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ABSTRACT
Null models and Complexity Science: disentangling noise from signal in complex interacting

systems

by Riccardo MARCACCIOLI

The constantly increasing availability of fine-grained data has led to a very detailed de-

scription of many socio-economic systems (such as financial markets, interbank loans

or supply chains), whose representation, however, quickly becomes too complex to al-

low for any meaningful intuition or insight about their functioning mechanisms. This,

in turn, leads to the challenge of disentangling statistically meaningful information from

noise without assuming any a priori knowledge on the particular system under study.

The aim of this thesis is to develop and test on real world data unsupervised tech-

niques to extract relevant information from large complex interacting systems. The ques-

tion I try to answer is the following: is it possible to disentangle statistically relevant in-

formation from noise without assuming any prior knowledge about the system under

study? In particular, I tackle this challenge from the viewpoint of hypothesis testing by

developing techniques based on so-called null models, i.e., partially randomised repre-

sentations of the system under study.

Given that complex systems can be analysed both from the perspective of their time

evolution and of their time-aggregated properties, I have tested and developed one tech-

nique for each of these two purposes. The first technique I have developed is aimed

at extracting “backbones” of relevant relationships in complex interacting systems rep-

resented as static weighted networks of pairwise interactions and it is inspired by the

well-known Pólya urn combinatorial process. The second technique I have developed is

instead aimed at identifying statistically relevant events and temporal patterns in single

or multiple time series by means of maximum entropy null models based on Ensemble

Theory. Both of these methodologies try to exploit the heterogeneity of complex sys-

tems data in order to design null models that are tailored to the systems under study,

and therefore capable of identifying signals that are genuinely distinctive of the systems

themselves.
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Impact Statement

Complex systems can be loosely identified with those systems made up of a large num-

ber of interacting agents. Given such a broad definition, their presence is ubiquitous

and their influence on both academic and industrial research has witness a dramatic in-

crease in the last twenty years. The work developed in this thesis is aimed at developing

methodologies able to disentangle noise from signal in such systems independently of

their mathematical representation as complex networks of interaction or univariate and

multivariate time series. As such, it naturally lends itself to a broad spectrum of applica-

tion both theoretical and practical.

In a dedicated section, I am going to show how the first methodology proposed can

be leveraged to enhance the predictive performance of a linear regression model, or how

it can be used to directly enhance the empirical analysis of a real world network and gain

valuable insights on its underlying hidden structure. In addition to these two applica-

tions, as it is the case with other noise-filtering techniques, the proposed methodology

can be used in conjunction with any unsupervised community detection algorithm to

find more stable and reliable communities in real world networks. Given this broad

range of application, this first line of work can potentially be used by any researcher

(acamedic or industrial) that has to deal with real word networks. Indeed, the academic

research article outlying the technique received a good online attention (it is in the 91st

percentile of the 278,696 tracked articles of a similar age in all journals), it has already

accumulated more than 10 citations from other peer reviewed articles and its free Matlab

implementation has been downloaded more than 100 times.

To maximize its impact, I will also show, in a dedicated Section, how the second

methodology can be put to practical use. In particular, I am going to focus on a system of

stock returns described by means of both univariate and multivariate time series. I will

show how the proposed framework can be leveraged to construct more robust portfolios

and how it can be used to obtain reliable Value-at-Risk estimates. Both of the proposed

applications can be directly picked up by any practitioner interested in portfolio alloca-

tion or financial risk management. On a more theoretical note, the work undertaken to

developed this latter technique can potentially have a tangible impact on future academic

research on time series analysis. Indeed, in the present thesis, I show that there exists a
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direct connection between Maximum Entropy modelling and auto-regressive models of

time series. Naturally, the outlined theoretical connection can be picked up by other

researchers and it can potentially be leveraged to show whether a wider class of auto-

regressive models can be re-framed in terms of the Maximum Entropy principle.

In general, to maximise the potential impact of my research, I will try to spread the

work contained in this thesis as much as possible by participating as much as possible to

conferences and scientific dissemination events. Indeed, I have already published three

research papers and participated to four different conferences of different disciplines.

Moreover, I will try to leverage my industrial contacts to maximise the spread of my

research to not-academic environments. In this respect, the methodology involving com-

plex networks filtering has been brought to the attention of several researchers working

at various central banks and it has been implemented within the FNA platform, one of

the leading software of network analysis.
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Chapter 1

Introduction

The last few years are often referred to as the Era of Big Data. The amount of informa-

tion that can be stored and gathered in the form of structured and unstructured data is

constantly increasing. In such scenario, the main scope of statistical data analysis has

not changed, yet it has become harder and harder: decoupling noise from signal is still a

high priority for researchers of all disciplines, especially for those who are dealing with

systems where the two concepts cannot be unequivocally separated.

Those systems composed by a large number of interacting agents are usually defined

as complex. However, there exist a vast number of systems with several interacting de-

grees of freedom whose dynamic is very complicated but which are far from being com-

plex systems. Think for example of an engine of a car, it is indeed made up of large

number of interacting parts, but no one has ever considered it a complex system. Why

is that so? Besides being composed of a vast number of interacting agents, complex sys-

tems are characterised by collective emerging properties which cannot be reduced and

explained by the functioning of their single components. Aristotle said “The Whole is

Greater than the Sum of its Parts”and complex systems are the physical embodiment of

this sentence. Embracing this perspective, and shifting the focus on modelling the inter-

actions and not the single agents, creates mathematical models that naturally display sys-

tem level properties such as heterogeneous distributions, cascades, spontaneous order, or

feedback loops which are typical fingerprints of many real-world systems. In addition

to being affected by measurement noise, most of these systems cannot be measured in

isolation and therefore produce extremely noisy data.

To tackle this issue, scientists working in the area of Complexity Science have created

techniques to benchmark measurements made on the systems of interest against suit-

ably randomised counterparts. These random realizations of the observed systems are

called null models, and they are closely related to null hypothesis testing in Multivariate
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Statistics.

In all quantitative modern sciences, null hypothesis testing is the established method-

ology that enables us to say whether there are no grounds to believe that there is a rela-

tionship between two phenomena. Within Complexity Science, null hypothesis testing is

often carried out by means of null models. These, broadly speaking, can be defined as

partially randomised counterparts of a particular system of interest designed to preserve

some of the system’s original measurable properties and to randomise all other proper-

ties in an unbiased way. In the last few years, null models have proven to be a precious

tool for analysing and discovering hidden patterns in various systems of different natures

and scales.

The work proposed in this thesis follows the stream of literature devoted to the design

and generation of null models. The aim of my research is that of building and testing

null models to detect statistically significant patterns in complex systems, tailoring the

null hypotheses underpinning such models on the heterogeneity of the systems under

study. In particular, my work will place more emphasis on testing such models on data

gathered from socio-economic systems, such as payments systems, financial markets or

supply chains.

Most complex interacting systems evolve over time. Therefore, their representations

broadly fall within two categories. The first representation is aggregate, or static, and it is

obtained by portraying the system as a weighted directed complex network of pairwise

interactions. The other representation emphasizes how the system evolves by means of

a set of recorded events, i.e., one or more time series. As a result, null models of complex

networks will be able to find patterns and anomalies of some aggregate measurable quan-

tities, while null models of time series will focus on how those quantities are changing

over time.

Given that both representations are commonly used in the literature (since they carry

different meanings), I have developed and tested two different categories of null models.

• The first one is called the "Pólya Filter", and it is the one suited for static systems. It

introduces a family of null models to test the significance of each link in a weighted

network against a null hypothesis designed to preserve the heterogeneity (i.e., the

degree) and activity (i.e., the strength) of each node in a weighted network. The

null hypothesis is inspired by a well-known combinatorial model (the Pólya urn).
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• The second one is a latent variable model suited for time-varying systems. It is

aimed at identifying statistically significant events and patterns in sets of correlated

time series by means of a maximum entropy approach.

Both models rely on a common principle, that of exploiting the heterogeneity of a com-

plex system to identify those signals that are genuinely informative about the system

itself, and both models have been characterized analytically to provide a solid under-

standing of their behaviour and their limitations. Moreover, they have been tested on

real-world datasets in order to show their potential in enhancing pattern identifications

and analysis of complex systems.

This thesis is structured as follows:

Chapter 1 : Introduction to the concept of null-models, reviews of the two streams of

literature behind both models and mathematical introduction to network theory

and time series analysis.

Chapter 2 : Theoretical and empirical characterization of the Pólya Filter. The content of

this chapter is summarised in the paper [91] which I published in Nature Commu-

nication during the course of my PhD.

Chapter 3 : Theoretical and empirical characterization of the Maximum Entropy mod-

elling of time series. The content of this chapter is summarised in two scientific ar-

ticles, published in Nature Scientific Reports [92] and Phisical Review E [93], which

I wrote during the course of my PhD.

Chapter 4 : Conclusions and future work that could arise from the work presented in

this thesis.

I would like to end this brief introduction to the work presented in this thesis by ac-

knowledging that most of the figures, tables and their captions have been taken directly

from the aforementioned papers I have published, as well as some sporadic phrases and

sentences.
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1.1 Disentangling signal from noise in complex interacting sys-

tems

Learning how to deal with noise is an essential skill that any researcher dealing with

real-world data should master. From the design to the implementation and the analysis,

experiments are always characterised by a noisy component. Despite being so ubiqui-

tous, having a definition of noise able to span different disciplines and application is far

from trivial. In astronomy, for example, the cosmic microwave background will be al-

ways captured by any sufficiently sensible radio telescope and any other measurement

should be adjusted accordingly. Another example of an easy to define source of noise is

the so call Johnson–Nyquist noise: if someone wants to measure the voltage at the start

and end point of a resistor, they will observe some fluctuations caused by the thermal

agitations of the electrons. When it comes to social systems, the concept of noise become

more blurred. How can we say that a certain correlation between two selected stocks’

returns has a noisy component? How can we say which recorded interactions of a social

system are due to random encounters? Besides actual curiosity, the reason for having a

coherent framework able to define and identify noise in systems of interest to the social

sciences is mainly due to modern data availability and granularity. Nowadays, the scale

of observables of social systems can vary significantly: data on the systems as whole are

available as much as recordings of the actions of each of its agents. As physics has taught

us, the more we can look into the building blocks of a system the more noise we will find

because they can be subject to forces that we cannot foresee or control.

In order to quantitatively define what is noise and what it is signal, we need to rely on

statistics and in particular on hypothesis testing. Once we have expressed noise in terms

of randomness, i.e. in terms of a probability distribution, one or two tails tests can be used

to determine whether a set of measurements is not coherent with the given process used

to model noise. In ordinary hypothesis testing, our hypothesis for the data generating

process is called null hypothesis. When we assume a data generating process for a whole

system, we call it null model. Once a null model is defined, i.e. once we have a proper

definition of noise, we can assign a p-value to each observable of a system and mark

those observables characterized by a low probability under our null model as signal and

the others as noise. At this point it is essential to underline that, by using this approach,

we are assuming a definition of signal that changes according to the underlying null
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model. If we assume as null model a constant one, i.e. we give a constant value to all the

observables of the system under study, everything will be marked as signal; conversely, if

someone is able to identify the underlying data generating process, almost1 nothing will

be marked as signal. From this perspective, defining a good null model can be interpreted

in terms of bias and variance: you do not want to have neither a high bias and underfit the

data you are building your randomization upon, nor a high variance and overfit them.

However it must be noticed that, even if related, the task of defining a good null model

is different from that of prediction (where theoretically someone wants to always find

data within the confidence intervals of your model’s predictions). What we can therefore

conclude is that having a solid rationale or guiding principle able to properly define a

null model is essential.

In regression analysis, we are able to control for certain variables: by adding certain

factors to our regression we can see how its in-sample accuracy increases and therefore

understand if the dependent variable is affected by the additional regressors. Ideally a

null model should do the same: we should be able to randomize the system by keep-

ing some desired quantity fixed and therefore discover signal once we have discounted

for the effect of the fixed quantities on the overall system. Naturally, this can be done

in a theoretically infinite number of ways. Imagine we have some data and we want

to randomize them while keeping their average value fixed. Every possible parametric

distribution with a defined average value can do the job. Of course every distribution

will introduce in our randomization a different bias. Biases are not always a bad feature

for a statistical model (see e.g. the well known bias-variance trade off [133]), however

we should always be aware of what biases we are introducing in our randomization and

how they can be used to increase the power of the randomization itself, for example by

reproducing some stylized facts of the family the system under study belongs to (e.g.

heavy tails distribution of returns in financial markets).

Constrained randomization procedures are not new to science and especially to physics.

Such mathematical problem arises in the everyday practise of a branch of physics known

as statistical mechanics. Originally, the necessity of studying the properties of a virtual

collection of systems, each verifying one or more common constraints, was introduced in

order to study the property of gases [142]. If one attempts to describe the behaviour of a

gas in a closed reservoir by modelling directly the dynamic of each single particle, they

1We will talk about this “almost ”later.
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end up with a system of coupled differential equations called BBGKY hierarchy, where

the variables ruling the dynamics of the (n + 1)-st variable appear in the n-th equation.

To solve this issue, physicists (first Boltzmann [23] by assuming the so called molecular

chaos and more formally Gibbs [58] with its ensemble theory) decided to abandon the de-

terministic interpretation and to assume a probabilistic one. Whereas ordinary mechanics

considers the time evolution of a single state of a system by means of, for example, energy

preserving equations, statistical mechanics introduces the statistical ensemble, which is a

large collection of virtual, independent copies of the system in various states all at a given

energy level. This is exactly the randomization task we started our discussion with. Such

statistical ensemble can mainly be of two kinds: microcanonical or canonical.

In a microcanonical ensembles, virtual copies of the system under study match ex-

actly the constrains imposed on the randomization. Having such a sharply defined

phase space, this kind of ensemble is hard to treat analytically and its associated prob-

abilities are often calculated by means of computational techniques [46]. On the other

hand, canonical ensemble are able to preserve the constrains imposed on the random-

ization only by means of ensemble averages2, but they usually retain much more ana-

lytical tractability [39], and, as such, are more suited for very large systems with vast

phase spaces. Even if they preferentially lend themselves to systems of different kinds,

the two types of ensemble carry different meaning. For example, if we are not sure if

the constraints we are imposing on the randomization are themselves affected by noise,

preserving their values as ensemble averages by employing a canonical randomization

scheme may lead to a more solid statistics. As a final remark we highlight that, when

the canonical randomization is carried out with the least possible amount of bias (i.e. by

exploiting the Maximum Entropy Principle [70]), the probabilities of the two randomiza-

tion schemes are linked analytically [141, 73] and, sometimes, coincide as the number of

degrees of freedom of the systems becomes infinite [142].

2Every entry of the randomization will have measurable values of the constraints that are going to be
different from the values imposed on the ensemble itself. However, their average values across different
instances of the randomization will match those imposed on the ensemble.
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1.2 Filtering noise in complex networks

1.2.1 Network theory

Informally a network is just a set of elementary units coupled in pairs by a relation of

any kind. Networks are mathematically formalized as a mathematical objects called

graphs [110]. There exist different types of graphs that mainly differ on the type of the

relationship that couples each pair of nodes:

• An undirected graph G = (N , E) can be described as a pair of sets, one is called the

node set N and contains all the nodes, i.e. the elementary interacting units of the

systems, the other is called the edges set E and contains a list of unordered pairs

of nodes lij = (i, j) called links or edges which indicate the presence of a set of

recorded interactions among the nodes.

• A directed graph is a graph where the edge set E contains a list of ordered pairs, i.e.

lij = (i, j) stands for a directed edge from node i to node j.

• Besides direction, edges can also be characterized by weights, which may represent

the strength of the interaction. The resulting graph is called a weighted graph.

The edge set of a weighted directed graph E contains a list of ordered triplets, i.e.

lij = (i, j, wij) stands for a directed edge from node i to node j with associated

weight wij ∈ R+.

• A signed graph G = (N , E ,S) is a triplet of sets: N is the node set, E is the edge set

and S : E → {+1,−1} is a sign function that assigns to each element of E a binary

value, which, in some contexts, can stand for a negative or positive kind of relation.

Besides its representation as a set of lists (N , E), a network can be thought of as an ad-

jacency matrix [110]. The adjacency matrix A of an unweighted graph made of N nodes

is a N × N binary symmetric matrix with entry Aij = 1 and Aji = 1 if (i, j) ∈ E and

Aij = 0 otherwise. In a weighted directed graph we have that Aij = wij if (i, j, wij) ∈ E

and Aij = 0 if (i, j, wij) /∈ E .

Once a network G = (N , E) is specified, several quantities can be evaluated starting

from N and E . These quantities can be used to synthetically characterize the network

itself. We introduce in the following some terminology that will be extensively used

throughout the thesis to describe such quantities. All the definitions are meant for un-

signed graphs, but their extension for the signed case is straightforward.
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Size The size of the network is the number of nodes it is made of.

Subgraph A network G′ = (N ′, E ′) is called a subgraph of G = (N , E) if N ′ ∈ N and

E ′ ∈ E .

Density The density of a graph is defined as the number of links divided by the total

number of possible links that can exist in the network. Using the adjacency matrix

representation and excluding self-edges, it can be written as:

D =

N∑
i,j=1
i 6=j

Aij
N(N − 1)

(1.1)

A network with density 1 is said to be complete. A complete subgraph is called a

clique.

Path A path is an ordered sequence of nodes P = (i0, i1, · · · in) such that ∀j (ij , ij+1) ∈ E .

The length of a path is the number of its nodes minus 1 that is the number of links

included in it. The number of paths of length n between a node i and a node j is

given by (An)ij .

Neighbourhood Nodes that can be reached starting from node i with a path of length

1 are said to be the nearest neighbours of i. The set of all nearest neighbours of i

forms the neighbourhood of i: nb(i).

Distance The distance between two nodes is the number of elements of the shortest path

connecting them.

Component A component of a network is defined as a connected subgraph.

Connected A network is connected if for each couple of nodes in the network there exists

a path having such nodes as starting and ending points.

Degree In an undirected graph, the degree ki of a node i is defined as the size of its

neighbourhood:

ki =
N∑
j=1

Aij (1.2)

In a directed graph the degree is substituted with the in and out degrees:

kiin =

N∑
i=1

Aij kiout =

N∑
j=1

Aij (1.3)
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These two quantities respectively indicate the total number of incoming and outgo-

ing links of a node i.

In a weighted directed graph the definition is slightly different since the adjacency

matrix is composed of the weights of each link. Calling W the adjacency matrix of

such a network, we have:

kiin =

N∑
i=1

Θ(Wij) kiout =

N∑
j=1

Θ(Wij) (1.4)

Where Θ is the Heaviside theta function: Θ(x) = 1 iff x > 0. Moreover, another

quantity can be introduced for weighted graphs: the strength wi of a node i. It is

the generalization of the degree when links have weights so for the directed case it

is defined as:

wiin =

N∑
i=1

Wij wiout =
N∑
j=1

Wij (1.5)

The average degree is the average among the degrees of all nodes in a network:

〈k〉 =
1

N

N∑
i=1

ki =
1

N

N∑
i,j=1

Aij (1.6)

From the definition of in/out-degree it is straightforward to understand that 〈kin〉 =

〈kout〉.

Degree Distribution The degree distribution of a network is the probability P (k) that a

randomly selected node has degree k and is defined as the number of nodes with

degree k divided by the total number of nodes in the graph: P (k) = Nk
N .

Clustering Clustering refers to the tendency of nodes to form clusters. To measure this

tendency it is possible to define the local clustering coefficient Ci of a node i as the

number of links between nearest neighbours of i divided by the possible number

of links between them:

Ci =
# [k, j : (k, j) ∈ E , k ∈ nb(i) , j ∈ nb(i)]

ki(ki − 1)
(1.7)

Where # [· · · ] indicates the cardinality of [· · · ]. If a node is isolated then its cluster-

ing coefficient is taken as 0.
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The average local clustering coefficient is simply the average of the clustering co-

efficients of all nodes: 〈C〉 = 1
N

∑
iCi.

The necessity to use networks as a mathematical representation of interacting systems

has naturally emerged in a variety of disciplines and contexts. The first usage of graph

theory was thanks to Euler, who employed it to solve the famous Königsberg bridge

problem [110]. However, it is during the twentieth century that graph theory witnessed

its major improvements and "has developed into a substantial body of knowledge" [110,

4]. Graph theory has established itself as one of the leading mathematical ways of treat-

ing a wide spectrum of subjects and it has therefore brought together researchers from

different disciplines and with different backgrounds.

1.2.2 Null models of networks

Null networks models, dating way back to the mid of the twentieth century [107, 139],

were first employed by social scientists to quantify the statistical relevance of social struc-

tures in empirical social networks [107]. The first rigorous mathematical formalization of

a randomization scheme (now known as the Erdős-Rényi random graph) able to preserve

the number of edges among N nodes was introduced independently by Paul Erdős and

Alfréd Rényi [50] and Edgar Gilbert [59]. The two Hungarian mathematicians counted

the number of graphs with a given number of edges M among those with a given num-

ber of nodes N and obtained the microcanonical probability for each edge. On the other

hand, Gilbert studied the canonical counterpart of the ensemble proposed by Erdős and

Rényi: he studied a model where each possible edge among N nodes may appear with

probability p. The two ensembles may be shown [119] to coincide in the limit pn2 →∞, as

is often the case when global constraints are imposed on the system (a global constraint is

a constrain of the form
∑

iOi where Oi is the recorded value of an observable associated

with node i).

The model proposed by Gilbert belongs to a more general family of random networks

model known as Exponential Random Graphs [5]. Exponential random graphs were

first proposed in the early 1980s by Holland and Leinhardt [66], building on statistical

foundations laid by Besag [16]. Substantial further developments were made by Frank

and Strauss [144, 53]. In the late 1990s and early 2000 the physics community started to

developed interest in the topic and consequently expanded the framework to more ex-

otic topological constraints [13, 118, 32, 46]. Those models were mainly theoretical and
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aimed at showing how tools directly borrowed from statistical mechanics were able to

deal with such constrained randomizations. The first research efforts to put exponen-

tial random graphs at the service of statistical data analysis and pattern recognition were

made by Park and Newman [119]: besides showing how null models based on expo-

nential random graphs could be leveraged to discover communities [109] and perform

hypothesis testing in large complex networks [117], they demonstrated how exponen-

tial random graphs could be derived from the maximum entropy principle and therefore

provided a valuable calibration tool for such models that could be leveraged even when

local constraints are imposed on the ensemble (for example the degree of each node of

the system). From that point on, maximum entropy models have been extensively em-

ployed in a wide range of scientific fields (for a comprehensive review see Ref. [39]). As a

final remark about exponential random graphs, it is worth mentioning that a wide class

of random network models aimed at accounting for potential community structures are

called Stochastic Block models (see Ref. [82] for a review). These models, which have

both a microcanonical and canonical formulation, can be derived directly from the maxi-

mum entropy principle [121, 54] and therefore can be included in the exponential random

graphs family.

The legacy of the microcanonical ensemble formulated by Erdős and Rényi is not as

rich as the one deriving from Gilbert’s canonical model. The difficulties with such en-

semble are mainly theoretical. To highlight such issues, let us consider an illustrative

example that comes up with the most straightforward ensemble someone can think of.

Imagine we want to randomize a directed network while keeping the degrees of each

node unchanged. In order to obtain the microcanonical probabilities, we would need to

count the number of binary matrices with a given row and column sum. The solution

to such combinatorial problem is still unknown [46, 151]. It can be shown [9] that the

canonical counts can be used to approximate the microcanonical ones and the precision

of the approximation is inversely proportional to the heterogeneity of the degree dis-

tribution. Unfortunately, real-world networks display, as typical fingerprint, a marked

heterogeneity in the distributions of various nodes attributes [110, 33] (including the de-

gree). As a result of this theoretical impediment, in order to evaluate the microcanonical

probabilities of different ensembles one needs to rely on simulated randomization pro-

cedures. One of the most famous algorithms is called configuration model [105] and

implements the degrees constrained microconanical ensemble. The configuration model
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itself and its generalization to a few other sets of constraints are known to be compu-

tational inefficient and therefore not suited for very large systems [98, 39]. In addition

to computational problems, configuration models are not trivial to implement from an

algorithmic point of view and are indeed available only for a small number of possible

systems and constraints [39].

1.2.3 Filtering edges in weighted complex networks

Over the years a large number of time-varying systems has been aggregated and repre-

sented by means of weighted networks [20, 4, 7]. One of the main reasons behind such

a success is that oftentimes network representations of seemingly very diverse systems

share a number of common characteristics. A recurrent feature of several natural and

social networks is the lack of a typical scale [33, 110], i.e., the marked heterogeneity of

major structural features such as the degree or strength distributions.

One of the most straightforward applications of null network models in the context

of weighted complex networks is that of selecting statistically significant links. Such

application is known to the literature both as statistical validation [147] as well as net-

work filtering [127], and it has contributed to shed light on the functioning mechanisms

of several real-world systems ranging from biological [161, 115] to social [27, 41], finan-

cial [68, 126] or even literature-related [67, 136] ones. Furthermore, filtering techniques

have been used by network theorist to enhance the performance of network visualization

and clustering algorithms [140, 38] (which are both known to work better in the sparse

regime [38]). Over the years, a number of approaches to extract relevant information

from complex networks have been developed [57, 135, 49, 129, 155, 51, 127, 147, 44, 43,

159, 28, 90, 146, 99]. Naturally, any filtering technique hinges on a definition of what type

of information represents a signal as opposed to noise and will therefore produce differ-

ent sets of validated links (which are usually referred to as “backbones“). As a result, the

network backbones obtained through different filtering techniques carry different mean-

ings and highlight different properties.

One class of techniques has focused on filtering proximity networks3, and it relied

on retaining interactions fulfilling some topological constraints. A seminal example of

this kind of approach is the minimum spanning tree [90], which selects the tree with the

3Proximity networks are full networks where a node is a point in an n-dimensional metric space and each
link is coupled with a weight computed by using a certain, given, distance function between the two nodes
it is attached to
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highest total strength embedded in a network. Less constrained generalizations of such

method are the planar maximally filtered graphs [146] and the triangulated maximally

filtered graphs [99], which reduce topological complexity by forcing the embedding of

network backbones on a surface with a given genus. These algorithms are not based on

null models and are typically performed algorithmically. Given the fact they try to force

on the observed network a simpler topological structure, the latter should be present in

the original system. As stated above, these methodologies are therefore suited (and orig-

inally thought) for extracting backbones from complete graphs (i.e. proximity measures).

The efforts to filter weighted complex networks (not full matrices) started quite naively

by thresholding the weights distribution of the system [51, 49, 129, 155]: all the links with

an associated weight smaller than a certain value w∗ were marked as noise and erased

from the system. Such approach is fast and, on real-world systems, more effective than

the intuition may suggest [156]. However, it naturally suffers from several limitations:

first of all the value w∗ is totally arbitrary, and finding a rationale to justify it is very

hard4; secondly it only consider the information coming from the global distribution of

the weights and therefore fails to take into consideration both the topology (which is

known to have an influence on the distribution of the weights across nodes [17]) and the

local relevance of a weight with respect to the local (i.e. at the node level) distribution

of weights; lastly, doing a global thresholding on the weights, automatically selects a

cut-off region and therefore ignores the intrinsic multiscale nature of most complex net-

works [135, 33], which should be preserved (or at least taken into consideration) by any

backbone extracting procedure. These issues have been addressed by a different class of

techniques that resorts to hypothesis testing (by means of null network models) to assess

the statistical significance of each link in a network. The number of network filtering

methodologies aimed at coupling each link wij of a network with a p-value pij is rela-

tively high. As such, I will not go into the details of each single technique proposed so

far. On the other hand, I will focus on the ones which have received more attention from

the scientific community and which I will later use as a comparison for the methodology

I am putting forward in the work presented in this thesis. Being based on a null network

model, all the following methodologies share the same filtering procedure: i) construct

an ensemble of networks based on one or more empirical properties of the data; ii) use

the ensemble to couple each link’s observed weightwij with a p-value, i.e. the probability

4Also the threshold α used to assess the significance of a null hypothesis is arbitrary, but it carries a
precise meaning in statistical terms.
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of observing a weight wij or higher between node i and j; iii) mark as significant all the

links with a p-value smaller than a given statistical significance threshold α.

Disparity filter [135] : This was the first (and arguably the most famous) technique rely-

ing on a null network model proposed in the literature, and it has been adopted as

one of the main benchmarks against which the efficiency of filtering techniques has

been tested. The null model that the authors used to define anomalous fluctuations

is based on the following null hypothesis: the normalized weights wij/si that corre-

spond to the connections of a certain node i of degree ki are drawn at random from

a uniform distribution. Intuitively one can imagine that a node i divides its strength

among its connections by taking a stick of length si and breaking it in ki−1 random

points. As it is well known [116], this process is a particular case of the more gen-

eral Dirichlet process, which has been thoroughly studied by mathematicians from

the seventies onwards [52]. As such, the probability πD of observing a link i–j with

a weight wij or higher, connected to a node with degree ki and strength si, can be

easily computed:

πD(wij |ki, si) = 1− (ki − 1)

∫ wij/si

0
(1− x)ki−2 dx =

(
1− wij

si

)ki−1
. (1.8)

Given that each link is associated with two nodes, two different p-values (one from

the “point of view”of each of the two nodes) may be computed. The final p-value

prescribed by the disparity filter is the minimum of the two probabilities. More-

over, the Disparity filter here described is the one suited for undirected weighted

complex networks, but its generalization to the directed case is straightforward. As

it can be understood from its description, the null hypothesis underlying the Dis-

parity filter results in a local null model (since it only uses node-level information)

which considers both the degree and the strength of the analyzed node as fixed

while letting the weight of each link fluctuate. Finally, it is worth noticing that the

ensemble proposed in this way is not the one which maximises the volume cov-

ered in phase space, or, in other words, it is not the one obtained by means of the

Maximum Entropy principle. In order to analytically calculate the microcanonical

probabilities of such ensemble, we would need to solve an integral of the form:

∫ 1

0
dxi δ

(
1−

∑
i

xi

)
e−

∑
i xi =

∫ +∞

−∞

dk

2π
e−ik

(
e− eik

e− iek

)n
,
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which is far from a trivial calculation. Since it is not a maximum entropy model, the

disparity filter is not the least biased model that can be built around the information

it uses from the original system, and it therefore incorporates some amount of bias

that we are going to leverage later while developing the Pólya filter.

Gloss filter [127] : This filtering technique was proposed to improve what was seen as

a drawback of the Disparity filter, i.e. its local null hypothesis. The null model

proposed here is a random graph where the connections of the original network

are locked, while weights are assigned to the edges by randomly extracting values

from the observed weight distribution Pobs(w). As such, this null model preserves

both the topology (since the position of the link is not shuffled) and the weight

distributions of the original network. The prescribed probability of observing a

link with weight w between nodes with degrees ki and kj and strengths si and sj

is:

P (w | ki, kj , si, sj) = Pobs(w)
P (si, sj | w, ki, kj)
P (si, sj | ki, kj)

, (1.9)

and the associated p-value πGl(wij | ki, kj , si, sj , Pobs(w)):

πGl(wij | ki, kj , si, sj , Pobs(w)) =

∫∞
wij

dw Pobs(w)P (si, sj | w, ki, kj)∫∞
0 dw Pobs(w)P (si, sj | w, ki, kj)

. (1.10)

Even if seemingly complicated, Equation 1.10 is quite intuitive: Pobs(w) is a well

defined number, P (si, sj | ki, kj) is a normalization factor and P (si, sj | wij , ki, kj)

is the probability of having two nodes with strengths si and sj connected by a link

with weights wij given their degrees i.e. it is the probability of drawing (without

replacement) ki − 1 and kj − 1 random variables from Pobs(w) such that their sums

equal si − wij and sj − wij respectively. Putting this latter consideration into for-

mulas, gives:

P (si, sj | wij , ki, kj) = F (si − wij , ki)F (sj − wij , kj) where

F (s, k) =

∫
dx1 Pobs(x1) · · ·

∫
dxk Pobs(xk) δ(x1 + · · ·+ xk − s)

(1.11)

the computation of the p-value 1.10 can be carried out numerically by looking at

Equation 1.11. The function F (s, k) can in fact be viewed as a multiple convolution

integral of the weight distribution function and therefore its computation may be
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done by evaluating the Fourier transform of the k-th power of the weight distribu-

tion and then computing the Fourier antitransform of the result. The Gloss filter is a

constrained shuffling of the empirical weights of the network on its links. As such,

the resulting ensemble is able to randomize the empirical data very little and the

p-values will not reach a magnitude as small as 10−L (L being the number of edges

of the network) [57]. As we are going to see later, reaching such low probabilities is

essential when a multiple hypothesis test correction is adopted (as it should) when

assessing the significance of the null model.

Hypergeometric filter [147] : This filtering technique was the first to underline that ex-

tracting a network backbone effectively amounts to perform multiple hypothesis

testing. Therefore, the significance level α must be corrected to avoid too many

false positives. The Hypergrometric filter assumes that the probability of observ-

ing w interactions between node i and j (i.e. a link with weight w) is given by the

hypergeometric distribution: H(w|S, siout, s
j
in):

H(w|S, souti , sinj ) =

(
souti
w

)(S−souti

sinj −w
)

(
S
sinj

) , (1.12)

where sin/outi is the in/out-strength of node i and S =
∑

i s
out
i is the total number

of interactions recorded in the system. Equation 1.12 describes the probability of

extracting without reinsertion w red balls out of souti extractions from an urn con-

taining N balls of which sinj are red. The p-value coming from Equation 1.12 reads:

πHF (wij | N, souti , sini ) = 1−
wij−1∑
w=0

H(w|N, souti , sinj ) . (1.13)

The null model of Equation 1.12 is, like the Disparity filter, very intuitive and not

very demanding computationally. Moreover, it creates a global and microcanonical

ensemble based on the observed network which is able to discount (up to the point

the assumed null hypothesis allows to do so) for some of the heterogeneity present

in the weights distribution of the systems but does not take into account the degrees

of nodes or the observed network’s topology. Creating a null model which accounts

only for the strengths, corresponds to generating almost complete networks and

therefore it can potentially fail in rightfully assessing the true heterogeneity of the

system.
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ECM filter [57] : This filtering technique leverages all the literature on Exponential Ran-

dom Graphs. The underlying null model comes from the maximum entropy canon-

ical ensemble able to preserve, as averages, the degree and the strength of each

node of the empirical network. Calling O this set of constraints, the probability of

observing a link with weight5 w ∈ N+ between node i and j reads:

Pij(w | O) =
xixjyiyj

1− yiyj + xixjyiyj
(yiyj)

w−1(1− yiyj) , (1.14)

where xi and yi are the Lagrange multipliers associated with the constraints on the

degrees and the strengths respectively. These free parameters are set by a system of

2N coupled non-linear equations:

ki =

N∑
j=1,j 6=i

xixjyiyj
1− yiyj + xixjyiyj

∀ i

si =
N∑

j=1,j 6=i

xixjyiyj
(1− yiyj + xixjyiyj)(1− yiyj)

∀ i .

The p-value of the Enhanced Configuration Model (ECM) filter can be calculated

by summing Equation 1.14 (as done in Equation 1.13) :

πECM (wij | O) =
xixjyiyj

1− yiyj + xixjyiyj
(yiyj)

wij−1 . (1.15)

This noise reduction method is built on a null model able to consider at the same

time the local and global information (since all parameters are coupled by the sys-

tem of equations specifying the constraints) and that incorporate the smallest amount

of bias. It should be noticed that, even if solving the system of equations can be

avoided, in order to find the right values of Lagrange multipliers, someone needs

to perform computationally intensive numerical optimizations of 2N variables and

therefore the speed (and quality) of the approach do not scale well with the size of

the system.

Hairball filter [44] : This filtering methodology is a specialized version of the ECM filter

just presented. It is a maximum entropy canonical null model that constraints only

the strengths of the nodes. As such, the mathematical details are omitted. Nev-

ertheless, it is worth noticing that dropping the constraints on the degrees (as in

5The case w ∈ R+ also exists and has an easier, yet similar, similar form.
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the Hypergeometric filter), results in redistribution of the strengths on an almost

complete graph.

Noise-Corrected filter [43] : This filtering technique is built using a Bayesian line of rea-

soning. It starts by considering the expected value of the weight wij ∈ N in a Bino-

mial setting ruled by an edge specific probability Pij : E(wij) = ŝiŝj/Ŝ, where si and

S are respectively the strength of node i and the total strength of the network and

the hat symbol ·̂ denotes the empirically measured quantity. Instead of focusing

directly on the weights, the Noise-Corrected (NC) filter, defines the lift factors:

Lij =

ŵij
E(wij)

− 1

ŵij
E(wij)

+ 1
=
η ŵij − 1

η ŵij + 1
∈ [−1, 1] ,

and tries to evaluate how much these measured quantities deviate from their ran-

dom counterparts. The variance of these quantities may be computed:

V(Lij) = V(wij)

2
η + Ŝη ŵij − ŵij ŝi+ŝjŝiŝj

η

(η ŵij + 1)2

2

, (1.16)

and used to evaluate how distant (in terms of numbers of standard deviations) the

empirical lift value Lij of each link is from its ensemble counterpart. In order to

fully estimate Equation 1.16, one needs to compute an estimate for V(wij). A first,

tempting way to do so, would be to follow the Binomial distribution assumption

and set V(wij) = ŜPij(1−Pij) while estimating the probability directly using Pij =

ŵij/Ŝ. However, doing so would give V(wij) = 0 when ŵij = 0 which would

suggest that measurement error is absent in these edges. To solve this problem, the

authors of the NC filter, use a Bayesian framework to estimate Pij by assuming a

Beta B[αij , βij ] prior for Pij , resulting in a posterior distribution B[ŵij + αij , ŝ −

ŵij + βij ]. The parameters α and β of the prior Beta distribution may be ultimately

fixed by considering the edge drawing process as an hypergeometric distribution:

αij
αij + βij

= E(Pij) =
1

Ŝ

ŝiŝj

Ŝ

αijβij
(αij + βij)2(αij + βij + 1)

= V(Pij) =
1

Ŝ2

ŝiŝj(Ŝ − ŝi)(ŝ− ŝj)
Ŝ2(Ŝ − 1)

.

(1.17)

Solving the System 1.17 makes it possible to fix the α and β parameters which con-

sequently make it possible to fix Pij , then find V(wij) and finally V(Lij).
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The above procedures provide top-down approaches that can provide valuable in-

sight for a vast range of systems. Each procedure comes with its own strength and limi-

tations, which should be carefully considered in order to find the filtering methodology

better suited for the case at hand. Even if different in nature, all the described method-

ologies are based on well defined null hypotheses, against which all links in a network

are tested individually. While this certainly presents advantages in terms of convenience,

at the same time it can lead to a lack of flexibility, as different networks may display

different levels of heterogeneity, to which a “one-fits-all” null hypothesis cannot adapt.

Furthermore, most of the above filters are based on null hypotheses of partially random

interactions. Yet, interactions in most natural and social systems are far from being ran-

dom, as past activity naturally breeds further activity [160, 8].

What the present work would like to achieve is the following: develop a flexible

methodology able to adapt the underlying null hypothesis to the network someone wants

to filter, while taking into consideration the fact that most complex systems are driven

by self reinforcing mechanisms. As it is later explained, in order to achieve this, the

introduced methodology will not be built around a single null model but rather around

a family of null models with a parameter that can fix the level of bias introduced in the

null hypothesis in order to tailor the filtering procedure to the network at hand.

1.3 Null models and time series analysis

1.3.1 Time series analysis

A time series can be defined as a pair of ordered sets T = {Xt : t ∈ T}. The first set T

stores N sampling times, while each element of X is a set of M measurements, or data

points, collected at the corresponding sampling times. Usually just written as Xt, we

call a time series single or univariate when M = 1, while when M > 1 we use the term

multiple or multivariate time series.

Even in the single time series case, there are countless quantities that can be computed

from time series, and listing them all goes well beyond the scope of this thesis. For exten-

sive reviews, I would point the reader to look at References [63, 138]. Nevertheless, I will

now introduce those quantities which are more pertinent with the scope of this thesis and

that will be extensively used in forthcoming sections.
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Mean The mean, or average value, of a time series is defined as

E[Xt] = µ =
1

N

tN∑
t=t1

xt .

In the multiple time series case, µ will be a vector of dimension M .

Variance The variance of a time series is defined as

V[Xt] = σ2 =
1

N

tN∑
t=t1

(xt − µ)2 .

In the multiple time series case, σ will be a vector of dimension M .

Skewness The skewness of a time series is defined as

S[Xt] =
E[(Xt − µ)3]

σ3
=

1
N

∑tN
t=t1

(xt − µ)3

σ3
.

In the multiple time series case, the temporal skewness will be a vector of dimen-

sion M .

Kurthosis The skewness of a time series is defined as

K[Xt] =
E[(Xt − µ)4]

σ4
=

1
N

∑tN
t=t1

(xt − µ)4

σ4
.

In the multiple time series case, the temporal kurtosis will be a vector of dimension

M .

Autocorrelation The normalized autocorrelation at lag k ∈ N is the correlation of the

time series with a delayed copy of itself k time lags later. If the Pearson correlation

is used, it reads:

Ck[Xt] =
E[(Xt − µ)(Xt+k − µ)]

σ2
=

1

Nσ2

tN−k∑
t=t1

(xt − µ)(xt+k − µ)

When not normalized by the variance, the autocorrelation (which is a function of

the lag k) is called autocovariance. In the multiple time series case Ck will be a

vector of dimension M . In this latter case we can also define a lagged correlation

Cijk for each pair of single time series (i, j) forming the multivariate system (note

that Cij0 is the common Pearson correlation between time series i and j).
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Partial autocorrelation The partial autocorrelation at lag k ∈ N is the autocorrelation

between xt and xt+k that cannot be explained by intermediate lags 1, 2, . . . , k − 1.

When the correlations are linear, i.e. they are Pearson’s correlations, the exact theo-

retical relation between the partial autocorrelation function and the autocorrelation

function can be found, and therefore several algorithms for estimating the partial

autocorrelation based on the sample autocorrelations have been put forward (see

Reference [26] for more details).

All the quantities defined above are in general functions of t1 and tN and therefore are

time series themselves. If the process generating the time series of interest, usually called

data generating process, is a random process with time changing parameters (imagine a

Normal distribution with mean and variance values that are functions of the sampling

time t) then the empirical quantities defined above will not be constant as new data points

are added. Processes whose distributions are somewhat stable in time are called station-

ary. To be more accurate, a process Xt is said to be stationary if its distribution FX does

not change when shifted in time, i.e. if FX(xt1 , . . . , xtN ) = FX(xt1+k
, . . . , xtN+k

). This

form of stationarity may be relaxed by defining a weak stationary process Xt as a time

evolving process which has fixed mean µ(t1, tN ) = µ(t1+k, tN+k) ∀k, fixed autocovari-

ance function C(t1, tN , τ) = C(t1+k, tN+k, τ) ∀k, τ and finite variance σ2(t1, tN ) < ∞.

Note that heteroscedastic processes (i.e. processes with a variance that changes through

time) fall within the latter definition of stationarity.

Even if weak stationarity is usually assumed by most modelling efforts proposed in

the literature [138], many real-world systems produce time series which are markedly not

stationary [31, 149, 134] (even if they may move from one stationary state to another [31]).

Even if this poses many theoretical issues, non stationary time series are, on a practical

level (e.g. for prediction purposes), handled by first applying a transformation which

makes the weak stationarity assumption more realistic. For example, stock prices are

widely known to be strongly not stationary, however their logarithmic increments, or

returns, are much less erratic and much more stable, with sufficiently stable means and

autocovariance structures (at least at the single time series level [42]).

1.3.2 Null time series models

Univariate and multivariate time series are extremely useful to study the dynamic of a

given system. However, the problem of assessing the statistical significance of one or
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more observables derived from the empirical data is particularly challenging. To con-

struct robust statistics and assess which properties of a data sample are “untypical ”,

ideally one would need to reproduce the system dynamics several times and collect mul-

tiple samples of the given time series. When dealing with complex interacting systems

this is usually impossible due to lack of control over the system’s initial conditions, sta-

tionarity and ergodicity [149, 86, 31]. To mimic the scientific method recipe of performing

multiple experiments, researchers usually employ randomization of a given data sample

constrained to preserve some desired properties, or in other words, time series null mod-

els.

Suitable models able to create a controlled randomization starting from a single time

series of interest are obviously not new to the literature. Researchers from different dis-

ciplines have indeed used different approaches to generate ensembles of artificial time

series sharing some characteristics with those generated by the unknown underlying

dynamics of the system under study. Before moving on I would like to underline the

fact that, while empirical time series are discrete in time by definition, they can be de-

scribed both by means of mathematical models evolving in discrete time and in contin-

uous time. In the present work I will only consider the former. Moreover, even if the

intertime ∆tk = tk− tk−1 may in principle be different for every k, if not explicitly stated,

I will assume that ∆tk = const for all k.

On the single time series case, efforts are mostly of two types, computational or model

driven. The most used computational technique able to create statistics around a single

sample from a data generating process is called bootstrapping [78, 48]. It was originally

created [47] as a generalization of another computational technique called jackknife [48]

and was meant to synthetically enlarge small samples realizations of independent and

identically distributed random variables. In its more vanilla version, bootstrap works as

follows: given a set of n data points, we create a probability distribution over this empir-

ical set by assigning a probability 1/n to each data point, we then draw n samples from

the defined distribution. As it can be deduced from its description, the basic idea un-

derlying the bootstrap methodology is to recreate the original population by leveraging

a resampling with replacement from the empirical sample. Once several instances of n

data points are drawn from the ensemble, we can associate a confidence interval with vir-

tually any statistics derived from the empirical data points, since the very same statistics

can be computed on each sample drawn from the ensemble and therefore a distribution
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around that statistics can be defined. This vanilla implementation of bootstrapping is

built to deal with strictly stationary time series generated from a distribution without

any explicit time dependence.

When there is some time structure in the data, which is highly probable when deal-

ing with a time series, the resampling procedure described above will inevitably fail as it

is not built to preserve or account for the underlying dependence structure in any way.

Numerous extensions of the original bootstrap technique have been made to account for

temporal dependence in the underlying data (for a concise review see Reference [77]).

One of the most simple and effective is block bootstrapping [79]. In the original block

bootstrap [34], a time series Xt is divided into a set B of b non-overlapping blocks of

length l = n/b such that Bk ∈ B ∀k and B1 = (x1, . . . , xl), B2 = (xl+1, . . . , x2l), . . . , Bb =

(xn−l+1, . . . , xn). Once such block set is defined, l samples are drawn from it by us-

ing a sampling with replacement scheme and stitched together to create a block boot-

strapped sample of the original time series. By construction, the bootstrapped samples

will preserve some portion of the time structure underlying the empirical time series. The

amount of structure retained heavily depends on the length l chosen for the block par-

titioning. After this initial idea, several other block bootstrapping methodologies were

proposed [79] (each changing slightly the way a block is constructed, for example by al-

lowing overlapping blocks) as well as several different ways to optimally select a block

length l.

The main limitation, partially shared by all the block bootstrap techniques, is that

the generated data is non-stationary even if the originally data is. To understand this,

we can simply notice that consecutive observations in different blocks are independent

while consecutive observations within a block are dependent. In addition to this, the

size, chosen while constructing the blocks, affects the performance of the methodologies

significantly and there is no unique criterion on how to determine it optimally. A station-

ary bootstrap has been therefore proposed (see Reference [29] for a review). It starts as

the original bootstrap by selecting a random observation from the empirical time series,

say xt, then the next observation is given by xt+1 with probability 1 − p or by another

random data point with probability p. Note that, by doing this, the length of the block

is a random variable with mean 1/p. The main advantage of the stationary bootstrap is

that it has a weaker dependence on p than the block bootstrap has on the block length

l [29]. While, generally speaking, bootstrapping techniques are computationally efficient
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and very intuitive, they somewhat lack in transparency. Think for example of the block

bootstrap methods mentioned above, what kind of property of the underlying time series

the methodology is it preserving? In other words, what are the constraints on the ensem-

ble that the specific technique is implicitly introducing? Moreover, can we explicitly state

the assumption underlying bootstrapping? Given the difficulties in answering to such

questions, several model driven approaches have been proposed.

As far as model-driven approaches are concerned, the literature is extremely vast [89,

63]. Broadly speaking, modelling approaches start by assuming an a priori structure for

the system dynamics, i.e. by using certain parametric processes to capture one or more

empirical properties of the recorded time series, and proceed by selecting, within the

assumed class of models, the one which best explains the available set of observations

by using, for example, a Maximum Likelihood fitting procedure [63]. An extensively

used class of processes is that of linear autoregressive models, where the value xk+1 of

the given time series Xt is given by a linear combination of previously recorded values

xk, xk−1, . . ., each characterised by their own idiosyncratic noise to capture the fluctua-

tions of individual variables. The first and most simple of this models class is the AR(1)

model or autoregressive order 1 model [138]. An AR(1) process is specified by the equa-

tion

xt = c+ φxt−1 + εt , (1.18)

where c and φ are constants to be determined and εt is a so called white noise process,

i.e. εt is a draw from a normal distribution with zero mean and variance σ2. To estimate

the free parameters of the model, several different approaches exist [138] which rely on

power spectrum decomposition, least squares procedures, maximum likelihood or mo-

ment matching. All of these estimation techniques will give in theory different results,

and each of them is more suited for a particular sample than another one. However,

considering that our starting point was that we wanted to create a constrained random-

ization of an empirical time series of interest, I am going to explain the one which better

follows this line of reasoning, i.e. the moment matching estimation.

Once again, let me remind that we want our AR(1) to be able to preserve some em-

pirical properties of the underlying time series, i.e. its mean, variance and lag 1 autoco-

variance. Starting from Equation (1.18), we can recursively replace xk with its definition
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by means of xk−1 and obtain

xt = c+ φxt−1 + εt = c+ φ (c+ φxt−2 + εt−1) + εt = . . . = c
t−1∑
i=0

φi + φtx0 +
t−1∑
i=0

φi εt−i ,

which becomes (when t� 1 and | φ |< 1)

xt =
c

1− φ
+
∞∑
i=0

φi εt−i . (1.19)

Note that Equation (1.19) is very general and holds independently of the distribution

used to model the noisy component εk. When we assume that the noisy components are

i.i.d random variables drawn from a standard normal distribution, also xt+1 will be nor-

mally distributed. Moreover, the assumption φ ∈ (−1, 1) is general as well and must hold

in order to have a process with a well defined mean (and therefore weakly stationary).

We can now use Equation (1.19) to mach the ensemble averages of the mean, variance

and lag 1 autocovariance with their empirical counterparts. To do so we first compute

these three quantities in the ensemble:

E[xt] =
c

1− φ

V[xt] =
∞∑
i=0

φ2i σ2 =
σ2

1− φ2

cov[xt, xt−1] = cov[c+ φxt−1 + εt, xt] =
σ2

1− φ2
φ .

(1.20)

Then, the left hand sides of the system (1.20) can be substituted with their empirical

values, and the parameters c, φ, σ can be fixed by solving the corresponding system of

equations. Similar equations, generally known as Yule-Walker equations [158, 150], may

be constructed for more general AR(p) processes, which are able to match the first p

values of the empirical autocovariance function. While the autocorrelation function of a

AR(p) tails off exponentially as a function of the lag τ , its partial autocorrelation becomes

zero as soon as the lag becomes greater than autoregressive parameter p.

In order to have a process able to display an exponential decay on both the partial and

common autocorrelation functions, the autoregressive–moving-average (ARMA) model [153]
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was introduced. An ARMA(p, q) model (whose initial aim was exactly to perform hy-

pothesis testing on single time series [153]) starts from anAR(p) model and adds q autore-

gressive terms in the noise component and therefore produces a correlated noise struc-

ture (which is unobservable on real data) in the synthetic time series. Mathematically, an

ARMA(p, q) model is fully specified by the equation

xt = c+ εt +

p∑
i=1

φi xt−i +

q∑
i=1

θi εt−i .

Finding the best fitting model among this class is much harder than in the AR case. As it

can be clearly seen with the following example:

xt = εt =⇒ xt − 0.5xt+1 = εt − 0.5εt−1 =⇒ xt = 0.5xt−1 − 0.5εt−1 + εt ∼ ARMA(1, 1) ,

ARMAmodels suffer from an overspecification issue, i.e. there are more parameters than

constraints on the randomization they are defining. Nevertheless, the seminal work of

Box and Jenkins [26] showed how the ARMA(p, q) models class can be fitted to real data

by employing an iterative fitting scheme. ARMA models were then further generalized

by the GARCH models class [22], which models the time series using an AR model

and the error terms with an ARMA model, in order to produce autocorrelations in the

variance term, i.e. to approximately reproduce the empirical quantities E(X2
tX

2
t−k). After

the GARCH models class, several new ones were introduced [138] each with its own

strength and limitation. In general, all autoregressive models that came after the simpler

AR(p) suffer from calibration issues, especially under the small sample regime. This

is because the noise structure they assume cannot be directly traced back to empirical

observables and, consequently, the parameters determining the ensembles they define

are not uniquely specified.

For what concerns the multiple time series case, the scenario is similar but less diverse

than the univariate case. We still can divide the available techniques in computational

and model driven but their number is much smaller. The main reason for this is that

any valuable randomization scheme should be able to account at the same time for the

temporal structure of each individual time series, as well as their collective one (which

naturally influences also the time structure of each single time series), and doing this in

an optimal way is a highly challenging task.

From a modelling perspective, generalizations of GARCH and ARCH models to a
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multivariate setting have been developed [88]. However, they suffer from great limita-

tions when it comes to calibration, and indeed they are usually employed to handle sys-

tems described by means of just a few time series [88]. On the other hand, the multivari-

ate generalization of the simpler AR(p) model, the V AR(p), is much easier to calibrate

and it has therefore been extensively employed by researchers interested in time series

analysis [162]. While the AR(p) performs a regression of the past p values xt−1, . . . , xt−p

of a time series Xt against its value xt, the V AR(p) model does the very same thing on

a set of simultaneously sampled time series Xt. If the system we need to randomize is

made of N time series, a vector autoregressive model of order p has the following form:

xt = A1xt−1 + . . .+Apxt−p + εt ,

where xi is a vector of dimension N storing the values sampled at time i of the N time

series, Ai is an N × N matrix of fixed coefficients and εt is an N × 1 unobservable zero

mean white noise vector process without any autocorrelation in time but with a given

and invariant covariance matrix Σ, i.e. E[εitε
j
s] = σij for all s = t and 0 otherwise. An in-

teresting result, which can be used for calibration purposes, is that any V AR(p) process

can be rewritten by means of another V AR(1) process with different coefficients. How-

ever, the most used calibration technique is multivariate least square and its numerous

variations [162].

On the computational side, multivariate generalizations of the block bootstrap de-

scribed above are the “go to”methodologies. However, as one can easily imagine, defin-

ing the block size on a two dimensional data matrix, whose rows’ positions are totally ar-

bitrary, must be done with extreme care. As a consequence of this, before applying a mul-

tivariate version of the univariate block bootstrap, data are usually highly pre-processed

or first a V AR(p) process is fitted to the data and then its residuals are bootstrapped [78].

Summing up, we can clearly state that the literature on developing constrained ran-

domization of a given set of time series is extremely rich. The available techniques can

be broadly divided into two groups, i.e. model driven or computational. The former

are extremely well characterised theoretically, and their strengths and limitation are well

understood. Generally speaking, in all these techniques, future values of each time series

are usually obtained by a linear combination of past values of one or more time series,
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each characterised by their own idiosyncratic noise to capture the fluctuations of indi-

vidual variables. Such a structure is most often dictated by its simplicity rather than by

first principles. As a consequence, once calibrated, autoregressive models produce rather

constrained ensembles of time series that do not allow to explore scenarios that differ

substantially from those observed empirically. On the other hand, we have the class of

computational techniques, which is effectively made up of bootstrapping and its numer-

ous variations. These methodologies try to generate partially randomised versions of the

available data via various resampling exercises. Especially in the univariate case, boot-

strapping is extremely efficient and intuitive. However, its foundations, and the types of

ensembles it is able to produce, are not that well characterised theoretically. Moreover,

it implicitly relies (and hugely benefits) on concepts such as sample independence and

some forms of stationarity [64], which limit its power when dealing with time series data

collected from complex interacting systems.

The aim of Chapter 3 will be to develop, characterise and apply to real-world data

a framework to potentially overcome these issues. Any general framework that tries to

handle time series data should be able to produce a vast range of data-driven random-

ization schemes whose constraints can be easily added or removed and with, ideally, no

assumptions on the data at hand or on the dynamics of the null model used to perform

the randomization itself. Luckily, a very general modelling framework with this prereq-

uisites already exists and it is usually referred to as Hamiltonian or Maximum Entropy

modelling [70, 71]. Originally created to study the properties of gases, it has been ap-

plied, throughout the years, to multiple types of systems and with various scopes [152,

106, 123, 132, 39]. Most importantly, it provides a way of creating unbiased ensembles

able to preserve potentially any type of constraint as ensemble averages, using, as the

only assumption, the Maximum Entropy principle. Chapter 3 is devoted to explaining

such modelling framework in detail and to show how it can be directly applied to any

time series of interest.



29

Chapter 2

The Pólya filter

2.1 Development of the null model

The Pólya urn is a combinatorial problem named after the mathematician George Pólya.

In its classic formulation, we are given an urn that contains B0 black balls and R0 red

balls. We randomly draw a ball from the urn, we observe its colour and put it back in

the urn together with a new balls of the same colour. The process is then repeated n

times. The probability of observing x red balls out of n draws follows a Beta-Binomial

distribution [62] with probability mass function:

P(x | n, α, β) =

(
n

x

)
B(x+ α, n− x+ β)

B(α, β)
, (2.1)

whereB its the well known beta function and α = R0/a, β = B0/a. This game, if restated

in the context of networks, can be a good candidate to solve the problems highlighted in

the previous section, i.e. to statistically validate links in complex weighted networks.

First of all, it can incorporate our prior knowledge on the marked heterogeneity of most

real world networks since its reinsertion scheme naturally produce a rich-get-richer ef-

fect. Secondly, it is based on a parameter a, ruling the strength of the self reinforcing

mechanism, which may give to a potential Pólya urn based null model the flexibility to

adapt to the empirical network from which we wish to filter out noise.

To practically implement a filtering methodology, we first need to rewrite Equation (2.1)

in network terms. Our aim is to assess the statistical significance of a certain weightw ∈ N

associated with one of the links of a node with degree k and strength s ∈ N (more on the

natural weights assumption later). We can relate this task to assessing the probability of

drawing w red balls out of s attempts from a Pólya urn, initially composed of 1 red ball
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and k − 1 black balls. Such a probability reads

P(w | k, s, a) =

(
s

w

)
B
(
1
a + w, k−1a + s− w

)
B
(
1
a ,

k−1
a

) . (2.2)

The above equation fully describes the class of null hypotheses that will characterise the

proposed filtering technique, which will be referred to as Pólya filter (PF). The proposed

class of null models assumes that a node distributes the weights on its links following

a Pólya process whose reinforcement mechanism is ruled by the parameter a. As stated

above, the rationale of such assumption lays in the flexibility introduced by such a pa-

rameter and in the fact that it naturally captures situations where the more two nodes

have interacted, the more further interactions between them become likely. Figure 2.1

portrays a schematic representation of how the Pólya filter works on a dummy network

made up of three links and three nodes.

Equation (2.2) allows to couple a link of weight w with a p-value, by simply sum-

ming the probability of each outcome over all possible “favourable” outcomes, i.e. those

cases where at least w red balls have been drawn from the Pólya urn after s draws. In

mathematical terms this gives:

πP (w | k, s, a) = 1−
w−1∑
x=0

P(x | k, s, a) =

=
B
(
k−1
a + s− w,w + 1

a

)
(s+ 1)B

(
1
a ,

k−1
a

)
B(s− w + 1, w + 1)

3F2

1, w +
1

a
,−s+ w

w + 1,−k − 1

a
− s+ w

; 1

 ,

(2.3)

where B is the Beta function, and 3F2 denotes the generalised hypergeometric function.

Once the value of the free parameter a has been set, Equation (2.3) is fully specified and

two p-values can be assigned to each link in the network from the viewpoint of the two

nodes it connects. The final p-value prescribed is the minimum of the two, coherently

with the approach proposed by the Disparity filter. As usually done in the network fil-

tering literature, a link is said to be significant if its associated p-value is smaller than a

significance level α, which is the same for all the links of the network. As pointed out in

the paper where the Hypergeometric filter has been put forward [147], this procedure re-

quires setting a univariate significance level αu and then applying a multiple hypothesis

test correction. When nmultiple hypothesis tests are performed at a level α, the probabil-

ity of obtaining at least one false positive (known as family-wise error rate) is 1−(1−α)n,
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FIGURE 2.1: Sketch of the Pólya urn process in a network setting. This is a toy example whose
aim is to assess the statistical significance of the red link with weight wAB = 2 from the viewpoint
of node A, whose strength and degree are respectively k = 3 and s = 4. The underlying Pólya
urn starts with one red ball and k− 1 = 2 black balls, and the objective is to assess the probability
of drawing at least wAB red balls in s draws (i.e., the probability that a node distributing its
strength s at random through a Pólya process will assign a weight equal or larger than wAB on
the link under consideration). The right part of the Figure shows the possible configurations of
the corresponding Pólya urn (for a = 1, which entails adding to the urn one ball of the same color
of the latest ball drawn) over the s draws, and their corresponding probabilities computed via
Equation (2.2). The p-value πAB associated to the link is computed as the sum over all the urns
(as in Equation (2.3)) containing at least w = 2 red balls (in addition to the one initially present in
the urn) at the end of the s = 4 consecutive draws.
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which approaches 1 as n increases. Two main approaches usually employed to control

for this effect are the Bonferroni correction [104] and the false discovery rate (FDR) [11].

Benefits and limitations of both philosophies have been largely discussed [122, 113], and

choosing between the two essentially boils down to the type of statistical error one is

more inclined to accept. The Bonferroni correction is aimed at minimising the probabil-

ity of even one false positive and it is therefore much stricter than the FDR. Typically it

guarantees high precision but low recall (i.e. it rejects a high number of true positives).

Following the Hypergeometric filter, the Bonferroni correction will be mostly used in this

thesis: a link will be included in the Pólya network backbone whenever at least one of its

corresponding p-values will be such that πP < αu/L, where L is the number of statistical

tests performed, which for an undirected network is given by twice the number of its

links (in the case of a link between a node with degree k = 1 and a node with k > 1 we

keep the link only if πP < αu/L for the node with degree greater than one).

It should be noticed, that the closed form solution appearing in the second line of

Equation (2.3) is of little practical due to the presence of the generalised hypergeomet-

ric function. Indeed, computing the p-values of the Pólya filter through the sum of the

probabilities (2.2) (first line of Equation (2.3)) is both faster and more accurate, as val-

ues of the beta function can be easily computed by any numerical software with high

accuracy. Yet, the above expression is extremely useful to gain analytical insight into the

Pólya filter. As a matter of fact, we shall use it to obtain an approximation that will let us

understand how the filtering really works and prove the relationship between the Pólya

and Disparity filters (see Section 2.3.1).

We have introduced the Pólya filter for weighted undirected networks but it can be

easily extended to weighted directed networks. In the undirected case each weight can

be associated with two p-values, one for each of the two nodes the link is attached to.

In the directed case we can still associate two p-values to each weight by assessing its

statistical significance both as an incoming and as an outgoing link. For example, when

testing as an outgoing link, Equation (2.3) is easily generalized as:

πP (w | kout, sout, a) =
B
(
kout−1
a + sout − w,w + 1

a

)
(sout + 1)B

(
1
a ,

kout−1
a

)
B(sout − w + 1, w + 1)

×

× 3F2

1, w +
1

a
,−sout + w

w + 1,−k
out − 1

a
− sout + w + 1

; 1

 ,

(2.4)
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with the replacements kout → kin, sout → sin for the test of an incoming link. As in the

directed case, a link is considered significant only if at least one of the two p-values is

lower than the corrected threshold αB . In the case where kouti = 1, we keep the directed

link connecting i and j only if πP (wij | kinj , sinj , a) < αB , and vice versa in the case kinj = 1.

The empirical analyses performed in the following are done on directed networks.

Nevertheless, all the analytical results are obtained in the undirected case to keep the

exposition clean, intuitive and easy to read. For the same reasons, I decided to systemat-

ically omit the node indexes on degrees, strengths and weights.

2.2 Data

Before moving on to the characterization of the Pólya filter, I will briefly introduce the

empirical networks that I will use in the rest of this Chapter.

World Input Output Database The Database contains yearly aggregate economic trans-

actions, measured in millions of dollars, between the industrial sectors of different

countries from 2000 to 2014. The database features transactions between 64 sectors

in 45 countries and its full characterization can be found in Ref. [145, 45]. The yearly

networks resulting from this database and their properties is not new to the liter-

ature and have been extensively analyzed in both model driven and data driven

research [37, 84, 125]. In one of the applications of Section 2.7, I am going to use

the full series of 15 networks. In the rest of the thesis, whenever I will refer to the

WIOT network, I will refer to the aggregate network coming from the year 2014,

which features 2,464 nodes and 738,374 edges.

US Airports network The data used in this example contains various information on

the flights between different airports of the United States during the year 2017.

Links are existing, directed flight routes between airports (the nodes), while the

weights indicate the cumulative number of passengers (across all flights) on that

directed path. The system contains 1151 airports and 20,580 different connections.

As in the WIOT case, this dataset is not new to the literature: the same network

with data coming from different years has already been used in several network

filtering studies [57, 135, 43] and represents a standard benchmark against which

new methodologies are tested.
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This first two networks are going to be extensively used for numerical evidence, when-

ever necessary, during the characterization of the Pólya filter. The following two datasets

are just going to be employed, together with the WIOT and US ariports networks, in

Section 2.6 to test the Pólya filter against other filtering methodologies.

High School network This dataset contains recorded face-to-face interactions between

students of a high school in Marsille during a period of five days in 2013 [100].

It is another networked system extensively studied in the literature (see Ref. [36]

for a comprehensive list of associated publications). Nodes are students and links’

weights represent the number of interactions recorded during the experiment (with

a time resolution of 20 seconds). The network is made of 5818 links and 1567 nodes.

Florida ecosystem network Weights in this network represent the carbon exchanges be-

tween taxa in the cypress wetlands of South Florida during its dry season [148]. The

network is formed of 128 nodes and 2137 links. As the previous datsets, this one

too has been extensively studied in the literature (for a complete characterization

see Ref. [75]).

2.3 Understanding the backbone family

One common feature of all the filtering techniques proposed in Section 1.2.3 is the fact

that the p-values they proposed are non linear functions of their parameters. As a re-

sult, the filtering itself is treated like a black box: the p-value associated with a weight

w is evaluated and no further explanation is given, besides the one provided by the null

model itself. The typical features of the extracted backbones (like their multiscale nature

in the case of the Disparity filter [135]) are evaluated only in retrospect by empirically

analyzing the backbones themselves. The main objective of this Section is to challenge

this practise and try to build a solid intuition on the mechanism underpinning the Pólya

filter by assessing a priori what links are retained and discarded when their statistical

significance is computed.

2.3.1 Approximating the p-value

Equation (2.3) is mathematically exact but its complicated form prevents any meaningful

intuition about how a p-value is linked with the parameters w, s, k and a. To partially

circumvent this issue we are here going to find an approximation for the expression of
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Equation (2.3). In order to do so, we will repeatedly make use of the zero-order Stirling

approximation for the ratio of two Gamma functions:

Γ [x+ α]

Γ [x+ β]
= xα−β

(
1 +O

[
1

x

])
≈ xα−β , (2.5)

which holds for x→∞.

We start by taking care care of the hypergeometric function in Equation (2.3). First of

all, we expand it in terms of ratios of Gamma functions:

3F2

1, w +
1

a
,−si + w

w + 1,−k − 1

a
− s+ w

; 1

 =

=
∞∑
n=0

Γ [−s+ w + n]

Γ [−s+ w]

Γ
[
−k−1

a − s+ w + 1
]

Γ
[
−k−1

a − s+ w + 1 + n
] Γ
[
w + 1

a + n
]

Γ
[
w + 1

a

] Γ [w + 1]

Γ [w + 1 + n]
.

(2.6)

We can simplify the last two terms in the above expression:

Γ
[
w + 1

a + n
]

Γ [w + 1 + n]

Γ [w + 1]

Γ
[
w + 1

a

] ≈ w 1
a
+n−(1+n)w1− 1

a = 1 ,

where we have assumed w � 1/a. Putting this result back into Equation (2.6) gives:

3F2

1, w + 1 +
1

a
,−s+ w + 1

w + 2,−k − 1

a
− s+ w + 2

; 1

 ≈ 2F1

− s+ w, 1

− k − 1

a
− s+ w + 1

; 1

 . (2.7)

Equation (2.7) can be now further simplified by making use of the the Chu-Vandermonde

identity 2F1(−n, b; c, 1) = (c−b)n
(c)n

(where (·)n denotes the Pochhammer symbol), which

gives:

2F1

− s+ w, 1

− k − 1

a
− s+ w + 1

; 1

 =
s− w + k−1

a

(k − 1)/a
. (2.8)

Putting Equation (2.8) back into Equation (2.3), and writing the Beta functions as ratios

of Gamma functions, allows to write Equation (2.3) as the product of the three following
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FIGURE 2.2: Comparison between the exact p-values πP of Equation (2.3) and the approximate
ones πapprox

P of Equation (2.11) for different values of the parameter a. (a) p-values computed on
the US Airports network. (b) p-values computed on the WIOT network.

ingredients:

B

[
k − 1

a
+ s− w,w +

1

a

]
(s− w +

k − 1

a
) =

Γ
[
k−1
a + s− w + 1

]
Γ
[
w + 1

a

]
Γ
[
s+ k

a

]
1

(s+ 1)B [s− w + 1, w + 1]
=

Γ [s+ 1]

Γ [s− w + 1] Γ [w + 1]

1
k−1
a B

[
1
a ,

k−1
a

] =
Γ
[
k
a

]
Γ
[
1
a

]
Γ
[
k
a −

1
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(2.9)

By matching Gamma functions in the numerators and denominators of the above ratios,

and making use of the Stirling approximation (Equation (2.5)), we can then write down

the p-value in Equation (2.3) as the product of the following quantities:

Γ
[
s− w + k−1

a + 1
]

Γ [s− w + 1]
≈ (s− w)

k−1
a = s

k−1
a

(
1− w

s

) k−1
a

, s− w � k − 1

a
+ 1

Γ
[
w + 1

a

]
Γ [w + 1]

≈ w
1
a
−1 , w � 1

a
, w � 1

Γ [s+ 1]

Γ
[
s+ k

a

] ≈ s1−
k
a , s� k

a
, s� 1

Γ
[
k
a

]
Γ
[
k
a −

1
a + 1

] ≈
(
k

a

) 1
a
−1

, k � a− 1 ,

(2.10)

where on each line we have written the approximations we made use of. Finally, we can

put together the above expressions and obtain:

πP (w | k, s, a) ≈ 1

Γ
[
1
a

] (1− w

s

) k−1
a

(
w k

s a

) 1
a
−1

. (2.11)

All the approximations that we are assuming are written in Equation (2.10). In Fig-
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ure 2.2 we show a comparison between the p-values obtained from the Pólya filter (Equa-

tion (2.3)) and the above expression for the WIOT and the US airports networks. As it can

be seen, the overall agreement is rather good, and larger values of a improve the quality

of the approximation, as also suggested by the approximations made in Equation (2.10).

2.4 Understanding the backbones family

We can now make use of Equation (2.11) to better characterise the mechanism underpin-

ning the backbone extraction process.

2.4.1 Networks with non integer weights and the Disparity filter

The first thing that can be noticed by looking at Equation (2.11) is that the p-value pre-

scribed by the Pólya filter does not depend on w and s separately, but only depends on

such quantities through the ratio w/s, while the Pólya filter encoded in Equation (2.3) de-

pends on w and s individually. This means, that Equation (2.3) is not able to discriminate

between two nodes characterised by the pairs (w, s) = (10, 100) and (w, s) = (100, 1000),

while Equation (2.11) is not. This ability to discern between different heterogeneity is

naturally suited to deal with integer weights, such as those coming from counting exper-

iments (e.g., as in the US Airports network). On the other hand, the fact that the above

property tend to vanish when s� k/a andw � 1, should be exploited to apply the Pólya

filter when dealing with networks with non-integer weights, even in cases when such ap-

proximations do not hold. Of course, doing so will inevitably change the underlying null

model: Equation (2.11) does not assign a p-value to a weight w, but rather to a rate of in-

teraction w/s. In most cases the p-values given by Equation. (2.3) and Equation (2.11) are

practically the same (see Figure 2.2), and can be used interchangeably (e.g., for computa-

tional efficiency) when dealing with integer weights. Conversely, Equation (2.3) cannot

assign p-values to non-integer weights, but in such cases Equation (2.11) can always be

used to asses the p-value of the interaction rate w/s. We can further justify the use of

Equation (2.11) by thinking of an overall rescaling of the weights by a large factor c. If

one is dealing with a network with non integer weights and wants to use a methodology

not suitable for such case (for example the Hypergeometric of the Noise-corrected filters),

the first solution they can think of is an overall rescaling of all the weights by a power of
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10 such that all the weights become integers. In such a scenario, scaling and using Equa-

tion (2.3) gives (for most of the links), the very same p-value as the one obtained by using

directly Equation (2.11). For example, let us consider a network whose lowest weights

are of order 10−4. As stated above, applying Equation (2.11) to such a network would

mean to first rescale all its weights by a factor c ≥ 104. Doing so, however, automatically

makes the conditions s� k/a and w � 1 true for most of the weights of the network. We

can therefore conclude that Equation (2.11) is, for all practical purposes, the Pólya filter’s

analytical expression for non-integer weights.

The fact that, under the large strength approximation, the Pólya filter loses its depen-

dence on w and s alone, was also in one filtering methodology already presented: the

Disparity filter. Indeed, setting a = 1 in Equation (2.11) gives πP = (1− w/s)k−1, which

coincides with the p-value prescribed by the Disparity filter (1.8), i.e.,

πD(w|k, s) = 1− (k − 1)

∫ w/s

0
(1− x)k−2 dx =

(
1− w

s

)k−1
.

We can therefore state that the Disparity filter corresponds to a large strength approxi-

mation of the Pólya filter in a special case (a = 1). This is further explored in Figure 2.3,

where I visually investigate the relationship between the p-values assigned by the Pólya

and Disparity filters to the same links. As it can be seen, the two sets of values arrange

themselves around the bisector of the first quadrant across several orders of magnitude.

The close relation among the two methodologies should not come as a surprise. In fact,

the null hypothesis underlying the disparity filter is mathematically formalized by a par-

ticular case of the Dirichlet distribution, which has been already shown to be a limit case

of the Beta-Binomial distribution as the number of draws n tends to infinity [19].

Besides confirming the identification of the Disparity filter as a special case of the

Pólya filter, Figure 2.3 suggest a connection between different backbones. This point will

be further expanded in the next Section 2.4.2.

2.4.2 The role of the self reinforcing parameter a

As mentioned above, the Pólya filter generates a continuous family of network backbones

Pa, which we now seek to characterize as a function of the parameter a.
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FIGURE 2.3: Comparison of the p-values prescribed by the disparity (πD) and Pólya (πP ) filters
computed for different values of a (at a univariate significance level αu = 0.05). Each region of
the plot is coloured depending on the significance of the two filters. Points in the blue (green)
region correspond to links rejected (accepted) by both filters, while points in the purple (red)
region correspond to links accepted only by the disparity (Pólya) filter. (a) p-values computed on
the US Airports network. (b) p-values computed on the WIOT network.

First of all, we start by considering the two extreme cases. When a = 0, the Beta-

Binomial distribution (2.2) reduces to

P(w | k, s, a = 0) =

(
s

w

)(
1

k

)w (
1− 1

k

)s−w
,

i.e. to a common Binomial distribution with parameters s and 1/k. Following the initial

urn analogy, the p-value associated with a weight w in this case corresponds to the prob-

ability of drawing at least w red balls out of s attempts (with simple replacement) from

an urn containing 1 red balls and k − 1 black balls. On the other hand, a totally different

behaviour emerges when a→∞, a regime where the Pólya filter loses its dependency on

the node strength s and on the weight w. In the urn analogy, this situation corresponds

to the case where a � k balls of the same color of the first drawn ball are added to the

urn. Since the reinforcing mechanism is so strong, all following draws are going to be of

a ball of the same color. As a result, the probability of extracting at least w red balls is the

same of extracting one in the first draw, i.e.

πP (w | k, s, a→∞) = 1/k .

This, will ultimately lead to an empty backbone, since no link (independently of k) can

match the Bonferroni correction to the significance level (and an empty Bonferroni back-

bone ensures and empty FDR backbone [147]).

In between the two limit cases, the Pólya network backbones show a peculiar feature:
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they monotonically shrink when the parameter a is increased while keeping the statistical

significance fixed. By calling Pa∗ the backbone obtained by applying the Pólya filter with

a = a∗, we can write the above property in mathematical terms:

w ∈ Pa2 ⇒ w ∈ Pa1 for a1 ≤ a2 . (2.12)

In other words, the methodology I am proposing is defining a family of concentric back-

bones, where the largest Pólya set is the one corresponding to a = 0, and increasing a

progressively removes links from this set. I have verified this property empirically on all

the real world networks described in Section 2.2, by measuring that, indeed, no new links

are added to a backbone Pa1 when passing to another backbone Pa2 under the condition

a2 > a1. To do this, I have performed a grid search in the interval [0, 5] with granularity

0.2, i.e. I have verified Property (2.12) using the backbones P0,P0.2,P0.4, . . . ,P5. Show-

ing the validity of (2.12) exactly is far from trivial. Nevertheless, we can make use of

Equation (2.11) to give a more quantitative justification of this phenomenon. In order

to do so, we can try to verify that the p-value is, at least for those links included in the

backbones, a monotonically increasing function of a. This, together with the fact that the

level of statistical significance is constant and independent of a, would be sufficient to

justify the property (2.12). Let us start by calculating the derivative with respect to a of

the approximated p-value and set it greater than 0, i.e.

d

da
πP (w | k, s, a) ≈ d

da

[
1

Γ
[
1
a

] (1− w

s

) k−1
a

(
w k

s a

) 1
a
−1
]
≥ 0 =⇒

⇒− log

(
kw

as

)
+ ψ

[
a+ 1

a

]
− (k − 1) log

(
1− w

s

)
≥ 0

Where ψ[x] = Γ
′
[x]/Γ[x] is the Digamma function which is a monotonically increas-

ing function of x when x ∈ R+. Since a+1
a ≥ 1 we can therefore substitute the Euler-

Mascheroni constant ψ[1] = −γ in the above inequality and obtain:

− log

(
kw

as

)
≥ γ − (k − 1) log

(
s

s− w

)
a ≥ kw

s
eγ
(

s

s− w

)−k+1

= eγkx(1− x)k−1 ,

(2.13)
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where the variable x = w/s has been introduced. Notice that the inequality above must

also hold for every a such that

a ≥ max
k

[
eγkx(1− x)k−1

]
. (2.14)

The maximum appearing in the equation above is reached when k = k∗ = −1/ log(1−x).

This value of k is a monotonically decreasing function of x ∈ (0, 1). However, by the way

I constructed the Pólya filter, we also have that k∗ ≥ 2. Note that x ≥ 1−e−1/2 ≈ 0.394 =⇒

k∗ ≤ 2, i.e. the optimum value k∗ goes outside of its domain if we restrict to those links

with a weight w ≥ 0.394 s and therefore the optimum value of k that maximize the right

hand side of inequality (2.14) becomes k∗ = 2. As a result, assuming x ≥ 1−e−1/2 (which

means, restricting to those links with an associated low p-value when a = 0), leads to the

inequality:

a ≥ 2eγx(1− x) ≤ eγ

2
≈ 0.9 . (2.15)

We can therefore conclude that, at least for those links with a weight w > 0.394 s and

from a = 0.9 onward, the p-value is monotonically increasing function of a. That is why

property (2.12) is empirically observed. Of course, since when a → ∞ the p-value goes

to 1/k independently of the weight w, we can expect a monotonically decreasing p-value

for those links with a p-value close to 1 (ratio x close to 0) when a = 0.

Now that we know what happens to the backbones Pa as the parameter a is increased

from 0 to∞, we still need to understand what the parameter a means. Intuitively, it sets

the tolerance of the null hypothesis to an observed weight w given s and k. However,

the same can be said of the significance level α that we use to asses the null hypothesis.

Are the two parameters related? I am now going to show that it is indeed the case, since

the backbones produced by the Pólya filter for different values of a can be made approx-

imately equivalent by tuning the filter’s statistical significance. Assessing the statistical

significance of a link with weight w entails determining whether it is compatible with the

assumed null hypothesis. Instead of directly considering the weight w, since the p-value

is determined by k and s as well, we will now introduce the following ratio:

r =
w

s
k =

w

〈w〉
, (2.16)

which will be extensively described in the following section. For now, let me just state
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that r measures the excess of heterogeneity of a link, being the ratio between the observed

weight and the weight expected under an equipartition of the strength of a node among

its links. To asses the significance of an observed value of r, we can make a Gaussian

approximation and handle r as it was normally distributed, with mean µr and standard

deviation σr. In such regime, a value r∗ is compatible with the null hypothesis if

µr(a)− bσr(k, s, a) < r∗ < µr(a) + bσr(k, s, a) .

The parameter b ≥ 0 is the number of standard deviations used to assess the null hy-

pothesis and it is therefore inversely proportional to the statistical significance α. The

parameters µr and σr, which denote the expected mean and standard deviation of the

ratio r under the Pólya null hypothesis, can be directly computed:

µr(a) = E [r] = 1

σ2r (k, s, a) = E
[
(r − µr)2

]
=
k − 1

s

k + as

a+ k
.

(2.17)

Note that the mean is always the same for all the backbones family, while the variance,

which determines the tolerance of the null hypothesis to fluctuations around µr, is indeed

a function of a. Consider now the null hypotheses associated with two different values

a1 and a2 of the parameter, such that a2 ≥ a1. The aim is now to look for a scaling

parameter c ≥ that makes the two null hypotheses equivalent. In order to do so, the

following equivalences must be imposed:

µr(a1)± σr(k, s, a1) = µr(a2)± cσr(k, s, a2) . (2.18)

Setting µr(a1) = µr(a2) = 1 and a2 = da1 (with d ≥ 1), the above equation can be solved

for the variable c and obtain

c =

√
a1 + k/d

a1 + k

a1s+ k

a1s+ k/d
, (2.19)

which, by simply calculating the derivative with respect to d, can be shown to be a mono-

tonically decreasing function of d. This means that the same backbone produced by the

Pólya filter for a = a1 can be approximately reproduced with a = a2 ≥ a1 and a smaller

region of compatibility with the null hypothesis (i.e., a higher statistical significance). In

other words, we can state that, in the family of backbones obtained by the Pólya filter,
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FIGURE 2.4: Univariate statistical significance level αDF that has to be set for a disparity filter in
order to match the backbones generated by Pólya filters with different values of a at a univariate
significance level αPF = 0.05. The lines correspond to the ratio αDF/αPF when applying the
Bonferroni (orange) and false discovery rate (blue) multiple test corrections. The solid vertical line
corresponds to the maximum-likelihood value aML, while the dashed vertical line corresponds to
the value a∗ maximising the salience-related quality measure O1 (see Section 2.5 for a detailed
explanation of a∗ and aML).(a) Backbones of the US Airports network. (b) Backbones the WIOT
network.

tolerance to heterogeneity, captured by the parameter a, and statistical significance α are

closely related. This relationship is further investigated numerically in Figure 2.4, where

it is shown the univariate statistical significance level αDF that has to be set for a Pólya

filter with a = 1 (which is worth recalling closely approximates the disparity filter) to

match the backbones generated by Pólya filters with different values of a at a univariate

significance level αPF = 0.05. As it can be seen, regardless of the multiple testing cor-

rection applied (i.e., Bonferroni or FDR), every backbone extracted at a > 1 can be make

equivalent to the one coming from a = 1, if the statistical significance is set appropriately.

However, note that the univariate thresholds required to make the backbones equivalent

can differ by several orders of magnitudes. This is true, in particular, in correspondence

of notable values of a (discussed in Section 2.5), i.e., for aML and a∗ which respectively

maximise a Likelihood function and the optimality of the extracted backbone. All in all,

these results show that Pólya filters corresponding to different values of a can be made

equivalent by tuning their statistical significance. Yet, the above plots show that a differ-

ence in a of a few units can lead to dramatic differences in terms of statistical significance

(i.e., of ten or more orders of magnitude). This, in turn, means that the same set of links

can have drastically different statistical meanings when generated by different Pólya fil-

ters. Indeed, decreasing the univariate threshold α by several orders of magnitude low-

ers the filter’s tolerance to false positives by the same amount, while also causing a much

higher false negative rate. Therefore, a link discarded by the Pólya filter with parameter
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a2 can still be discarded by the Pólya filter with parameter a1 < a2 (i.e., a lower tolerance

to heterogeneity), but only by making the test extremely conservative.

To sum up, what we can say about the role that the parameter a plays in the backbone

extraction procedure is the following. It rules the strength of the self reinforcing mecha-

nism of the underlying null hypothesis, it can be related to the statistical tolerance we use

to evaluate the null hypothesis and increasing it would lead to progressively include in

the backbones links with higher values of r (this last property is also shown in Figure 2.5).

As such, the parameter a rules the tolerance to links’ heterogeneity of the underlying null

model and therefore it has the potential to be exploit to tune the null hypothesis to an op-

timal level in order to fully discount for the heterogeneity of the empirical data during

the filtering procedure. In Section 2.5, I am going to show how this can be done using a

Likelihood maximization procedure.

2.4.3 The role of the r ratio

I have shown how the parameter a influences the backbone extracting process and high-

lighted the connection between different backbones of the same family. It is now time to

try to build a better grasp on the selection criteria at a given heterogeneity tolerance a. In

other words, this section is devoted to understand which triplets (k, s, w), are selected by

the Pólya filter, once its free parameter a is set.

In order to do this, I start once again from the approximated p-value of Equation (2.11).

Specifically, its first order Taylor expansion around w/s = 0 reads:

πP ≈
e−

r
a

(
r
a

) 1
a
−1

Γ
[
1
a

] , (2.20)

where r has been just introduced in Equation (2.16). Even if approximated, Equation (2.20)

suggests that, for any fixed value of the parameter a, the Pólya filter tends to validate

links associated with higher values of r (given that πP (r) in Equation (2.20) is a mono-

tonically decreasing function of r). Moreover, as shown before in Equation (2.17), higher

values of a lead to the progressive validation of links with higher values of r, which in

turn further justify property (2.12). These results are numerically investigated in Fig-

ure 2.5. Indeed, in the two bottom panels one can see that higher values of r tend to be

associated with a lower p-value, while the two top panels show the tendency of the Pólya

filter to keep links with progressively higher values of r as a increases. The ratio r is also
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FIGURE 2.5: Role of the parameter r in the Pólya backbone extraction process. (a) Evolution of the
minimum, maximum, and average value of r computed in Pólya backbones for increasing values
of awith a univariate significance level αU = 0.05 in the US Airports network. (b) Same quantities
computed in the WIOT network. (c) Scatter plots of the p-values associated with each link in the
US Airports network against the corresponding value of the ratio r for two different values of a
at a univariate significance level αU = 0.05. High values of r are associated with p-values below
the Bonferroni threshold αB (solid black line), while the opposite is not always true. The black
dashed lines illustrate the soft dependence on r described by Equation (2.20). (d) Same plot for
the WIOT network.

the reason why the Pólya filter (and the Disparity filter as its special case) is able to retain

the multiscale nature of the underlying network under study. Indeed, the ratio r couples

a network’s local topology (through the degree k) to the activity of nodes (through the

strength s and weight w) in a non-trivial way, ensuring that links at various scale of the

weights distribution are retained.

At this point it is natural to ask: in light of this dependency, why not use directly r

and not the p-value to select significant links? Although this could indeed be tempting,

given its intuitiveness and its computational efficiency, there are some issues that would

naturally arise in doing so. First of all, thresholding on r has no clear statistical meaning

per se. However, to recover it, we can find the value of rthr that approximates a given
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significance level by inverting

αB =
e−

rthr
a

(
rthr
a

) 1
a
−1

Γ
[
1
a

] ,

where αB is the Bonferroni-corrected multivariate significance level adopted to filter. Fig-

ure 2.6 shows that even this “smart ”thresholding on r does not give a backbone as rich

as the one obtained by the Pólya filter of Equation (2.3). As it can be seen, both in the

case of the US air transport and WIOT networks, thresholding leads to backbones that

are considerably more disconnected. This is somewhat to be expected, since threshold-

ing implies producing sparser backbones by discarding links with r < rthr that might

be instead validated by the full Pólya filter. Yet, as is particularly apparent in the US air

transport network, the sparsification of the largest connected component can be very sig-

nificant. The main reason behind this lies in the fact that links associated with high values

of r are typically those with a large weight w or those attached to a hub (i.e., with a high

k). As such, these links can be easily expected to be validated, unless the parameter a is

increased to the point where the network’s own heterogeneity is used as null hypothesis

(see, for example, the case study on US air transport network of Section 2.7, where all

links connecting major hubs are filtered out when a is set by employing the Likelihood

maximization procedure mentioned previously). Conversely, links with lower values of

r that are still validated by the Pólya filter correspond to statistically significant combi-

nation of w, k, and s, which contribute to the heterogeneity of Pólya backbones. All in

all, given the level of approximation of Equation (2.20), links associated with high values

of r tend to be retained, but the opposite does not necessarily hold, i.e., links associated

to low values of r can still be validated by the filter and contribute to the overall hetero-

geneity of Pólya backbones and this ensures that the Pólya backbones are indeed more

meaningful than those coming from simply theresholding on r.

2.4.4 Salience and Pólya backbones

Link salience is a recently introduced measure of link importance [60], based on the

distance between nodes. Given the adjacency matrix W of weighted directed network,

where a element wij represent some measure of closeness between node i and j like the

strength of their interaction, the salience of a non zero element Wij is computed through

the auxiliary distance matrix D defined as dij = 1/wij if wij > 0 and 0 otherwise. Once
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FIGURE 2.6: Relative difference in the size of the network’s largest connected component as mea-
sured in the full Pólya backbone and in the backbone obtained by thresholding on r. (a) Backbones
of the US Airports network. (b) Backbones the WIOT network.

D is known, the salience of a connection (i, j) can be obtained starting from it. For a

fixed reference node r, the set of weighted shortest paths to all other nodes is called the

shortest-path tree matrix T (r), which collects the most effective routes from r to the rest

of the network. T (r) is a symmetric N ×N matrix such that tij(r) = 1 if the link (i, j) is

part of at least one of the shortest paths starting from r and tij(r) = 0 otherwise. Once

all the possible T (r) r = 1, 2 . . . N matrices have been calculated (using D as a reference

network instead of W ), the salience of a link (i, j) can be computed as:

Sij =
1

N

N∑
r=1

tij(r) . (2.21)

Note that Sij ∈ [0, 1] measures the fraction of times a link is present in all the possible

weighted shortest path trees across all nodes of the network. For a large collection of

complex networks, it has been found [60] that the distribution of link salience exhibits

a peculiar bimodal shape in the unit interval, with most links ending up with S ≈ 0 or

S ≈ 1. Moreover, the salience of a link can also be used to provide useful information

about the role of that link in the dynamics of a random diffusion process taking place on

the network.

Interestingly, the Pólya filter shows an empirical relationship with the salience. In

both the WIOT and the US Airport network, we verify that, as we increase the parameter

a, the filter has a tendency to retain links with higher salience. We show this in Figure 2.7

by plotting the mean and the skewness of the link salience distribution in both networks

computed only in the links retained in the Pólya backbones. As it can be seen, the mean

increases (not necessary monotonically) while the skewness (i.e. the asymmetry of the
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Absolute increments in 
average salience

Absolite increments in skewness 
of salience distribution

FIGURE 2.7: (a) Average salience progressively calculated only in the links included in the
backbones: 〈S〉a = 1

la

∑
(i,j)∈Pa

Sij where la is the number of links in the backbone Pa. (b)
Skewness of the salience progressively calculated only in the links included in the backbones:
skew(S)a = skew(i,j)∈Pa

Sij (S) where la is the number of links in the backbone Pa.

distribution) decreases as a is raised. Effectively, what these two phenomena are telling

us, is that the salience distribution of the links included in the backbones is progressively

becoming more bulky and symmetric around higher salience values and therefore we are

progressively dropping more links with a salience closer to 0 than those with a salience

closer to 1.

The intuition behind this can be found once again in the ratio r = kw/s of Equa-

tion (2.16). Indeed, links associated with a higher r are typically marked with a lower

p-values by the Pólya filter. The same can be said for the salience, whose scores appear

to have a positive and statistically significant rank correlation with the corresponding

values of r: corr(r, s) ≈ 0.3 in the US Airport network, and corr(r, s) ≈ 0.2 in the WIOT

network.

2.5 Fixing the free parameter

My main motivation to introduce the Pólya filter is the flexibility introduced by the free

parameter a. As a result, I fully devote this section to illustrate how to identify an op-

timal value of such a parameter. Clearly, the notion of optimality strongly depends on

the specific application being considered. Therefore, I will cover different situations by

introducing three separate definitions of an optimal backbone.

Sweeping : The Pólya filter’s monotonicity can be exploited to find and optimal level of

a by fixing a desired level of sparsity of the resulting backbone with respect to the

original network, and to identify the value of a that achieves it. As a consequence
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FIGURE 2.8: Optimality measures O1 and O2. These are calculated on the extracted backbones (at
a univariate significance level αu = 0.05) as a function of a. The optimal values are highlighted
with a cross. (a) Optimality measures for the US Airports network. The optimal values are a∗ =
0.2 for O1 and a∗ = 0.8 for O2, respectively. (b) Same plot for the WIOT network. The optimal
values are a∗ = 2.8 for both O1 and O2.

of the property (2.12), notable observables of the resulting backbones (such as the

fraction of nodes, edges or total strength retained in the extracted backbone) are

monotonically decreasing functions of a. As a result of this, it is possible to start

from a = 0 and scan the backbone family Pa for increasing values of a until a

desired level of sparsity has been reached (e.g., 5% of the nodes in the original

network).

Salience : Since backbones aim to be parsimonious descriptions of the original network,

it is natural to propose an ad-hoc optimality measure to compromise between the

information inevitably lost in the filtering procedure and the quality of the informa-

tion retained. In other words, I am here proposing a definition of an optimal back-

bone in terms of its sparsity and its similarity with the original network and use

it to fix the free parameter a by trying to maximizing it. The most straightforward

way to define a measure that actually possess a maximum value, is to multiply two

network-level quantities, that are both normalized to lie within the unit interval

[0, 1] and which are a decreasing and an increasing function of a respectively. A

candidate for the latter is the average salience 〈S(a)〉 retained in the backbones Pa:

it is a good metric to measure the quality of the information retained by the filter-

ing process, since it is connected with the speed of diffusion of dynamical processes

on the original network, and it also verifies the requirement of being an overall in-

creasing function of a.

We now need to combine the average salience with a measure of distance from the
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original network which is a decreasing function of a. Thanks to property (2.12),

this can be done in several ways. To keep the discussion as general as possible, I

will choose two of them: the well known Jaccard similarity J(W,Pa) between the

weights in the original network and those in the backbone and the fraction Fn(a)

of nodes retained in Pa. The two following optimality measures can now be intro-

duced

O1 = J(W,Pa) · 〈S(a)〉 , O2 = Fn(a) · 〈S(a)〉 . (2.22)

Figure 2.8 shows the behavior of the metrics (2.22) as functions of a for the two net-

works I have been using so far. As expected, both metrics achieve a maximum a∗,

which, by construction, represents the optimal compromise between high salience

and similarity with respect to the original network. The backbone P∗a represents an

optimal compromise between the amount information depleted and the quality of

information retained by set of validated links.

Maximum likelihood : As a parametric approach, the Pólya filter lends itself to opti-

mization procedures aimed at identifying the value of the parameter a most suited

to the particular network under study. By definition, such a value corresponds to

the Pólya process whose self-reinforcement mechanism is the most likely to gener-

ate the network under study. As a result, a maximum likelihood calibration is effec-

tively equivalent to choosing the “nullest” model in the Pólya family and therefore

optimally discounting for the heterogeneity of the network under consideration in

the assumed null hypothesis. This can be achieved by solving

aML = arg max
a∈[0,∞)

L(a;w) , (2.23)

where w denotes the sequence of weights in the network, and

L(a;w) =
N∑

i,j=1

log P(wij | si, ki) =
N∑

i,j=1

log

[(
si
wij

)
B( 1a + wij ,

ki−1
a + si − wij)

B( 1a ,
ki−1
a )

]
(2.24)

is the log-likelihood function associated with the probability of observing the par-

ticular weight sequence under a Pólya process with parameter a. Solving the op-

timization problem in (2.23) with the above function boils down to numerically
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FIGURE 2.9: ML estimates of the Pólya filter’s parameter a. In both cases, the networks are made
of 3, 000 nodes and have an average degree of 8. The error bars are 95% confidence intervals
obtained through 200 different randomizations of both weights and topology. (a) ML estimates
a∗ for Barabasi-Albert networks with a power-law weight distribution with tail exponent τ . (b)
ML estimates a∗ for Erdős-Rényi networks with uniform distribution of weights U [1, τ ].

solving the following equation:

N∑
i,j=1

[
−(ki − 1)ψ

(
ki + asi − awij − 1

a

)
+ kiψ

(
ki
a

+ si

)
+

(ki − 1)ψ

(
ki − 1

a

)
− kiψ

(
ki
a

)
− ψ

(
wij +

1

a

)
+ ψ

(
1

a

)]
= 0 ,

(2.25)

where, as before, ψ[x] is the Digamma function.

In Figure 2.9 we report ML estimates obtained on synthetic networks. The networks

employed in the left panel are characterised by a scale-free topology generated us-

ing the Barabasi-Albert model [4] and a power-law weight distribution with tail

exponent τ . The optimal values aML shows that the ML estimates are clearly able

to respond to the network’s heterogeneity, spanning almost three orders of magni-

tude ranging from values aML ' 10 in the presence of very strong heterogeneity

(τ = 1.5) to aML ' 10−3–10−2 in the presence of mild heterogeneity. In the right

panel of Figure 2.9 we also report the ML estimates on Erdős-Rényi random graphs

with a uniform weight distribution U [1, τ ], with weights rounded to the nearest in-

teger. As it can been, the estimates are much less sensitive to changes with respect

to the previous case, with aML ' 0.46–0.56, which implies the de facto impossibil-

ity to discriminate even between substantially different models when no marked

heterogeneity is present in their weight distributions.

Being able to respond to the empirical network’s own heterogeneity, this criterion
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for setting a is particularly suited to those applications where validating the back-

bone as a whole is a priority. As an example, I report here the values of aML for

the two network used so far. We find aML = 4.5 for the US Airports network and

aML = 3.4 for the WIOT network.

2.6 Comparison with other filtering techniques

In this Section, I further characterize the Pólya filter’s family of backbones through the

comparison with the other available filtering techniques introduced in Section 1.2.3. In a

nutshell, this will show that Pólya backbones are typically sparse, salient and heteroge-

neous.

Figure 2.10 shows different properties of the Pólya backbones of the US Airports and

WIOT networks obtained for different multivariate significance levels α with those of the

backbones obtained at the same statistical significance with the Hypergeometric Filter

(HF), the Maximum-Likelihood filter (MLF), the Enhanced Configuration Model (ECM)

filter, the Noise-Corrected (NC) filter. Figure 2.11 shows the same plots for the High

School and Florda ecosystem networks. For the sake of completeness, I also list the Dis-

parity Filter (DF) as a benchmark methodology, which represents, as repeatedly stated in

the previous sections, a particular (a = 1) large-strength approximation of the Pólya filter

(PF). I also performed the same comparisons with the GloSS filter but its results are not

reported due to the excessive sparsity of the backbones produced by such method when

accounting for multiple hypothesis testing1.

The two upper panels of both Figure 2.10 and 2.11, present the fraction of edges kept

in the backbones as a function of α, while Figure 2.12 shows the fraction of nodes re-

tained in the backbones for all the different datasets here employed. As it can be seen,

Pólya backbones are considerably more parsimonious than those provided by the other

filters considered, especially around the black vertical lines in each plot, corresponding

to a Bonferroni-corrected univariate significance level of 0.05 (which, I remind, is crucial

to reduce the number of false positives retained in the backbones). The middle panels of

1This is because, as mentioned in the dedicated section, the null model underlying the Gloss filter is not
able to cover a sufficiently large portion of the phase space the empirical network it is embedded in. The
randomization procedure putted forward in the GloSS filter does not randomize the topology and uses, as
a source of randomness for the weights, their empirical distribution. As a result, the distribution of the
possible weights’ allowed values, in the underlying ensemble, is not broad enough and too centered around
the empirical values to give a p-value able to cover the order of magnitude required to pass the Bonferroni
correction on such large systems



Chapter 2. The Pólya filter 53

FIGURE 2.10: Comparisons between the backbones generated by the Pólya filter (PF) and other
network filtering methods on the US Airports network and on the WIOT network. The meth-
ods we consider are the Hypergeometric filter (HF), the Maximum-Likelihood filter (MLF), the
Enhanced Configuration Model (ECM), the Noise-Corrected filter (NC), and the Disparity filer
(DF), which corresponds to a large-strength approximation of the the Pólya filter for a = 1. All
quantities are shown as a function of the multivariate significance level used in the tests. (a)-(b)
Fraction of links retained in the backbones with respect to the total number of links in the origi-
nal networks. (c)-(d) Value of the salience-related measure O1 defined in Equation (2.22). (e)-(f)
Jaccard similarity between the B weights retained in the backbones and the top B weights in the
original networks. In all plots the light blue band correspond to all values measured in the Pólya
backbone family for a ∈ [0.2, 7], with the light blue solid (dashed) line corresponding to a = 0.2
(a = 7); vertical dashed lines correspond to the Bonferroni-corrected 5% significance level.
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FIGURE 2.11: Comparisons between the backbones generated by the Pólya filter (PF) and other
network filtering methods on the High School network and on the Florida ecosystem network.
The methods we consider are the Hypergeometric filter (HF), the Maximum-Likelihood filter
(MLF), the Enhanced Configuration Model (ECM), the Noise-Corrected filter (NC), and the Dis-
parity filer (DF), which corresponds to a large-strength approximation of the the Pólya filter for
a = 1. All quantities are shown as a function of the multivariate significance level used in the tests.
(a)-(b) Fraction of links retained in the backbones with respect to the total number of links in the
original networks. (c)-(d) Value of the salience-related measure O1 defined in Equation (2.22).
(e)-(f) Jaccard similarity between the B weights retained in the backbones and the top B weights
in the original networks. In all plots the light blue band correspond to all values measured in
the Pólya backbone family for a ∈ [0.2, 7], with the light blue solid (dashed) line corresponding
to a = 0.2 (a = 7); vertical dashed lines correspond to the Bonferroni-corrected 5% significance
level.
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FIGURE 2.12: Comparisons between the fraction of nodes retained in the backbones generated by
the Pólya filter and the other network filtering methodologies (the Hypergeometric filter (HF),
the Maximum-Likelihood filter (MLF), the Enhanced Configuration Model (ECM), the Noise-
Corrected filter (NC), and the Disparity filer (DF)) on a) the WIOT, b) the US Airports, c) the
Florida Ecosystem and c) the High School network. All quantities are shown as a function of the
multivariate significance level used in the tests. In all plots the light blue band correspond to all
values measured in the Pólya backbone family for a ∈ [0.2, 7], with the light blue solid (dashed)
line corresponding to a = 0.2 (a = 7); vertical dashed lines correspond to the Bonferroni-corrected
5% significance level.

both Figure 2.10 and 2.11 show how the optimality measure O1 changes as a function of

α: for a wide range of the family parameter a, the Pólya filter can achieve a good balance

between sparsity and salience, a property that is not shared by the other methodologies.

The bottom panels of Figure 2.10 and 2.11 are aimed at demonstrating the heterogeneity

of Pólya backbones, by showing the Jaccard similarity between the B weights retained in

a backbone and the top B weights in the original network. This metric captures how het-

erogeneous a network backbone is with respect to a “naive” backbone obtained simply by

thresholding on weights. As can be seen in both figures, the Pólya filter generates back-

bones that are considerably more heterogeneous than those provided by the other meth-

ods. The only exception is the NC filter, which is able to produce non-trivial backbones
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in all networks except for the US Airports. The bottom panels are also able to demon-

strate that the Pólya filter is more responsive to statistical significance than the other

methods. This feature is a direct consequence of the property of Equation (2.12), i.e. that

Pólya backbones are mutually inclusive. Indeed, this means that the Pólya backbones

are built around complex and sparse cores made up of links with very low p-values. As

the significance α increases, such cores are enriched by links with heavier weights which

are structurally important for the network but classified as less statistically significant.

Conversely, the other methods are much less responsive to α, even when varied across

several orders of magnitude.

The BF and MLF (whose results are extremely close along all dimensions), tend to

validate exceedingly high fractions of links. This tendency becomes especially evident in

the High school and Florida ecosystem networks, where both the BF and MLF validate

almost all links and do not filter out any node. This, obviously, translates into a very

high Jaccard similarity between the weights in the backbone and the top weights in the

original network, since almost none of these get filtered out. The fact that both the BF and

the MLF tend to retain many links, and especially those with high weights, guarantees a

fairly good value of O1 (even if far from optimal).

The NC method, on the other hand, provides some of the sparsest backbones of the

methods we consider, and such backbones are also very heterogeneous as testified by

the low Jaccard similarity between the weights on the links retained in them and the top

links in the original networks. Yet, such links are not salient enough to compensate for

such sparsity, as demonstrated by the very low values of the O1 metrics achieved by the

NC method. Hence, such a method provides parsimonious and non-trivial backbones,

but it does so at the expense of salience, i.e., filtering out links that are globally important

at the network-wide level.

The ECM method represents an intermediate solution between the above. It provides

rather parsimonious backbones, but it tends to do so simply by retaining the heaviest

links in the network. This is particularly apparent in the case of the Florida network,

where the B links retained in the ECM backbone are exactly the heaviest B links in the

original network.

As a large-strength approximation of the PF for a = 1, the Disparity filter inherits the

features of the PF presented here. Like other Pólya backbones, it provides more parsimo-

nious representations than other methods. However, as it is apparent in both Figure 2.10
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and 2.11, the salience and heterogeneity of DF backbones is highly dependent on the net-

work at hand. For example, in the case of the Florida ecosystem network, the DF yields

a heterogenous backbone (as testified by the low value of the Jaccard similarity measure)

which, however, is not very salient compared to Pólya backbones obtained with different

values of a. Another example of this, can be found in the US Airports network, where

the disparity filter backbone is rather sub-optimal in terms of salience, as demonstrated

by the comparatively low value of O1 it achieves within the Pólya family. Conversely, in

the case of the High School network, DF backbones are close to being optimal within the

Pólya family in terms of salience.

To sum up, the above results simply state that the Pólya filter’s main advantage lies

in its flexibility, which allows to tune the filter to the specific network or application

under consideration. Within reasonable ranges of the parameter a, all Pólya backbones

provide a parsimonious representation of the salient relationships in a network, while

still retaining weights across multiple scales. Then, depending on the specific application

or network, the parameter a can be tuned to generate a backbone which is optimal with

respect to a desired criterion. Moreover, the filter’s ability to “compress” the salience and

heterogeneity of the original networks in ultra-sparse backbones is unmatched by the

other methods we considered.

2.7 Applications

This section is devoted to illustrate how the Pólya filter can be applied to two different

real world networks. The first application is more qualitative and it is aimed at explaining

why the Pólya backbone, extracted from the US Airports network, is indeed meaningful

for the economy of the web of flying routes across the US. The second application is more

quantitative and shows how the links selected by the Pólya filter are less noisy than those

who are not (where the noise is defined in terms of predicting power of a linear regression

model).

2.7.1 The short-haul backbone of the US Airports network

Here, I will apply the Pólya filter to the US Airports networks and I will show how it

can be used to gather unique insights into the hidden topological structure of the flying

routes between US airports.
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Figure 2.13 shows four different Pólya backbones extracted for increasing values of

the heterogeneity tolerance parameter a. Thicker lines correspond to links with higher

weights (i.e., routes with more passengers), while a color code is used to portray the

distances they cover. Lines in blue, orange, and purple correspond, respectively, to short,

medium, and long-haul flights according to the classification given in the dataset by the

US Bureau of Transportation.

FIGURE 2.13: Pólya backbones of the US Airports network for different values of the filter’s pa-
rameter a. (a) Backbone for a = 0.4 (which is an intermediate value between the two that optimise
the salience metrics in Equation (2.22)), where most long-haul flights between hubs are retained.
(b) Backbone for a = 1, approximately corresponding to the one obtained via the disparity filter.
(c) Backbone for a = 2.6, which is the highest value of the filter’s parameter where a long-haul
flight (New York - Los Angeles) is retained. (d) Backbone for a = aML = 4.5, where all long-haul
flights and all connections between hubs have been filtered out.

First of all, we verify what has been repeatedly stated in the previous sections, i.e.

that higher values of a lead to sparser backbones. The backbone in the top-left panel is

obtained by setting a = 0.4, i.e. an intermediate value between the values of a optimizing

the two metrics defined in Equation (2.22) and obtained in Figure 2.8. This backbone is

the most salient one and it indeed features the most crucial long-haul connections be-

tween hubs and/or the more geographically remote states (Alaska, Hawaii, and Puerto

Rico). If we shift focus to the top-right panel, we can see that most, although not all, of
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such connections are also retained when setting a = 1, the value which corresponds to

the disparity filter’s backbone and which approximately optimizes O2.
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FIGURE 2.14: Projections of Pólya backbones obtained a = 1 (top-left), a = 2.6 (top-right), and
a = aML = 4.54 (bottom) at the state level. A link is added between two states when there is at
least one link connecting two airports located within them (and similarly for self-link on a single
state). Thicker lines correspond to heavier weights, which in turn correspond to the aggregate
weight of all links between the two states.

As soon as we start increasing a, and therefore the tolerance of our null hypothesis

to heterogeneity, things change considerably. The backbone displayed in the bottom-left

panel is the one coming from the highest value of a that still allows to retain both con-

nections between New York and Los Angeles (a = 2.6), i.e., the two largest American

cities. Notably, these are the only two long-haul connections remaining. Finally, when

the free parameter is set through Likelihood maximization (a = aML = 4.5) and therefore

the filtering can discount for the network’s own heterogeneity, we obtain an ultra-sparse

backbone (bottom right panel) where all long-haul flights and almost all connections be-

tween major cities and hubs have been filtered out. In Figure 2.14, I further characterise

such backbones by showing their projections onto the US states each airport belongs



Chapter 2. The Pólya filter 60

to. It can be seen quite clearly that upon increasing a the network becomes increasingly

fragmented and disconnected. In particular, when a = aML, the backbone becomes essen-

tially made of three main parts: a star-like structure centred around Georgia, a secondary

star-like structure centred around North-Eastern states, and a number of smaller discon-

nected structures mostly involving Western states. In all such structures, the vast ma-

jority of relationships are between neighbouring or geographically close states, reflecting

the short-haul nature of the a = aML backbone. The reason for this is simple, as the long-

haul connections are precisely those that determine the network’s heterogeneity, while

the links retained are those identified as statistically significant with respect to it. The

only major hub still involved in a large number of connections is Atlanta’s Hartsfield-

Jackson airport (Georgia), which is the busiest airport in the world and serves almost

20% more passengers than the second busiest US airport. This ensures the “survival” of

several links to and from this hub even when the tolerance to heterogeneity is very high.

Yet, it is notable that, in such a backbone, Hartsfield-Jackson airport only serves as a re-

gional hub for the South-East of the US. Overall, both Figure 2.13 and Figure 2.14 show

that the links retained when a = aML form a network of mostly regional and short-haul

flights connecting airports that are often of secondary importance on the national scale.

Yet, these flights provide vital connections, carrying very large numbers of passengers

relative to the overall heterogeneity of the broader transport system they are embedded

in. This is well exemplified by Alaska or Hawaii, where a large number of internal flights

are validated.

2.7.2 Predicting trade in the WIOT network

As an example of a more practical use of the Pólya filter, I here show how the out of sam-

ple sample performance of a simple linear regression model aimed at predicting future

trades in the WIOT network can be boosted by only considering those links marked as

significant by the filtering procedure.

The ability to foresee changes in the structural relationships among different eco-

nomic actors can dramatically boost our understanding of how technological innovation

works. Several recent studies have tried to exploit this connection using a network per-

spective: firms purchase goods from each other and combine them into more technolog-

ically sophisticated products (see, for example Reference [102]). Within this framework,
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being able to predict changes in trading relationships can be of crucial importance in or-

der to anticipate technological shifts and allow for an efficient allocation of investments.

In this Section, I decided to follow References [35, 102] and build a model to predict

trading relationships in the WIOT dataset by leveraging its network properties. I am

going to employ a simple linear regression model aimed at predicting the future trading

volume between two industrial sectors based on two regressors variables: the relative

importance of their past trading volume (with respect to their overall trading volume)

and on their proximity in the network of trading relationship, computed by means of the

Leontief input-output matrix [83]. The model is formally defined as follows:

log(wt+τij ) = β0 + β1A
t
ij + β2L

t
ij , (2.26)

where:

• wtij is the weight on the link between nodes i and j (i.e., the trade volume between

the two corresponding industrial sectors) in year t.

• Atij is the element of the matrix Atij = wtij/
∑

iw
t
ij in year t, i.e. the trade volume

between nodes i and j normalized by the overall outgoing trade volume of node j.

• Ltij is the year t element of the Leontief matrix, defined as L = (I −AT )−1, where A

is defined above and I is the identity matrix. The Leontief matrix is closely related

to Katz centrality, and entry Ltij represents the production of sector j needed to

produce one unit of final demand of the good produced by sector i. Note that, even

if there is no direct link between the two sectors (i.e. wij = 0), the entry (i, j) of the

Leontief matrix Lij is non zero as long as there exists a path from j to i. As such,

the Leontief distance considers the need of good j to produce all the intermediate

goods needed to get one unit of good i.

Note that the regression in Equation (2.26) is defined only on links existing at time t

(i.e., wtij > 0). I decided to exploit such model to assess the potential benefits gained in

terms of prediction accuracy when restricting both the calibration and the predictions on

those links included in two different Pólya backbones. First, I constructed Pólya back-

bones of the annual WIOT networks from 2006 to 2010 both for a = 1 (which essentially

corresponds to the disparity filter) and for a = aML of each year (which is always a value
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TABLE 2.1: Regression table of the linear regression model in Eq. (2.26) calibrated on WIOT
network data from 2006 to 2010. The three columns refer to the results obtained when calibrating
the model on the full unfiltered network, and on its Pólya backbones for a = 1 and a = aML = 3.4.

Unfiltered Networks Backbones Pa=1 Backbones Pa=aML

(2006-2010) (2006-2010) (2006-2010)
β0 1.61∗∗∗ 6.20∗∗∗ 7.12∗∗∗

(0.00096) (0.0090) (0.017)

β1 27.58∗∗∗ 4.52∗∗∗ 3.21∗∗∗

(0.043) (0.064) (0.079)
β2 0.018∗∗∗ 0.064∗∗∗ 0.058∗∗∗

(0.00011) (0.00073) (0.00111)

N 2682840 48853 14784
R2 = R2

adj 0.138 0.196 0.218
F statistic vs constant model 2.16× 105 ∗∗∗ 5.95× 103 ∗∗∗ 2.06× 103 ∗∗∗

Standard errors in parentheses. Two-tailed test.
∗∗∗ p < 0.0001

around 3.4). Then, I used such backbones to calibrate the model and to make out-of-

sample predictions of the trading volumes of the links marked as significant in the three

following years. Moreover, I calibrated the model over 5 years of data, from 2006 to 2010.

Table 2.1 shows the results of the model’s calibration when performed on the whole

WIOT network, and on its Pólya backbones for a = 1 and a = aML. As it can be seen, in

all three cases the model’s coefficients are highly significant, and the model as a whole is

able to explain a good portion of the variance in data, as indicated by the R2 coefficient.

Notably, these increase when filtering the network, even though the number N of links

used to calibrate the model is reduced by more than two orders of magnitude when

going from the full network to the a = aML Pólya backbone. Also, upon filtering the

network the importance of the weights, encoded in the matrix Atij and in its coefficient

β1 in Equation (2.26), decreases dramatically. Conversely, the importance of the Leontief

matrix, quantified by its coefficient β2, increases by roughly a factor 3. This point is

particularly significant, since the Leontief matrix is a non-local quantity which assesses

the relevance of links from the viewpoint of the whole network they are embedded in. We

interpret these results as a sign that Pólya backbones, especially those obtained by tuning

the filter to the network’s specific heterogeneity, are highly informative, and contain links

that are important both locally and globally.

In Table 2.2 we compare the predictive power of the model when calibrated on Pólya
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TABLE 2.2: R2 coefficients of the model calibrated on the three different datasets when it is used
to make out-of-sample predictions.

Out-of-sample R2

2011 2012 2013

Unfiltered Networks 0.1349 0.1371 0.1367

Backbones Pa=1 0.1960 0.1989 0.1972

Backbones PaML 0.2242 0.2181 0.2127

backbones and on the full, unfiltered, WIOT network. We use as a measure of out-of-

sample accuracy the R2 coefficients of the predicted values against their observed coun-

terparts. As it can be seen by looking at the R2 coefficients, the application of the Pólya

filter brings a measurable improvement on the percentage of variance in the data ex-

plained by the regression model. Moreover, the best results are indeed obtained when

the filtering free parameter a is set to a = aML.

These results are a quantitative assessment that the amount of information contained

in Pólya backbones is substantial and that the Pólya filter can produce parsimonious,

yet meaningful, representation of the system under study: even if the number of links is

reduced by two orders of magnitude, the overall informativeness of the networks gener-

ated by the filter is higher (at least from the point of view of the model of Equation (2.26)).
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Chapter 3

Maximum Entropy framework for

time series randomization evolving

in discrete time

3.1 The Principle of maximum entropy

Given some testable information1 about a probability distribution over a data sample,

the maximum entropy principle states that, among all the possible distributions coherent

with the given information, the one which should be chosen to represent the system is

the one with the maximum entropy.

The Principle of maximum entropy (MEP) was first proposed in 1957 by Jaynes in a

series of two seminal papers [70, 71], where he explicitly highlighted the connection be-

tween the common statistical mechanics practise and the information theory background

it was implicitly built upon: Jaynes brilliantly explained why the Gibbs’s ensemble the-

ory actually works. In particular, he argued that the entropy, as defined by physicists

in statistical mechanics, and the information entropy of information theory are the very

same quantity, and, as a result, statistical mechanics is an application of a more general

tool of logical inference and information theory.

Even if MEP is indeed a principle, and therefore its validity is assumed a priori, it

can be justified with the following line of reasoning. We are given some source of infor-

mation I that we need to use to create a probability distribution assigning probabilities

p1, . . . , pm to m mutually exclusive events. To discriminate the optimality of a particular

probability allocation, we can only use I and the laws of probability. The problem can

1Testable information is a statement about a probability distribution whose truth or falsehood is well-
defined. "The expectation value of x is 2" is a testable source of information. Given an event set {i}Ni=1, the
proposition p2 + p5 > 0.3 can be considered a testable source of information.
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be rephrased as follows. We are given with N � m quanta of probability of magnitude

1/N that we need to divide among m slots in any way we see fit. In order to ensure that

a “fair”allocation is performed, i.e. that a slot does not receives fewer or more quanta of

probability with respect to I, we can proceed by randomly assigning the N quanta to the

m events. By doing this we will not introduce any bias, i.e. we will not implicitly favour

any outcome during the allocation scheme. After that, each event i is going to have as-

signed ni quanta of probability with a probability given by the multinomial distribution

P
[
p1 =

n1
N
, · · · , pm =

nm
N

]
= m−N

N !

n1! · · · nm!
, (3.1)

and therefore our probability distribution p1, . . . , pm will be fully specified. At this point,

we need to check weather the resulting assignment is coherent with the given testable

information I. If it is the case, then we accept the probability distribution, otherwise we

reject it and we repeat the assignment of the N quanta. We continue this process until

a valid assignment is obtained. What is the probability assignment that is most likely

to come out from this procedure? Among all possible partitions of the N quanta, the

most probable will be the one which maximizes Equation (3.1) and verifies the constrains

imposed by I. If we now consider the limit N → ∞, i.e. we take probability quanta of

infinitesimal magnitude, we can apply the Stirling approximation and obtain

P
[
p1 =

n1
N
, · · · , pm =

nm
N

]
= m−N

N !

n1! · · · nm!

= m−N (2πN)−
m−1

2 e−N
∑m
i=1 pi ln pi +O

(
1

N

)
.

(3.2)

From Equation (3.2), we can see that the most probable distribution will be the one

which verifies the constraints imposed by I and which maximises the quantity H =

−
∑

i pi ln pi, which we call entropy. If we accept the premise that the game we have de-

vised is a good way of determining the fairest distribution, then we will end up with the

maximum entropy principle.

An argument we can make against the line of reasoning described above is that we

have no rights to stop the game as soon as we obtain the desired partitioning. Instead,

we should have repeated it a large number of times and looked at the distribution of the

assignments. In other words, why can we take a point estimate rather than integrating

over a distribution of distributions? This can be answered by simply noticing that any

assignment p′ = (p′1, . . . , p
′
m) which is not p∗, i.e. the one which maximise the entropy
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functional H(p), is going to have an entropy H(p′) = H(p∗) − ε and therefore a proba-

bility:

P
[
p′
]
∼ eNH(p∗)e−Nε ,

which vanishes in our working regime N → ∞. In other words, it makes sense to only

consider the maximum entropy distribution as all other distributions have almost zero

probability to occur.

The mental game just described can in general be conducted also when the m events

are not uniformly probable, i.e. if the probability of assigning a quanta of probability

1/N to the outcome i is biased by a factor qi. Under this assumption, the probability

assignment p∗ which rules the game when N →∞ is not the one which maximises H(p)

subject to I but rather the one which maximises the Kullback-Liebler (KL) divergence

KL(p | q) =
m∑
i=1

pi ln
pi
qi
.

From this Bayesian perspective, we can understand that the maximum entropy principle

produces the least biased distribution coherent with I because it starts with the least in-

formative and least committing prior, i.e. the uniform distribution. As such, the principle

of maximum entropy can be seen as a direct application of Occam’s razor.

3.2 Maximum entropy ensembles of time series

We shall start by consideringW , i.e. the set of all the N real-valued time series of length

T . Moreover, let’s call W ∈ W an element of this set and W ∈ W a set of time series

coming from an empirical measurement, i.e., wit stores the value sampled from the i-th

time series at time t. Our aim is to create an ensemble, i.e. a probability distribution over

W , able to preserve some testable information obtained from W . In order to do so, we

want to rely solely on the principle of maximum entropy.

First of all, we define the testable information as a set of observables {O`}L`=1 that

we want to preserve as ensemble averages 〈·〉. In other words, calling O` = O`(W ) the

empirical value of observable `, we want to find the probability distribution P (W ) over

W able to preserve the L constraints

〈O`(W )〉 =
∑
W∈W

O`(W )P (W ) = O` ` = 1, . . . , L (3.3)
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and maximising the Gibbs entropy functional

S(W ) =
∑
W∈W

−P (W ) lnP (W ) . (3.4)

Naturally, since we want P (W ) to be a probability distribution, we also want it to be

properly normalised to unity and therefore verify

∑
W∈W

P (W ) = 1 . (3.5)

Equations (3.3)-(3.4)-(3.5) fully specify the objective of our methodology which has been

reframed as a constrained optimization problem. As such, it can be easily solved by the

well known method of Lagrange multipliers [15]. As prescribed, we couple each of the

L+ 1 constraints with an associated scalar variable γ, β1, . . . , βL (indeed called Lagrange

multipliers) and we recast our optimization problem as a the functional differential equa-

tion

∂

∂ P

[
S + γ

(
1−

∑
W∈W

P (W )

)
+

L∑
`=1

β`

(
O` −

∑
W∈W

O`(W )P (W )

)]
= 0 ,

that we need to solve. Luckily for us, the solution to the above equation can be trivially

obtained with common calculus. The desired probability distribution P (W ) is

P (W ) =
e−H(W )

Z
, (3.6)

where we have introduced the HamiltonianH(W ) =
∑

` β`O`(W ) and the partition func-

tion Z = eγ+1 =
∑

W e−H(W ) of the ensemble.

Equation (3.6) fully defines our class of probability distributions. However, as it is, it

has little practical use. First of all, the values of the Lagrange multipliers that allow the

ensemble to preserve the imposed constraints are still to be determined. However, notice

that the expectation value of the observable O`, coupled with the Lagrange multiplier β`,

is given by
∂

∂β`
lnZ = −

∑
W∈W

O`(W )
e−H(W )

Z
= −〈O`(W )〉 .
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As a result, the values of the Lagrange multipliers that solve the maximum entropy prob-

lem can simply be obtained by solving the following system of equations:

O` = − ∂

∂β`
lnZ ∀ ` = 1, . . . , L . (3.7)

The main consequence of this is the fact that the whole problem of finding the maximum

entropy distribution able to create the least biased randomization of a system starting

from some testable information about it, can be fully solved by simply finding an analyt-

ical form for the partition function Z (which, at the same time, fully defines the ensemble

and solves the maximum entropy problem). In common practise, even if the solution to

the system (3.7) exists and is unique [70], finding it numerically may become complicated.

Luckily, even this computational problem can be simplified. Indeed, it can be shown [55]

that the solution to the system (3.7) is the same as the following convex optimization

problem maxβ1,...,βL lnP (W | β1, . . . , βL), i.e. we can maximize the likelihood of draw-

ing the time series W from the maximum entropy distribution P (W ) with respect to the

free parameters β1, . . . , βL. Explicitly computing the Lagrange multipliers β` that max-

imise the likelihood of drawing the data from the ensemble without an analytical form

for Z can in principle be achieved by means of Boltzmann learning gradient-descent al-

gorithms [111]. These ultimately require an exhaustive phase space exploration through

sequential Monte Carlo simulations, which quickly becomes computationally unfeasible

for large systems (in our case for T � 1). Therefore, finding a closed form solution (even

an approximate one) for Z is the cardinal problem to be solved in order to fully define a

working methodology. In order to better explain the intuition behind the use of the MEP

to the context of time series randomization, Figure 3.1 provides a sketch representation

of the ensemble theory just introduced. The rationale of enforcing the a set of constraints

calculated starting from the single realization of the system at hand, is that of finding a

distribution P (W ) that assigns low probability to regions of the phase spaceW where the

observables associated to the Lagrange multipliers β` take values that are exceedingly dif-

ferent from those measured in the empirical setW , and high probability to regions where

some degree of similarity with W is retained (it should be noted that in some cases this

does not necessarily leads to the distribution P (W ) being peaked around the values O`).

For a given statistical significance α, this procedure will allow us to define a region ofW

which will partially include W . As a result, we will mark as significant those properties
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FIGURE 3.1: Starting from an empirical set of time series W , we construct its unbiased random-
ization by finding the probability measure P (W ) on the phase spaceW which maximises Gibbs’
entropy while preserving the constraints {Ol(W )}Ll=1 as ensemble averages. The probability dis-
tribution P (W ) depends on L parameters that can be found by maximising the likelihood of
drawing W from the ensemble. In the Figure, orange, turquoise and black are used to indicate
positive, negative or empty values of the entries Wit, respectively, while brighter shades of each
color are used to display higher absolute values. As it can be seen, the distribution P (W ) assigns
higher probabilities to those sets of time series that are more consistent with the constraints and
therefore more similar to W .

(not directly encoded in any of the constraints) of W which are outside the define region

of the phase space. In other words, the maximum entropy distribution P (W ) will be used

to regress a whole system against a set of constraints derived from it, i.e. it will be used

to understand which observables of a system can be automatically explained by means

of the constraints imposed on the ensemble. This dimensionality reduction exercise uses,

as its only assumption, the Principle of maximum entropy.

Some considerations are necessary at this point. The contribution I am here propos-

ing is just a direct application, to a new setting, of the original Jaynes’ intuition of using

the MEP in the opposite way with respect to its classical use in Statistical Mechanics. In

physics the goal we try to achieve is usually to compute observable macroscopic quanti-

ties (such as correlations in an Ising model) from the unobservable microscopic laws rul-

ing the interactions between the components of a system [111]. Here, we are dealing with

the opposite problem: our aim is to infer the parameters of an interacting system (e.g.,

the coupling constants and fields in an Ising model) from snapshots of its microscopic

configurations. This is usually referred to as the “inverse problem”. Given its relevance
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for the calibration of a Boltzmann machine [65] (a well known machine learning algo-

rithm) and the increased accessibility of the “microscopic configurations”of many non-

physical systems (e.g., financial markets, social networks, neuron firing patterns, etc.), the

inverse problem has received considerable attention from the research community, espe-

cially when applied to fully connected Ising models [111, 130]. Thanks to this increasing

momentum, calibration techniques for maximum entropy models that do not require the

exact analytical computation of the partition function Z (which is indeed impossible for

many ensembles) have been proposed. For a complete review on the subject, I invite to

read Reference [111]. Naturally, it should be noticed that all these calibration techniques

can be directly applied to the framework I am here proposing without too much effort

and therefore can be invoked when dealing with ensembles built around more exotic sets

of constraints than the ones I will consider in the present thesis. Naturally, having access

to the analytical form of the partition function Z is always preferable in terms of both

accuracy of the solution and computational time.

3.3 Univariate time series randomization

Before moving on to see how the proposed framework can be put to practical use, let me

illustrate how it can work on a dummy example. In this Section I will only consider uni-

variate time series, which can be considered a particular case (N = 1) of the framework

introduced above. To show how a specific ensemble can be computed, let us consider

an empirical time series Xt of length T and let us choose as constraints its sample mean

m =
∑T

t=1 xt/T and mean square value V =
∑T

t=1 x
2
t /T . Remember that our aim is to

find the explicit analytical form of Z = Z(β1, β2) able to explicitly express the partition

function as a function of the two Lagrange multipliers we need, in order to enforce on the

ensemble the two constraints we have just chosen. As usual, let us call xt the t-th element

in a general time series Xt, and let us place each of such elements on a one dimensional

lattice of length T . Each site of the lattice will be a sampling time, while a recorded value

xt will be represented as a general coordinate on the corresponding site. The constraints

on the mean and mean square value can be enforced by using the following Hamiltonian:

H =
T∑
t=1

[
β1xt + β2x

2
t

]
.
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After the specification of constraints by means of H , what is left to do is to evaluate the

partition function. In order to do that, we need to properly define the sum over the phase

space X appearing in the definition of Z:

Z =
∑
X∈X

e−H(X) =

∫ +∞

−∞

T∏
t=1

dxt e
−H(X) =

=

T∏
t=1

∫ +∞

−∞
dxt e

−β1xt−β2x2
t =

(√
π

β2
e
β2
1

4β2

)T
; β2 > 0 .

Note that the sum over the phase space
∑

X∈X is indeed a fictitious notation that is valid

for every possible application of the MEP. However, it needs to be made explicit given

the particular system at hand. In the case considered here, it becomes the integral, over

all the accessible values, of each general coordinate at each lattice site. Now that the

partition function is known, the right values of Lagrange multipliers β1 and β2 can be

obtained by solving the following system of coupled equations (3.7):

m = − 1

T

∂ lnZ

∂β1
= − β1

2β2

V = − 1

T

∂ lnZ

∂β2
=

β21 + 2β2
4β22

.

After having solved the system for β1 and β2, we can plug the solution back to P (X) =

e−H(X)

Z and find the explicit probability density function for the ensemble, which reads:

P (X) =

(
1

2π(V −m2)

)T/2 T∏
t=1

e
− (xt−m)2

2(V−m2) ; V > m2 .

As it can be seen, this trivial case gives a completely factorized probability density func-

tion of T independent Gaussian random variables with mean m and variance (V −m)2.

3.3.1 Absence of time structure: reconstructing an unknown distribution

I first consider consider a simple case of a stationary data generating process with no

correlations over time. This amounts to a time series made of independent and identically

distributed random draws from an unknown probability density function that I therefore

aim to approximate by using the introduced maximum entropy framework and the given

data sample (i.e. an 1 × T empirical data matrix Xt). In the introductory example of the

previous section, we saw what is the prescribed maximum entropy distribution when we

constrain the overall sample mean and variance.
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In order to improve on this trivial case, I start by considering a vector ξ ∈ [0, 1]d

and the associated empirical ξ-quantiles qξ calculated on X . Calling Xst the counterpart

of X sorted in ascending order, the empirical quantile q(u) associate with u ∈ [0, 1] is

computed using the following formula [81]:

q(u) = (Tu− j +
1

2
)xstj+1 + (j +

1

2
− Tu)xstj ∀u ∈

[
2j − 1

2n
,
2j + 1

2n

]
.

Instead of focusing on global constraints (like the mean and the variance of the entire

sample), one possible way to better capture the heterogeneity of the sample W is to con-

strain our ensemble to preserve, as averages, one or more quantities derived from the

empirical quantiles qξ. Possible choices may be:

• The number of data points falling within each pair of empirically observed adjacent

quantiles:

N ξi =
∑
t

Θ(xt − qξi−1
) Θ(−xt + qξi)

• The cumulative values of the data points falling within each pair of adjacent quan-

tiles:

M ξi =
∑
t

xt Θ(xt − qξi−1
) Θ(−xt + qξi)

• The cumulative squared values of the data points falling within each pair of adja-

cent quantiles:

M
2
ξi =

∑
t

x2t Θ(xt − qξi−1
) Θ(−xt + qξi)

In each of the above constraints we assumed i = 2, . . . , d, and we have used Θ(·) to

indicate Heaviside’s step function (i.e., Θ(x) = 1 for x > 0, and Θ(x) = 0 otherwise).

In general, there is a lot of freedom in the way a set of constraints can be created from

the ones listed above. For example, given two vectors ξA ∈ [0, 1]dA and ξB ∈ [0, 1]dB ,

we can impose on the ensemble the ability to preserve N ξAi
∀i ∈ [1, dA] together with

M ξBi
∀i ∈ [1, dB] and the mean squared value of the whole sample M2

=
∑

t x
2
t . How-

ever, it should be noticed that different sets of constraints will lead to different Hamilto-

nians, to different numbers of Lagrange multipliers and therefore to different statistical

models. Choosing, for example, to adopt all the constraints introduced in the above bul-

let points on a single quantiles vectors ξ, the Hamiltonian H of the ensemble will include

3(d− 1) Lagrange multipliers and the model will therefore depend on the same number
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of parameters:

H(W ) =

d∑
i=1

T∑
t=1

[
ai +Wtαi +W 2

t βi
]

Θ(W t − qξi−1
) Θ(−W t + qξi) . (3.8)

However, we should always remember that there is no free lunch in science and there-

fore the freedom to choose the amount of constraints naturally comes with a cost. First

of all, the Likelihood of the empirical data matrix W is a non linear function of the La-

grange multipliers and therefore of the constraints, which can vary both in magnitude

(by choosing different values for the entries of ξ) and in size (by choosing a different d).

This is indeed a typical situation in maximum entropy modelling. Think for example of a

Stochastic Block model [82] of a complex network (which I remind is a maximum entropy

model too), where we have the freedom to chose both the number and the composition

of the communities we impose on the ensemble.

The very general issue of finding the optimal positions for the constraints (the com-

munities composition in SBM example), given their number d, can become highly not

trivial and will not be handle in the present thesis. However, loosely speaking, the Likeli-

hood of finding W after a random draw from the defined ensemble is an increasing func-

tion of the number constraints, coherently with the intuition that increasing the number

of parameters will inevitable produce better statistics on the data used to train the model.

As a result, in order to avoid overfitting and therefore an extremely overspecified model,

we can first fix a set of constraints (i.e. the number of points falling within each adja-

cent quantile) and then we can compare different values of d by using standard model

selection techniques such as the Bayesian [74] or Akaike information criteria [3].

To give a better grasp on the methodology just explained, I am going to show how

it can be applied to a synthetic dataset. As a result, let us assume that the data sample

is a realization of a balanced mixture of a truncated standard Normal distribution and a

truncated Student’s t-distribution with ν = 5 degree of freedom. To build our ensembles

for our reconstruction exercise, we are going to employ the following two Hamiltonians:

H1 =
∑
i

[αiNξi + βiMξi ]

H2 =
∑
i

[
αiNξi + βMξi + γM2

ξi

] (3.9)

As it can be read from Equation (3.9), the first Hamiltonian H1 preserves, as ensemble
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averages, the number of pointsNξi falling within each pair or adjacent quantiles and their

cumulative values, while H2 also constrains the mean squared values of the data points

falling within each pair of adjacent quantiles. As a result, the two randomizations will

result in a different number of Lagrange multipliers. The model resulting from H1 will

have a total of 2(d−1) parameters, while the model coming fromH2 will be characterised

by d + 1 parameters. Before comparing the two ensembles, we need to compute their

partition function Z1,2 =
∑

W e−H1,2(W ) and use them to fix the Lagrange multipliers

appearing in Equation (3.9). In order to do that, we need to carry out the sum over the

phase space as done in the dummy example above:

Z1 =

∫ +∞

−∞

T∏
t=1

dxt e
−H1 =

T∏
t=1

d−1∏
i=1

∫ qξi+1

qξi

dwt e
−αi−βiwt =

T∏
t=1

d−1∑
i=1

e−αi
e−βiqξi − e−βiqξi+1

βi
.

(3.10)

With similar steps we can find the partition function of the ensemble H2:

Z2 =
T∏
t=1

d−1∑
i=1

√
π

4γ
e
β2

4γ
−αi

(
−erf

[
β + 2γqξi

2
√
γ

]
+ erf

[
β + 2γqξi+1

2
√
γ

])
, (3.11)

where with erf we indicate the Gaussian error function erf(z) = 2
π

∫ z
0 e
−t2dt. Now that

we have computed the partition functions, we can carry out our reconstruction exercise.

Specifically, I am going to consider two different scenarios: one with a sample sizes of

40 data points and one with 4000 data points. In both cases the quantiles vector is set to

q = [−∞, q0.25, q0.5, q0.75,∞]. In Figure 3.2 I provide a visual understanding on how the

models resulting from the partition functions Z1 and Z2 are able to reconstruct the under-

lying true distribution for both sample sizes. The first point that we can highlight is that,

as anyone could have guessed, the more data we have, the better our reconstruction is

going to be regardless of the model at hand. In addition to this, Figure 3.2, qualitatively

shows that the model described by Z1 can better approximate the unknown underlying

probability density function (visualised using black dashed line). In order to verify these

two statements in a more quantitative way, I calculate the Kullback–Leibler divergence of

the estimated distributions from the true one: for the case with 40 data points we observe

DKL(PZ1 |PT ) = 0.12 and DKL(PZ2 |PT ) = 0.11 while for the case with 4000 samples we

have DKL(PZ1 |PT ) = 0.01 and DKL(PZ2 |PT ) = 0.08. As it can be seen, the values of the

Kullback–Leibler divergence in smaller when 4000 data points are considered regardless
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FIGURE 3.2: Comparisons between empirical PDFs (shown as histograms) and PDFs recon-
structed with our ensemble approach from the Hamiltonians in Eq. (3.9), shown in red and
orange respectively. In both panels the true empirical PDF is shown as a black dashed line. a)
Results obtained by calibrating the models on 40 data points. b) Results obtained by calibrating
the models on 4000 data points. See the main text for additional information about the quality of
the models.

of the model, while, depending on the sample size, one model provides a better approx-

imation of the ground truth (given the available information) than the other. Even if the

difference in the small sample regime is relatively smaller than the one in the large sam-

ple scenario, we cannot state that Z1 is a better model for our reconstruction task than Z2.

In fact, they are described by a different number of parameters and this should be taken

into account.

As mentioned above, if we want to have a fair comparison strategy, we need to rely

on a test to assess the relative quality of the models for a given set of data. In this case, I

choose the Akaike information criterion (AIC). This procedure, in order to rank models

with different number of parameters, uses the following score function AIC = 2k−2 ln L̂,

where k is the number of estimated parameters and L̂ is the maximum value of the likeli-

hood function for the model. Applying the AIC to the two scenarios we considered gives

AICZ1 = 150 and AICZ2 = 820 for the 40 data points case and AICZ1 = 1, 15 × 104 and
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AICZ2 = 2.11 × 105 for the scenario with 4000 data points. We can therefore conclude

that, indeed, the ensemble Z1 does a better job than Z2 in reconstructing the unknown

pdf we have considered. I would like to end this section by restating that this analysis

can be repeated on a different data sample but the vector q, common to the two models,

is here fixed a priori.

3.3.2 The lag-1 autocorrelation constraint

In this section I am going to consider a set of constraints aimed at directly accounting for

the time structure in the underlying time series. The constraints I am going to consider

are the sample mean (m), mean square value (V ) and temporal correlation at lag-one

C1 =
∑T

t=1 xtxt+1/T . Before moving on, I would like to underline that the steps here re-

ported can be applied as they are to a generic temporal correlation Cτ =
∑T

t=1 xtxt+τ/T ,

i.e. to an ensemble able to preserve various points of the empirical autocorrelation func-

tion. Notice that the sum defining Cτ goes from 1 to T and not to T − τ . This simple trick

will result in a much larger analytical tractability and will not affect much the results

when T � 1, where
∑T

t=1 xtxt+τ/T ≈
∑T−τ

t=1 xtxt+τ/T .

As done previously, let us start by placing the data points on a one-dimensional tem-

poral lattice, whose sites t = 1, . . . , T correspond to the events of a time series of interest

x1, . . . , xT . The specified set of constraints can be reshaped as constraints on this fictitious

lattice by using the following Hamiltonian:

H =
T∑
t=1

[
λ1xt + λ2x

2
t + λ3xtxt+1

]
, (3.12)

where, as mentioned above, we are assuming the so called spherical boundary condi-

tions xT+1 = x1 which are commonly assumed in several models of statistical physics.

Several works show that, if the lattice in sufficiently large, this approximation does not

affect the overall quality of the model (see Reference [96] for the case of the Ising model).

The Hamiltonian appearing in Equation (3.12) coincides with the one of the so called

Mean Spherical Model [14, 6], a well-known model in Statistical Mechanics. The Spher-

ical Model has been extensively studied by theoretical physicists mainly for its mathe-

matical elegance and convenience, but it has always been criticized for its lack of a real

physical interpretation [120]. Here I am putting it to use and providing it with a real
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practical application and with a clear physical interpretation in terms of time series ran-

domization.

Once the Hamiltonian is specified, the task which follows is finding the partition

function Z. As previously done, the sum of the phase space is simply the product of

T integrals, which are in this case dependent:

Z =

∫ +∞

−∞

T∏
t=1

dxt e
−λ1xt−λ2x2

t−λ3xtxt+1 =

∫
dTx e−x

TAx+BTx =

√
πT

detA
e
BTA−1B

4 ,

(3.13)

where I have introduced the following vector notation:

BT = −λ1


1

...

1

 , A =



λ2 λ3 0 · · · · · · · · · · · · λ3

λ3 λ2 λ3 0 · · · · · · · · · 0

0 λ3 λ2 λ3
. . .

...
... 0

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

...
...

. . . λ3 λ2 λ3 0

... 0 λ3 λ2 λ3

λ3 0 · · · · · · · · · 0 λ3 λ2



,

and I have carried out the multidimensional integral in (3.13) by simply noticing that it

is a Gaussian integral, whose solution is a well known result of mathematical calculus.

If we look at the matrix A we can immediately notice that it belongs to the class of real

symmetric circulant matrices, which are extremely well documented mathematical ob-

jects [61]. In particular, the eigenvalues {λt}Tt=1 and the eigenvectors {Vt}Tt=1 of A can be

shown to be:

Vtk =
1√
T

(
cos

[
2π

T
(t− 1)(k − 1)

]
+ sin

[
2π

T
(t− 1)(k − 1)

])
k = 1, . . . , T

Λt = λ2 + λ3 cos
2π

T
(t− 1) ,

(3.14)

where I have used the index k to indicate the component of the eigenvectors. Thanks

to the results in Equation (3.14), we can now find how the partition function depends

from the Lagrange multipliers, i.e. we can find Z = Z(λ1, λ2, λ3). To obtain this explicit

dependence, we need to expand the determinant and the exponent of the exponential
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appearing in Equation (3.13):

detA =
T∏
t=1

Λt = e
∑T
t=1 ln [λ2+λ3 cos 2π

T
(t−1)] T�1

≈ e
T
2π

∫ 2π
0 dω ln [λ2+λ3 cosω]

= eT ln
λ2+
√
λ2

2−λ
2
3

2 =

(
λ2 +

√
λ22 − λ23
2

)T
;

BTA−1B = λ21 b
TA−1b = λ21 b

T 1

Λ1
b = T

λ21
λ2 + λ2

,

(3.15)

where we have used the fact that b = (1, . . . , 1) is an eigenvector of A (and therefore of

A−1) associated to Λ1 and we have made a “continuum approximation”by substituting

the sum in the exponents with an integral.

Plugging the expressions of Equation (3.15) into Equation (3.13), gives the ensemble’s

partition function we were looking for, which reads:

Z =

(
2π

λ2 +
√
λ22 − λ23

)T
2

e
T

λ2
1

4(λ2+λ2) . (3.16)

Now that we found the explicit expression of the partition function, we can use it to fix

the values of the Lagrange multipliers. From Equation (3.16) we obtain:

m = − λ1
2(λ2 + λ3)

= − 1

T

∂

∂λ1
lnZ

V =
λ21

4(λ2 + λ3)2
+

1

2
√
λ22 − λ23

= − 1

T

∂

∂λ2
lnZ

C1 =
λ21

4(λ2 + λ3)2
+

λ3

2(λ23 − λ22 + λ2
√
λ22 − λ23)

= − 1

T

∂

∂λ3
lnZ .

(3.17)

The above system of equations can be solved analytically. I will not show the explicit so-

lutions here since they are very long, cumbersome and they do not provide any addition

insight nor they have any implication on the exposition of the work developed. Once

the values of the Lagrange multipliers have been fixed, the underlying temperatures and

interaction strengths of the imaginary lattice we use to describe the randomization are

set and a particular instance (i.e. a single time series) can be drawn from the ensemble

by using standard Monte Carlo methods [18]. The physical analogy just outlined will be

further expanded in Section 3.4.

To test the the ability of the proposed ensemble to approximate an underlying data

generating process, I am here adapting the intuition behind Monte Carlo simulations
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FIGURE 3.3: Black lines in the Figure correspond to data generated synthetically from the autore-
gressive model Yt+1 = ξ

(0,1.5)
t Yt + ξ

(−0.3,0.7)
t . The solid black line corresponds to data up to time

T = 180, which are used to compute the initial values of the ensemble’s Lagrange multipliers
appearing in Eq. (3.16), while the black dashed line corresponds to the evolution of the process
beyond time T . The blue solid line and shaded region denote, respectively, “out of sample” next-
step expectations for times t > T based on the ensemble, with Lagrange multipliers updated
in “real time” based on new data points. The purple solid line and shaded region correspond,
respectively, to the mean and 99% confidence interval computed over a sample of 106 trajecto-
ries of the process Xt generated as one-step increments starting - at all times - from the values
represented by the dashed black line.

slightly away from the way it is commonly used in physics or in the null models litera-

ture. Every Monte Carlo technique starts from a given configuration (i.e. a time series)

and it sequentially moves this starting configuration in the phase space2 until equilib-

rium is reached. All the final configurations coming out from this chain of moves will

be “similar”, i.e. they will be time series with a mean, variance and lag-1 autocorrelation

approximately equal to the value dictated by the Lagrange multipliers. This very same

procedure can also be performed “out of sample”. Instead of doing a Monte Carlo simu-

lation where we can potentially change the positions xt of all the particles from t = 1 to

t = T , we add another site in position T + 1 to our temporal lattice, we randomly place

a particle on it (i.e. we randomly initialise its associated value xT+1) and we perform a

Monte Carlo simulation on xt where we can only change the position of the particle in the

(T + 1)-th site. What we obtain from this procedure is a probability distribution for xT+1.

This particular way of using Monte Carlo simulations gives, to the maximum entropy

null modelling framework I am proposing, a way of testing how well a given ensemble

can approximate an underlying data generating process by predicting the evolution of a

given time series one or more steps ahead. Indeed, we can use a given process to gener-

ate a time series Xt, place ourselves at time T and see how the probability distribution

2This sequences of moves can both be local, i.e. on a single random point in time, or global, i.e. on all time
points, the only requirement is that they satisfy the detailed balance condition. Different ways of moving a
starting configuration around the phase space will define a different Monte Carlo techniques.
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over the site T + 1 given by the ensemble is in comparison with the one provided by the

defined data generating process.

The results of this exercise, coming from a particular experiment, are visualized in

Figure 3.3. Black lines correspond to data generated synthetically from the autoregres-

sive model Yt+1 = ξ
(a1,a2)
t Yt + ξ

(a3,a4)
t , where ξ(a,b)t is a random number drawn at time t

from a uniform distribution in the interval [a, b]. The solid black line corresponds to the

final 30 points of an initial time series of length T = 180, which we use to calibrate the

model by computing the Lagrange multipliers appearing in Equation (3.16) for the first

time. At every time step from tm = 181 onwards, I calibrate the ensemble using the last

180 data points and create a probability distribution over tm by using both the ensemble

and the true data generating process, I pick a random realization from the true data gen-

erating process and I add it to the empirical time series, then I repeat the process. The

black dashed line in Figure 3.3 corresponds to the continuation of the initial time series

beyond time T , which, as just stated, we use both to update the Lagrange multipliers

in “real time”, and to generate a the two probability distributions over new in coming

points. The blue solid line and shaded region correspond to “out of sample” next-step

expectations of the maximum entropy ensemble, while the purple solid line and shaded

region capture the “true” next-step evolution of the system. The solid colored line and

shaded regions correspond, respectively, to the mean and 99% confidence interval com-

puted over a sample of 106 realizations.

As it can be seen from a qualitative inspection of Figure 3.3, the maximum entropy

ensemble (3.16) is able to reproduce relatively faithfully the average time evolution of the

underlying data generating process. While the average evolution is quite similar, there

are some visible deviations between the two confidence intervals. These are due to the

fact that the data generating process we used has a richer time structure than the pro-

posed framework is able to produce given the imposed constraints. In particular, the

underlying ground truth of this particular experiment possesses non trivial time corre-

lations in its higher order moments, which cannot be fully explained only by means of

the constraints I am using. These types of temporal structures will be captured by the

ensemble introduced in the next Section, where I will also perform a more quantitative

assessment of this model’s ability to reconstruct the data generating process here pro-

posed plus two more.
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3.3.3 The variance lag-1 autocorrelation constraint

We now proceed to investigate a more complex ensemble by addition additional con-

straints aimed at capturing a non trivial time structure in the variance. We consider the

following Hamiltonian:

H =
T∑
t=1

[
λ1xt + λ2x

2
t + λ3xixt+1 + λ4x

2
tx

2
t+1 + λ5x

4
t

]
, (3.18)

which enforces the constraints already considered in the Hamiltonian of Equation (3.12),

plus additional constraints on the sample mean fourth power (
∑T

t=1 x
4
t ) and on the time

correlations at lag-one between squared values (
∑T

t=1 x
2
tx

2
t+1). Such constraints - coupled

with the ones mentioned previously - effectively amount to constraining, respectively, the

ensemble average on the kurtosis and on the variance autocorrelation at lag-one.

Similarly to Equation (3.13), the partition function resulting from the Hamiltonian (3.18)

can be found by integrating all the T generalised coordinates xt from −∞ to +∞:

Z =

∫ +∞

−∞

T∏
t=1

dxi e
−λ1xt−λ2x2

t−λ3xtxt+1+λ4x2
tx

2
t+1+λ5x4

t . (3.19)

Integrals similar to the one of Equation (3.19) are quite common in a branch of theoretical

physics called field theory (specifically, Equation (3.19) defines a particular one dimen-

sional λφ4 field theory on a lattice). Even if very common, no one in history has been

able to solve any integral similar to the ones I am dealing with. The possibility of being

the first to accomplish such mathematical challenge is indeed appealing, however the

necessity of completing the work presented in this thesis (and possibly obtaining a PhD)

in reasonable time won over my mathematical curiosity and therefore I will not even try

to find an exact analytical form for the partition function (3.19). Luckily, physicists have

found several ways to deal with such calculations which can broadly be divided into two

categories: resummation techniques or perturbation theory [108]. Following the latter

line of research, I will make use of the Plefka expansion [124], a perturbation method

widely used in the inverse Ising problem, in order to find an approximate form for the

partition function (3.19) and therefore obtain an ensemble able to approximately match

the set of constraints I am considering.

In standard perturbation theory, the Hamiltonian H of a system is written as a sum

of an unperturbed part H0 and a perturbation Hp, i.e., H = H0 + Hp. Using this simple
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expedient, the partition function of the system can be rewritten in the following form:

Z =
∑
X
e−(H0+Hp) = Z0

∑
X

e−H0

Z0
e−Hp = Z0〈e−Hp〉0 = Z0

∑
k

(−1)k

k!
〈Hk

p 〉0 , (3.20)

where I have used the Taylor expansion of the exponential and I have denoted with Z0

the partition function of the unperturbed system, i.e. Z0 =
∑
X e
−H0 , and with 〈· · · 〉0 the

average over the ensemble defined by Z0. Note that Equation (3.20) is in principle exact.

However, for every practical use, we inevitably need to truncate the power series expan-

sion (which becomes a power series expansion in the Lagrange multipliers appearing in

the definition of Hp) to a certain order k. This creates an approximation which becomes

better and better as k is higher. In some particular circumstances, the analytical form for

〈Hk
p 〉0 is simple enough and the infinite sum appearing in Equation (3.20) can be com-

puted and therefore the true partition function Z can be obtained. The case I am dealing

with does not fall in this category.

The Plefka expansion is a perturbation method which follows a line of reasoning

similar to the one just outlined. It starts by writing the Hamiltonian of the system as

H = H0 + λHp. The added parameter λ is a constant whose aim is solely to distinguish

different perturbation orders and which will be ultimately set to one. Instead of focusing

on the partition function Z, the Plefka expansion considers the free energy F = − lnZ of

the system:

F = − lnZ = − lnZ0 − ln
Z

Z0
= F0 + Fp , (3.21)

where F0 is the free energy of the unperturbed ensemble and Fp = − ln Z
Z0

. At this point,

the Plefka expansion method directly expands Fp as a power series in λ:

Fp = −λf1 +
λ2

2
f2 −

λ3

3!
f3 + · · · , (3.22)

where the fact that λ = 0 =⇒ F = F0 has been used. If we substitute this expression of

Fp into e−Fp = Z/Z0, we obtain the equivalence

Z

Z0
= 1− λf1 +

λ2

2
(f2 + f21 )− λ3

3!
(f3 + f31 + 3f2f1) + · · · (3.23)

Comparing Equation (3.23) with Z/Z0 =
∑

k(−λ)k〈Hk
p 〉0/k!, which directly descends

from Equation (3.20), we can obtain an expression for the terms f1, f2, . . . of Equation (3.22).
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The first three terms are:
f1 = 〈Hp〉0

f2 = 〈H2
p 〉0 − f21

f3 = 〈H3
p 〉0 − f31 − 3f1f2 .

(3.24)

As it can be seen from Equation (3.24), the Plefka methodology ultimately consists on an

expansion of the free energy F around the cumulants of the unperturbed ensemble. For

historical accuracy, it is worth saying that a similar idea to one developed by Plefka was

already presented (8 years earlier) by Bogolyubov et al. [21] for the ferromagnetic Ising

model.

I will now use the outline Plefka expansion to obtain a second order approximation

for the partition function of Equation (3.19). First of all, we start by choosing which part

of the Hamiltonian (3.18) is the perturbation:

H0 =
T∑
t=1

[
λ1xt + λ2x

2
t + λ3xixt+1

]
Hp =

T∑
t=1

[
λ4x

2
tx

2
t+1 + λ5x

4
t

]
.

As it can be seen, we are considering the Spherical Model (3.16) as the unperturbed en-

semble Z0, and the additional constraints we are imposing on the quadratic variations

as the perturbation. With this choice of H0 and Hp, the second order approximated free

energy derived from Equation (3.22) and Equation (3.24) can be obtained

F ≈ F0 −
∑
t

[
λ5〈x4t 〉0 + λ4〈x2tx2t+1〉0

]
+

1

2

∑
t,t′

[
λ25〈x4tx4t′〉0 + λ24〈x2tx2t+1x

2
t′x

2
t′+1〉0 + 2λ5λ4〈x4tx2t′x2t′+1〉0

]
− 1

2

∑
t

[
λ5〈x4t 〉0 + λ4〈x2tx2t+1〉0

]2
,

(3.25)

where the expansion above has introduced a second time index t′ which effectively intro-

duces a measure of distance between sites t− t′, which correspond to temporal distances

between events in the original time series.

While F0 is known, all the other quantities appearing in Equation (3.25), i.e. the vari-

ous expectation values 〈·〉0, need to be determined. In order to do that, we need to apply

Isserlis’ theorem [69], a result which is also largely employed in quantum field theory

under the name of Wick’s theorem [154] and which allows us to compute higher-order
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moments of a zero mean multivariate normal distribution in terms of its covariance ma-

trix. Specifically, if (X1, . . . , Xn) is zero mean random vector with multivariate normal

distribution, then

E [X1 . . . Xn] =
∑
p∈P2

n

∏
(i,j)∈p

E [XiXj ] ,

where P2
n is the set of all the possible partitions of n elements in groups of 2. To fix ideas,

let me show a practical example. Wick’s theorem applied to the multivariate normal

vector (X1, X2, X3, X4) gives:

E [X1, X2, X3, X4] = E [X1, X2] E [X3, X4] + E [X1, X3] E [X2, X4] + E [X1, X4] E [X2, X3] .

When the vector (X1, . . . , Xn) under consideration has a defined mean (m1, . . . ,mn)

which is not zero, we can just apply the Wick’s theorem to the rescaled vector (Y1 +

m1, . . . , Yn + mn), where the vector (Y1, . . . , Yn) has a multivariate normal distribution

with zero mean along each dimension and same covariance matrix as (X1, . . . , Xn). As

an example, let me show again a particular example (whose result would be zero in the

zero mean case):

E [X1, X2, X3] = E [Y1 +m1, Y2 +m2, Y3 +m3]

= m3 (E [Y1, Y2] + 3m1m2) +m2 (E [Y1, Y3] + 3m1m3) + +m1 (E [Y2, Y3] + 3m2m3) .

Now that we are armed with a way of calculating the numerous expectation values ap-

pearing in the free energy of Equation (3.25), we can move forward in our task of finding

an explicit expression for the second order approximation of F . For easiness of exposi-

tion, let me first redefine some quantities appearing in Equation (3.17) as follows:

m = − λ1
2(λ2 + λ3)

= − ∂

∂λ1
lnZ0

s0 =
1

2
√
λ22 − λ23

= − 1

T

∂

∂λ2
lnZ0

∣∣∣∣
λ1=0

s1 =
λ3

2(λ23 − λ22 + λ2
√
λ22 − λ23)

= − 1

T

∂

∂λ3
lnZ0

∣∣∣∣
λ1=0

stt′ = 〈xtxt′〉0|λ1=0 ,

(3.26)

where s0 = stt and s1 = st,t+1, ∀t.
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We can now proceed to calculate the expectation values appearing in Equation (3.25)

by directly applying Wick’s theorem:

〈x4t 〉0 = m4 + 6m2s0 + 3s20

〈x2tx2t+1〉0 = (m2 + s0)2 + 4m2s1 + 2s21

〈x4tx4t′〉0 = (m4 + 6m2s0 + 3s20)2 + 16(m3 + 3ms0)2stt′ + 72(m2 + s0)2s2tt′ + 96m2s3tt′ + 24s4tt′

〈x4tx2t′x2t′+1〉0 = m8 + 12m2s30 + 2m4
(
4
(
m2 + 2s1

)
stt′ + s1

(
2m2 + s1

)
+ 6s2tt′

)
+ 8m2s(t+1)t′

(
m4 + 6

(
m2 + s1

)
stt′ + 2m2s1 + 6s2tt′

)
+ 12s2(t+1)t′

(
m4 + 2stt′

(
2m2 + stt′

))
+ 4s0

[
2m2

(
m2 + stt′ + s(t+1)t′

) (
m2 + 3stt′ + 3s(t+1)t′

)
+ 3m2s21

+6s1
(
m4 + 2m2stt′ + 2s(t+1)t′

(
m2 + stt′

))]
+ 2s20

(
8m4 + 6

(
2m2stt′ + 2m2s(t+1)t′ + s2tt′ + s2(t+1)t′

)
+ 6m2s1 + 3s21

)
+ 3s40

〈x2tx2t+1x
2
t′x

2
t′+1〉0 = m8 + 4s30m

2 + 16s31m
2 + 8s1

[(
m2 + 2s(t+1)t′

) (
m2 + 2st(t′+1)

)
+
(
2m2 + s(t+1)t′ + st(t′+1)

)
s(t+1)(t′+1) + stt′

(
2m2 + s(t+1)t′ + st(t′+1) + 4s(t+1)(t′+1)

)]
m2

+ s40 + 4s41 + 2s20
[
3m4 + 4s1m

2 + 2stt′m
2 + 2s(t+1)t′m

2 + 2st(t′+1)m
2 + 2s(t+1)(t′+1)m

2

+2s21 + s2tt′ + s2(t+1)t′ + s2t(t′+1) + s2(t+1)(t′+1)

]
+ 4s21

[
5m4 + 4

(
st(t′+1) + s(t+1)(t′+1)

)
m2

+4s(t+1)t′
(
m2 + st(t′+1)

)
+ 4stt′

(
m2 + s(t+1)(t′+1)

)]
+ 2

[(
s2(t+1)(t′+1) + 2

(
m2 + 2st(t′+1)

)
s(t+1)(t′+1) + st(t′+1)

(
2m2 + st(t′+1)

))
m4

+2s(t+1)t′
(
m4 + 2st(t′+1)

(
2m2 + st(t′+1)

)
+ 2

(
m2 + 2st(t′+1)

)
s(t+1)(t′+1)

)
m2

+s2(t+1)t′

(
m4 + 2st(t′+1)

(
2m2 + st(t′+1)

))
+ 2stt′

(
2s2(t+1)(t′+1)m

2

+
(
m2 + 2s(t+1)t′

) (
m2 + 2st(t′+1)

)
m2 + 4

(
m2 + s(t+1)t′

) (
m2 + st(t′+1)

)
s(t+1)(t′+1)

)
+s2tt′

(
m4 + 2s(t+1)(t′+1)

(
2m2 + s(t+1)(t′+1)

))]
+ 4s0

[
2s21m

2

+
(
s2tt′ + 2

(
m2 + s(t+1)t′ + st(t′+1)

)
stt′ + s2(t+1)t′

+
(
m2 + st(t′+1) + s(t+1)(t′+1)

)
2 + 2s(t+1)t′

(
m2 + s(t+1)(t′+1)

))
m2

+2s1
(
2
(
m2 + s(t+1)t′ + st(t′+1)

)
m2

+stt′
(
2m2 + s(t+1)t′ + st(t′+1)

)
+
(
2m2 + s(t+1)t′ + st(t′+1)

)
s(t+1)(t′+1)

)]
(3.27)

As we can see from Equations (3.25) and (3.27), the second order approximation con-

tains the covariances of the unperturbed Hamiltonian at all possible ranges, i.e., not just

at lag-one. As a result, we now need to find an explicit form for stt′ in order to move for-

ward. To do this, we can directly evaluate the expectation value 〈xtxt′〉0 (i.e. the site-site
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correlation function of the Spherical Model (3.16)):

stt′ = 〈xtxt′〉0|λ1=0 = 〈
∑
s

Vtsys
∑
k

Vt′kyk〉0
∣∣∣∣
λ1=0

=
∑
s,k

VtsVt′k〈ysyk〉0|λ1=0

=
∑
s

VtsVt′s〈y2s〉0|λ1=0 =
∑
s

1

2T

cos
[
2π
T (s− 1)(t− t′)

]
λ2 + λ3 cos

[
2π
T (s− 1)

] , (3.28)

where Vtk is the t-th element of the k-th eigenvector of the matrix A of Equation (3.14)

and yk =
∑

t Vtkxt. Using the identity 1
x =

∫∞
0 e−zxdz inside Equation (3.28), we obtain

stt′ =
∑
s

1

2T
cos

[
2π

T
(s− 1)R

] ∫ ∞
0

dz e−z(λ2+λ3 cos [ 2π
T

(s−1)]) , (3.29)

where I have used the notation R = t− t′ to indicate the distance between the two lattice

sites. To obtain a more treatable expression, we can proceed as follows:

stt′
T�1
≈
∫ ∞
0

dz

2
e−zλ2

∫ 2π

0

dω

2π
e−zλ3 cosω cos [ωR] =

∫ ∞
0

dz

2
e−zλ2IR(−λ3z)

=

(
− λ3
|λ3|

)R
2

∫ ∞
0

dz e−zλ2IR(|λ3| z)
λ2−|λ3|�1
≈

≈ (−sign(λ3))
R

2

∫ ∞
0

dz
e
−zλ2+|λ3|z− R2

2|λ3|z√
2π |λ3| z

=
(−sign (λ3))

R

2 |λ3|
√

2 λ2
|λ3| − 2

e
−|R|

√
2
λ2
|λ3|
−2
,

(3.30)

where In(x) is the modified Bessel function of the first kind.

Let me now briefly comment on the approximation λ2 − |λ3| � 1 made in the second

line of the above expression. From the expressions for s0 and s1 in Equation (3.26) we

can see that this approximation corresponds to a regime of strong time correlations up to

lag-one. Moreover, remind that the aim of Equation (3.30) is to compute time correlations

at lag two or higher, i.e., to compute stt′ for t′ > t + 1, given that those at lower lags are

known exactly. Therefore, λ2 − |λ3| ≈ 1 (where our expression for stt′ is less accurate)

corresponds to a regime of low time correlations even at lags one and zero (it should be

noted here that correlations of the type 〈xtxt′〉 are not normalised to one when t = t′,

as is instead the case with the standard definition of autocorrelation). This, in turn, en-

sures that time correlations at higher lags will be low enough to make the error due to

the above approximation negligible. We can therefore safely use Equation (3.30), together

with the equivalences of Equation (3.26), to fully compute all the expectation values of

Equation (3.27). Once these quantities are known, we can plug them back into the ap-

proximate free energy of Equation (3.25), find its analytical form and use it to compute
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FIGURE 3.4: Comparisons between empirical time correlations and the corresponding quan-
tities as measured in the ensembles defined by Equation (3.16) (purple) and Equation (3.19)
(blue). Panels (a) and (d) refer to 〈xtxt+τ 〉, panels (b) and (e) to 〈x2tx2t+τ 〉, and panels (c) and
(f) to (〈x2tx2t+τ 〉 − 〈x2t 〉〈x2t+τ 〉)/〈x4t 〉. In the three upper panels the empirical correlations (black
solid lines) are computed from one instance of the autoregressive model Yt+1 = ξ

(−1.5,1.5)
t Yt +

ξ
(−0.2,0.8)
t , whereas in the three lower panels correlations are computed from the model Yt+1 =

ξ
(−0.375,1.125)
t Yt + ξ

(−0.2,0.8)
t . In panels (c) and (f) horizontal dashed lines denote the 95% confi-

dence level interval for the autocorrelation of white noise.

the values of the Lagrange multipliers λ1, λ2, λ3, λ4 and λ5 as usual.

Does this complicated machinery works? In other words, are the approximated val-

ues of the Lagrange multipliers able to improve on the unperturbed case? In Figure 3.4 I

answer this question by demonstrating the ability of the ensemble introduced in this Sec-

tion to match the imposed constraints with respect to its unperturbed counterpart. In or-

der to do so, I use two autoregressive models with markedly distinct temporal structures.

The first model is described by the following equation Yt+1 = ξ
(−1.5,1.5)
t Yt+ ξ

(−0.2,0.8)
t and

its associated results are plotted in panels (a-c). It is designed to produce time series that,

on average, have non-zero correlations only between second or higher order moments.

The reason why I choose such autoregressive model is because it represents an “adversar-

ial” example to the perturbation technique I used. Indeed, since there is autocorrelation in

the first order moments, the time structure of the variance cannot be captured, even par-

tially, by the unperturbed model of Equation (3.16). This would suggest the need to use

a “stronger” perturbation than the one provided by the first and second order in order to

improve the model’s ability to capture the variance autocorrelation structure. However,

in panels (b) and (c) we can see that even this is not entirely true, in fact, stopping the

perturbation expansion at the second order already provides a visible improvement.



Chapter 3. Maximum Entropy framework for time series randomization evolving in

discrete time
88

M1 M2 M3

RMSE R2 RMSE R2 RMSE R2

xH1 0.0267 0.995 0.125 0.923 0.204 0.938
xH2 0.0155 0.998 0.0818 0.969 0.176 0.954
q0.9
H1

0.0900 0.943 0.236 0.847 0.277 0.866
q0.9
H2

0.0511 0.985 0.122 0.957 0.232 0.910
q0.1
H1

0.0825 0.960 0.206 0.887 0.170 0.970
q0.1
H2

0.0495 0.975 0.188 0.906 0.151 0.976

TABLE 3.1: Accuracy of one lag ahead predictions of the mean and 10% and 90% quantiles
of the three data generating processes used so far. These are denoted respectively as M1

(Yt+1 = ξ
(−0.375,1.125)
t Yt + ξ

(−0.2,0.8)
t ), M2 (Yt+1 = ξ

(−1.5,1.5)
t Yt + ξ

(−0.2,0.8)
t ), and M3 (Yt+1 =

ξ
(0,1.5)
t Yt + ξ

(−0.3,0.7)
t ). The means and quantiles are denoted as x and q. H1 and H2 denote,

respectively, predictions obtained by means of the unperturbed ensemble of Equation (3.16) and
the full ensemble of Equation (3.19).

The second model is described by the following equation Yt+1 = ξ
(−0.375,1.125)
t Yt +

ξ
(−0.2,0.8)
t and its associated results are plotted in panels (d-f). It differs from the first

autoregressive model since it is designed to have a measurable autocorrelation structure

between first order moments. This scenario represent the perfect setting for applying

perturbation theory. Indeed, the unperturbed model is already able to partially explain

some of the autocorrelation present in the variance and therefore the contribution of the

additional constraints can be rightfully considered a “perturbation”. As it can be seen

in panels (e) and (f), in this case the full model is able to completely capture the time

structure of the underlying data generating process.

To measure the improvement we get from the adopted perturbation theory approach,

I will repeat the “out of sample exercise”performed in the previous section (see Fig-

ure 3.3) by using both the Hamiltonians of Equations (3.12) and (3.18) to approximate

the underlying data generating process. In Table 3.1 I report a quantitative assessment of

the agreement between the reconstructed evolution of the system using the two proposed

ensembles and the real one. More precisely, the aim of the exercise is to predict the mean

and the 10% and 90% quantiles of the data generating process one lag ahead. I compare

such quantities against those computed from both the unperturbed and full ensemble. To

assess the quality of the predictions, I choose to use two widely adopted metrics of accu-

racy, namely the root mean square error (RMSE) and the R2. What Table 3.1 is telling us

is that, regardless of the specific model considered, using the approximated solution of

Equation (3.25) systematically provides a measurable improvement to the unperturbed

ensemble of Equation (3.16). It is worth noticing that the biggest relative improvement

is registered for the model identified as an “adversarial”example. The reason for this is
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quite intuitive. As mentioned above, for that particular model the unperturbed ensem-

ble is totally unable to capture the relevant time structure of the data generating process,

while the perturbed ensemble, even if not perfectly, is able to do so.

3.4 Multivariate time series randomization

I will now proceed to apply the introduced Maximum Entropy framework to the multi-

variate time series case. As seen in the previous section, as soon as we want to directly

constrain the ensemble to preserve time correlations, the analytical difficulties become

harder and harder to overcome. This is true especially in the multivariate case, where

we can potentially consider both the temporal correlations of each single time series to-

gether with their mutual cross-correlations. In order to keep the problem analytically

tractable, I will not directly consider “interacting constraints”, i.e. constraints of the form∑T
t=1witwjt (in the case of cross-correlations) and

∑N
i=1witwit′ (in the case of temporal

correlations), which introduce a direct coupling between the entries of W . Instead, I

will follow the steps that are usually adopted in the context of maximum entropy ran-

dom graphs [39]. I will impose on the ensemble local constraints which will result in a

probability distribution factorized over the events of time series. These will be indepen-

dent, yet correlated by way of the mutual dependencies between the model’s Lagrange

multipliers. Such correlations will ultimately result in the ensemble retaining part of the

correlation structure of the underlying system.

Let us start by considering a N × T empirical data matrix W whose rows have been

rescaled to have zero mean, so that W it > 0 (W it < 0) will indicate that the time t

value of the i-th variable is higher (lower) than its empirical mean. Also, without loss of

generality, let us assume that W it ∈ R6=0, and that W it = 0 indicates missing data. For

exposition purposes, it is worth defining the following observables A± = Θ(±W ) and

w± = ±WΘ(±W ) (and the corresponding quantities measured on the empirical set as

A
± and w±). The set of constraints I will consider are the following:

• The number of positive (above-average), negative (below-average) and missing val-

ues recorded for each time series (i = 1, . . . , N ):

N
±
i =

T∑
t=1

A
±
it , N

0
i = T −N+

i −N
−
i ∀ i = 1, . . . , N .
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• The cumulative positive and negative values recorded for each time series:

S
±
i =

T∑
t=1

w±it ∀ i = 1, . . . , N .

• The number of positive, negative, and missing values recorded at each sampling

time:

M
±
t =

N∑
i=1

A
±
it , M

0
t = N −M+

t −M
−
t ∀ t = 1, . . . , T .

• The cumulative positive and negative value recorded at each sampling time:

R
±
t =

N∑
i=1

w±it ∀ t = 1, . . . , T .

Note that the second constraint in the above list indirectly constrains the mean of each

time series.

I selected the above constraints inspired by potential financial applications (and in-

deed I will later apply the proposed ensemble to stock market data in the context of

financial risk management). When the underlying set of time series is a set of stocks’

daily logarithmic returns3, the above four constraints respectively correspond to: the

number of positive and negative returns of a given financial stock, the total positive and

negative return of a stock, the number of stocks with a positive or negative return on

a given trading day, the total positive and negative return across all stocks on a given

trading day. Such constraints amount to some of the most fundamental “observables”

associated with financial returns. Moreover, I will later show that forcing the ensemble

to preserve these observables also amounts to effectively preserving other quantities that

are of paramount importance in financial analysis, such as, e.g., the skewness and kur-

tosis of return distributions, and some of the correlation properties of a set of financial

stocks (which are central to financial portfolio analysis and selection.)

3Given a time series Pt of prices p1, . . . , pT , the corresponding times series Rt of log-returns is defined as
ri = ln

pi+1

pi
. In the finance literature, they are usually preferred to linear returns rli =

pt+1−pt
pt

given their
desirable property of being time additive.
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Constraining the ensemble to preserve, on average, all the 4(N+T ) quantities defined

above leads to the following Hamiltonian:

H(W ) =
N∑
i=1

T∑
t=1

[ (
αNi + αTt

)
A+
it +

(
βNi + βTt

)
A−it +

(
γNi + γTt

)
w+
it +

(
σNi + σTt

)
w−it

]
,

(3.31)

To move forward we now need to perform the sum over the phase space
∑

W∈W e−H(W )

and find the partition function Z of the system. Using the introduced notation, the sum

over all configurations can be written as follows:

∑
W∈W

≡
N∏
i=1

T∏
t=1

∑
(0,1)

(A+
it,A

−
it)=(1,0)

(0,0)

∫ +∞

0
dw+

it

∫ +∞

0
dw−it . (3.32)

where the sum specifies whether the entryAit stores a positive, negative or missing value,

respectively. In principle, the integrals in Equation (3.32) could have as upper limits some

quantities U±it to incorporate any possible prior knowledge on the bounds of the variables

of interest. Moreover, as it can be seen in Equation (3.32), negative and positive events

(this in general holds for any discretization of the distribution of the entries ofW ), cannot

coexist in an entry Wit, which, once occupied, cannot hold any other event. As I will

better describe in a moment, this is reminiscent of the fermionic behaviour in a physical

system, ruled by the Pauli exclusion principle.

Equation (3.32) can be employed to evaluate the partition function of the ensemble:

Z =
∑
W∈W

e−H(W ) =

=
N∏
i=1

T∏
t=1

∑
(0,1)

(A+
it,A

−
it)=(1,0)

(0,0)

∫ ∞
0

dw+
it

∫ ∞
0

dw−it e−[(αNi +αTt )A+
it+(βNi +βTt )A−it+(γNi +γTt )w+

it+(σNi +σTt )w−it ]

=
N∏
i=1

T∏
t=1

(
1 +

∫ ∞
0

dw e−(αNi +αTt )−(γNi +γTt )w −
∫ ∞
0

dw e−(βNi +βTt )+(σNi +σTt )w
)

=
N∏
i=1

T∏
t=1

[
1 +

e−(α
N
i +αTt )

γNi + γTt
+
e−(β

N
i +βTt )

σNi + σTt

]

=

N∏
i=1

T∏
t=1

(
1 + e

µ1
it−εit
Tit + e

µ2
it−εit
Tit

)
,

(3.33)
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where all the Lagrange multipliers must be positive. The quantities µ1,2it , εit, and Tit,

appearing in the last line, are defined as follows:

Tij =
1

ln (σTi + σej ) + ln (γTi + γej )
,

εij =
1

2
+
Tij
2

(
αTi + αej + βTi + βej

)
,

µ2ij =
kTij

2

(
αTi + αej − βTi − βej − ln

σTi + σej

γTi + γej

)
= −µ1ij .

Some considerations about Equation (3.33) are now in order. As previously anticipated,

the partition function factorises into the product of independent factors Zit, and there-

fore into a collection of N × T statistically independent sub-systems. In other words, a

general element W ∈ W will have assigned, by the ensemble coming from the partition

function (3.33), a probability distribution with independent entries. However, it is crucial

to notice that the parameters (i.e., the Lagrange multipliers) shaping the distributions of

the entries are coupled through the system of equations (3.7) specifying the constraints.

As a result, even if the entry (i, t) will not have any explicit dependence with any other

entry (i′, t′), they are going to be correlated, given the fact that their independent dis-

tributions are shaped by the system of equations used to fix the values of the Lagrange

multipliers. Before moving on, I would also like to point the attention to the last line of

Equation (3.33) which makes the aforementioned physical analogy clear: negative and

positive events are effectively treated as different fermionic species populating the in-

dependent energy levels of a physical system. In other words, the system described by

Equation (3.33) can be interpreted as a system of N × T orbitals with energies εit and lo-

cal temperatures Tit that can be populated by fermions belonging to two different species

characterised by local chemical potentials µ1it and µ2it, respectively.

From the partition function in Equation (3.33) we can calculate the probability distri-

bution P (W ) of drawing a data matrix W from the specified ensemble:

P (W ) =
N∏
i=1

T∏
t=1

[
P+
it

]A+
it
[
P−it
]A−it [1− P+

it − P
−
it

]1−A+
it−A

−
it
[
Q+
it(w

+
it )
]A+

it
[
Q−it(w

−
it )
]A−it ,

(3.34)

where P±it and Q±it(w
±
it ) are functions of the Lagrange multipliers which indeed have a

well defined physical meaning:
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• P+
it = e

−(αNi +αTt )

(γNi +γTt )Zit
: Probability of observing a positive value in the i-th time series at

time t.

• P−it = e
−(βNi +βTt )

(σNi +σTt )Zit
: Probability of observing a negative value in the i-th time series

at time t.

• 1−P+
it −P

−
it : Probability of observing a missing value in the i-th time series at time

t.

• Q+
it(w) = (γNi + γTt )e−(γ

N
i +γTt )w: Probability distribution of a positive value w for

the i-th time series at time t.

• Q−it(w) = (σNi + σTt )e−(σ
N
i +σTt )w: Probability distribution of a negative value w for

the i-th time series at time t.

To test the effectiveness of the proposed ensemble, I am going to apply it to two real

world sets of time series: one storing the daily returns of a system of stocks and an-

other storing the temperatures recorded in various North America cities at different time

granularity. In particular, I am going to check to what the extent the proposed set of con-

straints is able to capture higher order properties of the system under consideration. In

this way, I will highlight the capability of the proposed ensemble to perform reliable hy-

pothesis testing in a multivariate time series scenario. Since for both of these systems we

do not record any missing value, I will consider the Hamiltonian (3.31) without the con-

straints on the missing values and consequently on the negative ones (since their number

can be derived from the number of positive entries) along each row and each column.

The corresponding Hamiltonian reads:

H(W ) =

N∑
i=1

T∑
t=1

[(
αNi + αTt

)
A+
it +

(
γNi + γTt

)
w+
it +

(
σNi + σTt

)
w−it
]
,

and only depends on 3(N +T ) parameters. To find the partition function function in this

case, we can proceed as per Equation (3.33) by simply noticing that when no data is miss-

ing we have (A+
it , A

−
it) 6= (0, 0). The sum defined in Equation (3.32) changes accordingly

and, as a result, the partition function (3.33) becomes:

Z =

N,T∏
i,t=1

Zit =

N,T∏
i,t=1

[
e−(α

N
i +αTt )

γNi + γTt
+

1

σNi + σTt

]
.
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FIGURE 3.5: Ability of the esemble to preserve periodicities in the data. a) Empirical power
spectrum of weekly temperatures against the average ensemble spectrum for two different cities
(city 1 is Boston and city 2 is Los Angeles). b) Same plot for daily temperatures. c) Same plot for
8 hours temperatures.

After noticing that A+
it = 0 ⇒ w+

it = 0 ∧ w−it > 0, the probability of drawing from the

ensemble an instance W can be easily found (see Equation (3.34)):

P (W ) =

N,T∏
i,t=1

[
P+
it Q+

it(w
+
it )
]A+

it
[
P−it Q−it(w

−
it )
]1−A+

it , (3.35)

where the quantities in the above expression are defined exactly as above.

In order to simulate a drawing of a set of time series W from the ensemble, we first

need to construct a “topology”of positive events by placing a positive event in entry Wit

with probability P+
it and a negative event otherwise. Then we need to place a weight

Wit = x using one of the two exponential distributions Q±it previously defined, depend-

ing on the type of event that was assigned to Wit. This procedure is encompassed by the

hyperexponential distribution:

P (Wit = x) = (1− P+
it ) λ−it e

λ−itx Θ(−x) + P+
it λ

+
it e
−λ+

itx Θ(x) , (3.36)

which can be obtained directly from Equation (3.35), and whose parameters are λ+it =

(γNi + γTi )−1, and λ−it = (σNi + σTi )−1. The above distribution allows both to efficiently

sample the ensemble numerically and to obtain analytical results for several observables.

Remarkably, it has been shown [114] that sampling from a mixture-like density such as

the one in Eq. (3.36) can result in heavy tailed distribution, which is of crucial importance

when dealing with financial data.
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3.4.1 Temperatures of North American cities

I start by considering a set of time series featuring temperatures recorded at different

frequencies (week/day/8 hours) in N = 30 different North American cities 4 (weekly

data range from July 2013 to July 2018, daily data range from July 2016 to July 2018, 8

hour data range from January 2017 to July 2018). The rationale for choosing this type of

data is to test the ability of the ensemble (3.36) to capture the main features of time series

whose most relevant statistical properties are markedly different from those of financial

returns, which I will extensively use in the following sections. In particular, the main

focus will be on the ability of the ensemble to capture the periodicities that characterize

temperature data at different time scales.

Figure 3.5 shows that, independently from the frequency at which temperatures are

sampled, the average ensemble power spectral density (see Reference [143] for a review

about spectral analysis of time series) captures well the relevant frequencies that char-

acterize the empirical time series of each city. Indeed, as can be seen from panels a and

b, the ensemble power spectra based on the data recorded at the weekly and daily fre-

quency perfectly capture the six-months periodicity associated with the seasons’ cycle.

Panel c shows that the same frequency is also captured in the data recorded every 8

hours, and that when calibrating the ensemble on such data, the power spectrum also

perfectly captures the daily frequency associated with the day-night cycle (see inset).

In Fig. 3.6 we expand the above analysis to the periodicities of moments. Panel a

shows the empirical daily variance of temperatures recorded across the 30 cities men-

tioned above against the corresponding ensemble average. At first sight, the latter seems

to be largely uncorrelated from the former. Yet, the corresponding power spectrum

shown in panel b highlights that the relevant frequencies in the data (six months and

one day) are captured very well, although the ensemble places additional power on such

frequencies.

A somewhat similar phenomenon is shown in panels c and d, which show the daily

skewness computed across all cities and its corresponding power spectra. Once again,

the average ensemble spectrum places more power on the six-months and daily frequen-

cies with respect to the empirical one. This results in a clearly discernible oscillating

4Vancouver, Portland, San Francisco, Seattle, Los Angeles, San Diego, Las Vegas, Phoenix, Albuquerque,
Denver, San Antonio, Dallas, Houston, Kansas City, Minneapolis, Saint Louis, Chicago, Nashville, Indi-
anapolis, Atlanta, Detroit, Jacksonville, Charlotte, Miami, Pittsburgh, Toronto, Philadelphia, New York,
Montreal, Boston
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FIGURE 3.6: Ability of the ensemble to preserve periodicities in the data. a) Variance of the tem-
peratures recorded at 8 hour intervals across all 30 cities (the blue line denotes empirical values,
the orange one denotes the ensemble average). b) Comparison between the empirical spectrum
of the 8-hours temperature variance across cities (dashed line) and the ensemble spectrum (blue
line). c) Skewness of the temperatures recorded at 8 hour intervals across all 30 cities (the blue line
denotes empirical values, the orange one denotes the ensemble average). d) Comparison between
the empirical spectrum of the 8-hours temperature skewness across cities (dashed line) and the
ensemble spectrum (blue line).

pattern, which significantly deviates from the empirical behavior. Nevertheless, these

results are interesting. Indeed, as it can be seen in panel c positive (negative) skewness

values take place during the summer (winter) months, as a reflection of higher (lower)

average temperatures. Although this is a fairly trivial example, it highlights how the

ensemble approach can reveal stylized trends that are genuinely informative about the

dynamics of the system under study.

3.4.2 Daily stocks returns

Let us now consider the daily returns of the N = 100 most capitalized NYSE stocks

over T = 560 trading days (spanning October 2016 - November 2018). As done for the

temperature time series, I will use the ensemble defined by Equation (3.36). Figure 3.7

and Tables 3.2 and 3.3 illustrate how the above first-moment constraints translate into

explanatory power of higher-order statistical properties. In the large majority of cases, the
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FIGURE 3.7: Comparisons between empirical statistical properties and ensemble averages. In
these plots we demonstrate the model’s ability to partially reproduce non-trivial statistical prop-
erties of the original set of time series that are not explicitly encoded as ensemble constraints. a)
Empirical vs ensemble average values of the variances of the returns calculated for each stock
(red dots) and each day (blue dots). b) Same plot for the skewness of the returns. c) Comparison
between the ensemble and empirical cumulative distributions (and associated survival functions)
for the returns of two randomly selected stocks (Microsoft and Pepsi Company). Dots correspond
to the cumulative distribution and survival functions obtained from the empirical data. Dashed
lines correspond to the equivalent functions obtained by pooling together 106 time series indepen-
dently generated from the ensemble. Different colours refer to different stocks as reported in the
legend. Remarkably, a Kolmogorov-Smirnov test (0.01 significance) shows that 92% of the stocks
returns empirical distributions are compatible with their ensemble counterparts. d) Same plot for
the returns of all stocks on two randomly chosen days. In this case, 82% of daily returns empirical
distributions are compatible with their ensemble counterparts (K-S test at 0.01 significance).

empirical values of variance, skewness, and kurtosis are statistically coherent with their

ensemble counterparts (i.e. with the distributions of such quantities computed over 106

multivariate time series independently generated from the ensemble). This feature holds

regardless of whether we focus on the returns distribution of one stock across multiple

days or of one single day across multiple stocks and it is visually verified in Figure 3.7

and more quantitatively in Table 3.2. Given the ability of the ensemble to reproduce

higher order moments, in Table 3.2 I report the results of several Kolmogorov-Smirnov

tests at different significance levels. As it can be seen, many days’ and stocks’ returns

distributions cannot be distinguished from their ensemble counterparts. Notably, this is
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Returns Significance null hypothesis
median
rel. err.

Stat Sample 0.01-0.99 0.05-0.95 0.1-0.9
Var stock 0.95 0.76 0.59 0.2

day 0.88 0.78 0.69 0.14
Skew stock 1 0.98 0.95 0.13

day 0.78 0.58 0.49 0.46
Kurt stock 0.78 0.61 0.51 0.60

day 0.85 0.68 0.55 0.1

TABLE 3.2: Fraction of empirical moments compatible with their corresponding ensemble distri-
bution at different significance levels specified in terms of quantiles (e.g., 0.01-0.99 denotes that
the 1st and 99th percentiles of the ensemble distribution are used as bounds to determine whether
the null hypothesis of an empirical moment being compatible with the ensemble distribution can
be rejected or not). Note that the confidence intervals used to obtain these results have not been
adjusted for multiple hypothesis testing. Doing so (e.g., via False Coverage Rate [12]) would
further suppress the number of true positives, resulting an even larger fraction of moments be-
ing compatible with the ensemble distribution. Moments are calculated both for each stock and
each trading day. In the last column, we also report, for each moment, the median relative error
between the empirical value and its ensemble average.

Ratio empirical
aggregated pdfs

not rejected
by a K-S test

Aggregation
level

K-S test
significance

0.01 0.05
stocks 0.92 0.68
days 0.82 0.75

TABLE 3.3: Fraction of empirical return distributions (both for stocks and trading days) that are
compatible with their ensemble counterparts based on Kolmogorov-Smirnov tests at different
significance levels.

the case without constraints explicitly aimed at enforcing such level of agreement. This,

in turn, further confirms that the ensemble can indeed be exploited to perform reliable

hypothesis testing by sampling random scenarios that are however closely based on the

empirically available data.

In this spirit, in the left panel of Figure 3.8 I show an example of ex-post anomaly

detection, where the original time series of a stock is plotted against the 95% confidence

intervals obtained from the ensemble for each data point Wit. The results are indeed non-

trivial. First of all, the return flagged as anomalous is not the one with the largest absolute

value. Moreover, the confidence interval of the 12th of March 2017 is extremely skewed

toward large negative returns. This is because the constraints imposed on the ensemble

reflect the collective nature of financial market movements, thus resulting in the statistical

validation of events that are anomalous with respect to the overall heterogeneity present

in the market. This latter concept is further analysed, in the right panel of Figure 3.8
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FIGURE 3.8: Applications of the ensemble theory we propose to a system of stocks. a) Anomaly
detection performed on each single trading day of a randomly selected stock (Google). A return
measured on a specific day for a specific stock is marked as anomalous if it exceeds the associated
95% confidence interval on that specific return (accounting for multiple hypothesis correction via
False Coverage Rate [12]). b) Comparison between the empirical spectrum of the estimated corre-
lation matrix (black dashed line), its ensemble counterpart (orange line) and the one prescribed by
the Marchenko-Pastur law (blue line). The inset shows the empirical largest eigenvalue (dahsed
line) against the ensemble distribution for it.

where I show a comparison between the eigenvalue spectrum of the empirical correlation

matrix of the data, and the average eigenvalue spectrum of the ensemble.

As is well known, the distributions of the eigenvalues of the correlation matrices of

most complex interacting systems is usually divided into two parts. A large bulk of small

eigenvalues which is often approximated by the Marchenko-Pastur (MP) distribution [94]

of Random Matrix Theory (i.e., the average eigenvalue spectrum of the correlation matrix

of a large system of uncorrelated variables with finite second moments) [80, 87], plus a

few large and isolated eigenvalues that are usually considered to carry most of the in-

formation about the relevant correlation structure of the system (for example they can

be associated to clusters of strongly correlated variables [85]). As it can be seen in the

Figure, the ensemble’s average eigenvalue spectrum is also made of two distinct compo-

nents. First, we observe a bulk of eigenvalues around 0, which, with respect to the best

fitting MP distribution, provides a slightly less accurate representation of the empirical

bulk. However, it covers a much broader range than the MP distribution, and can indeed

include the three smallest empirical eigenvalues which are “detached”from the empirical

bulk. Moreover, we can also observe that the ensemble eigenvalue distribution possesses

a large eigenvalue extremely detached from the ensemble bulk around 0 and very close

to the one empirically observed. What this feature is telling us, is that the main source of

systemic (or collective) correlation in the market is well captured by the ensemble. This

silent force which is pushing all the stocks into a common direction is usually called the
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“marked mode”and it is identified (in an arguably arbitrary way) with the largest eigen-

value of the empirical cross-correlation matrix. Conversely, the ensemble is here defining

a global mode which is data driven and indeed close to the usual one but measurably dif-

ferent. Indeed, the average distance between the empirically observed largest eigenvalue

and its ensemble distribution can be interpreted as the portion of the market’s collective

movement which cannot be explained by the constraints imposed on the ensemble and

which I am going to leverage later on to construct an efficient portfolio allocation scheme.

3.5 Application to financial risk management

Inspired by the demonstrated ensemble’s ability to partially capture the collective nature

of fluctuations in multivariate systems, I devote this section to a direct application of

the proposed randomization scheme to a multivariate system of daily stocks returns. In

particular, I will illustrate a case study devoted to financial portfolio selection.

Financial portfolio selection is a constrained optimization problem which entails allo-

cating an amount of capital across N financial stocks under different constraints. Two of

the most used ones are fixed amount of capital and no short selling, i.e. the impossibility

of selling a stock that it not owned at the time of the selling. Typically, the goal of an in-

vestor is to solve this optimization problem by considering both the portfolio’s expected

return (which should be maximized) and the portfolio’s expected risk (which should be

minimized). Let us consider a matrix Mit (i = 1, . . . , N , t = 1, . . . , T ) of daily financial

returns. As usually done in the literature [30, 25], I will not directly use M , but rather the

rescaled data matrix W defined as Wit = Mit−E[M ]i
V[M ]t

, where E[M ]i is the average return of

the stock i, within the sampling period [1, T ], and V[M ]t is the returns variance of the day

t, across stocks [1, N ]. The rationale to use this rescaling is to remove any major source

of non-stationarity in the data. From now on I will refer to W as the raw or empirical re-

turns data matrix without directly specifying that rescaling just mentioned has been per-

formed. Let C be the correlation matrix associated with W (i.e., Cij denotes the Pearson

correlation coefficient between rows i and j of W ), and let Σ be the associated covariance

matrix (obtained from C by multiplying each of its entries (i, j) by the variance of the

rows i and j of W : Σij = V[W ]iV[W ]jCij). The optimal portfolio problem then amounts
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to solving the following optimization problem for a vector π = (π1, . . . , πN ) ∈ RN :

min
π

N∑
i,j=1

Σijπiπj (3.37)

subject to
N∑
i=1

πiµi = µ ;
N∑
i=1

πi = 1 , (3.38)

where Equation (3.37) expresses the minimization of the portfolio variance, while the

equations in (3.38) express constraints on the expected returns (µi denotes the expected

out-of-sample return of stock i, while µ denotes the portfolio’s desired expected return)

and on the available capital (conventionally set to one unit). Note that here short sell-

ing is allowed since we are not imposing πi > 0 ∀ i. The expected returns’ predictors

µi are arbitrary chosen and are computed using some heuristic or by analyzing in dept

the balance sheets of the companies each stock is associated with. I will here consider

mean reversion predictors, i.e. I will assume that the return on day t + 1 will be minus

the return on day t. This is a very common assumption when devising new portfolio

allocation schemes [25]. Note that the optimal weights will be functions of the portfolio’s

correlation matrix [103], which reflects the intuitive notion that a well balanced portfo-

lio should be well diversified, avoiding similar allocations of capital in stocks that are

strongly correlated. The formal introduction of the above optimization problem was first

proposed by Markowitz [95] in 1959 and then solved by Merton [103] 13 years later. With

the above positions, the solution to the optimization problem reads

πi(µ) =

N∑
j=1

Σ−1ij (`(µ) + µg(µ)) , (3.39)

where
`(µ) =

c− bµ
ac− b2

, g(µ) =
aµ− b
ac− b2

a =

N∑
i,j=1

Σ−1ij , b =

N∑
i,j=1

Σ−1ij µj , c =

N∑
i,j=1

Σ−1ij µiµj .

The optimal allocation strategy proposed by Markowitz has the big advantage of be-

ing both intuitive and rigorous. However, like many other theoretical solutions to real

world problems, it suffers from major implementation issues: the cross-asset correlations

can only be estimated on past data. To obtain a real “out of sample”risk minimization,

we need to use an estimated correlation matrix that faithfully represents future, and not
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past, risks. Having weights which are only optimal on past correlations, i.e. “in sample”,

will result in the over-allocation on spurious low risk combinations of assets, which has

been proved to lead to disastrous effects [25] on the returns of the optimal portfolio we

are aiming to build. Even if extremely trivial, this simple consideration opens two major

challenges.

First of all, let us assume that a set of N assets, observed at daily frequency for a

period of length T , has indeed an existing and stationary correlation structure that can be

summarised in a cross-asset correlation matrix C which, of course, we cannot measure

directly. Indeed, we can only observe an empirical N × T data matrix W and use it to

construct an estimate Ĉ of C. The most used estimator reads:

Ĉ =
1

T
W WT , (3.40)

where WT is the transpose of the data matrix W . When using Equation (3.40), we are

effectively estimating N2/2 coefficients out of N × T data points. If we take for example

N = 4 and T = 106, we will be able to reconstruct the underlying correlation structure

almost perfectly. The same will not be true, if we consider N = 100 and T = 200. In

general, the error will be bigger and bigger as the rectangular ratio q = N/T approaches

1 (when q ≤ 1 our estimator Ĉ is ill-defined, as it is not a full rank matrix). Modern

financial firms commonly deal with portfolios of sizes ranging from around N = 100 to

N = 500 (or even higher) assets [30]. In order to have numerically stable estimates of

cross-correlations in this high dimensional regime, we would need to collect from 3 to 20

years worth of data. However, our starting assumption of stationary correlations does

not make much sense on such long time periods, where anything external to the system

can happen (from local political reforms to global events) and change the underlying cor-

relation structure. A workaround to this issue would be to consider, instead of daily re-

turns, returns sampled every hour or every few minutes. However, taking this approach

can be risky since one has to make sure that the very object one wants to measure, i.e.

the matrix C, does not change dramatically with the sampling frequency (a phenomenon

which has been measured for several pairs of stocks [24]). The limit q → 1 is not only of

interest for large portfolios, but also for small ones. Indeed, if we have reason to think

that the underlying correlation structure can be considered constant only on shorter time
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windows (e.g. a couple of months), then the number of “allowed”stocks that our port-

folio can hold decreases dramatically. A number of solutions, mostly based on Random

Matrix Theory, have been put forward in the literature to mitigate this high dimensional

estimation problem. Most of these techniques amount to “cleaning”the estimated cor-

relation matrices derived from Equation (3.40), by leveraging results and techniques of

Random Matrix Theory [30].

In addition the estimation issue just outlined, there is another question that the care-

ful reader has probably already spotted. Is the assumption of stationarity for the cross-

correlations (at least within a given time window) reasonable? It actually appears that

correlations have a very peculiar dynamics [86]: they seem to remain in various sta-

tionary states for periods of time of various length, however these regimes are inter-

spersed with short periods where strong correlations between many pairs of stocks spon-

taneously appear. These regime of high coordination are usually explained, as stated

above, by means of the presence of a market mode, i.e. by a global trend pushing all the

stocks in one direction. These can be seen by looking at the eigenvalue spectral densi-

ties of financial cross-correlation matrices which display a leading eigenvalue orders of

magnitude greater than the others (see Figure 3.8). As seen in the previous section, the

ensemble proposed in Equation (3.36) appears to have the natural ability to account for

this global mode, in a purely data driven way. The rest of this section is therefore de-

voted to using the proposed ensemble approach to obtain correlations which are more

stable and less noisy than the ones obtained using the estimator of Equation (3.40). As I

am going to explain, instead of focusing on the cross-asset correlation matrix (as usually

done in RMT inspired techniques), I will start directly from the return matrix W .

Using the same notation as above, let us assume thatW it represents the time-t rescaled

return of stock i (i = 1, . . . , N ; t = 1, . . . , T ). Let us then define detrended rescaled returns

W̃it = W it − 〈Wit〉, where 〈Wit〉 denotes the ensemble average of the return computed

from Equation (3.36). The rationale for performing this local detrending is the following.

The presence of a leading eigenvalue in the spectral densities of the correlation matrices

of the ensemble, means that the latter is implicitly defining an effective market mode and

its impact on each daily return of each stock separately. Therefore, detrending the raw

returns by removing their ensemble averages effectively amounts to discounting the im-

pact of the ensemble’s market mode on any entry Wit of the returns matrix W . Using W̃it
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we can now define the correlations estimator:

E =
1

T
W̃ W̃T , (3.41)

which is the same as the one of Equation (3.40), but with the detrended returns W̃ instead

of the raw returns W .

To check whether the detrending strategy we have defined is actually able to account

for systemic effects, I will use the following experiment. We form four different sets of

stocks (two of size N = 20 and two of size N = 50) with the returns of randomly selected

S&P500 stocks in the period from September 2014 to October 2018. I compute their as-

sociated optimal weights as per Equation (3.39) based on the correlations computed over

two periods of lengths T = N/q (q = 2/3 and q = 1/4). To estimate the cross-assets

correlation matrix, I will use both the estimator given in Equation (3.40) and the one of

Equation (3.41). To horserace the two estimators, I will then calculate the out-of-sample

risk (quantified in terms of variance) and the out-of-sample performance (quantified in

terms of Sharpe ratio [137]) using the first 30 days outside the calibration period. The cal-

ibration period will then be shifted to include these 30 days and all the above procedure

will be repeated again (in order to create some statistics around the out-of-sample risk

and performance) for a total of 50 times.

The results from this experiment are reported in Table 3.9. The top table shows the re-

sults for the out-of-sample risks, while in the bottom table we can see the performances.

The numbers in the Table represent the average and 90% confidence level intervals over

the 50 time windows considered, with the first two rows corresponding to the raw re-

turns and the two bottom rows, highlighted in yellow, corresponding to the detrended

returns (note that in both cases out-of-sample metrics are still computed on the raw re-

turns, i.e., detrending is only performed in-sample to compute the optimal weights). As

it can be seen by inspecting the top table, using the estimator (3.41) instead of the one of

Equation (3.40) reduces the out-of-sample risk by one order of magnitude or more. This

is the case independently of the portfolio size or of the noise level of the estimates (quan-

tified by means of q). Similar considerations can be made around the values appearing

in the bottom table. The out-of-sample average performances of the Markowitz portfo-

lios computed using the detrended returns are higher than the ones computed from the

raw returns, even if they are statistically compatible based on their respective confidence
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FIGURE 3.9: Top table: Out-of-sample portfolio risk (quantified in terms of variance) with and
without detrending the returns by subtracting their ensemble average. PN1,2 (withN = 20, 50) refer
to two different portfolios made of randomly selected S&P stocks, whereas q = N/T denotes the
portfolios’ “rectangularity ratio” (i.e., the ratio between the number of stocks and the length of
the in-sample time window used to compute correlations and portfolio weights). The two top
rows refer to portfolios whose weights are computed based on the raw returns, whereas the two
bottom rows (in yellow) refer to portfolios whose weights are computed based on the detrended
returns. In the latter case, the detrending is only performed in-sample to compute correlations and
weights, and the out-of-sample risk is computed by retaining such weights on new raw returns.
The numbers reported in each case refer to the average out-of-sample risk computed over a set of
30-days long non-overlapping time windows spanning the period September 2014 - November
2018. Bottom table: Out-of-sample Sharpe ratio of the same portfolios of the top table. The Sharpe
ratio S = rtot/σ measures the performance of a portfolio over a time period and it is defined as
its total net return over the variance of its daily returns.

intervals. Inspecting the latter also shows that, besides having a higher average value,

the Sharpe ratios distributions of the detrended portfolios are both more peaked around

the mean and more right skewed then the not-detrended ones. While their concentra-

tion around the mean is just a consequence of the lower variance (seen in the top table),

their fact that they are skewed toward higher performances, is a further proof of the ef-

fectiveness of the estimator (3.41) in discounting for the market effect when computing

correlations among different assets.

A couple of considerations are now mandatory. First of all, I would like to underline

that the proposed approach is not a substitute for any of the cleaning scheme based on
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RMT but it should be intended to be used in conjunction with those. The estimator pro-

posed in Equation (3.41) is only aimed at discounting for the global mode present in the

market but it is itself affected by the intrinsic estimation noise which those techniques

try to reduce. Secondly, the experiment just performed also hints at other features of the

proposed ensemble approach. The method I am putting forward is based on the compu-

tation of a large number of parameters (3(N + T )), which becomes comparable with (or

even higher than) the number of available data points (N × T ) when both N and T are

small. It is therefore easy to conjecture that, in the small sample regime, the ensemble I

proposed should be affected by overfitting issues. Moreover, being entirely data driven,

when calibrated on a small sample, it should also be extremely sensitive to outliers in the

data. The examples considered here are indeed plagued by these potential downsides:

we have portfolio size, small time windows, and exposure to outliers (the returns used

here are well fitted by power law distributions, using the method in [40], whose median

tail exponent across all stocks is α = 3.9). Despite this, the ensemble proposed in very

effective on out-of-sample data. I will expand on this latter consideration in the following

section.

3.6 Testing for overfitting with an application on the estimation

of Value-at-Risk

In this section I expand on the financial application of the ensemble approach I propose,

with a specific focus on exploring potential overfitting issues. As previously mentioned,

the number of Lagrange multipliers the ensemble depends on increases linearly with the

number of constraints one wants to enforce. For instance, the ensemble of Equation (3.36)

depends on 3(N + T ) parameters, which, for small numbers of variables N and small

sample sizes T , can be of the same order of magnitude (or even higher) of the number

of data points (N × T ) used to calibrate the ensemble. This, in turn, may raise concerns

about potential overfitting issues.

Our randomization scheme, at least in the multivariate case, works totally “in sam-

ple”, i.e. it is not designed to produce expectation values on new coming data points.

Measuring overfitting in this scenario is endemically difficult given that any overfitting

measure relies on out-of-sample data. In addition to this issue, we should also consider,
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when thinking of overfitting issues, that our methodology produces as output a distribu-

tion and not a single prediction point. To tackle this latter problem, I will consider a well

known financial application concerned in predicting future distributions: computing the

Value-at-Risk (VaR) of a stock.

The Value-at-risk is a widely used statistical measure aimed at assessing the riskiness

of financial entities or portfolios of assets. It is defined as the maximum values expected

to be lost over a given time horizon (day in our case), at a given confidence level p. For

example, if the 95% one-day VaR of a portfolio is 10 dollars, it means that we are assess-

ing with 95% certainty that that our portfolio will not experience any loss greater than 10

dollars. In other words, the daily VaR at a level p is the p-quantile of the returns distri-

bution of the next coming day. The simplest procedure to estimate VaR is via historical

estimation, which amounts to computing the in-sample 1− p quantile of a financial time

series of interest. However, due to non-stationarities, historical estimates are known to

typically be unreliable out-of-sample, and there is a vast literature devoted to enhancing

historical estimates with Monte Carlo simulations and other techniques to generate syn-

thetic scenarios (see Reference [1] for an extensive review). Thanks to its wide use by both

practitioners and academics, several tests exist to assess the quality of a VaR estimation

methodology. As such, if we are able to adapt our multivariate framework to estimate

the VaR of a given asset or portfolio, we can use the number of tests passed as a measure

of overfitting.

In the following, we consider two financial time series of length T = 1000 and T =

1500 days corresponding, respectively, to BNP returns from May 7, 2008 to March 13,

2013, and to S&P Index returns from May 7, 2008 to July 26, 2014. For each time series

we proceed to compute VaR estimates with a rolling window approach. Namely, we

compute an in-sample VaR estimate over a time window [t0, t0 + τ ], with τ = 150 days,

and assess its out of sample performance on day t0 + τ + 1. We do this based on the

following three versions of our ensemble approach:

Model M1 : This corresponds to a loosely constrained ensemble based on the single time se-

ries case discussed in Section 3.3.1, where we only constrain the ensemble to pre-

serve the empirical time series’ variance and the cumulative values of the data

falling within each pair of adjacent quartiles (denoted previously as M ξi , with

ξi = 0.25, 0.5, 0.75). Overall, these correspond to 4 constraints and Lagrange multi-

pliers.
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Model M2 : This corresponds to a deliberately highly parametrized model based on an adap-

tation of the multiple time series case. Namely, let us consider the 150 returns of

interest to compute a new risk estimate and let us denote them as r1, . . . , r150. We

then form a 25 × 126 (which roughly amount to the length of a trading month and

half of a trading year, respectively) matrix with such returns with the following

circulant structure

R =



r25 r26 · · · r150 ε

r24 r25 · · · r149 r150
...

...
. . .

...
...

r1 r2 · · · r125 r126


.

The quantity ε in the upper-right entry of the matrix denotes the unknown out-of-

sample return on day 151. We assume as possible values for it ε = ±min |rt|, and

then generate the corresponding ensemble constraining it to preserve the cumu-

lative positive and negative values for each row and column (previously denoted

respectively as S±i and R±t ), which correspond to 2(25 + 126) = 302 constraints and

Lagrange multipliers5. We generate the ensembles for both aforementioned values

of ε and combine the two resulting distributions for them in order to compute a VaR

estimate for the return on day 151.

Model M3 : The same as model M2 with additional constraints on the number of positive and

negative returns recorded in each column (the equivalent of the quantity denoted

above as M±t ). This ensemble is the same as the one in Equation (3.36). In addition

to the constraints mentioned above, this gives a total of 3(25+126) = 453 constraints

and Lagrange multipliers.

Models M2 and M3 are highly constrained (and therefore highly parametrized) ones, as

they force the corresponding ensemble to preserve a very large number of local properties

of the time series.

We calibrate the above models on time windows of length τ = 150 days starting on

days t0 = 1, 2, . . . , T − 151 and compute out-of-sample VaR estimates for each of them,

resulting in 849 estimates for BNP and 1349 estimates for the S&P Index, respectively. We

5It can be shown that as long as the matrix R’s sizes L1 and L2 are not multiple of each other, then such
constraints are all linearly independent. In the case of linear dependence, the effective number of constraints
decreases by at most max(L1, L2), which still amounts to an over-parametrized model.
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α Tests passed
M3 M2 M1

90% 6 4 4
95% 8 6 5
99% 8 6 6

99.99% 8 8 8

α Tests passed
M3 M2 M1

90% 5 4 4
95% 8 7 6
99% 8 7 7

99.99% 8 8 7

TABLE 3.4: Left: Number of tests passed by out-of-sample VaR estimates for the BNP at different
significance levels α. Right: Same table for the S&P Index.

then pool such estimates for both time series and assess their out-of-sample performance

by means of 8 standard tests widely adopted in the financial literature. These are the

traffic light, binomial, proportion of failures, time until first failure, conditional coverage,

conditional coverage independence, time between failures, and time between failures

independence tests (see Reference [112] for their definitions). The results, reported as

the number of tests passed, are shown in Table 3.4, for varying significance levels α. As

it can be seen, the out-of-sample performance systematically improves when increasing

the number of constraints, regardless of the significance level, even when pushing these

to numbers close to the number of available data points. Remarkably, all tests are passed

when using model M3 at significance 95% or higher.

Table 3.4 shows that the ensemble approach we propose is quite robust to overfit-

ting issues. This is indeed completely in line with the literature on configuration models

for networked systems [39], which are a fairly close relative of the approach I am here

proposing. One intuitive reason for this feature lies in the fact that in classic cases of

overfitting one completely suppresses any in-sample variance of the model being used

(e.g., when fitting n points with a polynomial of order n − 1). This is not the case, in-

stead, with the model at hand. Indeed, being based on maximum entropy, our approach

still allows for substantial in-sample variance even when building highly constrained

ensembles. Another possible reason that we may conjecture is that since the Lagrange

multipliers are tied by a large system of highly non-linear equations, an implicit regu-

larization is at play. The fact that large numbers of non-linear interdependent functions

act as an effective regularization is an hypothesis that has been put forward in the last

couple of years to explain the fact that deep neural network do not display the classical

bias-variance trade off [10, 157, 56] curve predicted by all the available statistical learning

theories.
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3.7 The Maximum Caliber Principle

As a final consideration, I would like to point out an interesting connection between the

approach I am here proposing and Jaynes’ Maximum Caliber principle [72]. Jaynes pro-

posed a principle, alternative to the MEP, explicitly aimed at dealing with systems rep-

resented by continuous time series, typically non stationary or out of equilibrium ones.

Its goal is to determine an unbiased distribution over all possibles paths of a system by

maximising the system’s path entropy while preserving some desired constraints on its

trajectories. For the informed reader, it is interesting to notice that, in its mathematical

formulation, it strongly reminds of the path integral formulation of Quantum Mechanics

formulated by Feynman. It has recently been shown [97] that the time-dependent prob-

ability distribution that maximizes the caliber of a two-state system evolving in discrete

time can be calculated by mapping the time domain of the system as a spatial dimension

of an Ising-like model. This is exactly equivalent to the mapping of a time-dependent

system onto a data matrix I am here performing (recall that the system’s time dimen-

sion is effectively mapped onto a discrete spatial dimension of the lattice representing

the matrix).

From this perspective, the ensemble approach I have developed, simply represents

a novel way to calculate and maximize the caliber of systems sampled in discrete time

with a continuous number of states. This also allows to interpret some recently pub-

lished results on correlation matrices in a different light. Indeed, in Reference [101] the

authors obtain a probability distribution on the data matrix of sampled multivariate sys-

tems starting from a Maximum Entropy ensemble on their corresponding correlation ma-

trices. Following the steps outlined in our paper, the same results could be achieved via

the Maximum Caliber principle by first mapping the time dimension of the system onto a

spatial dimension of a corresponding lattice, and by then imposing the proper constraints

on it.
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Chapter 4

Conclusions

In this thesis I have shown how null models, i.e. constrained randomization of the data

at hand, can be leveraged, in an unsupervised fashion, to rigorously define noise and

disentangle it from the underlying signal in a statistically solid way. The main point of my

research was to apply this null-modelling philosophy to the realm of complexity science.

As such, given that complex interacting systems can be represented both by means of

complex networks and time series, I have considered the two scenarios separately.

The Pólya Filter For those systems represented as directed weighted complex networks,

I have leveraged a combinatorial problem known as the Pólya Urn to create a novel

network filtering methodology which I called the Pólya Filter. Network filtering

is an active area of research where null network models have been shown to be a

particularly effective way to statistically validate edges and mark them as signal.

The literature here is particularly rich with many techniques available for use, each

with its own strengths and limitations. Nevertheless, I identified a weakness com-

mon to all the available techniques: the lack of flexibility with respect to the very

own heterogeneity of the network we wish to filter. Being based on a family of null

models, the Pólya Filter is designed to achieve this goal and adapt the filtering to

the specific purpose of the application at hand. In Chapter 2, I have introduced

the methodology, analytically characterised it, applied it to two different real world

networks and compared the set of validated links it produces against the ones ob-

tained by using the most relevant techniques available in the literature. All in all,

I have shown that all Pólya backbones provide a parsimonious representation of

the salient relationships in a network, while still retaining weights across multiple

scales. Then, depending on the specific application or network, the only parame-

ter of the Pólya Filter can be tuned to generate a backbone which is optimal with
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respect to a desired criterion.

The future steps of this line of research are many. First of all, the applications I have

shown were just brief examples aimed at showcasing how the proposed method-

ology can be put in practise. However, more focused and compelling case studies,

tailored on specific systems, could be devised and performed.

On more theoretical terms, an interesting follow up would be to leverage the Pólya

Urn scheme to create a global null network model. To achieve this we can consider

a Pólya urn composed of N(N − 1) (where N is the number of nodes of the net-

work) colours, each with a starting number of balls nij with i, j = 1, . . . , N and

i 6= j. From this initial urn we repeatedly extract S (where S is the strength of

the network) balls. After each draw, if we observe the colour (i, j), we put back in

the urn aij balls of the same color. At the end of the process, we can create a null

network model by simply assigning a weight to each link (i, j) equal to the total

number of balls drawn cij with a colour (i, j). Notice that the null model has, as

hard constraint, the number of nodes and the total strength of the network. Ev-

ery other quantity will be fixed canonically, i.e. as ensemble averages. The model

has a total of 2N(N − 1) parameters that we can freely use to do so. If, for ex-

ample, we want to fix the strength si and the degree ki of each node in an undi-

rected weighted network, we can proceed as follows. Since the number of param-

eter is higher than the number of constraints, we can decrease them by assuming

nij = ninj and aij = aiaj and by considering only N(N − 1)/2 colours (and fixing

the other N(N − 1)/2 using the symmetry we want on the final adjacency matrix).

The resulting urn model is known as Pólya-Eggenberger urn [62]. The probabil-

ity of drawing, out of S attempts, a combination of colours (c11, . . . , cN,N ) follows

a particular Dirichlet-multinomial distribution whose probability density function,

first and second order moments are well known. We can fix the 2N parameters rul-

ing the initial composition and the strength of the self reinforcing mechanisms by

imposing on the defined ensemble the constraints on degrees and strengths, which

reads: ∑
i>j

E [cij ] = si

∑
i>j

(1− P [cij = 0]) = ki

The feasibility and numerical stability of the solution of this system of non linear
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FIGURE 4.1: Example of a spurious triangle: the white triangle involving
nodes 5,4 and 2 is not directly generated and it is the result of an effective
interaction among higher order structures of a network.

equations should be studied thoroughly. Preliminary analysis shows that such task

is far from trivial. However, once the parameters of the model are fixed, the global

null network model defined can be used not only to filter out noise in networked

systems but also to generate random graphs that can be used for e.g. network

anonymization and reconstruction, which is an ongoing research topic that attracts

both practitioners and academic researchers [128].

Another theoretical topic, not directly connected with the Pólya Filter per se but

with null network models in general, would be to see if it is possible to include,

in the randomization of a network, constraints involving higher order structures

(such as triangles or paths) and not only links. Pursuing such topic would be highly

interesting and impactful. However, as often in life, big rewards do not come with-

out big challenges. The main issue, with developing random models able to pre-

serve the number of higher order structures each node is involved into (or even of

the whole network), is that these higher order structure “interact”, i.e. spurious

structures, not originally accounted by the underlying model, may spontaneously

emerge. As an illustrative example of this peculiar behaviour, I show in Figure 4.1

the case of triangles. As it can be seen, three random triangles arranged in a certain

way may create a fourth triangle that our model is not aware of. As a consequence,

these spurious entities (which emerge when considering structures with a number

of link greater than 1) effectively cause an excessive counting in the number struc-

tures we are constraining and therefore the inability of the ensemble to preserve the
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constraint we are imposing on it. The only way to overcome this issue, would be

to correct for this effect in our underlying null network model. This could be done

directly by adding a term, or, in maximum entropy models, by developing a dif-

ferent way of counting the number of available configurations in the phase space

(similarly to what is done in physics with fermions and their effective exchange

interaction).

Maximum Entropy Principle and time series analysis For those systems represented by

means of univariate or multivariate time series, I have followed a more theoreti-

cal line of work than the one devoted to handle complex networks of interactions.

The literature devoted to creating constrained randomizations of time series data is

extremely vast. The available techniques broadly fall in two categories: computa-

tional or model driven. The first are usually intuitive and completely data driven,

however they are partially lacking in terms of clarity of definition and theoretical

characterization. On the other hand, the latter are very well characterized from a

mathematical perspective, but their structures are postulated a priori and often dic-

tated by convenience rather than first principles. In this thesis I tried to develop a

model driven but assumption free framework able to developed unbiased random-

izations of a time series of interest. To achieve this goal, I leveraged the conspicu-

ous literature of statistical physics and its multidisciplinary applications to apply

the Maximum Entropy Principle to a time series setting and create canonical en-

sembles starting from a time series of interest and a set of constraints. I have shown

how the proposed framework can be used in a univariate and multivariate time se-

ries setting and, in the latter case, I have applied it to a system of stock returns and

I have shown how it can be leveraged for risk management purposes.

The ways this line of research can be extended are countless. On a practical level,

more applications and benchmarks against the other available techniques can be

performed. The proposed application of performing a local detrending of the data

matrix in order to detect the true underlying cross-correlations among a set of stocks

can be expanded with further analyses: more portfolios, more time horizons (both

in calibration and testing) and more returns predictors can be included in the the

very same analysis performed here. Moreover, the way I devised to test for overfit-

ting issues can be an application of its own which, if studied, should be compared
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VaR level
0.9 0.95 0.99 0.999

Ensemble 5 8 8 8
EGARCH 4 5 5 6

EVT 6 7 8 7
EWHS 8 8 7 5

FHS 8 8 5 7

TABLE 4.1: Number of tests passed by different VaR estimation techniques
at different significance levels for one day time horizon. The total number
of test performed is eight and they are reported in Section 3.6. The first row
of the table reports the number of test passed by the methodology proposed
in this thesis. The other rows respectively use, from top to bottom, the fol-
lowing techniques to estimate VaR: exponential GARCH(1,1) with Student’s
t-distribution of returns, extreme value theory based technique, exponential
weighted historical simulation, filtered historical simulation. For a review
of VaR methodologies and a description of the ones here reported see Ref-
erences [131, 2, 1].

with other techniques in the realm of VaR estimation. A preliminary analysis on

the return of the S&P500 index, summarised in Table 4.1, shows that the proposed

approach appears to be on par with (if not superior to) many well known VaR esti-

mation techniques.

On a more theoretical note, it would be interesting to see if an ensemble able to

constraint correlations at the single and multiple time series level can be calibrated.

I can already tell to the interested reader that probably no analytical solution can

be found, but all the literature about the inverse Ising problem can potentially be

leveraged to find alternative ways of calibrating the ensemble (especially Pseudo-

Likelihood methods). Finally, it is worth noticing that the accuracy of the single

time series case presented in this thesis can be easily improved by considering

higher perturbation orders or by considering different Hamiltonians. In particular,

I personally consider very interesting the possibility to extend the approach pro-

posed here to Hamiltonians whose Lagrange multipliers are drawn from paramet-

ric distributions. These types of Hamiltonians are not new to the physics commu-

nity since they provide the main source of investigation for studying the so-called

spin-glass systems. Considering random Hamiltonians would provide an alter-

native, and possibly even more flexible, method to fit ensembles to some desired

constraints. To fix the ideas, let us consider the following Hamiltonian:

H =
∑
i

λ1xi + λ2x
2
i +

∑
j>i

Λijxixj

 ,
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where xi ∈ R are the general coordinates of the usual temporal lattice and Λij are

i.i.d. random variables with a normal distribution:

P (Λij) =

√
N

2πΛ2
e−

N

(
Λij−

Λ0
N

)2

2Λ2 .

This Hamiltonian is the canonical version of the one considered in Reference [76],

and therefore, with similar mathematics, the partition function of the associated

ensemble can be found analytically. However, differently from the work presented

in Chapter 3, finding an analytical form for the partition function would not fix the

ensemble once and for all. In fact, while each of the Lagrange multipliers λ1 and

λ2 is directly coupled with a constraint, understanding which quantities Λ2 and Λ0

effectively regulate is not so straightforward and should be the primary aim of any

future research work on this direction.
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