
Scaling Machine Learning Systems
Using Domain Adaptation

Akhil Mathur

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
of

University College London.

Department of Computer Science
University College London

December 10, 2020

2

I, Akhil Mathur, confirm that the work presented in this thesis is my own. Where
information has been derived from other sources, I confirm that this has been indi-
cated in the work.

Abstract

Machine-learned components, particularly those trained using deep learning meth-
ods, are becoming integral parts of modern intelligent systems, with applications
including computer vision, speech processing, natural language processing and hu-
man activity recognition. As these machine learning (ML) systems scale to real-
world settings, they will encounter scenarios where the distribution of the data in
the real-world (i.e., the target domain) is different from the data on which they were
trained (i.e., the source domain). This phenomenon, known as domain shift, can
significantly degrade the performance of ML systems in new deployment scenarios.

In this thesis, we study the impact of domain shift caused by variations in system
hardware, software and user preferences on the performance of ML systems. After
quantifying the performance degradation of ML models in target domains due to the
various types of domain shift, we propose unsupervised domain adaptation (uDA)
algorithms that leverage unlabeled data collected in the target domain to improve
the performance of the ML model. At its core, this thesis argues for the need to
develop uDA solutions while adhering to practical scenarios in which ML systems
will scale. More specifically, we consider four scenarios: (i) opaque ML systems,
wherein parameters of the source prediction model are not made accessible in the
target domain, (ii) transparent ML systems, wherein source model parameters are
accessible and can be modified in the target domain, (iii) ML systems where source
and target domains do not have identical label spaces, and (iv) distributed ML sys-
tems, wherein the source and target domains are geographically distributed, their
datasets are private and cannot be exchanged using adaptation. We study the unique
challenges and constraints of each scenario and propose novel uDA algorithms that
outperform state-of-the-art baselines.

Impact Statement

In recent years, we have witnessed the exciting capabilities and opportunities that
artificial intelligence (AI) can bring for end-users. For example, the Seeing AI app
from Microsoft assists users with visual impairments in identifying people, text,
or objects near them; the AI-based biometrics platform by Element Inc. aims to
provide a digital identity to infants and children in the Global South. While such
technologies are undoubtedly promising, it is important to ensure that they work-
universally-for users around the world and not just be limited to a subset of the
population in a specific part of the world, otherwise we risk creating a world of AI
haves and have-nots, i.e., people who will gain advanced capabilities in their lives
with AI and others who will not.

One of the hurdles in fulfilling this vision is the reliance of today’s state-of-the-art
AI algorithms, such as those based on deep learning methods, on large-scale la-
beled datasets. Moreover, a fundamental assumption behind these solutions is that
the distribution (or characteristic) of the data will remain the same between training
and deployment stages. Naturally, as AI technologies become more widespread,
such divergences between training and test data are more likely to occur. For exam-
ple, users in different parts of the world will have diversity in the devices they use
(ranging from low-end phones to very expensive smartphones), their environment
conditions (e.g., ambient noise levels, natural lighting), and their technology usage
patterns—all of which are likely to introduce unique variability in the user data,
thus making it different from the original training data.

This thesis contributes to addressing these challenges by proposing algorithms to
adapt ML systems to new deployment settings, only using unlabeled data collected
therein. In doing so, we place a special emphasis on ensuring that our proposed
algorithms are grounded in the realistic scenarios in which ML systems will be
deployed. As an example, ML systems often encounter private and sensitive user
data (e.g., biometrics, health records) during deployment which cannot be shared

Impact Statement 5

with other parties; hence, one of our proposed adaptation algorithms is designed to
work without requiring access to raw data during deployment.

During this research, we collected two large-scale multi-microphone speech
datasets which have been made publicly available to the academic community
to facilitate research and development of robust speech systems. Finally, the al-
gorithms developed in this thesis are being deployed in the industry to adapt AI
systems operating on mobile and embedded devices to new deployment settings.

Acknowledgements

I want to thank my wonderful advisors, Nic Lane and Nadia Berthouze, for their
support and motivation throughout my Ph.D. journey. I am deeply grateful to both
of you for the countless hours of discussions on research problems, paper writing,
and career directions. I am inspired by your passion for research, and the kindness
and care you show towards the students is something I wish to emulate. Thank you!

The decision to pursue a Ph.D. alongside a full-time job was not easy for me. Look-
ing back at it, I am glad I took this path. A lot of credit goes to Fahim Kawsar, who
encouraged me to pursue the Ph.D. and has been a constant source of support and
inspiration in my research career. Dhonnyobaad!

I consider myself lucky to have been mentored by some fantastic people in my ca-
reer. My deepest gratitude to Neha Kumar for her unwavering support, positivity,
and kindness over the years. I am also thankful to Matthew Kam, Ravin Balakrish-
nan, Sharad Jaiswal, Vishy Poosala, Bo Olofsson, and Markus Hofmann for their
roles in shaping my research career.

I have been extremely fortunate to work with many outstanding people over the
last few years. I thank my friends and colleagues at the University College London
(Chongyang Wang, Tao Bi, Ahmed Alqaraawi, Temitayo Olugbade, Robert Smith)
and CaMLSys (Daniel J. Beutel, Taner Topal, Titouan Parcollet, Xinchi Qiu) for the
fantastic discussions and memories.

I am also blessed to have some exceptional colleagues and friends at Nokia Bell
Labs over the years (Alessandro Montanari, Christina L-De-Menezes-Dietschi,
Chulhong Min, Alberto Gil Ramos, Marc Van Den Broeck, Mo Alloulah, Shao-
duo Gan, Sourav Bhattacharya, Tianlin Zhang, Utku Acer, Youngjae Chang), and
thank them for all the research collaborations and adventures around Cambridge.

I would like to give a special shout-out to Anton Isopoussu for being a great collab-
orator and friend in this journey. I have learned a lot working with you and hope to

Acknowledgements 7

collaborate again in the future.

I am lucky to have a large and loving circle of family and friends back home in
India. I thank you all for your love and awesomeness. A massive thanks to my in-
laws (Ayush, Dishant, Mr. K.N. Mathur and Ms. Shubha Mathur) for your support
and understanding.

I dedicate this thesis to the four pillars of my life: Anjali, Meenu, Daddy, and
Mummy. I am fortunate to have you in my life. Without your love, affection and
constant support, this thesis would not have been possible.

Contents

1 Introduction 19

1.1 Challenges in Scaling Machine Learning Systems 20

1.1.1 Overview . 20

1.1.2 Sensing Heterogeneities 22

1.1.3 Sensing Heterogeneities as Domain Shift 24

1.2 Research Questions and Contributions 24

1.3 Thesis Structure . 28

1.4 Research Outcomes . 28

1.4.1 Peer-Reviewed Publications 28

1.4.2 Datasets . 30

1.4.3 Recognition . 30

2 Background 31

2.1 Computational Models for Sensor Data 31

2.1.1 Audio and Speech Recognition 32

2.1.2 Human Activity Recognition 34

2.2 Scalability Challenges for Inference Models 35

2.2.1 Challenges in Scaling Speech Models 35

2.2.2 Challenges in Scaling HAR Models 37

Contents 9

2.3 Sensing Heterogeneity and Domain Shift 39

2.4 Unsupervised Domain Adaptation 40

2.4.1 Overview . 40

2.4.2 Techniques . 41

2.5 Discussion and Contributions . 43

2.6 Summary . 46

3 Quantifying the Effect of Domain Shift on Sensor Inference Models 47

3.1 Microphone Heterogeneity in Speech Models 47

3.1.1 Data Collection Methodology 47

3.1.2 Experiments . 51

3.2 IMU Sensor and Placement Heterogeneity in HAR models 55

3.2.1 Datasets . 55

3.2.2 Experiments . 56

3.3 Summary . 58

4 Scaling Opaque Machine Learning Systems 60

4.1 Problem Setting . 60

4.2 Background and Related Work . 61

4.2.1 Primer on Generative Adversarial Networks 62

4.3 Mic2Mic: GANs with Cyclic Consistency for Speech Translations . 63

4.3.1 Cyclic Consistency . 64

4.3.2 Mic2Mic architecture and training 64

4.3.3 System Design . 66

4.4 Evaluation . 67

4.4.1 Tasks and Datasets . 67

Contents 10

4.4.2 Evaluation of the translation model 69

4.4.3 Accuracy gains using Mic2Mic 70

4.4.4 How much data is needed to train Mic2Mic? 74

4.5 Discussion and Limitations . 75

4.6 Summary . 76

5 Scaling Transparent Machine Learning Systems 78

5.1 Problem Setting . 79

5.2 Background and Related Work . 80

5.3 Scaling HAR Models with Data-Augmented Adversarial Training . 81

5.3.1 Solution Overview . 81

5.3.2 Solution Description . 82

5.4 Evaluation . 85

5.4.1 Experiment Setup . 85

5.4.2 Baselines . 86

5.4.3 Results . 87

5.5 Discussion and Limitations . 92

5.6 Summary . 93

6 Domain Adaptation Under Label Space Mismatch 95

6.1 Problem Setting . 96

6.2 Background and Related Work . 98

6.3 Adaptation under Mismatched Label Spaces (AMLS) 99

6.3.1 Notations . 99

6.3.2 Challenges for Adversarial uDA 100

6.3.3 Solution Overview . 101

Contents 11

6.3.4 AMLS: Weighting Schemes 102

6.3.5 AMLS: Training and Inference Pipelines 104

6.4 Experiment Setup . 105

6.4.1 Tasks and Datasets . 105

6.4.2 Experiment Protocol . 106

6.5 Results . 107

6.6 Discussion and Limitations . 111

6.7 Summary . 112

7 Scaling Distributed ML Systems with Multiple Target Domains 113

7.1 Motivation . 113

7.2 Preliminaries and Problem Formulation 115

7.2.1 Notations and Primer . 116

7.2.2 Problem Formulation . 116

7.3 FRUDA: Framework for Realistic uDA 117

7.3.1 Optimal Collaborator Selection (OCS) 117

7.3.2 Distributed uDA using DIscriminator-based Lazy Synchro-
nization (DILS) . 120

7.3.3 Combining OCS with DILS 122

7.4 Evaluation . 122

7.4.1 Performance of DIscriminator-based Lazy Synchronization
(DILS) training . 123

7.4.2 Performance of the proposed framework, FRUDA 124

7.5 Related Work . 128

7.6 Discussion and Limitations . 129

7.7 Summary . 130

Contents 12

8 Concluding Remarks 131

8.1 Summary of Contributions . 131

8.2 Limitations and Future Work . 132

Bibliography 135

A Appendix 159

A.1 Experiment Details . 159

A.2 Theoretical Justifications . 163

List of Figures

1.1 Generic pipeline for sensor data processing and inference. 22

1.2 In Chapter 3, we quantify the effect of various domain shifts on sen-
sor inference models. The parts with grey and white backgrounds
represent the target and source domains respectively. XS and XT

represent source and target datasets. 25

1.3 uDA Solutions are proposed in Chapters 4 and 5 to counter domain
shift in speech and inertial data. 26

1.4 In Chapter 6, we extend uDA to scenarios of mismatched source
and target label spaces. Cshared,CS and CT denote the shared and
private label spaces in the source and target domains. 27

1.5 In Chapter 7, we extend uDA to distributed ML settings with mul-
tiple target domains. 28

2.1 Pre-processing and feature extraction pipeline to obtain Mel Fre-
quency Cepstral Coefficients (MFCCs) from raw speech data. 32

2.2 Pre-processing pipeline for data from the inertial measurement unit. 34

2.3 Sensing and inference pipeline for audio models. 36

3.1 Data collection setup illustrating the Replay and Record method-
ology. Three microphones are shown in the figure, namely Matrix
Voice, USB microphone and ReSpeaker. 50

3.2 Impact of microphone variability on Google and Bing ASR models.
Values on the bars illustrate the increase in WER over the original
Librispeech dataset (black bar). 54

List of Figures 14

3.3 Difference in mel-spectrograms of a speech segment captured by
three different microphones. 55

3.4 Figure from the REALWORLD dataset paper [1] showing different
IMUs instrumented on the human body at different locations. 56

3.5 Accelerometer traces for the same physical activity (walking) col-
lected from IMU sensors placed at three different body positions. . . 58

4.1 Generative Adversarial Network (GAN) proposed in [2]. 62

4.2 A pair of grayscale and colored images, on which conditional GANs
can be trained to learn a translation function. 63

4.3 Architecture of Mic2Mic based on imposing cycle-consistency on
data translations. The figure only shows the cycle with target data
as input, the other cycle works similarly with subscripts S and T
interchanged. 65

4.4 Integration of Mic2Mic’s translation component (GT→S) in the in-
ference pipeline of an opaque ML system in the target domain. . . . 67

4.5 Performance of Mic2Mic for ReSpeaker→Matrix translation. (a)
shows an example spectrogram from ReSpeaker and (c) shows the
corresponding spectrogram for Matrix microphone. (b) shows the
spectrogram generated by applying GReSpeaker−→Matrix translation on
(a). 70

4.6 Accuracy of the Spoken Keyword Detection model under different
scenarios of microphone variability. The numbers on the bars de-
note the percentage of accuracy recovered using Mic2Mic. 72

4.7 Accuracy of the Emotion Detection model under different scenar-
ios of microphone variability. The numbers on the bars denote the
percentage of accuracy recovered using Mic2Mic. 72

4.8 Accuracy of the Spoken Keyword Detection model in the test (or
target) domain, as the amount of unlabeled data used to train the
Mic2Mic translation model is varied. 75

5.1 Architecture for Data-Augmented Adversarial Training 82

List of Figures 15

5.2 Effect of various data perturbation schemes on a 3-second long ac-
celerometer segment from the REALWORLD HAR dataset. 83

5.3 Performance (F1 scores) of HAR classifiers trained and tested on
data from different body positions with various training approaches.
Our proposed approach of data-augmented adversarial training out-
performs other baselines in 41 out of the 42 experiment conditions. . 88

5.4 t-SNE visualizations of the feature embeddings generated by differ-
ent training approaches for the waist→ chest experiment. 90

5.5 Effect of varying the mismatch in class distributions on target do-
main performance in the head→ thigh experiment. 91

5.6 Effect of changing the size of unlabeled dataset in the target domain
on adaptation performance in the head→ thigh experiment. 92

6.1 (a) Identical and (b) Mismatched Label Spaces in source and target
Domains. The latter scenario is likely in practical ML systems and
is the focus of this chapter. 96

6.2 Architecture of AMLS. Solid boxes represent neural network com-
ponents and circles denote various losses that are optimized. 101

6.3 For two adaptation tasks, this figure shows the relative change in
per-class accuracy of shared target classes after adaptation. Nega-
tive transfer can be observed in DANN and ADDA. 109

6.4 Comparison of different uDA approaches as |Cshared| varies in the
M→F Gender Adaptation task. 110

7.1 Illustration of rotation-induced domain shift in the Rotated MNIST
dataset. 114

List of Figures 16

7.2 0° is the labeled source domain while the domains in blue are
unlabeled target domains. The numbers in rectangle denote the
post-adaptation accuracy for a domain. (a) Static Design: Labeled
Source acts the collaborator for each target domain. (b) Flexible De-
sign: Each target domain chooses its collaborator dynamically. Pre-
viously adapted target domains can also act as collaborators. Note
that choosing the right collaborator leads to major accuracy gains
over the Static Design for many domains (shown in red). 115

7.3 (a) A new target domain DK+1
T finds its optimal adaptation collab-

orator Dopt from a set of candidate domains. (b) DK+1
T performs

distributed uDA with Dopt to learn a model for its distribution. . . . 119

7.4 Illustration of the Digits and Office-Caltech datasets. 122

7.5 Effect of increase in the domain shift on the performance of FRUDA. 127

List of Tables

3.1 Technical specification of the microphones used for data collection. 48

3.2 Test set accuracy of the Spoken Keyword Detection model when
trained and tested on various microphone pairs. The columns and
rows correspond to the training and test microphone domains re-
spectively. 53

3.3 WER of a fine-tuned DeepSpeech2 model trained and tested on var-
ious microphone pairs. The columns correspond to the training mi-
crophone domain and rows correspond to the test microphone domain. 53

3.4 F1 scores obtained when an HAR model is trained and tested on
different body positions. 57

4.1 Comparison of PSNR between the spectrograms coming from two
different microphones before and after Mic2Mic’s translation oper-
ation. 68

4.2 Test accuracy of the Spoken Keyword Detection model when it is
trained on multiple microphones. 73

4.3 Test accuracy of the Emotion Detection model when it is trained on
multiple microphones. 74

6.1 Target domain accuracy averaged over shared (Cshared) and private
(CT) classes, with highlighted 95% confidence intervals (over five
experiment runs). AMLS significantly outperforms ADDA and
DANN, and also provides gains over UAN, which is designed for
universal adaptation. 108

List of Tables 18

6.2 Mean and 95% confidence intervals of the weights obtained for
source and target samples in two adaptation tasks. A Welch’s t-test
is done to compare the weights from the shared and private classes. . 111

7.1 Domain orderings used in our experiments. Domains in bold cor-
respond to the labeled source domain. All other domains are unla-
beled and introduced sequentially in the system. 124

7.2 Target Domain Accuracy and mean uDA Training Time (t). DILS
has a 37% faster convergence time than FADA on average, without
a major drop in adaptation accuracy. The sync-up step p for DILS
is set to 4. 125

7.3 Mean accuracy over all target domains appearing in a given order,
e.g., Order1=D,W,C,A for Office-Caltech. 126

7.4 Mean target accuracy for four uDA methods. Our framework can
be used in conjunction with various uDA methods, and improves
mean accuracy over the Labeled Source baseline. 128

Chapter 1

Introduction
The only way that we can live, is if we grow. The only
way that we can grow is if we change. The only way
that we can change is if we learn. The only way we
can learn is if we are exposed. And the only way that
we can become exposed is if we throw ourselves out
into the open. Do it. Throw yourself.

C. JoyBell C.

The field of machine learning has witnessed significant breakthroughs in the last
decade driven by the availability of large-scale data, advancements in computa-
tional models that process this data to generate meaningful inferences, and the mas-
sive increase in computational power available to train these models. As a result,
machine-learned components are increasingly being incorporated in the design of
intelligent systems in various domains such as medical imaging [3] autonomous
cars [4], conversational agents [5], smart buildings [6] and even smartphones and
wearable devices [7, 8, 9]. As an example, consider the Automatic Brightness sub-
system in the latest Android smartphones. Until recently, this sub-system used a
rule-based classifier to adjust the screen brightness based on the ambient illumi-
nance captured from the light sensor on the phone. However, system designers
realized that this one-size-fits-all approach does not work for all users, and replaced
the rule-based classifier with one trained using machine learning techniques that can
adjust the screen brightness by learning a user’s unique preferences [10]. On similar
lines, Mehrotra et al. [9] have proposed intelligent notification systems for smart-
phones, which leverage machine learning techniques to learn a user’s notification
receptivity behavior and personalize the delivery of notifications.

As machine learning systems become pervasive, they will be deployed in diverse
real-world scenarios, many of which the system designer might not have even con-
sidered at the time of training. For example, speech-based conversational systems

1.1. Challenges in Scaling Machine Learning Systems 20

will have to interact with users with different accents; object recognition systems
might be deployed in lighting conditions drastically different from the ones in which
they were trained. In such diverse scenarios, the data collected during deployment
(i.e., test data) would look quite different from the data on which the model was
trained (i.e., training data), which in turn could degrade the performance of the
machine learning system [11]. A good example of this practical challenge is the re-
cently released ObjectNet dataset [12], which contains images of objects captured
with different backgrounds, rotations, and viewing angles. When state-of-the-art
object detection models trained on the widely used ImageNet [13] dataset were
tested on ObjectNet, they suffered a dramatic drop of 40-45% in both top-1 and
top-5 class recognition accuracy.

Hence, in order for machine learning systems to scale in the real-world successfully,
it is essential that they are capable of evolving to new scenarios with minimal human
supervision. Towards this goal, this thesis proposes a number of algorithms and
system components for adapting machine learning systems to new domains, just
using unlabeled data collected in them.

In the next section, we contextualize the contributions of this thesis in the big picture
of scalability challenges for machine learning systems.

1.1 Challenges in Scaling Machine Learning Systems
The problem of designing scalable machine learning (ML) systems is multi-faceted.
This section discusses some prominent challenges in scaling ML systems and high-
lights how the work in this thesis fits into the research landscape.

1.1.1 Overview

ML models are often trained on large-scale datasets to achieve state-of-the-art pre-
diction performance. Hence, it is important to design scalable and efficient training
pipelines to accelerate the training process. In this direction, substantial research has
been done on developing hardware accelerators [14], distributing the training across
multiple machines [15, 16, 17, 18, 19, 20], and even on novel data pipelines [21].
In many scenarios, training data is distributed geographically across multiple nodes
and cannot be aggregated on a central server due to privacy constraints; federated
learning [22, 23, 24] algorithms tackle this challenge by a combination of local
training of ML models on the individual nodes and aggregating the parameter up-
dates on a central server.

1.1. Challenges in Scaling Machine Learning Systems 21

Once a model is trained, it has to be made available to downstream system compo-
nents or end-user applications. ML models are often hosted on cloud infrastructure
such as Amazon Elastic Compute Cloud or Google Cloud Platform, and offered as
a service to user applications. In this case, it becomes important to design scalable
serving solutions that can fulfill thousands of concurrent inference requests from
the users. Model serving frameworks such as TensorFlow Serving [25], Torch-
Serve [26], and MLflow [27] are some of the promising examples in this space.
Further, for ML systems that are deployed on the edge, it is crucial that they can
scale to a wide variety of devices with different resource constraints on memory
and computation capabilities; in this direction, there have been promising efforts in
the area of embedded deep learning in the last few years [28, 29, 30, 31].

Prior research has also highlighted the significant challenges in engineering large-
scale ML systems [32, 33] including the management of model configurations and
hyperparameters, keeping the data processing and feature extraction pipelines clean,
dealing with hidden feedback loops and mitigating unexpected dependencies be-
tween different system components.

Finally, the issue of data heterogeneity in real-world scenarios is a major challenge
to the scalability of ML systems. ML models trained using supervised learning
techniques assume that at inference time, test data will be drawn from the same
distribution as the training data. However, in practical settings, a number of factors
could cause the test data distribution to diverge from the training distribution, which
in turn could lead to significant performance degradation of ML models.

Dealing with heterogeneity or drift in the data between training and test stages re-
quires a two-step solution. Firstly, we need to identify that data drift is indeed
happening in the ML system. In this direction, there have been numerous interest-
ing works that have highlighted the need for continuous monitoring of ML systems
in deployment [34, 33, 35] both at the level of input data and model predictions.
From an algorithm viewpoint, Rabanser et al. [36] proposed various techniques to
detect dataset drift through a combination of dimensionality reduction and a two-
sample-testing approach. There is also literature on anomaly detection [37] using
techniques such as one-class Support Vector Machine [38] and random cut for-
est [39] that can be used to identify anomalous data samples during deployment
stages. Other strategies proposed for detecting out-of-distribution (OOD) sam-
ples include applying a threshold on the softmax probabilities of the pre-trained
model [40], pre-processing the training data with adversarial perturbations [41], or
explicitly exposing the model to an outlier dataset [42] during training.

1.1. Challenges in Scaling Machine Learning Systems 22

Figure 1.1: Generic pipeline for sensor data processing and inference.

Once a drift in the data is detected, the second step is to fix it to ensure that it does
not degrade an ML system’s performance during deployment. The work in this
thesis aims to address this particular challenge in scaling ML systems. We con-
sider different scenarios of deployment of ML systems, such as opaque ML systems
(wherein the model parameters are not accessible and cannot be modified during de-
ployment), transparent ML systems (wherein the model parameters can be modified
during deployment), and distributed ML systems. Further, our investigations focus
on scaling ML systems that operate on sensor data collected from microphones and
inertial sensors, and encounter sensor-induced heterogeneities in the data.

1.1.2 Sensing Heterogeneities

We now give a brief overview of the causes of heterogeneities in sensor data and
how this thesis aims to address them. Later in Chapter 2, we elaborate on these
heterogeneities in the context of ML systems studied in this thesis.

There are a plethora of factors that can cause heterogeneity in sensor data in the
real-world. Figure 1.1 shows a generic pipeline for collecting and processing sen-
sor data. As we can see, before the sensor data reaches the inference model, it
undergoes processing by a number of components, each of which could potentially
lead to heterogeneity in the data. A physical analog signal x first encounters var-
ious environmental factors that can be a source of heterogeneity in the data. For
example, perturbations in audio and image data can be respectively introduced by
acoustic noise or lighting conditions in the environment. The perturbed signal de-
noted as e(x) is then processed by the sensor hardware which converts it into a
digital output h◦ e(x). Thereafter, it is processed by domain-specific sampling and
signal processing algorithms to obtain s ◦ h ◦ e(x), before being passed to the ML
inference model.

Prior research has demonstrated that each of the above components in the sensing
pipeline can induce variability in the sensor data. For example, [43] highlighted that
imperfections introduced in the analog circuitry of accelerometer sensors during the

1.1. Challenges in Scaling Machine Learning Systems 23

manufacturing process could cause variations in their digital output. Interestingly,
they found that these hardware-induced variations in accelerometer data are compu-
tationally so significant that they can be leveraged to fingerprint a smart device and
identify it with over 99% accuracy in a pool of 100 devices. On similar lines, in a
study across 52 smartphones, [44] showed that microphone sensors of these devices
could introduce variability in the audio data, which are also reflected in the Mel-
Frequency Cepstral Coefficient (MFCC) features and could be used to fingerprint
the smartphone with an accuracy of 97%.

Moreover, the software stack on sensor devices can also be the source of heterogene-
ity in the data. For example, Stisen et al. [45] highlighted that run-time factors on
smartphones, such as instantaneous I/O load or delays in timestamp attachment to
sensor measurements by the operating system could lead to unstable sampling rates
for accelerometer and gyroscope sensors. Similarly, manufacturers of multi-channel
microphone arrays [46, 47] employ different (and often proprietary) noise reduction
and beamforming algorithms to enhance the signal quality before it is passed onto
the user applications. Prior research [48, 49] has shown that these algorithms are
also sensitive to microphone parameters, such as gain mismatches between individ-
ual microphones and could add unintended biases in the audio data that is passed to
the user applications. For example, through experiments on multi-channel speech
recordings, [49] found that acoustic beamforming algorithms may even cause the
performance of speech recognition models to degrade if channel parameters across
microphones differ. Besides the hardware and software causes, variability in sensor
data can also come from differences in sensing environments, user demographics,
and user preferences regarding how they interact with the system.

As we describe in the next chapter, there have been research initiatives to indi-
vidually address each of these sources of variability in sensor data, for example,
by developing sensor calibration solutions [50, 51] or adaptive beamforming algo-
rithms [49]. While such efforts are important, we argue that instead of developing
such component-level solutions to counter individual sources of heterogeneity in
sensor data, we can address the composite effect of these heterogeneities directly
inside the training and inference pipelines of machine learning models. This view-
point is essential because ML components are often treated as end-consumers of
sensor data in real-world systems. They may not have low-level access to system
components such as the sensor hardware or the signal processing algorithms used
by the system designer. As such, it will be infeasible to apply any component-level
solutions designed to address the individual sources of variability in the data.

1.2. Research Questions and Contributions 24

1.1.3 Sensing Heterogeneities as Domain Shift

The combined effect of different types of sensing heterogeneities can be interpreted
as a form of domain shift in the sensor data. As defined by Storkey [52, 11], domain
shift is characterized by a change in the measurement system of data. Assuming that
there is an underlying unchanging latent representation space in which the sensor
sample x lies, we would ideally like to learn a relationship between x and an output
class y. However as shown in Figure 1.1, in practical ML systems instead of x we
only observe x′= f (x) = s◦h◦e(x), where f is a composite function that represents
the accumulated effect of hardware, software and environment-related factors on
sensor data.

More importantly, variations in the hardware, software pipelines, or the operating
environment in real-world systems could cause the sensor data x′ received by an ML
model to change between training and deployment stages, even if the underlying
physical phenomenon x is the same. This would, in effect, cause the distributions
of training and deployment data to differ from each other, thereby invalidating a
fundamental assumption of supervised learning algorithms that are used to train
sensor-based ML models.

Towards the goal of scaling ML systems in the presence of sensing heterogeneities,
we propose algorithms and system components built on the principle of domain
adaptation that minimize the effect of domain shift in ML systems. More specifi-
cally, as collecting labeled data during deployment could be expensive or infeasible,
we focus on unsupervised domain adaptation solutions that can adapt ML systems
to new deployment scenarios only using unlabeled data from them.

1.2 Research Questions and Contributions

We now formulate four research questions that we seek to answer in this thesis.
Each research question is accompanied by a conceptual diagram that summarizes
our contribution. In the rest of the thesis, we use the term source domain to refer
to the training stage of an ML model, and target domain to refer to its deployment
stage.

RQ1. What is the effect of sensing heterogeneities on the performance of state-of-
the-art deep learning models operating on speech and inertial sensing data?

In Chapter 3 (and also published in [53, 54, 55, 56]), we quantify the effect of
two types of domain shift on sensor-based ML models. Firstly, to facilitate the

1.2. Research Questions and Contributions 25

Figure 1.2: In Chapter 3, we quantify the effect of various domain shifts on sensor
inference models. The parts with grey and white backgrounds represent
the target and source domains respectively. XS and XT represent source
and target datasets.

study of microphone-induced domain shift in deep learning-based speech models,
we introduce a data collection methodology to collect large-scale speech datasets
simultaneously from multiple microphones. Based on the proposed methodology,
we collect two new speech datasets that contain domain shifts induced by hard-
ware, software, and environmental factors. We then evaluate the combined effect of
these domain shifts on the performance of Spoken Keyword Detection (SKD) and
Automatic Speech Recognition (ASR) models. Secondly, in the context of human
activity recognition (HAR) models, we study the domain shift in inertial sensor data
caused by variations in sensor hardware, software, and user preferences. Our results
demonstrate that domain shift induced by the above heterogeneities poses a major
challenge to the scalability of speech and HAR models in real-world scenarios.

RQ2. What types of algorithms can be developed to counter domain shift in sensor
inference systems while adhering to practical system realities?

Having quantified the impact of domain shift on various sensor inference models,
we propose two solutions to counter them based on the principles of unsupervised
domain adaptation (uDA). Grounded in practical realities of ML systems, the so-
lutions are as follows:

Solution 1. In Chapter 4 (and also published in [54]), we consider speech-based
opaque ML systems where the parameters of the prediction model trained in the
source domain are not accessible during the adaptation process. We propose an
adaptation solution that operates on input data instances and learns a translation
function between data from the source and target domains, using the principles of
Cyclic Generative Adversarial Networks (CycleGANs). Once learned, this transla-
tion function could be applied as a pre-processing component in the speech infer-
ence pipeline to translate data samples from the target domain to the source domain,

1.2. Research Questions and Contributions 26

(a) In Chapter 4, we propose an instance adaptation so-
lution for opaque ML systems.

(b) In Chapter 5, we propose a model adaptation solu-
tion for transparent ML systems.

Figure 1.3: uDA Solutions are proposed in Chapters 4 and 5 to counter domain
shift in speech and inertial data.

thereby reducing the domain shift and enhancing the speech inference model’s ac-
curacy in the target domain.

Solution 2. In Chapter 5 (and also published in [56]), we consider the case of trans-
parent ML systems wherein model parameters are accessible and can be modified
during the adaptation process. In the context of sensor-placement induced domain
shifts in human activity recognition (HAR) systems, we propose an adversarial fea-
ture alignment algorithm that takes as input a neural network model trained on a
labeled source domain, and adapts its parameters for use in a new unlabeled target
domain. We show that this technique can outperform a number of baseline adapta-
tion methods and improve the accuracy of HAR systems when they are deployed in
new target domains.

RQ3. How do we extend unsupervised domain adaptation algorithms to ML systems
where the source and target domains do not share a common label space?

Through the research conducted in Chapter 5, we uncovered a number of assump-
tions related to the source and target distributions that can impact the performance
of uDA algorithms. In Chapter 6 (and also published in [57]), we focus on relaxing

1.2. Research Questions and Contributions 27

Figure 1.4: In Chapter 6, we extend uDA to scenarios of mismatched source and
target label spaces. Cshared,CS and CT denote the shared and private
label spaces in the source and target domains.

one key assumption made in uDA methods that the label spaces of source and target
domains must be identical. This assumption could be easily violated in real-world
scenarios due to the presence of outlier or private classes in either the source or
the target domain. We first quantify the adverse effect of such private classes on
the adaptation of speech classifiers, and then propose an end-to-end unsupervised
adaptation solution to mitigate this problem.

RQ4. What are the challenges in deploying uDA algorithms in distributed ML sys-
tems with multiple target domains?

Our investigations on uDA algorithms in the previous chapters also uncovered that
these algorithms are not designed to work in distributed ML systems, where source
and target domains are geographically separated, and exchanging data between
them could be expensive or may have privacy implications. Hence, in Chapter 7
and [58], we carefully study the bottlenecks of uDA algorithms related to privacy
and convergence time in distributed settings, and present a distributed adaptation
solution to address them.

Moreover, we show that as ML systems scale to multiple target domains, it becomes
important to allow target domains to flexibly choose their adaptation collaborators
(i.e., the source domain with which uDA is performed). In this direction, we present
an Optimal Collaborator Selection algorithm, which could be used to find a col-
laborator for each target domain from a set of available candidates. Finally, we
propose an end-to-end framework called Framework for Realistic uDA (FRUDA)
that combines the collaborator selection algorithm and the distributed uDA training
approach. We demonstrate how FRUDA can help scale various domain adaptation
algorithms to distributed settings.

1.3. Thesis Structure 28

Figure 1.5: In Chapter 7, we extend uDA to distributed ML settings with multiple
target domains.

1.3 Thesis Structure

The thesis is organised as follows. Chapter 2 provides background on various types
of sensory inference tasks studied in this dissertation, along with a detailed discus-
sion on unsupervised domain adaptation algorithms proposed in the literature. In
Chapter 3, we study RQ1 and quantify the effect of various domain shifts in speech
and inertial recognition models. Chapter 4 and Chapter 5 contribute to answering
RQ2 by proposing instance-based and model-based domain adaptation approaches
for opaque and transparent ML models respectively. Chapter 6 is devoted to answer
RQ3 and offers solutions for the problem of label space mismatch which can cause
accuracy degradation in domain adaptation. Chapter 7 then studies RQ4 and ex-
tends the previous adaptation algorithms to distributed settings. Finally, Chapter 8
concludes this thesis, outlines its limitations and highlights avenues for future work.

1.4 Research Outcomes

In this subsection, we list the publications and dataset artefacts that support the text
in this thesis.

1.4.1 Peer-Reviewed Publications

Below are the peer-reviewed publications that came out of the work done in this
thesis.

Conference and Journal Papers (* denotes equal contribution)

• Mathur A., Berthouze N., Lane N.D. Unsupervised Domain Adaptation Under Label Space Mis-
match for Speech Classification. Proceedings of Interspeech 2020.

1.4. Research Outcomes 29

• Mathur A., Kawsar F., Berthouze N., Lane N.D. LIBRI-ADAPT: A new speech dataset for un-
supervised domain adaptation. Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2020.

• Chang Y*., Mathur A.*, Isopoussu A., Song J., Kawsar F. A Systematic Study of Unsupervised
Domain Adaptation for Robust Human-Activity Recognition. Proceedings of the ACM on Interac-
tive, Mobile,Wearable and Ubiquitous Technologies (IMWUT), 2020.

• Mathur A., Isopoussu A., Kawsar F., Berthouze N., Lane N.D. FlexAdapt: Flexible Cycle-
Consistent Adversarial Domain Adaptation. Proceedings of the 18th IEEE International Con-
ference On Machine Learning And Applications (ICMLA), 2019

• Mathur A., Isopoussu A., Kawsar F., Berthouze N., Lane N.D. Mic2Mic: Using Cycle-Consistent
Generative Adversarial Networks to Overcome Microphone Variability in Speech Systems. Pro-
ceedings of the 18th ACM International Conference on Information Processing in Sensor Net-
works (IPSN), 2019.

• Mathur A., Gan S., Isopoussu A., Kawsar F., Berthouze N., Lane N.D. Scaling Unsupervised
Domain Adaptation through Optimal Collaborator Selection and Lazy Discriminator Synchro-
nization. arXiv preprint.

Workshop Papers

• Gan S.*, Mathur A.*, Isopoussu A., Berthouze N., Lane N.D., Kawsar F. Distributed Asyn-
chronous Domain Adaptation: Towards Making Domain Adaptation More Practical in Real-
World Systems. Workshop on Systems for ML at Thirty-third Annual Conference on Neural
Information Processing Systems (NeurIPS), 2019.

• Mathur A., Isopoussu A., Kawsar F., Smith R., Lane N.D. and Berthouze N. On Robustness
of Cloud Speech APIs: An Early Characterization. Proceedings of the ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Wearable Computers (UbiComp), 2018.

• Mathur A., Isopoussu A., Berthouze N., Lane N.D., Kawsar F. Unsupervised Domain Adaptation
for Robust Sensory Systems. Proceedings of the ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Wearable Computers (UbiComp), 2019.

Book Chapter

• Mathur A., Isopoussu A., Kawsar F., Smith R., Lane N.D. and Berthouze N. Towards the Design
and Evaluation of Robust Audio-Sensing Systems. Book chapter in Human Activity Sensing,
Springer 2019.

In addition to these works, I was also involved in the following publications that are
not part of this thesis.

• Mathur A., Zhang, T., Bhattacharya, S., Veličković, P., Joffe, L., Lane, N. D., Kawsar F, Lió, P.
A Deep Data Augmentation Training Method to Address Software and Hardware Heterogeneities
in Wearable and Smartphone Sensing Devices. Proceedings of the 17th ACM International Con-
ference on Information Processing in Sensor Networks (IPSN), 2018.

1.4. Research Outcomes 30

• Beutel, D.J., Topal, T., Mathur A., Qiu, X., Parcollet, T. and Lane, N.D. Flower: A Friendly
Federated Learning Research Framework. arXiv preprint arXiv:2007.14390.

• Gong T, Ramos AG, Bhattacharya S, Mathur A., Kawsar F. AudiDoS: Real-Time Denial-of-
Service Adversarial Attacks on Deep Audio Models. Proceedings of the 18th IEEE International
Conference On Machine Learning And Applications (ICMLA), 2019

• Min, C., Montanari, A., Mathur A., Kawsar, F. A closer look at quality-aware runtime assessment
of sensing models in multi-device environments. Proceedings of the 17th ACM Conference on
Embedded Networked Sensor Systems (SenSys), 2019.

1.4.2 Datasets

We created a large-scale ASR dataset named Libri-Adapt containing examples of a
number of real-world heterogeneities in speech data. This dataset paper has been
published at IEEE ICASSP [53] and the dataset has been released to the academic
community.

1.4.3 Recognition

My research contributions were recognized by the academic community in the fol-
lowing ways:

• I was selected as a member of the ACM Future of Computing Academy (FCA) in
2019. ACM FCA is a group of 36 young computing professionals selected from
across the globe to address the emerging challenges in the field of computing.

• I was a finalist for the Gaetano Boriello Outstanding Student Award at ACM
Ubicomp 2019. This award recognizes students making outstanding contribution
in the field of Ubiquitous and Pervasive Computing.

Chapter 2

Background
In this chapter, we first provide background on sensor-based ML systems operat-
ing on inertial and speech data (§2.1). Next, in §2.2, we highlight the scalability
challenges for these systems by reviewing the literature on sensor and user-induced
heterogeneities in the data. The main objective of this review is to understand the
existing approaches used to tackle sensing heterogeneities, and to identify gaps in
the literature to inform the research questions of this thesis. In §2.3, we discuss
that the composite effect of sensing heterogeneities could be interpreted as domain
shift. §2.4 then presents a general review of unsupervised domain adaptation (uDA)
literature, and explains how uDA techniques have been used to address sensing het-
erogeneities in speech and inertial sensing models.

Finally, §2.5 summarizes the key findings from the chapter and explain how they
lead to our research questions. Later while presenting our technical contributions
in Chapters 4-7, we also provide a more focused literature review related to the
contents of each chapter.

2.1 Computational Models for Sensor Data

In this thesis, the scalability challenges to machine learning (ML) systems are pri-
marily studied in the context of human sensing systems. Human sensing systems
collect sensor data from personal devices owned by an end-user (e.g., a smartphone)
or from devices in the user’s environment (e.g., an Amazon Echo) and process them
using ML models to infer user behavior and context. In particular, we focus on
human sensing systems operating on speech and inertial sensor data.

As such, we first provide an overview of commonly used training and inference
pipelines for speech and inertial sensing systems.1

1To show the broader applicability of some of the algorithms and systems developed in this
dissertation, we also evaluate them with computer vision datasets in Chapter 7. Details about those
vision datasets and visual recognition tasks are provided in Chapter 7.

2.1. Computational Models for Sensor Data 32

Figure 2.1: Pre-processing and feature extraction pipeline to obtain Mel Frequency
Cepstral Coefficients (MFCCs) from raw speech data.

2.1.1 Audio and Speech Recognition

Speech has become a prominent modality to interact with our personal smart de-
vices (e.g., smartphones) and near-body devices (e.g., Amazon Echo). In addition
to the conventional use cases of speech processing such as automatic speech recog-
nition (ASR), newer use-cases of audio and speech processing have emerged, such
as inferring eating activities [59, 60], ambient conditions [61, 62], subjective user
states [63], and productivity [64, 65]. Moreover, to facilitate speech-based interac-
tion with personal digital assistants such as Siri, Alexa, or with voice assistants in
smart cars, a significant emphasis has been placed on the task of Spoken Keyword
Classification [66, 28] in recent years.

Feature Extraction. The field of speech processing has taken giant leaps in the last
decade, primarily due to the availability of large labeled datasets and breakthroughs
in deep learning techniques. The first step in deep learning-based speech modeling
pipelines is to extract compact yet effective features to represent the speech data.
One of the most widely used features for speech modeling are the Mel Frequency
Cepstral Coefficients (MFCCs) [67], which are designed to take into account the
unique aspects of human auditory processing and perception.

Figure 2.1 illustrates a common feature extraction pipeline for speech data. First,
a pre-emphasis filter is applied on the raw time-domain speech signal to boost the
amount of energy in high frequencies. Next, the speech waveform is assumed as
quasi-stationary and is split into overlapping segments (or frames) of short time du-
ration such as 25ms. After splitting the signal into frames, a windowing function
such as the Hamming window is applied to each frame to reduce spectral leakage
in Fast Fourier Transform (FFT) [68]. Thereafter, the frames are processed using
Short-Time Fourier-Transform (STFT) to obtain a frequency-domain power spec-
trum. This power spectrum is evenly distributed in the frequency domain, however

2.1. Computational Models for Sensor Data 33

human ear perceives sound in a non-linear fashion, by being more discriminative
at lower frequencies and less discriminative at higher frequencies. To mimic this
property of human ear, triangular filters on the Mel scale are applied to the power
spectrum to obtain filter bank features. Filter bank features are also referred to
as Mel-spectrograms. Finally, Discrete Cosine Transform (DCT) is applied to de-
correlate the log filter bank features and yield a compressed representation of the
filter banks in the form of cepstral coefficients, also known as MFCCs. The MFCC
coefficients from all the frames are then stacked and often mean-normalized to form
a two-dimensional (2D) representation of the speech signal.

Training and Inference Pipelines. Different deep neural network architectures are
used to process the 2D MFCC feature representation depending on the modeling
task at hand. For speech classification tasks such as Spoken Keyword Classification
and Emotion Recognition where the goal is to assign a class or a label (e.g., Happy,
Sad) to a given speech segment, convolutional neural networks are widely employed
to learn local features in the data. As an example, Badshah et al. [69] proposed an
architecture with three 2D convolution layers followed by three fully-connected lay-
ers to learn emotions in human speech. Other works [70] have leveraged temporal
convolutional layers for local feature learning and also explored the use of a Long-
Short Term Memory (LSTM) layer to learn [71] long-term dependencies from the
learned local features. The training of these neural network models is done by opti-
mizing a categorical cross-entropy loss between the model outputs and ground truth
labels. At inference time, the test speech signal is again processed to extract MFCC
features, which are then fed to the trained neural network to compute task-specific
inferences. The performance of the model is determined by computing metrics such
as accuracy, precision, recall or the F1 score on a test set.

On the other hand, state-of-the-art Automatic Speech Recognition (ASR) models
directly operate on top of the mel-spectrograms extracted from the speech data, and
employ a series of convolution layers and bi-directional LSTM layers to extract lo-
cal and global features, which are followed by 1-2 fully connected layers. These
models are trained by optimizing the Connectionist Temporal Classification (CTC)
loss [72]. At inference time, mel-spectrograms of speech are fed into the neural
network, which outputs a probability distribution over characters in the vocabulary
at each time step. Thereafter, a decoder is employed to convert the probability
distributions to word transcripts, either using greedy search or beam search algo-
rithms [73]. A widely used metric to evaluate the performance of ASR systems is
the word error rate (WER), which is defined as the minimum edit distance between
the transcripts generated by the ASR model and the ground truth transcripts.

2.1. Computational Models for Sensor Data 34

Figure 2.2: Pre-processing pipeline for data from the inertial measurement unit.

2.1.2 Human Activity Recognition

Modern smart devices such as smartphones and smartwatches are equipped with
inertial measurement units (IMUs), which commonly consist of an accelerometer
and a gyroscope sensor. In addition, newer class of IMU-equipped devices are also
emerging such as earables [74], smart glasses [75] and neck pendants [76]. The data
collected from the IMU sensors of these devices could be used for recognizing hu-
man activities, such as locomotion (e.g., walking, running), posture (e.g., standing,
sitting), or composite activities (e.g., commuting, cleaning).

Feature Extraction. Initial approaches for human activity recognition (HAR) us-
ing data from the IMUs relied on extracting hand-crafted statistical features such
as mean, variance, energy, spectral entropy, features derived from the empirical cu-
mulative distribution function (ECDF) and FFT coefficients. These features were
subsequently fed into shallow classifiers such as Random Forests or Support Vector
Machines to map them to the activity labels [77, 78].

In the last five years, deep learning-based methods have emerged to automatically
extract task-dependent features from raw accelerometer and gyroscope data and
process them using deep neural networks for activity recognition. Figure 2.2 shows
a commonly used pre-processing pipeline for IMU data. In general, the proposed
methods first obtain accelerometer and gyroscope data from an IMU sensor placed
on a specific position on the human body and then normalize the data using standard
techniques such as mean normalization, min-max normalization or Z-score normal-
ization. Thereafter, the data is segmented into smaller time windows, typically
between 1-5 seconds, depending on the expected duration of the physical activi-
ties represented in the data. Inside each time window, acceleration readings from
the three axes of the accelerometer and angular velocity measurements from the
gyroscope are stacked on top of each other to form a 2D representation of the time-
series IMU data. For instance, considering a sampling rate of 50Hz and 3-second
long time windows, each window is represented by a 2D array of dimensions 150x6.

2.2. Scalability Challenges for Inference Models 35

Training and Inference Pipelines. For training HAR models on IMU data, con-
volutional neural networks (CNNs) with one-dimensional (1D) convolution kernels
have been used in the literature [79, 80, 81]. For example, Hammerla et al. [79]
used four 1D convolutional layers, each followed by a pooling layer for feature
extraction. The extracted features are then fed to a classifier made of one or mul-
tiple fully-connected layers. Both the feature extractor and classifier are trained by
optimizing the categorical cross-entropy loss. Other works have also employed Re-
current neural networks with Gated Recurrent Units (GRUs) or Long Short-Term
Memory (LSTM) units for training HAR classifiers [82, 83, 79].

2.2 Scalability Challenges for Inference Models

In this section, we describe the challenges in scaling speech and inertial inference
models in practical settings.

2.2.1 Challenges in Scaling Speech Models

The main challenges in scaling speech models to new scenarios are listed below.

Speaker and Environment Heterogeneity. Variations in speaker characteristics
(e.g., accents, pronunciations) pose a major challenge for scaling speech models to
new users. This challenge has led to extensive research in the speech community to
develop models robust to speaker variations. To this end, a popular approach is to
extract speaker-specific features such as i-vectors [84] and incorporate them in the
training pipeline. Initially proposed in the context of speaker verification systems, i-
vectors aim to encapsulate the unique characteristics of a speaker’s identity (such as
accent, pitch) in a low-dimensional fixed-length representation. By concatenating
i-vectors with other speech features such as the MFCCs during training, [85, 86, 87]
have shown that more robust speech recognition models can be trained.

Another significant challenge for speech models comes from the acoustic environ-
ment in which the speech is recorded. Quite expectedly, the signal-to-noise (SNR)
ratio decreases in noisy acoustic environments (e.g., in heavy traffic, inside a pub)
which in turn degrades the performance of speech models. For example, Chon et
al. [88] found that Gaussian Mixture Models (GMM) and Random Forest models
trained for ambient sound classification suffer from poor precision and recall when
deployed in unconstrained environments. Similar findings on the adverse impact of
diverse acoustic environments were found for speaker turn-taking detection mod-
els [64] and acoustic stress detection models [89]. In order to counter acoustic

2.2. Scalability Challenges for Inference Models 36

Figure 2.3: Sensing and inference pipeline for audio models.

environment noise, two types of approaches are proposed: first are the traditional
noise subtraction [90] and statistical speech enhancement [91] techniques that aim
to enhance the signal-to-noise ratio in the data. More recently, deep neural net-
work based noise removal techniques have also been proposed that aim to learn a
model that can map noisy speech to its clean counterpart [92]. On the other hand,
[93, 94, 95] showed that noise-robust speech models could be trained by augmenting
the speech samples with different ambient noise samples, and using representation
learning to extract noise-robust features. Further, [96] employed a teacher-student
learning approach wherein a teacher model is trained on a large clean speech dataset,
and is then used to generate soft labels for training a noisy speech model using su-
pervised learning. However, this work requires parallel data in the clean and noisy
conditions, which could be challenging to obtain in practical settings.

Microphone-induced Heterogeneity. The microphone used to record the audio
signal also introduces heterogeneity in the data. As shown in Figure 2.3, before an
audio signal even reaches the ML model, it goes through a number of processing
stages. Firstly, the analog signal is captured by the microphone’s acoustic sensor
and converted into a digital signal. Thereafter, the signal is processed by an on-
board Digital Signal Processor (DSP), where audio enhancement techniques such
as noise reduction, echo cancellation, dereverberation are applied to it. Optionally,
multi-channel microphone arrays [97, 46] employ acoustic beamforming algorithms
to combine the audio outputs of different microphone channels. Finally, the operat-
ing system exposes the processed audio signal to user applications such as an ML
model for training or computing inferences.

Both the hardware and software components of this pipeline can introduce con-
founding artifacts in the signal. Das et al. [44] found that acoustic sensors exhibit
variability in their outputs, which is caused by changes in the chemical composition
of sensor components, wear in the manufacturing machines, or changes in temper-
ature and humidity between manufacturing and operational conditions. Through a
study done on 52 smartphones, they showed that this hardware-induced variability
also gets reflected in the MFCC features, and it could be used to fingerprint and
uniquely identify a device with an accuracy of 97%. We expect that these forms of
hardware variability would be even more prominent for low-cost embedded-scale

2.2. Scalability Challenges for Inference Models 37

microphones gaining popularity these days. To counter these hardware effects, Garg
et al. [51] proposed a technique to calibrate microphones against a reference micro-
phone using a frequency sweep signal or a reference sound.

On top of the hardware-related variations, the software processing pipelines of mi-
crophones can add further heterogeneities to the data. The on-board DSP on the
microphones run a number of audio enhancement algorithms, whose parameters are
fixed by each microphone manufacturer. For example, in the case of multi-channel
microphone arrays [97, 46], acoustic beamforming algorithms are employed to im-
prove the SNR of the audio. However, implementation differences in such algo-
rithms across manufacturers could lead to variability in the output data from differ-
ent microphones. Moreover, [48, 49] showed that acoustic beamforming algorithms
are also sensitive to microphone parameters such as gain mismatches between the
constituent microphones of an array, and could add unintended biases in the speech
data that is passed to the ML model. As a solution, [98, 99] proposed doing the
beamforming-based speech enhancement jointly with acoustic modeling and found
that it outperforms the approach where beamforming is done agnostic of the acous-
tic modeling task. This solution is attractive when the ML model has access to the
raw speech waveforms from each channel of the microphone array, however it is
not applicable in many real-world scenarios where the device manufacturers only
expose the beamformed speech output to the ML models.

2.2.2 Challenges in Scaling HAR Models

Research in HAR has revealed three key challenges in scaling HAR models to real-
world scenarios.

User-induced heterogeneity. When HAR systems are deployed in practice, they
will encounter heterogeneity in the accelerometer and gyroscope data caused by
variations in body shapes, fitness levels, movement characteristics of different
users [100, 101]. Unsurprisingly, such variations could result in performance degra-
dation of an HAR system. A number of prior works have proposed developing user-
specific models [77, 102, 103] where an HAR model is trained separately for each
user to capture the unique movement characteristics. While these works achieve
impressive recognition performance, on the downside, they need labeled data from
each end-user of the HAR system, which increases the cost of training the model.

The alternate approach is to train user-independent models, that have lower recog-
nition performance than the user-specific models initially [104, 105], but could be
fine-tuned or personalized for individual users by collecting labeled data from them

2.2. Scalability Challenges for Inference Models 38

during deployment [106, 107]. To reduce the labeling effort needed for model per-
sonalization, [108, 109] proposed employing active learning techniques to find the
most informative samples for labeling. Although active learning approaches reduce
the labeling burden, they do not entirely eliminate it. In §2.4.2, we discuss some
of the recent domain adaptation literature that aims to transfer HAR models to new
users only using unlabeled data.

Device-induced heterogeneity. Biases in IMU sensors that generate accelerome-
ter and gyroscope data for HAR models can also induce heterogeneity in the data.
Broadly, there are two types of biases in IMU sensors: deterministic and stochastic.
Deterministic biases are caused by variations in sensor components across manu-
facturers, imperfections introduced in the analog circuitry of the sensor during the
manufacturing process [43], or even by the packaging used for the unit [110]. An-
other important cause of deterministic biases is the temperature differences between
initial calibration and operational stages [111]. On the contrary, stochastic biases
emanate from the electronic noise interfering with IMU operations and are typically
assumed Gaussian in nature [50, 111]. Prior research [112, 113] has highlighted that
deterministic biases are the more prominent cause of heterogeneity in IMU data. In
particular, [43] did a study with IMU-equipped smartphones and found that biases
in their accelerometers are computationally so significant that they could be used
to fingerprint a smartphone and identify it with over 99% accuracy from a pool of
100 devices. Moreover, Grammenos et al. [50] showed that IMU biases across de-
vices could also degrade the accuracy of HAR models trained to detect locomotion
states of a user by up to 10%. Various sensor calibration techniques [113, 50] have
been proposed to counter the deterministic IMU errors; for example, [50] first iden-
tifies when a smartphone is in a stationary state and then use the earth’s gravity as a
reference to calibrate the IMU.

In addition to the hardware-induced biases, Stisen et al. [45] found that run-time
factors such as CPU load on a smartphone can lead to instability in the sampling rate
of IMU sensors. Moreover, they uncovered unpredictable delays in the attachment
of timestamps to a sensor sample by the smartphone operating system, which also
introduces sampling rate errors in the IMU data. As a solution, they proposed a
clustering technique based on the Affinity Propagation algorithm, wherein devices
are assigned to different clusters based on their respective IMU heterogeneities.
Thereafter, an activity recognition model is trained for each cluster of devices on
their aggregated labeled data. A limitation of this approach lies in its scalability —
for every new device on which the HAR system is deployed, we first need to collect
labeled data and repeat the clustering step. Thereafter, the HAR model needs to be

2.3. Sensing Heterogeneity and Domain Shift 39

retrained for the cluster to which the device is assigned.

Placement-induced heterogeneity. Finally, the placement of the IMU on the hu-
man body itself could be a major source of heterogeneity in sensor data. Inertial
sensors can be worn on the wrist (in a smartwatch), on the ear (in an earbud), or
be placed inside a user’s trouser and shirt pockets (smartphones). More critically,
the sensor placement is not always static and may even change during the course
of an activity based on a user’s preference. For instance, a smartphone may move
from the pocket to a user’s hand, and then to the ear and then go in a handbag –
all while the user is engaged in a certain physical activity. Researchers have tack-
led this challenge by developing placement-specific HAR models [114, 115] and
have shown that these models are more accurate than placement-independent mod-
els such as [116]. A limitation of this approach is that it requires collecting labeled
data from each body position where the sensor is likely to be placed, thereby raising
questions on its scalability and cost-effectiveness.

2.3 Sensing Heterogeneity and Domain Shift

In the previous section, we discussed that variations in user preferences, deploy-
ment environment, and sensor data acquisition pipelines could potentially introduce
heterogeneities in the data and hinder the scalability of HAR and speech models.
This thesis offers solutions for two specific scalability challenges. In Chapter 4, we
focus on countering the heterogeneities in speech data introduced by the hardware
and software components of the sensing pipeline. Thereafter, in Chapter 5, we in-
vestigate how to improve the performance of HAR models in the presence of device
and sensor placement-induced heterogeneities in inertial data.

The literature review in §2.2 highlighted various existing solutions to address these
problems. For example, calibration methods have been proposed to fix hardware
biases [113, 51] and new approaches for acoustic beamforming [98, 99] have been
proposed to counter software-induced heterogeneities. These types of solutions as-
sume low-level access to the sensor hardware or the ability to modify the signal
processing algorithms in the sensing pipeline. However, in many practical settings,
an ML model is considered an end-consumer of the sensor data and does not have
access to the low-level sensing pipelines. For these settings, we argue that the com-
posite effect of various data heterogeneities could be viewed as a form of domain
shift between training (or source domain) and deployment conditions (or target do-
main), and can be addressed in the training and inference pipelines of ML models.
In doing so, we can relax the assumption that the ML model will have low-level

2.4. Unsupervised Domain Adaptation 40

access to the device hardware or the sensing pipeline, and develop solutions that
rely only on the data received by the ML model.

We also reviewed various approaches to address these heterogeneities in the ML
pipeline. For example, [114, 115] proposed to train placement-specific HAR mod-
els to counter placement-induced heterogeneities in the IMU data. Similarly, [45]
clustered IMU devices based on the data biases in them and trained an HAR model
for each cluster. Other works [96, 106] have looked at model personalization and
teacher-student learning techniques for scaling ML models. The common limitation
of these approaches is their reliance on labeled data from each deployment condi-
tion (e.g., from each device or each sensor placement condition). However, the
collection of labeled sensor data is expensive and time-consuming, and repeating
this exercise across multiple deployment conditions is infeasible.

Ideally, we would like to adapt or transfer a source domain model to a target domain,
only using unlabeled data from the target domain. For example, one may buy a
new embedded microphone, such as [47] to develop their own speech interaction
device that can recognize speech commands from the user (e.g., unlock phone, play
music). Since no labeled data is available from this new microphone to train an
ML model, the developer can download a Spoken Keyword Classification model
trained on labeled data from another microphone (i.e., source domain) to bootstrap
their ML pipeline. As users interact with the new microphone, the developer can
collect speech utterances from them (with their permission) and build an unlabeled
dataset for the new microphone. Now the key challenge is to adapt the source
domain model for the new target domain microphone, only using the unlabeled data
collected from the users.

2.4 Unsupervised Domain Adaptation

Unsupervised Domain Adaptation (uDA) is a sub-field of machine learning which
addresses the challenge of adapting a model trained in a source domain to a target
domain using unlabeled target data. The solutions to sensing heterogeneity that we
propose in this thesis are also based on the principles of (uDA). In this section, we
present an overview of uDA and review prior works in this area.

2.4.1 Overview

Below we introduce some notations and describe the general objective of Unsuper-
vised Domain Adaptation (uDA).

2.4. Unsupervised Domain Adaptation 41

Notations. Let X and Y denote an input space and a label space. For simplicity, we
assume that the label space is discrete: Y= {1,2, . . . ,k}. We use x and y to denote
random variables which take values in X and Y respectively. We define a domain D

as a distribution p(x,y) over X×Y and denote it as D= (X,Y, p(x,y)). Further, let
p(x) denote the marginal data distribution over X.

In the domain adaptation setting, we have a source domain DS = (XS,YS, pS(x,y))
and a target domain as DT = (XT ,YT , pT (x,y)) such that DS 6= DT . One of the
most common settings under which domain adaptation is studied is when the input
spaces, label spaces, and the conditional distributions are identical between do-
mains, i.e., XS = XT , YS = YT , pS(y|x) = pT (y|x), but the marginal data distribu-
tions vary between domains, i.e., pS(x) 6= pT (x). The assumption about conditional
distributions p(y|x) being the same between domains is strong, but reasonable for
the sensor-induced domain shifts identified in §2.3.

Objective of Unsupervised Domain Adaptation. Assume that we have access to
labeled observations XS = {(xsi,ysi)}N

i=1 from the source domain DS where xsi is a
data sample and ysi is the associated class label. Similarly, we have an unlabeled
dataset from the XT = {xti}M

i=1 from the target domain DT .

Using the labeled source dataset XS, we can train a classifier fS(.) to map the source
domain samples to their corresponding labels. However, if the source classifier were
to be deployed in the target domain, it could suffer significant accuracy degradation
due to domain shift. The goal of unsupervised domain adaptation is to learn a target
domain classifier fT (.) given XS, XT and fS(.), but in the absence of any labeled
observations from the target domain.

2.4.2 Techniques

We now review some relevant techniques for unsupervised domain adaptation
(uDA) designed for deep neural networks. As discussed in §2.1, deep learning
based methods are currently state-of-the-art in the areas of speech and human-
activity recognition, and the work in this thesis studies domain shift specifically
in the context of deep neural networks. For completeness, we note that there is also
rich literature on domain adaptation prior to deep learning and we refer the reader to
[117, 118, 11] for a detailed survey. Also note that the following is an initial review
of uDA; while presenting our technical contributions in Chapters 4-7, we discuss
additional related work relevant to the contents of each chapter.

One of the most common approaches in uDA is to align the feature representations

2.4. Unsupervised Domain Adaptation 42

of source and target domains. In the context of deep learning, it is often achieved
by training a feature extractor neural network and minimizing the discrepancy in
the outputs of the feature extractor when it is fed samples from source and target
domains. If the samples from both domains can be mapped into a domain-invariant
feature representation, then a classifier trained on the source domain can be expected
to generalize to the target domain under some assumptions. The proposed methods
mainly differ in how the divergence between the outputs of the feature extractor is
computed and minimized.

Tzeng et al. [119] and Long et al. [120] proposed using Maximum Mean Discrep-
ancy (MMD) as a metric to compute the divergence between source and target fea-
ture representations. To compute MMD, the source and target feature representa-
tions are mapped to a reproducing kernel Hilbert space (RKHS) using a kernel func-
tion. More specifically, Tzeng et al. [119] proposed the use of grid search to find
the layer depth and layer dimension at which to minimize the MMD loss between
source and target representations. Long et al. [120] extended this work by propos-
ing Deep Adaptation Network (DAN) that minimizes MMD at multiple layers of
the network using a multiple kernel variant of MMD. Both these works were also
evaluated on computer vision datasets, namely Office-31 and Office-Caltech, which
contain images of everyday office objects captured in different conditions. Further,
Sun et al. [121] proposed Deep CORAL where the distribution divergence is com-
puted using second-order statistics (covariances) and evaluated their approach on
vision datasets.

Adversarial training is another widely used method to align the source and target
feature representations. Here an auxiliary binary classifier named as domain dis-
criminator is employed to classify whether a feature is generated from the source
or the target domain data. The training of the domain discriminator and the feature
extractor neural networks take place in an adversarial manner, inspired by Gener-
ative Adversarial Networks [2]. While the domain discriminator is trained to cor-
rectly classify the domain of the data, the aim of the feature extractor is to fool
the discriminator by generating feature representations that are domain-invariant.
Both the two neural networks play this competitive game and in the process, both
become better at their respective tasks, more importantly from the perspective of
domain adaptation, the feature extractor learns to map source and target data into
domain-invariant feature representations.

Based on this general concept, Ganin et al. [122] proposed DANN which uses a
Gradient Reversal Layer between the feature extractor and the discriminator to per-

2.5. Discussion and Contributions 43

form adversarial training. Tzeng et al. [123] proposed ADDA which uses the label
inversion trick to facilitate adversarial training of the domain discriminator and fea-
ture extractor. Further, Sankaranarayanan et al. [124] proposed using a conditional
GAN as an auxiliary component to compute domain alignment. In this work, the
conditional GAN is trained to generate source-like images from the shared fea-
ture representations which are then compared with the original source images using
a discriminator. Finally, Shen et al. [125] proposed WDGRL where instead of a
domain discriminator, a neural network is used to approximate the Wasserstein dis-
tance between the domains, which is then minimized using adversarial training. All
the above approaches were evaluated on computer vision datasets.

There also have been applications of uDA techniques in speech modeling. [126,
127, 128] proposed using the DANN method from [122] for the tasks of speech,
speaker and emotion adaptation respectively. Further, Hsu et al. [129] proposed an
adaptation approach based on variational autoencoders in which they transform nui-
sance attributes of speech that could be domain-specific and irrelevant to the recog-
nition task. By doing so, they are able to transform source-domain speech samples
such that they appear to be from the target domain, and use them to augment the
dataset for supervised learning. [130] also used the DANN approach to adapt the
parameters of an ASR model to counter channel and environment noise. Finally,
the exploration of uDA for human activity recognition (HAR) using inertial data is
in nascent stages. HDCNN [131] was an early work on transferring HAR models
from a smartphone (source domain) to a smartwatch (target domain) by minimizing
the Kullback-Leibler (KL) divergence between each layer of the source and target
classifiers. Akbari et al. [132] extended this work by generating stochastic features
from the IMU data and aligning them between source and target domains by mini-
mizing the KL divergence. These works represent some of the very recent initiatives
in applying domain adaptation techniques to HAR.

In the next section, we summarize the key findings from our literature review and
identify the gaps in the literature.

2.5 Discussion and Contributions

Through the background and literature review presented in this chapter, we have
identified the following gaps in the literature, which are addressed in this thesis.

• In the context of speech data, hardware and software variations in recording mi-
crophones and sensing pipelines can introduce computationally-significant het-

2.5. Discussion and Contributions 44

erogeneities in the data. There have been efforts to fix hardware-related varia-
tions and software-related variations in the sensing pipeline by calibrating mi-
crophones [51] or by incorporating more robust acoustic beamforming algo-
rithms [49] in the sensing pipeline. However, when speech models are deployed
in a practical ML system, they are often treated as end-consumers of the data
and may not have the visibility or ability to modify the underlying hardware pa-
rameters or the signal processing algorithms in the sensing pipeline. Therefore,
we need to develop solutions to counter the domain shift caused by microphone-
induced heterogeneities directly in the training or inference pipelines of speech
models.

• Heterogeneity could be introduced in inertial data from accelerometers and gyro-
scopes due to variations in sensor hardware, run-time software-related effects, and
sensor placement on the human body. While each of these have been studied in
the literature in isolation [50, 45, 133], their composite effect on the performance
of human activity recognition (HAR) models has not been studied. Moreover,
the data-driven solutions to address them are not scalable as they require training
separate ML models for each type of heterogeneity. Hence, there is a need for a
solution that can handle the combined effect of these heterogeneities directly in
the training or inference pipeline of HAR models.

• For the two problems discussed above, we can borrow solutions from the litera-
ture which use labeled data during deployment to fine-tune or personalize the ML
model to deployment scenarios (e.g., for a new microphone or a new IMU sensor
placement). However, labeling sensor data in each deployment scenario is expen-
sive and time-consuming, and reduces the practicality of these solutions. Instead,
we argue that it is more practical to address these problems through the lens of
Unsupervised Domain Adaptation (uDA), which does not assume the availability
of any labeled data in the deployment scenario (or the target domain).

While uDA algorithms have been extensively studied for visual recognition tasks,
their applications in our problem areas – addressing microphone-induced hetero-
geneity in speech models and IMU sensor placement related heterogeneities in
HAR models – are in nascent stages. Our contributions in Chapters 4 and 5 aim
to bridge this gap in the literature. Before presenting these solutions, we quantify
the effect of these domain shifts on state-of-the-art speech and HAR models in
Chapter 3.

• There has been substantial research in the area of unsupervised domain adapta-
tion, which has focused on developing new algorithms and neural architectures

2.5. Discussion and Contributions 45

to adapt prediction models between domains. However, they have not explored
in detail how these adaptation approaches would integrate with practical ML sys-
tems. For example, in some ML systems, the source prediction model may be
opaque, i.e., its parameters may not be accessible during the adaptation process.
This is a likely scenario when source model developers may want to keep their
prediction model private for commercial reasons; examples include ML offerings
by AI-as-a-service providers such as Google [134], Microsoft [135] and Ama-
zon [136] which provide an API for users to send their sensor data to the model
and obtain inferences. On the contrary, in transparent ML systems, the parame-
ters of the prediction model can be accessed and modified during adaptation. Ex-
amples of transparent ML systems include scenarios when the prediction model
is publicly known (e.g., downloaded from a public model repository) or when the
source model developer themselves would like to adapt the model parameters to
new domains.

As such, a major contribution of this thesis is to bring an ML-systems perspective
in designing uDA algorithms. More specifically, while proposing a solution to
address domain shift in speech models in Chapter 4, we consider the scenario
of opaque ML systems and propose an adaptation solution that operates at the
level of data instances and does not assume the knowledge of model parameters.
Similarly, while studying the domain shift problem in HAR models in Chapter 5,
we consider the scenario of transparent ML systems and propose a solution that
modifies the source HAR model’s parameters to adapt it to a target domain.

• A key assumption in many uDA algorithms is that the label spaces of the source
and target domains are identical, i.e., YS = YT . However, in practical ML systems,
it is infeasible to enforce this assumption because we have no control over the
classes or labels that will be encountered in the target domain. In Chapter 6, we
present a solution that relaxes this assumption and scales ML systems to target
domains that may not have the same label space as the source domain.

• Finally, all the uDA algorithms reviewed in this chapter worked under the as-
sumption that source and target domain datasets are hosted on the same machine.
In many ML deployment scenarios, this would be a limiting assumption as do-
main datasets could be private, located on distributed nodes, and cannot be ex-
changed during the adaptation process. Moreover, in practice, ML systems would
need to be scaled to not just one, but multiple target domains, and it is unclear
how uDA algorithms would cater to such a setting. In Chapter 7, we present a
distributed adaptation solution to scale ML systems to multiple target domains,

2.6. Summary 46

wherein all the domains are geographically distributed, and their raw data cannot
be exchanged during adaptation.

2.6 Summary

We presented background on speech and inertial recognition models in §2.1, in-
cluding the pre-processing and feature extraction pipelines, and the deep learning
based architectures employed in the literature to train these models. Thereafter in
§2.2, we explained the challenges in scaling speech and HAR models caused by
heterogeneities induced in the data due to sensor hardware, signal processing al-
gorithms, user demographics and user preferences such as sensor placement on the
body. We reviewed the sensor systems and machine learning literature aiming to
address many of these challenges, and identified the limitations of those works in
practical ML systems.

Next, in §2.3, we argued that the composite effect of these heterogeneities could
be viewed as a form of domain shift between training and deployment settings of
an ML system. This domain shift could be countered using Unsupervised Domain
Adaptation (uDA) techniques. As such, we reviewed some prominent uDA litera-
ture, mainly focusing on adversarial training approaches in §2.4.

Based on the literature review, we identified two application scenarios where uDA
based approaches have not been explored in detail: (i) microphone-induced hetero-
geneity in speech models, and (ii) device and placement-induced heterogeneity in
HAR models. Further, we uncovered that there is a lack of research on how uDA
algorithms would scale in different ML system settings, such as opaque, transparent
and distributed ML systems. These gaps in the literature motivate the contributions
of this thesis, which are also summarized in §2.5. Later, while presenting our tech-
nical contributions in Chapters 4-7, we also provide a more focused review of uDA
relevant to each chapter’s contents.

In the next chapter, we begin our research investigation by quantifying the impact
of microphone-induced heterogeneity on speech models, and device and placement-
induced heterogeneity in HAR models.

Chapter 3

Quantifying the Effect of Domain
Shift on Sensor Inference Models

In this chapter, we seek to address our first research question on quantifying the ad-
verse effects of domain shifts induced by (i) microphone-induced heterogeneity on
speech models (§3.1), and (ii) device- and placement-related heterogeneity on hu-
man activity recognition models (§3.2). The findings from this chapter will serve as
the motivation for the subsequent chapters, where we propose unsupervised domain
adaptation solutions to counter these domain shifts.

3.1 Microphone Heterogeneity in Speech Models

A major challenge for our investigation into this problem is the lack of available
datasets that explicitly capture both hardware and software-induced heterogeneity in
speech data. Although the popular CHiME-3 dataset [137] is often used to study the
effect of channel variations in speech models, this dataset was recorded on single-
channel microphones from the same manufacturer. As such, it does not contain
hardware-induced heterogeneities often caused by differences in sensor manufac-
turer, or the software-induced heterogeneities due to variations in signal processing
and beamforming algorithms in microphone arrays. In this section, we first present
a methodology to collect large-scale datasets that have the desired microphone-
induced heterogeneities in them. Thereafter, we quantify how these heterogeneities
impact the accuracy of two speech-based ML models, namely Spoken Keyword
Detection and Automatic Speech Recognition.

3.1.1 Data Collection Methodology

This data collection study aims to record large-scale speech datasets (in the order of
hundreds of hours) from multiple off-the-shelf microphones that are representative

3.1. Microphone Heterogeneity in Speech Models 48

Device Channels Potential
Use-cases

Advertised Signal
Processing

Capabilities

Matrix
Voice

7
Internet of Things (IoT)

systems, voice assistants,
smart home products

Beamforming, derever-
beration, noise cancella-
tion

Respeaker 7
Internet of Things (IoT)

systems, voice assistants,
smart home products

Voice activity detection,
beamforming, back-
ground noise suppression

PlayStation
Eye

4 Gaming consoles Voice location tracking,
echo cancellation, beam-
forming, background
noise suppression.

USB Mic 1
Embedded-scale IoT

systems
-

Google Nexus 6 3
Smartphone interaction,

voice assistants
Beamforming, back-
ground noise suppression

Shure MV5 1
Podcasting,

home singing
Auto gain, Equalization

Table 3.1: Technical specification of the microphones used for data collection.

of the microphones used in real-world speech interaction applications. Moreover,
in order to systematically study the impact of microphone-related factors, it is im-
portant to control for other variables in the dataset, such as the speech content and
recording environment across microphones. Below is the methodology adopted to
collect the datasets from multiple microphones.

Microphones. Speech-based ML systems are becoming pervasive and are being
deployed in a range of devices, including smartphones, wearables, smart home ap-
pliances, video game consoles, and even Internet of Things (IoT) devices. More-
over, in the past few years, many embedded-scale microphones (both single- and
multi-channel) have been released that can be used in conjunction with microcom-
puters such as Raspberry Pi and cloud-based speech models to develop customized
speech analytics systems [47]. As such, it is important to study if the variability in
microphones across such diverse use-cases will pose a challenge to speech classi-
fiers. In this direction, we employ seven different microphones listed in Table 3.1
to collect speech data and quantify the effect of microphone-induced domain shift
on speech models.

3.1. Microphone Heterogeneity in Speech Models 49

Matrix Voice1 and ReSpeaker2 are circular 7-channel microphone arrays that in-
clude on-device audio processing algorithms for de-reverberation and beamforming
to combine the outputs of different channels. The potential use-cases of such mi-
crophone arrays are smart home products and voice assistants, such as Amazon
Echo [47]. Both these microphone arrays use different models of MEMS micro-
phones and implement customized signal processing and beamforming algorithms.
As such, the data from these microphones is expected to contain both hardware and
software-induced heterogeneities. Next, we use a PlayStation-Eye, a digital camera
used in Sony PlayStation gaming consoles. It consists of a 4-channel microphone
array used for speech interaction with the gaming console. The technical speci-
fications for this array also include acoustic beamforming and noise suppression
algorithms. Further, we employ a Google Nexus 6 as a representative smartphone
microphone with which users are likely to interact while using speech applications
on their mobile devices. Next, we use a single-channel USB microphone as an
example of low-end microphones popularly used with Raspberry Pi to make IoT
products. Finally, to establish a higher-quality microphone baseline, we employ a
Shure MV5 Condenser microphone3 which is often used in desktop applications
such as podcasting, voice recordings. It can also be used as a plug-and-play micro-
phone with mobile and wearable devices.

In summary, these microphones cover a broad set of use-cases in which speech-
based ML systems are likely to be deployed. Besides, all the microphones are from
different manufacturers, and four of them also employ signal processing algorithms
for speech enhancement.

Method. While we can record speech utterances on all the above microphones
in a small-scale experiment (e.g., by recruiting users to read some text under the
same recording conditions), this data collection approach becomes very expensive
for large-scale datasets, that are often needed to train deep learning models. As
such, we adopt the methodology of replay-and-record to collect large-scale speech
datasets on multiple microphones.

As shown in Figure 3.1, we use two types of host devices: a replay host and multi-
ple recording hosts. The replay host is a laptop connected to a high-quality monitor
speaker. Recording hosts serve as the host device for the various microphones intro-
duced in Table 3.1, and are capable of initiating an audio recording on the attached
microphone and saving the recorded output on the disk. We use a Raspberry Pi

1https://www.matrix.one/products/voice
2https://respeaker.io/usb 6+1 mic array/
3https://www.shure.com/en-GB/products/microphones/mv5/

3.1. Microphone Heterogeneity in Speech Models 50

Figure 3.1: Data collection setup illustrating the Replay and Record methodology.
Three microphones are shown in the figure, namely Matrix Voice, USB
microphone and ReSpeaker.

as the host device for Matrix, ReSpeaker, USB, and PlayStation Eye microphones.
The Shure microphone uses a Macbook Pro as the host device. The replay and
recording hosts are connected with each other using a local area network (LAN).

We first download an existing publicly available speech dataset on the replay host
and play the constituent speech files on the attached high-quality monitor speaker.
The replayed speech is then simultaneously recorded on all the microphones in a
quiet room, kept at a distance of 15cm from the speaker. To ensure that the speech
recordings are time-synchronized across microphones, we implement a network-
based synchronization scheme based on MQTT [138] messaging protocol. Before
a speech file is played on the speaker, the replay host sends a MQTT message to
the recording host of each microphone to initiate an audio recording process for
the duration of the speech file (e.g., initiate a recording session for 10 seconds).
Thereafter, the speech file is played on the monitor speaker and is recorded simul-
taneously by all microphones. After the recording completes, the recorded file is
saved in WAV format on all the recording hosts, which then send a message to the
replay host confirming that the recording is complete. Thereafter, the replay host
proceeds to play the next file in the dataset.

This approach of replay-and-record has its pros and cons. It allows for collect-
ing large-scale datasets needed to train deep learning models from multiple micro-
phones, without requiring the recruitment of human subjects which can be both

3.1. Microphone Heterogeneity in Speech Models 51

time-consuming and extremely expensive. However on the downside, as the speech
is replayed through a speaker, it is impacted by the speaker’s transfer function. To
counter this issue, we use a high-quality monitor speaker JBL LSR305 which has a
reasonably flat frequency response [139], thereby ensuring minimal impact on the
replayed audio’s quality due to the speaker. More importantly, we argue that the
replayed dataset still allows for studying the domain shift problem caused by differ-
ent microphones, because the replay process itself could be interpreted as a form of
shift on the original speech dataset, that is shared across all microphones.

Datasets. Following the replay-and-record methodology, we collect two multi-
microphone speech datasets:

• Multi-microphone Spoken Keywords: The purpose of this dataset is to facilitate
the development of Spoken Keyword Detection models, which identify the pres-
ence of a certain keyword class (e.g., Yes, No) in a given speech segment. The
original dataset named Speech Commands was released by Google [140] and con-
sists of 65,000 one-second long utterances belonging to 30 keyword classes. We
replay this dataset on the monitor speaker and simultaneously record it on Matrix
Voice, ReSpeaker and USB microphones. The dataset is split into training (75%)
and test (25%) class-balanced subsets.

• Libri-Adapt: This dataset is built on top of the Librispeech-clean-100
dataset [141] that contains 100 hours of US English speech from users read-
ing public-domain audiobooks. Using the replay-and-record methodology, the
Librispeech-clean-100 training corpus is recorded on six different microphones
listed in Table 3.1, resulting in a training dataset of 600 hours in duration. For
each microphone, we also collect a 5.4 hour held-out test set derived from Lib-
rispeech test-clean corpus [141].

3.1.2 Experiments

Below we present the experimental setup and results of a quantification study that
uses the two datasets presented in the previous section to study microphone-induced
domain shift on various speech models.

Tasks and Architectures. The following neural network architectures are used for
developing speech recognition models.

• Spoken Keyword Detection (SKD): To study how microphone-induced domain
shift affects Spoken Keyword Detection models, we use a small-footprint convo-

3.1. Microphone Heterogeneity in Speech Models 52

lutional neural network architecture proposed in [28] to train the SKD model.
The input to this model is a two-dimensional tensor extracted from a one-second-
long keyword recording, consisting of time frames on one axis and 24 MFCC fea-
tures on the other axis. The model outputs a probability of a given audio recording
belonging to a particular keyword class (e.g., Yes, No) or to an Unknown class.
The model is trained on a source microphone’s training set and evaluated on the
test set recorded from a target microphone.

• DeepSpeech2: For experiments on Automatic Speech Recognition (ASR), we
employ the Mozilla DeepSpeech2 pre-trained model [142] (release 0.5.0) as the
base model. The model accepts a speech file in WAV format and generates a
speech transcript; it has a relatively low word error rate (WER) of 8.22% on the
LibriSpeech dataset. We first fine-tune this base model on the training data from
a given source microphone (as collected in the Libri-Adapt dataset). Thereafter,
the fine-tuned model for each source microphone is tested on the held-out test set
from target microphones to compute the Word Error Rate.

• Cloud ASR APIs: Can microphone variabilities also impact cloud-scale ASR
models that are trained with thousands of hours of data and have shown near-
human accuracy on ASR tasks [135, 143]? Although we do not have access to the
parameters of the cloud-scale ASR models, we can still query them using APIs
provided by the cloud service. As such, we conduct experiments on ASR models
from Google (using the Google Cloud Speech API [134]) and Microsoft (using
the Bing Speech API [135]). Speech files from the Libri-Adapt test dataset are
fed to these cloud-based ASR models through REST APIs, and Word Error Rate
(WER) is computed on the output ASR transcripts.

Results. First, we present the effect of microphone heterogeneity on Spoken Key-
word Detection (SKD) models. Table 3.2 reports the accuracy obtained on the Spo-
ken Keywords dataset for a pair of training and testing microphones. As expected,
when the SKD model is trained and tested on the same microphone, we obtain the
highest detection accuracy (e.g., 81% on ReSpeaker dataset). On the contrary, when
there is a mismatch between the training and test microphones, we observe a degra-
dation in detection accuracy. For example, when the model trained on Matrix Voice
is deployed on ReSpeaker and USB microphones, there is an absolute accuracy drop
of 12.4% and 6.7% respectively.

A similar pattern is observed for the ASR task with the DeepSpeech2 model. In Ta-
ble 3.3, we show the WER of DeepSpeech2 model when it is fine-tuned for different

3.1. Microphone Heterogeneity in Speech Models 53

Training Microphones

Matrix
Voice

ReSpeaker USB

Matrix
Voice

78.8 66.5 75.8

ReSpeaker 66.4 81.0 76.1

USB 72.1 73.22 82.3

Table 3.2: Test set accuracy of the Spoken Keyword Detection model when trained
and tested on various microphone pairs. The columns and rows corre-
spond to the training and test microphone domains respectively.

Training Microphones

Matrix
Voice

ReSpeaker USB Shule Nexus 6
PlayStation

Eye

Matrix
Voice

13.05 28.0 20.64 24.95 26.21 24.18

ReSpeaker 16.06 12.66 14.49 16.09 15.93 15.21

USB 13.30 14.44 11.40 14.41 15.39 15.38

Shule 12.58 13.10 11.61 10.19 12.96 13.07

Nexus 6 13.09 12.81 11.99 12.73 12.27 15.28

PlayStation
Eye

14.01 13.65 14.24 16.16 16.52 11.39

Table 3.3: WER of a fine-tuned DeepSpeech2 model trained and tested on various
microphone pairs. The columns correspond to the training microphone
domain and rows correspond to the test microphone domain.

training microphones (in columns) and tested on other microphones (in rows). In
most cases, we observe that when data from the same microphone is used for train-
ing and testing the model, it achieves the smallest WER, e.g., 11.39% in the case of
PlayStation Eye. However, in the presence of domain shift caused by microphone
mismatch, the WER increases to 24.18% when the PlayStation Eye model is tested
on Matrix Voice. We also note that the WER obtained when models from other mi-
crophones are tested on Matrix Voice is significantly high (above 20% in all cases),
however when the model is fine-tuned on Matrix Voice, we can achieve a reason-
able WER of 13.05%. This significant gap presents a clear opportunity for domain
adaptation algorithms to adapt speech models trained in one microphone domain to
another.

3.1. Microphone Heterogeneity in Speech Models 54

(a) (b)
Figure 3.2: Impact of microphone variability on Google and Bing ASR models.

Values on the bars illustrate the increase in WER over the original Lib-
rispeech dataset (black bar).

Next, we evaluate whether microphone variability also impacts cloud-scale ASR
models. Figure 3.2 shows a comparison of WER obtained from the Google and
Bing ASR models in four conditions: i) on the original Librispeech test data, ii)
on Librispeech test data recorded on Matrix Voice, iii) on Librispeech test data
recorded on ReSpeaker, and iv) on Librispeech test data recorded on the USB mi-
crophone. The latter three categories of test data come from our Libri-Adapt dataset,
which is collected using the replay-and-record methodology.

In Figure 3.2, we observe that when ASR models are tested on speech data from
Libri-Adapt, the WER increases over the baseline (i.e., the original Librispeech
test data) by as high as 1.41 times. Although this finding is interesting, we cannot
attribute this increase in WER only to microphone variability because the speech
recordings in Libri-Adapt dataset may also have perturbations introduced by the re-
play speaker. However, we can compare the WER across speech segments recorded
from the three microphones (Matrix, ReSpeaker, USB) as all of them will have the
same speaker-induced effects. As we can observe in Figure 3.2, the WER varies
between the three microphones (e.g., from 1.24x to 1.41x WER increase in the case
of Bing ASR model), which suggests that even cloud-scale ASR models are not
completely robust against microphone variability.

Finally, to understand the source of these microphone-induced variability at a sig-
nal level, we record a 4-second speech segment simultaneously on the three micro-
phones, namely Matrix Voice, ReSpeaker, and USB inside a non-reflective anechoic
chamber. Figure 3.3 shows the mel-spectrograms of the 4-second speech segment
– we observe that the microphones exhibit differences in their frequency responses
to the same speech input. For example, the data recorded from Matrix Voice has
lower spectral power in the high-frequency ranges, which suggests that either this
microphone array does not capture high frequencies well (hardware effect) or they
are being filtered out by the microphone digital signal processor (software effect).

3.2. IMU Sensor and Placement Heterogeneity in HAR models 55

Figure 3.3: Difference in mel-spectrograms of a speech segment captured by three
different microphones.

These kinds of subtle variabilities between microphones could induce domain shift
between source and target domains, as reflected in our findings.

3.2 IMU Sensor and Placement Heterogeneity in
HAR models

In this section, we quantify the effect of domain shift on the performance of Hu-
man Activity Recognition models, as caused by variations in IMU sensors and their
placement on the human body.

3.2.1 Datasets

Unlike the microphone example above, there are HAR datasets already avail-
able containing IMU signals recorded from sensors placed at different body po-
sitions. Below we. describe the dataset used in our experiment along with the
pre-processing operations done on the data.

We use the REALWORLD HAR dataset [1] which contains IMU data recorded from
15 participants performing 8 activities: climbing stairs down and up, jumping, lying,
standing, sitting, running/jogging, and walking. As shown in Figure 3.4, each user
was instrumented with different IMU-equipped smartphones and smartwatches, at-
tached to 7 different body positions: head, chest, upper arm, waist, forearm, thigh,
and shin. Users were then asked to naturally perform the physical activities, and
accelerometer and gyroscope data was recorded from the devices simultaneously at
a sampling rate of 50 Hz. Each activity was performed for 10 minutes, except for
jumping, which was done for ∼1.7 minutes on average.

3.2. IMU Sensor and Placement Heterogeneity in HAR models 56

Figure 3.4: Figure from the REALWORLD dataset paper [1] showing different
IMUs instrumented on the human body at different locations.

There are three major reasons why the REALWORLD dataset is ideal for this evalu-
ation: a) the physical activities are performed in naturalistic settings as opposed to
controlled experiments, b) the data across male and female participants are equally
distributed which reduces any gender bias in the evaluation, c) to the best of our
knowledge, this is the largest dataset of body position variability that is publicly
available. In contrast, the popular OPPORTUNITY dataset [144] contains data
only from four participants and only has one dynamic activity (i.e., walking).

Data characteristics and pre-processing. The accelerometer and gyroscope traces
are segmented into time windows of 3 seconds, without any overlap. This window
length was chosen empirically to align with the duration of various human activities
in the dataset 4. If a 3-second-long trace includes an activity transition, timestamp
noise, or data points without labels, the trace gets discarded. The whole dataset is
normalized to be in the range of -1 and 1. As shown in the IMU processing pipeline
in Figure 2.2, the accelerometer and gyroscope axis are stacked on top of each other
to create a 2-D representation of the time-series data. Finally, we use stratified
splitting to divide the dataset into two parts: training set (75%) and test set (25%).

3.2.2 Experiments

Model Architecture and Training. We design a convolutional neural network
(CNN) model based on the work by Hammerla et al. [79] and Almaslukh et al. [145].
The model consists of two components: a feature extractor and a classifier. The fea-

4We also experimented with one and two second long windows, however, there was no significant
difference in HAR model performance. Therefore, we decided to use three-second windows, because
longer windows reduce the number of ML model executions needed at inference time.

3.2. IMU Sensor and Placement Heterogeneity in HAR models 57

Target Domains

head chest upperarm forearm waist thigh shin

head 0.85 0.52 0.50 0.22 0.19 0.48 0.39
chest 0.41 0.92 0.45 0.28 0.33 0.49 0.35

upperarm 0.29 0.38 0.85 0.23 0.22 0.48 0.54
forearm 0.12 0.11 0.11 0.83 0.26 0.11 0.09

waist 0.29 0.37 0.11 0.25 0.93 0.30 0.27
thigh 0.37 0.39 0.40 0.12 0.22 0.92 0.37
shin 0.18 0.32 0.35 0.13 0.28 0.26 0.86

Table 3.4: F1 scores obtained when an HAR model is trained and tested on different
body positions.

ture extractor is a 6-layer deep CNN with temporal (1-D) convolutional layers. We
use LeakyReLU activations [146] with alpha= 0.3 and instance normalization [147]
layers between convolutional layers for faster convergence. We also employ dropout
regularization to avoid overfitting. The feature extractor takes as input a 3-second
frame of pre-processed IMU data from a given body position and outputs a 150-
dimensional feature vector. This feature vector is then passed as input to the clas-
sifier, which consists of two fully-connected layers and generates a k dimensional
output where k is the number of activity classes (e.g., sitting, walking). For the
REALWORLD dataset, k = 8.

The model is trained by optimizing the categorical cross-entropy loss. We use
a mini-batch size of 64, which is chosen based on a hyperparameter search in
{32,64,96,128}. Further, we employ the Adam optimizer [148] with a learning
rate 1e-3, which is obtained by doing a hyperparameter search on {1e-2, 5e-2, 1e-
3, 5e-3, 1e-4, 5e-4}. The training process is implemented in TensorFlow 2.0 and
executed on a NVIDIA Tesla V100 GPU. TensorFlow’s HParams API is used for
hyperparameter tuning.

Evaluation Metrics. In line with the goal of this experiment, we train a model on
data from a training body position (i.e., the source domain) and evaluate the model
on a test body position (i.e., the target domain). Class-weighted F1 score is used as
the evaluation metric.

Results. Table 3.4 shows the results of our experiments. Each row in the table
denotes a source domain from which we obtain the labeled dataset to train an HAR
model. This model is then tested on various target domains (shown in columns),
and we report the class-weighted F1 score for each experiment setting.

3.3. Summary 58

Walking

th
ig

h
fo

re
ar

m
he

ad

Time [sec]

Figure 3.5: Accelerometer traces for the same physical activity (walking) collected
from IMU sensors placed at three different body positions.

First, we analyze the performance of HAR models when they are trained and tested
on the data from the same sensor and body position. This represents the ideal sce-
nario with no domain shift caused by variations in sensor hardware or sensor place-
ment; hence we can expect a high classification accuracy. In Table 3.4 (diagonal), it
can be observed that models trained on head and thigh provide F1 scores of 0.85 and
0.92 respectively, when they are evaluated on the test set from same body position
on which they are trained.

Next, we analyze the performance of HAR models when they are trained and tested
on data from different sensors and body positions. From Table 3.4 (non-diagonal),
we see a significant accuracy degradation in all the source-target domain pairs. For
example, when the source=‘thigh’ model is tested on target=‘head’, the F1 score
drops from 0.92 to 0.37. Figure 3.5 provides more intuition behind this finding,
where we plot an accelerometer trace collected from three body positions while a
user is walking. As we can see, the accelerometer data captured from IMUs placed
at different body positions show clear differences, which highlights the challenges
in scaling HAR models.

3.3 Summary

In this chapter, we quantified the effect of domain shifts caused by microphone-
induced domain shift on various speech-based ML models. To facilitate this study,
we collected two new speech datasets following the Replay-and-Record method-

3.3. Summary 59

ology. Our results show that this domain shift can degrade the performance of
speech classification models such as Spoken Keyword Detection by as much as
15% drop in target domain accuracy. Even the state-of-the-art ASR models such
as DeepSpeech2 and those offered by AI-as-a-Service providers are not immune
to performance degradation. Further, we studied the domain shift caused by varia-
tions in IMU sensors and their placement on the performance of HAR models. Our
experiments on the REALWORLD activity recognition dataset demonstrate the sig-
nificant challenge that HAR systems face when they are deployed on body positions
different from those on which they were trained.

In Chapter 4, we present an adaptation solution to counter microphone-induced
heterogeneities in speech classification models. Later in Chapter 5, we consider the
case of HAR models and present an unsupervised domain adaptation approach to
scale them in the presence of device and placement induced domain shift.

Chapter 4

Scaling Opaque Machine Learning
Systems

In this chapter, we propose an unsupervised domain adaptation approach to scale
speech-based ML systems in the presence of domain shift induced by microphone
heterogeneity. Our solution is grounded in a realistic scenario of ML deployment,
which we call opaque ML systems. In an opaque ML system, we can feed data to
the ML prediction model and obtain class predictions, however the parameters of the
ML prediction model cannot be accessed or modified. This is a likely scenario when
source model developers may want to keep their prediction model fS(.) private for
commercial reasons; examples include ML offerings by AI-as-a-Service providers
such as Google [134], Microsoft [135] and Amazon [136] which provide an API for
users to upload their speech files and obtain speech transcripts in response.

4.1 Problem Setting

We are given a labeled dataset XS = {(xsi,ysi)}N
i=1 from the source domain DS where

xsi is a sensor sample and ysi is the associated class label. For example, in the Multi-
microphone Spoken Keywords dataset, xsi could be a speech spectrogram sample
from the ReSpeaker microphone array and ysi could be the keyword class (e.g., Yes,
No) corresponding to it. Given this labeled dataset, a neural network fS(.) could be
trained using supervised learning to map the source domain samples to their corre-
sponding labels. Thereafter, the model developer would like to deploy this trained
neural network in a target domain DT (e.g., a Matrix Voice microphone). From the
quantification study presented in Chapter 3, we know that the hardware and soft-
ware induced variations across microphones cause a domain shift between DS and
DT , which significantly degrades the accuracy of the source prediction model fS(.)

in the target domain. Hence, our goal is to propose a solution that can counter the
adverse effects of microphone-induced domain shift and improve the recognition

4.2. Background and Related Work 61

performance in the target domain.

4.2 Background and Related Work

In opaque ML systems, as we do not have access to the parameters of the source
prediction model, we need a solution that can counter the domain shift between
source and target microphones even before the data reaches the prediction model.
Clearly, many of the domain adaptation solutions introduced in Chapter 2 do not
apply here, as they relied on modifying model parameters to adapt a source domain
model for use in a target domain. One possible solution to reduce the mismatch be-
tween microphone outputs is to calibrate the microphones with each other or with
a common reference microphone using a frequency sweep signal [51]. However,
to calibrate the frequency responses of microphones, we need to place both the
source and target domain microphones in the same controlled environment (e.g., an
anechoic chamber), which may not be feasible in practical settings. Another op-
tion is to leverage speech enhancement algorithms such as Minimum Mean-Square
Error Short-Time Spectral Amplitude (MMSE-STSA) [91] to possibly reduce any
channel-induced noise in the target domain dataset. We use it as a baseline in our
evaluation and show that it does not satisfactorily alleviate the adverse effects of
domain shift caused by microphone variations.

Finally, neural network-based approaches have been proposed for converting noisy
speech to clean speech using denoising autoencoders [149, 150] and generative ad-
versarial networks [92] . The core assumption in these techniques is the availability
of paired or time-aligned data from clean and noisy conditions in order to learn a
denoising neural network model. While it is easy to generate paired clean-noisy
samples by augmenting clean speech with different types of ambient noise, it is im-
practical to assume the availability of paired speech data from the source and target
microphones. The approach presented in this chapter is also based on a generative
adversarial network, however, it does not assume the availability of paired speech
samples from source and target microphones.

We formulate the problem of microphone variability as a data translation problem,
i.e., given a speech segment recorded from a target microphone, can we translate it
to the source microphone’s domain? In other words, our goal is to learn a translation
function g : T −→ S, which can map a data sample from the target domain to the
source domain. If a translation function can indeed be learned between source and
target microphone domains, it can be subsequently used to reduce the domain shift
caused by microphone variability.

4.2. Background and Related Work 62

Figure 4.1: Generative Adversarial Network (GAN) proposed in [2].

4.2.1 Primer on Generative Adversarial Networks

Before presenting our solution, we provide a primer on generative adversarial net-
works (GANs), which form a core component of our proposed solution.

Generative Adversarial Networks. Deep learning has enabled many new appli-
cations of discriminative modeling, that is learning to predict a label y for a given
input sample x. On the other hand, generative modeling is an unsupervised learning
task to learn the patterns in a given dataset with an empirical distribution pdata(x),
such that the learned model can be used to generate new examples that plausibly
could have been drawn from pdata(x). For instance, in a keyword detection model,
the task is to predict the probability of the presence of a keyword in a speech seg-
ment, and it is achieved in a discriminative fashion by choosing a keyword class
with the highest output probability for the given audio segment. On the other hand,
a generative modeling task here could be to generate an audio segment from a given
keyword class.

Generative Adversarial Networks (GANs) proposed by Goodfellow et al. [2] are an
approach to generative modeling using deep learning methods. As shown in Fig-
ure 4.1, a GAN consists of two neural networks, namely, a Generator (G) and a
Discriminator (D), which compete against each other in an adversarial zero-sum
game. The Generator G takes a random vector z often drawn from a Gaussian dis-
tribution as input and generates a data sample by evaluating G(z). Besides random
noise, other information can be fed into the Generator, in which case G is called a
conditional generator. The Discriminator D on the other hand, is trained to distin-
guish between the real samples from pdata(x) and the generated samples from G.
In this way, the two neural networks G and D play a competitive game and in the
process, both become better at their respective tasks: the Generator learns to gener-
ate data from pdata(x), and the Discriminator becomes good at distinguishing data
drawn from pdata(x) vs. other data distributions.

4.3. Mic2Mic: GANs with Cyclic Consistency for Speech Translations 63

Figure 4.2: A pair of grayscale and colored images, on which conditional GANs
can be trained to learn a translation function.

Conditional GANs for data translation. GANs have also been extended for the
task of data translation, particularly with images, where the Generator is condi-
tioned on an input image[151]. Assume we want to learn a mapping or translation
between two image domains, namely grayscale and colored, as shown in Figure 4.2.
The GAN takes as input a paired set of images (a,b) from the two domains where
a is a grayscale image and b is the corresponding colored image. The grayscale
image a is fed to the generator in additional to the random vector z, and the output
G(a,z) is compared against the paired colored image b by the discriminator. D
provides feedback to G on the likelihood of the generated data being drawn from
the colored image domain. G uses this information to learn an even better map-
ping between grayscale and colored image domains. Eventually, once G is trained
to convergence, it can be used as a translation function Ggrayscale→colored to convert
grayscale images into colored images.

Building on this general concept from the vision literature, Michelsanti et al. [92]
proposed an approach of denoising speech samples; here instead of learning the
Ggrayscale→colored image mapping, they learned a Gnoisy→clean speech mapping. How-
ever, as discussed earlier, these algorithms rely on the availability of paired data
from the two domains. In our problem setting, collecting paired and time-aligned
speech samples from different microphones would be infeasible in practice, partic-
ularly at scale. Hence, we seek an algorithm that can learn a translation function
between microphone domains without paired supervision.

4.3 Mic2Mic: GANs with Cyclic Consistency for
Speech Translations

We now describe our proposed solution, Mic2Mic, to learn a microphone translation
function g : T −→ S, which can map data instances from a target microphone to the
source microphone’s domain. More importantly, our aim is to learn the translation
function without requiring paired data from the source and target domains.

4.3. Mic2Mic: GANs with Cyclic Consistency for Speech Translations 64

4.3.1 Cyclic Consistency

Recall that the source domain contains labeled data while the target domain data is
completely unlabeled. Let XS = {xsi}N

i=1 and YS = {ysi}N
i=1 denote a set of speech

samples and their corresponding labels in the source domain DS, and p̂s(x) denote
the empirical marginal distribution defined by the source samples. Further, let XT =

{xti}M
i=1 denote a set of unlabeled speech samples in the target domain DT .

As discussed in the previous section, by training a conditional GAN, we can learn
a mapping or translation function GT→S to obtain x̂ti = GT→S(xti), xti ∈ XT . This
translation operation can induce a distribution over x̂ti that matches the empirical
distribution defined by the source samples p̂s(x), However, in the absence of any
paired samples from the two domains (as is the case in our problem setting), this
translation does not guarantee that each individual speech sample from the target
domain is mapped to its corresponding equivalent in the source domain, because
there are infinitely many translation functions GT→S that can induce the desired
distribution over x̂ti .

In order to solve this challenge, we propose to impose the cycle-consistency prop-
erty on the microphone translation function, as originally proposed by Zhu et
al. [152] for visual recognition tasks. The core intuition behind cycle-consistency is
that when an input sample xti is translated from T → S and then back from S→ T ,
we should arrive at the same input sample. This can be achieved by learning two
bijective translation functions GT→S and GS→T , which are inverses of each other. In
the next section, we present how to impose the cycle-consistency property during
the adaptation process.

4.3.2 Mic2Mic architecture and training

In this section, we describe the architecture of Mic2Mic and the various losses that
are optimized in the training process.

Training the source model. Let the source prediction model fS(.) be trained using
supervised learning on the labeled source dataset by optimizing the cross-entropy
loss between the model predictions and the ground truth labels.

min
fS

Ltask (fS,XS,YS) =−E(xs,ys)∼(XS,YS)

K

∑
k=1

1[k=ys] log(fS (xs))

where K denotes the number of classes in the dataset.

4.3. Mic2Mic: GANs with Cyclic Consistency for Speech Translations 65

Figure 4.3: Architecture of Mic2Mic based on imposing cycle-consistency on data
translations. The figure only shows the cycle with target data as input,
the other cycle works similarly with subscripts S and T interchanged.

The weights of the source prediction model are frozen at this stage and are no longer
updated in the rest of the training process. This aligns our problem setting of opaque
ML systems where a model developer trains the source model and makes it available
to user applications for inferences, but without revealing the model parameters.

Training the Mic2Mic translation model. Our proposed solution, Mic2Mic, con-
sists of two generators GT→S and GS→T , and two corresponding discriminators DS

and DT . The generators networks follow the U-Net architecture[153] and con-
sist of three convolutional layers for extracting higher-level features from spec-
trograms, three ResNet blocks for transforming the features from target domain
to source domain, followed by three transpose convolutional layers for converting
the transformed features into output spectrograms. Following the work of [152],
we add skip connections[153] between the convolutional and corresponding trans-
pose convolutional layers and use batch normalization layers between the ResNet
blocks for faster convergence. For the discriminator models, a 4-layer deep fully-
convolutional network is used with a batch normalization layer between two con-
secutive convolutional layers.

The training of Mic2Mic proceeds as shown in Figure 4.3. We first sample a batch
of unlabeled data from the target and source domains and convert them to a mel-
spectrogram representation. Mel-spectrograms from the target domain xt are then
fed to the generator GT→S, and the outputs GT→S(xt) are evaluated using the source
domain discriminator DS which tries to separate them from the source domain spec-
trograms xS. This is achieved by optimizing the Adversarial Loss as follows:

LGAN (GT→S,DS,XS,XT) = Exs∼XS [logDS(xs)]+Ext∼XT [log(1−DS (GT→S (xt)))]

4.3. Mic2Mic: GANs with Cyclic Consistency for Speech Translations 66

Next, to enforce cycle-consistency, the translated spectrograms GT→S(xt) are fed to
the reverse generator GS→T to obtain the reconstructed spectrograms. By enforcing
a L1 penalty on the reconstruction error, we enforce the two generators to be inverse
of each other. The Cycle Consistency loss can be expressed as:

Lcycle (GT→S,GS→T,XT,XS) = Ext∼XT [‖GS→T(GT→S(xt))−xt‖]
+Exs∼XS [‖GT→S(GS→T(xs))−xs‖]

Finally, we use another loss term which encourages the generators GT→S and GS→T

to be close to an identity mapping when they are fed samples drawn from XS and
XT respectively. Known as the Identity Loss, this loss was originally proposed
by Taigman et al. [154] and has shown to be beneficial in preserving the semantic
properties of the data before and after translation. The identity loss for GT→S can
be expressed as:

Lidentity (GT→S,XS) = Exs∼XS [‖GT→S(xs)−xs‖L1]

Taken together, these loss functions result in the following optimization objective
for Mic2Mic:

min
GT→S
GS→T

max
DS
DT

LMic2Mic(XS,XT,GT→S,GS→T,DS,DT)

= LGAN (GT→S,DS,XS,XT)+LGAN (GS→T,DT ,XT,XS)

+Lcycle (GT→S,GS→T,XT,XS)

+Lidentity (GT→S,XS)+Lidentity (GT→S,XT)

After optimizing the above objective, we are primarily interested in the Generator
GT→S, which can take speech data collected from the target domain as input and
translate them to the source domain. Note that the training of Mic2Mic is com-
pletely independent of the source prediction model fS(.) and hence satisfies the
assumptions of an opaque ML system.

4.3.3 System Design

We now discuss the implementation of Mic2Mic as a component in the inference
pipeline of ML systems. As shown in Figure 4.4, a speech sample collected from the
target microphone during the inference stage is first converted to a mel-spectrogram
representation. In the absence of Mic2Mic, the mel-spectrogram would have been

4.4. Evaluation 67

Figure 4.4: Integration of Mic2Mic’s translation component (GT→S) in the infer-
ence pipeline of an opaque ML system in the target domain.

passed to the source domain classifier directly, resulting in poor inference perfor-
mance.

Instead, with our proposed solution, the target domain mel-spectrogram is first fed
as input to the trained Mic2Mic Generator GT→S, which translates it to its source
domain equivalent. The translated spectrogram then optionally undergoes task-
specific feature extraction, such as extracting MFCC features, and is then fed to
the task-specific classifier from the source domain to output class labels. As many
speech models (e.g., keyword detection [28], DeepSpeech2 [155]) use spectrograms
or MFCC coefficients as input features, they are compatible with our current imple-
mentation.

In case no domain shift is detected in the system (e.g., source and target domain
microphones are the same), the Mic2Mic translation component could be removed,
or replaced with an identity function.

4.4 Evaluation

In this section, we evaluate the performance of Mic2Mic for speech classification
tasks. Our findings show that Mic2Mic is able to effectively learn a microphone
translation function using less than 30 minutes of unpaired speech data from the
source and target microphones. Further, Mic2Mic can recover between 67% to
89% of the accuracy lost due to microphone variability for two speech classification
tasks.

4.4.1 Tasks and Datasets

For this evaluation, we use three types of embedded microphones namely Matrix
Voice, ReSpeaker and USB microphone. More details about the hardware specifi-
cations of these microphones were presented previously in Table 3.1 in Chapter 3.

Two representative speech classification tasks are used in our experiments, namely
Spoken Keyword Detection (SKD) and Emotion Detection.

4.4. Evaluation 68

Spoken Keyword Detection. In this task, the goal is to identify the presence of a
certain keyword class (e.g., Yes, No) in a given speech segment. To train a model
for this task, the Multi-microphone Spoken Keywords dataset presented in Chapter 3
is used. Further, we use a small-footprint keyword detection architecture proposed
in [28] to train the source domain classifier fS(.). The input to this model is a two-
dimensional tensor extracted from a one-second-long keyword recording, consisting
of time frames on one axis and 24 MFCC features on the other axis. The model
outputs a probability of a given speech segment belonging to a certain keyword
class (e.g., Yes, No) or to an Unknown class.

Emotion Detection. In this task, the goal is to identify the emotion of the speaker
in a given speech segment. We record the RAVDESS dataset [156] on the three em-
bedded microphones following the replay-and-record methodology introduced in
Chapter 3. RAVDESS consists of 1440 speech files recorded by 24 actors where
they expressed a range of emotions such as calm, happy, sad, angry, fearful, sur-
prise, and disgust. The dataset is randomly split into training (75%) and test (25%)
class-balanced subsets. We use a CNN-based speech emotion detection architecture
proposed by [69] to train the source domain classifier fS(.).

Mic2Mic training data. In addition to training the task-specific models, we also
need data to train Mic2Mic translation models. Ideally, we should ensure that the
training data used for Mic2Mic does not overlap with the data used to train the task-
specific models. To this end, we split the training datasets into two parts: 5% of the
data is used to train the microphone translation models, while the remaining 95% is
used to train the task-specific speech models.

Source
Microphones

Target
Microphones

Mean PSNR
(Pre-translation)

Mean PSNR
(Post-translation)

Matrix
ReSpeaker 20.51 28.08

USB 26.48 28.56

ReSpeaker
Matrix 20.51 24.15
USB 21.65 28.23

USB
Matrix 26.48 28.24

ReSpeaker 21.65 24.21

Table 4.1: Comparison of PSNR between the spectrograms coming from two dif-
ferent microphones before and after Mic2Mic’s translation operation.

4.4. Evaluation 69

4.4.2 Evaluation of the translation model

We first evaluate the efficacy of the learned translation model GT→S in translating
samples from a target domain to a source domain. In order to quantitatively evaluate
the goodness of translated target samples, we need a ground truth in the source
domain against which they can be compared. Recall that the data collection exercise
described in Chapter 3 yielded speech datasets that are simultaneously recorded
on multiple microphones – hence we can use the paired samples in the dataset to
evaluate the translation model. It is important to clarify that paired samples are only
used for evaluating the model; while training Mic2Mic we explicitly discourage
any pairing between source and target datasets by randomly shuffling the datasets
before each training epoch.

As the Mic2Mic translation model operates on 2D spectrograms, we use Peak
Signal-to-noise ratio (PSNR) to compare target and source domain spectrograms
pre- and post-translation. PSNR is a commonly used metric to calculate similarity
between two images based on the mean square error between them. The higher the
PSNR, the closer the images are to each other. We can employ the same metric to
compute similarity between a spectrogram pair as follows:

PSNR(xt,xs) = 20. log10 (max(xt))−10. log10 (MSE (xt,xs))

where MSE stands for the Mean Square Error between the two spectrograms and is
computed as:

MSE (xt,xs) =
1

m.n

m−1

∑
i=0

n−1

∑
j=0

[xt(i, j)−xs(i, j)]2

Intuitively, we expect that the translation operation will lead to an increase in the
PSNR between a pair of source and target microphone samples.

Results. Table 4.1 shows the pre- and post-translation PSNR averaged over 1000
spectrogram pairs randomly chosen from the Multi-microphone Spoken Keywords
dataset. An apparent increase in the PSNR can be observed due to the translation
operation, which suggests that Mic2Mic is able to reduce the domain shift between
the source and target microphone data.

Further, Figure 4.5 presents a qualitative result to demonstrate the performance of
ReSpeaker → Matrix translation model. In this figure, spectrograms a and c cor-
respond to speech segments collected from ReSpeaker and Matrix microphones re-

4.4. Evaluation 70

512
1024
2048
4096
8192

Hz

(a) ReSpeaker (b) Matrix (Generated) (c) Matrix (Ground Truth)

Figure 4.5: Performance of Mic2Mic for ReSpeaker→Matrix translation. (a)
shows an example spectrogram from ReSpeaker and (c) shows the cor-
responding spectrogram for Matrix microphone. (b) shows the spectro-
gram generated by applying GReSpeaker−→Matrix translation on (a).

spectively, whereas the spectrogram b is generated by applying GReSpeaker−→Matrix

translation model on spectrogram a. We observe that the generated spectrogram (b)
is visually more similar to its corresponding ground truth (c), thereby qualitatively
demonstrating that Mic2Mic managed to learn an effective translation function. Al-
though this is a positive result, we note that the explainability of Mic2Mic remains
poor and is a limitation that our approach inherits from the CycleGAN model on
which it is based. For example, it is hard to pinpoint the exact transformations that
Mic2Mic has learned to perform on the spectrograms in the time-frequency domain.
We elaborate on this limitation in Section 4.5 and highlight some of the emerging
works on understanding the internal representations of GANs.

4.4.3 Accuracy gains using Mic2Mic

After providing empirical evidence that Mic2Mic can reduce the domain shift be-
tween a given pair of microphones, we now present a series of experiments to eval-
uate the performance gains by adding Mic2Mic as a component in the ML inference
pipeline.

Baselines. We compare the performance of Mic2Mic against three baseline infer-
ence pipelines:

• Unmodified: In this pipeline, the test data from the target domain microphone is
directly passed to the source domain model without applying any modifications
to it.

• Speech Enhancement (SE): Before feeding the target test data to the source do-
main model, we first enhance its speech quality by applying a statistical speech
enhancement technique known as Minimum Mean-Square Error Short-Time
Spectral Amplitude (MMSE-STSA) estimation [91].

4.4. Evaluation 71

• Calibrated: An alternative approach to address microphone variability is to first
measure the differences in frequency responses of source and target microphones
in a controlled experimental setup and then negate those differences during the
inference stage. While this approach of microphone calibration in controlled
environments is not practical and scalable, we use it as a baseline to show how
Mic2Mic compares with it in terms of performance. To compute a calibration
offset between a pair of microphones, we play a frequency sweep signal and
record it on both microphones in a non-reflective anechoic chamber.

The power spectral density Ri(f) of the microphone output as a function of fre-
quency can be expressed as follows,

Ri(f) = |Hi(f)|2.Rx(f)

where Hi(f) is the frequency transfer function of the ith microphone and Rx(f) is
the power spectral density of the original frequency sweep signal.

Thereafter, following the methodology proposed by [51], a per-frequency cali-
bration offset ΓS,T (f) between the source and target microphones representing
the difference in their frequency responses can be calculated as follows:

ΓS,T (f) =
HS(f)
HT (f)

=

√
RS(f)
RT (f)

Finally, in the ML inference pipeline, the calibration offset Γ is applied on the
data from the target microphone to compensate for the differences in frequency
response between the source and target microphones. The corrected speech data
is then fed to the source domain model for inference.

Results. In Figure 4.6, we show the test accuracy obtained by training and testing
the Spoken Keyword Detection model on different microphones. For each micro-
phone pair, we repeated the experiment five times and report the mean and 95%
confidence intervals of the accuracy results.

It can be observed that when the model is trained and tested on the same micro-
phone, we obtain the highest test accuracy as there is no accuracy degradation due
to microphone-induced domain shift. However, when there is a mismatch between
the training and test microphones, a significant accuracy loss is observed. For exam-
ple, as shown in Figure 4.6a, when a model trained on Matrix Voice is deployed on
ReSpeaker and USB microphones, there is an absolute accuracy drop of 12.4% and
6.7% respectively as compared to the accuracy obtained (78.8%) when the model is

4.4. Evaluation 72

Matrix ReSpeaker USB
Test Devices

60

70

80

90

A
cc

ur
ac

y
(in

 %
)

73%
87%

Training Device = Matrix

(a)

ReSpeaker Matrix USB
Test Devices

60

70

80

90

A
cc

ur
ac

y
(in

 %
)

86% 74%

Training Device = ReSpeaker

(b)

USB Matrix ReSpeaker
Test Devices

60

70

80

90
A

cc
ur

ac
y

(in
 %

) 69% 66%

Training Device = USB

Unmodified
SE

Calibrated
Mic2Mic

(c)
Figure 4.6: Accuracy of the Spoken Keyword Detection model under different sce-

narios of microphone variability. The numbers on the bars denote the
percentage of accuracy recovered using Mic2Mic.

Matrix ReSpeaker USB
Test Devices

60

70

80

90

100

A
cc

ur
ac

y
(in

 %
)

70% 84%

Training Device = Matrix

(a)

ReSpeaker Matrix USB
Test Devices

60

70

80

90

100

A
cc

ur
ac

y
(in

 %
)

87% 67%

Training Device = ReSpeaker

(b)

USB Matrix ReSpeaker
Test Devices

60

70

80

90

100

A
cc

ur
ac

y
(in

 %
)

74% 73%

Training Device = USB

Unmodified
SE

Calibrated
Mic2Mic

(c)
Figure 4.7: Accuracy of the Emotion Detection model under different scenarios of

microphone variability. The numbers on the bars denote the percentage
of accuracy recovered using Mic2Mic.

4.4. Evaluation 73

tested on Matrix Voice itself. By incorporating Mic2Mic in the inference pipeline of
the test microphones, we can recover a significant proportion of this accuracy loss,
i.e., 73% and 87% for ReSpeaker and USB microphones respectively. In doing so,
Mic2Mic outperforms the two baseline approaches related to speech enhancement
and microphone calibration. The microphone calibration baseline has the next best
performance, and in one particular setting, i.e., USB−→ReSpeaker, it provides simi-
lar performance as Mic2Mic.

In Figure 4.7, for the Emotion Detection task, we observe accuracy drops between
4%-9% in scenarios of microphone variability, and by adding Mic2Mic as a trans-
lation component in the inference pipeline, we can recover between 67-87% of the
lost accuracy.

Training with multiple microphones. While the above experiments use data from
just one microphone to train the source domain speech models, in practice devel-
opers will have access to data from diverse microphones. We now consider the
scenario when the source domain model is trained with multiple microphones and
evaluate if there is still any accuracy degradation due to microphone variability.

In Tables 4.2 and 4.3, we present the test accuracy when the source domain models
are trained on data from multiple training microphones. Once trained, the models
are evaluated in the source domain (i.e., on test data from the microphones on which
the model was trained) and the target domain (i.e., the microphone which did not
contribute to the training data). Even here, we observe an accuracy degradation in
the target domain, e.g., the test accuracy goes from 82.35% to 74.7% when the Spo-

Training Microphones

Matrix and
ReSpeaker

ReSpeaker
and USB

USB and
Matrix

Source
Microphones 82.9 78.63 82.85

Target
Microphone 72.6 67.1 74.7

Target
Microphone

with
Mic2Mic

80.6 77.1 80.4

Table 4.2: Test accuracy of the Spoken Keyword Detection model when it is trained
on multiple microphones.

4.4. Evaluation 74

Training Microphones

Matrix and
ReSpeaker

ReSpeaker
and USB

USB and
Matrix

Source
Microphones 87.35 89.35 91.3

Target
Microphone 83.6 84.1 85

Target
Microphone

with
Mic2Mic

86.4 87.8 89.3

Table 4.3: Test accuracy of the Emotion Detection model when it is trained on mul-
tiple microphones.

ken Keyword Detection model trained on USB and Matrix microphones is deployed
on ReSpeaker. Finally, the last rows of Tables 4.2 and 4.3 show that by incorporat-
ing Mic2Mic in the inference pipeline of the target domain, we can recover a large
proportion of the accuracy that is lost due to microphone heterogeneity.

4.4.4 How much data is needed to train Mic2Mic?

In this section, we present results on Mic2Mic’s performance as the amount of data
used to train the translation model is varied. As discussed earlier, training Mic2Mic
only requires unlabeled and unpaired data from the source and target microphones.
While collecting such data is indeed cheap, it will be ideal if the Mic2Mic transla-
tion model can be trained with minimal amount of data.

For this experiment, we systematically vary the amount of unpaired data available
to train Mic2Mic’s translation model. We gradually increase the unpaired data from
the source and target microphones from 0 minutes to 60 minutes. Once a transla-
tion model is trained in each data configuration, we incorporate it in the inference
pipeline of the Spoken Keyword Detection model in the target domain and evaluate
the test accuracy.

Figure 4.8 illustrates the findings of this experiment for two different microphone
combinations. The dotted red line shows the upper-bound test accuracy when the
Spoken Keyword Detection model is tested on the same microphone on which it
was trained. The dotted blue line shows the baseline accuracy when the model
is deployed on a test microphone without incorporating Mic2Mic in the inference

4.5. Discussion and Limitations 75

0 5 10 15 20 25 30 60
Amount of training data (in minutes)

60%

65%

70%

75%

80%

85%
A

cc
ur

ac
y

Training Device = ReSpeaker
Test Device = Matrix

(a)

0 5 10 15 20 25 30 60
Amount of training data (in minutes)

60%

65%

70%

75%

80%

85%

A
cc

ur
ac

y

Training Device = Matrix
Test Device = USB

(b)
Figure 4.8: Accuracy of the Spoken Keyword Detection model in the test (or target)

domain, as the amount of unlabeled data used to train the Mic2Mic
translation model is varied.

pipeline. We observe that as more unpaired training data is supplied, the Mic2Mic
translation model becomes better, and in turn, the inference performance of the
Spoken Keyword Detection model increases. The inference performance plateaus
around 30 minutes in Figure 4.8(a) and around 20 minutes in Figure 4.8(b), sug-
gesting that Mic2Mic is able to learn a good translation model with less than 30
minutes of unpaired data in both scenarios.

4.5 Discussion and Limitations

In this section, we discuss the limitations of this work and outline the avenues for
future work on this topic.

Explainability. A limitation of this work comes from the lack of explainability
of the translation model. While we empirically demonstrated that the translation
model is able to reduce the domain shift between microphone datasets and improve
the downstream classification accuracy in the target domain, it remains unclear what
exact transformations does Mic2Mic learn in the time-frequency representation of
speech data. Recently, methods have been proposed [157, 158] to visualize and
understand the internal representations of a generative adversarial network in the
context of images. Such works could be extended for CycleGAN-based architec-
tures such as Mic2Mic to uncover the kinds of time-frequency transformations be-
ing learned during the training process.

Scalability of Pairwise Translations. Another limitation of our current implemen-
tation is that we learn pairwise translations between training and test microphones.
Hence, in order to scale this solution to a large number of devices, multiple such
models need to be learned. Future work can investigate the development of a com-
mon microphone translation model that can be applied to any given pair of mi-

4.6. Summary 76

crophones. A similar solution in the image-to-image translation domain has been
proposed, namely StarGAN [159], which uses an n-dimensional one-hot vector to
encode the input and output image labels into the translation model architecture.

Scaling to other heterogeneities. We focused on addressing the composite effect
of heterogeneities introduced by the hardware and software processing components
of the microphone in speech data. However, in practice, speech-based models will
encounter additional forms of heterogeneity such as variations in background noise
or speaker accents, which can overlap with the already challenging scenario of mi-
crophone heterogeneity. As future work, we plan to explore the applicability of
learning a domain translation function when more heterogeneities co-occur in the
speech data.

Deployment Overhead. Mic2Mic adds an extra step of data translation in the in-
ference pipeline of speech models. While it improves the prediction accuracy in
the target domain, it also increases the latency of computing inferences. This could
pose a challenge for some ML systems that aim to provide real-time inferences to
users. Future work should explore optimizing the translation model to reduce its
latency and power consumption, particularly on embedded devices. As our trans-
lation model consists of a number of convolution layers, techniques proposed for
optimizing CNNs on embedded devices could be employed [160].

Other Related Works. Contemporaneous to our work, [161] applied a similar
idea in the field of medical imaging. They found that X-ray images captured by
different machines have substantial domain shift, and training a CycleGAN-based
translation component can counter this shift. [162] is a follow-up work to ours,
which aims to adapt speech recognition systems trained on speech recorded from
telephones (source domain) to speech recorded on camcorders in-the-wild (target
domain). [163] proposed to use the GS→T mapping learned with a CycleGAN to
map synthetic images (source data) to real images (target domain). Thereafter, they
trained a model for the target domain using supervised learning on the translated
source data and source labels. This approach however requires source domain labels
during adaptation, which is a very strong assumption for opaque ML systems.

4.6 Summary

With the goal of scaling speech-based ML systems to new domains, we presented
an adaptation solution, Mic2Mic, which reduces the shift between source and target
domains by adding a data translation component in the inference pipeline in the

4.6. Summary 77

target domain. This translation component is trained on unlabeled and unpaired data
from the source and target domains using a Cyclic Generative Adversarial Network
and is able to recover up to 87% of the accuracy degradation in the target domain for
two speech classification tasks. More importantly, by virtue of its design, Mic2Mic
does not require modifying the parameters of the source domain prediction model,
which makes it appropriate for use in an opaque ML system.

We also identified several limitations of our proposed solution in Section 4.5. In par-
ticular, a key limitation is the additional overhead that comes with adding Mic2Mic
in the inference pipeline, which in turn could increase the latency of computing
inferences on the data. In Chapter 5, we explore an adaptation solution wherein
instead of adding an additional component in the inference pipeline, we directly
modify the parameters of the source prediction model during adaptation in order
to improve its performance in the target domain. This solution is presented in the
context of human-activity recognition (HAR) systems that operate on inertial sensor
data.

Chapter 5

Scaling Transparent Machine
Learning Systems

The adaptation solution presented in Chapter 4 was premised upon the assumption
that we do not have access to the parameters of the source prediction model during
the adaptation process, which is a likely scenario in many commercial and propri-
etary ML systems. In this chapter, we focus on transparent ML systems wherein
we can access and modify the parameters of the source prediction model during the
adaptation process. Such a scenario can occur when either the prediction model
is publicly known (e.g., downloaded from a public model repository) or when the
source model developer themselves would like to adapt the model parameters to
new domains.

A good example of the latter scenario is the task of Human Activity Recognition
(HAR) based on inertial data collected from Inertial Measurement Unit (IMU) sen-
sors placed on the human body. Imagine that a model developer collects a large
amount of labeled data from IMU sensors on a smartphone placed in the user’s
thigh pocket (source domain), where the labels represent the physical activities of
the users (e.g., running, walking, sitting). A prediction model can be trained on this
dataset using supervised learning and then deployed through an HAR application
installed on the smartphone. At test time however, the end-users may place their
smartphones at body positions different from the training body position (i.e., thigh)
– for instance, the smartphone can be placed in the chest pocket or inside an arm-
band when the user is running. Moreover, the HAR application might be installed
on smart devices containing different IMU hardware than the training smartphone.
As we demonstrated in Chapter 3, due to device and placement induced hetero-
geneity, the distribution of the IMU test data will differ from that of the training
data, and the model developer will need to adapt their HAR model to prevent any
performance degradation in the target domain.

5.1. Problem Setting 79

In this chapter, we present an unsupervised domain adaptation solution for scaling
transparent ML systems and focus our evaluation on HAR models trained using in-
ertial sensor data1. However, the general problem of scaling transparent ML models
using is also applicable to other sensor modalities and heterogeneities. For example,
the microphone heterogeneity problem presented in the previous chapter can also
manifest in transparent ML systems, and the model developer can choose to adapt
the weights of the source microphone model to counter it. While concluding this
chapter, we briefly discuss how the solutions presented for HAR models could be
extended to speech-based ML systems.

5.1 Problem Setting

Following the notations presented in Chapter 2, let DS denote a source domain
(e.g., ‘thigh-worn IMU’) and DT be a target domain (e.g., ‘wrist-worn IMU’). In
the source domain, we are given a set of sensor samples XS = {(xsi,ysi)}N

i=1 and
labels YS = {ysi}N

i=1 where ysi is the physical activity class label associated with the
corresponding sensor sample xsi . Let XT = {xti}M

i=1 be an unlabeled dataset, where
xti is a sensor sample from the target domain. No labeled observations are available
in the target domain.

Further, let tS(.) be a task prediction model trained using supervised learning to
minimize the empirical risk in the source domain. The task prediction model tS
can be decomposed into two components: fS(.) and gS(.), where fS : X −→ Z rep-
resents a feature extractor that maps samples from the source domain into a latent
feature space Z. Similarly, gS : Z −→ Y represents a task classifier that maps the
source features to output labels. In the context of deep learning, fS(.) and gS(.)

are parameterized with deep neural networks FS and GS respectively. For a K-way
classification task, the optimization objective for FS and GS can be expressed as
follows:

min
FS,GS

Lsup =−E(xs,ys)∼(XS,YS)

K

∑
k=1

1[k=ys] [log(GS (FS (xs)))]

As we quantified in Table 3.4, due to the domain shift caused by changes in the
1A part of this work is published in [56] in which Youngjae Chang and I are the co-primary

authors. Both of us had an equal contribution in implementing the solutions and coming up with the
experiment design. However, in [56], we only experimented with the domain shift in accelerometer
data. In this chapter, I focus on HAR models trained with both accelerometer and gyroscope data,
which is a more common practice in the literature. As such, I re-implemented the code and retrained
all the HAR models. Different from [56], I present new experiments and analysis on countering
domain shift when both accelerometer and gyroscope data are used to train HAR models.

5.2. Background and Related Work 80

sensor hardware, sensing pipeline and sensor placement on the human body, feature
encoder FS and classifier GS trained on the source domain are not optimal for doing
predictions in the target domain. Hence, a solution is needed which can modify the
parameters of the source neural networks FS and GS to improve their classification
performance in the target domains.

5.2 Background and Related Work

As we discussed in Chapter 2, a number of works have tackled the problem of data
heterogeneity in HAR models. To counter device-induced heterogeneities, [45] pro-
posed the idea of automatically clustering IMU devices based on the heterogeneities
in their sensor outputs. Thereafter, an activity recognition model is trained for each
cluster of devices on their aggregated labeled data, and it is used as the representa-
tive model for the entire cluster during inference. A major limitation of this solution
pertains to its lack of scalability; firstly, this solution requires collection of labeled
data from every new device on which the HAR system is deployed, which is ex-
pensive and time-consuming. Moreover, for each new device, the clustering step
needs to be repeated and followed up by retraining the HAR model for the cluster
to which the device is assigned.

With regards to IMU placement-induced domain shifts, a widely used approach
is to train placement-specific HAR models [114, 115], which are found to be more
accurate than placement-independent models such as [116]. However, this approach
also requires collecting labeled data from each body position where the sensor is
likely to be placed, thereby making it costly and less practical.

In recent years, researchers have started applying unsupervised domain adaptation
(uDA) based approaches in this problem space. One of the early works in this direc-
tion was HDCNN [131], which studied the transfer of HAR models from a smart-
phone (source domain) to a smartwatch (target domain). This solution is inspired
by the idea of feature alignment proposed in [119]. Here, a target domain model
is trained by minimizing the layer-wise Kullback-Leibler (KL) divergence between
the activations of source and target models. The proposed approach is evaluated on
a private dataset and showed promising results. We build upon this work in three
ways: (i) we propose that in order to learn effective domain-invariant features, there
is a need for principled data augmentation before performing the feature alignment,
(ii) we use a different approach of adversarial training to align the feature repre-
sentations (iii) we evaluate our solution on a much larger public dataset containing
seven different sensor placements and show that it outperforms the DDC baseline

5.3. Scaling HAR Models with Data-Augmented Adversarial Training 81

which inspired this prior work. Further, contemporaneous to our solution, Akbari et
al. [132] extended the HDCNN work by replacing the deterministic features with a
stochastic feature extractor. Once the features are extracted, they are aligned across
domains by minimizing the KL divergence between them. A limitation of this ap-
proach is that it assumes the availability of paired or time-aligned IMU samples
from the source and target domains for performing uDA. This is a very strong as-
sumption, which can be easily violated in practical deployment settings. Instead,
our solution does not enforce any pairing or time-alignment between source and
target IMU samples.

5.3 Scaling HAR Models with Data-Augmented Ad-
versarial Training

In this section, we present our solution to scale HAR models to target domains
which have both device and placement-induced domain shift when compared to the
source domain. Our proposed approach is built upon two promising techniques in
the field of deep learning, namely data augmentation and adversarial learning.

5.3.1 Solution Overview

The core idea of our proposed solution is to modify the weights of the source domain
feature extractor FS such that it extracts domain-invariant feature representations of
the source and target domain data. More specifically, we would like the feature
representations of data to be invariant to the sensor hardware and the placement of
the IMU sensor on the human body. If we can successfully adapt FS to map source
and target data to domain-invariant features, then the task classifier GS could be
further adapted to map the domain-invariant features to output labels by performing
supervised learning on the labeled source data.

Inspired by previous works in the uDA literature [123, 164], we leverage adversar-
ial training to adapt FS and encourage it to extract domain-invariant features from
the data. Moreover, to ensure that device-induced heterogeneities are adequately
represented in the source and target datasets, we propose augmenting the source
and target datasets by adding specific types of perturbations that are expected due
to hardware [43, 50] and software-related factors [45]. Our results in Section 5.4.3
demonstrate that performing the proposed data augmentation in a principled way
before adversarial training can significantly boost the performance of the model in
the target domain.

5.3. Scaling HAR Models with Data-Augmented Adversarial Training 82

5.3.2 Solution Description

Figure 5.1 shows the proposed architecture for Data-Augmented Adversarial Learn-
ing, and we now describe its constituent components.

Data Augmentation. In order to simulate device-induced heterogeneities in the
IMU data, we use three data perturbation schemes, as described below.

• Scaling: Under this scheme, we scale each axis in the accelerometer and gy-
roscope data by a random coefficient c sampled from a normal distribution
N(1, σ2). Here σ is a hyperparameter that controls the magnitude of the scal-
ing coefficient. This perturbation relates to the scale factor errors [165, 50] in
inertial sensor data, which often occur due to temperature differences between
the initial calibration and operation stages of the sensor.

• Axis rotation: Even when inertial sensors are used in a fixed body position, sensor
orientations might vary between multiple wearing sessions; for example, Min et
al. [166] showed that data from ear-worn IMU devices could vary between wear-
ing sessions depending on how the device is placed inside the ear. To simulate
this variability, we perform a rotation of both the accelerometer and gyroscope
data with a random roll, pitch, and yaw.

• Time-warping: This scheme simulates deformation in the time axis; it first adds a
random perturbation to the time intervals between consecutive data samples, and
then re-samples each axis of the data with the original sampling rate using 1-D
linear interpolation. This perturbation is related to sampling rate instability in
inertial data that occurs due to delays in the attachment of timestamps to sensor
readings by the operating system [45]. We use the time-warping implementation
provided by the authors of [167].

Figure 5.2 illustrates the effect of the three perturbation schemes on a 3-second long
accelerometer sample from the REALWORLD dataset (sampling rate = 50Hz).

During training, we first sample a batch of IMU data each from the source and

Figure 5.1: Architecture for Data-Augmented Adversarial Training

5.3. Scaling HAR Models with Data-Augmented Adversarial Training 83

Figure 5.2: Effect of various data perturbation schemes on a 3-second long ac-
celerometer segment from the REALWORLD HAR dataset.

target body positions, denoted by BS and BT , respectively. Between these two data
batches, there already exists domain shift induced by variations in the placement of
the IMU sensor. To introduce device-related heterogeneities in the data, we perturb
both BS and BT using the perturbation schemes described above. A perturbed batch
of data is finally concatenated with the original batch to generate an augmented data
batch. Let us denote the augmented data batches in source and target domains as
B′S and B′T respectively.

Adversarial Feature Learning. After constructing the augmented batches of data
containing both device and placement-induced heterogeneities in IMU data, we em-
ploy adversarial learning to extract domain-invariant feature representations from
the source and target domains. This is achieved by assigning a domain label to data
from each domain and training a domain discriminator, D, to classify whether a
sample is drawn from the source or the target domain. The optimization objective
of D can be written as:

min
D

LadvD =−Exs∼B′S [log(D(Finv(xs))]−Ext∼B′T [log(1−D(Finv(xt))] (5.1)

Here Finv is the domain-invariant feature extractor that we would like to learn. Finv

in initialized with the weights of the source feature encoder FS and its optimiza-
tion objective is opposite to that of the domain discriminator. More specifically,
Finv aims to confuse the domain discriminator by generating features that are invari-

5.3. Scaling HAR Models with Data-Augmented Adversarial Training 84

ant to source and target domains. This objective is shown in Equation 5.2 and is
implemented by inserting a Gradient Reversal Layer (GRL) [122] between the fea-
ture encoder and the discriminator. During backpropagation, the Gradient Reversal
Layer multiplies the gradients of the domain discriminator by a negative constant
(-1 in our case) and passes them to the feature encoder Finv to update its weights.

min
Finv

LadvF =−LadvD (5.2)

Looking at Equations 5.1 and 5.2, we can observe that the domain discriminator and
feature encoder are adversaries of each other, tasked with competing objectives:
while D aims to effectively discriminate data from the source and target domains,
Finv aims to learn domain-invariant features from the source and target data such
that D cannot distinguish them. They play this adversarial game of trying to defeat
the other, and in the process, both become better at their respective tasks. More im-
portantly, the feature extractor Finv becomes good at mapping samples from source
and target domain to a domain-invariant feature representation, thereby reducing
the domain shift.

Finally, to ensure that the features extracted by Finv remain meaningful for the goal
of HAR, we add the supervised cross-entropy loss to the overall optimization ob-
jective as follows:

min
Ginv,Finv

Ltask =−E(xs,ys)∼(B′S)

K

∑
k=1

1[k=ys] log(Ginv (Finv (xs))) (5.3)

where Ginv is the adapted classifier that maps the invariant feature representations
to the class labels. Ginv is initialized with the source domain classifier GS and is
optimized using the cross-entropy loss shown in Eq. 5.3.

Taken together, the overall optimization objective of our proposed solution can be
written as:

min
D

min
Finv
Ginv

Loptim = LadvD +αLadvF +βLtask

where α and β are hyperparameters that control the relative weight of each loss in
the adversarial training process.

5.4. Evaluation 85

5.4 Evaluation

In this section, we present an evaluation of our proposed approach.

5.4.1 Experiment Setup

We begin by describing the dataset and pre-processing operations done on the data.
We then proceed to discuss the architecture of the neural networks employed for the
HAR task.

Dataset. Similar to the quantification experiments in Chapter 3, we use the RE-
ALWORLD HAR dataset [1] for our experiments. This dataset contains IMU data
recorded from 15 participants performing 8 activities: climbing stairs down and
up, jumping, lying, standing, sitting, running/jogging, and walking. As shown in
Figure 3.4, each participant was instrumented with various IMU-equipped smart-
phones and smartwatches, attached to seven different body positions: head, chest,
upper arm, waist, forearm, thigh, and shin.

Data characteristics and pre-processing. The accelerometer and gyroscope traces
are segmented into time windows of 3 seconds, without any overlap. This window
length was chosen empirically to align with the duration of various human activities
in the dataset2. If a 3-second-long trace includes an activity transition, timestamp
noise, or data points without labels, the trace gets discarded. The whole dataset is
normalized to be in the range of -1 and 1. As shown in the IMU processing pipeline
in Figure 2.2, the accelerometer and gyroscope axis are stacked on top of each other
to create a 2-D representation of the time-series data. Finally, we use stratified
splitting to divide the dataset into two parts: training set (75%) and test set (25%).

Model Architecture. We design a convolutional neural network (CNN) model
based on the work by Hammerla et al. [79] and Almaslukh et al. [145]. The model
consists of two components: a feature extractor and a classifier. The feature ex-
tractor is a 6-layer deep CNN with temporal (1-D) convolutional layers. We use
LeakyReLU activations [146] with al pha = 0.3 and instance normalization [147]
layers between convolutional layers for faster convergence. We also employ dropout
regularization to avoid overfitting. The feature extractor takes as input a 3-second
frame of pre-processed IMU data from a given body position and outputs a 150-
dimensional feature vector. This feature vector is then passed as input to the clas-

2We also experimented with one and two second long windows, however, there was no significant
different in HAR model performance. Therefore, we decided to use three-second windows, because
longer windows reduce the frequency of ML model executions at inference time.

5.4. Evaluation 86

sifier, which consists of two fully-connected layers and generates a K dimensional
output where K is the number of activity classes (e.g., sitting, walking). For the
REALWORLD dataset, k = 8.

Our HAR architecture differs from [168, 145] in two ways. Firstly, all layers in the
feature extractor are convolutional layers. We replaced the traditional max-pooling
layers with convolutional layers with a large stride based on prior research [169],
which showed that this simple substitution can speed up the training process without
any significant loss in accuracy. Secondly, instead of flattening the outputs of the
final convolutional layer, we apply Global Average Pooling on them to obtain the
feature vector – this results in reducing the number of parameters to be learned and
avoids overfitting on the source data. A baseline result on REALWORLD dataset
(see table 3.4) shows that with this modified architecture, the HAR performance is
on par with [145] while having the advantage of smaller model size.

Training process and mini-batch generation for uDA. The source domain model
is trained by optimizing the categorical cross-entropy loss. We use a mini-batch
size of 64, which is chosen based on a hyperparameter search in {32,64,96,128}.
Further, we employ the Adam optimizer [148] with a learning rate 1e-3, which is
obtained by doing a hyperparameter search on {1e-2, 5e-2, 1e-3, 5e-3, 1e-4, 5e-
4}. For adversarial training, we follow the same methodology and got a batch
size of 32 and learning rates of 1e-3 and 1e-4 for the discriminator and feature
extractor, respectively. We use importance-weighted cross-validation [170, 171] to
select these hyper-parameters. The model is implemented in TensorFlow 2.0 and
trained on a NVIDIA Tesla V100 GPU.

5.4.2 Baselines

Our proposed solution is compared against four baseline approaches listed below:

• Source Only. This is the simplest baseline where an HAR model is trained on the
labeled source dataset and tested on the target domain test set without performing
any data augmentation or adversarial learning on it.

• Data Augmentation training. In this baseline, we apply the three proposed data
augmentation schemes on the labeled source data, and train a source domain
model on the augmented dataset. As shown in prior works in visual [172] and
speech recognition [173], data augmentation can improve the generalizability of
deep neural networks. As such, we evaluate how well does data augmentation
perform when scaling HAR models to new domains.

5.4. Evaluation 87

• Deep Domain Confusion (DDC). This is a uDA technique [119] to enforce invari-
ance between source and target feature representations by minimizing the Maxi-
mum Mean Discrepancy (MMD) between them. Although it has been primarily
studied for visual recognition tasks, it can be implemented for HAR by applying
the MMD loss on the outputs of the feature extractor Finv. Since DDC is not based
on adversarial learning, a domain discriminator is not needed. In addition to min-
imizing the MMD loss between source and target feature representations, we also
optimize the supervised task loss Ltask presented in Equation 5.3.

• Domain-Adversarial Neural Networks (DANN). This is the adversarial domain
adaptation approach [122], which is extended by our proposed solution. In this
baseline, no data augmentation is done on the source and target samples, and they
are directly fed into the adversarial training architecture.

5.4.3 Results

We now present our experimental findings on the REALWORLD dataset. Before
presenting in-depth results in the form of heatmaps, we explain how to read and
interpret them.

Interpreting the heatmaps. As shown in Figure 5.3, each heatmap is composed
of cells, and each cell denotes an experimental setting. The body position writ-
ten on the left of the cell indicates the source body position with a labeled dataset.
The body position written on the top of the cell indicates the target body position
with an unlabeled dataset. Each cell represents an experiment setting when a model
trained in the source domain is tested on data from target domain, under different
training and adaptation techniques. Delving deeper, each cell has two attributes.
First, the number inside the cell denotes the class-weighted F1 score obtained on
a test set from the target domain. Secondly, the color of each cell denotes the in-
crease/decrease in F1 score compared to the Source Only baseline (where no adap-
tation or augmentation is applied to the source prediction model). Cells colored
‘green’ illustrate that F1 score in the target domain increase due to adaptation or
augmentation, while a ‘pink’ colored cell demonstrates a decrease in the F1 score
over the Source Only baseline. The color intensity represents the magnitude of
change in the F1 score.

Adaptation Performance. In Figure 5.3a (diagonal cells), we report the perfor-
mance of HAR models when they are trained and tested on the same body position.
This represents the ideal scenario with no presence of domain shift; thereby, we ex-
pect high classification accuracies. For instance, a model trained on head and chest

5.4. Evaluation 88

head
chest

upperarm
forearm

waist
thigh

shin

head

chest

upperarm

forearm

waist

thigh

shin

0.85 0.52 0.50 0.22 0.19 0.48 0.39

0.41 0.92 0.45 0.28 0.33 0.49 0.35

0.29 0.38 0.85 0.23 0.22 0.48 0.54

0.12 0.11 0.11 0.83 0.26 0.11 0.09

0.29 0.37 0.11 0.25 0.93 0.30 0.27

0.37 0.39 0.40 0.12 0.22 0.92 0.37

0.18 0.32 0.35 0.13 0.28 0.26 0.86 −0.4

−0.2

0.0

0.2

0.4

F1 -score
(a) Source-Only

head
chest

upperarm
forearm

waist
thigh

shin

head

chest

upperarm

forearm

waist

thigh

shin

0.64 0.50 0.40 0.54 0.43 0.25

0.67 0.61 0.46 0.63 0.56 0.39

0.54 0.58 0.62 0.52 0.53 0.43

0.45 0.53 0.51 0.60 0.47 0.32

0.45 0.53 0.42 0.48 0.44 0.29

0.34 0.44 0.44 0.21 0.40 0.41

0.18 0.21 0.37 0.15 0.02 0.35 −0.4

−0.2

0.0

0.2

0.4

F1 -score

(b) Data Augmentation

head
chest

upperarm
forearm

waist
thigh

shin

head

chest

upperarm

forearm

waist

thigh

shin

0.70 0.63 0.55 0.56 0.63 0.56

0.66 0.63 0.58 0.73 0.62 0.53

0.45 0.66 0.43 0.50 0.57 0.55

0.49 0.55 0.52 0.59 0.46 0.44

0.56 0.67 0.57 0.47 0.51 0.49

0.59 0.61 0.55 0.44 0.64 0.55

0.22 0.32 0.62 0.42 0.29 0.54 −0.4

−0.2

0.0

0.2

0.4

F1 -score

(c) Deep Domain Confusion (DDC)

head
chest

upperarm
forearm

waist
thigh

shin

head

chest

upperarm

forearm

waist

thigh

shin

0.68 0.60 0.40 0.66 0.63 0.55

0.63 0.55 0.50 0.72 0.57 0.57

0.49 0.66 0.33 0.41 0.59 0.62

0.42 0.55 0.32 0.56 0.40 0.37

0.35 0.67 0.46 0.44 0.60 0.43

0.55 0.57 0.56 0.41 0.63 0.56

0.41 0.60 0.58 0.49 0.24 0.56 −0.4

−0.2

0.0

0.2

0.4

F1 -score

(d) Domain-Adversarial Neural Networks
(DANN)

head
chest

upperarm
forearm

waist
thigh

shin

head

chest

upperarm

forearm

waist

thigh

shin

0.74 0.65 0.54 0.74 0.67 0.59

0.69 0.66 0.57 0.77 0.64 0.61

0.58 0.70 0.52 0.65 0.62 0.68

0.54 0.60 0.53 0.67 0.49 0.51

0.62 0.72 0.54 0.54 0.65 0.51

0.66 0.63 0.64 0.56 0.68 0.64

0.44 0.64 0.62 0.49 0.54 0.59 −0.4

−0.2

0.0

0.2

0.4

F1 -score

(e) Our proposed solution: Data-Augmented Adversar-
ial Learning

Figure 5.3: Performance (F1 scores) of HAR classifiers trained and tested on data
from different body positions with various training approaches. Our
proposed approach of data-augmented adversarial training outperforms
other baselines in 41 out of the 42 experiment conditions.

5.4. Evaluation 89

provide F1 scores of 0.85 and 0.92 when tested on the same body position on which
they were trained.

Further, Figure 5.3a (non-diagonal cells) shows the performance of an HAR model
trained and tested on different body positions. We can observe a significant per-
formance drop across all pairs of source-target body positions, e.g., when the
source=‘head’ and target=‘forearm’, the F1 score drops to just 0.22. There are how-
ever some pairs of body positions for which the performance drop was low, e.g.,
in the ‘head’→ ‘upperarm’ and ‘head’→ ‘chest’ experiments, the performance drop
was significantly lower than ‘head’→ ‘forearm’. Intuitively, this can be explained
by the fact that inertial data captured by forearm-worn sensors is significantly im-
pacted by rotation of the elbow joint, thereby resulting in higher domain shift from
the source body position ‘head’.

Further, in Figures 5.3b-5.3d, we show the performance of the baseline training
strategies, namely Data Augmentation, DDC, and DANN. Finally, Figure 5.3e re-
ports the performance of our proposed technique of Data-Augmented Adversarial
Learning. We observe that our approach outperforms all other baselines in 41 out
of the 42 experiment condition. For the waist→ upperarm experiment, DDC pro-
vides a slightly higher performance over our technique. As an example, for the
‘chest’→ ‘waist’ experiment, our approach improves the target domain F1 score
from 0.33 to 0.77.

Visualizing the feature representations. In Figure 5.4, we show the t-SNE [174]
visualizations of the feature representations (output of the feature extractor) ob-
tained by different training approaches for the waist→ chest experiment. For this
purpose, we ran t-SNE for 5000 iterations with a perplexity of 35 on the features
extracted from the test set of source and target body positions. In Figure 5.4a, we
observe that the feature representations of the source and target data obtained under
the Source-Only model (i.e., the model only trained with source domain data) are
easily separable, which reflects the presence of domain shift in the data. In con-
trast, our proposed solution (Figure 5.4e) forces a significantly higher overlap in the
source and target feature representations, which confirms that using data-augmented
adversarial training, we are able to extract domain-invariant features from the data.

Mismatch in Class Distributions. Although the collection of unlabeled physi-
cal activity data (e.g., when the user is running, walking) in the target domain is
relatively cheaper, it is important to note that we have little control over the class
distribution in the unlabeled data. That is, we do not know beforehand the propor-
tion of different activity classes in the unlabeled target data. Hence, it is important

5.4. Evaluation 90

(a) Source-Only (b) Data Augmentation

(c) Deep Domain Confusion (DDC) (d) Domain-Adversarial Neural Net-
works (DANN)

(e) Our Proposed Solution

Figure 5.4: t-SNE visualizations of the feature embeddings generated by different
training approaches for the waist→ chest experiment.

to evaluate how well does our proposed technique work under class distribution
mismatch between source and target domains.

For this purpose, we simulate various scenarios of class distribution mismatch.
Since the source domain in labeled, we know its class distribution. Based on
this knowledge, we can select target domain data to have different degrees of

5.4. Evaluation 91

0.0 0.1 0.2 0.3 0.4 0.5
0.40

0.50

0.60

0.70

0.80

Ta
rg

et
 F

1 s
co

re

Ours DDC DANN

Figure 5.5: Effect of varying the mismatch in class distributions on target domain
performance in the head→ thigh experiment.

mismatch with the source class distribution. We introduce a parameter η =

{0.0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5} to represent this mismatch –
when η = 0.0, unlabeled target data has the same class distribution as the source do-
main. On the other hand, when η > 0, e.g., η = 0.05 we introduce a 5% mismatch
in the number of samples for each class between source and target domains. This
is achieved by under-sampling data from the dynamic activity classes (climbing
up/down, jumping, running) and oversampling data from the static activity classes
(standing, sitting, lying) in the target domain. The motivation behind this approach
is that HAR systems in practice would encounter a higher proportion of static activ-
ities than dynamic activities for an average user; as such, we decide to increase the
proportion of static activities in the target domain.

Figure 5.5 shows the effect of varying η on the F1 score in the target domain. As we
can observe, our proposed technique can withstand small shifts in the class distribu-
tions, however for extreme cases (e.g., η = 0.5), there is a significant degradation
in performance.

How much unlabeled data is needed in the target domain? Next, we study the
effect of changing the amount of unlabeled data available in the target domain on
the performance of various adaptation algorithms. For this study, we choose head→
thigh experiment as a representative adaptation setting and gradually increase the
unlabeled data available in the target domain (i.e., thigh). The class distribution in
the target domain remains the same as that in the source domain for this experiment.

In Figure 5.6, we plot the F1 score obtained post-adaptation in the target domain as
we vary the count of unlabeled samples from 100 to 900. For reference, we also

5.5. Discussion and Limitations 92

0 100 300 500 700 900
Count of unlabeled target samples

0.40

0.50

0.60

0.70

0.80

Ta
rg

et
 F

1 s
co

re

Ours DDC DANN

Figure 5.6: Effect of changing the size of unlabeled dataset in the target domain on
adaptation performance in the head→ thigh experiment.

show the count = 0 setting, which reflects the performance of the ‘head’ prediction
model in the ‘thigh’ domain without any adaptation. In this case, we obtain a F1

score of 0.48 in the target domain.

Interestingly, we find that all adaptation algorithms reach close to their best perfor-
mance with less than 300 samples. For example, our proposed approach achieves
an F1 score of 0.655 with just 100 samples from the target domain. Recall that each
sample in our dataset represents a 3-second IMU segment – therefore, another way
to interpret this result is that by performing data-augmented adversarial training on
just 300 seconds of unlabeled data collected from ‘thigh’, we can increase the F1

score of the ‘head’ classifier from 0.48 to 0.655.

5.5 Discussion and Limitations

In this section, we discuss the limitations of this work and highlight avenues for
future research.

Limited exploration of model architectures. Our investigation of unsupervised
domain adaptation for HAR systems was limited to a single model architecture.
That said, our model architecture has shown on-par performance compared to the
state-of-art HAR models [145], and hence, it was a reasonable choice for our study.
However, we are cognizant that new neural network architectures are being pro-
posed for HAR [81] and it is be important to explore how well the adaptation ap-
proach presented in this chapter can work with them.

Addressing Class Distribution Mismatch. We demonstrated that our approach

5.6. Summary 93

can withstand low mismatches in the class distribution between domains, however
as the mismatch becomes bigger (e.g., η = 0.5), the performance of adaptation
degrades. This challenge is also known as ‘target shift’ across domains, and there
have been recent works [175, 176, 177] on correcting target shift during adaptation,
which could be tested in the context of HAR systems.

Usable HAR systems. Although our proposed approach provides significant per-
formance gains over the Source-only as well as other baselines, the F1 score in the
target domain after performing domain adaptation remains under 0.8 for all exper-
imental conditions. Clearly, there is a need for more research to further improve
the performance to make adapted HAR systems usable in practice. One potential
approach worth investigating is semi-supervised domain adaptation [178], wherein
a small amount of labeled data is collected in the target domain and is used during
the adaptation process.

Extending to other sensor modalities. Although we evaluated our proposed ap-
proach of data-augmented adversarial training in the context of HAR models, it
could be potentially extended for the microphone-heterogeneity challenge studied
in Chapter 4. In a recent work, Park et al. proposed SpecAugment [173], which is an
approach to augment speech datasets by adding time-domain and frequency-domain
perturbations in the speech spectrograms. Since one of the major causes of domain
shift in speech data is the variations in frequency responses of microphones, this ap-
proach can potentially simulate different microphone behaviors by masking certain
frequency bands. Further, the augmented spectrograms from source and target do-
mains could be used for adversarial training to adapt the weights of a source domain
prediction model in order to improve its performance on a target microphone.

5.6 Summary

In this chapter, we proposed an unsupervised domain adaptation solution to scale
transparent ML systems. The solution was proposed in the context of HAR models
and aimed to counter the domain shifts caused by heterogeneities in sensor hard-
ware, software stack, and sensor placements. We employed data augmentation to
first systematically introduce realistic perturbations in the inertial sensor data, that
are expected to occur due to hardware and software factors. After obtaining the aug-
mented dataset, we performed adversarial training to adapt the weights of the fea-
ture extractor and encourage it to extract domain-invariant features from the inertial
data. Through an evaluation on the REALWORLD HAR dataset, we demonstrated
that our proposed approach effectively reduces the domain shift in the feature space

5.6. Summary 94

and improves the performance of HAR models in the target domain while outper-
forming several baseline uDA techniques. We also discussed how the proposed
solution could be extended to other sensor modalities such as speech.

One key assumption that adversarial uDA techniques make is that the label space
of the source and target domains are identical. In the next chapter, we discuss
why this assumption can be easily violated in practical ML systems and propose
an adaptation solution that extends adversarial uDA techniques to target domains
which do not have identical label space to the source domain.

Chapter 6

Domain Adaptation Under Label
Space Mismatch

In Chapter 5, we presented an adversarial domain adaptation approach to counter
the adverse effects of domain shift in ML systems. This solution assumed that the
input and label spaces of source and target domains are identical, i.e., XS =XT and
YS = YT . However, in practice, this assumption may not hold. Below we discuss
two other problem settings in which the unsupervised domain adaptation can be
studied, and then highlight the goal of this chapter.

• Source and target domains share the same label space but have different input
spaces i.e., YS = YT , XS 6= XT

This setting is referred to as heterogeneous domain adaptation in the literature and
is often studied when the data modality or input features differ between source and
target domains. For example, Chen at al. [179] and Li et al. [180] trained vision
models on RGB-D data (i.e., RGB images with depth information) captured from
devices such as Microsoft Kinect (source domain). They investigated the adapta-
tion of these models to RGB target domains where the depth information is not
available. Since the feature spaces of the two domains are different, it becomes a
problem of heterogeneous domain adaptation. Yao et al. [181] studied even more
challenging tasks such as adapting from a textual source domain to a visual target
domain.

Although these settings are interesting and challenging, we argue that they are less
likely to manifest in the problems studied in this thesis. As our aim is to scale ML
systems under the presence of sensor-induced heterogeneities, it is reasonable
to assume that the input spaces of source and target domains are identical, and
only the underlying distribution p(x,y) changes. Hence, the problem setting of
heterogeneous domain adaptation is out of the scope of this thesis.

6.1. Problem Setting 96

Figure 6.1: (a) Identical and (b) Mismatched Label Spaces in source and target
Domains. The latter scenario is likely in practical ML systems and is
the focus of this chapter.

• Source and target domains share the same input space, but different label spaces
i.e., XS = XT , YS 6= YT

This is a practical setting that we study in this chapter. The adversarial uDA so-
lution presented in Chapter 5 assumed that the label spaces between the domains
are identical. However, during the deployment of an ML system, it is infeasible to
enforce this assumption because we have no control on the classes or labels that
will be encountered in the target domain. Instead, a more practical uDA setting
is when the label spaces YS and YT only partially overlap. This setting is also
relatively less explored in the context of adversarial uDA algorithms, and hence
is the focus of this chapter. In the next section, we further motivate this problem
setting and explain the technical challenges associated with it.

6.1 Problem Setting

Consider a scenario where a model developer has a labeled dataset of spoken key-
words (e.g., Siri, Alexa) from a ReSpeaker microphone (source domain), and they
train a Spoken Keyword Detection model using supervised learning. Now, they
wish to deploy this model in an ML system with a Matrix Voice microphone (target
domain) from which only unlabeled data is available. The microphone variability
here is an example of domain shift, which may cause degrade the model perfor-
mance in the target domain. As we showed in the previous chapters, one can em-
ploy adversarial uDA techniques to adapt the source model to the unlabeled target
domain.

At their core, adversarial uDA techniques counter domain shift by aligning feature
representations of the source and target domains. However, in doing so, they make

6.1. Problem Setting 97

a strong assumption that the label spaces of the source and target domains are
identical – in the example above, this would mean that the keyword classes (e.g.,
Siri, Alexa) must be identical in both source and target datasets (Figure 6.1(a)).
However, in a practical ML system where the data in the target domain is collected
without any associated labels, it is impossible to guarantee that the target keyword
classes (or the target label space) will be identical to the source keyword classes.
For instance, users in the target domain may speak a keyword that is not at all
represented in the source dataset. As demonstrated in Fig 6.1(b), a more realistic
situation is that the source dataset may contain some keyword classes that are not
represented in the target dataset (e.g., Siri, Cortana) and vice versa (e.g., Bye, Stop).
We refer to these classes as private classes.

This generalized problem setting raises two challenges:

a) Mitigating negative transfer. Prior research has shown that the presence of pri-
vate classes in the dataset can lead to negative transfer [182] in adaptation, whereby
the adapted classifier performs even worse than a classifier trained solely on the
source domain. Note that under a uDA setting, as we have no knowledge of target
labels, it is impossible to know a priori which classes are private in the target do-
main or the source domain. Therefore, we need a data-driven solution to identify
the shared classes and perform adaptation only between them, while minimizing
any negative transfer from private classes.

b) Labeling private target data as ‘unknown’. After undergoing adaptation, when
the classifier is deployed in the target domain, it will encounter target data from
shared classes (e.g., Alexa) and private classes (e.g., Stop, Bye). While the classifier
can provide labels for the shared class data, it has no knowledge of private class
labels (recall that the target domain is unlabeled) – hence, ideally private target data
should be classified as ‘unknown’. However, prior work shows that neural networks
tend to output high confidence predictions even for irrelevant or unrecognizable
inputs [183, 40, 184]. This, in turn, means that private target instances may get
incorrectly labeled as belonging to one of the source classes.

With the goal of addressing these two challenges, we present a solution named
Adaptation under Mismatched Label Spaces (AMLS) wherein our key contribu-
tion is in proposing a weighting scheme to down-weigh the contribution of private
classes and enhance that of the shared classes in the adaptation process to counter
negative transfer. At the same time, AMLS can identify private target classes and
classify them as ‘Unknown’.

6.2. Background and Related Work 98

6.2 Background and Related Work

In this section, we review some prior works which have studied the relationship
between label spaces and adversarial domain adaptation algorithms. Based on the
assumptions made about the label spaces in both domains, these uDA works could
be categorized in four buckets:

Closed-set Adaptation. This is the most common uDA setting in the literature
(illustrated in Figure 6.1(a)) and places the strongest assumption that label spaces
of source and target domains should be identical. Many of the well-known uDA
techniques in the literature have been proposed under this assumption [123, 122,
126, 127, 128].

Partial Adaptation. In this setting, the label space of the target domain is as-
sumed to be a subset of the source label space. This is a plausible scenario when
a source model trained on a large-scale labeled dataset (e.g., ImageNet [21] with
1000 classes) has to be adapted for a smaller unlabeled target domain (e.g., one
containing images of pet animals from 10 ImageNet classes). In this case, private
classes are present in the source domain, and previous works have shown that data
from private source classes can degrade the adaptation performance of uDA algo-
rithms, leading to negative transfer [182]. To address this problem, Cao et al. [185]
proposed to split the adversarial domain discriminator into multiple discriminators
(one per source class) and replace the single discriminator loss with a weighted loss
across all discriminators. The core idea behind the solution was to downweigh the
contribution of discriminators belonging to private source classes in the adversar-
ial adaptation process. Zhang et al. [186] also proposed an importance weighting
solution that assigns importance weights to each source sample using an auxiliary
domain discriminator. Further, Cao et al. [187] utilized the outputs of the label pre-
dictor to obtain class weights and used them to reweigh the contribution of different
source samples in adaptation.

Open-set Adaptation. This setting is the opposite of Partial Adaptation discussed
above; here, the target label space is assumed to contain private classes that are not
represented in the source label space. From the perspective of deploying ML sys-
tems, this is also a realistic setting because we cannot put constraints on the type (or
class) of data that would be encountered in the target domain. The goal of open-set
adaptation is to correctly transfer knowledge from the source to the target domain
in the shared classes and to classify the data from private target classes as ‘Un-
known‘. To this end, Saito et al. [188] proposed adding an ‘Unknown’ class to the

6.3. Adaptation under Mismatched Label Spaces (AMLS) 99

source domain classifier and training it during adversarial learning against a feature
extractor. Liu et al. [189] proposed a more general approach of progressive sepa-
ration wherein multiple binary classifiers are used to first compute the probability
of a target sample belonging to one of the source classes. The probability outputs
are interpreted as similarity scores between a target sample and a source class, and
a second level of ‘fine-grained’ binary classification is applied to separate samples
with the highest and lowest similarity scores. The outputs of the second classifier
are taken as importance weights for target samples during adaptation.

Universal Adaptation. The most realistic setting which places no assumption on
the overlap of label spaces is known as Universal Adaptation. This is the scenario
that is studied in this chapter, and here both source and target domains are allowed to
have private classes. Indeed, as we discussed earlier, this aligns with the goal of this
thesis of scaling ML systems to unconstrained settings, where we have no labeled
data and no control over the target label space YT . A recent work in this space is by
You et al. [190] who proposed an end-to-end architecture, called Universal Adap-
tation Network (UAN), which combines prediction entropy and domain similarity
into a common metric to separate shared and private classes. UAN was evaluated on
a number of visual adaptation tasks and showed significant performance gains over
the baseline methods. The work in this chapter builds on UAN (which we use as a
baseline in the experiments), and we show that our proposed solution can achieve
performance improvements over UAN in multiple speech classification tasks.

6.3 Adaptation under Mismatched Label Spaces
(AMLS)

In this section, we formally introduce the notations and problem setting of Universal
Adaptation, and then present our solution, AMLS, for extending adversarial uDA
algorithms to this problem setting.

6.3.1 Notations

We are given a source domain with input samples XS and labels YS, and a target
domain with input samples XT . No labels are available in the target domain. Let
p(x) and q(x) denote the empirical distributions defined by XS and XT respectively.
For ease of readability, we omit the random variable x in the notations and refer the
marginal data distributions as simply p and q.

We denote the label sets of the source and target domains as CS and CT respec-

6.3. Adaptation under Mismatched Label Spaces (AMLS) 100

tively. The set of classes shared between source and target domains are denoted by
Cshared =CS∩CT . Finally, CS = CS \CT and CT = CT \CS represent the private label
sets of the source and the target domains. Let p∩ and p∗ respectively denote the
empirical distributions of source data with label sets Cshared and CS. Let q∩ and q∗
respectively denote the empirical distributions of target data with label sets Cshared

and CT .

It is worth reiterating that since we have no knowledge of the target labels during
training, it is not possible to know CT , Cshared, CS or CT a priori, as they all depend
on the knowledge of target label set.

6.3.2 Challenges for Adversarial uDA

In the Universal Adaptation setting, the overall goal of an adversarial uDA algo-
rithm remains the same: how to adapt a model trained in the source domain such
that it can achieve good inference performance in the target domain. In the closed-
set adaptation setting, adversarial uDA algorithms [123, 122, 126, 127, 128] achieve
this goal by aligning feature representations of the source and target domains, using
feedback from a discriminator neural network. However, due to the presence of
private classes in the Universal Adaptation problem, there is data in the source do-
main (i.e. belonging to CS) and the target domain (i.e., belonging to CT) for which
no natural feature alignment is possible. Since the uDA algorithms designed for
the closed-set setting do not consider label space mismatch, they may attempt to
align the data from private classes and cause negative transfer [182] in adaptation.
Hence, we need a solution that can identify the shared classes in both domains and
only perform adaptation between them.

Further, when we deploy the adapted model in the target domain, it will encounter
target data from both Cshared and CT . While a well-trained domain adaptation so-
lution can ensure that the target data from shared classes is correctly classified, it
cannot provide any labels for data from the private target classes (CT). Hence, we
need a solution that can classify data from CT as ‘Unknown’.

In summary, the goal in universal adaptation is to learn a classifier for the target
domain which: (i) provides accurate inferences for target data from shared classes
Cshared under the presence of domain shift, (ii) mitigates the negative transfer caused
by private classes CS and CT in the adaptation process, and (iii) assigns an ‘Un-
known’ label to data instances from the private target classes CT .

6.3. Adaptation under Mismatched Label Spaces (AMLS) 101

Figure 6.2: Architecture of AMLS. Solid boxes represent neural network compo-
nents and circles denote various losses that are optimized.

6.3.3 Solution Overview

We propose AMLS, an end-to-end architecture for uDA under the presence of label
space mismatch. As discussed, the core challenge here comes from the presence of
private classes in both domains, which may lead to negative transfer. Intuitively,
this negative transfer can be mitigated if we can isolate the shared classes Cshared

and only align their feature representations, while ignoring or down-weighing the
contribution of the data from private classes during adaptation.

Figure 6.2 illustrates the proposed architecture for AMLS. Similar to prior works
on adversarial domain adaptation, this solution consists of a feature extractor F , a
classifier G and an adversarial discriminator Dadv. When an input x is fed to this
architecture, a feature representation z = F(x) is obtained. The extracted features
are then passed to G to obtain a softmax probability distribution ŷ = G(z) over the
source labels CS. The classifier G is trained on labeled source data by optimizing a
supervised cross-entropy loss as follows:

Lcls =−E(xs,ys)∼(XS,YS)

|CS|

∑
k=1

1[k=ys][log(G(F(xs))] (6.1)

Next, the task of aligning feature representations of source and target domains
is performed by Dadv using adversarial learning. In closed-set adaptation, Dadv

would align the representations over the entire label space, however, this can lead
to negative transfer due to the presence of private classes. One way to mitigate
this challenge is to force Dadv to give higher importance (or weights) to the shared
classes in the feature alignment process as compared to the private classes. Thus,
the (weighted) adversarial loss formulation for Dadv could be written as:

Ladv = −Exs∼p[δ
S(xs) log(Dadv(F(xs))]− Ext∼q[δ

T (xt) log(1−Dadv(F(xt))]

(6.2)

6.3. Adaptation under Mismatched Label Spaces (AMLS) 102

where δ S and δ T are the weights to be assigned to a source and target sample respec-
tively in the adaptation process. Ideally, we would like to assign higher weights to
samples from shared classes and lower weights to private samples. Formally, these
criteria could be written as:

0≤ Exs∼p∗δ
S(xs)< Exs∼p∩δ

S(xs)≤ 1 (6.3)
0≤ Ext∼q∗δ

T (xt)< Ext∼q∩δ
T (xt)≤ 1 (6.4)

6.3.4 AMLS: Weighting Schemes

One of the key contribution and technical novelty of this work is in proposing a
technique to estimate δ S and δ T that satisfy Equations 6.3 and 6.4. Below we
describe the two weighting schemes.

Estimating Target Weights. When an input sample xt from target domain is fed to
the classifier G, we get a probability distribution over the source class set CS in the
form of softmax outputs.

ŷt = G(F(xt))

We argue that the classifier G will be more confident in its predictions ŷt for inputs
from the shared classes Cshared as compared to those from the private classes CT .
This is a reasonable hypothesis because despite the presence of domain shift, classes
in Cshared are likely to be closer to the source domain as compared to the private
classes CT . Hence, any measure of prediction confidence that satisfy Equation 6.4
could be used as a weighting function to separate Cshared and CT .

We propose to employ prediction margins as the criterion for classifier confidence.
Prediction margins have been prominently used in active learning [191] to sample
data instances for which a classifier is least confident. Formally, Margin M is de-
fined as M(xt) = ŷ1

t − ŷ2
t , where ŷ1

t and ŷ2
t represent the highest and second-highest

softmax outputs in ŷt . When a classifier has high confidence about its top predic-
tion, M will be high. On the contrary, for a data sample for which a classifier is less
confident, M, i.e., the difference between the top two softmax outputs will be low.
Equation 6.5 follows from this logic.

0≤ Ext∼q∗M(xt)< Ext∼q∩M(xt)≤ 1 (6.5)

It is easy to observe that the use of prediction margins satisfies the target weighting
criterion in Eq. 6.4. However, due to the presence of domain shift, the margins

6.3. Adaptation under Mismatched Label Spaces (AMLS) 103

obtained on target data could be noisy and may lead to incorrect weights for target
samples.

As such, in addition to the prediction margins, we also propose to employ a separate
non-adversarial domain discriminator to provide an additional signal about private
and shared target classes. First, the non-adversarial domain discriminator D0 is
trained to separate samples from source and target domains. This can be achieved
in the form of a binary classification task, where we assign label=1 to the source
data and label=0 to the target data, and train the discriminator by optimizing the
Binary Cross-Entropy loss as shown below.

min
D0

Exs∼p [LBCE (D0 (F(xs)) ,1)]+Ext∼q [LBCE (D0 (F(xt)) ,0)]

Once D0 is trained, we feed the unlabeled target samples to it and obtain the proba-
bility that they belong to the source domain. We can expect that D0 would output a
higher probability for samples from the shared target classes (Cshared) as they have
more similarity with the source domain. On the other hand, lower probabilities are
expected for samples from private target classes (CT) which have no overlap with
the source domain. Therefore, the following should hold true.

0≤ Ext∼q∗ [D0(xt) = 1]< Ext∼q∩ [D0(xt) = 1]≤ 1 (6.6)

The use of both margin and domain discriminator signals to estimate target weights
can offset any noise in one of the measurements; as such, we propose to calculate
target weights as,

δ
T (xt) = 0.5∗ (M(xt)+ [D0(xt) = 1]) (6.7)

which indeed satisfies the target weighting criterion shown in Eq. 6.4.

Estimating Source Weights. As shown in Eq. 6.3, the goal of weighting source
samples is to assign higher weights to samples from shared classes and lower
weights to samples from private source classes during the adaptation process.

To estimate the source weights, we leverage an interesting property of ŷt =

G(F(xt)). Recall that ŷt is a probability distribution over the source label space
CS, denoting the probability of a target sample xt belonging to different classes in
the source set CS. We hypothesize that source classes (Cshared) which are shared
with the target domain will be given higher probabilities in ŷt and the private source
classes CS will have lower probabilities. This is reasonable because target data xt

has no overlap with private source classes; hence the classifier should estimate low

6.3. Adaptation under Mismatched Label Spaces (AMLS) 104

probabilities for CS. Thus, by observing the output probability distribution over
source classes, we can potentially distinguish shared and private source classes and
assign appropriate weights to them.

However, due to the presence of samples from private target classes, these class
probabilities could be noisy. To address this, we use the target weights δ T to first
weight the class probabilities obtained for each target sample xt, and then average
the weighted class probabilities over an entire batch B of data to obtain the mean
class probability vector η .

η =
1
|B|

|B|

∑
i=1

G(F(xi
t))∗δ

T (xi
t) (6.8)

where δ T (xi
t) is the weight assigned to the ith target sample xi

t in the batch. Effec-
tively, η could be interpreted as a |CS|-dimensional vector, where ηk reflects the
weight of the kth source class in a given batch of data (k ∈ {1,2, . . . , |CS|}).

Given η , we set the weight of a labeled source sample (xs,ys) as follows:
δ

S(xs) = η
ys

and expect that under this weighting scheme, samples from shared source classes
will be assigned higher weights than samples from private source classes.

6.3.5 AMLS: Training and Inference Pipelines

We now explain the end-to-end training pipeline of AMLS. As with other adver-
sarial training architectures, AMLS jointly optimizes the classification loss on the
labeled source domain Lcls along with the weighted adversarial loss Ladv shown in
Equation 6.2 where the source weights δ S and target weights δ T are calculated as
described above.

In addition, we also propose to generate pseudo labels [192] for the target data and
use supervised learning to further refine the classifier for use in target domain. For
a given unlabeled target sample, a pseudo label can be generated by choosing the
class c∈CS which has the maximum predicted probability by the classifier G. While
pseudo-labels have been previously used for closed-set domain adaptation [193], it
is challenging to use them in the presence of private classes in the target domain
(CT). Since CT has no overlap with the source domain classes CS, the pseduo la-
bels generated for samples from CT will be incorrect; more critically, supervised
training with incorrect pseudo labels may adversely impact the adaptation perfor-
mance. To alleviate this challenge, we can leverage the target weights δ T that were
estimated earlier and only perform pseudo-label based supervised training on target
samples whose weights are above a certain threshold δp. Formally, the pseudo label

6.4. Experiment Setup 105

classification loss can be expressed as follows:

Lpseudo =−Ext∼q

[
1[δ T (xt)>δp].

K

∑
k=1

1[k=argmax(ŷt)][log(ŷt)]

]
Putting them together, the combined optimization objective of AMLS is:

min
Dadv

min
F,G

Lcls +λLpseudo−Ladv

where λ is a hyperparameter to control the contribution of pesudo-label classifica-
tion loss during adaptation.

Inference Pipeline. Given a target sample xt, we first compute its weight δ T (xt).
If the weight is below a threshold δ0, it is likely that this sample belongs to a private
class and we label it as ‘Unknown’. Otherwise, we compute ŷt = G(F(xt)) and
output argmax(ŷt) as its label. Note that δ0 and δp are hyperparameters that are
tuned using cross-validation.

6.4 Experiment Setup

In this section, we describe the experimental setup used to evaluate AMLS, includ-
ing the speech datasets, label space splittings, neural architectures, and baselines.

6.4.1 Tasks and Datasets

AMLS is evaluated on three speech classification tasks where we simulate label
space mismatch by dividing the classes across the source and target domains.

• Microphone Adaptation: For this task, we use the Multi-microphone Spoken
Keywords dataset presented in Chapter 3. This dataset has 65,000 spoken key-
word recordings from 31 classes simultaneously recorded on three microphones,
namely Matrix Voice (M), ReSpeaker (R) and USB (U). Each microphone rep-
resents a domain, and the task is to adapt a keyword detection model trained on
a source microphone to a target microphone. We show results for M→R, R→U,
and U→M adaptation tasks.

• Gender Adaptation: Next, we study cross-gender adaptation in a Keyword Clas-
sification model. For this experiment, we use the Spoken Keywords dataset [140]
from Google, which consists of >100k speech utterances from 35 keyword
classes (e.g., Yes, Right). We partitioned this dataset based on the speaker’s gen-

6.4. Experiment Setup 106

der, which was obtained through a crowd-sourced gender-labeling exercise that
we ran on Amazon Mechanical Turk. The partitions, Male (M) and Female(F)
represent different domains, and we show results for M→F and F→M adapta-
tion.

• Emotion Dataset Adaptation: Finally, we evaluate a challenging task of adapt-
ing a speech emotion classification model trained on a source dataset (CREMA-
D [194]) to a target dataset (RAVDESS [156]). While CREMA-D dataset contains
emotional speech recordings of 91 different users with varying ethnicity and ages
(20-69 years), RAVDESS contains speech recordings from 24 young users based
in Toronto, Canada (age range 21-33). In addition to the demographic differences
between users, the recording environments used for the data collection study are
also different and could induce domain shift between the datasets, thereby making
it a challenging domain adaptation task. Both datasets contain emotional speech
from six classes: Anger, Disgust, Fear, Happy, Neutral/Calm, and Sad; in ad-
dition, RAVDESS contains an additional class called Surprise. We consider the
datasets as different domains and evaluate the CREMA-D→RAVDESS task.

6.4.2 Experiment Protocol

In order to evaluate AMLS under label space mismatch, we partition the label space
of the various datasets across source and target domains.

For the Gender Adaptation task on the Spoken Keywords dataset, we assign a
class number to each keyword class as per the alphabetical order, e.g., the first
class in the alphabetical order is assigned label=‘1’ and so on. Thereafter, we
randomly sample 20 classes from the complete label set without replacement
and consider them as source classes CS. The remaining 15 classes are consid-
ered as private target classes CT . Next, we randomly sample 10 classes from
CS and consider them as the shared classes Cshared between source and target do-
mains. Based on this partitioning, we obtain CS = {33,3,7,8,10,14,20,21,23,26},
Cshared = {4,5,9,11,12,15,17,24,27,28} and remaining classes are in CT .

For Microphone Adaptation, we use a similar scheme of partitioning the label space
and obtain CS = {1,3,5,9,10,11,12,22,25,28}, Cshared = {6,8,14,16,21,23,24,27,
29,30} and remaining classes are in CT .

For Emotion Adaptation with 7 classes, we use Cshared = {Calm, Angry, Fear}, CS =

{Happy, Sad} and CT = {Disgust, Surprise}.

6.5. Results 107

Baselines. AMLS is compared with four baselines: i) Source Only where the target
data is fed to the source domain model, without adaptation, ii) ADDA [123], iii)
DANN [122] and iv) UAN [190]. ADDA and DANN are well-known adversarial
uDA techniques, but do not consider label space mismatch – hence, they serve as
representative baselines for existing speech uDA works. UAN is designed for vision
tasks to handle label space mismatch and hence is an appropriate state-of-the-art
baseline for universal adaptation.

Model Architectures. In line with prior works [69, 28], we use convolutional neu-
ral networks (CNNs) to build the Keyword Classification (KC) and Emotion Clas-
sification (EC) models. The inputs to these models are two-dimensional tensors ex-
tracted from speech utterances, consisting of time frames on one axis and 40 MFCC
features on the other axis. The architectures are as follows: for KC, feature extractor
F : [Conv: {64,64,64}], classifier G: [FC: {256, 128}] where Conv represents the
number of convolution kernels in each layer and FC denotes the number of units in
each hidden layer. For EC, feature extractor F : [Conv: {128, 64,64,64}], classifier
G: [FC: {256, 128}]. The architecture for Dadv and D0 is [FC: {128, 128}]. We
use importance-weighted cross-validation [170, 171] to select the hyper-parameters
and our system is implemented in TensorFlow 2.0.

Evaluation Protocol. We follow the same evaluation protocol as earlier uDA
works: 80% of the unlabeled data from the target domain is used during adver-
sarial training, and the adapted model is tested on a 20% held-out target test set. All
the data samples from private target classes are assigned a common ground truth of
‘Unknown’, and we report the mean accuracy across all |Cshared|+1 target classes.

6.5 Results

In this section, we present the results of our experiments.

Target Domain Performance. In Table 6.1, we report the target test accuracy for
various adaptation tasks averaged over shared and private classes. When adapting
a keyword model trained on Male speakers to Female speakers (M→F) and vice-
versa (F→M), we observe that the accuracy of ADDA and DANN is similar or even
lower than the Source-only baseline, hinting to the occurrence of negative trans-
fer. Both UAN and AMLS significantly boost the target performance, with AMLS
providing accuracy gains between 3-7% over UAN. We observe similar trends for
the microphone and emotion adaptation tasks, with AMLS outperforming UAN by
1.5-3%.

6.5. Results 108

Gender
Adaptation

Microphone
Adaptation

Emotion
Adaptation

M→ F F→M M→ R R→ U U→M C→ R
Source 41.41±0.16 35.04±0.33 40.11±0.39 40.93±0.22 42.44±0.18 35.2±0.12

ADDA 41.54±0.77 28.90±1.06 39.21±0.50 39.05±0.61 39.29±1.13 30.0±0.23

DANN 40.13±0.70 29.85±0.70 40.19±0.63 41.20±0.34 42.33±0.83 28.18±0.21

UAN 66.13±0.53 60.82±0.44 66.30±0.58 67.22±0.65 67.20±0.47 38.96±0.40

AMLS w/o
Lpseudo

67.32±0.60 62.29±0.43 66.48±0.34 66.62±0.45 67.29±0.51 40.07±0.29

AMLS w/o
δ S and δ T 68.87±0.71 60.38±0.51 65.11±0.39 65.70±0.47 65.10±0.69 37.91±0.31

AMLS 73.78±0.54 64.1±0.50 69.02±0.44 67.98±0.36 68.77±0.55 41.45±0.27

Table 6.1: Target domain accuracy averaged over shared (Cshared) and private (CT)
classes, with highlighted 95% confidence intervals (over five experiment
runs). AMLS significantly outperforms ADDA and DANN, and also
provides gains over UAN, which is designed for universal adaptation.

Quantification of negative transfer. In Figure 6.3, we illustrate the change in
per-class accuracy for the shared target classes after adaptation using various tech-
niques. As evident in Figure 6.3a, both ADDA and DANN suffer from negative
transfer in the M→ F gender adaptation task, leading to accuracy degradation for
some classes after adaptation. This is primarily caused due to the label space mis-
match between domains, which these techniques do not account for during adap-
tation. UAN manages to reduce the negative transfer for most classes; however, it
does end up with minor negative transfer for some classes. AMLS, on the other
hand, is able to counter the negative transfer fully, thereby providing significant ac-
curacy gains over other baselines. Similar trends can be observed in the M → R
microphone adaptation task.

Varying the size of shared label space. We now compare AMLS with the base-
lines as the size of shared label space increases. As the total classes in each dataset
(CS∪CT) are fixed, by increasing the size of shared label space, we reduce the label
space mismatch. We study the M→F Gender Adaptation task as an example and
gradually increase the number of shared classes from 1 to 20. In Figure 6.4, we
observe that when label space mismatch is high, ADDA and DANN baselines per-
form poorly due to negative transfer and inability to classify private target classes
as ‘Unknown’. UAN and AMLS provide significant gains in these scenarios, with
AMLS outperforming UAN in all cases. As the label set mismatch reduces, the
performances of ADDA and DANN improve, however UAN and AMLS still out-
perform them. In the other extreme case of no label space mismatch (not shown in
the figure), all the adaptation techniques converge to similar accuracies.

6.5. Results 109

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%

A
D

D
A

D
A

N
N

4 5 9 11 12 15 17 24 27 28

Classes

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%

U
A

N

4 5 9 11 12 15 17 24 27 28

Classes
A

M
LS

(a) Gender Adaptation task: M→ F

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%

A
D

D
A

D
A

N
N

6 8 14 16 21 23 24 27 29 30

Classes

-40%
-30%
-20%
-10%

0%
10%
20%
30%
40%

U
A

N

6 8 14 16 21 23 24 27 29 30

Classes

A
M

LS

(b) Microphone Adaptation task: M→ R

Figure 6.3: For two adaptation tasks, this figure shows the relative change in per-
class accuracy of shared target classes after adaptation. Negative trans-
fer can be observed in DANN and ADDA.

6.5. Results 110

1 5 10 15 20
|Cshared|

0%

20%

40%

60%

80%

T
ar

ge
t A

cc
ur

ac
y

Source
ADDA
DANN
UAN
AMLS

Figure 6.4: Comparison of different uDA approaches as |Cshared| varies in the M→F
Gender Adaptation task.

Ablation Study. Next, we present an ablation study to investigate the contribution
of the various components of AMLS. More specifically, we evaluate two settings:
i) when pseudo labels in the target domain are not used and hence Lpseudo is not
optimized and ii) when only Lpseudo is optimized, but the adversarial loss Ladv is
not adjusted based on source weights δ S and target weights δ T . From Table 6.1, it
can be observed that AMLS provides poor performance if the adversarial loss and
pseudo loss is not appropriately weighted to down-weigh the contribution of private
classes; more specifically, in all experiments with the exception of (M−→ F), AMLS
performance becomes worse than UAN. This result confirms that the weighting
schemes proposed in this chapter are important for adaptation performance under
mismatched label spaces. Table 6.1 also confirms that we can boost target domain
performance using appropriately weighted pseudo classification loss.

Hypotheses Justification. Finally, we present an experiment to evaluate the va-
lidity of the hypotheses used to design the source and target weighting schemes in
§6.3.4. Recall that the goal of both weighting schemes is to assign higher weights
to samples from the shared classes and lower weights to samples from the private
classes. Table 6.2 shows the mean (and 95% confidence intervals) of the weights
obtained for source and target domains in two adaptation tasks: gender adaptation
(F −→M) and microphone adaptation (M −→ R).

We observe that for both adaptation tasks, weights assigned to the source samples
(δ S) from shared classes are significantly higher than the weights for private classes.
We also report the results of a Welch’s t-test on the weights from shared and private
classes, and observe a significant difference between them (p < 0.00001). These
findings confirm that our source weighting scheme manages to downweigh the con-

6.6. Discussion and Limitations 111

F→M M→R

Source Weights
(δ S)

Target Weights
(δ T)

Source Weights
(δ S)

Target Weights
(δ T)

Shared
Classes 0.64±0.015 0.69±0.009 0.67±0.009 0.65±0.014

Private
Classes 0.09±0.019 0.53±0.011 0.11±0.017 0.50±0.013

t-statistic 70.18 26.83 83.0 26.89

p-value < 0.00001 < 0.00001 < 0.00001 < 0.00001

Table 6.2: Mean and 95% confidence intervals of the weights obtained for source
and target samples in two adaptation tasks. A Welch’s t-test is done to
compare the weights from the shared and private classes.

tribution of private source classes in adaptation, which is important to avoid the
negative transfer. We observe a similar trend for the target weights (δ T), albeit the
difference between shared and private classes is not as high as the source weights.
Nevertheless, the difference is statistically significant (p < 0.00001) and confirms
that at inference time we can use these weights to identify samples from the private
target classes and label them as ‘Unknown’.

6.6 Discussion and Limitations

The problem setting studied in this chapter relaxed a key assumption about the iden-
tical source and target label spaces in adversarial uDA algorithms. However, there
are other factors that might still degrade uDA performance in practice. Even when
the label spaces are identical, there may be a shift in the marginal label distributions
between domains, i.e., PS(y) 6= PT (y). For example, when the Keyword Detection
model is deployed in a new domain, the users may speak certain keywords (e.g.,
Alexa, Siri) more than others (e.g., Stop, Go) depending on their personal prefer-
ences. It may lead to the target label distribution to become significantly different
from the source label distribution. Prior works [176, 175, 195, 177] have studied
this problem under the umbrella of target shift and shown that the adaptation per-
formance of uDA can degrade, if target shift is not addressed.

Target shift could also manifest in the shared label space Cshared of source and target
domains. In our experiments, we did not simulate this effect and evaluated AMLS
assuming that there is no change in label distributions in the shared label space.

6.7. Summary 112

This remains a limitation that could be addressed using the techniques proposed in
the computer vision literature [176].

6.7 Summary

In this chapter, we extended adversarial uDA algorithms to the universal adaptation
setting wherein label spaces between source and target domains are not identical.
Relaxing the assumption about shared label spaces is particularly useful when ML
systems are scaled to target domains in unconstrained settings, where we have little
control over the classes or labels in the target domain data. Our proposed solu-
tion, Adaptation Under Mismatched Label Spaces (AMLS), is based on a weight-
ing scheme that automatically assigns higher weights to samples from the shared
source and target domain classes, while down-weighing the contribution of private
classes in the adaptation process. In AMLS, this weighting scheme is used to mod-
ify the adversarial learning objective of uDA, and is also combined with supervised
learning in the target domain by generating pseudo labels for selected target data.
Through a series of experiments on speech classification tasks, we demonstrated
that AMLS could mitigate negative transfer due to the presence of private classes
and outperform a state-of-the-art universal adaptation baseline named UAN.

All the adaptation solutions presented in the thesis so far assumed that the source
and target domain datasets are available on the same machine. In the next chapter,
we relax this assumption and study how uDA algorithms can be used to scale dis-
tributed ML systems, where the source and target datasets are hosted on different
machines and cannot be shared with each other due to privacy considerations.

Chapter 7

Scaling Distributed ML Systems with
Multiple Target Domains

The problem settings considered in the previous chapters assumed that an ML sys-
tem trained in a labeled source domain has to be scaled to a single unlabeled target
domain. Moreover, the proposed uDA algorithms implicitly assumed that both the
source and target datasets are available on the same machine, and can be accessed
during the adaptation process. In this chapter, we propose solutions to extend uDA
algorithms to settings where ML systems have to scale to multiple target domains,
and when the source and target datasets are private and stored in distributed nodes.

7.1 Motivation

As a motivating example, consider the recent interest in using ML to predict
COVID-19 in patients by analyzing computerized tomography (CT) scans of their
chest [196, 197, 198]. Assume that scientists in China (source domain) have col-
lected a large labeled dataset of CT scans (e.g., [199]) and trained a COVID-19 pre-
diction model on it. This model now needs to be deployed in some other countries
(target domains) from where labeled data is unavailable. Due to virus mutations
across the world, the CT scan samples from different countries may follow different
data distributions, and it is possible that the source domain model may not work
accurately for all target countries. Hence, uDA could become a promising approach
to adapt the source model for each target country’s data distribution. In this context,
we introduce two challenges faced by uDA techniques:

(i) Static Adaptation Collaborators. For a given target domain, we define its
adaptation collaborator (or simply, collaborator) as the domain whose prediction
model is adapted using uDA for use in the target domain. For example, if we adapt a
speech model from ReSpeaker−→Matrix microphone, then ReSpeaker is considered
the adaptation collaborator for Matrix.

7.1. Motivation 114

(a) Samples from the MNIST dataset

(b) Samples from the Rotated MNIST dataset

Figure 7.1: Illustration of rotation-induced domain shift in the Rotated MNIST
dataset.

Existing uDA methods are static by design, in that they assume that when an ML
system is deployed in a new unlabeled target domain, it would always choose the
labeled source domain as its adaptation collaborator. We argue that this static ap-
proach of always adapting from a labeled source is not optimal and can result in
poor adaptation performance for a target. For instance, some target countries may
have a virus strain very different from China (the labeled source), and hence adapt-
ing from the Chinese COVID-19 model may not be optimal for them.

To better explain this problem, we show an experiment on Rotated MNIST, a variant
of MNIST [200]. Figure 7.1a shows samples from the MNIST dataset which con-
tains images of 70,000 handwritten digits from 0 to 9. Rotated MNIST, as shown in
Figure 7.1b is created by rotating the digits in MNIST dataset by different angles.
For our experiment, 0°, i.e., no rotation, represents the labeled source domain on
which we can train a prediction model using supervised learning. We take 30°, 60°,
45°, 90° and 15° as the unlabeled target domains for which we would like to learn
a prediction model using uDA techniques.

Figure 7.2a shows the accuracy obtained in each target domain if we always choose
the labeled source 0° as their collaborator. While this approach results in high ac-
curacies for 15° and 30°, it performs poorly for other domains. Can we do better?
What if a target domain can adapt not just from the labeled source, but also from

7.2. Preliminaries and Problem Formulation 115

(a) (b)

Figure 7.2: 0° is the labeled source domain while the domains in blue are unlabeled
target domains. The numbers in rectangle denote the post-adaptation
accuracy for a domain. (a) Static Design: Labeled Source acts the
collaborator for each target domain. (b) Flexible Design: Each target
domain chooses its collaborator dynamically. Previously adapted target
domains can also act as collaborators. Note that choosing the right
collaborator leads to major accuracy gains over the Static Design for
many domains (shown in red).

other target domains which themselves have undergone adaptation in the past. Fig-
ure 7.2b shows that if target domains could flexibly choose their collaborators, they
can achieve significantly higher accuracies. E.g., if 90° adapts from 60° (which
itself underwent adaptation in the past), it could be achieve an accuracy of 92.6%,
almost 75% higher than what could be achieved by adapting from 0°.

In summary, when uDA algorithms scale to settings with multiple target domains
such as the COVID-19 example, selecting an optimal collaborator for each target
domain becomes critical. How do we select this optimal collaborator is a key re-
search question that this chapter aims to answer.

(ii) Support for Distributed Domains. Most adversarial uDA methods (e.g., [122,
123]) assume that datasets from the source and target domains are available on the
same machine before the adaptation process begins. While this assumption makes
it easy to develop and evaluate uDA algorithms, it may not hold in practice. In the
example above, the CT scans of patients are sensitive health records, and the source
and target domains may not be allowed to share it with each other due to privacy
reasons. Similarly, in the microphone heterogeneity experiment in Chapter 4, the
speech data could be private, and users in the source and target domains may not
want to share it with each other. Clearly, this bottleneck can severely limit the adop-
tion of uDA techniques in realistic settings. How can we extend uDA techniques to
work in distributed settings while preserving the privacy of each domain?

7.2 Preliminaries and Problem Formulation

In this section, we formulate the technical problems that are studied in this chapter.

7.2. Preliminaries and Problem Formulation 116

7.2.1 Notations and Primer

Let DS denote a source domain with data XS and labels YS, and DT be a target
domain with data XT, but without any labeled observations. For a K-way classifica-
tion task, we train a feature extractor, FS, and a classifier, GS in the source domain
by minimizing the categorical cross-entropy loss:

min
FS,GS

L=−E(xs,ys)∼(XS,YS)

K

∑
k=1

1[k=ys][log(GS(FS(xs))] (7.1)

Now the goal for uDA is to learn a feature extractor FT for the unlabeled target do-
main, such that it minimizes the distance between the empirical source and target
feature distributions. When the distance between feature representations is mini-
mized, the source classifier GS can be directly applied to target feature representa-
tion without learning a separate GT .

To learn FT , two losses are optimized using adversarial training: a discriminator
loss LadvD and a mapping loss LadvM . uDA algorithms have different ways of com-
puting these losses— for example, ADDA [123] uses label inversion to minimize
the Jensen-Shannon divergence between source and target feature distributions as
follows:

min
DI

LadvD =−Exs∼XS [log(DI(FS(xs))]−Ext∼XT [log(1−DI(FT (xt))] (7.2)

min
FT

LadvM =−Ext∼XT [log(DI(FT (xt))] (7.3)

where DI represents a domain discriminator that aims to distinguish source and
target domains.

7.2.2 Problem Formulation

We now formalize our problem setting of scaling uDA to scenarios with multiple
target domains, each with sensitive private data. Assume that a prediction model
trained for the source domain DS has to be adapted for multiple unlabeled target
domains {D j

T

∣∣ j = 1, . . . ,K} with data X j
T and no labeled observations. We assume

that the ML system encounters new target domains sequentially, one at a time. Un-
der this problem setting, our research objectives are:

(i) Optimal Collaborator Selection (OCS). For each target domain that joins the
ML system, how do we select an optimal collaborator for uDA? We define a can-
didate set Zτ as the set of candidate domains that are available to collaborate with
a target domain at step τ . When a uDA system initializes at step τ = 0, only the
labeled source domain has a learned model, hence Z0 = {DS}. At step τ = 1, the
first target domain D

1

T joins – at this time, only the source domain DS has a learned

7.3. FRUDA: Framework for Realistic uDA 117

representation FS. Therefore, D
1

T can perform uDA with the source and learn a
representation F

1

T .

In general, at step τ = K, ZK = {DS}∪
{
D

j
T

∣∣ j = 1, . . . ,K
}

. For a new target do-

main DK+1
T , the goal of OCS is to find an optimal collaborator domain Dopt ∈ ZK ,

such that:
Dopt = argmin

i=1...|ZK |
Φ(Zi

K,D
K+1
T)

where Zi
K is the ith candidate domain in ZK and Φ is a metric that quantifies the

risk of collaboration between Zi
K and DK+1

T . As highlighted in §7.1, the choice
of an optimal collaborator brings two key benefits for uDA: firstly, it relaxes the
static nature of existing uDA techniques and allows for a more scalable architecture.
Secondly, as shown in Figure 7.2b, choosing the right adaptation collaborator can
boost the adaptation performance significantly.

(ii) Distributed Adversarial Training. Once a collaborator Dopt is selected, how
do we enable distributed uDA training between Dopt and the target domain D

K+1

T ,
while preventing any data leaks? This opens up two challenges: i) how do we
distribute the adversarial uDA network architecture and training process across the
nodes? ii) how do we ensure that the gradients exchanged between the distributed
nodes during training cannot be used to reconstruct the raw data?

7.3 FRUDA: Framework for Realistic uDA

We first present our two algorithmic contributions on Optimal Collaborator Selec-
tion (named OCS) and Distributed uDA (named DILS). Later in §7.3.3, we explain
how these two algorithms work in conjunction with each other in an end-to-end
framework called FRUDA, and allow for scaling uDA algorithms in multi-domain,
distributed ML systems.

7.3.1 Optimal Collaborator Selection (OCS)

For any given target domain, the goal of OCS is to find its optimal collaborator
domain Dopt from a set of candidate domains. Our key idea is quite intuitive: the
optimal collaborator should be a domain, such that adapting from it will lead to
the highest classification accuracy (or equivalently, the lowest classification error)
in the target domain. We first introduce some notations and then present the key
theoretical insight that underpins OCS.

Notations. Let D be a domain on an input space X and with an associated labeling
function l : X→ [0,1]. A hypothesis is a function h : X→ [0,1]. Let εM,D (h, l)

7.3. FRUDA: Framework for Realistic uDA 118

denote the error of a hypothesis h w.r.t. l under the domain D, where M is an error
metric such as L1 error or cross-entropy error. Further, a function f : X→ R is
θ -Lipschitz if it satisfies the inequality

‖ f (x1)− f (x2)‖ ≤ θ‖x1− x2‖ for all x1,x2 ∈ X

where θ ∈ R+. The smallest such θ is called the Lipschitz constant of f .

Theorem 1. Let D1 and D2 be two domains sharing the same labeling function l.
Let θCE denote the Lipschitz constant of the cross-entropy loss function in D1. For
any two θ -Lipschitz hypotheses h,h′, we can derive the following error bound for
the cross-entropy (CE) error in D2:

εCE,D2
(h,h′)≤ θCE

(
εL1,D1

(h,h′)+2θW1(D1,D2)
)

(7.4)
where W1(D1,D2) denote the first Wasserstein distance between the domains D1

and D2, and εL1,D1
denotes the L1 error in D1. Proof is in the Appendix.

Theorem 1 has two key properties that make it apt for our problem setting. First, it
can be used to get an upper bound estimate of the CE error in a target domain (D2),
given a hypothesis (or a classifier) from a collaborator domain (D1). Since target
CE error is the key metric of interest in classification tasks, this bound is more
useful than the one proposed by [125] which estimates the L1 error in the target
domain. Secondly, the bound depends on the Wasserstein distance metric between
the domains, which could be computed in a distributed way without exchanging
any private data between domains. This property is very important to guarantee
the domain privacy, which is one of the objectives of our work. Please refer to the
Appendix for implementation details on computation of Wasserstein distance in a
distributed and privacy-preserving manner.

Selecting the optimal collaborator. Motivated by Theorem 1, we now discuss how
to select the optimal collaborator for a target domain. Given a collaborator domain
Dc, a learned hypothesis hc and a labeling function l, we can obtain an upper bound
estimate of the CE error for a target domain DT using Theorem 1 as:

εCE,DT
(hc, l)≤ θCE(εL1,Dc

(hc, l)+2θW1 (Dc,DT)) (7.5)

We can tighten the bound in Eq. 7.5 to get a more reliable estimate of the target
CE error. This is achieved by reducing the Lipschitz constant (θ) of the hypothesis
hc during training. In uDA, the hypothesis is parameterized by a neural network,

7.3. FRUDA: Framework for Realistic uDA 119

(a) Optimal Collaborator Selection

(b) DILS: Distributed uDA

Figure 7.3: (a) A new target domain DK+1
T finds its optimal adaptation collaborator Dopt

from a set of candidate domains. (b) DK+1
T performs distributed uDA with Dopt

to learn a model for its distribution.

and we can train neural networks with small Lipschitz constants by regularizing the
spectral norm of each network layer [201].

Now that we have a way to estimate the target CE error, we can use it to select an
optimal collaborator that yields the minimum target CE error. Let Z = {Dk|k =

1, . . . ,K} be a set of candidate domains each with a pre-trained model hk with Lips-
chitz constants θ k

CE and θ k. Let DK+1
T be a target domain for which the collaborator

is to be chosen. Assuming the availability of a test set to compute the true error in
each candidate domain, we use Eq. 7.5 to select the optimal collaborator Dopt as:

Dopt = argmin
k=1,...,K

θ
k
CE(εL1,Dk(hk, l)+2θ

kW1(D
k,DK+1

T)) (7.6)

7.3. FRUDA: Framework for Realistic uDA 120

7.3.2 Distributed uDA using DIscriminator-based Lazy Syn-
chronization (DILS)

Upon selecting an optimal collaborator Dopt for the target domain DK+1
T , the next

step is to learn a model for DK+1
T by doing uDA with Dopt. In line with our problem

setting, both domains are located on distributed nodes and cannot share their raw
private data with each other.

FADA [202] is a recently proposed technique for adversarial uDA in distributed
settings. Our solution (DILS) differs from FADA in three important ways: (i)
FADA was designed for a federated learning setup and assumes multiple labeled
source domains, which is not the case in our setting. (ii) FADA exchanges feature
representations of the data and corresponding gradients between nodes to achieve
distributed training. Prior works [203, 204, 205] have shown that these are prone
to privacy attacks and can be exploited to reconstruct the raw data. Instead, we
leverage a unique characteristic of adversarial training architectures and show that
adversarial uDA can be performed between distributed nodes only by exchanging
the gradients of domain discriminators. The biggest benefit of our approach is that
it provides protection against state-of-the-art gradient leakage attacks. (iii) FADA
exchanges the gradients between nodes after every batch of data, which can increase
the overall training time of uDA due to the communication overhead associated with
gradient exchange. DILS, instead, adopts a lazy gradient synchronization approach
which significantly reduces the uDA training time.

Approach. As shown in Figure 7.3b, we split the adversarial architecture across
the distributed nodes. The feature encoders of the collaborator (Eopt) and target
(ET) reside on their respective nodes, while the discriminator DI is split into two
components DIopt and DIT . At every training step n, both nodes feed their private
training data ξ n

opt and ξ n
T into their encoders and discriminators, and compute the

gradients of the discriminators, i.e., ∇g(DIopt,ξ
n
opt) and ∇g(DIT ,ξ

n
T) respectively.

How often should we exchange the discriminator gradients between nodes? By
exchanging discriminator gradients after every training step, we can keep the dis-
criminators synchronized and ensure that distributed training converges to the non-
distributed solution. However, this approach has a major downside, as gradient ex-
change every step incurs significant communication costs and increases the overall
uDA training time. To increase training efficiency, we propose a Lazy Synchroniza-
tion approach, wherein instead of every step, the discriminators are synchronized
after every p training steps, thereby reducing the total gradient exchange by a factor
of p. We denote the training steps at which the synchronization takes place as the

7.3. FRUDA: Framework for Realistic uDA 121

Algorithm 1: DIscriminator-based Lazy Synchronization (DILS)
Result: FT

1 Input: Pre-trained Fopt; Randomly Initialize DIopt; Initialize FT = Fopt; DIT =DIopt;
Sync up step p; total steps N ;

2 for n = 1,2, ...,N do
3 Sample a batch of data on both nodes, ξ

(n)
opt and ξ

(n)
T ;

4 Feed ξ
(n)
opt and ξ

(n)
T into the respective Encoder-Discriminator model separately on

both nodes;
5 Based on different loss functions, calculate the gradients locally. On collaborator

node, calculate ∇g(DIopt,ξ
(n)
opt); On target node, calculate ∇g(FT ,ξ

(n)
T) and

∇g(DIT ,ξ
(n)
T);

6 Add ∇g(DIopt,ξ
(n)
opt) to gradient buffer Gopt, add ∇g(DIT ,ξ

(n)
T) to target gradients

buffer GT ;
7 if isTargetNode then
8 Apply ∇g(FT ,ξ

(n)
T) to FT ;

9 if n%p == 0 then
10 Exchange gradients buffer and update the latest synced gradients

gsync =
Gopt+GT

2p ;
11 Clear Gopt and GT ;

12 Apply gsync to DIopt and DIT separately;

sync-up steps while other steps are called local steps. We present our DILS strategy
in Algorithm 1.

As evident, DILS works on the principle of using stale gradients (∇bsync) from the
last sync-up step to update the discriminators locally. This is particularly impor-
tant as it prevents the distributed discriminators from diverging in the local steps.
The stale gradients are refreshed at every sync-up step. Our results show that this
approach reduces the uDA training time with minimal effect on target accuracy.

Privacy Analysis. One of the key advantages of DILS is that it provides protection
against known privacy attacks. By exchanging information between the distributed
nodes using gradients of the discriminators, DILS clearly affords privacy benefits
over existing uDA algorithms since we no longer have to transmit raw training data
between nodes. However, prior works have shown that model gradients can poten-
tially leak raw training data in collaborative learning [206, 205, 204]. Therefore it
is critical to examine: can the exchange of discriminator gradients also indirectly
leak training data of a domain? Through a theoretical analysis of DILS provided in
the Appendix, we show that gradient leakage attacks can at best allow an adversary
to steal the feature representations of the data, if they get access to all the discrimi-

7.4. Evaluation 122

(a) Samples from the Digits dataset

(b) Samples from the Office-Caltech dataset

Figure 7.4: Illustration of the Digits and Office-Caltech datasets.

nator gradients. Moreover, since our training strategy does not exchange the feature
extractor model FT between the nodes, it is infeasible to reconstruct the raw data
from the stolen feature representations.

7.3.3 Combining OCS with DILS

We now discuss how OCS and DILS work together to address the challenges intro-
duced in §7.1. As shown in Figure 7.3a, a new target domain DK+1

T first performs
OCS with all candidate domains in ZK to find its optimal collaborator Dopt. This
step makes uDA systems more flexible and ensures that each target domain is able
to achieve the best possible adaptation accuracy in the given setting. Next, as shown
in Figure 7.3b, DK+1

T and Dopt use DILS to engage in distributed uDA. This step
ensures that no private data is exposed during adaptation and yet the target domain
is able to learn a model for its distribution. Finally, the newly adapted target domain
DK+1

T (with its model and unlabeled data) is added to the candidate set Z to serve
as a potential collaborator for future domains.

7.4 Evaluation

Datasets. We evaluate FRUDA on the following image and speech datasets:

7.4. Evaluation 123

• Rotated MNIST (RMNIST) as shown in Figure 7.1b is a variant of the MNIST
dataset with digits rotated clockwise by different degrees. Each rotation is con-
sidered a separate domain.

• Multi-microphone Spoken Keywords dataset, as introduced in Chapter 2, contains
spoken keywords recorded from three different microphones: Matrix Voice, Re-
Speaker and USB. Each microphone represents a separate domain.

• Digits, as shown in Figure 7.4a, is a widely-used meta-dataset for benchmarking
uDA algorithms in the computer vision literature. It is constructed by combin-
ing five different datasets that contain images of digits from 0-9 in various styles.
More specifically, it contains images from MNIST (M), Street View House Num-
ber or SVHN (S) [207], MNIST-M (MM), USPS (U) and SynNumbers (SYN)
[208]. Each sub-dataset is considered a different domain in our experiments.

• Office-Caltech is also a vision dataset widely used to benchmark the performance
of uDA algorithms. It contains images of office objects from 10 categories, which
are collected under four different settings: downloaded from Amazon (A), cap-
tured on a DSLR (D) camera, captured on a web camera (W), and borrowed from
the Caltech-256 (C) dataset. Each of these image settings is considered a separate
domain. Figure 7.4b shows some samples from the Office-Caltech dataset.

General Setup. We follow the same evaluation protocol as earlier uDA works
[209, 123]: a pre-trained model learned from the labeled source domain is given,
unlabeled data from the source and target domains are used for adversarial adapta-
tion, and the adapted model is evaluated on a held-out test dataset from the target
domain. The difference here is that we aim to adapt for multiple target domains,
joining sequentially in a random order. Further, we use a small subset (10%) of the
training instances for doing collaborator selection. Our system is implemented with
TensorFlow 2.0, and we use Message Passing Interface (MPI) as the communication
interface between distributed nodes.

7.4.1 Performance of DIscriminator-based Lazy Synchroniza-
tion (DILS) training

We first evaluate the convergence properties of DILS against two baselines: Non-
Distributed uDA and FADA. As discussed in §7.3.2, FADA was originally designed
for multiple sources in a federated learning setup. For a fair comparison with our
single-source setting, we modify FADA by only implementing its Federated Ad-
versarial Alignment component and setting the number of source domains to one.

7.4. Evaluation 124

Dataset Order1 Order2

RMNIST
0,30,60,90,120,150,180,

210,240,270,300,330
0,180,210,240,270,300,
330,30,60,90,120,150

Spoken
Keywords

Matrix (M), USB (U),
ReSpeaker (R)

USB, Matrix
ReSpeaker

Digits

MNIST Modified (MM),
Synth Digits (Syn),

MNIST (M), USPS (U),
SVHN (S)

Synth Digits,
MNIST,

MNIST Modified, USPS,
SVHN

Office-Caltech
DSLR (D), Webcam (W),
Caltech (C), Amazon (A)

Webcam, Caltech,
DSLR, Amazon

Table 7.1: Domain orderings used in our experiments. Domains in bold correspond
to the labeled source domain. All other domains are unlabeled and in-
troduced sequentially in the system.

The modified FADA has the same optimization objectives as single-source DA, but
it operates in a distributed setting. Hence, it is fair to compare it with DILS. As
we discussed earlier, DILS provides privacy benefits over the baselines and is ro-
bust against gradient leakage attacks. However, two key questions still remain: (i)
Training Time: to what extent can DILS reduce the training time for distributed
uDA? (ii) Target Accuracy: can the use of stale gradients and lazy synchronization
in DILS degrade the classification accuracy in the target domain?

Results. Table 7.2 shows the performance of DILS against the baselines on 4
datasets and 8 adaptation tasks. First, we look at the mean training times for uDA
(denoted as ‘t’ in Table 7.2). As expected, non-distributed uDA, wherein source and
target datasets are required to be on the same machine, has the fastest convergence
because there is no gradient communication time involved; however this comes at
the expense of domain privacy. Importantly, the end-to-end convergence of DILS
is 37% faster than FADA in a distributed setting, primarily due to the reduced over-
head of gradient communication between nodes. Further, Table 7.2 shows a very
promising result that DILS can achieve similar accuracy as the baselines, which
confirms our theoretical analysis that lazy synchronization of discriminator gradi-
ents does not degrade the target accuracy. Averaged over all adaptation tasks, the
accuracy difference between DILS and the baselines is less than 0.5%, and it could
be further reduced by choosing a smaller p.

7.4.2 Performance of the proposed framework, FRUDA

Recall that FRUDA comprises of two algorithms: Optimal Collaborator Selection
(OCS) and distributed uDA (DILS) algorithms. In §7.4.1, we established that DILS

7.4. Evaluation 125

RMNIST Office-Caltech

Training 30→ 60 150→ 180 t (mins) W→ C D→ A t (mins)

Source-Only 32.68 61.51 - 87.81 85.28 -

Non-Distributed 69.61 91.86 2.4 91.74 92.01 21

FADA 69.30 91.21 65.28 91.02 92.03 73.8

DILS 68.34 90.16 35.2 90.56 91.77 55.05

Digits Spoken Keywords

Training M-M→ U Syn→ U t (mins) C→ U R→ C t (min)

Source-Only 57.54 79.32 - 73.98 67.47 -

Non-Distributed 82.14 90.1 5.69 79.85 77.52 5.8

FADA 82.13 89.9 86.94 79.81 77.39 37.8

DILS 81.66 89.78 54.6 79.33 77.38 22.5

Table 7.2: Target Domain Accuracy and mean uDA Training Time (t). DILS has
a 37% faster convergence time than FADA on average, without a major
drop in adaptation accuracy. The sync-up step p for DILS is set to 4.

is an effective algorithm for distributed uDA, in terms of training time, data privacy
and adaptation accuracy. Now we evaluate how DILS can work in conjunction with
OCS to scale uDA in practical settings.

Experiment Setup. In our problem setting, domains appear sequentially in an or-
der. Let {DS,D

1
T ,D

2
T · · ·DK

T } denote an ordering of one labeled source domain DS
and K unlabeled target domains. For each target domain Di

T |Ki=1, we first choose a
collaborator domain, which could be either the labeled source domain DS or any of
the previous target domains D j

T |
i−1
j=1 that have already learned a model using uDA.

Upon choosing a collaborator (using OCS or any of the baseline techniques), we use
DILS to perform distributed uDA between the target domain and the collaborator,
and compute the post-adaptation test accuracy Acci

T in the target domain. We report
the mean adaptation accuracy obtained over all target domains, i.e., 1

K ∑
K
i=1 Acci

T .

For each dataset, we use two random orderings of source and target domains, e.g.,
for Office-Caltech, we choose Order1 = D,W,C,A and Order2 = W,C,D,A. Please
refer to the Appendix for details on orderings used for other datasets, and our com-
puting infrastructure. The optimization objectives of ADDA presented in Eq. 7.2
and 7.3 are used for adaptation in this experiment.

Collaborator Selection Baselines. We compare OCS against four baselines: (i)
Labeled Source wherein each target domain only adapts from the labeled source
domain; (ii) Random Collaborator: each target domain chooses a random collabo-

7.4. Evaluation 126

RMNIST Office-Caltech
Order1 Order2 D,W,C,A W,C,D,A

No Adaptation 34.65 35.54 66.40 85.25
Random 28.66±6.50 37.11±4.32 69.18±1.51 80.1±2.44

Labeled Source 47.14 ± 0.85 49.08± 0.75 67.77±0.15 90.62±0.13
Multi-Collaborator 40.51±0.30 42.73±0.39 68.90±0.24 82.17±0.87
Proxy A-Distance 93.51 ± 0.22 74.14±0.05 69.37±0.2 90.62±0.13

FRUDA (Ours) 97.08 ± 0.14 81.72±0.3 74.56±0.52 90.62±0.13

Digits Spoken Keywords
Order1 Order2 Order1 Order2

No Adaptation 59.59 72.09 76.45 75.83
Random 62.77±2.19 69.13±4.0 80.17±1.60 77.34±1.09

Labeled Source 64.89±0.23 79.87±0.31 80.86 ± 0.09 79.91±0.05
Multi-Collaborator 60.94±0.13 75.91±0.30 76.90 ± 0.13 79.0±0.24
Proxy A-Distance 70.09±0.45 83.07±0.15 80.34 ± 0.19 80.02±0.31

FRUDA (Ours) 73.01±0.87 85.31±0.26 81.43 ± 0.06 81.81±0.10

Table 7.3: Mean accuracy over all target domains appearing in a given order, e.g.,
Order1=D,W,C,A for Office-Caltech.

rator from the available candidates; (iii) Proxy A-distance (PAD) where we choose
the domain which has the least PAD [210] from the target; (iv) Multi-Collaborator
is based on MDAN [211], where all available candidate domains contribute to the
adaptation in a weighted-average way. However, MDAN was developed assuming
that all candidate domains are labeled, which is not the case in our setting. Hence,
we modify MDAN and only optimize its adversarial loss during adaptation (details
in the Appendix).

Results. Table 7.3 reports the mean accuracy obtained over the target domains
for two domain orderings in each dataset. We observe that FRUDA outperforms the
baseline collaborator selection techniques in most cases. Importantly, it can provide
significant gains over the Labeled Source (LS) baseline, which verifies our hypoth-
esis that the labeled source domain is not always optimal for uDA. We highlight
three key results from Table 7.3: (a) in RMNIST, FRUDA provides 41% accuracy
gains over LS on average — this could be partly attributed to the large number of
target domains (K = 11) in this dataset. As the number of target domains increase,
there are more opportunities for benefiting from collaboration selection, which led
to higher accuracy gains over LS in this dataset. (b) For Office-Caltech (order =
W,C,D,A), the labeled source domain W turns out to be the optimal collaborator
for all target domains, and FRUDA managed to converge to the Labeled Source

7.4. Evaluation 127

5 10 20 30 40
Inter-domain Shift

0

20

40

60

80

100

M
ea

n
Ta

rg
et

 A
cc

ur
ac

y
(in

 %
)

No Adaptation
Labeled Source
FRUDA

Figure 7.5: Effect of increase in the domain shift on the performance of FRUDA.

baseline. (c) Multi-collaborator baseline often performed worse than even LS. We
surmise that this is due to negative transfer caused by some collaborator domains
that are too different from the target domain. OCS, on the other hand, is able to
filter out these bad collaborators, which leads to higher adaptation accuracy. In gen-
eral, our results demonstrate that as uDA systems scale to multiple target domains,
the need for choosing the right adaptation collaborator becomes important, hence
warranting the need for accurate collaboration selection algorithms.

Delving deeper, we evaluate the performance of FRUDA as the divergence between
domains increase. We take the RMNIST dataset and vary the inter-domain rotation
from 5° (i.e., the domains are 0°, 5°, 10°, 15°....) to 40° (i.e., the domains are 0°,
40°, 80°, 120°....). Figure 7.5 reports the mean accuracy across all target domains,
and we observe that the performance gains of FRUDA over the Labeled Source
baseline increase as the inter-domain divergence increases. This is because as inter-
domain rotation increases, the shift between the target domains and labeled source
distribution (0°) also increases. Under higher domain shift, the labeled source do-
main no longer remains the optimal collaborator and the adaptation performance
drops significantly. FRUDA, on the other hand, finds an optimal collaborator in
each case and prevents accuracy degradation due to a higher domain shift.

The results presented in Table 7.3 used the adversarial loss functions of ADDA from
Eq. 7.2 and 7.3 during adaptation. However, FRUDA is intended to be a general
framework not limited to one specific uDA algorithm. We now evaluate its perfor-
mance with three other uDA loss formulations (i) when a Gradient Reversal Layer
(GRL) is used to compute the mapping loss [122], (ii) when Wasserstein Distance
is used as a loss metric for domain discriminator [125] and (iii) CADA [212] which
enforces consensus between source and target features. The optimization objectives

7.5. Related Work 128

RMNIST (Order1) Digits (Order1)

ADDA GRL WassDA CADA ADDA GRL WassDA CADA

No Adaptation 34.65 34.65 34.65 34.65 59.59 59.59 59.59 59.59
Labeled Source 47.14 47.26 44.39 41.30 64.89 65.51 70.34 65.22
FRUDA(Ours) 97.08 97.35 91.15 83.37 73.01 69.80 75.36 70.19

Table 7.4: Mean target accuracy for four uDA methods. Our framework can be
used in conjunction with various uDA methods, and improves mean ac-
curacy over the Labeled Source baseline.

for each of these uDA techniques are provided in the Appendix.

In Table 7.4, we observe that while different uDA techniques yield different target
accuracies, FRUDA can work in conjunction with all of them to improve the overall
accuracy over the Labeled Source baseline.

7.5 Related Work

Related work for OCS. There are prior works on computing similarity between
domains, e.g., using distance measures such as Maximum Mean Discrepancy [213],
Gromov-Wasserstein Discrepancy [214], A-distance [215], and subspace mapping
[216]. However, our results in §7.4.2 show that merely choosing the most similar
domain as the collaborator is not optimal. Instead, OCS directly estimates the target
cross-entropy error for collaborator selection. Another advantage of OCS over prior
methods is that it can work in a fully distributed manner without compromising
domain privacy.

There are also works on selecting or generating intermediate domains for uDA.
[217] studied a setting when source and target domains are too distant (e.g., image
and text) which makes direct knowledge transfer infeasible. As a solution, they
propose selecting intermediate domains using A-distance and domain complexity.
However, as we discussed, merely using distance metrics does not guarantee the
most optimal collaborator. Moreover, this work was done on a KNN classifier and
did not involve adversarial uDA algorithms. [218] and [219] use style transfer to
generate images in intermediate domains between the source and target. Although
interesting, these works are orthogonal to OCS in which the goal is to select the
best domain from a given set of candidates. Moreover, these works are primarily
focused on visual adaptation, while OCS is a general method that can work for any
modality. Finally, [220, 221] are techniques for incremental uDA in continuously

7.6. Discussion and Limitations 129

shifting domains. However, in our problem, different target domains may not have
any inherent continuity in them, and hence it becomes important to perform OCS.

Related work for DILS. There is prior work on distributed model training, wherein
training data is partitioned across multiple nodes to accelerate training. These meth-
ods include centralized aggregation [16, 18], decentralized training [19, 20], and
asynchronous training [222]. Similarly, with the goal of preserving data privacy,
Federated Learning proposes sharing model parameters between distributed nodes
instead of the raw data [223, 224]. However, these distributed and federated training
techniques are primarily designed for supervised learning and do not extend directly
to uDA architectures. A notable exception is FADA by [202] which extends uDA
to federated learning. As we extensively discussed in § 7.3.2, FADA exchanges the
features and gradients of the feature extractor between nodes to achieve domain
privacy, which are prone to privacy attacks. Instead, DILS operates by exchanging
discriminator gradients between nodes, which bring both privacy and training-time
benefits over FADA.

Related work on practical uDA. [225] and [226] are two very promising recent
works on source-dataset-free uDA. Although the scope of these works are different
from us, we share the same goal of making uDA techniques more practical. Specif-
ically, we focus on developing general algorithms and frameworks to scale existing
uDA approaches in realistic settings.

7.6 Discussion and Limitations

In this section, we discuss the limitations of this work and avenues for future re-
search.

Extending to non-adversarial adaptation algorithms. Although our proposed
framework can incorporate different adversarial uDA optimization objectives, we
are cognizant that there are other uDA algorithms, such as those based on generative
algorithms (e.g., [209]) and those with no adversarial learning component (e.g.,
[227]) which are currently not compatible with DILS. Future work could explore
how such non-adversarial uDA algorithms could be extended for distributed ML
systems.

Selecting Multiple Collaborators. Our optimal collaborator selection algorithm
currently selects a single optimal collaborator, which is then used to perform pair-
wise uDA with the target. In the future, our method can be extended to select
multiple collaborators that can jointly perform uDA with the target domain.

7.7. Summary 130

Scalability Assumption. We assumed that the ML system would scale sequentially,
i.e., it will encounter target domains in a given order one at a time. As such, at
any given step, we choose an optimal collaborator for the new target domain and
perform uDA to learn a target model. However, there could be other ways for
ML systems to scale; for example, a system may be deployed in multiple target
domains simultaneously and our current approach of step-wise adaptation may not
work here.

Security and Privacy. As with any distributed algorithm that sends data over the
communication network, our method is also prone to security and privacy hacks.
Although our strategy protects against gradient leakage attacks currently known in
the literature, we are mindful of the possibility that our technique may not withstand
new privacy attacks that will be developed in the future. Hence, we need to be
constantly aware of the developments in the ML privacy literature and be ready to
make amendments to our proposed technique.

7.7 Summary

This chapter extended the adversarial uDA solutions presented in the thesis in two
important ways. Firstly, we showed that when there are multiple target domains in
an ML system, there is merit in not always relying on the labeled source domain
as the collaborator. Instead, it is better to flexibly choose an adaptation collabora-
tor from all the domains in the system that have learned a prediction model. To
this end, we proposed an Optimal Collaborator Selection algorithm, which finds
an optimal collaborator for each target domain based on a collaborator’s in-domain
cross-entropy error and the Wasserstein distance between the collaborator and tar-
get domains. Our second contribution was in proposing a distributed adaptation
algorithm, DILS, using which we can perform uDA even when the source and tar-
get datasets are geographically distributed, and it is not feasible to exchange raw
data between them due to privacy reasons. The core idea in DILS is to perform
uDA using lazy synchronization of the gradients of the domain discriminator be-
tween the distributed nodes, which not only results in similar accuracies as the non-
distributed uDA, but also provides substantial speedup in convergence time and
prevents gradient-based privacy attacks.

Chapter 8

Concluding Remarks

This thesis investigated the challenges associated with heterogeneity in sensor data
and their impact on the scalability of machine learning systems to new domains.
The research questions were mainly inspired by the practical scenarios in which
ML systems are likely to be deployed, and a number of unsupervised domain adap-
tation solutions were proposed to counter the domain shift induced by sensing het-
erogeneities.

Below we summarize our key contributions, discuss the limitations of our proposed
solutions, and highlight the avenues for future work on this topic.

8.1 Summary of Contributions

The main contributions of this thesis are as follows:

• In Chapter 3, we quantified the effect of microphone-induced heterogeneity on
speech classification models by collecting large-scale multi-microphone datasets.
It was one of the first systematic investigations of how microphone variability
across off-the-shelf consumer-scale microphone devices can degrade the scala-
bility of deep learning based speech models. The datasets developed towards this
effort have been released in public and have been used in other research investiga-
tions [228]. We also evaluated the impact of domain shift induced by variations
in IMU sensors and their placement on the human body. Our empirical results
show that the performance of human activity recognition (HAR) models degrade
drastically under these domain shifts.

• Looking at the problem of domain shift from the perspective of ML systems, we
proposed adaptation algorithms for both opaque and transparent ML systems. In
Chapter 4, we study opaque ML systems wherein the parameters of source domain
prediction model are not accessible during adaptation. We presented Mic2Mic,

8.2. Limitations and Future Work 132

our solution to train a domain translation model using unlabeled and unpaired
data from both domains. Our results show that by incorporating this translation
model as a component in the inference pipelines of speech-based ML systems,
we can recover a significant percentage of the accuracy that is otherwise lost due
to microphone heterogeneity.

• In Chapter 5, we presented a uDA approach for transparent ML systems that mod-
ifies the parameters of the source prediction model during adaptation. Our solu-
tion is based on data-augmented adversarial training and outperforms a number
of baseline uDA algorithms on the task of adapting HAR models to new domains.
This solution paves the way for developing HAR systems that are more robust to
the device usage preferences of end-users.

• In Chapter 6, we proposed a solution to relax a common, but limiting, assump-
tion in adversarial uDA algorithms that the label spaces of source and target do-
mains are identical. In practical ML systems where we have no control over the
data collected in the target domain, this assumption does not hold. Our proposed
algorithm dynamically assigns importance weights to samples from shared and
private classes in each domain, prevents negative transfer during adaptation and
also boosts the accuracy of the classes that are shared between the domains.

• Finally, Chapter 7 studies the case when the source and target domains are geo-
graphically distributed, and exchanging data between them could be expensive or
may have privacy implications. This challenge is often overlooked in the ML lit-
erature but is critical to the success of unsupervised domain adaptation algorithms
in practice. We proposed a distributed uDA approach, DILS, that allows for ad-
versarial training to proceed without requiring the exchange of raw data between
domains. Our second contribution in this chapter pertained to scaling uDA to ML
systems with multiple target domains, and we presented an algorithm called OCS
to select the optimal adaptation collaborator for each domain. Finally, we pro-
posed FRUDA, an end-to-end uDA framework in which OCS and DILS work in
conjunction to increase the adaptation performance of a multi-target ML system,
while preserving each domain’s privacy.

8.2 Limitations and Future Work

In Chapters 4,5,6 and 7, we highlighted the limitations of our proposed solutions.
Below we list some additional limitations of the broader methodology adopted in
this thesis, along with identifying topics for future work.

8.2. Limitations and Future Work 133

Scalability of pairwise adaptations. All our proposed solutions are designed for
pair-wise adaptation. In other words, we assume that for each target domain in
which an ML system in deployed, we need to learn a model by adapting from a
source domain. A limitation of this approach is that when ML systems scale to a
large number of target domains (e.g., to hundreds of microphones or IMU devices),
we will have to repeat the adaptation step once for each target domain. This raises
two challenges: (i) we need to collect unlabeled training data from each target
domain to facilitate uDA, (ii) the aggregated training cost of uDA over all the target
domains will become too high, which will have direct implications on the carbon
footprint of ML systems.

We see two potential solutions to this issue. First, we can investigate unsupervised
multi-target domain adaptation [229] which is a relatively unexplored topic in uDA.
In this approach, data samples from multiple target domains are used in combination
with the source domain samples to learn domain-invariant feature representations.
Domain Generalization (DG) approaches are another promising alternative – here
the goal is to train a model on multiple labeled source domains such that it can
perform well on any unseen target domains out-of-the-box, without requiring any
adaptation [230]. Although both these approaches have their own constraints (e.g.,
DG requires labeled data from multiple domains), they would clearly reduce the
training costs associated with uDA in a multi-domain system.

Monitoring and Detecting Domain Shift. Before any of our proposed uDA solu-
tions could be employed, the ML system needs to detect the occurrence of domain
shift. We did not study the detection problem in the thesis, however it is an equally
important piece of the puzzle. Fortunately, there are a number of works in the lit-
erature that have discussed and proposed solutions for monitoring [34, 33, 35] and
detecting domain shifts [36, 175].

Availability of Source Domain Data. We assumed that source domain data is
available during adaptation. While it is a reasonable assumption when the source
model developer themselves want to adapt a model to new domains, there might be
scenarios when this assumption is not practical. Particularly, in opaque ML systems,
the model developer will only expose the trained model through an API and may
not provide any data samples from the source domain. Hence, the ability to perform
uDA in the absence of source data becomes critical in these settings. [231] is an
early-stage visual recognition solution in this direction which could be extended for
IMU and speech data.

Continual adaptation of ML systems. We assumed that the target domains are sta-

8.2. Limitations and Future Work 134

tionary, however it is plausible that they evolve continuously. Consider a camera-
based recognition system for detecting the presence of tigers in a jungle. Let us
assume that this system was trained in sunny weather conditions (source domain)
using supervised learning. When this system is deployed in real-world, it will en-
counter different weather conditions such as light rain, heavy rain and snow (i.e.,
target domains). In this setting, one approach is to consider each of these domains as
independent and employ the pair-wise adaptation algorithms proposed in this thesis
to train a model for each of them. Alternatively, it can be argued that these target
domains (light rain, heavy rain, snow) have some underlying relation and as such,
an incremental adaptation approach is more appropriate which goes from Sunny→
Light Rain → Heavy Rain → Snow, while at the same time ensuring that there is
no catastrophic forgetting in the past domains. [220] is an interesting work in this
direction, which could be extended for speech and HAR models.

Scaling ML systems using semi-supervised domain adaptation. The solutions
developed in this thesis to scale ML models to new domains assumed that there
is no labeled data available in the target domain. In some sense, this is the most
challenging scenario for adapting models across domains. Instead, if we assume
that the target domain contains a small amount of labeled data, we can design semi-
supervised adaptation algorithms. This setting has been studied in the literature
under the name of few-shot adaptation [178] and has shown promising results on
visual recognition tasks. Similar semi-supervised adaptation techniques can be ex-
plored for microphone and IMU-induced domain shifts in speech and HAR models.

Resource-efficient uDA. ML systems are being actively deployed on edge devices
with limited memory and computational capabilities. Therefore, it is important that
both the training and deployment of uDA solutions is resource-efficient. We plan to
investigate an interesting research question in future work: during uDA, in addition
to adapting the parameters of a source domain neural network, can we also jointly
learn a small-footprint neural network architecture for the target domain? While the
former is important to enhance the performance of the source model in the target
domain, the latter could improve the resource-efficiency of the target domain model.

Bibliography

[1] Timo Sztyler and Heiner Stuckenschmidt. On-body localization of wear-
able devices: An investigation of position-aware activity recognition.
In 2016 IEEE International Conference on Pervasive Computing and
Communications (PerCom), pages 1–9. IEEE Computer Society, 2016.
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7456521.

[2] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[3] Hayit Greenspan, Bram Van Ginneken, and Ronald M Summers. Guest edito-
rial deep learning in medical imaging: Overview and future promise of an ex-
citing new technique. IEEE Transactions on Medical Imaging, 35(5):1153–
1159, 2016.

[4] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. A
survey of deep learning techniques for autonomous driving. Journal of Field
Robotics, 37(3):362–386, 2020.

[5] Jason Wu, Sayan Ghosh, Mathieu Chollet, Steven Ly, Sharon Mozgai, and
Stefan Scherer. Nadia: Neural network driven virtual human conversation
agents. In Proceedings of the 18th International Conference on Intelligent
Virtual Agents, IVA ’18, page 173–178, New York, NY, USA, 2018. Associ-
ation for Computing Machinery.

[6] Basheer Qolomany, Ala Al-Fuqaha, Ajay Gupta, Driss Benhaddou, Safaa
Alwajidi, Junaid Qadir, and Alvis C Fong. Leveraging machine learning
and big data for smart buildings: A comprehensive survey. IEEE Access,
7:90316–90356, 2019.

BIBLIOGRAPHY 136

[7] Liangying Peng, Ling Chen, Zhenan Ye, and Yi Zhang. Aroma: A deep
multi-task learning based simple and complex human activity recognition
method using wearable sensors. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 2(2):1–16, 2018.

[8] Powerful computer vision algorithms are now small
enough to run on your phone. https://www.

technologyreview.com/2019/10/11/102546/

ai-computer-vision-algorithms-on-your-phone-mit-ibm/,
2019.

[9] Abhinav Mehrotra and Mirco Musolesi. Intelligent notification systems. Syn-
thesis Lectures on Mobile and Pervasive Computing, 11(1):1–75, 2020.

[10] Deep Learning on Android P. https://deepmind.com/blog/

deepmind-meet-android/, 2018.

[11] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and
Neil D Lawrence. Dataset shift in machine learning. The MIT Press, 2009.

[12] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang,
Dan Gutfreund, Josh Tenenbaum, and Boris Katz. Objectnet: A large-scale
bias-controlled dataset for pushing the limits of object recognition models.
In Advances in Neural Information Processing Systems, pages 9453–9463,
2019.

[13] ImageNet Dataset. http://www.image-net.org/, 2015.

[14] Google TPU Pods. https://cloud.google.com/tpu/docs/

training-on-tpu-pods, 2020.

[15] Yang You, Aydın Buluç, and James Demmel. Scaling deep learning on gpu
and knights landing clusters. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, pages
1–12, 2017.

[16] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling
distributed machine learning with the parameter server. In 11th USENIX
Symposium on Operating Systems Design and Implementation (OSDI ’14),
pages 583–598, 2014.

https://www.technologyreview.com/2019/10/11/102546/ai-computer-vision-algorithms-on-your-phone-mit-ibm/
https://www.technologyreview.com/2019/10/11/102546/ai-computer-vision-algorithms-on-your-phone-mit-ibm/
https://www.technologyreview.com/2019/10/11/102546/ai-computer-vision-algorithms-on-your-phone-mit-ibm/
https://deepmind.com/blog/deepmind-meet-android/
https://deepmind.com/blog/deepmind-meet-android/
http://www.image-net.org/
https://cloud.google.com/tpu/docs/training-on-tpu-pods
https://cloud.google.com/tpu/docs/training-on-tpu-pods

BIBLIOGRAPHY 137

[17] Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth Gibson, and
Eric P Xing. High-performance distributed ml at scale through parameter
server consistency models. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015.

[18] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed
deep learning in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[19] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and
Ji Liu. Can decentralized algorithms outperform centralized algorithms? a
case study for decentralized parallel stochastic gradient descent. In Advances
in Neural Information Processing Systems, pages 5330–5340, 2017.

[20] Hanlin Tang, Xiangru Lian, Ming Yan, Ce Zhang, and Ji Liu. D2: Decen-
tralized training over decentralized data. arXiv preprint arXiv:1803.07068,
2018.

[21] Now anyone can train Imagenet in 18 minutes. https://www.fast.

ai/2018/08/10/fastai-diu-imagenet/, 2018.

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Aarti Singh and Xiaojin (Jerry) Zhu, editors,
Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics, AISTATS 2017, 20-22 April 2017, Fort Lauderdale, FL, USA,
volume 54 of Proceedings of Machine Learning Research, pages 1273–1282.
PMLR, 2017.

[23] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloé M Kiddon, Jakub Konečný, Stefano Maz-
zocchi, Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ra-
mage, and Jason Roselander. Towards federated learning at scale: System
design. In SysML, 2019.

[24] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone,
H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn
Seth. Practical secure aggregation for privacy-preserving machine learn-
ing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, pages 1175–1191, New York, NY,
USA, 2017. ACM.

https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://www.fast.ai/2018/08/10/fastai-diu-imagenet/

BIBLIOGRAPHY 138

[25] TensorFlow Serving. https://www.tensorflow.org/tfx/

guide/serving, 2020.

[26] TorchServe. https://github.com/pytorch/serve, 2020.

[27] MLFlow Serving. https://www.mlflow.org/docs/latest/

index.html, 2020.

[28] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra.
Hello edge: Keyword spotting on microcontrollers. arXiv preprint
arXiv:1711.07128, 2017.

[29] Nicholas D Lane, Sourav Bhattacharya, Akhil Mathur, Petko Georgiev, Clau-
dio Forlivesi, and Fahim Kawsar. Squeezing deep learning into mobile and
embedded devices. IEEE Pervasive Computing, 16(3):82–88, 2017.

[30] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi,
Lei Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software accelera-
tor for low-power deep learning inference on mobile devices. In 2016 15th
ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pages 1–12. IEEE, 2016.

[31] Pete Warden and Daniel Situnayake. Tinyml: Machine learning with tensor-
flow lite on arduino and ultra-low-power microcontrollers. O’Reilly Media,
Incorporated, 2020.

[32] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo,
and Dan Dennison. Hidden technical debt in machine learning systems. In
Advances in neural information processing systems, pages 2503–2511, 2015.

[33] Neil D Lawrence. Data science and digital systems: The 3ds of machine
learning systems design. arXiv preprint arXiv:1903.11241, 2019.

[34] Eric Breck, Shanqing Cai, Eric Nielsen, Michael Salib, and D Sculley.
What’s your ml test score? a rubric for ml production systems. 2016.

[35] Tom Diethe, Tom Borchert, Eno Thereska, Borja Balle, and Neil Lawrence.
Continual learning in practice. arXiv preprint arXiv:1903.05202, 2019.

[36] Stephan Rabanser, Stephan Günnemann, and Zachary Lipton. Failing loudly:
An empirical study of methods for detecting dataset shift. In Advances in
Neural Information Processing Systems, pages 1396–1408, 2019.

https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/guide/serving
https://github.com/pytorch/serve
https://www.mlflow.org/docs/latest/index.html
https://www.mlflow.org/docs/latest/index.html

BIBLIOGRAPHY 139

[37] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[38] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-
Taylor, and John C Platt. Support vector method for novelty detection. In
Advances in neural information processing systems, pages 582–588, 2000.

[39] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust ran-
dom cut forest based anomaly detection on streams. In International confer-
ence on machine learning, pages 2712–2721, 2016.

[40] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassi-
fied and out-of-distribution examples in neural networks. arXiv preprint
arXiv:1610.02136, 2016.

[41] Shiyu Liang, Yixuan Li, and R Srikant. Enhancing the reliability of out-of-
distribution image detection in neural networks. In International Conference
on Learning Representations, 2018.

[42] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly
detection with outlier exposure. In International Conference on Learning
Representations, 2018.

[43] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Sri-
hari Nelakuditi. Accelprint: Imperfections of accelerometers make smart-
phones trackable. In NDSS. Citeseer, 2014.

[44] Anupam Das, Nikita Borisov, and Matthew Caesar. Fingerprinting
smart devices through embedded acoustic components. arXiv preprint
arXiv:1403.3366, 2014.

[45] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger Prentow,
Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne, and Mads Møller Jensen.
Smart devices are different: Assessing and mitigating mobile sensing hetero-
geneities for activity recognition. In Proceedings of the 13th ACM Confer-
ence on Embedded Networked Sensor Systems, SenSys ’15, page 127–140,
New York, NY, USA, 2015. Association for Computing Machinery.

[46] ReSpeaker. http://wiki.seeedstudio.com/ReSpeaker_Mic_

Array/, 2018.

http://wiki.seeedstudio.com/ReSpeaker_Mic_Array/
http://wiki.seeedstudio.com/ReSpeaker_Mic_Array/

BIBLIOGRAPHY 140

[47] DIY hardware to emulate Amazon Echo.
http://www.instructables.com/id/

Build-DIY-Amazon-Alexa-With-a-MATRIX-Creator-on-Ha/,
2015.

[48] Ivan Tashev. Beamformer sensitivity to microphone manufacturing toler-
ances. 2005.

[49] Shengkui Zhao, Xiong Xiao, Zhaofeng Zhang, Thi Ngoc Tho Nguyen,
Xionghu Zhong, Bo Ren, Longbiao Wang, Douglas L Jones, Eng Siong
Chng, and Haizhou Li. Robust speech recognition using beamforming with
adaptive microphone gains and multichannel noise reduction. In 2015 IEEE
Workshop on Automatic Speech Recognition and Understanding (ASRU),
pages 460–467. IEEE, 2015.

[50] Andreas Grammenos, Cecilia Mascolo, and Jon Crowcroft. You are sens-
ing, but are you biased?: A user unaided sensor calibration approach for
mobile sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
2(1):11:1–11:26, March 2018.

[51] Saurabh Garg, Kian Meng Lim, and Heow Pueh Lee. An averaging method
for accurately calibrating smartphone microphones for environmental noise
measurement. Applied Acoustics, 143:222–228, 2019.

[52] Amos Storkey. When training and test sets are different: characterizing learn-
ing transfer.

[53] Akhil Mathur, Fahim Kawsar, Nadia Berthouze, and Nicholas D Lane. Libri-
adapt: a new speech dataset for unsupervised domain adaptation. In ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 7439–7443. IEEE, 2020.

[54] Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Nadia Berthouze, and
Nicholas D Lane. Mic2mic: using cycle-consistent generative adversarial
networks to overcome microphone variability in speech systems. In ACM
IPSN 2019, IPSN ’19, pages 169–180, New York, NY, USA, 2019. ACM.

[55] Akhil Mathur, Anton Isopoussu, Fahim Kawsar, Robert Smith, Nicholas D.
Lane, and Nadia Berthouze. On robustness of cloud speech apis: An early
characterization. In Proceedings of the 2018 ACM International Joint Con-
ference and 2018 International Symposium on Pervasive and Ubiquitous

http://www.instructables.com/id/Build-DIY-Amazon-Alexa-With-a-MATRIX-Creator-on-Ha/
http://www.instructables.com/id/Build-DIY-Amazon-Alexa-With-a-MATRIX-Creator-on-Ha/

BIBLIOGRAPHY 141

Computing and Wearable Computers, UbiComp ’18, page 1409–1413, New
York, NY, USA, 2018. Association for Computing Machinery.

[56] Youngjae Chang, Akhil Mathur, Anton Isopoussu, Junehwa Song, and Fahim
Kawsar. A systematic study of unsupervised domain adaptation for robust
human-activity recognition. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 4(1):1–30, 2020.

[57] Akhil Mathur, Fahim Kawsar, Nadia Berthouze, and Nicholas D Lane. Un-
supervised domain adaptation under label space mismatch for speech classi-
fication. In Proceedings of Interspeech, 2020.

[58] Akhil Mathur, Shaoduo Gan, Anton Isopoussu, Fahim Kawsar, Nadia
Berthouze, and Nicholas D Lane. Scaling unsupervised domain adaptation
through optimal collaborator selection and lazy discriminator synchroniza-
tion. ArXiv e-prints, 2020.

[59] Oliver Amft, Mathias Stäger, Paul Lukowicz, and Gerhard Tröster. Analysis
of chewing sounds for dietary monitoring. In International Conference on
Ubiquitous Computing, pages 56–72. Springer, 2005.

[60] Oliver Amft and Gerhard Troster. Methods for detection and classification of
normal swallowing from muscle activation and sound. In Pervasive Health
Conference and Workshops, 2006, pages 1–10. IEEE, 2006.

[61] Chenren Xu, Sugang Li, Gang Liu, Yanyong Zhang, Emiliano Miluzzo, Yih-
Farn Chen, Jun Li, and Bernhard Firner. Crowd++: unsupervised speaker
count with smartphones. In Ubicomp ’13, pages 43–52. ACM, 2013.

[62] Karol J Piczak. Esc: Dataset for environmental sound classification. In
Proceedings of the 23rd ACM international conference on Multimedia, pages
1015–1018. ACM, 2015.

[63] Christos-Nikolaos Anagnostopoulos, Theodoros Iliou, and Ioannis Gian-
noukos. Features and classifiers for emotion recognition from speech: a
survey from 2000 to 2011. Artificial Intelligence Review, 43(2):155–177,
2015.

[64] Youngki Lee, Chulhong Min, Chanyou Hwang, Jaeung Lee, Inseok Hwang,
Younghyun Ju, Chungkuk Yoo, Miri Moon, Uichin Lee, and Junehwa Song.
Sociophone: Everyday face-to-face interaction monitoring platform using
multi-phone sensor fusion. In Proceeding of the 11th annual international

BIBLIOGRAPHY 142

conference on Mobile systems, applications, and services, pages 375–388,
2013.

[65] Wai-Tian Tan, Mary Baker, Bowon Lee, and Ramin Samadani. The sound of
silence. In Sensys ’13, page 19. ACM, 2013.

[66] Tara N Sainath and Carolina Parada. Convolutional neural networks for
small-footprint keyword spotting. In Sixteenth Annual Conference of the In-
ternational Speech Communication Association, 2015.

[67] Fang Zheng, Guoliang Zhang, and Zhanjiang Song. Comparison of differ-
ent implementations of mfcc. Journal of Computer science and Technology,
16(6):582–589, 2001.

[68] Douglas A Lyon. The discrete fourier transform, part 4: spectral leakage.
Journal of object technology, 8(7), 2009.

[69] Abdul Malik Badshah, Jamil Ahmad, Nasir Rahim, and Sung Wook Baik.
Speech emotion recognition from spectrograms with deep convolutional neu-
ral network. In IEEE PlatCon 2017, pages 1–5. IEEE, 2017.

[70] Seungwoo Choi, Seokjun Seo, Beomjun Shin, Hyeongmin Byun, Martin
Kersner, Beomsu Kim, Dongyoung Kim, and Sungjoo Ha. Temporal con-
volution for real-time keyword spotting on mobile devices. arXiv preprint
arXiv:1904.03814, 2019.

[71] Jianfeng Zhao, Xia Mao, and Lijiang Chen. Speech emotion recognition
using deep 1d & 2d cnn lstm networks. Biomedical Signal Processing and
Control, 47:312–323, 2019.

[72] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhu-
ber. Connectionist temporal classification: labelling unsegmented sequence
data with recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376, 2006.

[73] Awni Y Hannun, Andrew L Maas, Daniel Jurafsky, and Andrew Y Ng. First-
pass large vocabulary continuous speech recognition using bi-directional re-
current dnns. arXiv preprint arXiv:1408.2873, 2014.

[74] Fahim Kawsar, Chulhong Min, Akhil Mathur, and Allesandro Montanari.
Earables for personal-scale behavior analytics. IEEE Pervasive Computing,
17(3):83–89, 2018.

BIBLIOGRAPHY 143

[75] North smart glasses. https://www.bynorth.com/, 2020.

[76] Jérémy Frey, May Grabli, Ronit Slyper, and Jessica R Cauchard. Breeze:
Sharing biofeedback through wearable technologies. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems, pages 1–12,
2018.

[77] Andreas Bulling, Ulf Blanke, and Bernt Schiele. A tutorial on human activ-
ity recognition using body-worn inertial sensors. ACM Computing Surveys
(CSUR), 46(3):33, 2014.

[78] Nils Y Hammerla, Reuben Kirkham, Peter Andras, and Thomas Ploetz. On
preserving statistical characteristics of accelerometry data using their empir-
ical cumulative distribution. In Proceedings of the 2013 international sym-
posium on wearable computers, pages 65–68, 2013.

[79] Nils Y Hammerla, Shane Halloran, and Thomas Plötz. Deep, convolutional,
and recurrent models for human activity recognition using wearables. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, pages 1533–1540, 2016.

[80] Charissa Ann Ronao and Sung-Bae Cho. Human activity recognition with
smartphone sensors using deep learning neural networks. Expert systems
with applications, 59:235–244, 2016.

[81] Shuochao Yao, Yiran Zhao, Huajie Shao, Dongxin Liu, Shengzhong Liu,
Yifan Hao, Ailing Piao, Shaohan Hu, Su Lu, and Tarek F Abdelzaher.
Sadeepsense: Self-attention deep learning framework for heterogeneous on-
device sensors in internet of things applications. In IEEE INFOCOM 2019-
IEEE Conference on Computer Communications, pages 1243–1251. IEEE,
2019.

[82] Yuwen Chen, Kunhua Zhong, Ju Zhang, Qilong Sun, and Xueliang Zhao.
Lstm networks for mobile human activity recognition. In 2016 Interna-
tional Conference on Artificial Intelligence: Technologies and Applications.
Atlantis Press, 2016.

[83] Yu Guan and Thomas Plötz. Ensembles of deep lstm learners for activity
recognition using wearables. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 1(2):1–28, 2017.

https://www.bynorth.com/

BIBLIOGRAPHY 144

[84] Najim Dehak, Patrick J Kenny, Réda Dehak, Pierre Dumouchel, and Pierre
Ouellet. Front-end factor analysis for speaker verification. IEEE Transac-
tions on Audio, Speech, and Language Processing, 19(4):788–798, 2010.

[85] George Saon, Hagen Soltau, David Nahamoo, and Michael Picheny. Speaker
adaptation of neural network acoustic models using i-vectors. In 2013 IEEE
Workshop on Automatic Speech Recognition and Understanding, pages 55–
59. IEEE, 2013.

[86] Patrick Cardinal, Najim Dehak, Yu Zhang, and James Glass. Speaker adapta-
tion using the i-vector technique for bottleneck features. In Sixteenth Annual
Conference of the International Speech Communication Association, 2015.

[87] Andrew Senior and Ignacio Lopez-Moreno. Improving dnn speaker inde-
pendence with i-vector inputs. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 225–229. IEEE,
2014.

[88] Yohan Chon, Nicholas D Lane, Yunjong Kim, Feng Zhao, and Hojung Cha.
Understanding the coverage and scalability of place-centric crowdsensing.
In Proceedings of the 2013 ACM international joint conference on Pervasive
and ubiquitous computing, pages 3–12. ACM, 2013.

[89] Hong Lu, Denise Frauendorfer, Mashfiqui Rabbi, Marianne Schmid Mast,
Gokul T Chittaranjan, Andrew T Campbell, Daniel Gatica-Perez, and
Tanzeem Choudhury. Stresssense: Detecting stress in unconstrained acoustic
environments using smartphones. In Proceedings of the 2012 ACM Confer-
ence on Ubiquitous Computing, pages 351–360. ACM, 2012.

[90] Saeed V. Vaseghi. Spectral Subtraction, pages 242–260. Vieweg+Teubner
Verlag, Wiesbaden, 1996.

[91] Yariv Ephraim and David Malah. Speech enhancement using a minimum-
mean square error short-time spectral amplitude estimator. IEEE Transac-
tions on acoustics, speech, and signal processing, 32(6):1109–1121, 1984.

[92] Daniel Michelsanti and Zheng-Hua Tan. Conditional generative adversar-
ial networks for speech enhancement and noise-robust speaker verification.
arXiv preprint arXiv:1709.01703, pages 2008–2012, 2017.

[93] Tom Ko, Vijayaditya Peddinti, Daniel Povey, Michael L Seltzer, and Sanjeev
Khudanpur. A study on data augmentation of reverberant speech for robust

BIBLIOGRAPHY 145

speech recognition. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 5220–5224. IEEE, 2017.

[94] Chanwoo Kim, Ananya Misra, Kean Chin, Thad Hughes, Arun Narayanan,
Tara Sainath, and Michiel Bacchiani. Generation of large-scale simulated
utterances in virtual rooms to train deep-neural networks for far-field speech
recognition in google home. 2017.

[95] Hu Hu, Tian Tan, and Yanmin Qian. Generative adversarial networks based
data augmentation for noise robust speech recognition. In 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5044–5048. IEEE, 2018.

[96] Jinyu Li, Michael L Seltzer, Xi Wang, Rui Zhao, and Yifan Gong.
Large-scale domain adaptation via teacher-student learning. arXiv preprint
arXiv:1708.05466, 2017.

[97] Matrix Voice. https://www.matrix.one/products/voice,
2019.

[98] Tara N Sainath, Ron J Weiss, Kevin W Wilson, Bo Li, Arun Narayanan,
Ehsan Variani, Michiel Bacchiani, Izhak Shafran, Andrew Senior, Kean
Chin, et al. Multichannel signal processing with deep neural networks for
automatic speech recognition. IEEE/ACM Transactions on Audio, Speech,
and Language Processing, 25(5):965–979, 2017.

[99] Bo Li, Tara N Sainath, Ron J Weiss, Kevin W Wilson, and Michiel Bacchi-
ani. Neural network adaptive beamforming for robust multichannel speech
recognition. Interspeech 2016, pages 1976–1980, 2016.

[100] Oscar D Lara and Miguel A Labrador. A survey on human activity recog-
nition using wearable sensors. IEEE communications surveys & tutorials,
15(3):1192–1209, 2012.

[101] Gary Mitchell Weiss and Jeffrey Lockhart. The impact of personalization
on smartphone-based activity recognition. In Workshops at the Twenty-Sixth
AAAI Conference on Artificial Intelligence. Citeseer, 2012.

[102] Ling Bao and Stephen S Intille. Activity recognition from user-annotated
acceleration data. In International conference on pervasive computing, pages
1–17. Springer, 2004.

https://www.matrix.one/products/voice

BIBLIOGRAPHY 146

[103] Andrea Mannini and Angelo Maria Sabatini. Machine learning methods for
classifying human physical activity from on-body accelerometers. Sensors,
10(2):1154–1175, 2010.

[104] Nirmalya Roy, Archan Misra, and Diane Cook. Infrastructure-assisted
smartphone-based adl recognition in multi-inhabitant smart environments.
In 2013 IEEE International Conference on Pervasive Computing and Com-
munications (PerCom), pages 38–46. IEEE, 2013.

[105] Wan-Yu Deng, Qing-Hua Zheng, and Zhong-Min Wang. Cross-person ac-
tivity recognition using reduced kernel extreme learning machine. Neural
Networks, 53:1–7, 2014.

[106] Yazan Al Jeroudi, MA Ali, Marsad Latief, and Rini Akmeliawati. Online
sequential extreme learning machine algorithm based human activity recog-
nition using inertial data. In 2015 10th Asian Control Conference (ASCC),
pages 1–6. IEEE, 2015.

[107] Attila Reiss and Didier Stricker. Personalized mobile physical activity recog-
nition. In Proceedings of the 2013 international symposium on wearable
computers, pages 25–28, 2013.

[108] Lina Yao, Feiping Nie, Quan Z Sheng, Tao Gu, Xue Li, and Sen Wang.
Learning from less for better: semi-supervised activity recognition via shared
structure discovery. In Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, pages 13–24, 2016.

[109] Hande Alemdar, Tim LM van Kasteren, and Cem Ersoy. Using active learn-
ing to allow activity recognition on a large scale. In International Joint Con-
ference on Ambient Intelligence, pages 105–114. Springer, 2011.

[110] Craig Hillman, Cheryl Tulkoff, and DfR Solutions. Manufacturing and reli-
ability challenges with qfn.

[111] P Aggarwal, Z Syed, X Niu, and N El-Sheimy. A standard testing and cali-
bration procedure for low cost mems inertial sensors and units. The Journal
of Navigation, 61(2):323–336, 2008.

[112] Iuri Frosio, Federico Pedersini, and N Alberto Borghese. Autocalibration of
mems accelerometers. IEEE Transactions on Instrumentation and Measure-
ment, 58(6):2034–2041, 2008.

BIBLIOGRAPHY 147

[113] Shashi Poddar, Vipan Kumar, and Amod Kumar. A comprehensive overview
of inertial sensor calibration techniques. Journal of Dynamic Systems, Mea-
surement, and Control, 139(1), 2017.

[114] Louis Atallah, Benny Lo, Rachel King, and Guang-Zhong Yang. Sensor
positioning for activity recognition using wearable accelerometers. IEEE
transactions on biomedical circuits and systems, 5(4):320–329, 2011.

[115] Henar Martı́n, Ana M Bernardos, Josué Iglesias, and José R Casar. Activity
logging using lightweight classification techniques in mobile devices. Per-
sonal and ubiquitous computing, 17(4):675–695, 2013.

[116] Apiwat Henpraserttae, Surapa Thiemjarus, and Sanparith Marukatat. Accu-
rate activity recognition using a mobile phone regardless of device orienta-
tion and location. In 2011 International Conference on Body Sensor Net-
works, pages 41–46. IEEE, 2011.

[117] Gabriela Csurka. A comprehensive survey on domain adaptation for visual
applications. In Domain adaptation in computer vision applications, pages
1–35. Springer, 2017.

[118] Wouter M Kouw and Marco Loog. An introduction to domain adaptation and
transfer learning. arXiv preprint arXiv:1812.11806, 2018.

[119] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell.
Deep domain confusion: Maximizing for domain invariance. arXiv preprint
arXiv:1412.3474, 2014.

[120] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learn-
ing transferable features with deep adaptation networks. arXiv preprint
arXiv:1502.02791, 2015.

[121] Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep
domain adaptation. In European Conference on Computer Vision, pages 443–
450. Springer, 2016.

[122] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky.
Domain-adversarial training of neural networks. The Journal of Machine
Learning Research, 17(1):2096–2030, 2016.

BIBLIOGRAPHY 148

[123] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial
discriminative domain adaptation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 7167–7176, 2017.

[124] Swami Sankaranarayanan, Yogesh Balaji, Carlos D Castillo, and Rama Chel-
lappa. Generate to adapt: Aligning domains using generative adversarial
networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8503–8512, 2018.

[125] Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance
guided representation learning for domain adaptation. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[126] Pavel Denisov, Ngoc Thang Vu, and Marc Ferras Font. Unsupervised domain
adaptation by adversarial learning for robust speech recognition. In Speech
Communication; 13th ITG-Symposium, pages 1–5. VDE, 2018.

[127] Qing Wang, Wei Rao, Sining Sun, Leib Xie, Eng Siong Chng, and Haizhou
Li. Unsupervised domain adaptation via domain adversarial training for
speaker recognition. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4889–4893. IEEE, 2018.

[128] Mohammed Abdelwahab and Carlos Busso. Domain adversarial for acoustic
emotion recognition. IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 26(12):2423–2435, December 2018.

[129] Wei-Ning Hsu, Yu Zhang, and James Glass. Unsupervised domain adap-
tation for robust speech recognition via variational autoencoder-based data
augmentation. In 2017 IEEE Automatic Speech Recognition and Understand-
ing Workshop (ASRU), pages 16–23. IEEE, 2017.

[130] Sining Sun, Binbin Zhang, Lei Xie, and Yanning Zhang. An unsupervised
deep domain adaptation approach for robust speech recognition. Neurocom-
puting, 257:79–87, 2017.

[131] Md Abdullah Al Hafiz Khan, Nirmalya Roy, and Archan Misra. Scaling
human activity recognition via deep learning-based domain adaptation. In
2018 IEEE International Conference on Pervasive Computing and Commu-
nications (PerCom), pages 1–9. IEEE, 2018.

[132] Ali Akbari and Roozbeh Jafari. Transferring activity recognition models for
new wearable sensors with deep generative domain adaptation. In Proceed-

BIBLIOGRAPHY 149

ings of the 18th International Conference on Information Processing in Sen-
sor Networks, pages 85–96, 2019.

[133] Timo Sztyler. Sensor-based human activity recognition: Overcoming issues
in a real world setting. PhD thesis, Mannheim, 2019.

[134] Google Speech API. https://cloud.google.com/speech/, 2015.

[135] Bing Speech API. https://azure.microsoft.com/en-us/

services/cognitive-services/speech/.

[136] Amazon Transcribe. https://aws.amazon.com/transcribe/.

[137] Jon Barker, Ricard Marxer, Emmanuel Vincent, and Shinji Watanabe. The
third ‘chime’speech separation and recognition challenge: Dataset, task and
baselines. In 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU). IEEE, 2015.

[138] MQTT Messaging Protocol. http://mqtt.org/, 2019.

[139] JBL LSR305 & LSR308 measurements.
https://docs.google.com/document/d/

1T9yLUksyFTu8DwtsaUwacoCIpRfmdIzx6vDRPjzfbCg/

mobilebasic, 2017.

[140] Pete Warden. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209, 2018.

[141] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Lib-
rispeech: an asr corpus based on public domain audio books. In ICASSP,
pages 5206–5210. IEEE, 2015.

[142] Pre-trained Mozilla DeepSpeech2 ASR model. https://github.com/
mozilla/DeepSpeech/releases/tag/v0.5.0, 2019.

[143] How google translate squeezes deep learning onto a phone.
http://googleresearch.blogspot.co.uk/2015/07/

how-google-translate-squeezes-deep.html, 2015. Ac-
cessed: 2016-04-10.

[144] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian
Förster, Gerhard Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois
Ferscha, et al. Collecting complex activity datasets in highly rich networked

https://cloud.google.com/speech/
https://azure.microsoft.com/en-us/services/cognitive-services/speech/
https://azure.microsoft.com/en-us/services/cognitive-services/speech/
https://aws.amazon.com/transcribe/
http://mqtt.org/
https://docs.google.com/document/d/1T9yLUksyFTu8DwtsaUwacoCIpRfmdIzx6vDRPjzfbCg/mobilebasic
https://docs.google.com/document/d/1T9yLUksyFTu8DwtsaUwacoCIpRfmdIzx6vDRPjzfbCg/mobilebasic
https://docs.google.com/document/d/1T9yLUksyFTu8DwtsaUwacoCIpRfmdIzx6vDRPjzfbCg/mobilebasic
https://github.com/mozilla/DeepSpeech/releases/tag/v0.5.0
https://github.com/mozilla/DeepSpeech/releases/tag/v0.5.0
http://googleresearch.blogspot.co.uk/2015/07/how-google-translate-squeezes-deep.html
http://googleresearch.blogspot.co.uk/2015/07/how-google-translate-squeezes-deep.html

BIBLIOGRAPHY 150

sensor environments. In 2010 Seventh international conference on networked
sensing systems (INSS), pages 233–240. IEEE, 2010.

[145] Bandar Almaslukh, Abdel Artoli, and Jalal Al-Muhtadi. A robust deep
learning approach for position-independent smartphone-based human activ-
ity recognition. Sensors, 18(11):3726, 2018.

[146] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In in ICML Workshop on Deep
Learning for Audio, Speech and Language Processing, 2013.

[147] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Improved texture
networks: Maximizing quality and diversity in feed-forward stylization and
texture synthesis. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 6924–6932, 2017.

[148] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[149] Andrew L Maas, Quoc V Le, Tyler M O’Neil, Oriol Vinyals, Patrick Nguyen,
and Andrew Y Ng. Recurrent neural networks for noise reduction in robust
asr. In Thirteenth Annual Conference of the International Speech Communi-
cation Association, 2012.

[150] Jun Du, Qing Wang, Tian Gao, Yong Xu, Li-Rong Dai, and Chin-Hui Lee.
Robust speech recognition with speech enhanced deep neural networks. In
Fifteenth Annual Conference of the International Speech Communication As-
sociation, 2014.

[151] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-
image translation with conditional adversarial networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
1125–1134, 2017.

[152] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2223–2232, 2017.

[153] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on

BIBLIOGRAPHY 151

Medical image computing and computer-assisted intervention, pages 234–
241. Springer, 2015.

[154] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain
image generation. arXiv preprint arXiv:1611.02200, 2016.

[155] Mozilla DeepSpeech2. https://hacks.mozilla.org/2017/11/

a-journey-to-10-word-error-rate/, 2017.

[156] Steven R Livingstone and Frank A Russo. The ryerson audio-visual database
of emotional speech and song (ravdess): A dynamic, multimodal set of facial
and vocal expressions in north american english. PloS one, 13(5), 2018.

[157] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B Tenen-
baum, William T Freeman, and Antonio Torralba. Gan dissection: Visual-
izing and understanding generative adversarial networks. In Proceedings of
ICLR 2019, 2019.

[158] Pouya Samangouei, Ardavan Saeedi, Liam Nakagawa, and Nathan Silber-
man. Explaingan: Model explanation via decision boundary crossing trans-
formations. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 666–681, 2018.

[159] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim,
and Jaegul Choo. Stargan: Unified generative adversarial networks for multi-
domain image-to-image translation. arXiv preprint arXiv:1711.09020, 2017.

[160] Sourav Bhattacharya and Nicholas D Lane. Sparsification and separation
of deep learning layers for constrained resource inference on wearables. In
Proceedings of Sensys ’16, pages 176–189. ACM, 2016.

[161] Cheng Chen, Qi Dou, Hao Chen, and Pheng-Ann Heng. Semantic-aware
generative adversarial nets for unsupervised domain adaptation in chest x-
ray segmentation. In International workshop on machine learning in medical
imaging, pages 143–151. Springer, 2018.

[162] Phani Sankar Nidadavolu, Jesús Villalba, and Najim Dehak. Cycle-gans for
domain adaptation of acoustic features for speaker recognition. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 6206–6210. IEEE, 2019.

https://hacks.mozilla.org/2017/11/a-journey-to-10-word-error-rate/
https://hacks.mozilla.org/2017/11/a-journey-to-10-word-error-rate/

BIBLIOGRAPHY 152

[163] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda
Wang, and Russell Webb. Learning from simulated and unsupervised im-
ages through adversarial training. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2107–2116, 2017.

[164] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I Jordan. Deep
transfer learning with joint adaptation networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 2208–
2217. JMLR. org, 2017.

[165] ZF Syed, P Aggarwal, C Goodall, X Niu, and N El-Sheimy. A new multi-
position calibration method for mems inertial navigation systems. Measure-
ment Science and Technology, 18(7):1897, 2007.

[166] Chulhong Min, Akhil Mathur, Alessandro Montanari, and Fahim Kawsar. An
early characterisation of wearing variability on motion signals for wearables.
In Proceedings of the 23rd International Symposium on Wearable Comput-
ers, pages 166–168, 2019.

[167] Terry T Um, Franz MJ Pfister, Daniel Pichler, Satoshi Endo, Muriel Lang,
Sandra Hirche, Urban Fietzek, and Dana Kulić. Data augmentation of wear-
able sensor data for parkinson’s disease monitoring using convolutional neu-
ral networks. In Proceedings of the 19th ACM International Conference on
Multimodal Interaction, pages 216–220, 2017.

[168] Nils Y. Hammerla, Shane Halloran, and Thomas Plötz. Deep, convolutional,
and recurrent models for human activity recognition using wearables. In
IJCAI, 2016.

[169] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller. Striving for simplicity: The all convolutional net, 2014.

[170] Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller. Covari-
ate shift adaptation by importance weighted cross validation. Journal of Ma-
chine Learning Research, 8(May):985–1005, 2007.

[171] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Con-
ditional adversarial domain adaptation. In Advances in Neural Information
Processing Systems, pages 1640–1650, 2018.

[172] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data aug-
mentation for deep learning. Journal of Big Data, 6(1):60, 2019.

BIBLIOGRAPHY 153

[173] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph,
Ekin D Cubuk, and Quoc V Le. Specaugment: A simple data augmentation
method for automatic speech recognition. Proc. Interspeech 2019, pages
2613–2617, 2019.

[174] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[175] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and cor-
recting for label shift with black box predictors. In International Conference
on Machine Learning, pages 3122–3130, 2018.

[176] Yitong Li, Michael Murias, Samantha Major, Geraldine Dawson, and David
Carlson. On target shift in adversarial domain adaptation. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics, pages 616–625,
2019.

[177] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoff Gordon.
Domain adaptation with conditional distribution matching and generalized
label shift. arXiv preprint arXiv:2003.04475, 2020.

[178] Saeid Motiian, Quinn Jones, Seyed Iranmanesh, and Gianfranco Doretto.
Few-shot adversarial domain adaptation. In Advances in Neural Information
Processing Systems, pages 6670–6680, 2017.

[179] Lin Chen, Wen Li, and Dong Xu. Recognizing rgb images by learning from
rgb-d data. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1418–1425, 2014.

[180] Wen Li, Lin Chen, Dong Xu, and Luc Van Gool. Visual recognition in rgb
images and videos by learning from rgb-d data. IEEE transactions on pattern
analysis and machine intelligence, 40(8):2030–2036, 2017.

[181] Yuan Yao, Yu Zhang, Xutao Li, and Yunming Ye. Heterogeneous domain
adaptation via soft transfer network. In Proceedings of the 27th ACM Inter-
national Conference on Multimedia, pages 1578–1586, 2019.

[182] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359, 2010.

[183] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images. In
CVPR, pages 427–436, 2015.

BIBLIOGRAPHY 154

[184] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal
Frossard. Universal adversarial perturbations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1765–1773,
2017.

[185] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Michael I Jordan. Par-
tial transfer learning with selective adversarial networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
2724–2732, 2018.

[186] Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. Importance
weighted adversarial nets for partial domain adaptation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
8156–8164, 2018.

[187] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang. Partial ad-
versarial domain adaptation. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 135–150, 2018.

[188] Kuniaki Saito, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada.
Open set domain adaptation by backpropagation. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2018.

[189] Hong Liu, Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Qiang Yang.
Separate to adapt: Open set domain adaptation via progressive separation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 2927–2936, 2019.

[190] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I
Jordan. Universal domain adaptation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2720–2729, 2019.

[191] Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden
markov models for information extraction. In International Symposium on
Intelligent Data Analysis, pages 309–318. Springer, 2001.

[192] Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges in
representation learning, ICML, 2013.

[193] Kuniaki Saito, Yoshitaka Ushiku, and Tatsuya Harada. Asymmetric tri-
training for unsupervised domain adaptation. In International Conference
on Machine Learning, pages 2988–2997, 2017.

BIBLIOGRAPHY 155

[194] Houwei Cao, David G Cooper, Michael K Keutmann, Ruben C Gur, Ani
Nenkova, and Ragini Verma. Crema-d: Crowd-sourced emotional multi-
modal actors dataset. IEEE transactions on affective computing, 5(4):377–
390, 2014.

[195] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On
learning invariant representations for domain adaptation. In International
Conference on Machine Learning, pages 7523–7532, 2019.

[196] Chuansheng Zheng, Xianbo Deng, Qing Fu, Qiang Zhou, Jiapei Feng, Hui
Ma, Wenyu Liu, and Xinggang Wang. Deep learning-based detection for
covid-19 from chest ct using weak label. medRxiv, 2020.

[197] Ying Song, Shuangjia Zheng, Liang Li, Xiang Zhang, Xiaodong Zhang, Zi-
wang Huang, Jianwen Chen, Huiying Zhao, Yusheng Jie, Ruixuan Wang,
et al. Deep learning enables accurate diagnosis of novel coronavirus (covid-
19) with ct images. medRxiv, 2020.

[198] Fei Shan, Yaozong Gao, Jun Wang, Weiya Shi, Nannan Shi, Miaofei Han,
Zhong Xue, and Yuxin Shi. Lung infection quantification of covid-19 in ct
images with deep learning. arXiv preprint arXiv:2003.04655, 2020.

[199] Jinyu Zhao, Yichen Zhang, Xuehai He, and Pengtao Xie. Covid-ct-dataset:
a ct scan dataset about covid-19. arXiv preprint arXiv:2003.13865, 2020.

[200] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist,
2, 2010.

[201] Henry Gouk, Eibe Frank, Bernhard Pfahringer, and Michael Cree. Regular-
isation of neural networks by enforcing lipschitz continuity. arXiv preprint
arXiv:1804.04368, 2018.

[202] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated ad-
versarial domain adaptation. ICLR, 2020.

[203] Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and Ramesh Raskar.
Nopeek: Information leakage reduction to share activations in distributed
deep learning. arXiv preprint arXiv:2008.09161, 2020.

[204] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE

BIBLIOGRAPHY 156

Transactions on Information Forensics and Security, 13(5):1333–1345,
2017.

[205] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. In
Advances in Neural Information Processing Systems, pages 14747–14756,
2019.

[206] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly
Shmatikov. Exploiting unintended feature leakage in collaborative learn-
ing. In 2019 IEEE Symposium on Security and Privacy (SP), pages 691–706.
IEEE, 2019.

[207] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and
Andrew Y Ng. Reading digits in natural images with unsupervised feature
learning. 2011.

[208] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by
backpropagation. arXiv preprint arXiv:1409.7495, 2014.

[209] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate
Saenko, Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adver-
sarial domain adaptation. In International Conference on Machine Learning,
pages 1994–2003, 2018.

[210] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Anal-
ysis of representations for domain adaptation. In Advances in neural infor-
mation processing systems, pages 137–144, 2007.

[211] Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P
Costeira, and Geoffrey J Gordon. Adversarial multiple source domain adap-
tation. In Advances in Neural Information Processing Systems, pages 8559–
8570, 2018.

[212] Han Zou, Yuxun Zhou, Jianfei Yang, Huihan Liu, Hari Prasanna Das, and
Costas J Spanos. Consensus adversarial domain adaptation. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 33, pages 5997–
6004, 2019.

[213] Jindong Wang, Yiqiang Chen, Wenjie Feng, Han Yu, Meiyu Huang, and
Qiang Yang. Transfer learning with dynamic distribution adaptation. ACM
Transactions on Intelligent Systems and Technology (TIST), 11(1):1–25,
2020.

BIBLIOGRAPHY 157

[214] Yuguang Yan, Wen Li, Hanrui Wu, Huaqing Min, Mingkui Tan, and Qingyao
Wu. Semi-supervised optimal transport for heterogeneous domain adapta-
tion.

[215] Jindong Wang, Vincent W Zheng, Yiqiang Chen, and Meiyu Huang. Deep
transfer learning for cross-domain activity recognition. In proceedings of the
3rd International Conference on Crowd Science and Engineering, pages 1–8,
2018.

[216] Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow ker-
nel for unsupervised domain adaptation. In 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2066–2073. IEEE, 2012.

[217] Ben Tan, Yangqiu Song, Erheng Zhong, and Qiang Yang. Transitive transfer
learning. In Proceedings of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1155–1164, 2015.

[218] Rui Gong, Wen Li, Yuhua Chen, and Luc Van Gool. Dlow: Domain flow
for adaptation and generalization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2477–2486, 2019.

[219] Jongwon Choi, Youngjoon Choi, Jihoon Kim, Jin-Yeop Chang, Ilhwan
Kwon, Youngjune Gwon, and Seungjai Min. Visual domain adaptation by
consensus-based transfer to intermediate domain. In AAAI, pages 10655–
10662, 2020.

[220] Markus Wulfmeier, Alex Bewley, and Ingmar Posner. Incremental adver-
sarial domain adaptation for continually changing environments. In 2018
IEEE International conference on robotics and automation (ICRA), pages
1–9. IEEE, 2018.

[221] Andreea Bobu, Eric Tzeng, Judy Hoffman, and Trevor Darrell. Adapting to
continuously shifting domains. 2018.

[222] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized
parallel stochastic gradient descent. arXiv preprint arXiv:1710.06952, 2017.

[223] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

BIBLIOGRAPHY 158

[224] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated ma-
chine learning: Concept and applications. ACM Transactions on Intelligent
Systems and Technology (TIST), 10(2):12, 2019.

[225] Jogendra Nath Kundu, Naveen Venkat, Ambareesh Revanur, R Venkatesh
Babu, et al. Towards inheritable models for open-set domain adaptation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12376–12385, 2020.

[226] Jian Liang, Dapeng Hu, and Jiashi Feng. Do we really need to access the
source data? source hypothesis transfer for unsupervised domain adaptation.
arXiv preprint arXiv:2002.08546, 2020.

[227] Baochen Sun, Jiashi Feng, and Kate Saenko. Correlation alignment for un-
supervised domain adaptation. In Domain Adaptation in Computer Vision
Applications, pages 153–171. Springer, 2017.

[228] Chulhong Min, Alessandro Montanari, Akhil Mathur, and Fahim Kawsar. A
closer look at quality-aware runtime assessment of sensing models in multi-
device environments. In Proceedings of the 17th Conference on Embedded
Networked Sensor Systems, pages 271–284, 2019.

[229] Behnam Gholami, Pritish Sahu, Ognjen Rudovic, Konstantinos Bousmalis,
and Vladimir Pavlovic. Unsupervised multi-target domain adaptation: An
information theoretic approach. IEEE Transactions on Image Processing,
29:3993–4002, 2020.

[230] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain gen-
eralization with adversarial feature learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5400–5409,
2018.

[231] Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and Si Wu. Model
adaptation: Unsupervised domain adaptation without source data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9641–9650, 2020.

Appendix A

Appendix

In this appendix, we provide the experimental details and theoretical justifications
for the algorithms proposed in Chapter 7.

A.1 Experiment Details

Loss Formulations of uDA algorithms. We now discuss the adversarial training
formulation of the various uDA algorithms with which we evaluated the efficacy of
our proposed FRUDA framework in Chapter 7. Recall that we evaluate our method
with four domain adaptation techniques: ADDA [123], Gradient Reversal [122]
and Wasserstein DA [125], and CADA [212]. Below are the adversarial training
formulations of these techniques as proposed in their original papers.

ADDA. Following the same notations used earlier in the paper, the adversarial loss
formulations of ADDA can be represented mathematically as:

min
DI

LadvDI
=−Exs∼XS

[log(DI(FS(xs))]−Ext∼XT
[log(1−DI(FT (xt))] (A.1)

min
FT

LadvM
=−Ext∼XT

[log(DI(FT (xt))] (A.2)

The Discriminator DI is optimized using LadvDI
where the domain data from source

and target domains are assigned different domain labels (0 and 1). To update the
feature extractor FT , ADDA proposes to invert the domain labels, which results in
the loss formulation given in LadvM

.

In order to run ADDA in a distributed manner, we decompose the discriminator DI
into DIS and DIT which results in the following loss functions:

LadvDIS
=−Exs∼XS

[log(DIS(FS(xs))] (A.3)
LadvDIT

=−Ext∼XT
[log(1−DIT (FT (xt))] (A.4)

A.1. Experiment Details 160

LadvM
=−Ext∼XT

[log(DIT (FT (xt))] (A.5)

Thereafter, we compute local gradients for DIS and DIT ,

∇g(DIS,xs) =
δLadvDIS

δDIS
(A.6)

∇g(DIT ,xt) =
δLadvDIT

δDIT
(A.7)

and aggregate them in the sync-up step as shown in Algorithm 1. The aggregated
gradients are used to optimize DIS and DIT , while FT is optimized using the loss
function in Equation A.5.

Gradient Reversal. The Gradient Reversal approach uses the same loss formulation
for the discriminators DIS and DIT as ADDA as shown in Equations A.1, A.3, A.4.

However, to update the target extractor FT , it leverages the gradient reversal strategy,
resulting in the following loss function.

min
FT

LadvM
=−LadvDIT

= Ext∼XT
[log(1−DIT (FT (xt))]

(A.8)

The computation of local gradients for DIS and DIT follow the same process as
shown in Equations A.6 and A.7.

Wasserstein DA. In this technique [125], the authors use the Wasserstein distance
as the loss function for discriminator. Wasserstein distance between two datasets is
defined as

Wasserstein(Xs,Xt) =
1
ns

∑
xs∼XS

DI(FS(xs))−
1
nt

∑
xt∼XT

DI(FT (xt)) (A.9)

where ns and nt are the number of samples in the dataset. The discriminator loss is
computed as:

min
DI

LadvDI
=−Exs∼XS,xt∼XT

[Wasserstein(xs,xt)]+ γLgrad (A.10)
where Lgrad is the gradient penalty used to enforce the Lipschitz constraint on the
discriminator. Further, the target extractor is optimized using the following loss
function:

min
FT

LadvM
= Exs∼XS,xt∼XT

[Wasserstein(xs,xt)] (A.11)

We use the same strategy to compute local gradients for DIS and DIT as shown in
Eq A.6 and A.7.

CADA. Consensus Adversarial Domain Adaptation is a technique recently proposed
by [212] which enforces the source and target extractors to arrive at a consensus in

A.1. Experiment Details 161

the feature space through adversarial training. It uses the same loss formulation
for the discriminators DIS and DIT as ADDA as shown in Equations A.1, A.3,
A.4. However, the key difference is that CADA optimizes both the source and
target feature extractors in the training process, until the discriminator can no longer
distinguish the features from source and target domains.

min
FS

LadvM1
=−Exs∼XS

[log(DIS(FS(xs))] (A.12)

min
FT

LadvM2
=−Ext∼XT

[log(DIT (FT (xt))] (A.13)

Thereafter, a shared classifier is trained on the sourced labeled data by keeping the
source feature extractor fixed. The shared classifier can be used with the target
extractor to make predictions.

min
CShared

Lcl f =−E(xs,ys)∼(XS,YS)

K

∑
k=1

1[k=ys][log(CShared(FS(xs))]

Computing Wasserstein distance across distributed datasets in a privacy pre-
serving manner. Our optimal collaborator selection algorithm requires computing
an estimate of the Wasserstein (W1) distance between a candidate domain (DC) and
the target domain (DT). Let XC and XT denote the unlabeled datasets from the two
domains. As shown by [125], the W1 distance can be computed as:

W1(XC,XT) =
1

nC
∑

xs∼XC

DI(FC(xc))−
1

nT
∑

xt∼XT

DI(FT (xt)) (A.14)

where nC and nT are the number of samples in the dataset, FC and FT are the feature
encoders of each domain, and DI is an optimal discriminator trained to distinguish
the features from the two domains. To train the optimal discriminator, following
loss is minimized:

min
DI

LadvDI
=−Exc∼XC,xt∼XT

[W1(xc,xt)+ γLgrad]

where Lgrad is the gradient penalty used to enforce 1-Lipschitz continuity on the
discriminator.

Interestingly, Equation A.14 has a similar structure to the optimization objectives
for ADDA and other uDA algorithms discussed above. Hence, we can use the same
principle as DILS and exchange discriminator gradients between nodes to compute
the Wasserstein Distance in a distributed manner, without requiring any exchange
of raw data.

We initialize FT with FC and decompose the discriminator DI into two parts (DIC

A.1. Experiment Details 162

and DIT) which reside on the respective nodes. The raw data from both nodes is fed
into their respective encoders and discriminators, and we compute the gradients of
each discriminator as follows:

L
C

DI =
1

nC
∑

xs∼XC

DIC(FC(xc))

L
T

DI =
1

nT
∑

xt∼XT

DIT (FT (xt))

∇g(DIC,xc) =
δL

C

DI
δDIC

∇g(DIT ,xt) =
δL

T

DI
δDIT

Both nodes exchange their discriminator gradients during a synchronization step
and compute aggregated gradients:

∇g(DIagg,xc,xt) = ∇g(DIC,xc)−∇g(DIT ,xt) (A.15)

Finally, both discriminators DIC and DIT are updated with these aggregated gradi-
ents, and gradient penalty is applied to enforce the 1-Lipschitz continuity on the
discriminators. This process continues until convergence and results in an optimal
discriminator. Once the discriminators are trained to convergence, we can calculate
the Wasserstein distance as:

W1(XC,XT) = L
C

DI−L
T

DI

To the best of our knowledge, this approach of computing Wasserstein distance
in a distributed manner has not been explored before. Moreover, this ability to
compute Wasserstein distance in a distributed manner makes it an ideal metric for
collaborator selection in a privacy-preserving setting.

Modifications done to the MDAN baseline. As we noted in Section 7.4.2, we
compare OCS against a Multi-Collaborator baseline wherein all available candidate
domains contribute in domain adaptation with the target. To this end, we employ the
MDAN [211] method proposed for multi-source domain adaptation. However, one
key difference between MDAN and our problem setting is that MDAN assumes that
there are multiple source domains and all of them are labeled. With this assumption,
MDAN optimizes the following objective during uDA:

A.2. Theoretical Justifications 163

minimize
1
γ

∑
i∈[k]

exp(γ(ε̂Si
(h)− min

h′∈H∆H
ε̂T,Si

(h′)))

where ε̂Si
is the classification error for source domain Si obtained using supervised

learning (assuming the availability of labels), and ε̂T,Si
is the error of a domain

discriminator trained to separate Si and target T .

However, in our problem setting, there is only one labeled source and all other
domains are unlabeled. As such, we do not have a way to compute the classification
error ε̂Si

for all candidate domains. Therefore, we only use the discriminator error
proposed in MDAN as a way to weigh the contribution of each collaborator domain
in the adaptation process.

A.2 Theoretical Justifications

Optimal Collaborator Selection (OCS) algorithm. Below we provide the proof
of the theorem used for optimal collaborator selection.

Theorem 1. Let D1 and D2 be two domains sharing the same labeling function
l. Let θCE denote the Lipschitz constant of the cross-entropy loss function in D1,
and let θ be the Lipschitz constant of a hypothesis learned on D1. For any two
θ -Lipschitz hypotheses h,h′, we can derive the following error bound for the cross-
entropy (CE) error εCE,D2

in D2:

εCE,D2
(h,h′)≤ θCE

(
εL1,D1

(h,h′)+2θW1(D1,D2)
)

(A.16)
where W1(D1,D2) denote the first Wasserstein distance between the domains D1

and D2, and εL1,D1
denotes the L1 error in D1.

Proof. The L1 error between two hypotheses h,h′ on a distribution D is given by:

εL1,D(h,h
′) = Ex∼D

[
|h(x)−h′(x)|

]
(A.17)

We define softmax cross-entropy on a given distribution D as

εCE,D(h) = Ex∼D

[∣∣∣logSl(x)h(x)
∣∣∣] , (A.18)

where S is the softmax function Rn −→ Rn, l is the labelling function, and Sl(x)

denotes the projection of S to the l(x)-component.

A.2. Theoretical Justifications 164

Then we have,

εCE,D(h,h
′) = Ex∼D

[
| logSl(x)h(x)− logSl(x)h

′(x)|
]

= εL1,D
(
logSlh, logSlh

′) (A.19)

Further, using the definition of Lipschitz continuity, we have

∣∣∣logSl(x)h(x)− logSl(y)h(y)
∣∣∣≤ θCE|h(x)−h(y)|, (A.20)

where θCE is the Lipschitz constant of the softmax cross-entropy function.

Next, we follow the triangle inequality proof from [125, proof of Lemma 1] to find
that

εL1,D2

(
logSlh, logSlh

′)≤ εL1,D1

(
logSlh, logSlh

′)+2θCE.θW1(D1,D2), (A.21)

where θ is a Lipschitz constant for h and h′, if the label l(x) were constant. Since
l(x) is constant outside of a measure 0 subset where the labels change, and h and h′

are Lipschitz, so in particular measurable, Equation A.21 holds everywhere.

Then, by substituting from Eq. A.19 and Eq. A.20 in Eq. A.21, we get Theorem 1:

εCE,D2
(h,h′)≤ εCE,D1

(h,h′)+2θCE.θW1(D1,D2)

≤ θCE(εL1,D1

(
h,h′

)
+2θW1 (D1,D2)) (A.22)

�

Privacy Analysis of DILS. Recall that a key feature of DILS is to exchange infor-
mation between the distributed nodes using gradients of the discriminators. This
clearly affords certain privacy benefits over existing uDA algorithms since we no
longer have to transmit raw training data between nodes. However, prior works have
shown that model gradients can potentially leak raw training data in collaborative
learning [206], therefore it is critical to examine: can the discriminator gradients
also indirectly leak training data of a domain? We begin by providing some the-
oretical justification on why our training algorithm prevents the reconstruction of
raw data from discriminator gradients. Later, we study the performance of DILS
under a state-of-the-art gradient leakage attack proposed by [205].

We consider the case when the domain discriminator is made of a single neuron and
later, we will explain how this analysis generalizes to deeper discriminators.

A.2. Theoretical Justifications 165

Let x = (x1,x2,xn) ∈ Rn be a n-dimensional training point sampled from the
target domain. Let the target domain feature extractor FT be a neural network which
outputs a j-dimensional feature vector e =

(
e1,e2,e j

)
∈ R j. The squared error

discriminator loss LD is expressed as:

LD =

(
g

(
j

∑
i=1

Wiei +b

)
− y

)2

(A.23)

where Wi (i = 1...j), b and g are respectively the weights, bias, and activation function
of the target discriminator, and y is the target domain label. Under this formulation,
the gradient with respect to discriminator weight Wj is given as:

∇W j
=

δLD
δWj

=
δ

(
g
(

∑
j
i=1Wiei +b

)
− y
)2

δWj

= 2

(
g

(
j

∑
i=1

Wiei +b

)
− y

)
δ

(
g
(

∑
j
i=1Wiei +b

))
δWj

= 2

(
g

(
j

∑
i=1

Wiei +b

)
− y

)(
g′
(

j

∑
i=1

Wiei +b

))
δ

(
∑

j
i=1Wiei +b

)
δWj

= 2

(
g

(
j

∑
i=1

Wiei +b

)
− y

)(
g′
(

j

∑
i=1

Wiei +b

))
· e j (A.24)

Similarly, the gradient with respect to the bias b is given as:

∇b =
δLD
δb

=
δ

(
g
(

∑
j
i=1Wiei +b

)
− y
)2

δb

= 2

(
g

(
j

∑
i=1

Wiei +b

)
− y

)(
g′
(

j

∑
i=1

Wiei +b

))
·1 (A.25)

Note that
∇Wj
∇b

= e j, i.e., if an adversary steals the gradients of the weights and bias
of the discriminator, they can potentially (and, at best) reconstruct the feature rep-
resentation e of the training input. It is infeasible to reconstruct the input raw data
x from the stolen features e, because our training strategy does not exchange the

A.2. Theoretical Justifications 166

feature extractor model FT between the nodes. Also note that by adding regular-
ization during the training process (e.g., using Dropout or L2 regularization), even
reconstruction of the entire feature representations e can be prevented.

Although we provided the above justification assuming that the discriminator con-
sists of a single neuron, our conclusion extends to scenarios where the discriminator
is a neural network. Here, the gradients of the first hidden layer of the discriminator
network can result in feature leakage:

∇
W (1)

c, j
=

δLD

δW (1)
c, j

= θ · e j (A.26)

where, W (1)
c, j is the weight connecting the jth encoded feature e j with the cth node in

the first hidden layer of the discriminator. θ is a real number. As described earlier,
the gradient in Equation A.26, in conjunction with the gradient of the bias can at
best result in reconstructing the feature representation e, however it does not reveal
the training data x from the target domain.

Protection against a state-of-the-art privacy attack. The above analysis was con-
ceptual in nature and intended to give an intuition on the privacy properties of DILS.
We now take a recently proposed privacy attack as an example and study the behav-
ior of DILS under it.

[205] showed that gradient matching can be a simple but robust technique to recon-
struct the raw training data from stolen gradients. Let us say we are given a machine
learning model F(.) with weights W . Let ∇W be the gradients with respect to a pri-
vate input pair (x,y). During distributed training, ∇W are exchanged between the
nodes.

A reconstruction attack happens as follows: an attacker first randomly initializes a
dummy input x′ and label input y′. This data is fed into the model F(.) to compute
dummy gradients as follows:

∇W ′ =
∂`(F (x′,W) ,y′)

∂W

Finally, the attacker minimizes the distance between the dummy gradients and the
actual gradients using gradient descent to reconstruct the private data as follows:

A.2. Theoretical Justifications 167

x′∗,y′∗ = argmin
x′,y′

∥∥∇W ′−∇W
∥∥2

= argmin
x′,y′

∥∥∥∥∂`(F (x′,W) ,y′)
∂W

−∇W
∥∥∥∥2

(A.27)

[205] demonstrate the success of this attack on a number of image datasets.

Can this attack succeed on DILS? There are two key assumptions in this attack:
(i) the weights W of the end-to-end machine learning model are available to an
adversary in order for them to compute the dummy gradients, (ii) the gradients of
all the layers (∇W) between the input x and output y are available to the adversary.

DILS never exchanges the weights of the target domain model (i.e., the feature
encoder and the discriminator) during the adversarial training process. The target
feature encoder is trained locally and only discriminator gradients are exchanged.
Without the knowledge of the model weights W , an attacker can not generate the
dummy gradients ∇W ′ necessary to initiate the attack on the target domain. Looking
at the source or collaborator domain, we do exchange its feature encoder with the
target domain in the initialization step of uDA, which could be used by the attacker
to generate the dummy gradients ∇W ′. However, for the attack to succeed, the
attacker also needs the real gradients (∇W) of all the layers between the input x
and output y in the source domain. This includes gradients of the feature encoder
FS and the domain discriminator DIS. In DILS however, we only exchange the
gradients of the domain discriminator DIS during training; the gradients of FS are
never exchanged. Without the knowledge of the gradients of FS, an attacker cannot
use Eq. A.27 to reconstruct the training data of the source domain.

In summary, we have proven that our strategy of distributed uDA based on discrim-
inator gradients does not allow an attacker to reconstruct the private data of either
the source or the target domain.

	Introduction
	Challenges in Scaling Machine Learning Systems
	Overview
	Sensing Heterogeneities
	Sensing Heterogeneities as Domain Shift

	Research Questions and Contributions
	Thesis Structure
	Research Outcomes
	Peer-Reviewed Publications
	Datasets
	Recognition

	Background
	Computational Models for Sensor Data
	Audio and Speech Recognition
	Human Activity Recognition

	Scalability Challenges for Inference Models
	Challenges in Scaling Speech Models
	Challenges in Scaling HAR Models

	Sensing Heterogeneity and Domain Shift
	Unsupervised Domain Adaptation
	Overview
	Techniques

	Discussion and Contributions
	Summary

	Quantifying the Effect of Domain Shift on Sensor Inference Models
	Microphone Heterogeneity in Speech Models
	Data Collection Methodology
	Experiments

	IMU Sensor and Placement Heterogeneity in HAR models
	Datasets
	Experiments

	Summary

	Scaling Opaque Machine Learning Systems
	Problem Setting
	Background and Related Work
	Primer on Generative Adversarial Networks

	Mic2Mic: GANs with Cyclic Consistency for Speech Translations
	Cyclic Consistency
	Mic2Mic architecture and training
	System Design

	Evaluation
	Tasks and Datasets
	Evaluation of the translation model
	Accuracy gains using Mic2Mic
	How much data is needed to train Mic2Mic?

	Discussion and Limitations
	Summary

	Scaling Transparent Machine Learning Systems
	Problem Setting
	Background and Related Work
	Scaling HAR Models with Data-Augmented Adversarial Training
	Solution Overview
	Solution Description

	Evaluation
	Experiment Setup
	Baselines
	Results

	Discussion and Limitations
	Summary

	Domain Adaptation Under Label Space Mismatch
	Problem Setting
	Background and Related Work
	Adaptation under Mismatched Label Spaces (AMLS)
	Notations
	Challenges for Adversarial uDA
	Solution Overview
	AMLS: Weighting Schemes
	AMLS: Training and Inference Pipelines

	Experiment Setup
	Tasks and Datasets
	Experiment Protocol

	Results
	Discussion and Limitations
	Summary

	Scaling Distributed ML Systems with Multiple Target Domains
	Motivation
	Preliminaries and Problem Formulation
	Notations and Primer
	Problem Formulation

	FRUDA: Framework for Realistic uDA
	Optimal Collaborator Selection (OCS)
	Distributed uDA using DIscriminator-based Lazy Synchronization (DILS)
	Combining OCS with DILS

	Evaluation
	Performance of DIscriminator-based Lazy Synchronization (DILS) training
	Performance of the proposed framework, FRUDA

	Related Work
	Discussion and Limitations
	Summary

	Concluding Remarks
	Summary of Contributions
	Limitations and Future Work

	Bibliography
	Appendix
	Experiment Details
	Theoretical Justifications

