute values and have been evaluated using MFED diabati-
zation approach (using the first 20 excited states for the diabatization procedure, see Section 6.2.2),
VCoulomb, Eq. 6.4, VTrESP, Eq. 6.7 and VPDA, Eq. 6.6. The PDA clearly fails to provide an accurate
description of the excitonic coupling at short intermolecular distances.

As expected, V , VCoulomb, VPDA and VTrESP, all perform very similarly at large distances,

that is when the higher multiple terms of the transition densities can indeed be neglected. I

also note that the total excitonic coupling V becomes very small beyond 20 Å in all systems.

Therefore, a reasonable cut-off can be set at around 30 Å over which the excitonic inter-

actions are effectively considered null. Notably, as the distance decreases, and the closest
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distance between molecules in the crystal is approached (vertical dashed black line), the

VPDA approximation (red line) diverges from the other solid lines leading to strongly over-

estimated couplings for all the systems, but ANT. The reason is that the PCTDI-H molecule

and, in particular, OT6 and DCVSN5 have spatially extended transition densities and, when

the distance between the sites falls below the actual spatial extent of the electronic transi-

tion density, the PDA breaks down and it should no longer be used (i.e. the actual shape

of the transition density needs to be taken into account). This suggests again caution in the

application of the Förster theory when describing exciton dynamics for molecular semicon-

ductors. On the opposite, the VTrESP (green line) gives very good coupling estimates within

the full distance regime, proving again to be a useful method. What remains to be investi-

gated is how well fixed TrESP charges can capture the dynamics of the excitonic couplings

in time and their fluctuations (see Section 6.4.3).

As a final observation, I note that, for all the systems investigated here, short range

effects, VShort, remain negligible even below the shortest crystal pair distance (dashed black

vertical line), and the VCoulomb is still a reasonably good approximation of the total V . Yet,

short range effects might become important at even shorter distances when the overlap be-

tween donor acceptor wavefunctions becomes larger.

6.4.3 Excitonic coupling fluctuations

As mentioned before, the usefulness of the TrESP approach relies on the fact that the atomic

transition charges can be calculated for a given structure and used for various different struc-

tures along an MD simulation. This scheme is computationally very efficient but it neglects

any possible dependence of the transition density on the geometry. The time dependency

of the excitonic coupling is solely related to the inverse distance dependence in Eq. 6.7. To

assess to which extent this is a good approximation and the accuracy of the TrESP approach

in capturing the fluctuations of the excitonic couplings, I computed both the Coulomb cou-

plings and the TrESP couplings along 100 snapshots taken from an MD simulation the

closest crystal pair (A). The results are reported in Figure 6.5 along with related coupling

distributions. To slightly refine the TrESP charges and partially account for more “exotic”

configurations during the parametrization, I repeated the fitting procedure for 50 different

structures along an MD simulation for each system and then averaged the TrESP charges

over all configurations (instead of using just a single molecular structure). A sign-tracking

procedure was adopted to keep consistent the sign of the charges when doing the average.
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Figure 6.5: Excitonic coupling fluctuations for the investigated OSs. The couplings are evaluated
(for the A pair) with VTrESP and VCoulomb for a series of 100 MD snapshots. The distribution of these
couplings are shown as well.

As already found in the previous Section, we can observe that for all the systems

TrESP approach is able to capture the mean value of the coupling extremely well. Inter-

estingly, the coupling fluctuations and the structural dependence of the excitonic couplings

are reasonably well capture for ANT, PTCDI-H and DCVSN5 as well. While, in OT6, the

TrESP coupling fluctuations are somewhat underestimated compared to the VCoulomb. The

explanation for this behaviour is simply that for the first three molecules (ANT, PTCDI-H,

DCVSN5) the rigidity of the aromatic structure and extended conjugation ensure that the

transition density does not change significantly along the dynamics. Thus, TrESP charges

provide a reasonable approximation for the latter. On the contrary, having a more flexible

structure, OT6 presents larger structural variations along MD, and the TrESP approach does

not capture as well the dependence of the transition density on the geometry.

I conclude by remarking that, despite the TrESP approximation inevitably leads to

a loss of accuracy if compared with the rigorous Coulomb integral calculation especially

for flexible molecules (e.g. polymers), it provides a very efficient scheme to evaluate

a large number of coupling matrix elements along MD dynamics. It is also very accu-

rate when it comes to mean couplings and fluctuations of rigid conjugated molecules that

are of interest for this thesis. Importantly, updating the transition charges along MD us-

ing, for example, more sophisticated interpolation schemes (e.g. machine-learning tech-

niques [247]), could help increasing further the accuracy of TrESP charges even for more
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flexible molecules [247].

6.5 Exciton transport from non-adiabatic molecular dynamics

Having described an efficient way of evaluating the Frenkel Hamiltonian in combination

with FOB-SH, I present here the results for exciton diffusion coefficient and diffusion length

obtained using non-adiabatic molecular dynamics in the investigated semiconducting crys-

tals. The diffusion length is an important observable characterizing the efficiency of the

transport process and ultimately affecting the performance of photovoltaic devices (see In-

troduction). In fact, this quantity should be long enough in order for the exciton to reach

the donor-acceptor interface and initiate the separation process. Similarly to what was done

in the case of charge transport in Chapter 4, it is possible to evaluate the mean squared

displacement (MSD) of the excitonic wavefunction along the different crystallographic di-

rections according to Eq. 2.33. The diffusion tensor can then be calculated by taking the

time derivative of the MSD in the long-time regime according to Eq. 2.32. From the diffu-

sion tensor components, Dαβ (with α(β ), representing the Cartesian coordinates x,y,z), the

diffusion length is defined as [26]:

Lαβ =
√

2Dαβ τ (6.10)

where τ is the particle lifetime, namely the time it takes for the exciton to relax to the ground

state. This quantity can also be measured using photo-luminescence experiments.

In the following Sections, I calculate the MSD of the exciton as described in detail in

Chapters 3 and 4 for charge transport. I use FOB-SH in combination with three important

extensions of the original surface hopping method: decoherence correction (DC), removal

of decoherence correction induced artificial long-range charge transfer and tracking of triv-

ial surface crossings (see Section 2.2). The FOB-SH initialization procedure is analogue to

the one established in Section 3.1.2 to initialize the charge transport. The exciton is initially

chosen to be fully localized on a single molecule k, Ψ(t = 0) = ξk and propagated in time

in the 2D a− b planes of ANT, OT6 and PTCDI-H (activated to the exciton transport as

done in Section 4.1.1 for charge transport). The DCVSN5 crystal presents a slightly dif-

ferent crystal structure compared to the other systems. In particular, π-stacked antiparallel

columns, in this system, feature the largest excitonic couplings. DCVSN5 presents also

intercolumnar interactions, where a molecule of the central column can interact with four
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neighboring molecules via interactions between the cyano groups of one molecule and the

vinylic/heteroaromatic hydrogens or sulfur atoms of the other molecules. The couplings

for these lateral interactions are much smaller compared to A and B pair within the same

column (see Table 6.2), albeit still present. Therefore, a reasonably good model to consider

all the possible interactions consists of an active region composed by 5 columnar stacks

along the a crystallographic direction. The portion of molecules activated to the transport

counts more than 300 sites for all the systems (300 molecules for ANT, 392 for OT6, 336

for PCTDI-H and 395 for DCVSN5). The time steps used are 0.01 fs for ANT and 0.025

fs for OT6, PTCDI-H and DCVSN5. The following results are reasonably well converged

in terms of system size and time step. On a final technical note, I remark that the sign con-

sistency between excitonic couplings of different pairs is ensured by using the same set of

TrESP charges (with the same phase) for all the sites.

6.5.1 Transport anisotropy and diffusion length

In Figure 6.6, I report the MSD of the excitonic wavefunction along a and b crystallographic

directions over time for all the systems. The MSD is evaluated by averaging over 600 FOB-

SH trajectories (1.5 ps long) and the diffusion coefficient estimated from the linear part of

the MSD (dashed black lines).

Figure 6.6: Mean squared displacement (MSD) of the excitonic wavefunction. MSD is obtained
from 600 FOB-SH trajectories of the OS materials shown in Figure 6.1 along a and b crystallographic
directions. Error bars are obtained by block-averaging over 3 blocks, 200 trajectories each. The
diffusion coefficient is obtained from linear fits to the linear MSD portion (dashed black lines).

The diffusion coefficient is reported in Figure 6.7 against the IPR of the excitonic

wavefunction (Eq. 2.38). The former quantity spans more than two order of magnitudes for
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the chosen systems and the transport mechanism changes from a slow incoherent hopping

in ANT crystal to a more coherent and faster transport in DCVSN5.

As expected the exciton tends to diffuse for longer distances along the crystallographic

direction with the highest excitonic coupling and there is a good correlation between the

efficiency of the diffusion process and the wavefunction delocalization (as already found

for charge transport). The larger the excitonic delocalization, the higher the diffusion co-

efficient. However, due to the sizeable exciton-phonon coupling (exciton reorganization

energy) the exciton remains localized over 1 to 2 molecules in all these systems. Yet, a

larger delocalization is reached when higher-lying thermally excited states are populated

during the transport process (see also Section 4.3).

Interestingly, by comparing ANT and OT6, that have a comparable exciton reorgani-

zation energy (see Table 6.1), one can see a much longer MSD in OT6 crystal compared

to ANT and a factor of 6 larger diffusion in the former system when considering the high

diffusion directions of both OSs (i.e. b direction for ANT, for which Db = 3.7×10−3 cm2

s−1, and a direction for OT6 with Da = 2.2×10−2 cm2 s−1). This is a direct consequence

of the larger excitonic coupling in OT6 compared to ANT. Nonetheless, the diffusion length

for ANT (Eq. 6.10) is about twice as large as the diffusion length in OT6 compared to

ANT. In particular, Lb amounts to about 85 nm in ANT, while La in OT6 is between 21

and 42 nm. This is due to the longer exciton lifetime in ANT crystal, τ = 10 ns accord-

ing to Ref. [228], compared to the same quantity in OT6, which has been estimated to be

between 100 and 400 ps by time-resolved photoluminescence spectroscopy [248]. How-

ever, it is fair to point out that τ for the OT6 system does not refer to the crystal structure

(studied herein), but it is rather characteristics of a multilayer OT6 film deposited on silicon

dioxide [248]. I also note in passing that the exciton diffusion length of a thin-film of OT6

molecules vacuum-deposited on quartz was reported to be about 60 nm by the quenching

of the photoluminescence [249], in qualitative agreement with FOB-SH. However, different

structures and morphologies of the sample make difficult a like-for-like comparison with

these simulations and the latter should be taken just as indicative.

Notably, in contrast with OT6 and ANT, despite having a larger diffusion coefficient

(from FOB-SH simulation) of about 0.04 cm2 s−1, PTCDI-H has a diffusion length of less

then 1 nm due to the fast decay of the exciton to the ground state (of about 100 fs [232]). A

negligible diffusion length was also found in Ref. [232] for a thin-film PDI derivative with
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Figure 6.7: Diffusion coefficient against the IPR of the excitonic wavefunction for all the inves-
tigated systems. The diffusion coefficient (D) is reported in blue and green for a and b crystallo-
graphic directions, respectively. Notably D spans more than 2 order of magnitude going from ANT
to DCVSN5 systems.

a linear butyl side-chain, although, once again the comparison can only be indicative.

Finally, I observe that, to the best of my knowledge, no experimental diffusion coeffi-

cient, nor diffusion length have been measured for DCVSN5 system. Nonetheless, Aragó

et. al in Ref. [88] simulated the diffusion process in this crystal by using Ehrenfest dynamics

coupled to a model Hamiltonian supplemented with effective local and non-local exciton-

phonon coupling interactions. The authors found a diffusion coefficient of 1.9 cm2 s−1,

which is an order of magnitude larger then what found here by using FOB-SH approach.

This difference is most likely a consequence of the missing detailed balance and decoher-

ence process in the Ehrenfest approach used in Ref. [88]. In fact, as seen in Chapter 3 and

Chapter 4 of this thesis, when these two effects are missing the highly thermally excited

states, that are more delocalized, tend to become strongly over-populated by the excitonic

wavefunction. This causes a faster transport. I will point out in the next Section, that a far

better comparison between FOB-SH and Erhenfest dynamics can be achieved when the lat-

ter non-adiabatic dynamics scheme includes a correction for the detailed balance (e.g. the

so-called Boltzmann-corrected Ehrenfest dynamics [231]).

6.5.2 An assessment of different methods: the case of anthracene

Anthracene represents a useful system to carefully test the FOB-SH extension to exciton

transport, since the diffusion coefficient and related diffusion length have been evaluated

by other authors making use of Marcus-like rate expressions [88] as well as Boltzmann-

corrected Ehrenfest dynamics [231]. Some experimental estimates are also available [228–

170



6.5. Exciton transport from non-adiabatic molecular dynamics

230] for the crystal structure of ANT and can be used as a suitable reference. As seen in

Table 6.1, the reorganization energy of ANT is quite high compared to the excitonic cou-

pling, supporting the formation of excitons mostly localized on a single molecule. The IPR

calculated from FOB-SH simulations, Eq. 2.38, is indeed on average 1.04. This small IPR

can be readily explained by considering that, the barrier for the exciton hopping between

different molecules (estimated with Eq. B.5) is about 112 meV which is much higher than

the largest coupling in the crystal of around 30 meV and the thermal energy at room temper-

ature (25 meV). This observation has justified the use of perturbative rate theories [88] to

study the transition mechanism for this system (see below). Notably, as shown in Figure 6.5

and already observed in the literature [88], the exciton couplings in anthracene exhibit size-

able thermal fluctuations compared to the mean coupling which provides a good motivation

to explore direct dynamics methods (such as FOB-SH and Ehrenfest) as well.

To assess the quality of FOB-SH simulations I report in Table 6.3 a comparison be-

tween the diffusion coefficients and related diffusion lengths (estimated using an exciton

lifetime of τ = 10 ns as found by experiments [228]) with the same values obtained from

other different computational methods and available experimental estimates. In particu-

lar, to calculate the diffusion coefficients, Elstner’s group in Ref. [231] employed semi-

empirical time-dependent density functional tight-binding (TD-DFTB) method in combina-

tion with Ehrenfest dynamics. The latter approach was opportunely corrected to approxi-

mately satisfy detailed balance (which is of utmost importance for an accurate dynamics as

seen in Chapter 3). This approach is referred to as Boltzmann-corrected Ehrenfest method

(BC-Ehrenfest). Using transition densities taken from the TD-DFTB, the authors obtained

averaged Coulomb couplings along MD (
√
〈|Hkl|2〉) of about 31 meV for A and 11 meV

along B pairs. These values are very similar to what found in this work from the TrESP

approach (
√
〈|Hkl|2〉 about 30 meV and 7 meV for A and B pairs, respectively). Though a

smaller reorganization energies of 302 meV was found in the former work, as a consequence

of the approximate DFTB approach that relies on local functionals to describe the excited

state geometry. This reorganization energy was employed to model the exciton-phonon

coupling leading to a weaker exciton relaxation compared to FOB-SH, where the exciton

reorganization energy is 561 meV. It also is worth to point out that the DFTB implementa-

tion is more expensive than the FOB-SH methodology coupled to an effective Hamiltonian

proposed here. In fact, in Ref. [231], 1D chains were considered and, as shown in Chapter 4,
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this reduced dimensionality could have an impact on electronic transport properties, such as

wavefunction delocalization and diffusion coefficient of some systems (see Section 4.2.4).

Despite all these differences and the different underlying dynamics, FOB-SH and BC-

Ehrenfest methods yield similar diffusion coefficients (see Table 6.3). The diffusion lengths

from FOB-SH and BC-Ehrenfest are both slightly underestimated compared to the exper-

iments. A possible reason is the absence of Frenkel exciton and charge transfer mixing

(FE-CT) in these simulations, which is known to enhance singlet exciton diffusion as a con-

sequence of the larger exciton dispersion [250]. This effect, however, is smaller in shorter

acenes, such as ANT, than in bigger molecules, e.g. pentacene and fullerene, where the

lowest-energy singlet state is a strong mixture of multi-electronic states of different nature.

In the latter systems, this mixing would need to be included in the Hamiltonian for a more

quantitative prediction of the diffusion.

Table 6.3: Couplings (meV) for A(B) pair, diffusion coefficients and diffusion lengths from different
computational methods and experiments.a

FOB-SHb BC-Ehrenfestc MLJ-Rated Exp.e√
〈|Hkl|2〉 f (meV) 29.6 (6.8) 30.5 (11.4) 35.9 (17.7) -

λ (meV) 561 302 589 -
Da (cm2 s−1) 9.60E-04 7.10E-04 2.90E-03 1.80E-03
Db (cm2 s−1) 3.65E-03 2.40E-03 8.20E-03 5.00E-03

La (nm) 43.82 37.68 76.16 60
Lb (nm) 85.44 69.28 128.06 100

a The diffusion length is estimated from Eq. 6.10 for all the different methodologies using an exciton
lifetime τ = 10 ns, as obtained by experiments [228]. b FOB-SH simulations are performed on 2D
planes with 300 molecules and a nuclear time step of 0.01 fs as described in the text. c Boltzmann
corrected Ehrenfest values are taken from Ref. [231]. The authors used reduced dimensionality 1D
models along a and b crystallographic directions. d Perturbative rate theory result are taken from
Ref. [88]. A rate expression very similar to the Marcus-Levich-Jortner rate for electron transfer
was used by the authors by including an effective quantum mode coupled to the excitation energy
transfer process. e Experimental estimated for the diffusion lengths are taken from Ref. [229, 230].
f Excitonic couplings, for FOB-SH, are averaged over 10 trajectories (1.5 ps long) considering all A
and B pairs in the crystal (B given in brackets).

In Table 6.3 I compared both these numerical non-adiabatic propagation schemes with

a perturbative rate theory used in Ref. [88] by Aragó et. al as well. The latter approach is rea-

sonably well justified in this system by the high local exciton-phonon coupling and the inco-

herent hopping mechanism (observed by inspecting non-perturbative FOB-SH trajectories).

The rate expression used by Aragó et. al [88] is very similar to the Marcus-Levich-Jortner
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rate for electron transfer [32, 219]. It introduces an effective quantum high-frequency mode

that is coupled to the exciton transfer process in order to effectively account for quantum-

mechanical vibrations. In fact, in the common Marcus expression (see Section 1.3.1) all

vibrational modes in the system are treated as classical harmonic oscillators. While such

an approximation is generally good for treating low frequency motions of a general sol-

vent, it is not completely accurate for intra-molecular modes of the molecules, since for

these modes h̄ω > kBT . The approach employed by Aragó et al. gives a diffusion coeffi-

cient in the same order of magnitude as FOB-SH and BC-Ehrenfest approaches and slightly

longer diffusion length compared to both non-adiabatic propagation schemes. This can be

explained with the fact that high frequency vibrations play a non-negligible role for the

transport and, for systems with a reasonably high activation barrier (e.g. ANT), a classi-

cal treatment of modes might not be entirely justified (even at room temperature). Thus,

providing an additional explanation for the lower diffusivity predicted by the FOB-SH and

BC-Ehrenfest approaches, which treat all the modes with classical force fields, compared

to both experiment and Marcus-Levich-Jortner like expression. On the other hand, the ex-

citonic couplings computed by Aragó et al were found by using a diabatization scheme that

includes only 2 adiabatic states [88], therefore the coupling between Frenkel exciton states,

is and effective coupling still contaminated by mixing with charge-transfer states (see Sec-

tion 6.2.2 for a discussion). For this reason, these couplings are larger compared with both

TrESP and TDDFTB couplings (which by constructions do not include such a mixing with

charge transfer states).

On the whole, considering the differences in simulation set-ups, parameters entering

the various Hamiltonians or analytic expressions and the uncertainty commonly character-

izing experimental measurements, I believe that the agreement between FOB-SH and other

data is very encouraging.

6.6 Conclusion

In conclusion, in this Chapter I have devised and implemented a protocol to extend the FOB-

SH approach for treating exciton transport in OSs. I have benchmarked this methodology

against other computational methods and available experiments and addressed strengths

and shortcomings in detail by applying this protocol to ANT, OT6, PTCDI-H and DCVSN5

systems. In particular, I have described how a phenomenological Frenkel type Hamiltonian

can be used in combination with an efficient calculation of off-diagonal excitonic coupling
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elements in order to study full atomistic OS systems.

This procedure is based on the calculation of transition electrostatic potential (TrESP)

charges to effectively reproduce the transition density of the system at a given geometry. The

excitonic coupling found using TrESP charges is in good agreement with the same quantity

calculated using full transition densities and also with the total excitonic coupling obtained

with a multi-state diabatization scheme. I found TrESP couplings to be more accurate than

the point-dipole approximation commonly used in Förster theory to approximate the long-

range interaction. Importantly, the short-range part of the excitonic coupling between fully

localized (Frenkel) exciton states was found to be rather small compared to the Coulomb

contribution in these OSs (at least for the molecular distances characterizing these crystals).

The use of TrESP couplings in combination with FOB-SH has allowed me to evaluate the

diffusion tensor and diffusion length for large systems and relatively long time scales and I

found FOB-SH results in quite good agreement with other computational methods as well

as experimental estimates.

In spite of its computational efficiency, the proposed model has some flaws and could

be improved further. Firstly, only one excitonic state is considered for each site. Charge

transfer states are not accounted for in the present form of the Hamiltonian. However, it

would be possible to include them, provided that a fast approach to calculate the time-

dependent coupling between Frenkel exciton and charge transfer states is developed. Addi-

tionally, triplet formation and dynamics are not included in the present implementation. I

briefly mention here that in principle it would be possible to study triplet-exciton diffusion

by using FOB-SH in combination with an Hamiltonian similar to the one given in Eq. 6.1.

However, this would again require the development of an efficient on-the-fly scheme for the

calculation of the short-range part (VShort) in order to avoid any explicit electronic structure

calculation analogously to what done for singlet excitons (e.g. a scheme based on orbital

overlap [251]). Such a method could be, in turn, benchmarked with a fragment diabatization

scheme (analogue to the FED presented in this work) that has been previously developed for

the calculation of triplet-triplet energy transfer couplings [222]. Moreover, the TrESP ap-

proach used to compute excitonic couplings might not be able to capture large geometrical

changes of more flexible molecules along the dynamics, preventing the utilization of FOB-

SH, at least in the current form, to study for example polymeric molecules (more involved

interpolation schemes could help improving this point). However, in the case of disordered
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and amorphous systems, Marcus-like and related quantum expressions might be anyway

more suitable and effective to simulate the incoherent transport mechanism. Finally, the

classical description of quantum modes seems to be a source of error when the activation

barrier for the exciton transfer process is much higher then excitonic coupling. Applying

path-integral methods for the nuclear dynamics may address this issue [122], hopefully this

will provide a solution in quantitative terms in future (in line with what discussed in Chap-

ter 5).

The real strength of the FOB-SH used in combination with Frenkel Hamiltonian is its

high efficiency, which enables direct exciton simulations in systems with experimentally

relevant nano-scale sizes and the fact that it does not rely on prior assumptions of coherent

or incoherent exciton transport, thus bridging all the intermediate regimes. After careful

validation, I think that this Hamiltonian can be successfully combined with the tight-binding

Hamiltonian used for charge transport processes in previous Chapter, and then extended

in state-space in order to study all the relevant transport and exciton separation processes

occurring in photovoltaics materials. The implementation of a more complete extended

Hamiltonian that would enable us to effectively study fascinating photoinduced processes

in real nano-scale heterojunction interface is under-way in our group.
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Chapter 7

General conclusions and outlook

7.1 Conclusions

This work has focussed on electronic transport in organic semiconducting materials inves-

tigated from the perspective of a novel non-perturbative and fully atomistic non-adiabatic

molecular dynamics approach termed fragment orbital-based surface hopping (FOB-SH).

The method efficiently propagates the electron-nuclear motion in time without assuming

prior transport mechanisms. It is thus free of limiting model assumptions (see Chapter 2).

The goal of this thesis has been the optimization and further development of such a scheme

in order to obtain accurate charge and exciton dynamics for experimentally relevant nano-

scale system sizes and long time-scales.

I have shown, in Chapter 3, that some important improvements are necessary to make

FOB-SH able to accurately fulfil total energy conservation, detailed balance and internal

consistency. Importantly, I have found that a correction for missing electronic decoher-

ence, detection of trivial crossings and removal of decoherence correction-induced spurious

wavefunction transfers are crucial for a reliable and accurate dynamics. A well-founded

set-up to run FOB-SH simulations of charge transport that converges wavefunction delo-

calization, diffusion coefficient and electronic mobility for different time steps and system

sizes has been established and discussed.

These encouraging results set the stage for the application of FOB-SH to simulate

charge and exciton transport in experimentally well-studied, application relevant organic

crystals. This has been done in Chapter 4, where I tackled another major objective of this

thesis, namely providing a better understanding about the interplay of thermal vibrations

(particular important in weakly bonded OSs) and charge dynamics. In fact, this is one of

the hottest and most actively studied topics in the field of organic electronics as it could ulti-

mately help establish better design rules to drive the synthesis of new and more conducting

OS materials. By applying FOB-SH and solving the time-dependent electronic Schrödinger

equation coupled to nuclear motion in several OS crystals, I have found that the charge car-

riers form “flickering” polarons - highly dynamic quantum objects delocalized over many

molecules but finite in size (in agreement with experimental evidence) due to thermal dis-
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order. These polarons propagate through the crystal by diffusive jumps over several lattice

spacings at a time. I have analysed in detail charge mobilities and other properties resulting

from this mechanism, compared these quantities with existing analytic theories and vali-

dated FOB-SH results against the best available experiments. I have also investigated the

temperature dependence of the mobility in Chapter 5 and provided a rationale –based on

the relative magnitude of electronic coupling compared to reorganization energy– to ex-

plain the experimental evidence of a coexistence between localized and delocalized charge

carriers in OSs. These two types of carriers exhibit a different temperature dependence be-

haviour (namely, a hopping-like transport when the carrier is localized by the disorder and

a band-like transport for more delocalized carriers).

Going beyond free carriers dynamics, characterizing for example field effect transis-

tor devices, I finally extended in Chapter 6 the FOB-SH formalism to study the diffusion

of excitons (bound electron-hole pairs) in organic materials using a Frenkel-type Hamilto-

nian. This is an important primary process occurring in organic photovoltaic materials upon

light absorption. This work represents a first step to the study of photoinduced processes

occurring in organic solar cells from non-adiabatic molecular dynamics and it paves the

way for an even more ambitious plan of using FOB-SH to study exciton dissociation and

recombination occurring in OPV materials.

7.2 Outlook

Based on the findings of this thesis there are a number of avenues of further research that

are currently being explored in our group and that will hopefully provide further advance in

the field of nano-scale optoelectronic organic materials.

With regard to charge transport simulations, I believe that FOB-SH is now efficient and

accurate enough to gain deeper insights about the structure-properties relationship of rele-

vant organic field effect device morphologies. My efforts together with students and post-

docs are now devoted to the understanding and the simulation of charge transport across

different morphological domains (e.g. disordered and thin-films phases) of OS systems. In

this regard, I have simulated charge transport across few-layer crystalline pentacene thin-

films epitaxially crystallized on hexagonal boron nitride (hBN) [252].This system has been

extremely well characterized by experiments [252] and it is very interesting as it shows

different packing motifs and transport mechanisms across different semiconducting layers.

Amorphous pentacene structures are also being generated as well by other students in the
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group and, in the near future, we would like to study transport mechanism across ordered-

disordered system interfaces. Here, the charge is expected to undergo delocalization-

localization steps depending on the domain morphology and on the percolation coupling

network. This project should provide a more realistic picture of the experimental conditions

from which FET mobilities are extracted.

Another important goal currently being tackled in the group is the use of FOB-SH as

a tool for the discovery of high-mobility OSs. On the one hand, it would be nice to use

FOB-SH for treating more rigid covalent organic framework structure to reduce the ther-

mal disorder and enhance the electronic coupling between covalently linked units [253].

Scaffolding and rigidity of conjugated molecules are expected to boost the mobility and

efficiency for this class of OSs (as predicted in Chapter 4 by artificially freezing the thermal

fluctuations of the electronic coupling). On the other hand, another important aspect charac-

terizing OS materials is actually their flexibility, exploited, for example, in flexible organic

light-emitting diodes for display applications. A recent experimental study of the strain-

mobility relationship in a rubrene crystal suggested a strong, anisotropic enhancement of

the mobility under compressive strain [254]. This might be regarded as a new alternative

way of improving the efficiency of this material. Molecular simulations will play a key role

in understanding the relationship between strain and mobility at an atomistic level. Such

knowledge might open up ways to use the mechano-electric response as a new means of

enhancing the mobility in organic materials.

Finally, regarding the field of exciton transport and exciton dissociation at the donor-

acceptor interface of OPVs, myself and others are extending the FOB-SH formalism to

increase the state space of the tight-binding site Hamiltonian to include charge separated

states as well as singlet Frenkel excited states. The main goal in the future will be a thorough

study of the photoinduced dynamics and electronic processes occurring in organic solar cells

aiming at finding new design rules that may help optimising the power conversion efficiency

(PCE) of these devices. This project will go far beyond the free-carriers and singlet-exciton

transport studied in this thesis. The main challenges that we are currently addressing are the

development of a strategy to efficiently and reliably calculate electronic couplings between

charge separated states and locally excited states as well as an accurate evaluation of the

Coulomb barrier between electron and hole at various separations.
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Appendix A

FOB-SH: technical details

A.1 AOM parametrizations

Figure A.1: Analytic overlap method (AOM) couplings parametrization. Electronic couplings Hkl
between neighbouring molecules in the crystal structure and along MD trajectories were obtained
from sFODFT [100–103] and plotted against the HOMO or LUMO overlap S̄kl . The constant of pro-
portion C for the approximately linear relationship |Hkl |=C|S̄kl | was obtained from linear (dashed)
or logarithmic fitting (solid), giving C=Clin and C=Clog, respectively.
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A.2 Electronic couplings and comparison with the literature
The scaled FODFT couplings are compared with other computational methods from the

Literature.

Table A.1: Couplings comparison with literature.

crystal dir. dist. |Hkl| (lit.) |Hkl| (sFODFT) r

(Å) (meV) (meV)

DATT-h+ a P 6.26 70a, 66.8o, 94.9
86.5p

RUB-h+ b P 7.18 81i, 83 j, 113.4
107k, 140l ,

95.7m

PEN-h+ c T1 4.73 85 j, 116.7
81k, 130.6l ,
96.7n, 90.7m

ANT-h+ d T 5.24q 26i, 23 j 25.2
P 6.04 40i, 44 j 57.0

NAP-h+ e P 5.95 43i, 35 j, 46.2

a Ref [154]. b Ref [153]. c Ref [155]. d Ref [151]. e Ref [150]. g Ref [255]. i Ref [96].
j Ref [135]. k Ref [178]. l Ref [56]. m Ref [256]. n Ref [257]. o Ref [177]. p Ref [258]. q T-
shaped molecular pair along the given direction. r Electronic couplings for crystal structure
geometries obtained using scaled FODFT (sFODFT) as described in Section 2.1.4.
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A.3 Accuracy of the multiple time step algorithm and neglect of

dkl

An efficient multiple time step (MTS) algorithm as well as a valuable optimization for the

non-adiabatic coupling elements have been introduced in Section 2.1.7 in order to deal with

large systems without losing the accuracy of the FOB-SH dynamics. Here I benchmark

the quality of these two important algorithmic improvements on the ANT 2D crystal with

378 molecules forming the active plane. I ran 600 trajectories, 1 ps long with a 0.1 fs

nuclear time step for different combinations with increasingly optimized FOB-SH (i.e. “dkl”

in which the diabatic NACEs in the orthogonal basis are calculated at each nuclear time

step (as explained in the next section) and linearly interpolated when solving the electronic

equation of motion, Eq 2.4 (the MTS algorithm is inactive); “no dkl” in which these NACEs

are neglected; “MTS+dkl” in which the MTS algorithm is activated and the off-diagonal

gradients are updated only every 100 MD time steps (namely, every 10 fs using a 0.1 fs MD

time step), and “MTS+no dkl”, in which NACEs are not calculated and the MTS algorithm

is activated).

Importantly in Figure A.2, I show that MSD both along a and b crystallographic di-

rections, the number of (successful and rejected) hops, the mobilities along a and b and

the IPR, all remain virtually unchanged (within statistical errors) when going from “dkl”

scheme to “MTS+no dkl”. As expected, upon activation of the MTS algorithm the energy

conservation decreases from 2.1×10−8 to 6.0×10−7 Ha/ps/atoms (though remaining well

below the typical energy conservation of ab− initio MD of about 10−5 Ha/ps/atoms). Yet, I

notice a significant speed-up in the time needed to complete a time step (almost factor of 3

when the system becomes larger than a thousand molecules). This makes the FOB-SH code

capable of affording almost twice as large systems at the same computational cost without

sacrificing accuracy of the actual dynamics (see Figure A.2(E)).
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Figure A.2: Algorithmic optimization for code speed-up. The different algorithmic optimizations
described in the text (“dkl”, “no dkl”, “MTS+dkl” and “MTS+no dkl”) are compared for ANT crystal.
(A) The mean squared displacement (MSD) of the charge carrier wavefunction is shown along the
respective eigendirections of the MSD tensor. The diffusion coefficient is obtained from linear fits
to the MSD after initial relaxation, as indicated by dashed lines. The MSD is obtained from 600
FOB-SH trajectories and the error bars are obtained by block-averaging over 3 blocks. (B) Average
number of successful and rejected hops for 600 trajectories. (C) and (D) represent, respectively, the
mobilities along the eigendirections as obtained from the MSD fitting in (A) and the IPR. (E) Time
taken in (s) to complete a nuclear time step as a function of total number of molecules in the system
on a single CPU core. The black line indicates the time for a classical MD on the same system size
and the dashed black line indicates the time required for computing 1 ps (10,000 steps) per day. The
inset shows the overhead of the ‘MTS+no dkl” compared to a standard MD run in CP2K. Processor
used for the timing: Intel(R) Xeon(R) x86 64 CPU E5-2687W v4 3.00GHz
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Alternative transport algorithms

B.1 Master equation and rate constants

In the regime of small electronic coupling strength (Vkl = 〈|Hkl|2〉1/2 << λ/2), the charge

carrier wavefunction can be assumed to be localized on one molecule at all times and hop-

ping from one site to the next. Thus, the actual dynamics can be well captured by a hopping

model. To this end, by assuming to have only one carrier present in the system, I wrote and

solved a chemical master equation for charge hopping along 1D chains as well as 2D lattices

to obtain the time-dependent charge population of each site, k (see below). This quantity

can then be used to evaluate the mean squared displacement (MSD) and the corresponding

charge hopping mobility.

As an example, the hole transfer within a 1D chain can be illustrated by the following

kinetic equation:

M+
k –Mk+1–Mk+2–

kk+1k
GGGGGGGGGBFGGGGGGGGG

kkk+1

Mk-M+
k+1–Mk+2–

kk+2k+1
GGGGGGGGGGGBFGGGGGGGGGGG

kk+1k+2

· · ·

where kkl is the rate constants obtained from electron transfer (ET) theory between the

various sites (note that the rate constant can be different for pairs at a different distance

as seen for example for 2D lattices in Chapter 4). Few different rate expressions have

been proposed in the literature [32] to deal with different ET regimes (namely, adiabatic

and non-adiabatic ET regimes [32]). In this thesis for charge transfer reactions, I adopted

the following semiclassical transition state theory formula valid in the non-adiabatic and

adiabatic ET regime[16]

kkl = κelνeff exp(−β∆A‡
kl), (B.1)

where β =1/kBT , κel is the electronic transmission coefficient,

κel =


2PLZ

1+PLZ
if ∆Akl ≥−λ

2PLZ(1−PLZ) if ∆Akl <−λ

(B.2)

PLZ = 1− exp(−2πγ) (B.3)

2πγ =
π3/2〈|Hkl|2〉TS

hνeff
√

λkBT
, (B.4)
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νeff is the effective nuclear frequency (in these systems, taken to be the stretching frequency

of an aromatic carbon double bond: 1600cm−1) and ∆A‡
kl is the activation barrier. For

vanishing driving force, ∆A0
kl = 0, as is the case here, ∆A‡

kl is given by[197],

∆A‡
kl(∆Akl =0) =

λ

4
− (Vkl−

V 2
kl

λ
). (B.5)

∆A‡
kl and κel were evaluated for the same reorganization energy λ . Note that, the mean cou-

plings V 2
kl = 〈|Hkl|2〉 and it is obtained along MD simulations (see for example Table 4.3).

I point out that 〈|Hkl|2〉 = 〈Hkl〉2 +σ2
V , namely the square average of the couplings in the

hopping rate takes into account the fluctuations of the coupling along the dynamics (these

fluctuations help the charge going over the activation barrier in the low coupling regime).

The time evolution of the population for each site can be found solving the first order

differential equation:
dP(t)

dt
=KP(t) (B.6)

where P(t) is a vector containing site populations and K is the matrix of rate constants. The

diagonals and off-diagonals of this kinetic matrix can be generally written as:

[K]kk =−∑
l 6=i

kkl and [K]kl = kkl. (B.7)

In the particular 1D case (without including periodic boundaries and assuming equiv-

alent sites) the kinetic matrix becomes:

K=



−k k 0 0 . . . 0

k −2k k 0 . . . 0

0 k −2k k . . . 0

0 0 k −2k . . . 0
...

...
...

...
. . .

...

0 0 0 . . . k −k


The solution to Eq. B.7 is

P(t) = exp(Kt)P(0) (B.8)

where P(0) is the vector of initial populations, in this case the first component Pk(0)=1 and

all other components are zero. The MSD is then obtained through analogue Eqs. 2.31-2.33
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in Section 2.3.2.

B.2 Transient localization theory
The mobility from transient localization theory (TLT), along a specific crystallographic

direction (x), is written in the following form [15]:

µx =
e

kBT
L2

x(τ)

2τ
(B.9)

L2
x(τ) is referred to as localization length and it is a function of the fluctuation time (τ) given

by typical intermolecular oscillation (τ = 1
ω0

). According to this theory, the localization

length can be expressed as [57]:

L2
x(τ) =

1
Z ∑

n
∑
m

eζ En/(kBT )|〈n|[Ĥ, x̂]|m〉|2 2
( 1

τ
)2 +(Em−En)2

(B.10)

in which Em,En are eigenvalues energies and |n〉, |m〉 the related eigenvectors of the Hamil-

tonian. Z = ∑n eζ En/(kBT ) is the partition function, with ζ = +1 for holes and ζ = −1 for

electrons [259]. Finally x̂ is the position operator and [...] parenthesis indicate the commu-

tator term. When L2
x(τ) and L2

y(τ) are calculated one can extract localization length as the

average over the high mobility plane as:

L2(τ) =
L2

x(τ)+L2
y(τ)

2
(B.11)

as well as the average mobilities µ .

The TLT mobilities were calculated by using the open source code provided in

Ref. [57] and following the steps described above. In particular, the electronic Hamilto-

nian in Eq. 2.5 was sampled along FOB-SH trajectories and from it µTLT and µ∗TLT were

extracted from it, and reported in Figure 4.8. In the former case onsite energies were set

to zero as done in Refs. [56, 57], whereas in the latter the complete Hamiltonian including

diagonal thermal fluctuations was used. The intermolecular oscillation time τ = 1/ω0 was

taken from Ref. [85]. It is worth noticing that this oscillation time is not an essential pa-

rameters. It was found that dependence of the mobility on the molecular fluctuation time is

weak and that τ does not change very much across different compounds [56].
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[142] S. Nosé, “A unified formulation of the constant temperature molecular dynamics

methods,” J. Chem. Phys., vol. 81, no. 1, pp. 511–519, 1984.

[143] A. Becke, “Density-functional thermochemistry. iii. the role of exact exchange,” J.

Chem. Phys., vol. 98, p. 5648, 1993.

[144] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made

simple,” Phys. Rev. Lett., vol. 77, p. 3865, 1996.

[145] M. D. Hack, A. W. Jasper, Y. L. Volobuev, D. W. Schwenke, and D. G. Truhlar,

“Quantum Mechanical and Quasiclassical Trajectory Surface Hopping Studies of the

Electronically Nonadiabatic Predissociation of the Ã State of NaH 2,” J. Phys. Chem.
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