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Abstract 

Buildings account for around 35% of the world’s carbon emissions and strategies to reduce 

carbon emissions have made much use of building energy modelling. Optimisation techniques 

promise new ways of achieving the most cost effective and efficient solutions more quickly 

and with less input from engineers and building physicists. However, there is limited research 

into the practical applications of these techniques to building design practice.  

This thesis presents the results of case-based research into the practical application of design 

stage optimisation and calibration methods to energy efficient building fabric and services 

design using building energy modelling.  

The application during early stage design of a Non-dominating Sorting Genetic Algorithm 2 

(NSGA2) to a building energy model EnergyPlusTM. The exercise was used to determine if 

the application of NSGA2 yielded a significant improvement in the selection of building 

services technology and building fabric elements. The use of NSGA2 enabled significant 

(£400,000) capital cost savings without degrading the comfort or energy performance.  The 

potential capital cost savings significantly outweighed the cost of the engineering time required 

to carry out the additional analysis. 

Three optimisation techniques were applied to three case study buildings to select appropriate 

model parameters to minimise the difference between modelled and measured parameters 

and hence calibrate the model. An heuristic approach was applied to the Institute for Life 

Sciences Building 1 (ILS1) at Swansea University. Latin Hypercube Monte Carlo (LHMC) was 

applied to the Arup building at 8 Fitzroy St London and compared directly with the results from 

an approach using Self Adaptive Differential Evolution (SADE). Poor Building Management 

System data quality was found to significantly limit the potential to calibrate models. Where 

robust data was available it was however found to be possible to calibrate EnergyPlus 

simulations of complex real world buildings using LHMC and SADE methods at levels close to 

that required by professional bodies.   
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Impact Statement 
 
The results of this research impact on those professions that utilize building environmental 

simulation i.e. designers of building services and other engineers brought in to deliver the 
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suggests that the additional time and resource required for designers to apply optimization 

techniques is far outweighed by the potential capital savings without impacting on the comfort 

or energy performance of a building and hence the technology should be applied widely as 

part of the early stage design of buildings.  

There are considerable benefits to the calibration of environmental building models to provide 

a sound basis for comparing energy savings measures and agreeing payment mechanisms in 

public private funding initiatives, however this requires reliable environmental monitored data 

from the buildings to be calibrated. This thesis shows that even for prestigious buildings with 

comprehensive monitoring via building management systems the data collected is just not 

available at the level of reliability required to undertake a calibration. Further research is 

required to determine how fit for calibration BMS systems are and professional practices may 

need to be significantly improved in their installation and operation. Buildings needs to be 

rigorously commissioned and maintained to provide useful information. 

The case study on the application of optimization in early stage building design has been 

published in a peer reviewed conference paper, which is appended to this thesis.  The case 

study on gathering data on the institute for Life Science Building 1 and the application of 

SADE to the calibration of building energy models will  form the basis of two future papers. 
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Chapter 1 Introduction 

Anthropogenic production of carbon dioxide is trending toward levels, which will have a 

significant negative impact on the inhabitants of our planet. Buildings are responsible for a 

significant contribution to these carbon dioxide emissions.  

This contribution has been recognised by the building services profession who work to reduce 

the energy, and therefore carbon dioxide, which is associated with the operation of buildings. 

Building energy models are one of the main tools that building services engineers use to make 

decisions about which technologies should be employed to maintain comfortable 

environments in buildings and minimise energy use.  

Optimisation routines have been applied in a variety of fields but are still not commonly used 

in building services design. Multi-objective optimisation could play an important part in 

decisions involving the placement of resources to produce energy efficient buildings while still 

maintaining comfortable working conditions.  

Results from the measurements of the amount of energy used by buildings deviates 

substantially from the predictions of whole building energy simulations. There is a substantial 

need to improve the accuracy of building energy models. 

There are a number of potential sources of the deviation between predictions and 

measurements of energy consumption from buildings in use, including the selection of the 

input parameters which are used to describe the building. 

The input parameters which were assumed in the construction of building energy models can 

be modified using data obtained from buildings in use. This process, known as “calibration”, 

can reduce these deviations to within agreed limits.  

There are many documented calibration processes, but in the commercial environment, not 

all of these processes are practical. Again, optimisation processes, where the deviation 

between modelled and measured energy use is minimised, may be usefully applied. 

This thesis addresses the practicality of optimising building design and calibrating building 

energy models in a commercial environment by following the process though a case study. 

1.1 Research questions and work programme   

My research question is:  

“How can existing building energy model optimisation techniques be used to provide 

a better process for designing buildings and calibrating building energy models?” 
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This main research question has been addressed via two sub-research questions. The first 

deals with the usefulness of optimisation in early stage building design, for which the research 

question is: 

“Does multivariable optimisation using NSGA2 [Non-dominated Sorting Genetic 

Algorithm 2] yield savings significant enough to justify the engineering time which 

needs to be devoted to the optimisation process?”  

This research question is answered in Chapter 3 of this thesis.  

The second deals with how useful a calibration technique is to support  optimisation of a  

Building Energy Model (BEM): 

“Which of the calibration methodologies is best suited to application by engineers who 

are working in practice?” 

This research question is answered in Chapter 4 of this thesis.  

In order to answer the first research question the following work programme was set. 

 Carry out a literature review to establish the current state of the art and chose 

appropriate software, algorithms and calibration methods.  

 Select an appropriate building to use as a case study. 

 Produce a BEM of the case study building. 

 Obtain construction cost information sufficient to quantify the capital costs 

associated with building design decisions 

 Perform building energy model optimisation 

 Compare the theoretical operational energy efficiency and capital costs with the 

predicted performance during the original design.  

 Assess results and document the process and findings. 

For the second research question: 

 Carry out a literature review to establish the current state of the art and chose 

appropriate software, algorithms and methods.  

 Select an appropriate building to use as a case study. 

 Produce an “as built” building energy model of the Institute for Life Sciences Building 

1 (ILS1).  

 Monitor over a period of a year the as built performance of ILS1 via its Building 

Management System (BMS). 

 Calibrate the BEM with the monitored data. 

 Assess results and document the process and findings. 
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During the monitoring of ILS1 the BMS failed and so the work programme adjusted as follows 

and a new case study building selected: 

 Carry out a literature review to establish the current state of the art and chose 

appropriate software, algorithms and methods.  

 Select an appropriate building to use as a case study.  

 Produce an “as-built” BEM. 

 Obtain and process meter energy readings to obtain a data set, against which, the 

BEM could be calibrated. 

 Carry out a sensitivity analysis to determine the parameters with the greatest 

influence on the outcome of BEM calibration.  

 Use jEPlusTM to apply a Latin Hypercube Monte Carlo (LHMC) search to the BEM 

parameter space to identify the most influential parameters and find the most 

appropriate values for those parameters.  

 Adapt a known Self Adaptive Differential Evolution (SADE) script for use with 

EnergyPlusTM.  

 Test the adapted SADE script to ensure correct operation.  

 Apply the SADE script to the 8 Fitzroy St BEM to obtain values for the calibration of 

the BEM.  

 Assess results and document the process and findings. 

This thesis is divided into five chapters. The introduction deals with the primary research 

questions and the structure of the thesis. Chapter 2, the literature review, provides the 

background to the thesis, describes the current state of the art, and provides any information 

that the reader needs in order to understand the software, algorithms and calibration 

processes applied in the research. Chapter 3 describes the case study where optimisation 

was used in an early design stage to optimise the selection of building services and 

construction parameters in a new building. Chapter 4  uses a series of case studies to 

compare the efficacy of heuristic and deterministic optimisation methods in building energy 

model calibration. The final chapter discusses the results, draws conclusions and 

recommends future work. The structure of this thesis is outlined in Figure 1  
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Figure 1. Structure of this thesis. 
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Chapter 2 Literature review and methods 

In this chapter, the need to produce and test new processes for optimisation in building energy 

modelling is summarised with reference to the current literature. The literature review 

summarises the existing calibration methods and provides an overview of the software used, 

and options for research methods, including the ones used in this thesis. 

2.1 Climate change 

The motivation for developing energy efficient buildings is due to significant increases in 

anthropogenic carbon emissions. The levels of carbon dioxide in the atmosphere have been 

directly measured at Mauna Loa in Hawaii, since March 1958 (Pales and Keeling, 1965; 

Keeling et al., 1976). The Mauna Loa observatory is well placed, away from sources and sinks 

of carbon dioxide, to ensure accurate representative readings of atmospheric carbon dioxide 

(Pales and Keeling, 1965). 

There is no doubt now that carbon dioxide production is anthropogenic and having a direct 

impact on the climate of the planet. 

Building energy models play a key role in assessing the energy efficiency and therefore carbon 

impact of the building prior to construction. It should be noted that architectural design also 

has a key role in reducing energy demand, but that this thesis is focused on processes that do 

not require substantial change to a buildings essential architecture. 

A more detailed overview of climate science and its relevance to building energy modelling is 

contained in Appendix B. 

2.2 Accuracy of building energy models 

Leaman and Bordass (1993) highlighted poor energy efficiency in buildings in a landmark 

series of studies conducted between 1995 and 2002. The studies were carried out on 19 

buildings from around the United Kingdom (Bordass and Leaman, 2004) and on one from the 

Netherlands. The studies were called Post-occupancy Review of Buildings and their 

Engineering (PROBE) and concentrated on technically notable buildings which had been 

recently completed. The studies found a significant deviation between the predicted energy 

performance and the actual energy consumed by the buildings in use.  

Ahmad and Culp (2006) produced DOE-2.1E building energy models of four buildings and 

compared the predictions for annual energy use from the building energy models with 

measured data. They found that total annual energy use varied over +/- 30% with one outlier 

compared to the simulated consumption. When they compared the simulated and actual 
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energy use for individual components, they found that the predictions varied by +/- 90% of the 

predicted values.  

In Raslan and Davies’ study (Raslan and Davies, 2010), three notional buildings were 

simulated using thirteen software applications. The results were not compared to actual 

buildings but the highest predictions exceeded the lowest by up to 250%.  

2.2.1 Improving building energy modelling 

There are a number of areas where the deviations between the predictions of annual energy 

consumption by building energy models, and the measurements from buildings in use, could 

be reduced. 

The three areas of uncertainty can be summarised (Yeo, Choudhary and Augenbroe, 2012) 

as: 

 the deviation between the input parameters assumed before building completion and 

parameters which could be derived from a building in operation; 

 uncertainty resulting from the application of the building modelling software to the building 

including the actions of the user and the capability of the software to accurately represent 

the physics of the building; 

 uncertainty in the measurement of the energy used by the building.  

Optimisation can be used in conjunction with building energy modelling in the early stages of 

design to ensure resources are best used to meet a client’s requirements, and can be applied 

during model calibration to improve model inputs which in turn could produce more accurate 

future models.  

2.2.2 Verification and validation 

Processes which contribute to an assurance that building modelling software will be useful can 

validate or verify the model.  

Verification is the process that ensures that the computational model represents the physics 

of the process being modelled.  

Validation is the process of determining to what extent the model replicates the behaviour of 

interest. 
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2.2.3 Practice literature 

The performance of building energy models is predicated on the selection of the input 

parameters. The validity of models can be improved if better sources for the values of the input 

parameters were available. Some technical references already exist. 

The Chartered Institute of Building Services Engineers (CIBSE) provides comprehensive 

guidance for services engineers.  Implicit in these guides is a need to produce physical and 

mathematical models of the operation of the building in order to estimate the volumes flow 

rates and energy transfers that will be required to maintain the buildings in operation. 

CIBSE also provides a range of Technical Manuals (TM) to assist engineers in special 

circumstances. TM22: Energy assessment and reporting method, (CIBSE, 2006) and TM33: 

Tests for software accreditation and verification, (CIBSE, 2009), provide extensive guidance 

relating to the construction, use and testing of energy models in buildings. AM11: Building 

performance modelling provides guidance on the appropriate application of building energy 

model software. This includes “quality assurance procedures compliance with UK and some 

international building energy efficiency codes, thermal environment and energy, ventilation, 

lighting and plant modelling” (CIBSE, 2015). 

2.2.4 Feedback from buildings in use 

The values of input parameters would be more appropriate if more attention was paid to the 

operation of existing buildings. 

Review of buildings after completion is not a new concept. Plan of Work for Design Team 

Operation (1963) included a Stage M: Feedback (cited in Bordass and Leaman, 2005), which 

was withdrawn in 1972 because, in practice, architects had found that clients would rarely pay 

for such a service (Bordass and Leaman, 2005). 

Following the PROBE studies, a series of articles called Making feedback and post-occupancy 

evaluation routine, (Bordass and Leaman, 2005a; Way and Bordass, 2005; Bordass and 

Leaman, 2005b), provide recommendations for the improvement of the building design 

process, in which they call for the facilities manager to take the lead: 

 “Dependable comparison of actual and forecast performance will be impossible 

without regular recording of changes by the Facilities Manager”  

But this is not necessarily appropriate. Facilities managers do not have the time or the 

technical skills to rerun engineering models. Building Management Service (BMS) vendors 

might claim that recording building performance data and analysis against predicted models 

can be automated using the BMS and Internet Protocol services. However, this thesis 
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demonstrates how far existing systems are from being able to do this.  The reliability of 

recording and reporting this data is assessed in this thesis as part of an attempt at a heuristic 

calibration. 

2.2.5 Verification of energy modelling software 

The predictions of building energy models are reliant on the capability of the building energy 

model software to model the complex physics of a building. The applicable processes are 

called verification and validation, which are applied to software to ensure that it can achieve 

this. This section describes the current methods for verifying and validating building energy 

modelling software. 

A clear distinction needs to be drawn between the verification of building energy modelling 

software, the validation of the software and the calibration of the models produced by that 

software. Verifying ensures that the software is capable of producing models which, if properly 

configured, will produce acceptable predictions about the performance of buildings. Unless the 

building modelling software is verified there could be little hope of producing a useful model. 

Once a model of a particular building has been produced and the building has been 

constructed, the energy performance predictions of the model can be compared to recorded 

energy consumption of the building as measured using energy meters. At this stage, there is 

an opportunity to adjust the input parameters in the model so that the predictions of the model 

better reflect actual energy consumption.  

The following sections are focused on the verification of building energy modelling software. 

Processes for the calibration of models are summarised in the literature review, following in 

the next chapter. 

2.2.6 CIBSE Technical Manual 33 

The 2006 edition of Technical Manual 33 (TM33) (CIBSE, 2006) has been developed to 

provide a formal process under the National Calculation Methodology to approve Dynamic 

Simulation Modelling (DSM) software for demonstrating compliance with Part L of the Building 

Regulations (CIBSE, 2006).  

TM33 is comprised of sets of tests in which the results are expected to agree with documented 

results contained in the technical manual. The manual documents tolerances below which the 

software can be deemed to be in agreement with the standard calculation methodologies 

although some of the tolerances are as high as 10% (for G9: Infiltration and ventilation). 
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The tests are divided into: 

 general purpose tests G1 – G10 which test the software’s accuracy when handling 

operations including basic thermal calculations, glazing properties, steady state heat loss, 

annual cooling demand, overheating risk and infiltration; 

 results of simulations compared against a test cell; 

 CIBSE specific tests which examine the accuracy of the model to predict such parameters 

as solar position, material properties and psychrometrics. 

2.2.7 International Energy Agency 

The International Energy Agency (IEA) operates a number of working groups which work on 

a series of tasks, annexes and projects. The Energy Conservation in Buildings and Community 

Systems (ECBCS) and the Solar Heating and Cooling implementing programme (SHC) have 

both carried out projects related to the validation of building simulation software.  

As a note to the reader who may wish to follow these references, these working groups have 

carried out a series of projects which sometimes overlap with different task numbers and 

subsequent references for the same study; this can lead to some confusion.  

One of the goals for the IEA has been to develop analytical, comparative, and empirical test 

protocols which can be applied to building energy performance software. These test methods 

comprise the IEA Building Energy Simulation Tests (BESTest).  

The BESTests were primarily developed under IEA SHC programme: Tasks 8, 12 and 22, with 

input into Task 12 from IEA ECBCS; these have subsequently been augmented by a series of 

projects under ECBCS Annex 43: Testing and Validation of Building Energy Simulation Tools 

which were jointly operated with the SHC Task 34.  

The BESTests specify a series of cases which describe models to be produced by the software 

under test. The models are intended to test specific aspects of the software to identify potential 

errors. Predictions about energy consumption from the software are compared with analytical 

solutions, empirical data from equipment tests and between software applications.  

The BESTest system does not provide a pass/fail, but instead provides a framework for 

comparison of the extent of deviations from standard results. The Class of BESTest tests 

should always be quoted and the results should be compared against the standard results. 

2.2.8 ASHRAE 140 BESTest 

The American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) 

Standard 140: BESTest (ASHRAE, 2002) provides a suite of tests to identify specific types of 
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errors in building energy modelling software. The tests consist of a series of test building plans 

and equipment specifications which focus on different aspects of building energy simulation to 

identify potential errors in code or methodology.  

The tests are divided into Class I and Class II test cases. Class I tests contain detailed 

diagnostic tests which use some of the test principles which were developed by the IEA for 

their solar heating and cooling tasks. Class II tests are intended for simplified methods 

favoured in residential load analysis software. 

Class I tests compare results from leading software which examine the predicted energy 

consumption as a function of the building fabric and mechanical equipment simulation. They 

also compare the results from software with analytical solutions. 

Class II tests were originally developed for the Home Energy Ratings Systems (HERS) which 

also (confusingly) bears the name BESTest. The tests are divided into Tier 1, which consists 

of the analysis of a standard building, and Tier 2, which adds additional parameters intended 

to reflect a more realistic building. 

2.3 Optimisation of building energy models 

Optimisation is the process of finding the best combination of inputs to achieve a target; this 

could be finding the best combination of building fabric and services to achieve a comfortable 

and compliant building (Polson, Zacharis, Lawrie and Vagiou, 2017), or finding the best 

combination of values for parameters to minimise the divergence between measured and 

simulated data (calibration).  

Optimisation processes depend largely on algorithms which search for the best combination 

of values for parameters under scrutiny. Searches may be heuristic, deterministic or 

stochastic. The techniques can include sensitivity analysis, Monte Carlo, Markov chains and 

evolutionary algorithms.  

2.4 Calibration of building energy models 

A building energy model can be adjusted using data from a building in use so that the predicted 

energy consumption better matches the actual energy consumed. This is an optimisation 

process where the cost function is the divergence. The process of minimising the divergence 

is called calibration.  

Calibration of models is useful for improving the accuracy of the model and because the right 

process could produce a more useful estimation of input parameters for subsequent studies. 

There is an increasing emphasis on the calibration of building energy models. 
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2.4.1 EFA energy input parameters and modelling guide 

The Education Funding Agency (EFA) has produced a Facilities Output Specification (FOS) 

(EFA, 2013a) to document their requirements for the construction of schools as part of the 

Priority Schools Building Programme.  

The FOS is augmented with the energy input parameters and modelling guide (EFA, 2013b) 

which contains guidance for providing models to meet the requirements of the FOS. 

Under the FOS, contractors bidding on projects which are part of the Priority Schools Building 

Programme, are required to produce a series of building energy models. These models are in 

addition to the models which are normally produced to demonstrate compliance with the 

building regulations and are intended to predict energy consumption in the schools which are 

to be constructed.  

Under the FOS, three building energy models are to be produced: 

 The Initial Baseline Energy Model is produced at the Invitation to Participate in Dialogue 

and Submit Bids (IPDSB) which is based on the contractor’s preliminary design and default 

parameters contained in the energy input parameters and modelling guide (EFA, 2013b). 

 The Final Baseline Energy Model is produced for Financial Closure which is a revision of 

the Initial baseline Energy Model which has been revised to reflect actual legacy 

equipment. 

 The In-Use Energy Model is produced in the first years of operation and is a calibrated 

model based on the Final Baseline Energy model. 

The Initial Baseline Energy Model is used to demonstrate that the contactor’s design meets 

the Core Energy Cap and Design Energy Target. These targets are defined in the FOS and 

Energy input parameters and modelling guide and split energy use according to the hour of 

the day and type of energy use. The Facility Output Specification seeks to place risk for the 

costs associated with energy consumption with the party that is best placed to manage 

consumption (EFA, 2013a).  

The Final Baseline Energy Model is used as the initial basis of payment until the In-Use Energy 

Model can be produced after the first months of operation. 

Neither the Facilities Output Specification nor the energy input parameters and modelling 

guide make any recommendations for the calibration of the building energy model, although 

they do refer to the International Performance Measurement and Verification Protocol (IPMVP) 

(EVO, 2012) and to ASHRAE 14 (ASHRAE, 2002).  
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2.4.2 LEED Credit 5 

The United States Green Building Council (USGBC) has produced a series of metrics called 

Leadership in Energy and Environmental Design (LEED), which address issues of 

sustainability in the construction industry.  

Many projects designed in the UK, often for construction in other countries, include a 

requirement for a LEED rating in their design brief. 

LEED for New Construction (LEED NC) version 2.2 (USGBC, 2008) includes a credit under 

the Energy and Atmosphere (EA) section. EA Credit 5: Measurement and Verification allows 

for applicants to obtain one credit for preparing a measurement and verification plan which is 

in accordance with the IPMVP (EVO, 2012). The plan must be produced according to Part D 

which requires the production of a calibrated energy model in accordance with ASHRAE 14. 

2.5 Conclusions 

Increasing levels of carbon dioxide are anthropogenic and will result in significant climate 

change. The construction and operation of buildings is a significant source of carbon dioxide. 

Computational modelling of buildings is used to aid the design process.  

Despite the imperfect nature of building energy modelling, there is an opportunity to make 

better use of optimisation, both in early stage design of buildings and in the post-occupancy 

calibration.  

Optimisation in early design stage modelling offers a chance to reduce the carbon footprint of 

a building by ensuring that resources are directed where they can be of most benefit.  

Rigorous calibration of building energy models is used to quantify the savings made under 

energy performance contracts. A calibrated model is required for new schools built under the 

Priority Schools Building Programme and can be used to obtain credits under the sustainability 

metric: LEED.  Optimisation, as applied to the calibration of building energy models could be 

a useful service which can be provided as part of an engineering consultancy. 

The information gathered during the calibration process could also be used to provide much 

needed feedback for the construction of future building energy models which need to be 

improved to close the credibility gap. This is needed to provide an improved basis for the 

decisions which are needed to reduce carbon dioxide production and the impacts of climate 

change. 

The next chapter provides a literature review of existing processes for applying optimisation 

to building energy models. In it, existing optimisation and calibration processes are 
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summarised and calibrated models are shown to be able to provide information, which enables 

building operators to improve the energy consumption of buildings. 

2.6 Literature review of methods for calibrating building energy models 

A substantial literature review on methods for the calibration of building energy models was 

carried out by Reddy in 2006. The literature review in this thesis follows the general outline by 

Reddy but has been extended to include: 

 studies overlooked in Reddy; 

 developments in processes since 2006; 

 new processes including deterministic and stochastic methods; 

 Arup company reports and internal documents that contain useful information; 

 doctoral theses. 

The requirements for inclusion in this literature review were: 

 the research contained the construction of a whole building energy model which was then 

calibrated using data obtained from a building in use; 

 a building was initially analysed using a whole building energy simulation; 

 a calibration process was used to modify the model to reflect the performance of a building 

in use. 

This part of the literature review focused on the calibration of whole-building energy models or 

simulations, so studies of sub-systems (e.g. Zhou, Wu, Wang, & Shiochi, 2007) were not 

exhaustively followed. 

It might be noted that many of the references in this literature review are quite old, however 

the methods are included for completeness and to set the deterministic methods used in their 

academic context.  

2.6.1 Structure of the literature review 

This review starts with general references that provide standards by which results from the 

calibration of building energy models can be measured. This sets the target for the calibration 

of building energy models as optimising (to a minimum) the divergence between the 

predictions for energy consumption and the metered energy delivered to the building. 
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Most studies are discussed under the heading of one of the three main techniques for 

calibrating building energy models: heuristic methods, deterministic methods and stochastic 

methods. 

There are four sections relating to analytical techniques which could be useful for optimising 

building energy models, so these techniques are discussed under separate headings; these 

are: 

 sensitivity analysis which could be used to identify the relative influence input 

parameters have in any of the processes; 

 Monte Carlo analysis; 

 Markov Chains;  

 Evolutionary Algorithms. 

Monte Carlo, Markov Chains and Evolutionary Algorithms could be used in both deterministic 

and stochastic searches for values of input parameters which optimise a design or minimise 

the error between predictions and measured values. 

Meta-modelling is discussed as a process which could provide a method for decreasing the 

time which is required to run building energy models. 

Tools which have been developed to assist in calibration of building energy models are 

discussed in Section 2.6.10. These tools can be used to automate some of the repetitive 

process required in sensitivity analysis, deterministic processes and stochastic processes. 

2.6.2 Previous literature reviews 

In the process of carrying out this literature review, two earlier literature reviews were 

discovered.  

A study by Palomo, Marco and Madsen (1991) provides a set of methods which the authors 

considered applicable to the comparison of results from building models and buildings. Their 

review includes a number of interesting mathematical procedures and provides a 

demonstration of the application of some of the methods to a test cell. 

In his extensive literature review, Reddy (2006) concluded that the issue of uncertainty needs 

to be addressed and that a process is required that provides a “coherent and systematic 

calibration methodology”.  

Cho (2009) included a section on building energy model calibration for his PhD thesis: 

Methodology to develop and test an easy to use procedure for the preliminary selection of high 

performance systems for office buildings in hot and humid climates. Cho focused on three 
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calibration methods: a heuristic “rule of thumb method”, graphical methods and the signature 

method; he concluded that he needed to use a combination of all three methods for his thesis.  

In her PhD thesis: Bayesian calibration of building energy models for energy retrofit decision 

making under uncertainty (Heo, 2011), Heo concluded that a building energy model calibrated 

using a Bayesian method can provide an adequate basis for making decisions about retrofit 

options.  

The literature review in Raftery’s thesis: Calibrated whole building energy simulation: An 

evidence based methodology (Raftery, 2011) concluded that even though there are a large 

number of methods for calibrating building energy models, “there is no widely accepted 

method for calibrating a simulation model”. Raftery proposes a hierarchy of data sources which 

are then used to calibrate the building energy model. He argues that by using data from more 

reliable sources the calibration will be more realistic.  

Bertagnolio (2012) draws some pertinent conclusions in his PhD thesis: Evidence based 

model calibration for efficient building energy services. In his literature review, he concludes 

that calibrating building energy models using a combination of intuitive and mathematical 

methods is an attractive solution. Importantly, he also concludes that because calibration is an 

underdetermined problem (there are many possible solutions) a “blind” calibration could miss 

contributions from important parameters.  

2.6.3 General references 

2.6.3.1 Assessment of energy model calibration using ASHRAE 14 

ASHRAE Guideline 14: Measurement of Energy and Demand Savings (ASHRAE 2002) is 

intended to provide a method for standardising the estimation of savings resulting from the 

retrofit of buildings. The standard assumes that savings are the difference between the 

predicted energy use of a baseline model and the actual energy consumption of the building. 

It uses the term Energy Conservation Measure (ECM), which is also widely used in the 

literature, to describe the class of modifications to a building which are intended to reduce its 

energy consumption. 

The standard describes a range of tools for establishing the baseline model, with a calibrated 

building energy model being the most sophisticated. Most importantly, it describes a set of 

stochastic parameters which can be used to measure the correlation between a model and 

the performance of a building and a set of values which can be used to demonstrate the 

adequacy of the calibrated model. 



 36    

Coefficient of Variance of Root Mean Square Error (CVRMSE) and Normalised Mean Biased 

Error (NMBE) were chosen as the calibration quality metrics because they are most widely 

quoted in the literature and provide a comprehensive evaluation of a calibration method. 

The definitions of the stochastic parameters are given in (1) and (2) below. 

𝐶𝑉𝑅𝑀𝑆𝐸 = 100 ×  

∑ (𝑦 − 𝑦 )
(𝑛 − 𝑝)

𝑦
 

(1) 

which is equation (5.4) in ASHRAE 14:2002 and; 

𝑁𝑀𝐵𝐸 = 100 ×
∑ (𝑦 − 𝑦 )

(𝑛 − 𝑝) × 𝑦
 

(2) 

which is equation (5.5) in ASHRAE 14:2002, 

where:  

 𝑛 is the number of data points or periods in the baseline model; 

 𝑝 is taken to be 1 (ASHRAE 14, 2002, 5.2.11.3, P15); 

 𝑦 is the ith dependant variable of some function of the independent variables; 

 𝑦  is the ith value of the regression models predicted value of 𝑦; 

 𝑦 is the arithmetic mean of the sample of n observations. 

While this standard has been available since 2002, there are a large number of studies which 

do not use this standard to enable their method to be compared to those of others.  

The uncertainty tolerances for calibrated models are reproduced from ASHRAE 14 for 

convenience.  

Section 5.3.2.4.f requires that: 

“The computer model shall have an NMBE of 5% and a CVRMSE of 15% relative to 

monthly calibration data. If hourly calibration data are used, these requirements shall 

be 10% and 30% respectively.” 

Section 5.3.2.4.h requires that: 
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“The level of uncertainty must be less than 50% of the annual reported savings at a 

confidence level of 68%”. 

Section 6.3.3.4.2.2 states that over a year: 

“Typically, models are declared to be calibrated if they produce MBEs within ±10% 

and CVRMSEs within ±30% when using hourly data or 5% to 15% with monthly data.” 

Since the requirements for CVRMSE are significantly different depending on whether the 

calculation is carried out based on hourly or monthly data, the subscript “hourly” (CVRMSEhourly) 

has been added to the data studied in this thesis, and similarly for NMBE. 

2.6.3.2 International Performance Measurement and Verification Protocol 

The International Performance Measurement and Verification Protocol (IPMVP) contains 

guidelines for quantifying savings which result from changes to energy or water systems (EVO, 

2012). The standard broadly outlines four methods, of which the fourth (Option D) is to develop 

a calibrated building energy model which can then be used to provide a baseline of energy 

consumption against which post-alteration energy usage can be compared and used to 

determine on-going savings. The standard provides an example where an energy model is 

used to predict energy use following the replacement of a boiler in a factory and where an 

increase in production coincides with the period of expected energy savings.  

A calibration process is loosely outlined based on literature, none of which dates from after 

the year 2000. After the collection of data, a series of steps are provided to guide the calibration 

of the Building Energy Model (BEM); these are: 

 assume and document input data; 

 gather weather data; 

 verify that the model predicts operating conditions; 

 compare the results for predicted energy consumption with metered data; 

 use graphical techniques to discover patterns in the deviation from predicted results; 

 revise [input] data and repeat the process until the predicted energy results fall within the 

acceptance criteria.  

The protocol omits significant references that would be likely to be useful to an engineer tasked 

with calibrating a model. Particularly, reference should have been made to acceptance criteria 

such as NMBE and CVRMSE.  Also, as described elsewhere in this review, there are a number 

of techniques for calibrating building energy models that are available, and which could be 

described in more detail or at least referenced. 
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The IPMVP process has been applied to two large offices in Shanghai. DOE2.1E and DOE2.2 

models of an 88 storey, 300,000 m2 multi-use office (Pan, Huang and Wu, 2007) and a 41 

storey 67,000 m2 multi-use office (Pan, Huang, Wu and Chen, 2008) were calibrated using the 

procedure in the IPMVP. The results obtained for monthly and annual electricity and gas use 

are given in Table 1. 

Study MBEmonth MBEyear CVRMSE 

Electrical Study 1 7.1% 1.2% 4.7% 

Gas Study 13% 3.1% 8.9% 

Electrical Study 2 10.0% 2.4% 5.7% 

Table 1. Results obtained for the calibration of offices in Shanghai using IPMVP. (Pan, 

Huang, Wu and Chen, 2008) 

These results are very good when compared to other processes and well within the limits of 

ASHRAE 14.  

2.6.4 Heuristic methods for calibrating energy models 

Heuristic methods depend on the expertise of the practitioner as they rely on the 

understanding of the problem and may draw on the practitioner’s previous experience with 

similar problems.   

Heuristic methods are discussed in depth in Reddy’s literature review (Reddy, 2006). There 

has been subsequent development of these methods since 2006, focusing on developing 

systematic repeatable methodologies. Again, the various methods are developed from 

Reddy’s classifications. 

2.6.4.1 Manual, iterative and pragmatic intervention for calibrating models 

Manual, iterative and pragmatic methods are by far the widest group of methods for the 

calibration of building energy models. The author would suggest this is also the most intuitive 

to a practising engineer. Calibration is carried out by manually manipulating the input 

parameters based on the experience and expertise of the practitioner. Various publications 

describe subtle nuances in technique or seek to produce a rigorous repeatable method. 

However, all these processes are dependent on the time spent by a suitably-qualified (and 
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therefore expensive) practitioner. This is not to say that the process described cannot be 

adapted for automatic or low user-input implementations, but that the advances in computing 

speed and the reduction in cost of manufacturer and installing meters may have made these 

methods less attractive in their current form.  

Clarke Strachen and Pernot (1993) used results from a test cell to validate an ESP-r model, 

which was then used to assess the impact of adding a conservatory to a building. 

Reddy, Hunn and Hood (1994) used a process that started with the identification of uncertain 

parameters for a DOE2 simulation, which have the greatest impact on total energy use. Some 

of the values for the parameters were then measured in the field and substituted into the 

model. The remaining parameters were adjusted manually to match the energy use data. The 

process was demonstrated on a 23,200 m2 education building in Austin Texas and was used 

to assess potential energy savings from ECMs. 

Chimack, Walker and Franconi (2001) calibrated a DOE2.1E model of a 107-year old 55,700 

m2 Museum at the University of Chicago in Illinois. The process was iterative and the authors 

described a series of steps in the calibration process. The report is notable for the use of 

stochastic terms including those quoted in the subsequent ASHRAE 14 to quantify the 

accuracy of their calibrated model.  

A three-step process is described in Pedrini and Lamberts (2001) and Pedrini Westphal and 

Lamberts (2002). The authors claim that the process is especially well suited to buildings in 

warm climates such as Brazil and Australia. The three steps are to: 

 simulate the building using information from design plans and documentation; 

 carry out an audit to identify changes to the original designs and gather data using data 

loggers and hand-held meters; 

 take end-use measurements for the values of parameters used in the building energy 

model. 

The three-step method is demonstrated on six buildings in hot climates; however the studies 

do not use metrics (such as CVRMSE), which would have enabled the results to be compared 

to other studies. 

A seven-step method is proposed by Yoon, Lee and Claridge (2003) and Yoon and Lee (2003).  
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The seven steps are: 

 model the base case; 

 analyse the base case; 

 calibrate the model using mid-season data; 

 carry out site interviews and confirm changes to the model; 

 calibrate the model for the heating and cooling seasons; 

 validate the calibrated model; 

 investigate promising ECMs. 

The method is demonstrated on a 26-storey, 83,200 m2 office in Seoul, Korea. A DOE2.1E 

programme was calibrated and the study quotes final values of MBE 2.3%, CV 3.6% based 

on monthly values. 

Iqbal and Al-Homoud (2007) used a building audit to calibrate a Visual DOE4.0 model of 6-

storey newspaper headquarters in Dammam, Saudi Arabia. The calibrated model was used 

to assess parameterised ECMs. 

Cho and Haberl combined manual, graphical and signature methods (described in later 

sections) in a study of the seven-storey 11,500 m2, John B. Connally Building at Texas A&M 

University in Texas (Cho and Haberl, 2008). While the study combined methods, these 

methods remains essentially heuristic. The methods achieved an overall CVRMSE of 8.4% 

based on hourly data, which compared well with the ASHRAE limit of 30%. This study is 

notable for the emphasis on the combination of techniques. 

Lavigne (2009) calibrated a DOE2.1E model of a 14,500 m2 Service Centre and an 8,000 m2 

Office, both in Quebec, Canada. In this study, the author uses a combination of methods in a 

tool which employs an optimisation algorithm which searches for five parameters which define 

energy use against ambient temperature. The five parameters were: 

 baseline changes representing revised values for plug and lighting loads;  

 heating slope which represents the rate of heating with outdoor air temperature; 

 cooling slope which represents the rate of cooling with outdoor air temperature; 

 the outdoor temperature at which heating is no longer required;  

 the outdoor temperature at which cooling becomes necessary.  

The algorithm then uses a minimisation process to select parameters that have the greatest 

influence over the energy use of the building. These factors are then applied over a range to 

select the best input for the simulation. The study highlights the necessity for engineering input 

in the selection of realistic parameters and the lack of adjustment of schedules as weakness 
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in the method. While the results are only quoted in terms of monthly and annual under/over 

estimation, the results appear good and illustrate the potential of combining heuristic with 

deterministic methods. 

Costa, Keane, Raftery and O’Donnell (2009) documented a system which they have termed: 

“Key Factors”. 

“Key factors (Kf) are those parameters of the operation strategy that influence the 

environmental and energy performance of the building.” 

The study was intended to provide information to building operators to enable them to operate 

the building in the most efficient manner. At the time of publication an EnergyPlusTM model 

had been constructed, but not calibrated. The paper was published to illustrate the process for 

which the calibrated model would be employed after calibration. It is included in this study 

because it refers to assumed roles in which an energy consultant provides a calibrated building 

energy model, and an energy manager specifies the metrics that are important and used to 

measure the performance of the building. The initial parameters suggested related to building 

energy consumption and user thermal comfort.  

EnergyPlusTM 4.0 was used to model 8,400 m2 classroom and office building at the University 

of California campus at Merced in an effort to diagnose a drop-off in energy performance 

between 2008 and 2009 (Dudley, Black, Apte, Piette and Berkeley, 2010). The processes are 

essentially heuristic based on a relatively short period in 2008 from August 15th to the 25th. 

Actual class schedules were used. For the period of calibration, the NMBE and CVRMSE 

quoted at 1% and 1.4% are excellent, although this cannot be directly compared with other 

studies due the short duration of the calibration data. A full check on the calibration was 

planned for 2009.  

Raftery, Keane and O’Donnell (2011) introduced the use of version control software and 

adapted other heuristic methods to provide a more reproducible process, which they termed 

An Evidence-based Methodology. In this study the authors argue that rather than tune a 

calibrated model, changes in input parameters should only be “made according to the available 

evidence under clearly defined priorities”.  

The overall process is described in a flow diagram, which includes a rather substantial iteration 

loop. At each stage the authors take great pains to emphasise the importance of version 

control. Version control is managed using a software tool called TortoiseSVN. A four-floor 

30,000 m2 industrial office in Dublin, Ireland, was used to demonstrate the method. The case 

study only quotes results for the HVAC system which have an NMBEhourly of -4.2% and 

CVRMSEhourly of 7.8%.  
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Coakley, Raftery and Molloy (2012) later applied a similar system to the Galway Nursing 

Library in Ireland.  

Taylor, Zhang and Bannister (2011) calibrated two EDSL Tas 8.5 models and a DOE2.1E 

model of buildings in Australia to assess ECMs intended to improve their building’s National 

Australian Built Environment Rating System (NABERS) rating. The process was essentially 

heuristic following an audit as prescribed by AS/NZS 5398:2000. The deviations between the 

measured and simulated data were not quoted. 

Srinivasan, Lakshmanan Srivastav and Rinker (2011) revised occupancy schedules to 

calibrate a model of a convention centre with what they termed the Monthly Calibration 

Method. The details of the method are unclear and results similarly vague. 

A Modellica model of a theatre was calibrated by isolating the steady-state data and calibrating 

the flow network of the model (Eisenhower, Gasljvic and Mezic, 2012). The dynamic 

parameters were then adjusted to obtain a model that could be used to investigate the 

frequency response of the control system, which was represented on graphs.  

2.6.4.2 Calibration using suites of informative graphical comparative displays 

Reddy (2006) discusses graphic techniques under Methods for Building Energy Modelling 

Calibration and Data Visualisation Tools and cites Reddy, Maor, Ponjapornpon and Sun 

(2006) for a more detailed description. Here, graphical methods are presented together.  

At the time of his writing, Reddy advised that graphical plots could not be generated using 

spreadsheets because common spreadsheet applications were limited in their ability to 

generate graphs of large numbers of data. However, with the development of more powerful 

personal computers and the corresponding advances in software, there are now a range of 

commonly available applications which could be used including Microsoft ExcelTM, Python and 

MatlabTM. 

The application of graphical techniques has undoubtedly been useful in the heuristic 

calibration of building energy models; however, as with the other heuristic methods outlined 

above, the high level of expert attention makes these methods less attractive. As such, these 

methods are only given brief consideration and the reader is again referred to Reddy et al., 

(2006) and the original literature. 

Basic Monthly Time Series Plots 

Basic Monthly Time Series Plots (Haberl, Kissock, Belur and Sparks, 1993; Haberl Sparks and 

Culp, 1996; Haberl and Abbas, 1998a; Haberl and Abbas, 1998b) are used in studies to give 

a quick visualisation of the deviation between simulated and actual use.   
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Scatter Plots of Energy Use and Ambient Temperature 

Scatter Plots of Energy Use and Ambient Temperature are used to illustrate the disaggregation 

of weather-dependent and independent energy use; however, the usefulness of this approach 

in calibration is unclear. These plots can certainly be used to indicate a relationship between 

energy use and outdoor air temperature, but their usefulness in calibration is questionable. An 

example of a scatter plot is given in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of x-y scatter plots from Haberl, Sparks and Culp (1996) 

Diurnal Time Series Plots of Energy Use with Hour of Day 

Diurnal Time Series Plots of Energy Use with Hour of Day can also be used to disaggregate 

energy use between occupied and unoccupied hours.  

Advanced Visualisation Techniques 

This term is reproduced from Reddy, although as already stated, with the advance in computer 

software and hardware, techniques which might be considered advanced in 2006 in some 

cases are routine at the time of writing.  
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Three-dimensional plots made from sequences of graphs can be used to illustrate an entire 

simulation, with each day represented by one graph and all graphs laid out to include a whole 

year of data (Christiansen, 1984). Glaser and Ubbelohde (2001) suggest the use of 

tessellations to describe four dimensional plots. Haberl, Kissock, Belur and Sparks (1993) 

advise that animated contour plots can provide excellent diagnostics. 

This class also includes the augmentation of the processes above with stochastic information, 

such as standard deviation with Box-Whisker plots. 

Raftery and Keane (2011) used carpet-contour plots to visualise a range of loads over Month 

of the Year (x-axis) and Hour of the Day (y-axis) as shown in Figure 3 and plots were used to 

illustrate electricity consumption over the Day of the Week (x-axis) and Hour of the Day (y-

axis). The study uses colour to show a striking difference between energy use in different 

applications, compared with more historical Bow-Whisker Mean plots. Again, these types of 

plots provide a colourful indication of the relationship between parameters, but it is not clear 

that they are useful in the improvement of calibration techniques. 

 

Figure 3. Example of a carpet-contour plot. Raftery and Keane (2011). 

2.6.4.3 Calibration using intrusive blink tests 

Data gathered from data loggers can be made more useful by the use of Blink tests (Soebarto 

and Degelman, 1996). Data loggers distributed through a building were used to gather data 

over a weekend. The tests consist of several periods when the electrical loads are turned on 
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and then off again, after a relatively short period – in this case around 5 minutes, to allow the 

components of electrical loads to be separately identified – or disaggregated.  

This method was applied to a four-storey Engineering Centre at College Station in Texas and 

used to identify lighting and receptacle loads by floor. The measured loads were compared to 

survey estimates and shown to improve accuracy by between 0.7% and 5.0%; the results were 

then used to calibrate an ENER-WIN energy model.  

2.6.4.4 Calibration using short term energy monitoring: PSTAR and STEM  

Primary and Secondary Term Analysis and Reconciliation (PSTAR) is a method for modelling 

a building using simplified processes (Subbarao, 1988) in software. Data from a building in 

use was used to construct a macrodynamic simulation of heat flows, which was designed to 

be calibrated using Short Term Energy Monitoring (STEM). 

Koran, Kaplan and Steele (Koran, Kaplan and Steele, 1992) compared the calibration of a 

DOE-2 model using STEM with a process they called Monthly Consumption Tuning (MCT), 

which was essentially the reiteration of model inputs until the desired tolerance is achieved. In 

their STEM test, 14 parameters were monitored over a three-day period and applied to the 

DOE-2 model. The model was tuned heuristically and the results were then extrapolated over 

a year. 

In a study of Symphony Towers, a 49,000 m2 34-storey office tower in San Diego (Lunneberg, 

1999) data loggers were used to collect lighting and small power loads for ten days. Notably, 

while the formulae for the calculation of NMBE and CVRMSE were not included, the results 

appear to be within the tolerances of ASHRAE 14 (which would only be published three years 

later). 

The National Renewable Energy Laboratory (NREL) developed the STEM process into a 

three-day test sequence and applied the process to compare the performance of two test cells 

(Balcomb,  Hancock, Barker, and Subbarao, 2000; Judkoff, Balcomb, Subbarao, Barker and 

Hancock, E. (2001). 

The PSTAR method was used to define terms for an EnergyPlusTM simulation of a house in 

Montecorto in Spain (Carrillo, Dominguez and Cejudo, 2009). The model was then calibrated 

using data from a variety of Hobo brand data loggers employed in STEM tests. The 

researchers found the STEM-PSTAR process highly dependent on the user and that the 

typical experimental data “cannot sufficiently minimise the interactions between solar gains, 

mas and heat loss”. Carrillo, Dominguez and Cejudo cite Balcomb, Burch and Subbarao, 

(1993) for a full description of the process. Reddy (2006) describes the process as a period 

over which the temperature is controlled to be constant and another during which the 

temperature is allowed to float. 
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Manke and Hittle (1996), cited in Reddy (2006), applied the STEM process to a BLAST 

simulation of two buildings (refer to Section 4.4 for information on BLAST) using STEM tests 

applied over five days. 

An attempt has been made to provide several functions in one tool, including modelling and 

calibration using short term monitoring, by way of a Workbench programmed in MatlabTM 

(Dybskiy and Richman, 2012). The Workbench provides a graphical user interface to allow a 

user to model the building and import short-term data from data loggers. The tool was 

demonstrated on a 250 m2 1900s Toronto residence. 

2.6.4.5 Calibration using macro parameter estimation 

Reddy (2006) cites Reddy et al., (1999) as examples of Macro Parameter Estimation Methods.  

The system was developed to provide a non-intrusive model of a building to diagnose 

excessive energy consumption. The process is based on a simplified building energy model. 

Linear regression is used on monitored data to determine appropriate values for the 

parameters used in the model. 

2.6.4.6 Calibration using signature analysis 

In Signature Analysis (Wei, Liu and Claridge, 1998; Liu, Song, Wei and Claridge, 2004; Liu 

and Liu, 2011) the original assumptions in a model are substituted with the measured values, 

which is broken into two stages. The first stage uses scatter plots to compare measured and 

simulated energy consumption against outdoor air temperature to examine the weather 

dependence of the model. The second examines the dependence on time schedules by 

plotting measured and simulated energy consumption against time of day. In both cases, 

residuals – the difference between calculated and simulated results, are added to the plots. 

The characteristics of the residuals are called signatures, which reflect the impact of the input 

parameter under examination. Examples of characteristic signatures are given in Figure 4.The 

graphs show typical divergence between simulated and measured chilled water (CHW) and 

heating water (HW) use at various out door dry bulb temperatures. 
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Figure 4. Example of signature plots from Liu and Liu (2011) 

Liu, Song, Wei and Claridge (2004) demonstrated the Energy Signature method using a two 

zone simplified model of a 10,500 m2 university teaching building in College Station in Texas. 

They argue that, while a more complex model using a greater number of inputs may be 

capable of producing more results that have closer agreement with measured data, the impact 

of fewer inputs may be more readily detected in a simplified model. They also contend these 

results may be sufficient for the purposes for which they are intended. The authors list only 14 

Major Simulation Inputs from which their initial model is constructed.  

The model in the case study consisted of only a perimeter zone and a central zone with one 

notional Variable Air Volume (VAV) air handler serving each zone. While the building modelled 

has a high degree of symmetry, this is a highly-simplified model which would not (for example) 

pass the requirements of ASHRAE 90.1 (2012), which requires that each floor be served by a 

separate air handler. Nonetheless, this study does demonstrate an ability to produce an 

accurate calibrated model. 

An Automated Building Commissioning Analysis Tool (ABCAT) was developed to assist the 

commissioning and diagnosis of building faults (Bynum, Lin, and Claridge, 2009). The tool was 

tested on six retrospective and nine live buildings around the world. The report builds on the 

significant work carried out at Texas A&M, which has achieved substantial savings in energy 

consumption as a result. The process starts with the construction of a building energy model 

which is calibrated based on data from the building soon after the end of commissioning. Then, 

simulated and actual data are passed to an analysis routine. The building performance routine 

produces plots of performance and applies fault detection routines. The report does not detail 
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the calibration routine, but the case studies emphasis the use of signature plots for the 

identification of faults. 

A similar case study (Liu and Liu, 2011) demonstrated the use of the procedure on a 43-storey, 

70,000 m2 Office in Omaha, Nebraska. This study quotes NMBEhourly of 1% for cooling and 

0.6% for heating and CVRMSEhourly figures of 31% for cooling and 28% for heating. The 

authors argue that while these results are not excellent, they are fit for purpose i.e., useful. 

This process produces a calibrated model which is then applied to fault detection and 

diagnosis in the on-going operation of the building. The savings claimed would have greatly 

outweighed the cost of undertaking the study.  

The process is highly dependent on the skill of the system modellers and calibrators to 

correlate the signature with the error in the model. Also, the calibration process effectively only 

calibrates a few factors against weather and time schedules. However, ABCAT does support 

a theme of fitness for purpose which can be combined with more sophisticated automatic 

processes to compensate for the reliance on heuristic expertise.  

2.6.4.7 Calibration using day-typing and disaggregation 

Day-typing can be used to describe a process whereby either 24 hours of energy use is 

categorised into a number of classifications that exhibit similar patterns, or “characterize the 

behaviour of the system’s response” (Reddy, 2006). In this context it also includes the 

disaggregation (also see Blink Tests above) of energy into types of consumption.  

Reddy (2006) refers to the “widely used scheme” of breaking loads down into “weekday, 

weekend and holidays”. Significantly, this system is used by the National Calculation 

Methodology (DCLG, 2013), which was used as the starting point for the estimation of building 

energy use for the Priority Schools Building Programme. However, Reddy goes on to say that 

finer groupings may be required to distinguish Mondays and Fridays from the remaining days 

of the week. 

Dhar, Reddy and Claridge (1998) use Fourier series to approximate weather data and weather 

dependent data. This process is an interesting theoretical application, but it is unclear how the 

resulting transfer function could then be applied to any of the typical problems that building 

energy modelling calibration is used to solve. 

Hadley (1993) uses statistical techniques to conclude that system operating schedules can be 

grouped as:  

 heating only; 

 no heating or cooling; 
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 cooling only. 

Akbari and Konopacki (1998) proposed a process that they called the “End-Use 

Disaggregation Algorithm” to assign energy use to hourly load profiles for air conditioning, 

lighting fans and pumps and miscellaneous loads. The method is demonstrated on a United 

States of America Department of Defence site. The process consists of three steps: 

 Regression analysis of hourly load for a whole building against external temperature. The 

load is divided into a temperature-dependant and a temperature independent load.  

 A building simulation provides a ratio of the loads which make up the temperature-

dependent load. The temperature-dependant load is divided according to this ratio. 

 Estimated end uses are adjusted so that they reflect the figures obtained from the 

subdivided regression data. 

2.6.5 Non-heuristic methods for calibrating building energy models 

2.6.5.1 Sensitivity analysis in energy model calibration 

Sensitivity analysis is given a separate heading here because it has implications for many 

parts of a calibration process.  

The rate of error increases with the amount of data applied to a model, whereas the increasing 

capability of a model to predict the energy performance is subject to a law of diminishing 

returns (Chapman, 1991). Chapman argues that the accuracy of computer models is limited 

by the error rate during the input of data rather than the capability of the underlying model. His 

assertion implies that building practical building energy models needs to involve the selection 

of a suitable number of parameters, which could be done by starting a new modelling process 

with a few parameters and building until results indicate a point of diminished marginal utility. 

Alternatively, this could be done by starting with an accepted modelling process and deleting 

(or holding constant) parameters which have a lesser impact.  

In commercial building services practice, simulation is commonly carried out on relatively few 

software applications. It was thought more practical to choose to reduce non-influential 

parameters in an existing application, than to build up a new building parametric. Sensitivity 

analysis was chosen as a means of determining which parameters were influential and an 

experiment was carried out to determine those parameters. 

Palomo, Marco and Madsen (1991) divide sensitivity with regard to building energy models 

into: 
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 The sensitivity of the model to the various parameters from which the model is constructed 

allows inputs to be categorised according to their impact on the result. 

 The collective uncertainty in the output due to all the uncertainties on the inputs allows the 

overall resolution to be defined. 

The former (inputs categorised according to their impact) is used later in this thesis. 

In an often-cited study, Lomas and Eppel (1992) divide sensitivity analysis into three 

techniques. 

 Differential Sensitivity Analysis (DSA) measures the relative change in the output of a 

simulation due to a change in the input value of a parameter. Since the effect of each 

parameter is determined in sequence, this is sometimes called One At a Time (OAT) 

sensitivity analysis. There is a concern with DSA that the sensitivity to a variable might be 

strongly related to the combination of points chosen as the base case, i.e. that the results 

are only valid locally and miss correlations. 

 Monte Carlo Analysis (MCA) is used to estimate the uncertainty in the results of a 

simulation using random combinations of values for parameters to evaluate the distribution 

of results from simulations. 

 Stochastic Sensitivity Analysis (SSA) is described as similar to DSA in that the aim is to 

determine the effect of each individual parameter. The technique differs in that all 

parameters are varied simultaneously at each time step in the calculation.  

Both DSA and MCA are applied in the chapter on sensitivity analysis. 

Lomas and Eppel (1992) also list potential benefits of sensitivity analysis as: 

(a) “To identify the inputs to which the outputs are particularly sensitive and those to which 

they are insensitive.” 

(b) “To identify inputs to which the programs are sensitive, but for which adequate data is 

not yet available so field experiments can be suggested to produce more accurate 

results.” 

(c) “To identify features of a building to which a particular output, e.g. energy 

consumption, is particularly sensitive.” 

(d) “To identify parameters which should be removed from the control of the program user 

because they cannot (except perhaps be very skilled users) be assigned sufficiently 

accurate values.” 
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(e) “The resolution of the programs (i.e. the maximum accuracy) which can be expected 

in absolute predictions.” 

(f) “The probability distribution of the results and hence a knowledge of, for example, the 

likelihood that the energy use will not exceed a particular value.” 

(g) “The significance of uncertainties due to computational inputs (such as time-step and 

node placement).”  

Macdonald and Strachan (2001) discuss DSA and MCA for the analysis of uncertainty in the 

outputs of models.  

Palomo Del Barrio and Guyon (2003) classify the DSA as a deterministic process and MCA 

as a stochastic process. The authors were interested in applying sensitivity analysis to 

diagnose differences between the predictions of simulations of the behaviour of buildings. 

They also consider the heuristic bounding of input parameters, such that the ranges of input 

parameters are limited to realistic ranges. 

Westphal and Lamberts (2005) employed DSA to determine the input variables which affected 

electrical consumption in an EnergyPlusTM model. The method was demonstrated on a 26,000 

m2 public office in Florianopolis, Brazil. Once selected, the most influential parameters were 

heuristically optimised.  

Sun and Reddy (2005) proposed a method to establish a firm mathematical basis for the 

calibration of models. Summarising their method: 

 Sensitivity analysis is first used to identify the parameters which most strongly influence 

the results. 

 Identifiability analysis is used to find out how many parameters should be used in the 

optimisation process and which are the most promising. 

 Numerical optimisation is used to find the best values for those parameters 

 Uncertainty analysis is used to evaluate the effect of variation of values for the input 

parameters. 

The deterministic and stochastic aspects of the process will be discussed in subsequent 

sections in this thesis; however, it is noteworthy that Sun and Reddy (2005) define the 

sensitivity in terms of a sensitivity coefficient vector. 

O’Neill, Eisenhower, Yuan and Bailey (2011) carried out an extensive sensitivity analysis of 

1009 parameters used to define EnergyPlusTM and TRNSYS models of a 6,400m2 drill hall at 

the US Great Lakes Naval Station. The parameters were varied 20% from their nominal value. 
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In some cases, the ranges were limited because the values were fractional and the range 

would put the input values outside the maximum of 1or minimum of 0. Five thousand simulation 

runs were used to analyse their impact using a quasi-random approach on a 184-core Linux 

cluster. The study does not describe the tuning process used to refine the chosen parameters. 

The process of varying the input parameters by 20% has inherent ambiguity. The input range 

would be different if the temperatures were defined in Celsius, Fahrenheit or Kelvin. However, 

the value of 20% is also arbitrary. Final confirmation of usefulness can only be determined by 

testing. If a sensitivity analysis based on 20% variation of a value recorded in Celsius is found 

to yield a calibration process that achieves a better CVRMSE than one that uses Kelvin, then 

it is appropriate to define sensitivity on that basis. However, in the short term, this is a 

refinement in a particular process. A consensus on the appropriate process is far from agreed. 

In a related study (Eisenhower, O’Neill, Fonoberov and Mezic, 2011), the effects of the input 

parameters were examined in detail. The impact of the number of parameters analysed and 

the runs conducted was plotted against the resulting accuracy of the model. The model 

converged to within acceptable error after 5,000 samples. 

Since models are particular to a building, the most influential input parameters in one model 

may not be the most influential set to another. Xu and Freihaut (2012) carried out sensitivity 

analyses to determine the ten most influential variables for an EnergyPlusTM model in 16 cities 

representing a wide range of climate zones across the USA. The study found that some 

parameters were common to all zones, while others were highly dependent on location.  

Nguyen and Reiter (2015) compared the application of nine sensitivity analysis techniques to 

building energy models. The methods are grouped below according to the author’s method. 

Regression-based sensitivity indices: 

 PEAR (Pearson Product Moment Correlation Coefficient) is the usual linear correlation 

between variables; 

 SRC (Standardised Regression Coefficient) gives a value for the strength of the 

relationship between variables; 

 PCC (Partial Correlation Coefficient) attempts to isolate out effects between variables. 

Regression-based sensitivity indices using rank transformation techniques: 

 SPEA (Spearman Coefficient);  

 SRRC (Standardised Rank Regression Coefficient) is used where the value of R2 is low 

in SRC; 

 PRCC (Partial Rank Correlation Coefficients).  



53 

Variance-based sensitivity methods: 

 The Sobol index;  

 FAST (Fourier Amplitude Sensitivity Test);  

Both the Sobol and FAST methods calculate two levels of sensitivity; the first is the sensitivity 

to the main effect and the second includes interactions with other variables.  

Screening-based methods: 

 The Morris Method. The average of partial derivatives are calculated for evenly-spaced 

points and used to estimate the main effect of one parameter on another and to examine 

the interaction between parameters. 

The authors found that PEAR, PCC and SRC can be used in the sensitivity analysis of building 

energy models; however the authors note that the analysis was only carried out on a limited 

number of parameters (six). 

2.6.5.2 Monte Carlo methods for calibrating building energy models 

The Monte Carlo method works by analysing results based on randomly generated 

combinations of parameters. It is a simple method to employ, but relies on large numbers of 

simulations which simply guess the answer and then test to see if the guess was correct.  

Monte Carlo analysis allows the uncertainties in the inputs to be translated via the model to 

the results. The uncertainty in each input is defined in terms of a probability distribution over a 

range of potential values for the input. Where the input distribution is unknown, a Gaussian 

(normal) distribution may be assumed. Simulations are carried out with the random variations 

of the input parameters which overall follow the distribution of values for the inputs.  

If the number of simulations is large, it is assumed that the output will have a Gaussian 

distribution, irrespective of the input distributions. In practice, large means between 60 and 80 

simulations (Lomas and Eppel, 1992, cited in Macdonald and Strachen, 2001). The output 

distribution can then be expressed in stochastic terms, which define the uncertainty of the 

results. 

Haarhoff and Mathews (2006) used the Monte Carlo technique to model the distribution of 

temperatures inside a building using approximate distributions for the inputs for dry bulb 

temperature and radiant gain. 

Coakley, Raftery, Molly, and White (2011) applied Latin Hypercube Monte Carlo (LHMC) 

analysis to an evidence-based simulation. Raftery builds on the argument in his thesis (2011) 
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that models should only be built using information taken in preference from a carefully 

controlled hierarchy of sources. In the case study, 100,000 EnergyPlusTM simulations of the 

Galway Nursing Library were executed. Latin hypercubes are a method of constraining the 

search of the parameter space to ensure that the search is done efficiently.  

The approach above has direct implications where extensive data is available from buildings 

in use. For example, if extensive data is available for the small power use in laboratory spaces 

in schools, then the input could be expressed not only as a nominal value, but as a probability 

distribution which reflects the uncertainty associated with that parameter. Then by applying a 

Monte Carlo technique this uncertainty can be propagated through the building energy model 

into the distribution of results from the simulations. 

2.6.5.3 Monte Carlo Markov chains 

Monte Carlo Markov Chains (MCMC) are a series of searches that depend only on the data 

obtained in the most recent search. Previous results are forgotten from the search. 

An initial guess is followed by evaluation of the results; then a guess is made in the vicinity of 

the previous guess. At each stage of the search the output of some analysis is quantified and 

recorded.  

MCMCs are useful for exploring the parameter space but may lead to local minima because 

the algorithms are not designed to rigorously search the whole parameter space. 

The advantage of MCMC is that as they are carrying out simulations and obtaining results the 

results can be collected and used to make determinations about the statistics of the parameter 

space. This makes them attractive for use where optimisation and calibration are treated 

stochastically as in Heo, Augenbroe and Chaudhary (2011) which is discussed in more detail 

in Section 2.6.7: Stochastic methods. 

2.6.5.4 Evolutionary Algorithms 

Evolutionary Algorithms make use of historical data in the development of the solution.  

Typically, a set of simulations, called a generation are carried out based on a random set of 

inputs. The results of the simulations are examined and values that are more successful are 

stored. Another random set is generated, but this time, vectors representing the more 

favourable of the previous results are bred back into the new generation. The algorithm for 

how these vectors are generated and employed defines the evolutionary algorithm.  

It is worth noting that as the random search for the best set on input variables becomes more 

sophisticated, the selection of the “best” set on input variables becomes replaced with a search 
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for values for hyper-parameters, which define how the algorithms operate rather than act as a 

solution to the problem under examination (Worden, Dervilis, Sator and Capener, 2018).  

2.6.5.5 GenOpt 

Whereas evolutionary algorithms are a method for finding optimal solutions, GenOpt (Wetter, 

2000; 2001) is a genetic optimisation tool which works with a range of text input simulation 

programs like EnergyPlusTM, DOE-2 and TRNSYS. 

GenOpt minimises the input parameters of a system by using external software to evaluate 

the cost of the system. In the case of building energy modelling, it allows the input parameters 

that define a building to be optimised to find the closest deterministic fit to the operating data.  

GenOpt also provides tools for monitoring the convergence of the model and allows the 

addition of user-defined algorithms. 

Wetter and Wright (2004) compared the results of Hooke-Jeeves, Particle Swarm Optimisation 

(PSO), Armijo gradient, Nelder-Meade simple and co-ordinate search algorithms, together 

with hybrid systems containing features of more than one algorithm. The authors found that 

some optimisation algorithms that require smoothness, fail far from the solution. The most 

effective algorithm was a hybrid particle swarm and Hooke-Jeeves algorithm, however simple 

genetic algorithm could be used where a small loss in performance can be tolerated in return 

for fewer simulations.   

2.6.5.6 Differential Evolution 

The differential evolution algorithm (Storn and Price, 1997) was shown to provide a fast 

method for minimising nonlinear and non-differentiable continuous space functions.  

Differential evolution was extended to Self-Adaptive Differential Algorithm (SADE) for 

application to the identification of the automotive hydraulic engine mount model parameters. 

(Kyprianou, et al, 2000). 

An overview of the differential evolution algorithm is given in Figure 5.  

A population is randomly selected and the cost functions are evaluated for each set of values 

(or vectors). Two randomly-selected vectors are combined to form a scaled difference vector. 

The scaled difference vector is mutated by multiplying by a scaling factor and adding the result 

to a third randomly-selected vector. A series of experiments are carried out to obtain Uniform 

Crossover between the mutated scaled difference and target vectors which produce a trial 

vector. The trial vector is assessed against the target vector by a simulation. The target 

vector/trial vector process is repeated until a new population is produced to form the next 

generation and the algorithm repeats until a whole generation of suitable vectors is produced.  
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As noted in the introduction to Section 3.5.4, while the differential algorithm automates an 

efficient search for values for parameters, the search is somewhat replaced by a search for 

hyper-parameters which define the efficiency of the differential algorithm search. The hyper-

parameters in differential evolution include: 

 population size; 

 number of generations to run; 

 the scaling factor; 

 cross-over probability. 

Self-adaptive differential evolution was developed to establish optimum values for these hyper-

parameters in the course of the algorithm.  

 

Figure 5. Schematic of the differential evolution algorithm. (Worden, Dervilis, Sartor and 

Capener, 2018) 
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To make it self-adaptive, the differential evolution algorithm was modified by introducing a 

learning period into the algorithm. During the learning period, a set of strategy probabilities are 

developed which define the likelihood that a mutation would be introduced into the trial vector. 

At the end of the generation, the number of successful and unsuccessful vectors are used to 

update the strategy probabilities.  

At the end of the learning period, the strategy probabilities are updated every generation using 

the previous generations.  

The substitution of one set of hyper-parameters (population size, scaling factor) with another 

(learning period, number of previous generations) might appear self-defeating but results bear 

out the efficiency of the process.   

2.6.6 Deterministic methods for calibrating building energy models 

Deterministic methods focus on an automated process for mathematically optimising a solution 

for a given data set. The problem of minimising the error between the predictions of the energy 

model and the energy consumption of a real building, is framed in mathematical terms. A cost 

or objective function is assigned to evaluate the error and the input parameters of the energy 

model are adjusted to minimise this cost function. 

The origins of automatic calibration came from work in the hydrological science (Sorooshian 

et al., 1980, 1981, 1983, 1993 cited; in Lee and Claridge, 2002). Lee and Claridge (2002) 

optimised an objective function using a set of five parameters using a simplified model based 

on ASHRAE’s simplified Energy Analysis Procedure (Knebel, 1983). The objective function 

used is given in Equation 3. The model was then calibrated against results to which white 

noise had been added. The optimisation was carried out using commercial optimisation 

programme called Solver. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

= 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
×

∑ (𝐶𝐻𝑊  − 𝐶𝐻𝑊 )

(𝑛 − 1)
 +

∑ (𝐻𝑊  − 𝐻𝑊 )

(𝑛 − 1)
 

(3) 

where:  

 𝑛 is the number of data points or periods in the baseline model; 

 𝑖 is the ith dependant variable of some function of the independent variables; 

 𝐶𝐻𝑊   is the simulated temperature of the chilled water; 

 𝐶𝐻𝑊  is the measured temperature of the chilled water; 
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 𝐻𝑊   is the simulated temperature of the chilled water; 

 𝐻𝑊  is the measured temperature of the chilled water; 

The process is computationally expensive with the number of simulations typically running into 

several thousands. To overcome this, a sensitivity analysis may be carried out to cull the 

number of input parameters from around a few thousand down to a few tens (Sun and Reddy, 

2006). 

Nassif, Moujaes and Zaheeruddin (2008) used a genetic algorithm to optimise Heating 

Ventilation and Air Conditioning (HVAC) component models for system diagnostics. Data were 

obtained from an Energy Management and Control System (ECMS) and the calibrated models 

were intended to be reincorporated in the ECMS.  

Munshi, Tuhus-Dubrow, An and Coffey (2012) used GenOpt (Wetter, 2009) to calibrate a 

DOE2 model of the Toledo Zoo Aquarium. The authors adopted a heuristic approach to the 

selection of the initial parameters for optimisation and performed an initial grid search. The 

grid search consisted of between 6 and 10 steps within a large initial range of the selected 

parameters. The simulation was then optimised used GenOpt; however, this did not result in 

an acceptable level of accuracy, so four more parameters were added and the process 

repeated.  

The Vienna Institute of Technology building was used to explore the optimisation of an 

EnergyPlusTM model (Tahmasebi and Mahdavi, 2012; Tahmasebi, Zach, Schuss and Mahdavi, 

2012). The model was initially constructed using DesignBuilderTM and optimised to minimise 

the “cost function” given in (4) below, which used was evaluated using the EnergyPlusTM 

runtime function (DOE, 2011). 

𝑓 =
1

2
× 𝐶𝑉𝑅𝑀𝑆𝐸 +

1

2
× (1 − 𝑅 ) ×

𝐶𝑉𝑅𝑀𝑆𝐸

(1 − 𝑅 )
 

(4) 

where 𝑅  is the coefficient of determination defined in Tahmasebi and Mahdavi (2012) as: 

𝑅 =

⎝

⎛
𝑛 ∑ 𝑚 𝑠 − ∑ 𝑚 ∑ 𝑠

𝑛 ∑ 𝑚 − (∑ 𝑚 ) × (𝑛 ∑ 𝑠 − (∑ 𝑠 ) ×)
⎠

⎞  

(5) 

and:  
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 The subscript 𝑖𝑛𝑖 is used to denote the initial value; 

 𝑚  is the 𝑖 th measured value; 

 𝑛 is the total number of time steps; 

 𝑠  is the 𝑖 th simulated value. 

A potential failing of this process is that the parameters become mathematical abstractions, 

free to be manipulated without relevance to the real parameters they represent. While the 

results may compensate for errors between the capability of the model and the performance 

of the building, deviations could lead to a lack of credibility for the results. For example, small 

power usage often has a significant impact on overall energy consumption and can be readily 

metered. If a parameter for small power were to be optimised, then it is feasible that the 

theoretical value might fall outside the tolerances of actual meter readings. While the calibrated 

model might be accurate, the model would not be useful because it could not then be used as 

evidence to feed back the small power usage to building occupants. The previous authors 

attempt to minimise this effect either by heuristically setting bounds or by applying algorithms 

which limit the range of the inputs. 

There are a number of processes for searching the parameter space which include sensitivity 

analysis, Monte Carlo, MCMC and evolutionary algorithms discussed previously. 

2.6.7 Stochastic methods for calibrating building energy models 

Stochastic models seek to include the statistical distributions of input parameters in the model 

and reflect the influence of the uncertainties in the process in the results.  

A Monte Carlo process can be used in both deterministic and stochastic approaches. In the 

deterministic approach, a random selection of values is used to try to determine the most 

appropriate inputs into a model. The input selection might be assumed to have any sort of 

distribution including a Gaussian. In a stochastic approach, the modeller is not only seeking to 

find the most appropriate value for the parameter, they are also seeking to refine the stochastic 

values that define the input distribution.  

For example, a modeller carrying out a deterministic approach might assume a Gaussian 

distribution for small power with a mean of 20 W/m2 and a standard deviation of 5 W/m2. After 

carrying out a Monte Carlo search over that distribution, they might discover that a value of 17 

W/m2 yields the lowest value for the CVRMSEhourly between the simulated and measured 

hourly energy consumption. This value might then be able to be applied in the later design of 

a similar building.  

In a stochastic approach, the modeller would be seeking to refine the uncertainty associated 

with the input distribution. As the search proceeds, the modeller might also be seeking to refine 
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the value for the standard deviation of the input parameter. In the case of the example above, 

the modeller might not only find that the value that yields the lowest CVRMSEhourly is 17 W/m2 

but they might also be able to reveal that the input distribution into a Monte Carlo search that 

yields the lowest value of CVRMSEhourly also has a standard deviation of 2 W/m2. This has the 

added benefit that the optimisation is able to provide additional information about the operation 

of the building. In this hypothetical case, there would be a 67% confidence interval that the 

average small power load (as defined in the building energy model) is between 15 and 19 

W/m2.  

In a subsequent hypothetical modelling exercise, the model might be able to propagate this 

uncertainty through the model and provide valuable confidence information about the 

predicted operation of the building. Alternatively, this information might be able to be used to 

help diagnose problems with the energy performance of the building. 

Types of uncertainties are summarised (Heo, Augenbroe and Chaudhary, 2011) as due to: 

 The deviations between the input parameters used in the design model and the input 

parameters needed to reflect actual operation. 

 The deviations between the readings of instruments and the actual measures which are 

required to represent the actual building  

 The deviations inherent in the modelling process; that is, the predictions of a model with 

perfect inputs and the real transfer function of the building. 

Stochastic processes can include the application of Bayes’ Rule (Kennedy and O'Hagan. 

2001) and provide for the propagation of uncertainty, notably by using Monte Carlo techniques. 

Kennedy and O’Hagan (2001) presented a Bayesian calibration technique to the Royal 

Statistical Society. The technique was used to calibrate a hydrological model and a model of 

the dispersion of radionuclides. The paper provides a firm statistical foundation which is cited 

in later works. The paper recommends Markov Chain sampling as the “obvious approach”. 

Higdon et al. (2004) noted that there is a limitation on the number of simulations which can be 

carried out and that this also represents a source of uncertainty. A Bayesian process was 

applied to models of a charged particle accelerator and a spot welding process and again used 

Markov Chain Monte Carlo sampling.  

Having optimised the calibration process deterministically, uncertainty has been determined 

for the calibrated model in a separate process using Latin Hypercube Monte Carlo sampling 

(Sun and Reddy, 2006). 
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Tarlow, Peterman, Benedict, Schwegler and Trigg (2009) criticise the IPMVP methods (EVO, 

2012) (see Section 2.4.1) described as requiring: 

“special equipment and manual effort, making the calibration of a large number of 

buildings expensive and time consuming.” 

Instead, the authors constructed a Bayesian network consisting of a graphical structure of 

nodes with a probability distribution at each node. The relationships between the nodes are 

mathematical and then comprise the overall model. The authors also note that one of the 

strengths of the Bayesian approach is that is can be used without values for some parameters 

when those variables are not observed. This leaves the model open to criticism because the 

values of the parameters may not be realistic but this is neglected because the authors are 

willing to sacrifice some accuracy for speed of simulation and because the object of the 

exercise is prediction not parameter estimation. The authors argue that the main strength of 

this technique is that it is massively scalable and therefore applicable to the huge portfolio of 

buildings operated by The Walt Disney Company and similar organisations. 

Heo, Augenbroe and Choudhary (2012) used a Bayesian approach to calibration which 

allowed the uncertainty to be quantified as part of the calibration process. The results were 

compared with a deterministic process and found to be slightly more accurate. The process is 

described in her PhD thesis (Heo, 2011) and published article (Heo, Chaudhary and 

Augenbroe, 2012). A case study was based on the five-storey University of Cambridge Faculty 

of English.  

In the Bayesian approach, the calibration parameters are assigned probability distributions 

called prior distributions or priors. The results can be compared against the calibration data 

and used to formulate probability distributions for the input parameters, which are known as 

posterior distributions. The posterior distributions contain information about the implied 

uncertainty of the input data. In their study, triangular input (prior) distributions were assumed 

for: 

 Intercept C for window opening; this is a constant in a regression formula modelling the 

relationship between outdoor temperature and the likelihood that a window will be opened; 

 Indoor temperature during heating; 

 Infiltration rate; 

 Discharge coefficient through single sided open windows. 

The distributions were transformed (into posterior distributions) and the results were overlaid 

onto the prior distributions. The resulting graphs in Figure 6 show compelling evidence of the 

power of this technique, not only to calibrate a model but also to also quantify the uncertainty 

in the inputs and in the calibrated model.  
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Figure 6. Example of superposition of Prior and posterior distributions for four input 

parameters. (Heo, Augenbroe and Choudhary, 2011) 

Lee, Kim and Park (2012) applied the delayed rejection adaptive metropolis (DRAM) method 

of Markov chain Monte Carlo (MCMC) in a case study. The building was a five-storey 6,125m2 

office located in Seoul Korea. The study compares the prior and posterior distributions of 28 

input parameters by tabulating their mean and standard deviation.  

2.6.8 Meta-modelling for calibrating models 

Meta-models are another approach to modelling, optimisation and calibration. By building 

another model, based on another (more sophisticated) model and a calibration process, a 

second layer of abstraction can be produced which provides the functionality of a complex 

model but without the computational overhead. By using a simpler meta-model, simulations 

can be run much more quickly, searching a larger number of parameters to potentially reveal 

a more accurate set of values for the input parameters and a better overall CVRMSE. The 

problem with this approach is that another calibration is required to ensure the meta-model 

aligns with the primary model.  

Eisenhower et al. (2012) used an EnergyPlusTM model to produce a meta-model which could 

run more quickly. While the authors describe the direct comparison of computational cost as 
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“challenging”, the number of computations for an EnergyPlusTM model was reduced by a factor 

of 200.  

Manfren and Moshksar (2013) used a supervised learning algorithm to produce a meta-model 

which also included uncertainty analysis. 

2.6.9 Conclusions from literature review into building energy model calibration 

The requirement to apply optimisation in design models and to the calibration of early stage 

design models was a driver for this Ph.D.  

There is a range of techniques available which are able to calibrate models within the 

requirements set out in ASHRAE 14. 

The main processes are heuristic, deterministic or stochastic. 

 Traditional heuristic processes rely on site data which is time consuming and therefore 

would be expensive in a commercial environment. 

 Deterministic and stochastic calibration processes are heavily dependent on 

computational capacity. 

 Deterministic methods may produce well-calibrated models but because the optimisation 

is divorced from the details in the operation of the building, the process may overcorrect 

input parameters to compensate for errors in the modelling software. This could lead to 

unrealistic estimates for input parameters. 

There have been a number of studies which have identified important parameters in building 

energy models but there is no universal hierarchy of input parameters. Furthermore, one study 

has demonstrated that the importance of input parameters changes according to the location 

of the building being modelled. This means that a sensitivity analysis is required for each model 

to assess the relative impact of each input parameter for that model in that location.  

The key knowledge gaps are that: 

 There is a clear lack of case studies that demonstrate the application of optimisation 

in early stage design. 

 There are no methods for calibrating building energy models that don’t require 

extensive input from expensive specialists. 

Therefore, there is a significant opportunity to apply optimisation processes to design and 

calibration. 
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2.6.10 Review of computational methods in building energy modelling 

This chapter contains an overview of the computational methods used during this thesis and 

the professional background to this Ph.D. 

These investigations have been guided, and in many cases restricted by the current state of 

information technology. The processes of optimisation and gathering data for calibration are 

heavily reliant on modern computing technology. The process of carrying out the research 

detailed in this thesis has required the learning of transferrable skills in information technology 

and computing science.  

These fields have their own jargon. This chapter on the technology and terminology of the 

modern computing environment has been included to: 

 Demonstrate the breadth of work that has been undertaken; 

 Show transferable skills and understanding that have been gained by the author;  

 Assist readers who may have a less comprehensive understanding of the modern 

computing. 

An overview of the common operating systems and softwares that were used in this research 

are contained in Appendix 1. Software more specific to the results of this research are 

described in the following sections.  

2.6.10.1 Microsoft SQL Server 

Microsoft Structured Query Language (SQL) ServerTM is a relational database software that 

enables the storage, organisation and retrieving of large volumes of data. Microsoft makes a 

scaled down version called Microsoft SQL Server ExpressTM which limits the size of the 

database files to less than 1GB. The databases can be searched and data can be retrieved 

by Microsoft’s tool Microsoft SQL Server Management StudioTM. Microsoft SQL Management 

Studio is provided with Microsoft SQL Server Express 2012TM which was available free of 

charge.  

The version of SQL Server used was made up of the following components: 

 Microsoft SQL Server Management StudioTM   11.0.2100.60 

 Microsoft Data Access ComponentsTM (MDAC)  6.1.7601.17514 

 Microsoft MSXML      3.0 4.0 5.0 6.0  

 Microsoft Internet ExplorerTM    9.0.8112.16421 

 Microsoft .NET FrameworkTM    4.0.30319.17929 

 Operating System      6.1.7601 
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Reports can be generated using MS SQL Server ExpressTM. Queries are written in Transact 

Structured Query Language (T-SQL) which is Microsoft’s proprietary version of SQL. SQL 

allows database administrators to write scripts to retrieve and arrange the data in the format 

they specify. Initially, it was hoped that this would be useful when compiling input data to 

calibrate an EnergyPlusTM model; however, it was still useful in the examination of the contents 

of ILS1’s data files. 

2.6.10.2 EnergyPlusTM  

EnergyPlusTM is the United States Department of Energy (US DOE) flagship building energy 

simulation tool (US DOE, 2018). It was built from two existing tools: the United States Army’s 

tool Building Loads Analysis and System Thermodynamics (BLAST), and DOE-2 from the US 

DOE. It enables modelling of a building’s geometry, construction, Heating Ventilation and Air 

Conditioning (HAVC) systems, power and lighting systems, and the interaction of the building 

within the outdoor environment. 

EnergyPlusTM provides simultaneous solutions which integrate the various aspects of building 

operation. The simulation of the building is carried out using sub-hourly time steps which 

include iteration where necessary to resolve tightly-coupled energy balances. Heat balances 

allow for the modelling of both radiative and conductive heat flows and transient effects. Mass 

balances account for both air and moisture flow, including moisture adsorption and desorption. 

EnergyPlusTM allows for detailed modelling of loop-based HVAC systems including control 

strategies. It contains daylighting calculations including the modelling of daylight controls and 

luminaire control algorithms. An overview of the operation of EnergyPlusTM is given in Figure 

7. 
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Figure 7. EnergyPlusTM: The Big Picture. 

EnergyPlusTM only requires an Input Definition File (IDF) and EnergyPlusTM Weather (EPW) 

file to run. Both files are written in plain text. In the IDF, the code includes the facility to record 

comments on the definition, meaning and source of values that are used by EnergyPlusTM. 

EnergyPlusTM is well documented with a user manual that runs to over 2000 pages. It is also 

well tested in the literature. Other notable features include: 

 In 2014, the EnergyPlusTM source code was rewritten from FORTRAN into C++.  

 EnergyPlusTM is also open source. The source code is available for anyone to inspect or 

revise.  

 EnergyPlusTM is also available free of charge. 

EnergyPlusTM was intended to be provided as an energy analysis engine. The provision of the 

graphical user interfaces that would enable users to create and run EnergyPlusTM simulations 

was intentionally left to third-party developers. While EP-Launch is available for users who 

choose not to run EnergyPlusTM from a command line interface, it lacks the tools to help users 

define the geometry of a building which would be the main challenge for anyone trying to write 

an IDF using a text editor. 
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2.6.10.3 EP-Launch 

EP-Launch (US DOE, 2018) is a graphical user interface which is provided as a primary means 

of running EnergyPlusTM and recovering useful data from the program. In its simplest form, it 

only needs the IDF and applicable weather file. The EP-Launch graphical user interface 

showing the “Browse…” buttons that enable a user to select IDF and EPW files is shown in 

Figure 8. 

 

Figure 8. EP-Launch graphical user interface 

2.6.10.4 DesignBuilderTM 

DesignBuilderTM is a proprietary application which provides a third-party graphical interface to 

assist users to produce, run and analyse EnergyPlusTM simulations. It provides dropdown 

menus and tabs to enable users to specify the various parameters needed to produce a robust 

building energy model. It also has a series of tabs which provide facilities to render an image 

of the building, to run sizing tools based on EnergyPlusTM simulations, to run and analyse 

EnergyPlusTM simulations, and a basic computational fluid dynamics facility. 

DesignBuilderTM also has a feature to enable users to parameterise and solve multi-objective 

optimisation problems using the evolutionary algorithm: Non-dominated Sorting Genetic 

Algorithm 2 (NSGA2).  
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Typically, engineering problems involve a trade-off between constraints. Defining and finding 

the optimum solution to a design problem may not give decision-makers the tools they need. 

This can be improved by defining a curve representing a series of optimised solutions known 

as a Pareto Front. For example, in building design there is a trade-off between the cost of 

construction of a building and the energy efficiency. By creating a Pareto Front of pre-

optimised solutions, decision makers have the freedom to choose any level of expenditure that 

satisfies their sustainability criteria or vice versa.  

Deb, Pratap, Agarwal, and Meyarivan, (2002) proposed the use of NSGA2 in response to 

criticisms of multi-objective evolutionary algorithms for their computational complexity, non-

elitist approach and the need to specify a sharing parameter. In their paper they demonstrated 

that NSGA2 outperformed other multi objective evolutionary algorithms.  

The algorithm is summarised from DesignBuilderTM’s explanation (DesignBuilderTM Software, 

2018) as follows. 

 A random selection of values are assigned to a series of simulations which make up an 

initial population.  

 Design variants are sorted and analysed for Pareto efficiency. The design variants are 

termed chromosomes and ranked based on the distance between solutions.  

 The values which give the best solutions are returned to a mating pool 

 In the mating pool a series of algorithms compare and test the chromosomes. 

 The mating pool of values is combined with the current population to produce a new 

population. 

When DesignBuilderTM runs an EnergyPlusTM simulation it creates IDF and EPW files before 

executing EnergyPlusTM. The IDF is well commented which enables users to modify the text 

file directly using a text editor such as Notepad++. All the EnergyPlusTM files that were used in 

this thesis were created using various versions of DesignBuilderTM. 

2.6.10.5 jEPlus 

Zhang and Korolija (2010) followed on from Zhang (2009) to release jEPlus. jEPlus allows 

users to configure large batches of parametric runs for tasks such as parameter analysis. The 

report includes a parametric assessment of a test case involving 34,560 simulations which 

were carried out on a 256-core Linux cluster over a weekend in 2010. 

jEPlus (JE+.org, 2018) is a tool that was written in Java (hence the “j”) to manage large 

numbers of EnergyPlusTM simulations, although it is capable of running other simulations 

which are text based. To use jEPlus, the user replaces values in the input text file (in this case 

the EnergyPlusTM IDF) with searchable strings. The format of the searchable strings given by 
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the authors is @@Parameter_Reference@@, however any string could be used providing it 

is not already included in the text and does not have a specific meaning to the EnergyPlusTM 

program. The location of the weather file and information on post processing, is also required.  

jEPlus opens the IDF, searches for the string and replaces the string with the next numerical 

values from a control tree, runs EnergyPlusTM, post processes the results and stores the 

results in a folder. It then runs the next simulation in the batch. 

jEPlus allows users to take advantage of multiple core processors to run several simulations 

simultaneously by assigning a parallel simulation to each core.  

Zhang (2009) also mentions a number of tools which were examined before going on to 

develop jEPlus described below. The other tools mentioned are EP-Macro, Ez-Plus-Param, 

COMFEN 2.0, GenOpt and DesignBuilderTM.  

jEPlusV1.4 was the main tool used in this thesis to carry out Differential Sensitivity Analysis 

(DSA) and Monte Carlo Analysis (MCA). This was because it enabled large numbers of 

simulations to be run in parallel to improve computational efficiency and reduce time taken to 

find solutions.  

2.6.10.6 SADE 

SADE_build.m and SADE_build_cost.m are MatlabTM scripts written to enable the Self-

Adaptive Differential Evolution (SADE) algorithm to be applied to EnergyPlusTM building 

energy models.  

SADE_build.m starts with initial ranges of four variables defined in a matrix. It generates each 

population and selects Target Vectors and generates the Trial Vectors. To generate the cost 

value, SADE_build.m calls EnergyPlusTM and runs each simulation. The simulation generates 

output files which SADE_build_cost.m post-processes using ReadVarsESO to produce a CSV 

input file with the correct format. SADE_build_cost.m evaluates the CVRMSEhourly for the 

simulation output as compared to the metered data and SADE_build.m iterates until the 

specified number of generations is complete.  

For testing and verification of the script, refer to Section 4.4. 
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2.6.11 Overview of research methods for use in building energy model research 

This section explains the process used to select the research methods to investigate the 

following research question. 

“How can existing building energy model optimisation techniques be used to provide 

a better process for designing buildings and calibrating building energy models?” 

This Ph.D. thesis demonstrates how the practical application of knowledge can be of benefit, 

rather than the development of understanding independent of its setting in the community.  

Aristotle distinguished between three types of knowledge: 

 Episteme – pure knowledge. 

 Techne – technical expertise. 

 Phronesis –wisdom or intelligence, skilful action. 

Flyvbjerg (2006) argues that professional work lies in skilful action rather than technical 

expertise. While an academic might be concerned about truth which is independent of context, 

a practitioner also needs methods concerned with applying pure knowledge and the wisdom 

to make good decisions. There are a large number of research methodologies which could be 

applied. These are described in the following sections. 

This research has been carried out as a professional doctorate while the author was employed 

as an engineer for Ove Arup and Partners Ltd. The fact that this research has been carried 

out in a commercial environment has directed the research towards discovering how the 

conduit for innovation from academic investigation to implementation by engineers might be 

improved. New methods are required to better use building energy models and allow building 

energy models to be better calibrated. However, the development of new methods does not 

necessarily benefit the community unless those methods can be deployed within the time and 

budget constraints of a commercial organisation.  

In order to answer the research question, a comprehensive understanding of the current state 

of the art of calibrating building energy models was needed. This enabled access to the 

theoretical techniques and tools which are currently available and which could be drawn upon 

in the synthesis of a practical implementation. In the following, a summary is presented of the 

different methodological approaches that were considered for this research.  

2.6.11.1 Literature review 

A literature review is a search for information relating to the research question. During the 

literature review the researcher attempts to identify an exhaustive list of literature associated 
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with the research topic and critically evaluates the research to discover what information is 

already available, which might assist the researcher answer the research question.  

This research started with a comprehensive literature review. The results of that review are 

contained earlier in this chapter. 

2.6.11.2 Action research 

In action research the researcher is involved in a practice with the aim of improving some 

aspect of its operation. Typically, the researcher will be involved in the operation of the 

organisation and will critically evaluate a change in the operation. The evaluation might take 

the form of some sort of qualitative or quantitative analysis that would then be analysed to 

determine the extent to which the change has been successful.  

While action research might be appropriate for investigating how well a new process for 

calibrating building energy models has been adopted, it would not have satisfied the need to 

develop and investigate the process itself. Before the success of an implementation can be 

judged, the process needs to be developed to a point where a successful deployment could 

be expected.  

Action research was not applied in the development of this thesis. 

2.6.11.3 Case studies 

A case study is the examination of an example with the intention of identifying something which 

is specific to that example.  

Flyvbjerg (2006) argues that case study research is important because, in contravention to 

traditional thought: 

 Theoretical knowledge is not useful to society unless it can be applied and a useful 

application can be demonstrated within a case study. 

 Even single case studies can identify unforeseen events which can lead to generalisations 

or disprove them. 

Case studies have been used in this study to demonstrate the usefulness of optimisation in 

early stage design in Chapter 3, and to compare the efficacy of Monte Carlo and genetic 

algorithms in building energy model calibration in Chapter 4.  

2.6.11.4 Evaluation research 

Evaluation research is concerned with appraising or assessing the value, worth or practicality 

of something.  
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In a commercial environment, there is a constant need to ensure that practices are not only 

effective, but also efficient so as to maintain the commercial viability of the enterprise. While 

not all enterprises operate with the goal of producing profit, all businesses must operate within 

the restrictions of their cash flow. Therefore, in a commercial setting, one the of drivers for the 

selection of a process for calibrating building energy models is the practicality with which it is 

to be implemented and practice of determining this practicality is an evaluation.  

In this thesis, the words “practicality” and “efficiency” are used to represent a value associated 

with the process of applying optimisation to building energy models. In both cases, these terms 

represent the reduction in time and resources which engineers and building physicists will take 

to optimise a design or calibrate a building energy model to a degree of quality represented in 

quantitative terms. When a model is more practical or efficient, this means there is a reduction 

in the number or expense of resources (including engineering time) required to carry out the 

calibration to a point within the quantitative limits. 

2.6.11.5 Experiments  

“Experiment n. test or trial (of); procedure adopted on chance of its succeeding. For 

testing hypothesis etc., or to demonstrate known fact.” (Sykes, 1982) 

Experimentation was used extensively in this thesis to test hypotheses which might answer 

the research question.  

Experiments were conducted as computer simulations using combinations of values for 

parameters which describe buildings to determine the effect on the accuracy of the simulation. 

2.6.11.6 Conclusions on methods 

Useful research, as might be carried out by a candidate for a Ph.D. includes producing 

knowledge which is useful to practitioners. This includes the application of episteme in the 

development of techne and study of the results of phronesis.  

To achieve this, a number of techniques were useful. The overall approach has been one of 

evaluation research. 

 A review of the literature has been used to establish the current episteme and techne. Case 

studies illustrate risks associated with heuristic methods, limitations of a LHC Monte Carlo 

search, and power of a self-adaptive genetic algorithm.  

Experiments, in the form of computer simulations, were used to determine if DesignBuilderTM’s 

optimisation tool based on the Non-dominating Sorting Genetic Algorithm 2 (NSGA2) could 

justify the time taken to carry out the optimisation. Experiments were conducted to identify the 
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influential parameters in commercial building energy models and to assess the practicality of 

calibrating models using a Monte Carlo search and using Self-Adaptive Differential Evolution. 
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Chapter 3 Application of Optimisation to Building Energy Models in 

Early Stage Design 

3.1 Introduction 

A commercial application that uses the genetic algorithm NSGA2 for optimisation of 

EnergyPlusTM based models is available, but has only been applied in a limited number of 

cases in a commercial environment. While the analysis tool has been developed, there was 

still work required to develop, design and cost templates, which were necessary to produce 

credible results. At the start of this study, there was also no evidence that a design which has 

been optimised using NSGA2 would demonstrate significant savings over common practice.  

This problem was rephrased as the following research question to enable practitioners to 

determine if additional engineering is justified: 

“Does multivariable optimisation using NSGA2 yield savings significant enough to 

justify the engineering time which needs to be devoted to the optimisation process?”  

A case study approach was used to test this process. 

3.2 University of Northampton Creative Hub 

In 2015, the University of Northampton was in the process of extending its campus to include 

an additional six buildings. The designs for the buildings had been developed to RIBA Stage 

3, where upon a contract for its construction was put up for tender. The design then underwent 

a value engineering exercise to attempt to refine the costs to match the University’s budgetary 

constraints. 

This presented an excellent opportunity to carry out a case study of the application of a 

parametric optimisation using DesignBuilderTM.  

Of the six buildings, a medium sized multi-function building: The Creative Hub, was chosen 

for the case study because it best represented a typical, modern university building. 

3.2.1 Author’s role in this research 

The research detailed in this chapter was conducted by the author of this thesis. The work was 

carried out entirely as an academic exercise after the design had been developed beyond 

Stage 2 as a commercial service. Except where noted below, planning of the research, the 

heuristic optimisation work, construction of the DesignBuilderTM and EnergyPlusTM models, the 

optimisation process and the analysis of the results were all conceived and executed by the 
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author. The results were presented at the 15th annual IBPSA conference (Polson, Zacharis, 

Lawrie, and Vagiou (2017) by Oliver Lawrie, after the author left his previous position with 

Arup. Evan Zacharis produced the paper from content and results in this chapter and Dora 

Vagiou and Oliver Lawrie helped to get the DesignBuilderTM software running.  

3.2.2 Building 

 

Figure 9. The Creative Hub and the University of Northampton. 

The Creative Hub at the University of Northampton as shown in Figure 9, is a five-story building 

with a floor area of 10,000 m2. The building was designed to house a variety of spaces 

including: 

 a café and full kitchen facilities; 

 3D printing workshop; 

 research laboratories; 

 teaching spaces; 

 photographic studios; 

 student workspaces; 

 rehearsal and performance spaces; 

 television studios; 

 information and communication technology workshops. 

The building has the normal circulation and services spaces, which include: 

 corridors; 

 toilets; 
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 stairwells; 

 lifts; 

 storerooms; 

 cleaners’ cupboards; 

 electrical and mechanical plant areas. 

There are two substantial atria, which also provide return air paths from some of the internal 

spaces. A small portion of the building was to be left for a future fit-out as a destination 

restaurant. 

3.2.3 Building fabric 

The location of the exterior wall types specified on seven drawings provided by Couch Perry 

Wilkes Limited as part of the Stage 3 documentation were used to invite construction tenders. 

Each drawing contained a key that summaries the wall type associated with the label shown 

on the drawing.  

The details of the construction are given in Appendix D. 

3.2.4 Services 

Heat was expected to be provided from a site-wide district hot water system, which was to 

supply Low Temperature Hot Water (LTHW) at between 85°C (Winter) and 70°C (Summer) 

and return it at a maximum temperature of between 55°C (Summer) and 45°C (Winter). LTHW 

was to be supplied from a campus Combined Heat and Power (CHP) plant. 

Space heating within the building was designed to be provided via a combination of radiators 

and underfloor heating. 

The majority of the cooling was designed to be provided by two air-cooled packaged chillers. 

Two Variable Refrigerant Flow (VRF) direct expansion systems were to be provided to a 

television suite and to Information and Communication Technology (ICT) rooms. Cooling was 

designed to be provided via all-air systems and via chilled beams. Minimum fresh air systems 

and kitchen makeup air were to be tempered. 

A combination of strategies were designed for the ventilation services. Student workspaces 

and cafes were to be ventilated using a mixed-mode displacement and natural ventilation 

strategy. The television studio, 3-D workshop, performance space and teaching spaces were 

to be served with all-air systems.  
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All ventilation air handlers were shown to be provided with hygroscopic heat recovery wheels. 

LED lights with lighting control were specified for the building. Domestic hot water was to be 

provided using heat from the district heating system via a plate heat exchanger. 

Occupancy schedules were based on defaults used when assessing University buildings as 

part  of the National Calculation Methodology (NCM) to demonstrate compliance with Building 

Regulation: Part L (Parliament, 2000). 

3.2.5 Legislative and sustainability and requirements 

As a building designed for England, it had to comply with the English Building Regulations 

including Approved Document Part L. The building also required the calculation of an Energy 

Performance Certificate (EPC). In this case, the client has specified that the building be 

designed to achieve an “A” rating on its EPC. 

At the previous design stage, a calculation was carried out using Integrated Environmental 

Solutions (IES) Virtual Environment (VE) software version 2014.2.0.0, which predicted a 

Target Emission Rate (TER) of 18.0 kgCO2/m2 and a Building Emission Rate of 14.6 

kgCO2/m2. (Couch Perry Wilkes, 2015). This also corresponded to a predicted “A” rating for 

the EPC. 

The employer’s requirements included a requisite that the Creative Hub achieve a Building 

Research Establishment Environmental Assessment Methodology (BREEAM) rating of 

Excellent. The BREEAM methodology includes a number of options for how the overall score 

can be achieved. At early design stages, it is usual to formulate “budgets” during a pre-

assessment which then provide targets for the various designers. For this building, a budget 

of eight credits for Section ENE01: Reduction of CO2 Emissions was assumed. As part of the 

BREEAM system, there is also a pre-requisite requirement that, in order to achieve a rating of 

Excellent, the building needs to be awarded at least six credits for ENE01. 

3.3 Optimisation 

3.3.1 Parameters for optimisation 

DesignBuilderTM is commercial building energy simulation software that provides a graphical 

user interface for EnergyPlusTM. The version 4.x series of releases contains an application of 

the Non-dominated Sorting Genetic Algorithm 2 (NSGA2) (Deb, Pratap, Agarwal and 

Meyarivan, 2002) which adds an optimisation function to parametric analysis capabilities 

contained in previous versions. 

A model which is developed for use in the simulation of the energy consumption of a building 

is defined by parameters which represent physical aspects of the building. Values for those 
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parameters are used to define the geometry, construction, services and operation of the 

building. Simulation of a building to accurately represent the actual energy consumption is 

heavily reliant on the selection of values that best represent the building.  When a building is 

being designed, and the form and operation of the building are undefined, the design problem 

is to devise the geometry, construction services and operation to meet the client’s objectives. 

These objectives can be abstracted as the selection of parameters and values which, when 

appropriately used in a simulation, will predict a set of outputs that will meet the client’s 

specification.  

One of the key steps in the optimisation process is to select parameters, which represent 

aspects of the building design that would benefit from optimisation and a suitable range of 

values, which should be applied to those parameters.  

DesignBuilderTM includes over 120 parameters (DesignBuilderTM, 2016). From these the 

following parameters were selected for optimisation: 

 external wall construction; 

 external roof construction; 

 glazing construction; 

 lighting system; 

 HVAC system for each of zones A, B, C, D and E. 

Shading was omitted from the analysis to speed the simulation time, put more emphasis on 

the glazing selection and allow computational time for multiple HVAC system zones to be 

assessed. 

Options for each of these parameters were developed and are described in detail in 

subsequent sections. 

3.3.2 Constraints 

The design of a building is also subject to constraints. For example, it would be of little benefit 

to have a building that operated with very little energy input, but which had internal 

temperatures that were either too high or too low to be acceptable to building occupants.  

Constraints may be contained in a client’s brief; however, in the experience of this engineer, it 

is more usual for the engineers to propose what they consider to be practical and appropriate 

conditions and seek confirmation from the client. These constraints are usually based on 

recommendations from professional organisations such as the Chartered Institute of Building 

Services Engineers (CIBSE). 
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The Building Regulations contain restrictions for the amount of time that the internal conditions 

exceed temperature limits. These were applied as constraints during the optimisation exercise. 

The concept consultants had specified that the building must meet the requirements of TM52: 

The limits of thermal comfort: Avoiding overheating in European buildings (Fergus, 2013). 

TM52 provides a methodology for assessing discomfort due to overheating in buildings. TM52 

is based on an adaptive comfort model, which assumes that as seasons move from cooler to 

hotter, people adapt to the higher temperatures. As outdoor temperatures rise, people are able 

to tolerate higher indoor temperatures than they would if they were acclimatised to cooler 

outdoor temperatures. TM52 sets three criteria, of which two must be met in order to claim 

compliance with the standard.  

In TM52, a threshold temperature is calculated. The threshold temperature is a rolling mean 

of the previous month’s outdoor dry-bulb temperature.  

The three criteria are:  

 Criterion 1: The internal temperature must not exceed the threshold by more than 1K for 

more than 3% of the occupied hours per year. 

 Criterion 2: A daily weighted value, which is intended to reflect the severity of overheating, 

must be less than 6 (dimensionless) in any day. 

 Criterion 3: The maximum temperature in the occupied space must never exceed 4K 

above the threshold temperature. 

DesignBuilderTM does not explicitly provide TM52 evaluation criteria, however TM52 uses the 

calculations described in BS EN 12521 (BSI, 2007). DesignBuilderTM can carry out the BS EN 

15251 calculations and define the exceedance values from TM52.  

In practice, the author has found that it is usual to design for TM52 Criteria 1 and 3 to pass 

and for Criterion 2 to fail, so the optimisation simulations were constrained to pass Criteria 1 

and 3.   

3.3.3 Optimisation target 

Building simulation can be used to provide estimates of a whole range of potentially useful 

outputs. This might be the internal temperature of a room over the course of a month or the 

energy consumed by an air handler in the production of cooling. In this case study, there was 

concern about the capability of the simulation software to identify potential cost savings which 

might result from an advantageous combination of building elements.  
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DesignBuilderTM is a tool that provides options for a range of outputs intended to cater to many 

of the problems that might be encountered by a professional building services engineer. It 

provides a number of optimisation targets from which a suitable selection must be made.  

In optimisation studies, the target of the optimisation is called the objective. DesignBuilderTM 

allows for over 100 design objectives (DesignBuilderTM, 2016).  

At this stage in a project, it is usual for there to be a strong emphasis on the capital cost of the 

project. It is common to carry out Value Engineering exercises to examine the scope of the 

project to identify opportunities to reduce the cost of the construction. Cost reduction can be 

particularly important to a contractor who is bidding for the construction of a building. Reducing 

the capital cost can result in savings for the client, which improve the contractor’s probability 

of being awarded the contract, or can translate into profit for the contractor. 

There is an obvious opportunity to use optimisation to balance the operating and capital costs 

for a building so the decision was made for this doctoral project to use capital and energy cost 

as the optimisation targets. 

3.4 Multi-disciplinary approach 

The commercial built environment involves a wide range of specialists, each of whom bring 

their own practice knowledge. A typical project would have: 

 Mechanical engineers who are responsible for providing a comfortable environment within 

the sustainability aspirations of the client. 

 Electrical engineers who are responsible for distributing electrical power and providing 

adequate lighting within the sustainability aspirations of the client. 

 Facade designers who help the architect design the fabric of the building including the 

specification of glazing. 

 Quantity surveyors who are responsible to estimating the cost of construction. 

 Architects who would lead the design, devise the geometric arrangement of the building 

and assign spaces according to the client’s programme. 

 Structural engineers who would determine the method for supporting the building under 

various load conditions. 

A building design team is also likely to have: fire engineers, acoustic consultants, public health 

engineers and project managers. The application of optimisation would ideally draw on all of 

that expertise. 

For this case study, a team of engineers and quantity surveyors devised options for the 

optimisation process, as would be normal practice in a commercial environment. 
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Options for the external wall and roof construction were based on the architect’s original 

specification but expanded by mechanical engineers in consultation with the quantity surveyor. 

Options for the glazing construction were based on a market survey carried out by facade 

engineers and the architect’s frame design. The options were then refined in consultation with 

a quantity surveyor. 

Small volunteer teams of electrical and mechanical engineers were responsible for formulating 

alternative lighting and HVAC designs. 

Each team produced summary documentation, which was used to provide the inputs to the 

energy model. 

3.5 Parameter options 

3.5.1 Limits to the extent of options considered 

The optimisation process is well adapted to deal with physical properties that can be 

expressed as numerical values, but does not deal with values such as aesthetics, safety or 

operability. As a result, these inputs need to be constrained differently.  

The optimisation of the Creative Hub needed to include limits on the degree to which the 

design could be varied. These limits also serve to constrain the number of alternative options, 

which were included in the optimisation process.  

The extent of options was also limited by the time available to: formulate options and estimate 

their cost; the processing time which would be required to search the parameter space, and 

the capability of the evaluation software: DesignBuilderTM. 

The design was constrained by only varying parametric values of concepts already proposed 

by the architects. For example, the basic form and constructions were retained and only the 

insulation thicknesses were varied. 

3.5.2 External wall construction 

The external wall constructions were defined in the architect’s specification and reflected in 

the previous engineer’s Building Regulations United Kingdom Part L (BRUKL) report. As 

previously discussed, the options for alternative solutions are constrained by aesthetic 

considerations that do not lend themselves to mathematic optimisation. For this case study, 

this issue was addressed by limiting the options for exterior wall construction to variations in 

the thickness of the insulation layer in the existing building constructions. 
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A junior mechanical engineer was tasked with calculating the thickness of insulation that would 

be required to modify the overall heat transmission (U-Value) of the wall and roof 

constructions. The result was a range of construction alternatives for which the cost could be 

estimated by the quantity surveyor and optimised within the building energy model given in 

Table 2 

The constructions for the glazing on stud walls in Types 03 and Type 06 are effectively 

combinations of the two glazing systems (Type 1 Reglit and Type 5 Curtain walling) and the 

opaque constructions (Types 02, 04 and 07). Since there is little difference between Types 02 

and 04, and the basic U-Value specification is the same: either 0.2 W/m2K or “to the energy 

evaluator’s requirements” (which was also 0.2 W/m2K), the opaque constructions have been 

approximated by two build-ups: one with mineral fibre and one with polyurethane. 

External Wall 
Reference 

Construction Insulation Glazing 
system 

Stud wall 
insulation 

Type 01 Glazing - Reglit - 

Type 02 Opaque wall Mineral fibre - - 

Type 03 Glazing on Stud 
wall 

- Reglit Mineral fibre 

Type 04 Opaque wall Mineral fibre - - 

Type 05 Glazing - Curtain walling - 

Type 06 Glazing on Stud 
wall 

- Curtain walling Mineral fibre 

Type 07 Opaque wall Polyurethane - - 

Type 08 Louvre - - - 

Table 2. Summary of exterior wall and glazing types specified in the Stage 3 design. 

Where the construction is documented as glazing on stud wall, the stud wall insulation was 

modelled as the same construction as the opaque wall with mineral fibre insulation. For 

modelling purposes this simplified the exterior construction parameters down to four 

constructions: 
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 Opaque wall insulated with mineral fibre; 

 Opaque wall insulated with polyurethane; 

 Reglit glazing; 

 Curtain wall glazing. 

The options for the two glazing solutions are discussed in the glazing section. 

Initially, each of the two final exterior wall constructions were developed with a range of U-

Values of between 0.15 W/m2K and 0.35 W/m2K in increments of 0.05 W/m2K. However, 

insulation is most cost-effectively obtained when bought in standard thicknesses. The 

insulation thickness, which corresponded to the initial range were calculated and the nearest 

size thicknesses were selected. The final U-Values were then recalculated and the costs were 

estimated. Part L of the Building Code also has maximum limits for U-Values, which further 

reduced the range to 0.15 W/m2K and 0.30 W/m2K. The costs and build-ups for the exterior 

wall constructions are given in Table 3 and Table 4below. 

Option Nominal U-
Value 
W/m2K 

Calculated 
thickness 

mm 

Practical 
thickness 

mm 

Wall cost 
£/m2 

U-Value 
W/m2K 

Type 02a 0.10 294 210 1480 0.099 

Type 02b 0.15 177 140 1390 0.145 

Type 02c 0.2 119 100 1320 0.197 

Type 02d 0.25 84 75 1300 0.254 

Type 02e 0.3 60 60 1290 0.307 

Table 3. Wall Construction and costs for Wall Type 02 with U-Values of 0.15 W/m2K to 

0.30 W/m2K. 

  



 84    

 

Option Nominal U-
Value 
W/m2K 

Calculated 
thickness 

mm 

Practical 
thickness 

mm 

Wall cost 
£/m2 

U-Value 
W/m2K 

Type 04a 0.10 318 210 1570 0.099 

Type 04b 0.15 201 140 1500 0.145 

Type 04c 0.2 143 100 1430 0.197 

Type 04d 0.25 108 75 1380 0.254 

Type 04e 0.3 84 60 1360 0.307 

Table 4. External Wall Construction and costs for Wall Type 04 for U-Values of 0.15 

W/m2K to 0.30 W/m2K. 

3.5.3 Roof construction 

A similar process was applied to the roof constructions. In the case of the roof, there were only 

two construction types. The plant room roof construction is a simple low-cost product, whereas 

the main roof needed to be suitable for carrying a variety of loads. Since the application of the 

plant room roof was limited and was unlikely to offer significant savings, the plant room roof 

construction did not warrant incorporation into the optimisation process.  

Again, a junior mechanical engineer was tasked with providing the table of options for various 

thickness of insulation in Table 5, which could be used as alternative constructions in the 

optimisation.  

Option Nominal  U-
Value 
W/m2K 

Calculated 
thickness 

mm 

Practical 
thickness 

mm 

Wall cost 
£/m2 

Actual      

U-Value 
W/m2K 

Roof a 0.10 205 200 250 0.104 

Roof b 0.15 122 130 210 0.145 

Roof c 0.2 80 100 190 0.197 

Roof d 0.25 55 75 190 0.254 

Roof e 0.3 38 60 180 0.307 

Table 5. External Wall Construction and costs for the roof constructions for U-Values 

of 0.15 W/m2K to 0.30 W/m2K. 



85 

3.5.4 Glazing construction 

The Arup Facades team has a confidential document that contains a summary of glazing 

types, which are available in the market. The document contains a chart shown in Figure 10. 

Transmission properties of common available glasses. that plots the transmission properties 

of coated glasses, which are commercially available. The document is commercially sensitive 

so is not reproduced fully, but it still shows a general relationship between visible light 

transmission and total solar energy transmission (G-Value). 

The author was not involved in the research and production of this glazing study or in the 

grouping of the categories. This work was carried out by a team of engineers in Arup Facades.  

 

Figure 10. Transmission properties of common available glasses. 

The glasses are grouped into seven categories that represent a general increase in glazing 

performance. The seven categories which were taken from the study are given in Table 10. 

  



 86    

 

Category Description G-Value Visible light 

transmission 

0 Low emissivity 0.52-0.65 0.75-0.81 

1a Selective clear a 0.44-0.50 0.72-0.74 

1b Selective clear b 0.39-0.42 0.65-0.69 

2a Selective standard a 0.36-0.38 0.63-0.65 

2b Selective standard b 0.31-0.35 0.58-0.67 

3 Selective dark 0.25-0.29 0.46-0.60 

4 Selective darker 0.14-0.24 0.38-0.42 

Table 6. Summary of properties for categories of glass in Arup study. 

An enquiry was made to a number of glazing suppliers with a request to supply a specification 

and budgetary costs for a glass that would match each of the seven categories.  

The options for representative glazing solutions are contained in Table 7 and Table 8. 
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Category Products name 

Total solar 
energy 

transmittance 
(G-Value) 

Light 
transmittance 

(LT) 

Thermal 
transmittance 

(U-value) 
[W/m2K] 

0 
 

   

1a Pilkington Optifloat Bronze 0.41 0.32 1.0 

1b 

Pilkington Optifloat 

Grey 0.37 0.31 1.0 

2a Pilkington Suncool 70/35 0.37 0.69 1.0 

2b 
Pilkington Suncool Silver 

50/30 0.31 0.49 1.0 

3 

Pilkington Suncool  

Blue 50/27 0.28 0.49 1.1 

4 Pilkington Suncool 30/16 0.18 0.4 1.1 

Table 8. Glazing properties for selected representative glasses. 

Category Product name Glazing configuration 
Cost provided 

(£/m2 ) 

0    

1a 
Pilkington OptiFloat 

Bronze 
OptiFloat 6mm / 16mmAr / 
OptiTherm S1 Low-e 6mm 

60 

1b 

Pilkington  

Optifloat Grey 
OptiFloat 6mm / 16mmAr / 
OptiTherm S1 Low-e 6mm 

60 

2a 
Pilkington Suncool 

70/35 
Suncool 6mm / 16mmAr / 

Clear Float 6mm 
80 

2b 
Pilkington Suncool 

Silver 50/30 
Suncool 6mm / 16mmAr / 

Clear Float 6mm 
80 

3 

Pilkington Suncool  

Blue 50/27 
Suncool 6mm / 16mmAr / 

Clear Float 6mm 
80 

4 
Pilkington Suncool 

30/16 
Suncool 6mm / 16mmAr / 

Clear Float 6mm 
85 

Table 7. Representative glazing constructions and cost. 
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These details were then supplied to the quantity surveyor who used the architect’s original 

specification to build up costs for the complete glazing solution, including the frame and curtain 

wall construction. 

3.5.5 Lighting solution 

Four potential lighting solutions were defined based on:  

 T5 fluorescent tubes; 

 T5 fluorescent tubes with daylighting controls; 

 LED lighting; 

 LED lighting with daylight controls; 

The options for representative glazing solutions are contained in Table 9. 

Option Product name Description Cost 

A1 
Zumtubel Mellow Light V LED  catalogue 

No 42182661 
Open plan LED 

lighting £79/m2 

A2 
Zumtubel Mellow Light V LED  catalogue 

No 42182661 with lighting control 

Open plan LED 
lighting with daylight 

control £84/m2 

A3 
Zumtubel - Mellow Light V T16 catalogue 

No  42922727   
Open plan 

fluorescent lighting £70/m2 

A4 
Zumtubel - Mellow Light V T16 catalogue 

No  42922727  with lighting control 

Open plan 
fluorescent lighting 
with daylight control £75/m2 

Table 9. Specification and cost for selected lighting solutions. 

3.5.6 HVAC solution 

Heating Ventilation and Air Conditioning (HVAC) systems can be divided into natural 

ventilation systems, which provide ventilation directly via openings in the facade and 

mechanical ventilation systems, which provide ventilation using mechanical plant. There is a 

third category called mixed mode in which maximum use is made of natural ventilation, but 

which is supplemented by mechanical ventilation under conditions that make natural 

ventilation impractical.  

Mechanical ventilation systems can be divided into all-air systems and minimum fresh air 

systems. All-air systems provide heating and cooling using the ventilation air, while in minimum 
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fresh air systems, only the ventilation required to control the level of carbon dioxide (CO2) in 

the space, is ducted into the building’s spaces.  

At the volumes provided in minimum fresh air systems, air does not have sufficient heat 

capacity to be able to provide sufficient heating or cooling to spaces, so minimum fresh air 

systems need to be supplemented with additional heating and cooling systems. Typically, 

these include: 

 Fan Coil Units (FCUs) are boxes that contain a small fan, a cooling and/or heating coil and 

a filter, which usually used chilled water and Low Temperature Hot Water (LTHW) to cool 

and heat the air. 

 Chilled beams are devices that provide cooling (although some can also provide heating) 

by allowing air to convect directly against a cooling surface.  

 Direct expansion (DX) units are a variation of the FCU, which can also use the direct 

expansion and condensation of refrigerants. 

 Variable Refrigerant Flow (VRF) are another variation of DX units allow for evaporation 

and condensation across a network of FCUs.  The amount of heat removed from or 

rejected into a room is controlled by varying the flow of the refrigerant, which is piped 

around the building. These have the advantage that heat removed from one space during 

cooling can be used to heat an adjacent space. 

 Radiators are devices that combine convective and radiant energy transmission into a 

room using heat from a LTHW system. 

 Radiant Panels also use LTHW but transmit most of their heat via long-wave radiation. 

Radiant panels are more expensive but have an advantage because they are usually 

ceiling mounted and therefore do not take up wall or floor space. 

 Under Floor Heating (UFH) systems use pipes embedded into the slab of a floor to warm 

the structural floor of the building and conduct heat into the air. 

All-air systems can be divided into the following categories: 

 Variable Air Volume (VAV) systems provide heating or cooling to a space via air, which is 

conditioned in an Air Handling Unit (AHU) to fixed temperatures. This is typically 12 °C for 

cooling and 32 °C during heating. The amount of heating or cooling is controlled by varying 

the amount of heat provided to the space via VAV boxes. VAV systems make better use 

of cool outdoor air when it is available at an outdoor air temperature, which is at or below 

the supply air temperature. This means that the air does not need to be mechanically 

cooled before being supplied to space. Because the amount of air pumped around the 

building varies with the loads, VAV systems use less fan energy than the constant air 

volume systems described below. 
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 Constant Air Volume (CAV) systems provide heating or cooling to a space via air, which 

is conditioned in an Air Handling Unit (AHU). The amount of air fed to the rooms is fixed 

and the temperature in the space is controlled by varying the temperature of the air 

supplied by the AHU. CAV systems use more fan energy but sometimes a constant flow 

of air is required, such as in association with kitchen extraction systems or where the air 

is being supplied into a room via jets. In this context there needs to be sufficient velocity 

to ensure that the air reaches the furthest regions of the space. 

 Displacement is a variation of the VAV system but in which supply air is delivered at very 

low velocities. Displacement systems supply air at higher temperatures than typical VAV 

systems, so there is a greater proportion of the year when air can be directly supplied from 

the outside of the building without the need for mechanical treatment.  

 VAV with Terminal Reheat. VAV systems supply air for both temperature control and 

ventilation. Usually the heating and cooling loads predominate so the ventilation 

requirements are provided serendipitously. However, in rooms with high occupancies like 

meeting rooms and lecture theatres, satisfying the ventilation requirements can lead to 

over-cooling in the space. In this case, re-heat batteries are used to reintroduce some 

heating to offset the overcooling. Re-heating can also be required when the VAV control 

boxes cannot provide sufficient turndown to supply spaces with a large range of loads. 

The Heating Ventilation and Air Conditioning (HVAC) solution for the Creative Hub was 

summarised in the engineer’s design documentation by a set of eight treatment drawings. 

There was one drawing for each of the four floors for ventilation and one for each floor that 

described both the heating and cooling strategies.  

From an inspection of the drawings, the ventilation strategies did not naturally align with the 

heat and cooling strategies and a combination of methods was expected to be provided 

according to the use of the space and location within the building. There were nine ventilation 

types and seventeen heat and cooling systems shown on the drawings. The large number of 

HVAC systems described was due in part to the inclusion of natural ventilation solutions, which 

needed to be supplemented with mechanical systems when natural ventilation was 

impractical. It is not unusual to need to define ventilation systems separately from heating and 

cooling systems, but despite the inclusion of mixed-mode ventilation, it was unusual to have 

so many different types of systems in one building of this size.  

In the version used, DesignBuilderTM was limited to twelve parameters for optimisation. This 

meant that at most, there could only be twelve types of zone where options for combinations 

of systems could be chosen. This would need to decrease to allow simultaneous optimisation 

with other parameters such as wall construction, roof construction, floor construction, lighting 

system and glazing choice. 
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It was possible that the optimisation process might consist of a series of optimisations; 

however, this would place limits on the parameter space from which solutions could be drawn. 

One of the main attractions of optimisation is that it promises to allow the simultaneous 

evaluation of the effects that different parameter classes would have on each other. For 

example, the selection of the glazing could increase the energy demand for cooling by allowing 

more solar gain into a space. However, allowing more solar gain could decrease the amount 

of energy required by reducing the need for lighting. The advantage of optimisation should be 

that all the positive and negative effects are evaluated simultaneously and a range of optimal 

solutions can be established in terms of cost and energy consumption.  

As the number of solutions was unusually high, and because of the constraints of the software, 

it was clear that the HVAC solutions needed to be rationalised. This rationalisation was also 

likely to have benefits in terms of value engineering for the project even before any optimisation 

analysis was carried out.  

A list of spaces was draw up and the types of ventilation, heating and cooling system for each 

space was identified from the treatment drawings. Some of the definitions of the HVAC system 

were overly complicated and effectively required the same type of design approach as other 

systems, which could be rationalised and treated as the same. A summary of the systems 

contained in the original combination of treatment drawings is provided in Table 10. 
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Ref Natural Ventilation 
Solution 

Mechanical 
Ventilation Solution 

Heating 
Solution 

Cooling 
Solution 

1 None Constant Air Volume By air system By air system 

2 None Displacement Radiators By air system 

3 None Foul extract Radiators By air system 

4 None Foul extract UFH By air system 

5 None Minimum fresh air VRF VRF 

6 None None DX DX 

7 None None None None 

8 None None Radiators None 

9 None VAV By air system By air system 

10 None VAV Radiant panels By air system 

11 None VAV Radiators By air system 

12 None VAV + process extract Radiators Chilled beams 

13 Secure ventilators Displacement Radiators Air system 

14 Secure ventilators Displacement Radiators Chilled beams 

15 Secure ventilators Displacement Reheat 
batteries 

Air system 

16 Secure ventilators Displacement UFH Air system 

Table 10. Summary of heating ventilation and air conditioning strategies taken from 

treatment drawings after systems requiring the same design approach had been 

simplified. 

3.5.7 Rationalization of space treatment prior to optimisation 

Some of the systems in Table 10 include a requirement for supplementary heating or cooling, 

which could have resulted in control problems, or clearly did not add value to the design by 

their inclusion. For example, one area was required to be treated with a Variable Air Volume 

(VAV) system with additional heating required by radiators. In this case, the design of the VAV 

system would have the capability to providing all the heating for the space and the additional 
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expense of providing radiators along with all the piping, valves, pumps and controls could be 

immediately saved. 

Some parts of the building such as staircases, plant rooms and back-of-house corridors are 

only used infrequently and therefore did not need to be treated. Toilets draw air from adjacent 

spaces and are only provided with a small amount of supplementary heating to offset fabric 

losses. Information and Communication Technology (ICT) rooms have clear requirements for 

treatment, which lead to the provision of specialist systems. All of these areas and the related 

treatment designs were excluded from the optimisation study because either, they were 

already minimalist systems that could not be further simplified (and therefore reduced in cost), 

or had complex requirements which required a specialist solution. 

The First Floor Exhibition Space was described as having secure ventilators, and an underfloor 

heating system. However, the space does not have any external walls so there was nowhere 

to place secure ventilators and there is no heat loss for the underfloor heating to compensate. 

For this space, the secure ventilators and underfloor heating system were deleted. 

The Recording Studio and Leather Workshop were to be provided with displacement heating 

systems and radiators. The heating provided by the radiators could be supplemented by 

increasing the volume of the displacement system dependent on the temperature of the air, 

which can be supplied via the system. In these spaces an exercise was required to determine 

if the heating for the space could be provided by the displacement system alone.  

The Rehearsal Studio, Product and Interiors, Communication and Illustration, Fashion Space 

and Foundation Art Spaces were all to have a combination of secure ventilators, displacement 

ventilation and radiators. It might appear that radiators are required for heating while the 

system is operating with natural ventilation; however, secure vents were only to be provided 

for summer cooling. As the ventilators are manually operated, the designers assumed that 

they would not be used in winter because occupants were unlikely to open the ventilators as 

this would overcool the space. In these spaces an exercise was required to determine if the 

heating for the space could be provided by the displacement system alone. 

Graphics, Games Technology, IT Research and Media Journalism Space are treated using a 

combination of secure ventilators, a displacement system, radiators and chilled beams. Chilled 

beams are fundamentally incompatible with manual natural ventilation. While it is possible that 

the occupants could be trained to ensure that the ventilators are closed when cooling is 

required, experience would indicate that this is unlikely to happen. In this case, the secure 

ventilators seemed redundant and could be value-engineered out. It may have also seemed 

excessive to provide both displacement ventilation cooling and chilled beams; however, 

displacement ventilation has limited cooling capacity and this space contains high gains from 

computers. It also seemed incongruous that additional cooling capacity is required because of 
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the high heat loads but that additional heating is to be provided to supplement the 

displacement system when the space will invariably operate in a cooling mode. In these 

spaces the secure ventilators and radiators were deleted. 

The Performance Space has been provided with a displacement ventilation supply with 

additional heating provided by console fan coil units. However, black-out curtains will interfere 

with both the low level displacement supply and the console units. Instead, the design was 

revised so that supplementary heating could be provided by a reheat battery.  

The air for the Performance Space was expected to be supplied by the same Air Handling Unit 

(AHU) that supplied the VAV system to the 3D Workshop below it. This was not practical 

because the supply conditions for the displacement system (18°C) are different from the 

supply conditions for the VAV system (12°C). This was further complicated by the requirement 

for the VAV system to supply make-up air for process extraction systems, which may or may 

not run. If the process extraction systems are operating then the process make-up demand is 

likely to exceed the internal cooling load and the VAV will over cool the space. Terminal reheat 

is usually installed to compensate for this, but this would be especially wasteful given that the 

large volumes of air are simply exhausted from the building. The systems in the Performance 

Space and 3D workshop were changed to VAV. Terminal reheat was provided to the 

Performance Space to ensure that high ventilation demand would not lead to over-cooling. 

The displacement system fresh air demands were checked to ensure that the system would 

be capable of meeting the fabric component of the CIBSE heating loads. Initially, it was 

assumed that all the heating would be provided within the minimum fresh air flow with a 

maximum differential temperature of 8K. It quickly became obvious that in some areas, an 

increase in the airflow would be required to enable a displacement ventilation system to meet 

the heating loads. However, the increases in air required are small enough that a displacement 

ventilation system could be considered to be a practical alternative. The calculations 

confirming that the performance, of the simplified and rationalised system, would be adequate, 

are given in Table 11.  
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Space 
Occupancy 
(occupants) 

Air flow 
(m3/s) 

Heating 
capacity 

(kW) 

Area 
(m2) 

Volume 
(m3) 

Air 
change 
(ac/hr) 

Heat 
from 

lighting 
(kW) 

Total 
heating 

(kW) 

CIBSE 
fabric 
load 
(kW) 

Factor for 
ventilation 
increase 
required 

Final  
Air 

change 
(ac/hr) 

Recording 
Studio 

10 0.12 1.152 26.6 63.84 6.8 0.13 1.285 1.04 0.8 5.5 

Leather 
Workshop 

15 0.18 1.728 110 264 2.5 0.55 2.278 2.8 1.2 3.0 

Rehearsal 
Studio 

30 0.36 3.456 110 264 4.9 0.55 4.006 2.44 0.6 3.0 

Product and 
Interiors 

30 0.36 3.456 262 628.8 2.1 1.31 4.766 7.5 1.6 3.2 

Communication 
and Illustration 

35 0.42 4.032 322 772.8 2.0 1.61 5.642 9.48 1.7 3.3 

Fashion Space 30 0.36 3.456 203 487.2 2.7 1.02 4.471 6.3 1.4 3.7 

Foundation Art 
Spaces 

100 1.2 11.52 386 926.4 4.7 1.93 13.45 14 1.0 4.9 

Table 11. Comparison of heating loads against CIBSE standards for spaces can be provided by displacement ventilation system only.
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The designs were rationalised down to the nine types of system given in Table 12. 

 

Ref Natural Ventilation 
Solution 

Mechanical 
Ventilation Solution 

Heating 
Solution 

Cooling 
Solution 

0 Facade opening None Radiators None 

1 None Displacement By air system By air system 

2 Secure ventilators Displacement By air system Chilled beams 

3 None Minimum fresh air VRF VRF 

4 Secure ventilators Displacement Radiators By air system 

5 Secure ventilators Displacement UFH By air system 

6 None VAV By air system By air system 

7 None Minimum fresh air Fan coil units Fan coil units 

8 None Minimum fresh air Radiators Chilled beams 

Table 12. Summary of heating ventilation and air conditioning strategies taken from 

treatment drawings after removal of space where HVAC optimisation was to have no 

benefit and after systems were rationalised. 

3.5.8 Preliminary load estimation 

Some HVAC systems have limits on the cooling capacity that they can realistically be designed 

to achieve. 

 Passive chilled beams are limited to about 100 W/m2 (CBCA, 2012). 

 Active chilled beams can be used to cool loads up to about 167 W/m2 (CBCA, 2012). 

 Displacement ventilation systems are limited to about 35 W/m2 (Abbas, 1999) although 

underfloor supply systems which allow for some mixing increase this limit to 80 W/m2 

(Arup, 2004). 

Before these systems could be added to the list of alternatives, and because this was a live 

project, an intermediate engineer was asked to run a simulation to estimate the cooling loads 

in each of the spaces. Only two spaces had predicted loads above 60 W/m2; these were the 

Performance Control Room (234 W/m2) and the Pattern Cutting Workshop (277 W/m2). Both 

of these spaces needed to be provided with special conditioning and were excluded from the 

optimisation. 
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A series of solutions were developed for spaces that could collectively be grouped by zone. 

The zones were labelled O, A, B, C, D and E and referred to combinations of options for HVAC 

as summarised in  Table 13. The locations of the zones are shown in Appendix D. 

Zone and treatment options O A B C D E 

0  Minimal Treatment       

1  Displacement       

2  Secure vents, chilled  
beams and displacement 

      

3  Minimum fresh air and  
variable refrigerant flow 

      

4  Secure vents radiators and 
displacement 

      

5  Secure vents under floor 
heating and displacement 

      

6  Variable air volume       

7  Minimum fresh air and fan 
coil units 

      

8  Minimum fresh air, radiators 
and chilled beams 

      

Table 13. Summary of options for heating ventilation and air conditioning strategies  

3.5.9 Costs for HVAC systems 

A professional quantity surveyor provided cost estimates for the alternative HVAC systems. 

These costs were associated with the DesignBuilderTM construction templates for use by 

EnergyPlusTM to compile costs for the project.  

The costs that were provided were for the equipment and its installation only and excluded 

power, controls, building management system, ancillary works, builder’s work, main 

contractor’s preliminaries, overheads, profit, risk allowances or contingencies. 



 98    

The costs per square meter of floor area are shown in Table 14. 

System Cost  Notes 

Underfloor heating £40/m2 Excludes central plant and 
associated distribution 

Secure ventilators £100/m2 Budget quotation from ADS 
Limited associated with their 

FLW 28 product 

Perimeter heating only £160/m2 Pump, radiators, gas boiler, 
insulation etc. 

Displacement £275/m2 Centralised system 
including floor grilles 

Minimum fresh air with 
Variable Refrigerant Flow 

£300/m2 Assumed to be a 4-pipe 
system 

Variable Air Volume  £345/m2 Centralised system with no 
local heating or cooling 

within the VAV units 

Minimum fresh air with Fan 
Coil Units 

£365/m2 4 pipe units 

Minimum fresh air with 
chilled beams 

£395/m2 Ventilated active chilled 
beams 

Table 14. Summary of cost for options for heating ventilation and air conditioning 

strategies. 

From the costs provided above, the costs for the system options in Table 15 were compiled. 

  



99 

 

Ref HVAC solution Total cost 

0 No treatment £0/m2 

1 Displacement £275/m2 

3 Minimum fresh air and variable refrigerant flow £300/m2 

6 Variable air volume £345/m2 

7 Minimum fresh air and fan coil units £365/m2 

2 Secure vents, chilled beams and displacement £495/m2 

5 Secure vents under-floor heating and displacement £495/m2 

4 Secure vents radiators and displacement £505/m2 

8 Minimum fresh air, radiators and chilled beams £555/m2 

Table 15. Summary of costs for heating ventilation and air conditioning strategies. 

3.6 Baseline results 

Once the model had been constructed, a simulation was carried out to establish the baseline 

and to prepare the model for the optimisation. 

The simulated energy use was 829,000 kWh and the estimated cost of the building was 

£14,957,000. 

3.6.1 Results of Optimisation 

The results of the simulations were plotted as a scatter diagram using Excel in Figure 11. The 

points on the Pareto Front were plotted as an additional series so they could be highlighted in 

a different colour. The results from the reference design were also included as a single data 

point. 
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Figure 11. Results of optimisation simulations of the Creative Hub 
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The Pareto-efficient points which are shown as Series 2 represent a significant reduction in cost 

for the same energy performance.  

The difference between the construction and the systems are summarised in Table 16 below. 

Parameter Reference Design Pareto solution 

Simulated annual energy 
consumption 

829,327 kWh 835,030 kWh 

Simulated construction cost £15,000,000 £14,600,000 

External wall construction 
Type 4 

0.197 W/m2K 0.254 W/m2K 

External wall construction 
Type 2 

0.197 W/m2K 0.254 W/m2K 

Flat roof construction 0. 197 W/m2K 0. 197 W/m2K 

Lighting template LED with linear/off control LED no control 

Glazing type 1a Pilkington Optifloat 
Bronze 

2a Pilkington Suncool 70/35 

HVAC Zone A 1 Displacement heating and 
cooling 

6 VAV 

HVAC Zone B 2 Secure vent, displacement 
heating and chilled beam 

1 Displacement heating and 
cooling 

HVAC Zone C 2 Secure vent, displacement 
heating and chilled beams 

1 Displacement heating and 
cooling 

HVAC Zone D 5 Secure vent, UFH, 
displacement 

1 Displacement heating and 
cooling 

HVAC Zone E 6 VAV 1 Displacement heating and 
cooling 

Table 16. Comparison between Reference (non-optimised) and Closest Pareto Efficient 

Solution for the Creative Hub Case Study Building. 
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3.7 Implications of optimisation study 

This case study clearly demonstrated the benefits of carrying out an optimisation on the early 

design stage design that had been developed by others.  

Some savings could have been made if the heuristic rationalisation had been carried out, even 

without the optimisation, but overall the process outlined in this chapter clearly demonstrate that 

a simpler, more cost effective solution could have been produced.  

It could be argued that the savings found are relatively small compared to the overall cost of the 

project (around 2.7%). However, the magnitude of the savings of £400,000, would have been large 

compared to the cost of the engineering time required which was around £15,000.  

The next chapters will present data from three case studies where optimisation is applied to the 

calibration of building energy models.   
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Chapter 4 Assessment of applications of optimisation to building energy 

model calibration. 

4.1 Heuristic calibration of Institute of Life Science Building 1 

This chapter contains a description of the work carried out, and resulting findings, from a case 

study based at the Institute of Life Sciences Building 1 (ILS1) at Swansea University. It 

demonstrates the challenges of using BMS data for a heuristic calibration of a building energy 

model. 

Initially, the investigation into methods for calibrating building energy models in a commercial 

environment started with an assumption that models would be best calibrated using a heuristic 

method. The case study method was selected to test the practicality of obtaining data from the 

building management system of building, which had been completed and was being used. 

The object of the case study in this chapter was to determine how much useful data could be 

obtained from the building, which could then be used to calibrate a building energy model of the 

building. The longer term goal would then be that of discovering how this information might be 

used in combination with existing methods to provide a practical method for calibrating building 

energy models in a commercial environment.  

Specifically, the objectives of the case study were to: 

 Produce an EnergyPlusTM model of a building which could predict energy use for comparison 

with metered consumption. 

 Obtain data about the energy consumption of the building which could then be used to assess 

the accuracy of the building energy model. 

 Obtain data on the operation of the building from the building’s existing building management 

system which could then be used to improve the quality of the building energy model. 

4.1.1 Institute of Life Sciences Building 1 

The Institute of Life Sciences Building 1 (ILS1) is a laboratory building completed in 2006 to 

provide laboratory, office and teaching space at the University of Swansea. The building was 

designed for around 200 staff and has a total treated floor area of 5,400 m2 over seven stories 

(Boyce, H., Austin, B., 2009). The building features a central atrium which runs full height through 

the building. Heating and cooling are provided from ground source heat pumps using network 

electricity. A minimum fresh air system provides ventilation to the building and heating and cooling 

are provided by fan coil units in laboratory, classroom and office spaces. Specialist extraction air 
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is provided for fume cupboards. The building also contains a Category 3 (Cat 3) Laboratory which 

provides a high degree of security for experiments that deal with dangerous organisms. 

A comparison of the rendered DesignBuilderTM model and a photograph taken on site is given in 

Figure 12 

 

Figure 12. A comparison between ILS1 and DesignBuilderTM Model. 

The building is controlled by a Building Management System (BMS). Access to the BMS can be 

made through a campus-wide Human Machine Interface (HMI) via computers on the campus 

Local Area Network (LAN). The HMI provides a series of operator screens that enable users to 

make changes to the settings on the BMS and to set up logs which record data from the 

instruments in the building. At the time of the investigation (early 2013) access could be made to 

the BMS from outside the campus using the web-based remote tool LogMeIn (logmein.com, 

2015). LogMeIn provides a relatively simple interface that allows a user to operate an onsite 

computer, using a computer, keyboard and mouse that is located at another site, and connected 

to the internet.  
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4.1.2 Results of ILS1 Investigation 

Despite care being taken to ensure that a complete recording was being taken, most of the data 

were lost due to a failure of the server which was outside the control of the author.  

Following the failure of the server, nearly two years of data were lost. No data were recovered 

from back-up drives. It would appear that the problem was that, while back-up drives were 

available to restore information held prior to the system crash, the recording of new data did not 

recommence. This is a risk that is not usually taken into consideration when designing building 

management systems, but should be considered for future installations.  

The risk of data loss could have been mitigated by the author with more regular backups of the 

database being taken throughout the period when data was assumed to be being collected. More 

regular checks would have also uncovered impact of the crash earlier. This is certainly a 

recommendation for future work.  

The only data available for analysis came from an earlier copy of the database. A copy of the 

database was made early in the investigation to confirm that the reading from the building were 

being recorded and that a system was in place to copy the database when the time came for 

analysis. This copy contained under three months of data. 

This data was analysed in some depth to see if useful information could be obtained. The results 

of that analysis is contained in Appendix A3.  

4.1.3 Discussion of Results 

There must be sufficient information about the actual performance of the building to be able to 

calibrate a building energy model. The heat meter readings for ILS1 were also missing from the 

database. This was a critical failure, which effectively meant that there was insufficient data to 

calibrate the building energy model. 

Just under 12 weeks of hourly data were obtained for 1322 data channels. Of these, 15% were 

missing or blank. Of the remaining 1114 logs 47% were potentially erroneous. 

A large number of logs contained long periods of full-scale readings which were not expected. 

Closer examination showed that these periods of full-scale occurred at common times which 

indicates a common cause. 

Similarly, the meter recordings stopped after a relatively short period. This fact, and the complete 

loss of the heat meter data, meant that there was insufficient data to calibrate the model and 

another way to investigate the research question needed to be found. 
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Following the failure of the calibration of ILS, it was apparent that another method of calibrating 

building energy models would be required which would not necessarily rely on extensive BMS 

monitoring.  

4.1.4 Conclusions from ILS1 case study  

The database was capable of being loaded and queried; however, there were no data associated 

with the lighting systems and data relating to other systems had significant gaps and showed signs 

of containing errors.  

Even with modern BMS systems, the collection of data is not a simple task. Once access has been 

gained to a building, the BMS may not be robust, and even when it appears to be operating 

correctly, has been shown to omit data.  

A heuristic method, based on the accumulation of data by a building management system, was 

not suitable for calibrating the building energy model because data was not reliable recorded. 

Future work should ensure regular checks are made on the accumulation of data. Building 

management systems that are going to be used for the collection of data should have robust 

functionality that ensures that data collection continues after there is a system crash. 

4.2 Case Study: Sensitivity analysis of an EnergyPlusTM model  

As described in the previous chapter, the attempt to calibrate a building energy model using 

heuristic methods failed as a result of the loss of data from the building management system. 

While a heuristic investigation could have proceeded using data gathered on-site using data 

loggers or blink tests, this would have been impractical due the engineering time which would 

have been required. Instead, focus was shifted to methods of calibrating building energy models 

using a deterministic method. 

Building energy models are defined by a set of parameters which notionally correspond to 

engineering concepts. These engineering concepts are an attempt to describe the physics of 

buildings. For example, walls may be described by geometric coordinates and the heat transfer 

coefficient of the materials that comprise the wall. The heat transfer coefficient is an application of 

physics found to be useful when attempting to predict the relationship between the properties of a 

surface and the heat flowing across it. 

In heuristic calibration techniques, the modeller might use their experience of observing the 

construction of buildings. Observing the effect of reducing or increasing the heat transfer 

coefficient, they might seek to change the value of the heat transfer coefficient to better reflect the 
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wall in the constructed building. Their decision as to the appropriate value might be supported by 

a site investigation into the construction of the wall, where holes are made in the wall to visually 

inspect the as-built construction. 

In a deterministic calibration technique, the selection of appropriate values is made by searching 

the parameter space for values which result in the least divergence between simulated and 

measured energy use. Since the energy model is only a representation of the physics that is being 

applied to the building, and both the representation in the modelling code and the physics 

represent additional abstractions, it could be argued that more appropriate selection of values for 

parameters could compensate for some of the inherent errors in the modelling process.   

This chapter contains the results of the sensitivity analysis which formed the first step in applying 

a deterministic approach to an EnergyPlusTM building energy model. 

4.2.1 Number 8 Fitzroy St, London 

Arup operates a building at Number 8 Fitzroy St in London, in which special attention has been 

paid to the recording of energy use. If the quality of the data was adequate, then this would at 

least provide the essential element for energy model calibration: that is, data about the actual 

energy consumption of a building against which the predictions of the building energy model can 

be compared. 

At the same time a method was required which could be applied with minimum input from 

engineers, but which would enable a model to be modified so that the predicted energy 

consumption would fall within the requirements of ASHRAE 14.  

A deterministic method based on a parametric analysis followed by a Monte Carlo search of the 

parameter space for suitable values was then adopted. It was decided that the method be applied 

using Number 8 Fitzroy St as the second case study. The results of that case study are contained 

in the following chapters.  

4.2.2 EnergyPlusTM model 

An EnergyPlusTM model was constructed to represent the Arup building at 8 Fitzroy St in London 

using DesignBuilderTM 3.4 as shown in Figure 13.  
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Figure 13. DesignBuilderTM 3.4 model of 8 Fitzroy St, London. 

8 Fitzroy St was selected because a full set of design and construction documentation existed for 

the building and a full set of hourly meter readings was available against which the model could 

be calibrated.  

Number 8 Fitzroy St (Fitzrovia) is a six-storied office block in central London as shown in Figure 

14. It has a basement which includes a sound studio, a kitchen and large meeting halls, and there 

is an atrium which runs up through the whole building.  
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Figure 14. 8 Fitzroy St, London 

Most of the accommodation in Number 8 is open plan, but it also includes a number of closed 

meeting rooms which are available for confidential discussions and team meetings.  

The building is served by a minimum fresh air system and chilled beams. The facade has high 

performance solar excluding glazing and was intended to be a showcase for good engineering 

services design.  

4.2.3 Evaluating the Difference between Simulated and Measured Energy Consumption 

A complete set of energy meter readings for 2013 was obtained from the facility manager for 8 

Fitzroy St. The data were supplied in Excel spreadsheets which contained ½ hourly meter 

readings. 

The first task was to check that the dates used in the simulation were aligned with the actual date 

under consideration.  

The first day in January 2013 was a Tuesday and was a bank holiday in the United Kingdom. A 

visual inspection of the daily energy consumption showed a clear pattern of one day with low 

energy consumption followed by three days of normal consumption, then two days of limited 
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consumption and a further five days of normal consumption; as can be seen in Figure 15, this was 

as expected. 

 

Figure 15. Measured Daily Energy Consumption for 8 Fitzroy St, London in January 2013. 

The first day of the simulated energy use shown in Figure 16 was also a Tuesday, however the 

original activity schedules in DesignBuilderTM did not treat the 1st of January as a Bank Holiday so 

the simulated energy use shows substantial energy consumed, whereas the meter data do not. 
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Figure 16. Simulated Daily Energy Consumption for 8 Fitzroy St, London in January. 

Once it had been confirmed that the simulation energy consumption data aligned with the actual 

days of the week, the measured and simulated energy consumptions were compared for the 

month of January 2013. The superimposed data are shown in Figure 17. 
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Figure 17. Comparison of Measure and Simulated Hourly Total Energy Consumption for 8 

Fitzroy St, London in January 2013 

 

 

From inspection, simulated and metered energy use correlated by day but that there was a 

significant underestimation of the amount of energy that was being consumed in weekends in the 

second half of the month. This was likely to be due to staff returning to work after the Christmas 

break.  

The Normalized Mean Bias Error (NMBEhourly) and Coefficient of Variance for Root Mean Square 

Error (CVRMSEhourly) were calculated using the formulae provided in ASHRAE 14. 

Under the requirements of ASHRAE 14, a model can be considered calibrated if the NMBE and 

CVRMSEhourly are within 10% and 30% respectively. A comparison of the level of calibration 

between the requirements of ASHRAE 14 and the results for 8 Fitzroy St are given in Table 17. 
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 ASHRAE 14 maximum 
allowable 

Un-calibrated simulation 

NMBEhourly 10% 14% 

CVRMSEhourly 30% 41.6% 

Table 17. Comparison of the level of calibration between the requirements of ASHRAE 14 

and the results for 8 Fitzroy St. 

Table 17 shows that the design model which was produced solely using design information, would 

not be classified as calibrated under AHSRAE 14. 

4.2.4 Automatic evaluation of CVRMSEhourly and NMBEhourly based on hourly 
measurements 

Under ASHRAE 14, CVRMSEhourly and NMBEhourly can be evaluated on either an hourly or monthly 

basis.  Evaluation on an hourly basis was chosen as the more rigorous test for calibration.  

Initially an Excel spreadsheet was used to calculate the hourly CVRMSEhourly and NMBEhourly for 

the un-calibrated model. While this was not particularly onerous for the results of one simulation, 

repeating the analysis for thousands of simulations which can be run from jEPlus, would not have 

been practical. Instead a simple tool was developed using the Excel programming language Visual 

Basic for Applications (VBA). This script cycles through the results of multiple simulations 

produced by jEPlus, evaluates the CVRMSEhourly and NMBEhourly and stores the results in a CSV 

file for later evaluation. 

There was hope that the work carried out in this thesis would be applied to a number of buildings 

with some benefit to the Ph.D. candidate’s employers, so the script was written by a graduate 

engineer under the supervision of the candidate. 

In summary, the process that the script follows is:  

 jEPlus v1.5 creates a job file for each simulation which contains an IDF for the model 

containing all the values for the parameters for each iteration.  

 jEPlus executes the EnergyPlusTM simulation and the results are stored in a file called 

Eplusout.csv.  
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 The VBA evaluation script cycles through the job files, calculates the CVRMSEhourly and 

NMBEhourly compared to the metered energy file and stores the two values against the name 

of the job file in another CSV file called Results.csv.  

 The results are inspected using Excel. 

This script was also used to evaluate the results of the main Monte Carlo search to find the values 

which best represent a calibrated model which is described in more detail below. 

4.2.5 Calibration Process 

This deterministic process of calibrating the building energy model can be broken down into two 

steps. A test is made of the relative influence that the parameters have on the simulated energy 

use. Then a search is made of the influential parameter subspace for values which produce the 

best fit between simulated and metered data. A Latin Hypercube Monte Carlo search was 

performed because of the ease of implementing the search algorithms.  

This thesis examines the practicality of applying a calibration methodology in a commercial 

environment. Once the decision on the method of calibration is established there are a number of 

questions that need to be answered about the details of its implementation.  

 What is the minimum dimension of the influential parameter space that must be searched in 

order to produce a calibrated model? 

 How should inputs for the Monte Carlo search be distributed and what range should they be 

distributed over? 

There is also room to improve the process which is used to determine the influential parameters. 

In sensitivity analysis the nominal values for all the parameters in the energy model are varied by 

a set amount and the relative effect on the simulated annual energy consumption is reported. The 

most influential parameters are determined to be the ones which most greatly influence the 

simulated energy use.  

The first parametric test jEPlus v1.5 was used to compare the influence of reducing the value of 

each parameter by 20% on the simulated annual energy use of the model of 8 Fitzroy St.  

However, the overall calibration process is concerned with the influence a parameter has on 

improving the goodness of fit between simulated and measured energy use. This implies that it 

would be more appropriate to test a parameter’s influence on CVRMSEhourly and NMBEhourly than 

on annual energy consumption. 
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At the end of the process, the parameters with the greatest influence on the simulated energy 

consumption can then be read from a spreadsheet. 

Manual editing of the EnergyPlusTM Input Definition File (IDF) produced a list of 2480 parameters 

to be evaluated. Each parameter was evaluated using jEPlus by varying the value of the parameter 

by -20%. jEPlus produced a summary file which was imported into Excel. The difference between 

the annual energy consumption and the annual energy consumption with each decreased value 

for the parameter of interest was calculated and the parameters were sorted based on the relative 

magnitude of the deviation.  

4.2.6 Results 

There were 44 parameters for which a 20% decrease in the value of the parameter from the 

nominal (design) value resulted in a change in the simulated annual energy consumption of more 

than 1%. A list of the 20 most influential parameters is given in Table 18.  
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Table 18. First 20 parameters with an effect of greater than 1% on simulated annual energy 

consumption when the value of the parameter is decreased by 20% 

4.2.7 Discussion of the results 

The parameters in Table 18 can be grouped according to the class of input where they are 

documented in the EnergyPlusTM IDF. 

The most influential parameters describe: 

Ref Relative 
Effect 

Nominal 
Value Parameter description 

1 5% 3.4 Chiller baseline coefficient of performance {W/W} 

2 5% 0.933884 Chiller performance bi-quadratic coefficient 

3 4% 1.15 Cooling sizing factor 

4 3% 0.7 Building fan efficiency 

5 3% 1 Air distribution effectiveness in cooling mode {dimensionless} 

6 3% 1 Air distribution effectiveness in heating mode {dimensionless} 

7 3% 1 Heating sizing factor 

8 3% 0.1 Chiller minimum part load ratio 

9 3% -0.058212 Chiller performance bi-quadratic coefficient for x 

10 3% 0.008 Outdoor air flow per person {m3/s-person} 

11 3% 0.222903 Chiller performance bi-quadratic coefficient  

12 2% 600 Building fan developed pressure {Pa} 

13 2% 0.00450036 Chiller performance bi-quadratic coefficient for x2 

14 2% 14 Cooling design supply air temperature {C} 

15 2% 0.65 Sensible effectiveness at 100% heating air flow {dimensionless} 

16 2% 43541 3rd Floor office electrical gain (kW) 

17 2% 32656 Lighting Level {W} 

18 2% 0.04 Condenser fan power ratio {W/W} 

19 1% -0.001215 Chiller performance bi-quadratic coefficient for x*y 

20 1% 18.6 Wetbulb or dew point at maximum dry-bulb {C} 
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 Design day conditions used to size cooling equipment; 

 Ventilation rate per person; 

 Sizing factors (factors of safety); 

 Ventilation supply temperature; 

 Occupant density; 

 Lighting energy density; 

 Electrical equipment energy density; 

 Fan efficiency; 

 AHU and FCU fan developed pressure; 

 Hot water part load ratios; 

 Chiller performance: COP, Unloading ratio, and Condenser fan power ratio; 

 Chiller performance curve parameters. 

This suggests that greater attention is warranted in the selection of values for these parameters 

at the design stage.  

4.2.8 Errors and incomplete simulations 

EnergyPlusTM runs sub-routines which are designed to identify errors in input data. When these 

are identified, EnergyPlusTM identifies a “fatal” error and terminates the simulation. When some of 

values were reduced by 20%, a fatal error was produced and the simulation terminated.  

On inspection, there were only four parameters that produced fatal errors when reduced by 20%. 

These were: 

 Ratio of Frame-Edge Glass Conductance to Center-Of-Glass Conductance; 

 Ratio of Divider-Edge Glass Conductance to Center-Of-Glass Conductance; 

 Basin Heater Setpoint Temperature {C}; 

 Maximum Part Load Ratio. 

EnergyPlusTM required these parameters to have values not less than their nominal value. 

Variation of these parameters did not make sense from an engineering point of view and were 

discarded from further analysis. 

4.2.9 Effect of parameters on CVRMSE and NMBE 

Examining the sensitivity of the annual energy consumption to changes in values of input 

parameters is useful. However, the focus of calibration should be on the sensitivity of 
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CVRMSEhourly and NMBEhourly to changes in values of input parameters since these are the 

measures that are being affected. This gives rise to the question: 

What is the relative effect of changes to values of input parameters on CVRMSEhourly? 

This was evaluated by calculating the CVRMSEhourly and NMBEhourly for the revised parameter 

values in the previous exercise and ranking the parameters by the change in CVRMSEhourly or 

NMBEhourly.  

For this experiment, attention was focused on the 44 parameters identified which resulted in a 

deviation from the nominal simulated annual energy consumption of more than 1%. 

A batch of 44 simulations was run using jEPlus v1.5. Once the simulations were complete, the 

Excel script, described in Section 4.2.4, was used to calculate the CVRMSEhourly and NMBEhourly 

for each parameter whose value had been varied by 20% from nominal. Then the calculated 

CVRMSEhourly and NMBEhourly were compared against the CVRMSEhourly and NMBEhourly for the 

simulation based on nominal values and the parameters were ranked by impact.  

It is important to note that, at this stage in the evaluation, the emphasis was not on looking for 

improvements i.e. reductions, in CVRMSEhourly as the parametric runs only considered a change 

in the values of the parameters – not necessarily a better informed value. 

The relative impact of varying the values selected for parameters is compared in Table 19. The 

parameters were ranked in order of their relative effect on the three valuation criteria: 

 Impact on annual energy consumption; 

 Impact on CVRMSEhourly; 

 Impact on NMBEhourly. 

The table was examined to see how much the parameters moved in ranking depending on the 

evaluation criteria.  

The relative rank of the influence of parameters changes depending on the method used to 

evaluate their influence: annual energy consumption, NMBEhourly or CVRMSEhourly, so the relative 

shift in rankings between evaluation criteria was also calculated. Three columns in Table 19 are 

included which show the change in the ranking of the parameter if the criteria are shifted from 

annual energy consumption to NMBEhourly, from annual energy consumption to CVRMSEhourly, or 

from NMBEhourly to CVRMSEhourly. These changes in rank have been colour coded to highlight 

where there are large changes in rank between evaluation criteria. Green indicates relatively small 

changes. Red indicates large changes.  
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Parameter 
Nom. 
value 

Rank 
Energy 

Rank 
NMBE 

Rank 
CV 
RMSE 

Rank 
change 
Annual  
 & 
NMBE 

Rank 
change 
Annual 
& 
CVRMSE 

Rank 
change 
NMBE 
& 
RMSE 

Building fan efficiency 
           
0.70  4th 4th 1st 0 3 3 

Outdoor air flow per person 
{m3/s-person} 

               
0.01  9th 8th 2nd 1 7 6 

Building fan developed 
pressure {Pa} 

          
600  11th 10th 3th 1 8 7 

Cooling design supply air 
temperature {C} 

            
14  13th 12th 4th 1 9 8 

Air distribution effectiveness 
in cooling mode  

               
1.00  5th 5th 5th 0 0 0 

Air distribution effectiveness 
in heating mode  

               
1.00  6th 6th 6th 0 0 0 

Chiller model bi-quadratic 
coefficient for y 

               
0.05  34th 33rd 7th 1 27 26 

Sensible effectiveness at 
100% heating air flow  

               
0.65  14th 13th 8th 1 6 5 

Zone design electrical load 
{W} 

    
26,370  24th 14th 9th 10 15 5 

Cooling sizing factor 
               
1.15  3rd 3rd 10th 0 7 7 

Chiller model bi-quadratic 
constant 

               
0.93  2nd 2nd 11th 0 9 9 

Wetbulb or dewpoint at 
maximum dry-bulb {C} 

            
18.6  19th 18th 12th 1 7 6 

5th Floor office electrical 
load {W} 

    
36,551  36th 23th 13th 13 23 10 

3rd Floor office occupancy 
          
217  25th 24th 14th 1 11 10 

Zone design level {W} 
    
26,618  40th 27th 15th 13 25 12 

Chiller reference coefficient 
of performance {W/W} 

               
3.40  1st 1st 16th 0 15 15 

Chiller minimum unloading 
ratio 

               
0.25  23th 22th 17th 1 6 5 

July ground temperature {C} 
            
18.00  39th 38th 18th 1 21 20 

4th Floor office design 
electrical load {W} 

    
42,529  31st 30th 19th 1 12 11 

Chiller model bi-quadratic 
constant 

               
0.22  10th 9th 20th 1 10 11 

Table 19. Colour coded relative changes to rankings of important impactful dependant on 

sensitivity test applied 
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4.2.10 Interpretation of Results 

Table 19 shows that parameters can change significantly in perceived importance depending on 

the criteria used to evaluate their significance.  The rank of parameters changes significantly 

depending on whether their impact is based on annual energy consumption, CVRMSEhourly or 

NMBEhourly.  

It was clear that a more rigorous approach to the ranking of parameters needed to be developed. 

This is addressed in the next section. 

4.2.11 Wider Search  

The search methods applied up to this point used relatively crude methods to defining alternatives. 

While the selection of a value of 20% less than the nominal value, has some precedent in the 

literature (O’Neill, Eisenhower, Yuan and Bailey, 2011), other values have also been used, and 

there is little reason for one value to have precedence over another.  

Although, the evaluation of the impact of a parameter by examining the impact on CVRMSEhourly 

or NMBEhourly obviously makes more sense, the selection of a value of 20% less than the nominal 

value is still relatively arbitrary. 

From a purely mathematical point of view, searching the complete parameter space for values 

which would best allow a simulation to fit metered data would be useful. However, it must be 

recognised that the parameters have a basis in physics and the values are estimates selected by 

engineers who are attempting to find values for the parameters, which reflect their significance in 

engineering.  From this point of view, it is attractive to attempt to search for values that are in the 

vicinity of the nominal values, which were selected for the design simulation.  

The test was to search the parameter space in the vicinity of the nominal values more thoroughly, 

and to evaluate the impact of the changes in values in terms of CVRMSEhourly and NMBEhourly. This 

was done using multiple test values for each parameter.  

A normal distribution of values was chosen for each parameter. The workstation that was available 

to run simulations using jEPlus could run 48 simulations in parallel, so 48 values were chosen for 

each parameter. The values were chosen using Excel’s random number generator with the 

nominal value used as the average and a standard deviation, which equated to 20% of the nominal 

value.  

Under this scenario, the most influential parameter is defined as the parameter for which a normal 

distribution of input values results in the greatest improvement in CVRMSEhourly or NMBEhourly.  
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For this test, 48 values were selected for 44 parameters that required 2,112 simulations. The 

simulations were managed using jEPlus v1.5. 

The most significant variables, and the values which gave the 10 best CVRMSEhourly and 10 best 

NMBEhourly, are given in Table 20 and Table 21.   
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Rank 
(CVRMSE) Parameter Name 

Nominal 
Value 

Optimised 
Value NMBE CVRMSE 

1st Building fan efficiency 0.7 0.25938 -6.96094 38.43549 
2nd Cooling design supply air temperature {C} 14 20.47179 -0.06407 39.045 
3rd Building fan pressure developed {Pa} 600 930.2557 8.777236 39.75568 
4th Sensible effectiveness at 100% heating air flow {dimensionless} 0.65 0.919353 8.909079 39.80055 
5th Air distribution effectiveness in heating mode {dimensionless} 1 0.635638 7.784365 40.49807 
6th Outdoor air flow per person {m3/s-person} 0.008 0.011227 9.607789 40.66102 
7th Chiller performance model bi-quadratic coefficient for Y4 0.0468684 0.026661 15.84212 40.68146 
8th Air distribution effectiveness in cooling mode {dimensionless} 1 0.728771 9.942595 40.70818 
9th 3rd Floor office electrical Load {kW} 43541.284 26445.46 17.31707 40.81638 

10th July ground temperature {C} 18 26.51575 12.31716 41.02204 

Table 20. Ten most significant parameters and their impact on NMBEhourly and CVRMSEhourly ranked by CVRMSEhourly. 
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Rank 
(NMBE) Parameter Nom Value NMBE CVRMSE 

1st Cooling design supply air temperature {C} 14 20.47179 0.06407 39.045 
2nd Air distribution effectiveness in cooling mode {dimensionless} 1 0.485328 2.414793 40.80838 
3rd Cooling sizing factor 1.15 1.90835 3.310484 43.32882 
4th Chiller performance model bi-quadratic coefficient for x*y -0.001215 0.000769 4.103332 43.07508 
5th Baseline chiller coefficient of performance {W/W} 3.4 2.206225 4.469356 42.9538 
6th Building fan efficiency 0.7 0.399432 4.665463 38.83837 
7th Zone air distribution effectiveness in heating mode {dimensionless} 1 0.635638 7.784365 40.49807 
8th Building fan developed pressure {Pa} 600 930.2557 8.777236 39.75568 
9th Sensible effectiveness at 100% heating air flow {dimensionless} 0.65 0.919353 8.909079 39.80055 

10th Chiller performance model bi-quadratic coefficient constant 0.933884 1.172571 9.044068 41.89553 

Table 21. Ten most significant parameters and their values and their impact on NMBEhourly and CVRMSEhourly ranked by NMBEhourly. 
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Six parameters appear in both tables; this is notable because, independent of whether the term 

“influential” is defined by NMBEhourly or CVRMSEhourly, these parameters must qualify as influential. 

Furthermore, the top five parameters ranked by CVRMSEhourly all also appear in the top 10 for 

NMBEhourly. 

At this stage it appeared that a decision should be made to focus on pursuing CVRMSEhourly or 

NMBEhourly. 

4.2.12 CVRMSE or NMBE 

NMBEhourly is a measure of the error between the simulated and actual data. NMBEhourly is the 

average of the errors divided by the average of the observations. 

CVRMSEhourly is a measure of the dispersion of the error between the simulated and actual data. 

CVRMSEhourly is the standard deviation of the errors divided by the average of the observations. 

Both NMBEhourly and CVRMSEhourly are necessary to eliminate allowing certain types of errors to 

be classed as acceptable. If NMBEhourly was the only measure, large variations in simulated 

estimates would be acceptable, as long as the total error above and below the simulated energy 

consumption balanced. If CVRMSEhourly is the only measure, then large offsets with little variation 

would be acceptable. 

In the Monte Carlo Sensitivity Analysis, there were 121 solutions already identified that reduce the 

NMBEhourly below the 10% threshold defined by ASHRAE 14 whereas the best combination of 

value and parameter for CVRMSEhourly only resulted in a decrease from 41.6% in the uncalibrated 

model to 38.4% in the revised model. This suggests that meeting the CVRMSEhourly criteria is more 

stringent than meeting the NMBEhourly criteria and implies that if CVRMSEhourly is met, then 

NMBEhourly will follow. CVRMSEhourly, was selected as the determining factor because it is harder 

to achieve than NMBEhourly but that a check would also be made of NMBEhourly to ensure that once 

a set of values has been obtained, that the solution also meets the NMBEhourly criteria. 

4.3 Latin Hypercube Monte Carlo Search for Calibration of an EnergyPlusTM Model 

A series of simulation runs were made to determine how many parameters would need to be 

included in a Latin Hypercube Monte Carlo search to find a solution that meets the criteria of 

ASHRAE 14. 

The searches were formulated based on the results of the Monte Carlo Sensitivity test results of 

a parameter’s influence on CVRMSEhourly.  
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Since the workstation used was capable of running around 2000 simulations overnight it made 

little sense to test the influence of each parameter with a total number of simulations of less than 

2000. Therefore, a series of 2000 simulations were carried out based on combinations of the most 

influential CVRMSEhourly parameters. First only one parameter was tested, then two, then three 

etc. The improvement in the best identified CVRMSEhourly was then plotted against the number of 

parameters used in the simulation. The NMBE was also calculated and is also displayed on the 

graph of the results. 

The EnergyPlusTM IDF files were modified manually using Notepad++ and the simulations were 

manually organised in jEPlus v1.5. 

Once the changes were made the IDF was saved for processing with jEPlus. 

The first batch of simulations was run with all 2000 random values for Fan Efficiency. Later 

simulations were run with a Latin Hypercube sample from the total set of permutations. 

The assessment was carried out by assembling all the necessary files in the results directory and 

running the Excel VBL macro. 

Initially, there was a problem with running the script. When the script was first developed, it was 

designed to assess the output of parametric runs which were assembled for processing in jEPlus 

using the Python script. The names produced by the Python program have the form “J1”, “J2”, 

“J3”… etc. so the first iteration of the VLB script read the names of the folders in the output 

directory and looped through the folders with names J followed by a series of numbers: 1 to the 

total number of files in the directory. When the parametric runs are assembled in jEPlus the names 

of the output folders were produced by jEPlus, which uses a different algorithm and produces 

different names. The names of the jEPlus out folders have the form “EP_G-T_0-W_0-P1_n”, 

where n is the sequential number of the run, so the script could not be simply applied to the new 

set of results. The script was modified so it would read in all the names of the output folders 

irrespective of the format. 

4.3.1 Results of Monte Carlo Searches 

Once the EnergyPlusTM simulations were complete, the Excel script was used to calculate 

CVRMSEhourly and NMBEhourly which for 2000 files took around 13 minutes.  

The results of the series of simulations are given in Figure 18.  
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As the number of parameters was increased from one to ten, there was a steady reduction in 

CVRMSEhourly. However, as more parameters were added, the CVRMSEhourly rose and fell but did 

not drop below 30%, which would be required for the model to be considered calibrated to 

ASHRAE 14. 

It was apparent that adding additional parameters to the search space did not yield better 

calibrated models.  

It is interesting to note that the addition of each parameter did not necessarily decrease the 

CVRMSEhourly. This could be due to a flaw in the sensitivity analysis or could be due to the random 

nature of the Monte Carlo simulations.  

Overall, the trend was towards a value just short of the 30% target. With 200 simulations and 

around 10 parameters the value of CVRMSEhourly drops to around 33% and greater numbers of 

parameters produce a minimum figure of 32%. This likely represents the lowest value that can be 

achieved without the application of weather or occupancy data.  

4.3.2 Omissions and weaknesses of the process 

 Areas where the process is open for criticism are: 

 The analysis does not examine the influence of the Energy Plus Weather (EPW) file on output 

from the simulations. 

 The analysis does not examine the influence of operating schedules on the output from the 

simulations 

 The analysis could use a wide range of values for the deviation of the input instead of 20%. 

 The influence of values representing temperature in degrees Celsius are skewed by a 

universal variation of 20%. 

The process used for the parametric optimisation is far from perfect, however the test in a 

commercial environment is fitness for purpose. 

4.3.3 Future work 

Since the model did not achieve a CVRMSEhourly of below 30% more simulations might need to be 

carried out to more thoroughly search the parameter space. The number of simulations used 

previously was 2000 because this was a feasible number to run in a few days. With a dedicated 

PC there was a possibility to run many more calculations over a correspondingly larger time frame. 

This is discussed in more detail in Chapter 5.  
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Figure 18. Decrease in minimum CVRMSEhourly found with increasing number of parameters used in 2000 Latin Hypercube Monte Carlo 

simulations. 
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4.4 Case Study: Calibration of an EnergyPlusTM Model using Differential Evolution 

In the previous chapter, the calibration of a building energy model was shown to be improved by 

employing a Latin Hypercube (LHC) Monte Carlo sampling approach. However, Monte Carlo is 

known to be a computationally intensive method in optimisation problems. Evolutionary algorithms 

have been shown to provide a more efficient search of the parameter space because they use 

information obtained from early searches to guide the areas of focus towards more promising 

regions of the parameter space.  

The results of the LHC Monte Carlo search were next compared with those based on a differential 

evolution model. 

Differential evolution has already been described in the literature review. This chapter will describe 

the process by which differential evolution was applied to the calibration of a building energy 

model.  

4.4.1 Process development overview 

Work at the University of Sheffield has previously been used to apply a Self-Adaptive Differential 

Evolution (SADE) algorithm in the analysis of Generalised Extreme Value (GEV) Distributions. 

While the analysis of GEV distributions are outside the scope of this thesis, the optimisation 

procedure used in the exploration of GEV distributions transposes readily to the minimisation of 

divergence between measured and modelled data.  

The script (Worden and Manson, 2012), developed for the GEV study, was written in MatlabTM. 

This script was modified to run the processes necessary to perform the optimisation. The SADE 

process has already been described in the literature review, and was modified to call EnergyPlusTM 

to perform simulations using inputs representing vectors in the parameter space. 

Once the modifications were complete, a test was carried out to ensure that the script was 

operating correctly. The test procedure consisted of simulating a simple building: “House Example 

1” and using the output data as a baseline representing measured data. A limited number of 

parameters (four) were then perturbed to represent a design model and the calibration process 

was executed to ensure that the SADE process converged on the baseline data. 

Once the process was shown to be operating correctly, the SADE script was expanded to include 

the 20 parameters examined previously and the process was set to run on the EnergyPlusTM IDF 

for Arup’s Fitzrovia building. 
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4.4.2 Model to test correct operation of SADE script 

In the time since the original model of Number 8 Fitzroy St was produced, DesignBuilderTM had 

been updated to Version 5.4.9.021, which runs EnergyPlusTM Version 8.6.0.  

DesignBuilderTM comes with a number of templates including a simple residential building called 

House Example 1. House Example 1 is a two-storey semi-detached building which is fairly typical 

of residential British housing. It has medium weight construction, pitched roofs and double glazed 

windows. The building is heated using natural gas, but not comfort cooled. A rendered illustration 

of the building, taken from the DesignBuilderTM GUI, is given in Figure 19. 

 

Figure 19. Test building “House Example 1”. 

The IDF was checked to ensure that it could be run correctly using a command line interface. The 

IDF that was produced by DesignBuilderTM and the associated weather file was copied from 

DesignBuilderTM’s working directory to EnergyPlusTM’s program directory. A windows command 

shell was opened and EnergyPlusTM was executed from within the EnergyPlusTM directory. 

There are a number of other arguments that are accepted when running EnergyPlusTM, including 

a path to the input file (in.idf) and the weather file (in.epw); however, the programme looks for a 

weather file in the same directory as the executable file by default so running from within the 

program directory was the most expedient.  
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4.4.3 Testing Powershell commands 

The process of running the differential evolution algorithm followed a similar process to the one 

that jEPlus uses to manage parametric analysis. The values of parameters of interest are replaced 

by searchable strings. The SADE algorithm then searches the input file and replaces the strings 

with values from the parameter space which are to be tested. The difference between the Monte 

Carlo method and SADE methods is that for Monte Carlo the values are selected randomly from 

a Latin hypercube, whereas SADE generates new values influenced by the success of previous 

simulations. 

Powershell commands were used to execute EnergyPlusTM from within MatlabTM and to call the 

post processing program to produce the results file. 

Once the string substitutions were made into the IDF, a simple check file was written using 

Notepad++. The check file was comprised of the series of searchable strings representing the 

influential parameters and the default values which should yield the baseline.  The MatlabTM script 

was used to substitute values for the variables using Microsoft Powershell commands. Checks 

were made that the script ran correctly by inspecting the resulting modified IDF. 

Preliminary runs failed to execute correctly because the operating system delayed returning the 

revised IDF. This was fixed with a workaround to add a 5 second pause after each action in the 

MatlabTM code.  

There were some initial problems with obtaining a full year of test data. This was tracked down to 

the default setting in DesignBuilderTM which was set to model the operation of the example building 

over the design summer period, instead of a full year. Once this was discovered and changed 

within DesignBuilderTM, and the simulation re-run, a full year of baseline data was obtained for the 

test.  

A remaining problem was that each time a Powershell command was given, a new command shell 

was opened but not closed. This led to a build-up of open command shells which needed to be 

closed manually once the script had completed. Eventually this was solved by calling killtask.exe 

after each Powershell operation.  

There was also a problem with running the script in Windows 7. The script was developed on a 

Windows 10 laptop which was in everyday use, but the intention was to run the SADE calibration 

on a Windows 7 desktop which could be left doing simulations without being disturbed. When the 

test script was originally copied to the desktop computer, the Powershell commands didn’t 

execute. When the desktop was upgraded to Windows 10 the script ran correctly.  
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4.4.4 Generation of baseline data 

A baseline of data was needed so that there would be something for the SADE program to check 

against. The SADE script could then be tested to see if it was capable of re-discovering the values 

that had been used in the generation of the test case. This was produced using the EnergyPlusTM 

utility: ReadVarsESO.exe, which comes bundled with EnergyPlusTM. ReadVarsESO is a post 

processing facility which enables users to process the output files from EnergyPlusTM 

(eplusout.eso and eplusout.mtr) into a more usable form. The requirements for the new output file 

are saved in a file called eplusout.csv, which can be used as an input for the calculation of 

CVRMSEhourly. 

The results of simulation were copied in the ReadVarsESO post-processing directory and 

ReadVarsESO was used to compile the hourly energy consumption for the test model.  

4.4.5 Changes to SADE MatlabTM script 

Changes to the GEV SADE script were made to adapt it to delete the GEV functions, execute 

EnergyPlusTM simulations, post-process the results and evaluate the cost function (CVRMSEhourly). 

SADE simulations are run in populations which are grouped into generations. Once a defined 

population of simulations has been executed, the SADE algorithm is applied to the generation to 

produce a new generation which is used for the next population of simulations. 

The SADE algorithm also requires a number of hyper-parameters to be estimated. These are: 

 Initial ranges for parameter values; 

 Population size (number of simulations in a generation); 

 Number of generations (number of times the genetic algorithm is to be executed). 

4.4.6 Testing the modifications to the SADE script 

The process to check that the modifications to the SADE script were operating correctly was as 

follows: 

 Produce a baseline model (as above); 

 Nominate four influential parameters;  

 Record the default values for the parameters; 

 Modify the IDF by replacing the values of the influential parameters with searchable strings; 

 Run the SADE algorithm to search for values of the influential parameters; 
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 Check that the values obtained by the SADE agree with the default values used to generate 

the baseline set. 

The four initial changes that were made to the Input Definition File (IDF) are given in Table 23. 

A test was run to check that the differential evolution algorithm was performing correctly. The test 

was set up with a population of ten running over ten generations. The simulations ran successfully 

and the test took 2 hours and 9 minutes to run.  

The SADE search for the values used in the baseline are given in Table 22. The final value of 

CVRMSEhourly was -0.66%, so it was immediately obvious that there were some problems with the 

script. In addition, the SADE script produces a graph of the convergence of the cost function with 

the number of generations, which is given in Figure 20. The values are increasing, whereas the 

algorithm is expected to minimise the cost function and the values of the cost function are negative, 

which should be impossible.  This demonstrated that the algorithm was not operating correctly, 

even within the limited bounds of the initial settings.  

 

Figure 20. Convergence of CVRMSEhourly with generation number for the test of the 

modified SADE MatlabTM script. 
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Description Variable name Comment in IDF Original 

value 

Search 

range 

Final value 

Ground floor living room design 

lighting level 

VARS1 ! Watts per Zone 

Area 

15 14 to 16 15.4813 

Ground floor living room design 

equipment level 

VARS2 ! Watts per Zone 

Area 

3.9 3 to 5 4.3851 

Ground floor living room design 

ventilation rate 

VARS3 ! Natural Ventilation 

Rate 

0.10453 0.05 to 0.25 0.0788 

Design winter outdoor temperature VARS4 ! Max Dry Bulb {C} -4.4 -5 to -3 -4.6228 

CVRMSEhourly   (0)  -0.658 

Table 22. Results of initial testing. 
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A review of the code revealed that a flag for optimisation was set to maximise and that the script 

was selecting the incorrect column in an intermediate results file which was empty. This meant 

that the cost function was being incorrectly evaluated. 

In the course of trying to find the source of the errors, a series of simulations were carried out to 

check that the cost function did not have peculiar characteristics. A sensitivity test was carried out 

on each of the variables. The cost function was found to behave independently to the two 

variables: Ground floor living room design ventilation rate; and Design winter outdoor temperature. 

These were substituted with two variables that were tested and confirmed to have an influence on 

the cost function.  

The test was repeated with a broader range. Previous experience had shown that the population 

size for SADE should be 5 to 10 times the number of parameters that are being searched. 

Consequently, for four parameters the population size was set to 20.  

Initially, a test of 10 generations was carried out to confirm that the corrections had correctly 

identified the bugs. 

 

Figure 21. Successful convergence of the test simulations after 10 generations. 

To enable a good comparison with the results from the previous chapter, which applied a search 

of up to 2000 simulations, the number of generations was set to 100.  
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Figure 22. Evolution of cost function in final test. 

4.4.7 Correct Operation of the SADE script on “Example House 1” 

The values obtained while testing the SADE script agreed very well with values obtained from the 

preliminary simulation as shown in Table 23. This is important as it demonstrated that the script 

was operating correctly by being able to find the correct values of the variables from a global 

search.  

One point which might result in some confusion, is that the graphs above show the cost function 

running into negative values.  SADE is set to produce graphs with log values. In this case the cost 

function was not negative but was very small. 
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Parameter Original 

value 

Final test 

range 

Initial test results 

(10 generations) 

Final test results 

(100 generations) 

Ground floor living room design lighting load 15 0 to 40 21.2017 15.0099 

Ground floor living room design equipment load 3.9 0 to 40 0 3.8872 

Kitchen add-on equipment load  2.16 0 to 40 0.0439 2.1705 

Front bedroom equipment load  3.58 0 to 40 0 3.5775 

CVRMSEhourly (0)  3.2079 0.0050 

Table 23. Final Results of Testing Demonstrating Correct Operation of the SADE Script on the Test Model, Example House 1. 
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4.4.8 Application to Fitzrovia model 

Once it was determined that the adapted SADE script was running correctly and calibrating the 

test model, House Example 1the EnergyPlusTM model of Number 8 Fitzroy St was applied.  

The original model to be tested was produced using DesignBuilderTM 3.2.0 so the IDF was written 

in a format compatible with EnergyPlusTM 7.2.0.  

A decision needed to be made as to whether to upgrade the model from EnergyPlusTM 7.2.0 to 

EnergyPlusTM 8.6.0. On the one hand, all the previous work had been carried out based on 

EnergyPlusTM 7.2.0. On the other hand, EnergyPlusTM had been rewritten from FORTRAN into 

C++ for EnergyPlusTM 8.6.0, which promised a significant reduction in processing time. Therefore, 

it was decided to attempt an upgrade. 

The conversion of the IDF to EnergyPlusTM 8 was not straight forward. The first approach was to 

try to upgrade the IDF using EP-Launch. The IDF appeared to be upgraded without errors, 

however the simulation crashed due to fatal errors when any attempt was made to run a 

simulation. It was assumed that this was because of an issue with the reformatting utility so an 

attempt was made to go back to the original design model in DesignBuilderTM and use that to 

upgrade the IDF.  

DesignBuilderTM 5.4 was used to update the original Fitzrovia model from DesignBuilderTM 3.2, but 

again the annual simulations failed to run. After some investigation, it was found that the latest 

implementation of EnergyPlusTM contained some improvements that meant that additional set 

point managers needed to be added to the model to replicate the control over the chiller and the 

boiler. These set point managers could have been manually added into the IDF, which was 

updated by EP-Launch; however, in the end it was easier to make the changes in DesignBuilderTM. 

Once the additional set point managers had been added, the simulation executed successfully. 

To be consistent with the previous work had been done using EnergyPlusTM 7.2.0, and despite 

the longer processing time, the decision was made to continue the analysis using EnergyPlusTM 

7.2.0. 
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4.4.9 Greedy algorithm 

A greedy algorithm is one that simplifies the search of the parameter space. The advantage is that 

the space can be searched more quickly, but the disadvantage is that it runs the risk of ignoring 

potential solutions.  

Since the original design model was based on sensible assumptions, it makes some sense that a 

calibrated model would have values which are in the vicinity of the assumed values. The results 

of the sensitivity analysis provided a ranking of the parameters so the algorithm was designed to 

run with the most sensitive parameters being optimised first.  

Since the algorithm had been shown to operate correctly for a search of four parameters, SADE 

was used to search the most sensitive parameters in groups of four up to twenty. This also has 

the advantage of following the Monte Carlo stepwise assessment of the number of parameters 

that needed to be included to achieve calibration.  

4.4.10 Final SADE calibration runs 

The Fitzrovia model was altered to include 20 searchable parameters over five models (four 

parameters per model). Initial ranges in the vicinity of the design values were specified for the 

parameters and a series of five optimisation were run. After each optimisation, the best values of 

the previous optimisation were substituted into the model for the next run. 

4.4.11 Additional changes to script 

Running the larger number of generations initially failed because MatlabTM was proceeding with 

the analysis of results before the PowerShellTM executable was finished running. The original script 

had a timer which allowed sufficient time for EnergyPlusTM to complete a simulation and return a 

results file. The new Fitzrovia EnergyPlusTM file took significantly longer to run and steadily 

increasing the timer became impractical. Eventually, the code was changed to include a timer and 

a loop which checked for a complete output file.  

The handling of failed simulations was also improved. If an input into EnergyPlusTM violates some 

internal error checking metric, the program will terminate and record a severe error. The MatlabTM 

script was updated to handle the terminated simulations and the script then ran through the 

required number of generations.  
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4.4.12 Results of SADE calibration process 

After 2,000 simulations, the SADE MatlabTM script produced a lower CVRMSEhourly than any of the 

LHC Monte Carlo attempts, although the process did not yield a result which met the ASHRAE 

140 criteria for calibration.  

4.4.13 Convergence 

When the script has completed a predetermined number of generations, it produces a graph of 

the cost function, which can be used to assess the proximity of the cost function to the overall 

minima. The graphs are contained in Figure 23 to Figure 27. 

 

Figure 23. Results of Greedy SADE Optimisation on Variables 1-4. 



 

 

140

 

Figure 24. Results of Greedy SADE Optimisation on Variables 5-8. 

 

Figure 25. Results of Greedy SADE Optimisation on Variables 9-12. 
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Figure 26. Results of Greedy SADE Optimisation on Variables 13-16. 

 

Figure 27. Results of Greedy SADE Optimisation on Variables 17-20. 

The graphs show the average cost function and the minimum cost function for each generation. 

Where the two lines converge (Figures 24 and 25) the algorithm can be assumed to have found 
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the minima. Where the lines do not converge the population contains solutions which are not yet 

optimal and there is room for further optimisation of the solution.  

Despite the sensitivity testing indicating that the model was most sensitive to variables 1 to 4, the 

greatest gains were made by the optimisation of variables 5-8 as shown in Figure 20.  

Overall the process produced an improvement in the value of CVRMSEhourly, however the 

advantage of the SADE algorithm was small compared to the Monte Carlo approach.  

4.4.14 Results 

A comparison of values obtained for the Monte Carlo and SADE approaches are contained in 

Table 24 with the original design values for reference.  
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Parameter name in EnergyPlusTM Input File Nominal 
Value 

Monte 
Carlo 

SADE 

Building fan efficiency 0.7 0.48 0.5 

Zone cooling design supply air temperature 14 8.5 10 

Building fan pressure rise (Pa) 600 935 1200 

Sensible effectiveness at 100% heating air flow 0.65 0.48 1.0 

Zone air distribution effectiveness in heating mode 1.0 0.50 1.0 

Outdoor air flow per person (m3/s.person) 0.008 0.0132 0.0137 

Air cooled chiller biquadratic coefficient for y4 0.046 0.024 0.023 

Zone air distribution effectiveness in cooling mode 1.0 0.55 0.83 

3rd Floor office electrical  load (kW) 43.5 19.8 0 

July ground temperature (°C) 18 20.9 40 

1st Floor office electrical load (kW) 44.5 54.6 27.5 

3rd Floor office number of people  217 255 0 

4th Floor office electrical load (kW) 42.5 41.4 21.3 

Wet bulb or dew point at maximum dry-bulb 18.6 16.2 40 

5th Floor office electrical load (kW) 36.5 37.8 28.6 

Air cooled chiller biquadratic minimum value for y 24 35 32.5 

Ground floor office electrical load (kW) 36.6 30.0 14.1 

Air cooled chilller minimum unloading ratio 0.25 0.59 0.31 

4th Floor office number of people  212 428 0 

1st Floor office number of people 222 341 493 

Table 24. Comparison of assumed values and values found by 20 parameter Monte Carlo 

and SADE optimisation processes. 
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The results in Table 24 reveals some anomalies. In the SADE search, some of the values for the 

parameters have converged on unlikely values. From an engineering viewpoint, the zero values 

for occupancy of the Third and Fourth Floors, and the 40°C values for the outdoor ground 

temperatures are not credible. However, the modelling and calibration processes are robust and 

their correct operation has been demonstrated using a rigorous process.  

The explanation for these apparent anomalies values lies in the nature of the modelling process 

itself. The model is only a representation and the decision to do the optimisation without measured 

weather data or occupancy schedules has resulted in an underdetermined system. This leaves 

room for the optimisation process to find values that compensate for the error in the model. 

It might be argued that proceeding on this basis was a fool’s errand, but the fact that the final 

results are so close (CVRMSEhourly = 31.4, compared with 30.0 to be considered calibrated), to 

producing a fully calibrated model should serve as a warning. Where these models are used as 

the basis for financial models, then this type of deterministic approach could be used to bend the 

results in the favour of one of the parties.  

4.4.15 Conclusions from Differential Evolution Case Study 

Self-Adaptive Differential Evolution (SADE) has been shown to be marginally more effective than 

Latin Hypercube Monte Carlo (LHMC) for searching the parameter space for optimal values which 

would enable a model to be considered calibrated. While the EnergyPlusTM model was not able to 

be calibrated the final result was very close to the ASHRAE 14 value of CVRMSE(hourly) of 30.  
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Chapter 5 Discussion and Conclusions 

5.1 Background 

The background chapter of this thesis explains that there is overwhelming evidence that the 

production of greenhouse gasses, including carbon dioxide in particular, is due to human 

influences. Greenhouse gases are causing changes to the climate including an increase in 

average surface temperature. It is imperative that the global production of carbon dioxide is rapidly 

reduced. 

Buildings are responsible for the production of around 35% of global carbon dioxide. Reduction in 

the carbon dioxide produced by buildings can thus have a significant impact on the total carbon 

dioxide produced. 

In many countries, building energy modelling plays a significant role in the design and 

refurbishment of buildings. Many design decisions are made based on the results of these models. 

Better models would result in a sounder basis for decisions. 

The energy simulation of buildings is an imperfect science. Where engineers lack the detailed 

information to produce a credible model, they rely on practice knowledge to make assumptions 

that inform the models. By studying the results of computer models and comparing them with 

measured data, engineers can learn to make better assumptions. 

The increase in available computational power allows multiple energy simulations to be run and 

the use of optimisation to both improve designs and help calibrate models. Designers can test a 

range of designs. In mathematical terms, the designer can use computer models to search the 

space of design variables, which will enable them to best satisfy the design problem being studied. 

In this thesis, a number of optimisation techniques have been applied to improve the quality of 

results from building energy models.  

5.2 Literature review 

A comprehensive literature review was conducted to examine the current state of the art in the 

application of optimisation to building energy modelling. 

The literature review shows that optimisation in building energy modelling has the following two 

main applications; these are: 
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 Design stage optimisation: the comparison and selection of design alternatives to best satisfy 

the constrained objectives of the design team. 

 Model calibration: the revision of models to minimise the divergence between the predictions 

of design models and the data obtained from buildings in use.  

While the idea of design stage optimisation has been around for some time, there has been a lack 

of accessible design tools to facilitate a systematic approach. EnergyPlusTM is a building 

simulation engine developed by the United States Department of Energy (DOE) to predict a range 

of values useful to building designers and which is well tested in the academic literature. 

DesignBuildertm software provides a Graphical User Interface (GUI) and an interface for running 

EnergyPlusTM simulations. DesignBuildertm has recently included an optimisation tool which uses 

a Non-dominated Sorting Genetic Algorithm 2 (NSGA2) to inform the selection of design 

parameters using optimisation. However, there has been a clear lack of case studies which 

demonstrate that the application of rigorous optimisation using building energy models is worth 

the engineering commitment involved with their application. 

This gives rise to the first research question in this study: 

“Is the use of DesignBuilderTM’s NSGA2 optimisation tool worth the time and effort that is 

required to model and optimise a building energy model?” 

As has been shown in this thesis, the answer to this question has been clearly answered. The 

engineering time required to produce a building energy model and compile the necessary costing 

data is more than offset by the savings identified by optimisation. 

Calibration of building energy models is essentially the minimisation of some quantification of error 

between the predictions of the building energy model and measured data obtained from a building 

in operation. It is an optimisation problem where the engineer is seeking to optimise the selection 

of parameters to be used in the model, in order to minimise the divergence.  

The literature review reveals there is a clear broad scholarly output on the calibration of building 

energy models, with the methods falling into three basic categories. 

 Heuristic methods rely on the engineer’s knowledge and understanding of buildings and the 

influence that parameters describing the building have on the output from the models. Models 

are calibrated by using additional data from the building in use to revise the model. 
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 Deterministic methods treat the problem as a mathematic exercise in which the input 

parameters to the building energy model are assumed to be represented by an input vector 

and the suitability of the result can be measured by a cost function. The calibration is a search 

of the input vector space for the optimum input vector.  

 Stochastic methods treat the performance of buildings in terms of the statistics surrounding 

the input and output vectors. Statistical distributions are assigned to the input parameters and 

these distributions are propagated through the building energy model. Bayesian statistics can 

then be applied to the results to optimise the selection of the optimal input vector and bread 

the output prediction vector. 

The application of these methods has been studied by a number of authors with varying degrees 

of rigour. One of the main problems with many of the papers reviewed is a lack of an agreed 

measure to determine if the building energy model is sufficiently calibrated. It could even be argued 

that failing to quote the degree of calibration to an agreed metric is a means of obfuscating poor 

results.  

In energy performance contracting, those seeking to fund changes to a building by demonstrating 

savings via a building energy model can use a model which has been agreed with a body 

representing funding agencies. The American Society of Heating and Refrigeration Engineers 

(ASHRAE) has published Standard 140-2017 – Standard Method for Test for the Evaluation of 

Building Energy Analysis Computer Programs, which quantifies suitable measures for calibration 

in terms of Normalised Mean Bias Error (NMBE) and Coefficient of Variance of Root Mean Square 

Error (CVRMSEhourly). Compliance with ASHRAE 140 would be a suitable method for assessing 

the degree of calibration of a building energy model or cost function in optimisation terms. 

The research question associated with this work was: 

“Which of the calibration methodologies is best suited to application by engineers who are 

working in practice?” 

5.3 Optimisation in early stages of design 

Early design stage decisions often have substantial impact on the overall cost and operating 

efficiency of a building. DesignBuildertm enables designers to construct a Pareto curve which 

represents a range of optimised solutions, which can be used to inform a building development 

team of the best practical options to develop. Designs that have been developed without access 
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to optimisation tools can be refined and improved to increase energy performance for a given 

construction cost, or reduce cost for a given energy performance.  

Case studies can offer substantial evidence which can be used to demonstrate improvements in 

the methods of engineering practitioners. A case study using DesignBuilderTM’s application of 

NSGA2, was used to show that savings, which were far in excess of the cost of the optimisation 

process, would have been able to be made if the process had been used in the early design phase.  

Another case study used the Northampton University building Creative Hub. This is a novel 

application of optimisation, as this building had not previously been optimised using NSGA2. 

Optimisation studies are limited by computer processing power. Compromises in the level of detail 

in the building energy model needed to be made to enable a study to be carried out in a practical 

timescale. 

The optimisation process cannot be carried out in isolation from external influences. Where the 

optimisation problem might be described as finding the minimum cost for a range of energy 

demand targets, the possibility of space overheating needed to be considered. In this test case 

evaluation, the requirements of TM52 were able to be incorporated into the optimisation process.  

This thesis shows that the implementation of the optimisation process required a multidisciplinary 

approach. In particular, information was required from: mechanical engineers who described the 

Heating Ventilation and Air Conditioning (HVAC) requirements; electrical engineers who described 

the lighting and general power requirements; and quantity surveyors who provided a range of 

costs for construction options. Glazing information also needed to be obtained from facades 

engineers. 

The process of reviewing a preliminary design in detail and producing a building energy model 

revealed some shortcomings in the existing design, which were not due to the implementation of 

optimisation per se. However, it is evident that design scrutiny will yield results. 

The non-optimised (reference or base case) solution was found to be relatively energy efficient. 

When plotted on the output from the optimisation study with energy efficiency on the horizontal 

axis and cost on the vertical axis, the base case was not far to the right of the Pareto efficient 

solutions. However, the base case was substantially above (more expensive) than the Pareto 

curve, which indicated that substantial savings could have been made without sacrificing energy 

efficiency.  
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The capital cost savings that could have been made without sacrificing energy efficiency were 

estimated at £400,000. This compares very well with the consultancy cost of constructing an 

additional building energy model and providing the detailed costs for the various design options 

which was around £15,000. It should also be noted that as constructing and running the model is 

repeated, the process is likely to become more refined, which would result in lower costs.  

While this result is an isolated case study, this is a substantial finding. Demonstrating these 

potential savings could change the way early stage design is conducted.  

5.4 Building Energy Model calibration 

Early stage design is not the only application where optimisation can be useful. This thesis has 

shown that optimising the values that define a building energy model of a completed building could 

be useful. In the second part of this thesis, a series of representative calibration processes were 

compared for suitability in a commercial environment.  

5.4.1 Heuristic calibration 

A new building energy model was constructed using DesignBuildertm. The model was not able to 

be calibrated, but the construction of the model and investigation of the EnergyPlusTM files created 

by the software, enabled the author to become proficient with the software. On site checks of the 

model revealed changes to the building layout that were not recorded on the “as-built” drawings. 

The work of this thesis shows that the building energy model of the Swansea University’s Institute 

of Life Science Building 1 (ILS1) could not be calibrated because of the loss of data which resulted 

from a crash in the Building Management System’s server.  

The BMS system was not fit for the purpose of calibrating a building energy model because: 

 The data collection system was not robust enough to restart the collection of data after a 

system crash; 

 No-one checked the operation of the BMS, which also meant that a number of heating 

and cooling water control valves were permanently driven fully open or fully closed. 

In the execution of the work of this thesis, the database of the ILS1 BMS logs was found to be 

able to be interrogated using SQL to obtain information on the operation of the building without 

interference in the operation of the building.  
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Despite early checks that the database was recording correctly, when an attempt was made to 

retrieve information after a year of operation, the BMS had stopped recording after only four 

months. Since a full year’s data on energy consumption was required to provide a calibrated 

model, the data obtained were not suitable for the calibration of the building energy model.  

In addition to the cessation of data collection, there were periods where the data were only 

recorded late in the collection period and other periods where data were missing or “dropped” from 

the records; with these events often coinciding. 

While the data obtained are not suitable for use in the calibration of a building energy model, the 

work carried out showed that there were a number of interesting trends that could have been 

investigated in future academic work, or to improve the performance of the building. A close 

examination of the data revealed that several points were recorded at 100% and others which had 

long periods at 0%. These data corresponded to the set points for control valves providing cooling 

and heating to individual spaces. There are a number of possible explanations, but the most likely 

is that there was a control valve which was stuck open (for example: on the heating circuit) and 

that the corresponding valve on another circuit (for example: on the cooling circuit) had been driven 

fully open in an attempt to maintain the room temperature set point.  

The new evidence presented in this thesis that “using building management system data in the 

calibration of a building energy model was not practical”, supports anecdotal evidence from 

experienced building services engineers.  

This thesis contains practical lessons which are useful for future investigations. The most 

important (and perhaps obvious in hindsight) is to regularly check that the metering system is 

continuing to record data. A procedure for retrieving, interrogating and processing data from a 

TAC Vista BMS was developed during this study, which could be applied in future work. 

From the work carried out it is obvious that buildings involve complex control operations and they 

do not necessarily operate as designed. Therefore, there is a clear finding that using BMS data 

collection using the system installed at the ILS1 could not be relied on for the calibration of a 

building energy model.  

This work also reinforces findings (Bordass and Leaman, 2005) that post occupancy assessment 

is underutilised in modern construction practices. Building owners and operators should insist that 

their buildings are fully tested, including data acquisition and storage equipment.  
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5.4.2 Sensitivity Analysis 

Treatment of the calibration of a building energy model as a purely mathematical exercise opens 

up a range of algorithms which are available to be applied.  

From the literature review, it was noted that deterministic calibrations typically begin with a 

sensitivity analysis to refine the number of variables which it is practicable to optimise.  

The case study of Arup’s London building, Number 8 Fitzroy St., obtained data on energy 

consumption. A building energy model was constructed, again using DesignBuildertm software, so 

that an EnergyPlusTM model could be produced. 

Initial checks confirmed that the energy consumption data and the predictions of the model agreed 

to some extent, but an evaluation of the NMBEhourly and CVRMSEhourly confirmed that the initial 

model was not calibrated.  

An initial count of the number of variables in the EnergyPlusTM Input Definition File (IDF) was 

around 2000 individual variables. Of these, about 500 variables were data on the properties of 

glazing options, which were available for use in DesignBuildertm, but were found not to be 

necessary to the correct operation of the building energy model.  

The literature review also revealed that other researchers had used annual energy consumption 

in their sensitivity analysis, so an initial sensitivity analysis was carried out to find the parameters 

which had the most influence over annual energy consumption. With a 20% variation of input 

value, there were 50 parameters that had an influence over annual energy consumption of greater 

than 1%.  

However, the objective in calibration is not to reduce annual energy consumption, but to reduce 

the divergence between modelled and measured predictions. A novel approach was to carry out 

a sensitivity analysis which measured the impact of input values on CVRMSEhourly and NMBEhourly 

rather than annual energy consumption. The research question: “Does carrying out sensitivity 

analysis based on CVRMSEhourly or NMBEhourly produce a different order in the sensitivity of 

modelling parameters from annual energy consumption?” was investigated. 

This thesis identified the novel finding that there is a clear difference in the impact of the input 

variables if CVRMSEhourly or NMBEhourly is used as the cost function, compared to annual energy 

consumption. There was also a difference in impact between sensitivity based on CVRMSEhourly 

and NMBEhourly, and later work revealed a low value of CVRMSEhourly would be harder to achieve 

and so is more appropriate as a cost function.  
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It can be concluded that, based on the sensitivity work carried out in this thesis, the calibration of 

building energy models should use CVRMSEhourly or NMBEhourly as the basis for evaluating the 

impact of building energy model parameters, not annual energy consumption. 

5.4.3 Deterministic Calibration 

The work of this thesis isolated a set of the most 20 influential parameters from a new building 

energy model, based on their influence on CVRMSEhourly.  

Computer simulation time was found to have a significant impact on the number of options which 

could be evaluated in a commercial environment. With a simulation time of around 15 minutes 

each, around 2000 Latin Hyper Cube (LHC) Monte Carlo simulations could be made over a period 

of a few days on a 4-core i7 desktop computer running eight hyperthreads. Obviously a more 

powerful machine would be able to run more simultaneous simulations, but the timescale would 

only improve by around a factor of six for a 24-core machine running 48 hyperthreads. 

A series of simulations were carried out to determine if there was a minimum number of 

parameters that could be optimised within 2000 simulations. A novel finding was that as the 

number of parameters used in the simulation increased, the minimum value for CVRMSEhourly 

obtained from 2000 LHS Monte Carlo simulations fell as solutions were found which better fitted 

the metered data. At the same time the NMBEhourly, which had satisfied the requirements of 

ASHRAE 140, rose and fell but remained within the 10% limit.  

The CVRMSEhourly, which started out at around 42%, fell to a limit around 32% after ten parameters 

were included in the 2000 simulations.  

When more than ten parameters were included, the CVRMSEhourly rose and fell but did not drop 

below 32% after 2000 simulations. 

Another ad hoc group of simulations was also conducted using ten parameters, but with 5000 

simulations. Again, the CVRMSEhourly did not drop below 32%. This does not represent a large 

improvement in calibration.  

5.4.4 Differential Evolution 

A new self-adaptive differential evolutionary (SADE) algorithm was applied to an EnergyPlusTM 

building energy model. A new test procedure based on a DesignBuilderTM template was 

developed, which after some preliminary problems showed that the algorithm operated correctly.  
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A greedy application of the SADE algorithm found better solutions to the calibration problem than 

the LHC Monte Carlo approach. After 2,000 simulations the best LHC Monte Carlo approach found 

a CVRMSEhourly of 32.0%, whereas the SADE algorithm found a value of 31.4%. This difference 

is small and indicates that both methods identified solutions that were around the limit that was 

able to be achieved without making changes to the occupancy schedules or weather files. 

While both of these results are tantalisingly close to the CVRMSEhourly of 30% required under 

ASHARE 140, the results of this research cannot be used to claim that a building energy model 

was able to be calibrated through a purely deterministic process. 

5.4.5 Wider Implications of the study 

Data collection systems of the type installed at the Swansea ILS1 need to be more robust to be 

able to collect and store data for the purposes of building energy model calibration. Data servers 

are not 100% reliable and data collection systems need to be able to protect data in the case of a 

crash and resume data collection automatically on restart. 

Site engineers need to be vigilant about the collection of data. Data needs to be checked regularly 

for cases which might indicate system faults such as stuck valves.  

The commissioning and handover of buildings remains an important and often overlooked stage 

in building construction. Professional bodies need to prioritise the engineering resources allocated 

to early years of the operation of the building to diagnose operational problems and collect 

accurate and complete data. 

Both Monte Carlo and SADE deterministic approaches to calibrating building energy models can 

be used to manipulate input variables. This study has shown that there is flexibility to redefine 

input values using sophisticated algorithms for the calibration of a model, which opens a 

vulnerability to exploitation. In other words, the input parameters of a building energy model can 

be manipulated to fit the constraint of producing a calibrated model. It follows then, that it should 

be possible to add constraints such as maximising profitability. Where the building energy model 

is to be used as the basis of a payment system, such as privately funded public buildings, then 

the funding authorities need to be alert to the potential for the manipulation of such models.  

5.5 Future Work 

This research has laid a foundation for future work in a number of applications. 
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5.5.1 Application of Non-dominated Sorting Genetic Algorithm 2 

The finding that NSGA2 could be productively applied to early design stage work is a significant 

finding and can be used to demonstrate that, where resources are applied to the optimisation of 

designs, the resulting savings can more than pay for the design effort required to carry out the 

optimisation. However, the building services industry is slow to adopt new technology and further 

case studies are required to strengthen a rationale for making this type of optimisation routine.  

5.5.2 Institute for Life Science Building 1 

While the results of the investigation into the use of BMS data for the calibration of building energy 

models was disappointing, the discovery of data indicating incorrect operation of the building 

warrants further investigation. Academic work should focus on the process of implementing 

systems for the recording and retrieval of operating data.  

Commercially, there is work to be done to ensure the correct operation of the building. The data 

that was able to be collected indicated a number of potential failures in the operation of the 

building. These need to be worked thorough rigorously, diagnosed and remedied.  

5.5.3 Northampton Creative Hub 

The Northampton Creative Hub was completed in 2017 and has had three years of  operation. A 

study should be undertaken to compare the operational performance of the building against the 

original design predictions.  

5.5.4 Monte Carlo Sensitivity Analysis 

It is clear that the Monte Carlo sensitivity analysis based on CVRMSE used to determine the order 

in which the Monte Carlo and SADE algorithms yields additional information, has not been fully 

exploited in this study. Both the Monte Carlo and SADE procedures each require an initial range, 

which will yield the lowest value for the cost function to be discovered. The best value from the 

Monte Carlo sensitivity analysis was used to inform the ranges for the Monte Carlo approach, but 

were not employed for the SADE search. 

The next stage in future research, would be to create a tool to automatically interrogate an 

EnergyPlus input file, identify and parameterise key values, and run a Monte Carlo sensitivity 

analysis.  
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5.5.5 LHC Monte Carlo Calibration Process 

The LHC Monte Carlo approach was useful because it provided a benchmark for the effectiveness 

of a search with only 2,000 simulations. Monte Carlo is more effective when very large numbers 

of simulations are possible. In this application, SADE was a more effective search tool, but there 

is much work to be done to refine and apply the process, which is discussed in the following 

section.  

5.5.6 Self-Adaptive Differential Algorithm Process Development 

In future work, SADE should use the results of the Monte Carlo sensitivity test to determine 

suitable initial ranges. 

There will always be room to apply these optimisation scripts in different ways. The hyper-

parameter approach, which was used to develop differential evolution into SADE itself, needs to 

optimise: 

 The number of parameters in the greedy application;  

 The population size in each generation;  

 The number of generations required to converge on an optimised solution.  

There is differing informal advice on the selection of these values, which will only be determined 

rigorously as experience in applying SADE grows. 

The MatlabTM script employed in this study is unreliable and does not make good use of the parallel 

processing that is available in modern PCs. Immediate changes to the script would include: 

 Recording of all the values in the most recent generation so that if the script crashes (as often 

happens), the script can be restarted from the last successful complete generation, rather than 

re-starting the search from the beginning.  

 Parallel processing so that more of a population of simulations that are carried out in each 

generation are executed simultaneously, rather than in series, as is done in the current 

implementation.  

In the longer term, it would be sensible to develop SADE into a format, perhaps similar to jEPlus, 

to enable the power of the optimisation process to be applied to a wide range of analytical 

programs. SADE should be rewritten in a more robust programming language like Python, Java 

or C.   
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5.5.7 Implications for the building services consulting industry 

Optimisation has the potential to significantly improve building design and building energy model 

calibration.  

Savings in building costs due to optimistaion have been shown to greatly outweigh the cost to 

carry out optimisation studies. Building services engineers should work with quantity surveyors to 

define and quantify useful design parameters. Engineers should use modern optimisation software 

to produce building services designs that are energy efficient and make best use of the resources 

available.   

Where building models are required to be calibrated, optimisation techniques such as SADE 

should be used to refine model parameters.  

5.6 Reflection on PhD process 

Undertaking research into “real-world” building design and performance is challenging. Assessing 

data is problematic, many clients do not want their buildings to be investigated and data is often 

missing or erroneous even when access is allowed. Buildings are just not a tightly engineered 

product. This difficulty in collecting empirical data has led researchers to focus their efforts on 

purely theoretical modelling, particularly in the non-domestic sector. This in turn has led to an 

increasing performance gap between modelled and measured performance.  

Research requires balancing the aspirations of answering research questions with the resources 

available. The two biggest challenges were finding time to conduct and document the research 

and obtaining computing resources to carry out the optimisation processes. The conflicting 

demands of working as a consulting engineer and carrying out doctoral research meant that the 

research was spread over a greatly extended timescale, but meant that more reflection time went 

into selecting an appropriate course of research. Similarly, the lack of processing capacity meant 

that time was spent trying to assemble a Beowulf cluster, which further delayed obtaining results. 

The limited processing capacity gave additional impetus to finding an optimisation method that 

could be executed most efficiently.  
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 Background to the climate targets 

Appendix B.1 Carbon dioxide 

The measurement of the mass of carbon dioxide relative to air using an infrared absorption 

technique shows a clear continuing increase in the levels of carbon dioxide in the atmosphere. 

Similar results have been reported at Barlow, Alaska (Peterson, Komhyr, Harris, and Waterman 

1982) and at Baring Head, New Zealand (Lowe, Guenther and Keeling 1979).  

To establish atmospheric levels of carbon dioxide before direct measurement began in 1958, 

levels of greenhouse gases have been determined by other techniques including the examination 

of air bubbles trapped in Antarctic ice. Several studies (Raynaud and Barnola, 1985; Etheridge et 

al., 1996; Monnin et al., 2001) agree with the Mauna Loa results and allow the record of carbon 

dioxide in the atmosphere to be extended back for thousands of years, albeit with greater 

uncertainty. 

These studies show an accelerating increase in the level of carbon dioxide in the atmosphere 

since the beginning of industrialisation around the end of the 18th century. 

Appendix B.2 Other greenhouse gasses 

Carbon Dioxide is not the only greenhouse gas. Wang et al., (1976) identified N2O, CH4, NH3, 

NHO3, C2H2, SO2, CCl2F2, CCl3F, CH3Cl and CCl4 as having strong infrared absorption bands in 

the region of 7 to 14 um, which despite their small concentrations, could have a significant effect 

on global warming. Lashof and Ahuja (1990) proposed the use of a “Global Warming Potential” 

relative to that of carbon dioxide, which has been largely adopted.   

However, while many of these gases have been important to the building industry as refrigerants 

and as foaming agents in insulation, this thesis is primary concerned with the reduction of carbon 

dioxide. The study of relative levels of other greenhouse gases and their link with climate change 

is not explored further. 

Appendix B.3 Other sources of greenhouse gases 

Not all greenhouse gas production is anthropogenic (IPCC, 2007). Furthermore, there are natural 

processes which remove greenhouse gases from the atmosphere. Water vapour is a significant 

greenhouse gas which is introduced into the atmosphere by evaporation and carbon dioxide is 
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ejected during volcanic activity. Carbon dioxide is removed from the atmosphere by vegetation, 

and other greenhouse gases break down in the atmosphere as a result of processes in the upper 

atmosphere. The planet has a very complex carbon system with very large non-anthropogenic 

sources and sinks. 

The background to climate science has been thoroughly documented. A summary of background 

to the climate targets is contained in Appendix A1. 

Appendix B.4 International Panel on Climate Change Target 

There is international agreement now that to avoid the impacts of climate change, we will need to 

rapidly reduce our carbon emission over the next three decades, whereas carbon emissions have 

been rising over the last three. This is a major challenge and buildings which are responsible for 

roughly one third of carbon dioxide emissions will have to rapidly decarbonise globally. 

Appendix B.5 Carbon dioxide contribution from buildings 

Worldwide, in 2004, it was estimated that buildings account for 35% of primary energy use and 

28% of the carbon emissions (Price et al., 2006). The improvement in the design, construction 

and operation of buildings therefore, represents a significant opportunity to reduce greenhouse 

gas emissions.  

Appendix B.6 The international response and the Kyoto Protocol 

In 1992, the international community responded to the threats associated with climate change by 

setting up a treaty to address Climate Change called the United Nations Framework Convention 

on Climate Change (UNFCCC). 

The Kyoto Protocol to the United Nations Framework Convention on Climate Change (United 

Nations, 1998) is an international agreement intended to stabilise the concentration of greenhouse 

gas emissions. The countries signing up to the Protocol agreed to set binding targets for an initial 

period from 2008 to 2012. Targets were set in terms of a percentage of a base year, which for 

most countries was 1990. Under the initial agreement the United Kingdom committed to reducing 

greenhouse gases to 92% of 1990 levels by 2012.  

In 2012 a second commitment period from 2013 to 2020 was agreed and recorded in the Doha 

Amendment. Under the Doha Amendment the United Kingdom committed to reducing greenhouse 

gases to 80% of 1990 levels (United Nations, 2013).  
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Appendix B.7 Current UK emission levels 

The calculation of the collective impact of a combination of the various greenhouse gases is 

complex. The United Nations Framework Convention on Climate Change (UNFCCC) publishes 

The Kyoto Protocol Reference Manual on Accounting of Emissions and Assigned Amount. This 

manual documents the agreed method for the calculation of carbon dioxide emissions and quotes 

an estimate of the 1990 CO2 equivalent produced in the United Kingdom as 3.4 billion tonnes 

Appendix B.8 European Union legislation 

The European Union (EU) has introduced legislation to control the use of energy in buildings and, 

as a member, the United Kingdom is obliged to adhere to European parliamentary regulations. 

These regulations include: 

 eco-design of energy using products (EuP) Framework Directive 2005/32/EC; 

 Directive 2009/28/EC on the promotion and use of energy from renewable sources 

(Renewable Energy Directive); 

 Directive 2010/31/EU on the energy performance of buildings (the Energy Performance of 

Buildings Directive). 

Under the European Directives, the United Kingdom is required to develop legislation to regulate 

building energy use which includes the use of theoretical models. 

Appendix B.9 UK legislation 

The United Kingdom has undertaken to reduce the production of greenhouse gasses to zero by 

2050 under the Sixth Carbon Budget (Institute for Government, 2020). 

Pursuant to the Climate Change Act, The Department for Energy and Climate Change (DECC) 

has produced a plan for reducing carbon emissions over the medium term (DECC, 2011). The 

amount of carbon produced within the United Kingdom is to be reduced to 57% below base year 

levels by 2030. The budgets which have been set for the four time periods until 2027 are given in 

Table 25  are below. 
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Budget and period Net UK Carbon 
Account MtCO2e 

First carbon budget (2008-2012) 3018 

Second carbon budget (2013-2017) 2782 

Third carbon budget (2018-2022) 2544 

Fourth carbon budget (2023-2027) 1950 

Table 25. Carbon Dioxide reduction targets for the United Kingdom. (DECC, 2011) 

More recently, the UK’s Committee on Climate Change (CCC, 2018) has criticised the Clean 

Growth Strategy (HM Government, 2018) as not delivering the policies required to meet the targets 

and that more detail is needed to formulate the Fifth carbon budget. 

Appendix B.10 International Panel on Climate Change 

In 1988 the United Nations Environment Programme and the World Meteorological Organisation 

established the International Panel on Climate Change (IPCC) to provide a coherent view on 

climate change and its potential impacts (IPCC, 2014).  

The IPCC reviews the work of hundreds of scientists, and has drawn together a series of 

assessment reports. The assessment reports include: 

 the scientific basis for claims regarding climate change; 

 the potential impact of climate change, what adaptation might be possible and who is 

vulnerable to its effects; 

 options for the mitigation of the effects of climate change; 

 a Synthesis Report which summarises the other reports and makes recommendations to 

policy makers. 

The work published by the IPCC is extensive, however the essential conclusions are that: 

 the evidence that global average temperatures are increasing are unequivocal; 

 increases in average temperatures are due to human influences; 
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 extreme weather events are likely to increase as a result of the increase in average 

temperature; 

 human and natural systems would be unable to adapt to the effect of unmitigated climate 

change; 

 the effects of climate change can be mitigated. 

Appendix B.11 Climate sensitivity 

Hansen et al. (1981, 1984) relate the sensitivity of climate change to greenhouse gas emission.  

More recently, the quantified effect greenhouse gases have on climate is given the term Climate 

Sensitivity and has been defined as the: 

“equilibrium global average surface warming following a doubling of CO2 concentration”  

Estimates of climate sensitivity are uncertain; that is not to say that they are unknown, but that the 

predictions are quantified as a range. The “likely” (that is one with a certainty of 66%) prediction 

is that the mean average surface temperature of the earth will rise by between 2.0°C and 4.6°C 

for every doubling of the level of greenhouse gasses in the atmosphere. 

Appendix B.12 Setting the target 

Stern (2006) published the impacts that would be likely following a range of rises in the average 

surface temperature.  A target of not greater than 2°C was recommended as a level at which 

impacts might be severe, but which would be likely to avoid the more catastrophic effects. 

To achieve a better than 50% chance at stabilising the climate at less than 2°C, carbon dioxide 

levels need to be stabilised at below 400ppm.  

As of 1 June 2019, the atmospheric carbon dioxide level was 414ppm (www.co2.earth, 2019). 

However, the slow reaction of the atmosphere means that the equivalent carbon dioxide levels 

can be allowed to climb to 475ppm before being reduced again by 2050. 

Appendix B.13 Part L 

The Building Act (1984) confers power on the Secretary of State to introduce regulations which 

control the design and construction of buildings.  

The Building Regulations 2000 (Parliament, UK. 2000), most recently amended in 2010 

(Parliament UK, 2010), require measures to be undertaken to demonstrate that a new building 
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has been designed to meet a prescribed standard of energy efficiency. These requirements are 

documented in Part L of the amended Schedule 1 of the regulations. Before allowing construction, 

a Building Control Body must be satisfied that a calculated Target Emission Rate (TER) will not 

be exceeded. The National Calculation Method (NCM) must be used to demonstrate compliance. 

Appendix B.14 Energy Performance Certificates 

Under the Building Regulations (2000) amendment: The Energy Performance of Buildings 

(Certificates and Inspections) (England and Wales) Regulations 2007 (Parliament, UK, 2007), an 

Energy Performance Certificate (EPC) must be submitted to the Building Control Body within 5 

days of completion.  The EPC provides: an assessment of the energy performance of the building 

which is called the “Asset Rating” (AR); suggestions for improvement, and a reference benchmark. 

Appendix B.15 Display Energy Certificates 

Under the same regulations (Parliament, UK, 2007), non-domestic public building occupiers must 

display a Display Energy Certificate (DEC) which must display the Asset Rating and an 

“Operational Rating” (OR) of the building. The regulation applies to: 

“… buildings with a total useful floor area greater than 1000m2, that are occupied by public 

authorities and institutions providing public services to a large number of persons and 

therefore frequently visited by those persons.” (Parliament, U.K., 2007, P7) 

DECs are not required for domestic buildings. 

DECs have been introduced to raise awareness of the actual measured energy consumption of 

buildings (Department for Communities and Local Government, May 2008). DECs must be 

produced in accordance with the Government’s Operational Rating Methodology for assessing 

the operational performance of buildings (Department for Communities and Local Government, 

October 2008). 

The Operational Rating is based on the metered energy consumption of the building and its plan 

area, as compared to a benchmark building. Some adjustment in the energy consumption is made 

to account for local climatic conditions, however no adjustment is made for parameters which 

might enable a more direct comparison with EPCs. 
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Appendix B.16 Building energy modelling as part of a carbon reduction plan  

This section describes the different roles that building modelling plays in the regulation, design, 

contracting and construction of the built environment.  

Appendix B.17 Building energy models to demonstrate compliance 

Modelling the energy performance of buildings has become a key element of driving forward 

energy efficiency policy. 

Mass-produced items can be designed, prototyped and tested under laboratory conditions. This 

means that reliable data can be obtained and the cost can be spread across the mass, making 

the cost per article small. 

In the non-domestic built environment, almost every building is a unique combination of complex 

socio-technical systems where the implications of user behaviour are difficult to isolate. In an 

analogy to a mass-produced product, a building would need to be tested for a year under idealised 

conditions before a rigorous statement about its performance could be justified. The cost of this 

would be prohibitive, and only allow a limited range of building designs to be constructed. Hence, 

some form of theoretical assessment is preferred.  

Theoretical models are therefore produced to demonstrate compliance with Part L of the 

regulations and to produce Energy Performance Certificates that project energy use and the 

carbon footprint of buildings. 

However, the diversity of modelling software and the flexibility in which the software can be applied 

(and needs to be able to be applied), means that results from building energy models are diverse 

and could possibly be manipulated to get a design through Building Regulations. A study 

compared results from a variety of software which was approved for use as a compliance tool in 

the UK and found large ranges in the predicted energy consumption (Raslan and Davies, 2010). 

Appendix B.18 Building energy modelling as part of services engineering 

The use of energy modelling software is common in building services engineering with energy 

models being constructed during the design stage to compare options for the selection of servicing 

strategies and to inform the selection of the type and size of key items of equipment.  

These models are being put under increasing scrutiny. Where buildings consume more energy 

than predictions show, engineers can expect to be called to account for discrepancies. In some 
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cases this process has been formalised. Subsequent sections include a summary of requirements 

described by the UK’s Education Funding Agency’s Priority Schools Building Programme and the 

United States Green Building Council’s initiative Leadership in Energy and Environmental Design 

(LEED). 

Appendix B.19 Private Finance Initiative 

Clients for whom building energy models are produced, may ask for a prediction of energy 

consumption, particularly if the building is part of a Private Finance Initiative (PFI) where the 

bidding contractor will be responsible for the operation of the building. Public Finance Initiatives 

started in 1992 (Grout, 1997). In a traditional purchasing model, a public body contracts the 

construction of a building, which is then controlled by the public sector. In a PFI project the private 

sector funds, builds and owns the asset and the public sector pays for the construction under a 

commitment for the life of the contract.  

As the public sector must allow for the cost of the operation of the building in their bid, contractors 

may seek an estimate of the building’s energy consumption from the building designers. 

Appendix B.20 Green Deal 

Under the Green Deal (Parliament, UK. 2011), provisions were made by the UK government to 

finance energy improvements to buildings. Under this scheme, the cost of the provisions is 

recovered from the building owners and occupiers while keeping the total cost for energy at or 

below pre-modification rates.  

While domestic residences are the main properties targeted by the Green Deal, there was also 

opportunity for businesses to apply for funds under the initiative. 

The Green Deal relied on a specific rate of return from the energy conservation measures 

employed, often called the “Golden Rule”. The actual financial benefit depended on the accuracy 

of the predictions of future energy consumption made in the assessments, including any building 

energy modelling. 

The Green Deal was scrapped following a damning report from the House of Commons 

Committee of Public Accounts, because “… householders were not persuaded that energy 

efficiency measures were worth paying for through the Green Deal…” (HCCoPA, 2016). 
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Appendix B.21 Energy performance contracting 

Energy Performance Contracting is a financial mechanism for the delivery of projects intended to 

improve the energy efficiency in buildings (Xu, Chan and Qian, 2011). Typically, a separate Energy 

Service Company (ESCO) will provide design and installation services for the modification of a 

building to improve its efficiency. The contract will also typically include a guarantee of savings so 

that both the ESCO and the client organisation benefit from the changes.  

The American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE) and the 

Energy Efficiency Organisation (EVO) publish documents to provide guidance on the 

quantification of savings. These documents are discussed in more detail in the literature review, 

but it is of note that these describe the use of calibrated building energy models to establish the 

reference point which determine the actual savings made under the energy performance contract. 
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 Details of the construction used in the study of the 

Northampton Creative Hub 

The details of the wall build-ups are contained in the eight diagrams that also reference to the 

clauses in the specification. The details show the construction of the wall and the anticipated 

thickness of the insulation. The eight types of building fabric are labelled: 

 Type 01: Reglit; 

 Type 02: Reglit and plasterboard back; 

 Type 03: Reglit and stud wall base; 

 Type 04: Reglit and stud wall back soundbloc; 

 Type 05: Curtain walling; 

 Type 06: Curtain wall over stud wall base; 

 Type 07: Stud wall with insulated render; 

 Type 08: Louvres; 

Types 01 and 05 are full height glazing solutions. Types 02, 04 and 07 are opaque solutions and 

Types 02 and 06 are a combination of glazing and a short base wall. 

Type 08: louvres are located in plant rooms, do not affect the thermal performance of the building 

fabric and were not considered further.  

Reglit is a self-supporting glazing system from Pilkington, where glass fits into an extruded metal 

frame. (Reglit, 2015). 

Curtain walling is a general term for a glazing system which includes the frame and which is hung 

from a higher supporting structure. 

The roof types were contained in five drawings. The first two drawings show typical sections 

through the building and the other three drawings show details of the construction build-up for the 

roof and floor. 

There were two types of roof construction: flat roof construction, which consisted of 300mm of 

concrete and a layer of insulation; and plant room roof, which consisted of 100mm Kingspan 

Topdeck insulation system. 
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 Northampton Creative Hub Services Zones 

The division of the building into zones that could be provided with the systems detailed in Chapter 

6 are given below. 

 

Figure 28. Ground floor plan showing the location of zones to which the combination of 

options were applied during optimisation. 

 

Figure 29. First floor plan showing the location of zones to which the combination of 

options were applied during optimisation. 
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Figure 30. Second floor plan showing the location of zones to which the combination of 

options were applied during optimisation. 

 

Figure 31. Third floor plan showing the location of zones to which the combination of 

options were applied during optimisation. 
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Appendix D.1 Baseline system for comparison with optimisation results 

The performance and cost were simulated for the systems, which most closely reflected the 

original design after the rationalisation process. The locations where the systems were applied 

are shown in Figure 32 to 36. 

 

Figure 32. Ground floor plan showing the location of heating ventilation and air 

conditioning strategies zones before optimisation. 

 

Figure 33. First floor plan showing the location of heating ventilation and air conditioning 

strategies zones before optimisation. 
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Figure 34. Second floor plan showing the location of heating ventilation and air 

conditioning strategies zones before optimisation. 

 

Figure 35. Second floor plan showing the location of heating ventilation and air 

conditioning strategies zones before optimisation. 
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 Analysis of data obtained from ILS1  

Appendix E.1 Details of the investigation into the data available from ILS1 

This Appendix contains the results of the investigation into the Institute for Life Sciences Building 

1 at Swansea University.  

Appendix E.2 Setting up BMS reports 

At the time of the investigation, ILS1 used Tour and Anderson Controls (TAC) Vista v4.5.1 software 

(Schneider Electric, 2011) to access the BMS.  

Hourly logs were started for 1322 data points representing a range of variables. The variables that 

were logged can be grouped into the following categories: 

 Fan Coil Unit (FCU) data; 

 Air Handling Unit (AHU) data; 

 Category 3 laboratory monitoring; 

 Combined Heat and Power (CHP) plant; 

 Domestic Hot Water (DHW) system; 

 server room; 

 fume cupboards; 

 cold rooms; 

 freezers; 

 ground source heat pump; 

 atrium louver control; 

 heat meter; 

 electrical sub-meters; 

 outdoor temperature; 

 lighting controller output. 

At this stage, the intention was to use the data recorded in the logs as inputs in an EnergyPlusTM 

model of the building and compare the difference in results between the original and modified 

models and with the actual energy consumption of the building. It was thought that the data might 

need substantial post-processing to get it into a format which would be useful, but at this stage 

the emphasis was on gathering data for analysis later. 
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As the logs were started, the name of the log and the BMS’s name for the log point were recorded 

on a spreadsheet. This was also used to ensure that the logs started were an exhaustive set of 

the data points available via the BMS.  

Appendix E.3 Storage and retrieval of data from the BMS 

The method recommended for retrieval of data from the BMS was to use the TAC Vista’s Human 

Machine Interface (HMI) and retrieve the data by making the appropriate selection from the 

screens provided (Schneider Electric, 2011). This method starts Microsoft ExcelTM, which runs a 

macro to access information from the database. This method was sufficient for making individual 

enquiries but was not going to be suitable for recovering over a thousand logs, because the time 

taken by an engineer to access all the data would have been unacceptably long.  

The hard drive of the Personal Computer (PC) on which the HMI was installed was searched to 

see if the method by which data was stored could be discovered. Searching the hard drive 

revealed large files in a data subdirectory for the database application: Microsoft (MS) SQL 

ServerTM 2008 R2. The files were called taclogdata and suffixed LDF and MDF. A copy of the files 

was taken and transferred to a local PC so that any accidental changes to the database would not 

affect the ILS1 BMS or MHI. 

LDF and MDF files cannot simply be copied. The files are constantly being read and rewritten as 

the BMS records data from the building, so the Microsoft database locks the files to protect them. 

Instead, a copy must be made using a Microsoft database export tool. This produced two renamed 

files which had the same suffixes. The tool was called DTS Services Import/Export Wizard. 

The MDF and LDF files were 670 MB and 6 MB respectively. Arup provides a File Transfer 

Protocol (FTP) facility to allow large files to be transferred. To transfer the files, the Arup FTP site 

was accessed from the server via Microsoft Internet Explorer. 

Appendix E.4 Interrogating ILS1 database files 

A copy of the ILS1 database was attached to Microsoft SQL Management StudioTM. 

Microsoft SQL Management StudioTM has a series of preconfigured searches which allow the 

contents of tables to be viewed. A preconfigured search, which lists the first 1000 lines in a table, 

was selected from the right-click options in the database tables. Inspection of the table 

dbo.TrendLogValue confirmed that the database contained trend log data from the BMS. 
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The names of the logs were found in the table dbo.TrendLog. The name column contained the 

path and log names of 1508 logs which corresponded to the path and names which had been set 

up for recording. This includes files that had been started by maintenance technicians in addition 

to those set up as part of this research. This confirmed that the BMS was logging the data points 

and that the data could be copied, transferred and interrogated locally once the logging had 

proceeded for a sufficient period. This process was expected to take at least one year. 

Appendix E.5 Building Energy Model 

Confident that data from ILS1 was being reliably recorded, the focus of the research was switched 

to creating an EnergyPlusTM model which could them be calibrated using the data from the BMS.  

Buildings models in EnergyPlusTM are described in text files which are difficult to write directly. 

DesignBuilderTM provides the facility to view a representation of the model and to describe features 

of the building via interactive screens. Information from the original ILS1 design documents was 

used to describe the building, including the building geometry, fabric, glazing, electrical, heating, 

ventilation and air conditioning systems. Additional information was included to describe the other 

buildings in the vicinity of ILS1, which might provide shading, thereby affecting the solar gain, and 

location data including an appropriate weather file.  

The model was checked during a visit to Swansea University. A walk through the building revealed 

that a number of changes had been made to the design during the construction phase. The 

changes were noted on drawings which were used to update the model.  

Appendix E.6 Examination of Data from ILS1 

Examination of the ILS1 BMS data revealed the following problem. Sometime in March 2015 the 

server, on which the BMS database resided, failed. This resulted in the loss of all data. The data 

logging function also stopped. All attempts to restore backups of the database failed. This meant 

that the only available data were in the Primary Data File (MDF) and Log Data File (LDF) which 

were downloaded on the 8th of August 2013 covering the period from 5 March to 7 August 2013.  

These data were assessed for their potential to calibrate the building energy model, including 

checking for missing data. 
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Appendix E.7 Preliminary assessment 

Using Microsoft SQL Server 2012 ExpressTM, a search was run to determine the number of logs 

in a table called TrendLog which uniquely identified each log with a column called TrendLogId. 

The results of the search were copied into a spreadsheet and matched against the logs that had 

been started; this involved manually copying each of the logs: Name and TrendLogId to the original 

record. The method was laborious but thorough because it eliminated the possibility that the 

TrenLogId could be copied against two point names and that every record was associated with 

the original BMS tag. 

There were only 1128 unique logs found from the 1322 originally recorded. Of the 168 logs 

associated with lighting, only 14 were represented with TrendLogIds and all of these logs were 

empty: i.e. they contained no data (rather than a list of zeros).  

There were 26 logs missing from the remaining 1154 logs that were started in 2013. These logs 

were: 

 ILS1 heat meter; 

 FCU409 (5 logs); 

 FCU209 (5 logs); 

 FCU204 (5 logs); 

 FCU122 (5 logs); 

 Five alarm logs associated with the main plant; 

 14 logs containing lighting records were blank.  

The ILS1 heat meter was of special interest because it would have contained data on the total 

heat delivered to the ILS1 which would be required to calibrate the building energy model. The fan 

coil unit logs had limited value and the data from the alarms would not have been useful for the 

calibration of the energy model. 

Once the trend logs had been associated with the original data points, a time consuming but 

rigorous examination was made of each of the 1128 logs. Each log was individually opened by 

querying the database for logs with the TrendLogId of the log under examination.  
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Appendix E.8 Quantity of data available 

The number of data points in each log were sorted to see the extent of data available. In the log 

each data recording entry is given on one row so the terms: “entry” and “row”, are used 

interchangeably. 

The number of rows in each log were plotted on a cumulative frequency diagram which is given 

in Error! Reference source not found. Several groups of the number of rows in a log were found 

by inspection. These groups were identified and investigated further to see if there were any 

patterns.   
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Figure 36. Diagram showing the relative number of data entries in logs and their grouping. 
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The start and finish times for the logs were summarized in Table 26 below, which also describes 

the number of data in each of the groups. 

Group Number of logs 
in Group 

Number of Entries in 
Log 

Data Period Start Data Period 
End 

Group 1 15 Nil 5 March 15 May 

Group 2 5 859 entries 31 March 8 August 

Group 3 5 1593entries 30 May 7 August 

Group 4 5 1594 to 1596 entries 30 March 7 August 

Group 5 5 1618 entries 30 May 7 August 

Group 6 5 1615 to 1618 entries 30 May 7 August 

Group 7 5 1952 entries 30 March 7 August 

Group 8 86 3487 to 3490 entries 6 March 7 August 

Group 9 34 3526 to 3544 entries 6 March 7 August 

Group 10 962 3638 to 3646 entries 6 March 7 August 

Table 26. Breakdown of the amount of data and the periods over which the data were 

collected by the BMS. 

The time periods for each group are shown in Figure 37. Group 1 is the set of logs which contains 

no entries and is therefore omitted from the diagram. 
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Figure 37. Visual representation of the periods over which data were collected for each of 

the groups in Table 26. 

Given that there would have been 8760 data points in a standard year, the highest number of data 

points (3646) represented less than half a year’s data. The logs ran from 6th of March 2013 until 

the 7th of August 2013 and covered a total of 3694 hours, so the maximum number of entries in 

the logs would be 3694 entries; this means that all of the logs were missing at least 30 entries. 

The disparity of the number of results raises questions about the integrity of the data.  

It is clear from the time plot that some logs with limited amounts of data contain data over a short 

period, while others must have gaps. Further investigation of the patterns of omission are 

discussed in the following sections. 

Appendix E.9 Dropped points in largest data logs 

As stated above, there were 962 logs with between 3638 and 3646 entries which were labelled 

“Group 10”. The logs run from until the 6th of March 2013 until the 7th of August 2013. 

To re-examine all 962 logs would have been unnecessarily time consuming, so a random sample 

of 30 logs was taken as a representation.  

30 logs with between 3638 and 3646 entries were opened and checked for missing entries. The 

spreadsheet was sorted in reverse order of the number entries. Logs with 3646 entries were first 

followed by logs with 3645 entries and so on. The first 962 rows then represented the logs which 

contained between 3638 and 3646 entries (inclusive). A random number generator was used to 

select the row number of 30 logs and these logs were inspected to see if they contained omissions 

and where these omissions occurred. 
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Out of the 30 logs selected at random, which had between 3640 and 3646 data rows, six logs 

were missing data. The data were missing on four separate days between the 29th of July and the 

7th of August. The difference in the number of data in the remaining logs was due to slight 

differences in the start and finish times of the log. 

From these tests it is clear that the BMS system could not be relied upon to exhaustively record 

all the instrumentation readings over an extended period. 

Appendix E.10 Data lost from Groups 8 and 9 

A similar method was applied to the next two largest groups of data. Group 9 has 34 logs and 

Group 8 has 86 logs. The logs contained between 3487 and 3544 data. The logs all cover the 

period from the 6th of March 2013 until the 7th of August 2013, so it was evident by inspection that 

the logs must have gaps where data is missing. 

A similar process was applied to select 30 logs from these two groups. The logs were exported 

from the database and examined in a spreadsheet. 

The logs in Groups 8 and 9 had significant periods where data was missing. Some periods were 

common to all the logs in either Group 8 or Group 9 individually, but there were also periods where 

gaps in the data were common to both groups. 

In addition, there were relatively isolated cases where 1, 2 or 3 data were lost from a number of 

logs at the same time.  

Appendix E.11 Long periods at 100% 

Having established that the larger data sets contain gaps that occur at both coincidental times and 

at random, attention moved to whether the data contained reliable readings. Almost all data logs 

which contained records of valve outputs had long periods at 100%. A properly designed building 

system would not typically have valves that operate at 100% for more than a few hours so in this 

case, long period means more than 24 hours. This was recognised as a potential indication of 

error or incorrect operation of the building services. The data was examined in more detail to 

establish the extent of the phenomenon.  

Within the groups of data that were noted as having long periods at 100%, there were three 

subgroups: 
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 Data noted as simply having long periods at 100%. 

 Data having exceptionally long periods at 100%. 

 Data that had long periods at 100% and that either had readings only of 0% or 100%.  

These notes were highly subjective so the subgroups were all examined together. There were 307 

logs, which were seen and noted as having long periods at 100%. A random sample of 10 logs 

was taken and compared in a spread sheet. 

The chart in Figure 38of the percentage opening of the cooling valve on fan coil unit 302 shows a 

typical profile. The profile includes long periods at 100%. The chart also shows the largest gap in 

data between 11:00pm on the 9th of June and 12:00pm 11th of June. Other gaps are too small so 

show up at this scale. 

 

Figure 38. Cooling coil profile for Log 761 which shows significant periods open at 100%. 

When all the data from the samples are superimposed on one chart as shown in Figure 39, the 

common periods at 100% become clearer. 

0

10

20

30

40

50

60

70

80

90

100

1
1

0
7

2
1

3
3

1
9

4
2

5
5

3
1

6
3

7
7

4
3

8
4

9
9

5
5

1
0

6
1

1
1

6
7

1
2

7
3

1
3

7
9

1
4

8
5

1
5

9
1

1
6

9
7

1
8

0
3

1
9

0
9

2
0

1
5

2
1

2
1

2
2

2
7

2
3

3
3

2
4

3
9

2
5

4
5

2
6

5
1

2
7

5
7

2
8

6
3

2
9

6
9

3
0

7
5

3
1

8
1

3
2

8
7

3
3

9
3

3
4

9
9

3
6

0
5

CO
O

LI
N

G
 V

A
LV

E 
%

 O
PE

N

DATA POINT  NUMBER(HOURS)

Log 761 Cooling Valve on Fan Coil Unit 302



227 

 

 

Figure 39. Stacked data showing four distinct periods when many logs show an extended 

common value of 100%. 

The BMS could attempt to drive the control valves to 100% open for a variety of reasons: 

 FCU or AHU undersized; 

 AHU delivering air at an inappropriate temperature requiring the FCU to compensate for the 

additional load; 

 Central CWS and LTHW out of service – controller calling for heating or cooling when no 

capacity is available; 

 Heating valve trying to compensate for a cooling valve which is stuck open and vice versa. 

 Doors or windows left open adding to the ventilation load; 

 Additional loads such as machines or computers introduced into building in excess of design 

parameters; 

 Coding error in controls algorithm; 

 Insufficient heating or cooling capacity. 
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In any case, an investigation into the causes for this phenomenon was outside the scope of this 

study. This study is focused on investigating whether the data is suitable for use as calibration 

data for building energy models. It is clear from this section of the investigation into the periods 

where many control outputs were logged at 100% that the data associated with the period 8:00am 

on 3rd of June and 8:00am on 24th of July are unreliable. 

Appendix E.12 Data logs suitable for building energy model calibration 

The data logs for any meters available in ILS1 were extracted from the database. The data were 

then assessed for continuity and potential sources of error.  

Data on the meters given in Table 27 were available. 
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Meter Name TrendLogID Number of entries 

2nd floor emergency power 824 3641 

3rd floor emergency power 1079 3642 

4th floor emergency power 637 3640 

5th floor emergency power 1187 3641 

Active power 7 860 3642 

External plant supply 897 3643 

Ground source heat 1 553 3641 

Ground source heat 2 1336 3643 

Ground source heat 3 900 3643 

ILS emergency lighting 1133 3643 

ILS lighting bussbar 445 3642 

ILS MCC 1 1430 3642 

ILS MCC 2 393 3641 

ILS Small power bus 1358 3643 

ILS supply to main board 820 3641 

Kitchen water meter 1033 3642 

Main gas meter 404 3642 

Main water meter 921 3643 

Table 27. Number of data points recorded for ILS meters. 

All meter records had gaps similar to data sets 8, 9 and 10 in Table 27 as well as occasional gaps 

which occurred at random times. 
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Figure 40. Periods for which meter data were available from ILS1. Colours representing 

various meters are intended to show the failure to record after 27 May 2013. 

The meter logs for the ILS Motor Control Centre (MCC) 2 and for the main gas meter were all 

zero.  

When the data are superimposed on a timeline as shown in Figure 40 above, it is clear that all 

readings stop at a common time. This was 10:00am on the 27th of May 2013 after 1967 readings. 

This means that calibration data are only available for just 82 days and only for electrical power. 

Appendix E.13 Other questions 

Looking at the data contained in the logs there were a large number of potential routes that the 

investigation could have taken.  The data could be examined to answer an extensive list of 

questions, however the information gained from the investigation would not have helped answer 

the research questions so these avenues of investigation were not followed. 
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