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Abstract

This thesis documents my research activity conducted in the past three years at the Depart-
ment of Statistical Science at the University College London. My investigation is focused
on functional-analytic methods applied to the characterization of generalized correlated
Markov processes. The main objective of the research is to formalize the properties of
such a class of stochastic processes when approximated in a tensor space. This lead to the
development of a new interpretation of the correlation among processes that is exploited
for the analysis of copula functions and their statistical properties.

London, August 2017
Antonio Dalessandro



Impact Statement

The thesis is concerned with a new way to construct continuous-time Markov chains
(CTMC) which are employed to mimic high dimensional correlated Ito process. The re-
search has been carried out over three years from both theoretical and numerical perspec-
tives, with extensive computational examples. The range of applications of CTMC in both
academic research and Industry is vast. Continuous-time Markov chains (CTMC) are used
to model various random phenomena occurring in finance, economics, genetics, queueing
theory, demography, epidemiology, and social science. High dimensional CTMC is specifi-
cally adopted for their properties in data search engines, most notably by the Google search
engine, and also by big data applications.
Therefore not only the chosen thesis’ topic is very popular for a wide range of applications
but offers practical perspectives to improve them.
In a very simple and high-level way, the scope of this research was to mimic the realized
(terminal) density of a multidimensional Ito process. In doing so the original process,
which exhibits non-trivial correlations, is decomposed in orthogonal independent mimick-
ing Birth-Death processes, each characterized by its terminal density. Then the mimicking
joint terminal density is put together through suitably constructed continuous-time Markov
chains spanning orthogonal state spaces. This methodology proved to have two main ad-
vantages: one consists in the ability to simplify the complexity of the original Ito processes
while preserving their dependence structure and the other advantage is the capacity to
tackle the curse of dimensionality when computing the approximated weak solution of a
high dimensional Ito process.
The research also showed how to construct CTMCs which accurately mimic the correlation
structure among Ito processes, and how to specify and calculate concordance measures.
Numerical examples showed that the methodology is computationally efficient to evalu-
ate complex measures of concordance among processes. In this respect, the thesis opens
new research perspectives on Copula functions, dependence modelling and mimicking non-
Gaussian processes.
Therefore the proposed methodology has a wide range of applicability both in Academic
Research and Industry. The content of the thesis can be valuable from a business per-
spective, especially for financial modelling, market execution of financial contracts and
improvement of the accuracy and response times of web search engines.
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Notation and Assumptions

General
Xt, St Markov process, with t ≥ 0.
Mt Martingale process.

X
(n)
t Markov chain, a collection of discrete random variables with values in a finite

set, X = {x0, x1, x2, . . . xn}.
E Expectation.
b(Xt) Drift function, continuous vector valued function (bj) = b(t,Xt) : Rd → Rd.
Σ(Xt) Continuous, symmetric, positive definite, d× d matrix valued function.
Wt or W (t) Standard Wiener process.
<,> Quadratic variation.

ρij Instantaneous correlation between Brownian Bi
t and Bj

t ,

ρij = d<Bi
t and Bj

t>/dt.
o(x) The symbol o(x), is one of the Landau symbols and is used to symbolically express

the asymptotic behavior of a given function. Let f and g be two functions defined on R.
f(x) = o(g(x)) means for all c > 0, there exists
some k > 0 such that 0 ≤ f(x) < cg(x) for all n ≥ k.

O(x) The symbol O(x), is one of the Landau symbols and is used to symbolically express
the asymptotic behavior of a given function. Let f and g be two real functions and
we write f(x) = O(g(x)) if and only if |f(x)| ≤M |g(x)| for x > x̄
where M > 0, x̄ ∈ R.

′ or T Symbol for transpose.
⊗ Kronecker product symbol.
⊕ Kronecker sum symbol.
⊕S Kronecker sum of a sequence symbol.
lim
x→a+

f(x), lim
x↓a

f(x) The limit as x decreases in value approaching a.

lim
x→a−

f(x), lim
x↑a

f(x) The limit as x increases in value approaching a.

Time, discretisations, Time Steps
s, t, u Three time instants, 0 ≤ s ≤ t ≤ u.
∆t, h Time step in discretisation.
∆x, h Space step in discretisation.
n Variable usually used to denote the number of space discretisation points.
x0, x1, . . . A sequence of state points.



Functions, Spaces, Function Spaces
Rd d-dimensional space of real numbers.
X ⊂ R Countable set.
Ck(S) Set of functions with k continuous derivatives on the domain S.
C0 Space of continuous functions.
C1 Space of continuously differentiable functions.
C∞ Space of functions for which all orders of derivatives are continuous.
‖f‖∞ The uniform norm assigns to real valued bounded functions f

defined on a set S the non-negative number supx∈S |f(x)|.

Operator Semigroups
Tt Markov semigroup.
A, L Infinitesimal generators of the semigroup Tt.

A
(n)
X|Y Sequence of approximated infinitesimal generator matrices {A(n)

X|Y } ∈ Rn×n.

The length of the sequence is equivalent to the number of states y ∈ Y.

Assumptions and Research Setting

A.1 The analysis takes place on a filtered probability space (Ω,F , (Ft)t≥0, P ), with P
positive measure.

A.2 The problem formulations and associated mathematical assumptions were specifically
selected to ensure that all problems were formulated in the thesis to correspond to
cases where it is known and previously proven in papers and books cited that a
unique solution exists and is well defined. Any more general contexts outside of
these assumptions not specifically stated are not of relevance to the work in this
thesis.

A.3 We assume that the diffusion covariance Σ(Xt) is always a positive definite matrix
valued function.

S.1 In this dissertation we do not consider ODEs or investigate SDEs with time depen-
dence.

S.2 In this dissertation we do consider time-homogeneous diffusions only.

S.3 In this dissertation we do not deal with time dependent infinitesimal generators for
diffusions or with time discretization techniques and we are not proposing an Alter-
nating Direction Implicit (ADI) method.

S.4 In this dissertation we do not require the considered diffusions to have an invariant
measure.

S.5 The proposed numerical examples and convergence results reported in the thesis are
confined to Gaussian transition densities with constant coefficients, and convergence
results are obtained against the corresponding closed form expression of the proba-
bility density function.



Contents 11

S.6 This is neither a finite difference scheme for SDEs nor an SDE discretization scheme
like Euler.

S.7 Numerical evidence of convergence is reported in the Gaussian case.

S.8 There is no time discretization involved, because we exploit the infinitesimal transi-
tion densities and we use the same instantaneous law to compute terminal densities.
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Chapter 1

Introduction and Literature
Review

In this thesis we investigate aspects of the semimartingale decomposition and martingale
representation for multi-dimensional correlated Markov processes. The aim of our research
is to construct a mimicking continuous time Markov chain that approximates such processes
and their dependence structure. This work is motivated by the problems of finding the
expression of a multi-dimensional CTMC that both closely follows the dynamics of the
corresponding correlated Ito processes and also can effectively deal with the representation
and simulation of large dimensional processes that exhibit various correlation structures.
This proposed methodology proves to be very useful to understand and explain dependence
and concordance among processes.

Although the literature on Markov processes and Markov chains is very rich and mature,
see Rogers & Williams [2000]; Ethier & Kurtz [2009]; Karatzas & Shreve [2000], we find
that there is still room to further investigate and characterize multi-dimensional chains
and the relationship between the correlation structure among marginal Markov chains
and dependence concepts like copula functions Nelsen [1999] and concordance measures of
dependence McNeil et al. [2015]; Scarsini [1984]. In fact these concepts have always been
treated separately, and there is lack in literature of a theory that reconcile them.

Our findings and results show that our approach, based on linear and tensor algebra,
is a powerful way to produce accurate solutions of multidimensional correlated SDEs that
exhibit a correlation that can be fully modelled through copula functions. Specifically given
a multi-dimensional Ito processes whose drift and diffusion terms are adapted processes, we
show how to construct the approximated infinitesimal generator and how to characterize the
process properties by its associated continuous time Markov chain (CTMC). We construct
an approximated weak solution to the stochastic differential equation that weakly converges
to the distribution of the multi-dimensional Ito processes.

We give a new interpretation of the correlation among processes using the martingale
approach to the study of diffusions. The novelty is that it is possible to represent, in both
continuous and discrete space, that a multidimensional correlated generalized diffusion is
a linear combination of processes that originate from the decomposition of the starting
multidimensional semimartingale. The only assumption required by our approximation
approach is that the martingale problem for the associated generator of the multidimen-
sional Markov process is well posed. Stroock & Varadhan [2007] formulated the martingale
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problem as a means of studying Markov processes, especially multidimensional diffusions.
This approach is deemed to be more powerful and more intrinsic than the alternative ap-
proaches represented by the Markov process approach and the Ito approach.

Our result reconciles with the existing theory of diffusion approximations and decompo-
sitions in the probability literature and is more closely related to the work Gyöngy [1986]
and more recently to Brunick & Shreve [2013]. In the seminal manuscript Gyöngy [1986],
the author considers a multidimensional Ito process, and construct a weak solution to a
stochastic differential equation which mimics the marginals of the original Ito process at
each fixed time. The drift and covariance coefficients for the mimicking process can be
interpreted as the expected value of the instantaneous drift and covariance of the original
Ito process, conditional on its terminal value. In Brunick & Shreve [2013] the authors
extend the result of Gyöngy [1986], proving that they can match the joint distribution at
each fixed time for various functionals of the Ito process. The mimicking process takes the
form of a stochastic functional differential equation and the diffusion coefficient is given by
the so-called Markovian projection. In our framework we further generalize findings from
Brunick & Shreve [2013] and the mimicking process takes the form of a sequence of con-
ditional continuous time Markov chains with instantaneous drift and diffusion coefficients
given by projected instantaneous local moments.

The results reported in this thesis define the general representation of the approximated
infinitesimal generators for both multidimensional generalized diffusions and for copula
densities. In fact our proposed framework is also a tractable generic model for copula
functions along the lines of Dalessandro & Peters [2017] and we mainly look at two aspects
of copulas’ characterization: firstly we aim to represent any copula within a local Gaussian
correlation framework based on tensor algebra that allows us to visualize and quantify their
linear and non linear dependence structures. Secondly we calculate within the proposed
framework concordance measures of dependence generated by the approximated copula
function.

We create an algebraic framework based on CTMC which allows us to represent and
characterize copula functions, which not only constitutes a novel contribution to the exist-
ing literature, but allows gaining deeper understanding of copula functions parameters.

A copula distribution is simply a multivariate probability distribution for which the
marginal probability distribution of each variable is uniform, see Nelsen [1999]. Copulas are
often used in high-dimensional statistical applications as they allow one to separate out the
modelling and estimation of the distribution of dependent random variables by estimating
first the marginals and then capturing the dependence structure through estimation of a
copula function. Their range of applications is very broad, see a recent review of many
aspects and applications of this modelling approach in Cruz et al. [2015a] and works such
as Demarta & McNeil [2005], Aas et al. [2009], Genest et al. [2011], Haff et al. [2013]
and Patton [2009]. Furthermore, there is an increasing number of copula models aimed at
modelling different forms of dependence, both parametrically and non-parametrically, see
discussions for instance in Nelsen [1999], Genest & Favre [2007], Cherubini et al. [2004],
Joe [1997], Embrechts et al. [2001] and Brigo et al. [2010a].

However, in many cases there is no clear and intuitive correspondence between the
magnitude of a copula’s parameters and the dependence structure they create. This has
led to numerous studies of asymptotic relationships between concordance measures such as
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tail dependence and the copula functions tail behaviours, as characterized by the copula
parameters. In some cases this has yielded simple relationships that are closed form and
analytic. However, more often than not there is still a need to better understand how
dependence manifests locally in the support of the target copula distribution, and how it
changes with changes in the copula parameters or the dimension of the copula since it is
often difficult to characterise in closed form.

In our modelling approach we rely on the tensor approximation of the joint multidi-
mensional density for local copula calculation, so that any copula can be approximated on
the tensor product space. The representation of joint Markov processes through approxi-
mated correlated continuous time Markov chains is not new in literature. See for example
Di Graziano & Rogers [2009] and Kushner & Dupuis [2001]. However our model is new
in the sense that the copula approximation we propose converges in a weak sense to the
copula density function, see Dalessandro & Peters [2017].

A tractable generic copula modelling framework should be of interest to a variety of
researchers and practitioners. In fact copulas are often used in high-dimensional statistical
applications as they allow one to easily model and estimate the distribution of correlated
random variables by estimating marginals and copulae separately Nelsen [1999]. Their
range of applications is very broad. In reliability engineering, copulas are being used
for reliability analysis of complex systems of machine components with competing failure
modes Wu [2014]. Copulas are used in modelling turbulent partially premixed combustion,
which is common in practical combustors Ruan et al. [2014] and they have also been suc-
cessfully applied to the analysis of neuronal dependencies Eban et al. [2013]. Copulas are
useful in portfolio risk management McNeil et al. [2015]; Meucci [2011] because they help to
analyse the effects of financial market regimes and such functions are also very popular in
derivatives pricing where dependence modelling with copulas is widely used for example in
the pricing of collateralized debt obligations (CDOs) Brigo et al. [2010b]. Although copula
functions are simple to use their parametric expression is neither intuitive nor reflecting
the dependence structure that they create, most of the times very non linear Nelsen [1999].
This leads to some challenging problems like the difficulty of copula parameter(s) inter-
pretation, the evaluation of concordance measures Scarsini [1984] and the understanding
of the relationship between these concordance measures and the copula parameter(s) Joe
[1990, 1997].

For these reasons, various authors have proposed new ways to analyze the dependence
structure of extreme observations like investigating the asymptotic shape of the level sets
of the joint density Balkema et al. [2012, 2013], tail density approach Li & Wu [2013] or
through a transformation-based nonparametric estimation of multivariate densities Chang
& Wu [2015]. Nevertheless all these models provide an approximate estimation of depen-
dence and are therefore unsuitable analyzing concurrence measures.

In Taylor [2007] they provided a representation of the axioms of a concordance mea-
sure explicitly in terms of copula models, which extends previous work by Scarsini [1984].
This provides a direct link between these measures of dependence and the copula model.
However, a good understanding of the strength or significance of a concordance measure
as a function of the copula model parameters is not well understood and difficult to study
as they often involve complicated intractable integrations of copula functions, not easy to
achieve in a computationally efficient and accurate manner in arbitrary dimensions. In this
thesis we aim to address this challenge in a general approach that is numerically accurate
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and computationally efficient.
The thesis is organized as follows. Chapter 2 introduces some notation and the mathe-
matical background and settings for our analysis that is centered on aspects of birth-death
processes, continuous time Markov chains and multi-dimensional diffusions and also in-
cludes some definitions and properties of tensor algebra and Kronecker products. These
notions will be recurrently used throughout the thesis. In Chapter 3 we explain how it
is possible to mimic a diffusion through a birth-death process and we present additional
properties of the continuous-time Markov chain and its semigroup and infinitesimal genera-
tor matrix. Here we focus on the approximate solutions of stochastic differential equations
(SDEs) by means of mimicking continuous time Markov chains (CTMC). We provide in this
chapter some basic and illustrative examples on how it is possible to calculate numerical
solutions of diffusions using CTMC.

In Chapter 4 we formalize the approximation of a multidimensional diffusion by means of
a mimicking CTMC. The material of this chapter is based on Dalessandro & Peters [2017].
The extent of the proposed approximation is novel in the fact that we approximate the
multidimensional correlated SDEs by means of conditional independent marginal Markov
chains, as shown in Proposition 5. The solution produced by this proposed scheme not only
converges to the original joint diffusion processes, as demonstrated in Section 4.3, but can
be exploited, by means of basic tensor algebra, to compute solutions in high dimensionality
with parsimonious computational cost compared to a full CTMC, as illustrated by the
numerical results presented in Section 4.3.4.

The material in Chapter 5 and Chapter 6 is based on Dalessandro & Peters [2016b]
and Dalessandro & Peters [2016a] respectively. In Chapter 5 we give more insights about
the approximated local correlated Gaussian model for dependent Markov processes and we
introduce and characterize the local functional Gaussian copula. The key results produced
are propositions 9 and 10, where we characterize the conditional CTMC operator decom-
position and we formulate the CTMC functional copula infinitesimal operator respectively.
In this chapter we also show how it is possible to map our model to different families of
copula functions. The copula mapping procedure is described in Section 5.2.3 and we prove
that there is always existence of a solution to the mapping problem in Proposition 11.

In Chapter 6 we describe and perform tail dependence analyses and concordance mea-
sure calculations. We apply our proposed methodology to capture and measure different
concordance measures and quantify dependence in stochastic processes. We demonstrate
through numerical examples how our technique is accurate and computationally efficient
to evaluate concordance measures for a given copula. Chapter 7 concludes.

1.1 List of publications and pre-prints

The proposed thesis is the collections of results which have been published or about to be
published in the following peer-reviewed journals:

1. Chapter 4 is based on the published paper ‘A. Dalessandro and G.W. Peters. Tensor
Approximation of Generalized Correlated Diffusions and Functional Copula Opera-
tors. Methodology and Computing in Applied Probability (MCAP). Springer US.
2017’. DOI: https://doi.org/10.1007/s11009-017-9545-8.

2. Chapter 5 is based on the submitted paper, currently under review ‘A. Dalessandro
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1.2 List of invited presentations 17

and G.W. Peters. Mimicking Copulas in a Tensor Space and Generalized Copula
Mapping’. Bernoulli Journal, 2018.

3. Chapter 6 is based on the paper ‘A. Dalessandro and G.W. Peters. Efficient and Accu-
rate Evaluation Methods for Concordance Measures via Functional Tensor Character-
izations of Copulas. Methodology and Computing in Applied Probability (MCAP).
Springer US. 2019’. The paper has been accepted for publication.

4. ‘A. Dalessandro and G.W. Peters. Approximate Solutions to SDEs using CTMC
with applications to Quantile Dynamics’. Working paper, Department of Statistical
Science, University College London. 2017.

1.2 List of invited presentations

C.1 Tensor Approximation of Generalized Correlated Diffusions and Functional Copula
Operators. MCQMC2014, April 611, 2014, KU Leuven, Belgium

C.2 Options Arbitrage Bounds and Volatility Smile Dynamics: a Tensor Approach. 9th
World Congress of the Bachelier finance Society, 15-19 July 2016, New York.

C.3 Functional Tensor Characterizations of Copulas and Generalized Copula Mappings.
MCQMC2016 August 14-19, 2016, Stanford, California

C.4 Functional Tensor Characterizations of Copulas and Application to Machine Learn-
ing. NIPS 2017 Monday December 04 – Saturday December 09, 2017, Long Beach
Convention Center, Long Beach, California.

C.5 On the relationship between Copula functions and Radon-Nikodym derivative of dis-
crete measures. Constructing multivariate probability measures by local projections.
Bayes Centre Colloquium 2019, February 2019, Edinburgh.
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Chapter 2

Mathematical Background

This chapter is based on standard probability references which include Ethier & Kurtz
[2009]; Grimmett & Stirzaker [2001] and Brzeniak & Zastawniak [1999]; Daruich [2014];
Kuo [2006] among others and provides basic background material and introduces notations
needed throughout the dissertation. It briefly summarizes concepts and results about
Markov processes, Markov semigroups, Markov generators, continuous time Markov chains
(CTMC) with particular attention to Birth-Death process (BDP), Kolmogorov equations
and diffusions. It also includes a section on tensor algebra and tensor algebraic operators
which are relevant in all subsequent chapters. Among the objective of this dissertation one
is to show how it is possible to mimic joint diffusions by means of multivariate Birth-Death
processes and another is to introduce a numerical tractable and efficient way to compute
the approximate weak solution of a multidimensional diffusion based on tensor algebra.

2.1 Preliminaries

In this dissertation we assume the existence of a probability space (Ω,F , P ), where the pair
(Ω,F) defines a measurable space. In particular Ω denotes a set, F is a σ-algebra on Ω
namely a collection of subsets of Ω which is closed under complement and countable union.
F is also referred as the set of all events of a random variable. P is a probability measure
on (Ω,F) which is a map P : F → [0, 1], normalized P (Ω) = 1 and σ-additive. If A ∈ F is
an event, we denote by P (A) the probability of such event to occur. We denote with the
pair (S, d) a locally compact metric space S with metric d. The notation B(S) indicates
the Borel σ-algebra on S, while P(S) indicates the set of all the probability measure on
S. We also consider the functions f : Ω → S which are measurable with respect to the
σ-algebra F , and denote the set of such functions by M(S), while the set B(S) ⊂ M(S)
is the Banach space of bounded functions with ‖f‖ := supx∈S |f(x)| < ∞. C(S) ⊂ B(S)
denotes the subspace of bounded continuous functions. We also denote the space of Rd-
valued continuous functions defined on [0, T ] by C([0, T ],Rd), and the space of functions
that are right continuous with left-hand limits endowed with the Skorohod topology by
D([0, T ],Rd).
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2.2 Markov Processes

In this section we introduce basic concepts, definitions and properties concerning Markov
processes.

Definition 1. ( Stochastic process, see Brzeniak & Zastawniak [1999] pag. 139) A stochas-
tic process in Rd, d ≥ 1, with Rd denoting the d-dimensional Euclidean space, is a family
of random variables X(·) = {X(t) ∈ Rd, t ≥ 0}, parametrized by time t ∈ T , where T ⊂ R.
For each t ∈ T , X(t) is an Rd random vector, and when T = {1, 2, . . .}, we shall say that
{X(t), t ≥ 0} is a stochastic process in discrete time. When T is an interval in R, typically
T = [0,∞), we shall say that {X(t), t ≥ 0} is a stochastic process in continuous time. For
every ω ∈ Ω the function

t 7→ X(t, ω), t ∈ T (2.1)

is called sample path of {X(t), t ≥ 0}. We write it as {X(t), t ≥ 0}, or simply X(t) or Xt

if there is no confusion with Xt, t ≥ 0 denoting a d-dimensional Markov process on the
probability space (Ω,F , P ) with Xt := (X1

t , . . . , X
d
t ) ∈ Rd denoting its components vector

at time t.

Definition 2. (Markov Process) If a stochastic process {X(t), t ≥ 0} taking values in Rd
and adapted to a filtration {F(t); t ≥ 0} satisfies the condition

P (X(t+ s) ∈ A|F(t)) = P (X(t+ s) ∈ A|X(t)), (2.2)

for every s, t ≥ 0 and A ∈ B(Rd), then X(t) is a Markov process. Property (2.2) is referred
as the Markov property.

We denote by D the subset of the space L1 = L1(Ω,F , P ) which contains all the density
functions which have the following properties:

D = {f ∈ L1 : f ≥ 0, ‖f‖ = 1} (2.3)

.

Definition 3 (Markov Operator). A linear mapping M : L1 7→ L1 is called a Markov
operator if M(D) ⊂ D.

Definition 4 (Transition Probability Function). A function Pt(x,A) is a time-homogeneous
transition probability function on [0,∞)× S × B if

Pt(x, ·) ∈ P(S), is a measure on [0,∞)× S for all x ∈ S, t ≥ 0, (2.4)

P·(·, A) ∈ B([0,∞)× S), for all A ∈ B(S, .) (2.5)

P0(x, ·) = δx, is the unit mass at x, x ∈ S. (2.6)

and

Pt+s(x,A) =

∫
Ps(x,A)Pt(y, dx) y ∈ S,A ∈ B(S) and s, t ≥ 0. (2.7)

Furthermore Pt(x,A) is a conditional probability function, which is the probability of
moving from state x at time t = 0 to a state y ∈ A in the next period at time t. That is

Pt(x,A) := P (X(t) ∈ A|X(0) = x). (2.8)

The dynamics of a Markov process is entirely described by its transition probability func-
tion, which applies to all periods.
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2.2 Markov Processes 21

Definition 5 (Transition function for a time-homogeneous Markov process, see Ethier &
Kurtz [2009]). A function Pt(x,A) is a transition function for a Markov process Xt if

Pt(x,A) = P (X(t+ s) ∈ A|Ft) for all s, t ≥ 0 and A ∈ B(S). (2.9)

Equivalently if

E[X(t+ s) ∈ A|Ft] =

∫
f(x)Ps(X(t), dx) (2.10)

for all s, t ≥ 0, and f ∈ B(S).

Definition 6. (Markov semigroup) A Markov semigroup {Tt(x, dy)} is a family of proba-
bility transition functions on S1 depending on the parameter t ∈ [0,∞), such that∫

y∈S
Ts(x, dy)Pt(y, dz) = Ps+t(x, dz), for s, t ∈ [0,∞) (2.11)

and satisfies the following anxioms:

• T0 = I, with I the identity operator,

• Tt Ts = Tt+s, for s, t ≥ 0,

• limt↓0 ‖Ttf − f‖ = 0, or equivalently for each f ∈ L1 the function t 7→ Ttf is contin-
uous.

and its action on bounded and positive functions f ∈ B(S) is given by

Ttf(x) =

∫
f(y)Pt(x, dy). (2.12)

Markov processes are naturally related to Markov semigroups because the probability mea-
sure Pt(x, dy) with Ttf(x) = Ex[f(Xt)] is the law of f(Xt) starting from the value x at
time 0.

Definition 7. (Feller semigroup) A semigroup {Tt(x, dy)} is Feller if

• It is strongly continuous, which means limt↓0 ‖Ttf − f‖ = 0

• It is bounded, so there is M > 0 such that ‖Tt‖ ≤M , for all t > 0 and M = 1,

for every function f ∈ C0(S), where C0(S) denotes the space continuous functions vanish-
ing at infinity.

Definition 8. (Stationary, see Kuo [2006]) A Markov process Xt is said to be stationary
if its transition probabilities P (X(t) ∈ A|X(s) = x) depends on x and the time difference
t− s, therefore P (X(t+ h) ∈ A|X(h) = x) does not depend on h. In this case we write

Pt(x,A) = P (X(t+ h) ∈ A|X(h) = x), t > 0, x ∈ R, A ∈ B(R). (2.13)

1In all our application S = Rd, with d ≥ 1.
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Definition 9 (Invariant probability Measure). The measure µ is an invariant for the
semigroup Tt, and this means that for all f ∈ L1(µ)∫

Ttf(x)µ(dx) =

∫
f(x)µ(dx)

and

µ(A) =

∫
Pt(x,A)µ(dx) (2.14)

Furthermore Tt is a contraction semigroup in L1(µ) for all t.

Remark 1. We do not assume the existence of an invariant measure for the diffusion in
the proposed examples of this thesis.

Definition 10. (Infinitesimal generator) The infinitesimal generator of a strongly contin-
uous contraction semigroup is defined by the map

Af := lim
t↓0

Ttf − f
t

(2.15)

for all f ∈ D.

The properties of A and D entirely specify the semigroup Tt. In fact given f ∈ D the
function U(x, t) = Ttf(x) is the unique solution of the equation

∂U(x, t)

∂t
= AU(x, t) (2.16)

defined in D for all t > 0 and with U(x, 0) = ν0, the initial probability distribution.

2.3 Continuous Time Markov Chains

In this section we introduce some background definitions on continuous-time Markov chain,
its transition probabilities and the associated infinitesimal generator.

Definition 11. (Jump Process) A jump process {X(t), t ≥ 0} is a right-continuous stochas-
tic process with piecewise constant sample paths.

Definition 12. (Continuous Time Markov Chain (CTMC)) Suppose that S ⊂ R is a finite
or countable set. The jump process X(t) defined on (Ω,F , P ) and taking values on S, is
called a continuous time Markov chain if it satisfies the Markov property, i.e. for all the
states x, x0, . . . , xn ∈ S and for any sequence of times t0 < t1 < . . . < tn:

P (X(tn+1) = x|X(t0) = x0, . . . , X(tn) = xn) (2.17)

= P (X(tn+1) = x|X(tn) = xn).

Hence the conditional probability P (X(tn+1) = x|X(tn) = xn) with respect to the ran-
dom variable X(tn) is equivalent to the conditional probability P (X(tn+1) = x|X(t0) =
x0, . . . , X(tn) = xn) with respect to the σ-field σ(X(t0), X(t1), . . . , X(tn)). The set S, in
the context of Markov chains is referred as state space of the chain and the elements of S
are called states.

22 of 158



2.3 Continuous Time Markov Chains 23

Definition 13. (Transition Probabilities) A relation between the random variable X(s)
and the random variable X(t), s < t, is defined by the transition probabilities which are
given by

pij(s, t) = P
(
X(t) = xj |X(s) = xi

)
, s < t, for i, j = 0, 1, 2, . . . (2.18)

If the transition probabilities do not depend explicitly on the times s or t but depend only on
the length of the time interval, t− s, they are called stationary or homogeneous transition
probabilities; otherwise the transition probabilities are referred to as nonstationary or non-
homogeneous, see Kushner & Dupuis [2001]. Assuming stationary transition probabilities
we have,

pij(t− s) = P
(
X(t) = xj |X(s) = xi

)
= P

(
X(t− s) = xj |X(0) = xi

)
, s < t. (2.19)

We denote the matrix of time-homogeneous transition probabilities or the transition matrix
as

P (t) = (pij(t)) = P (Xt = xj |X0 = xi) (2.20)

and we will use also the equivalent notation Pt.

Definition 14. (Stochastic Matrix) A matrix P (t) is called a stochastic matrix for all
t ≥ 0, if it satisfies

∑
j pij(t) = 1, t ≥ 0 and pij ≥ 0 for all i, j.

Definition 15 (Transition Semigroup). The family {P (t), t ≥ 0} is called the transition
semigroup of the continuous-time Markov chain and satisfies:

1. P (t) is a stochastic matrix at all t.

2. The transition probabilities are solutions of the Chapman-Kolmogorov equations∑
k

pik(s)pkj(t) = pij(s+ t). (2.21)

In matrix form, P (s)P (t) = P (s+ t), for all s, t ≥ 0.

3. limt→s+ pij(s, t) = δij where δij = 1 if i = j and 0 otherwise.

We consider only stationary Markov chain, when the transition probability P
(
X(t) =

xj |X(s) = xi
)

depends only on t− s.

In this dissertation we are interested in the behaviour of the transition probabilities pi,j(h)
when h is very small, which is approximatively linear in h when h is small.
This implies that we can characterize the transitions probabilities as:{

pij(h) ' qijh+ o(h), if i 6= j

pii(h) ' 1 + qiih+ o(h), if i = j
(2.22)

where qij ≥ 0 for i 6= j.
The transition probabilities pij are used to derive transition rates qij . The transition rates
form a matrix known as the infinitesimal generator matrix Q = (qij). Matrix Q defines a
relationship between the rates of change of the transition probabilities.
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Let P (h) = (pij(h)), with h → 0, be the infinitesimal transition matrix and let I be the
matrix of the same dimension as P (h) but with ones along the diagonal and zeros elsewhere
(identity matrix in the finite case). Then matrix Q equals:

Q = lim
h→0

P (h)− I
h

(2.23)

2.3.1 Computing the Solution of Kolmogorov Differential Equations by
CTMC

The forward and backward Kolmogorov differential equations are expressions for the rate
of change of the transition probabilities. The transition probability pij(t + ∆t) can be
expanded by applying the Chapman-Kolmogorov equations. In fact, given the Chapman-
Kolmogorov equation, as introduced in definition 15,

pij(s+ t) =
∑
k

pik(s)pkj(t) (2.24)

we can differentiate with respect to s and obtain

∂

∂s
pij(s+ t) =

∑
k

∂

∂s
pik(s)pkj(t) (2.25)

Setting s = 0 gives
∂

∂s
pij(t) =

∑
k

∂

∂s
pik(0)pkj(t) (2.26)

equivalent to
∂

∂s
P (t) = QP (t) (2.27)

which defines a Kolmogorov backward equation (BKE). On the other hand, the forward
Kolmogorov differential equation describes the probability distribution of a state in time
t keeping the initial point fixed. It decomposes the time interval (0, t + s) into (0, t) and
(t, t+ s) . We now differentiate with respect to t and obtain

∂

∂t
pij(s+ t) =

∑
k

pik(s)
∂

∂t
pkj(t) (2.28)

Setting s = 0 gives

∂

∂t
pij(t) =

∑
k

∂

∂t
pik(0)pkj(t) =

∑
k

pik(s)
∂

∂t
pkj(t) (2.29)

equivalent to
∂

∂t
P (s) = P (s)Q (2.30)

The solution of the backward Kolmogorov equation is P (t) = eQt, given P (0) = I.
It is easy to show that Pt = eQt is the only solution of the forward and backward equations.
Let us assume that P̂t satisfies the forward Kolmogorov equation, then

∂

∂t

(
P̂te
−At
)

=
∂

∂t

(
P̂t

)
e−At +

∂

∂t
P̂t

(
e−At

)
= P̂tAe

−At + P̂t(−A)e−At = 0 (2.31)

which implies that P̂t = Pt. The derivation in eq. (2.31) can be done in an analogous way
for the BKE.
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2.3 Continuous Time Markov Chains 25

2.3.2 Birth-Death process

In this thesis we focus on a particular case of CTMC which is called birth-death process
(BDP) and formally introduced below.

Definition 16. ( See Kuo [2006] pag. 76) A Poisson process with parameter λ > 0 is a
stochastic process {N(t, ω), t ≥ 0} satisfying the following four properties:

1. P (ω;N(0, ω) = 0) = 1.

2. For any 0 ≤ s < t the random variable N(t) − N(s) is a Poisson random variable
with parameter λ(t− s), i.e.,

P (N(t)−N(s) = k) = e−λ(t−s) (λ(t− s))k

k!
, k = 1, 2, . . . . (2.32)

3. N(t, ω) has independent increments, i.e., for any 0 ≤ t1 < t2 < . . . , < tn, the random
variables

N(t1), N(t2)−N(t1), . . . , N(t)−N(tn−1),

are independent.

4. Almost all sample paths of N(t, ω) are right continuous functions with left-hand limits,
i.e.,

P(ω;N(·, ω) is right continuous with left-hand limits ) = 1.

Condition (2) in the above definition can be replaced by the following condition: For
any 0 ≤ s < t,

P (N(t)−N(s) = 1) = λ(t− s) + o(t− s), (2.33)

P (N(t)−N(s) = 2) = o(t− s),

where o(δ) denotes a quantity such that limδ→0
o(δ)
δ = 0.

Definition 17. (Birth Process) A pure birth process Xt on the state space S = X =
{x1, . . . , xn} is a Markov chain characterized by a birth rate with Poisson distribution with
parameter λ(xi), for all xi ∈ X and can be specified by the following transition probabilities:

pij(h) =


λ(xi)h+ o(h), for j = i+ 1

1− λ(xi)h+ o(h), for i = j

o(h), otherwise.

Its generator matrix Q is given by:

Q =


−λ(x1) λ(x1) 0

0 −λ(x2) λ(x2) 0
0 −λ(x3) λ(x3) 0

0 −λ(x4) λ(x4) 0
. . .

. . .


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Therefore a pure birth process with birth rate λ(xi) when in state Xt = xi is a Poisson
process with parameter λ(xi)h so that λ(xi) is the expected number of birth events that
occur per unit time. The probability of a birth over a short interval h is λ(xi)h + o(h).
Similarly, if the process is in state Xt = xi and a death rate is µ()i, then the probability
of a death event in a very small time interval of length h is µih+ o(h).

Definition 18. (Birth and Death Process (BDP)) A birth and death process Xt on the
state space S is a Markov chain characterized by a birth rate and an death rate, which are
independent and with Poisson distribution with parameter λ(xi) and µ(xi) respectively, for
all xi ∈ S. The BDP is specified by the following transition probabilities

pij(h) =


λ(xi)h+ o(h), for j = i+ 1

µ(xi)h+ o(h), for j = i− 1

1− λ(xi)− µ(xi)h+ o(h), for i = j

o(h), otherwise.

In the case of birth-and-death process, we have both birth and death events possible,
with rates λ(xi) and µ(xi) respectively for all . Since birth and death processes are inde-
pendent and have Poisson distribution with parameters λ(xi)h and µ(xi)h, their sum is a
Poisson distribution with parameter h(λ(xi) + µ(xi)).

Equivalently pij(h) = δij + hqij + o(h) where δij is the Kronecker’s delta, such that
δij = limt↓0 pij(t) and

qij =


λ(xi) if j = i+ 1

µ(xi) if j = i− 1

−(λ(xi) + µ(xi)) if j = i

0 otherwise

In matrix notation we have
lim
h↓0

P (h) = I (2.34)

where I is the identity matrix, with P (0) = I.
The qij are called transition rates, and they define the birth and death process infinites-

imal generator matrix Q = (qij), which is

Q =


−λ(x1) λ(x1) 0 0 . . .
µ(x2) −(µ(x2) + λ(x2)) λ(x2) 0 . . .

0 µ(x3) −(µ(x3) + λ(x3)) λ(x3) . . .
...

...
...

...

 . (2.35)

The matrix Q has the property qii =
∑

i 6=j qij .
In what follows, we introduce diffusions and basic concepts on martingales in which will

be recurrent throughout the thesis.

Definition 19. (Diffusion) The Markov processes Xt has stochastic differential equation
(SDE) of the form,

dXt = b(Xt)dt+ Ψ(Xt)dWt (2.36)
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2.3 Continuous Time Markov Chains 27

where (dWt,Ft) is a d-dimensional Wiener process, b and Ψ are bounded Ft-adapted
processes such that Σ = ΨΨ′ is positive semidefinite.

We indicate with ∂
∂xi

or ∂i the first derivative with respect xi, for i = 1, . . . , d.
The infinitesimal generator of the above diffusion has the expression:

A =
d∑
i

bi(x)
∂

∂xi
+

1

2

d∑
i,j

Σi,j(x)
∂2

∂xi∂xj
(2.37)

where b = (bi(x)), i = 1, . . . , d is a drift vector and Σ = (Σi,j), i, j = 1, . . . , d is a dispersion
matrix with Σ = ΨΨ′.
The dynamics of Xt are characterized completely by the infinitesimal operator and therefore
by the laws of the drift and diffusion coefficients, including the conditional probability law.
In particular the infinitesimal operator in eq. (2.37) is specified also by such coefficient with
an explicit expression and represents a very convenient tool to analyse the properties of any
diffusion process and to investigate the solution of its associated SDE. In this respect the
connection between the generator of Xt and the solution of the SDE for Xt has a rigorous
formulation given by the Martingale problem of Stroock & Varadhan [2007].

Theorem 1 (Uniqueness of SDE solution, see Stroock & Varadhan [2007], Theorem 3.2.1).
The SDE

dXt = b(Xt)dt+ Ψ(Xt)dWt, 0 ≤ t ≤ s, X0 = ν (2.38)

with ν a random variable independent from Wt, t ≥ 0 and E[|ν|2] <∞, has unique solution
adapted to the filtration generated by Wt and ν, for constants L > 0 and K > 0, if the
measurable functions b(x) and Ψ(x) for t ≤ s satisfy the following two conditions:

1. Lipschitz continuity

|b(x)− b(y)|+ |Ψ(x)−Ψ(y)| ≤ L(|x− y|), for all x,y ∈ Rd. (2.39)

2. Linear growth

|b(x)|+ |Ψ(x)| ≤ K(1 + |x|), for all x ∈ Rd. (2.40)

It is straightforward to show the connection between the differential operator A and the
probabilistic interpretation of the solution to the corresponding SDE.
If Xt satisfies the SDE of eq. (2.36) and f is a twice differentiable function and f ∈ D, the
stochastic differential of f(Xt) is by Itô’s Lemma is

df(Xt) =

d∑
i

∂f(Xt)

∂xi
dxi +

1

2

d∑
i,j

∂2f(Xt)

∂xi∂xj
Σijdt (2.41)

with Σij =
∑d

k=1 ΨikΨkj and therefore it is possible to write

df(Xt) = Af(Xt)dt+

d∑
i

∂f(Xt)

∂xi
Ψij(Xt)dW

j
t (2.42)

where A is the infinitesimal generator of eq. (2.37).
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Proposition 1. (Local Martingales) If f ∈ C2(Rd), Ito’s Lemma yields

f(Xt) = f(X0) +

∫ t

0
Af(Xs)ds+

∫ t

0
∇f(Xs)

′Ψ(Xs)dWs (2.43)

where ∇ is the gradient operator. This means that

f(Xt)− f(X0)−
∫ t

0
Af(Xs)ds (2.44)

is a local martingale. In particular the processes

Mt = Xt −X0 −
∫ t

0
b(Xs)ds =

∫ t

0
Ψ(Xs)dWs (2.45)

M i
tM

j
t −

∫ t

0
Σij(Xs)ds (2.46)

are local martingales for all t ∈ [0, T ].

Definition 20. A process Xt defined on the space (Ω,F , P ) and taking values in S is said
to be a solution for the martingale problem for (A, ν) with respect to the filtration {Ft},
t ∈ [0, T ] if

1. ν is the initial distribution of Xt,

2. Xt is Ft-measurable, for all t,

3. E[
∫ T

0 |Af(Xu)|du] <∞, for all functions f ∈ D

4. f(Xt)−
∫ t

0 Af(Xu)du, is an Ft-measurable martingale for all t ∈ [0, T ].

2.4 Tensor algebra

In this section we briefly recall some relevant notations and definitions that will aid in the
developments in future sections of the manuscript. Next, we introduce some basic tensor
algebraic operators that are extended for sequences of matrices, presented in [Dalessandro &
Peters, 2017, Theorem 3] and [Dalessandro & Peters, 2017, Theorem 4]. To understand the
matrix sequence case, we first recall some key properties of Kronecker products, Kronecker
sums and exponentiation.

Theorem 2. Let A ∈ Rm×m and B ∈ Rn×n; then

eA⊕B = eA ⊗ eB. (2.47)

Proof. The Kronecker sum of the two matrices is a matrix C ∈ Rmn×mn given by:

M = A⊕B = A⊗ In + Im ⊗B, (2.48)

where In ∈ Rn×n denotes the identity matrix. The exponential of the matrix M is:

eC = eA⊕B = e(A⊗In+Im⊗B) = eA⊗IneIm⊗B. (2.49)

28 of 158
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Eq. (2.49) is true if (A⊗ In)(Im ⊗B) = (Im ⊗B)(A⊗ In). This a property of the matrix
exponential where

e(A+B)t = eAteBt if AB = BA. (2.50)

We have by theorem 1 of Zhang & Ding [2013] that

A⊗B = (A⊗ In)(Im ⊗B) = (Im ⊗B)(A⊗ In). (2.51)

Therefore the matrices (A⊗ In) and (Im⊗B) in eq. (2.49) always commute. Furthermore
by theorem 3 of Zhang & Ding [2013] we have that, if A,C ∈ Rm×m and B,D ∈ Rn×n,
then

(A⊗B)(C ⊗D) = (AC)⊗ (BD). (2.52)

By theorem 18 of Zhang & Ding [2013] we have that, if A ∈ Rm×m and f(z) is analytic
and f(A) exists, then

f(In ⊗A) = In ⊗ f(A) and f(A⊗ In) = f(A)⊗ In. (2.53)

By combining eq. (2.48), eq. (2.49) and eq. (2.53), we have

eA⊕B = e(A⊗In+Im⊗B) = eA⊗IneIm⊗B (2.54)

= (eAIm)⊗ (Ine
B) = eA ⊗ eB. (2.55)

We may then extend this result to the Matrix sequence case as follows.

Theorem 3 (Kronecker Product of Matrix Sequence, ⊗S). If A is an Rm×n matrix and
{Bj}, j = 1, . . . ,m is a sequence of m Rp×q matrices, then the Kronecker product of a
matrix sequence A⊗S {Bj} is the mp× nq block matrix:

A⊗S {Bj} =

 a11B1 · · · a1nB1
...

. . .
...

am1Bm · · · amnBm

 (2.56)

We have that:

A⊗S {Bj}T =
(
A⊗ I(p)

)(
I(n) ⊗S {Bj}

)T
=
(
I(n) ⊗S {Bj}

)(
A⊗ I(p)

)T
, (2.57)

and also

A⊕S {Bj}T =
(
A⊗ I(p)

)
+
(
I(n) ⊗S {Bj}

)T
=
(
I(n) ⊗S {Bj}

)
+
(
A⊗ I(p)

)T
. (2.58)

Proof. Results in eq. (2.57) and eq. (2.58) follow from standard tensor algebra, see the
reference Zhang & Ding [2013].

Theorem 4. If A is an Rm×n matrix and {Bj}, j = 1, . . . ,m is a sequence of m Rp×q
matrices, then

exp
(
A⊕S {Bj}

)
≈ exp(A)⊗S exp({Bj}) +O([A, {Bj}]). (2.59)

Proof. See Zhang & Ding [2013].
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Chapter 3

Mimicking Correlated Diffusions
Using CTMC

In this chapter we introduce Markov chains which is, together with their properties, the
main theme of this dissertation. A Markov chain is a Markov process in either discrete
or continuous time with a countable or continuous state space, see Asmussen [2003]. The
chapter contains facts and results on the calculation of the probabilistic solution to stochas-
tic differential equations (SDEs) by means of a continuous time Markov chain (CTMC)
approximation.

Specifically, we show how a CTMC can be used to approximate the weak solution of a
diffusion though practical and illustrative examples.

3.1 Introduction

Calculating the numerical solution of stochastic differential equations (SDEs) has been the
subject of research for many years and it is still a dominant area of research in probability,
stochastic control, see Kushner & Dupuis [2001], physics, see Gardiner [2004], mathematical
physics, see Milstein & Tretyakov [2004], and mathematics, see Øksendal [2003].

A comprehensive reference describing many different algorithms is Kloeden & Platen
[2011]. Methods for the computational solution of stochastic differential equations are
based on similar techniques for ordinary differential equations, but generalized to pro-
vide support for stochastic dynamics, Asmussen & Glynn [2007]. The Euler-Maruyama
method, Milstein method and Runge-Kutta method (SDE), first and high order approx-
imation schemes are popular ones, see Kloeden & Platen [2011]. Among the criteria to
assess the goodness of an approximation scheme are properties and rates of convergence,
accuracy in weak and strong senses, computational costs, properties when dimensionality
increases. For example, methods such as the Euler method and linear multi-step methods,
see Kloeden & Platen [2011], that are used for the solution of ordinary differential equa-
tions, will work very poorly for SDEs, having very poor numerical convergence. Several
extension to the discretization approximations of numerical SDEs have been developed
from computational perspectives, including higher order schemes which produce better
weak and strong convergence rates, see for instance Glasserman [2004], Kushner & Dupuis
[2001] and Marchuk [2011]. However the scope of this chapter is not to compare features
and properties of different numerical schemes for SDEs, rather provide an introduction and
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a reference on how to compute solution of stochastic differential equations (SDE) associ-
ated to diffusions, using approximation schemes based on continuous time Markov chains,
see Kushner & Dupuis [2001]. We show how it is possible to mimic the diffusion using a
birth-death process and how then compute the approximate solution. This means that we
seek for another process which is not a diffusion, that enjoys some certain local properties
and able to mimic specific features of diffusions. The main advantage in doing so consists
in the ability of characterize the problem of finding the approximate solution of diffusions
using the new features of the mimicking process, which in our specific case will be tensor
algebra and the ability to exploit all the algebraic properties of a multidimensional tensor
space.

We aim to convey to the readers sufficient background on this topic and allow them
to more comfortably access the content of the following Chapter 4, based on Dalessandro
& Peters [2017], where on the other hand, we will give a full characterization of multidi-
mensional approximation of correlated diffusion by CTMCs and investigate rates of weak
convergence.

The background content of this chapter will be also a useful reference to chapters 5 and 6,
based on the associated papers of Dalessandro & Peters [2016b] and of Dalessandro & Peters
[2016a], where the authors develop a numerical procedure to map any copula function to
a generalized Gaussian copula function. Such procedure has its root in the content of
this chapter and it is used to visualize and interpret the copula functions characteristics
and understanding the relationships between copula model parameters and the strength of
induced concordance structures captured by particular copula types.
The content of this chapter aims to explain how to compute the solution of an SDE by
CTMC, and we propose the following list of core building blocks to explain this numerical
approximation:

1. The aim is then to understand how CTMC are related to diffusions, which are intro-
duced in 3.2. In this section we give more details of a specific Markov chain, called
a Birth-Death process and we explain why it can closely resemble the dynamics of a
diffusion.

2. In section 3.2 we introduce the fundamental definitions and properties for a birth-
death process (BDP) and why we identify this process as a suitable candidate to
mimic a diffusion. We show how to construct the continuous time Markov chain and
present properties of the semigroup for the approximating BDP.

3. In section 3.3, we introduce some numerical aspects of the computation of CTMC and
we show how it is possible to compute the approximate solution of popular diffusions.

3.2 Mimicking a diffusion with a BDP

This section introduces the fundamental idea of mimicking a diffusion by BDP.
It is instructive to see how a Brownian motion can be derived as the limiting process of

two suitably chosen linear combination Poisson processes.

Proposition 2. Let the process Mt be specified by the stochastic differential equation (SDE)

dMt =
1√
λ

(dN+
t − dN

+
t ) (3.1)

32 of 158



3.2 Mimicking a diffusion with a BDP 33

with M0 = 0 where N+
t and dN−t are independent Poisson processes with rate λ

2 . Then Mt

has the following properties

a) E[dMt] = 0,

b) dMt is memoryless,

c) limλ→∞ dMt = dBt, where dBt is a Brownian motion.

Proof. It is evident that E[dMt] = 0 from the specification of the intensities of the Poisson
processes. In fact

E[dMt] = E[dN+
t − dN

−
t ] = 0.

The memoryless properties directly comes from the Poisson processes. In order to show
that the limiting behaviour of dMt is a Brownian motion we proceed by calculating the
moments of dMt. By Ito’s rule we obtain

dMp
t =

((
Mt +

1√
λ

)p −Mp
t

)
dN+

t +
((
Mt −

1√
λ

)p −Mp
t

)
dN−t

and then calculate the moments by means of the following binomial expansion

∂

δ
E[Mp

t ] =

{∑p/2−1
i=1

1
λi−1

(
p
2i

)
E[Mp−2i

t ] if p is even,

0 if p is odd.
(3.2)

If we solve the recursion for p and take the limit for the Poisson rate λ→∞ we obtain the
moments of a Gaussian distribution:

lim
λ→∞

E[Mp
t ] = (p− 1)(p− 3) · · · 3

( t
2

) p
2
. (3.3)

Therefore

lim
λ→∞

dMt = dBt.

Proposition 3. Let us consider the continuous d-dimensional Markov processes with SDE
of the form,

dXt = b(Xt)dt+ Ψ(Xt)dWt. (3.4)

Its solution can be interpreted as the limit to the solutions of the SDE

dXt = b(Xt)dt+ g+(Xt)dN
+(t)− g−(Xt)dN

−
t . (3.5)

Proof. The result is analogue to the limiting procedure explained above in proposition
(2). The vector valued coefficients g−(Xt) and g+(Xt) have local intensities Ψij/λ for all
i, j = 1, . . . , d.

Therefore from the propositions above it is clear that a diffusion can be seen as the
limiting process of the linear combination of two Poisson processes. The diffusions ap-
proximation scheme proposed in this dissertation is fundamentally based on the above
propositions, but based on the following further settings:
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34 3. Mimicking Correlated Diffusions Using CTMC

1. Approximating a diffusion using a linear combination of two Poisson processes but
on a discrete state space and therefore using a birth death process (BDP) which is a
specific case of continuous time Markov chain (CTMC).

2. We specify the local instantaneous BDP intensities in order to match the first two
instantaneous local moments of the target diffusion. In this way we can build the
infinitesimal generator matrix associated to the BDP.

3. We use the generator matrix to compute the approximate weak solution to the target
diffusion.

3.2.1 Construction of the Approximating BDP CTMC for a Diffusion

Let us consider the following one dimensional SDE

dXt = b(Xt)dt+ σ(Xt)dWt, (3.6)

where the drift function b(Xt) and diffusion function σ(Xt) are such that there is a
unique solution, and we construct the continuous Markov chain for the birth-death process

dX
(n)
t = dN+

t −dN
−
t over a discretized state space X = {x1, x2, . . . , xn} ⊂ R with uniform

discretization 1 unit h = xi − xi−1 for all i, where the birth and death rates are calculated
in order to simultaneously match the instantaneous first two local moments of eq. (3.6).
Therefore given the instantaneous moments for all xi ∈ S = R

∂

∂t
E[dXt|Xt = xi] = b(xi)

∂

∂t
E[dX2

t |Xt = xi] = σ2(xi)

we construct the approximating DBP over the set X ∈ S with intensities given by the
solution of the following system{

d
dtE[dX

(n)
t |X

(n)
t = xi] = −ha(xi, xi−1) + ha(xi, xi+1) = b(xi)

d
dtE[(dX

(n)
t )2|X(n)

t = xi] = h2a(xi, xi−1) + h2a(xi, xi+1) = σ2(xi).
(3.7)

In this way we can calculate the BDP rates and construct its infinitesimal generator matrix
A(n) which entries are computed by locally solving the following system of equations:

A(n) = (aij) =


a(x1, x2) = a(xn, xn−1) = 0,

a(xi, xi+1) = 1
2

(
b(xi)
h + σ(xi)

2

h2

)
,

a(xi, xi−1) = 1
2

(
σ(xi)

2

h2
− b(xi)

h

)
,

a(xi, xi) = −a(xi, xi−1)− a(xi, xi+1)).

(3.8)

where σ(·) > 0 and aij > 0, for all i 6= j.

1The discretiziation unit of state space X does not need to be uniform.
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3.3 Numerical Introduction to CTMC and Examples 35

3.2.2 Properties of the Semigroup for the Approximating BDP CTMC

X
(n)
t

We denote the semigroup for the CTMC X
(n)
t : X → R as {T (n)

t } defined on the set Mb(X )
of all bounded measurable functions f : X → R with

T
(n)
t f(x) = E[f(X

(n)
t )|X(n)

0 = x], x ∈ X . (3.9)

The semigroup satisfies the standard properties which are:

1. T
(n)
t T

(n)
s = T

(n)
s+t, for s, t ≥ 0 [Chapman-Kolmogorov]

2. T
(n)
0 f(x) = E[f(X

(n)
0 )|X(n)

0 = x] = f(x)

3. T
(n)
t f(x) = E[f(X

(n)
t )|X(n)

0 = x] ≤ sup
z∈X
|f(z)|, [contraction semigroup].

Another important property of the semigroup {T (n)
t } is the strong continuity, which we

will use in the next chapter to highlight desirable convergence properties of the BDP X
(n)
t

to the diffusion Xt.
At this purpose we define c(n) = max

x∈X
|f(x + h) − f(x)|, c(br) = max

x∈X
|a(x, x + h)|,

c(dr) = max
x∈X
|a(x, x − h)|. Then it is possible to show that the semigroup is continuous as

following:

E[f(X
(n)
t )− f(x)|X(n)

0 = x] ≤
∣∣∣(a(x, x+ h))t+ o(t)

(
f(x+ h)− f(x)

)∣∣∣∣∣∣(a(x, x− h))t+ o(t)
(
f(x− h)− f(x)

)
+ o(t)

∣∣∣
≤ c(n)t

(
c(br) + c(dr) +

o(t)

t

)
. (3.10)

Therefore the semigroup T
(n)
t is strongly continuous,

lim
t→0+

sup
x∈X

∣∣∣T (n)
t f(x)− f(x)

∣∣∣ = 0 (3.11)

In particular T
(n)
t is a Feller semigroup.

3.3 Numerical Introduction to CTMC and Examples

We provide some illustrative examples of the application of CTMC local approximation to
diffusions illustrated above.

Solution to Popular SDE’s

We calculate the solution of the following popular SDE’s, see Brigo & Mercurio [2008].

dXt = b(Xt)dt+ σ(Xt)dWt (3.12)
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36 3. Mimicking Correlated Diffusions Using CTMC

Model drift term: b(Xt) diffusion coefficient: σ(Xt)

Vasicek K(θ −Xt) σ

Cox Ingersoll Ross K(θ −Xt) σ
√
Xt

Dothan KXt σXt

Exponential Vasicek Xt(η −K ln(Xt) σXt

Hull & White K(θt −Xt) σ

Table 3.1: Summary of popular SDEs coefficients specifications.

We construct the BDP Markov chain mimicking the dynamics of the SDE in eq. (3.12)
and calculate the approximated generator matrix A(n) ∈ Rn×n of eq. (3.8). Then, in line
with Section 2.3.1, we calculate the approximated solution U(x) of the SDE in eq. (3.12)
by solving

∂U(x)

∂t
= A(n)U(x). (3.13)

given an initial distribution ν0.

Black-Scholes Solution

We calculate the solution to the popular Black-Scholes SDE, see Black & Scholes [1973],
by means of CTMC approximation. Assume that the asset price S follows the geometric
Brownian motion,

dSt = µSt + σStdWt, t ≥ 0 (3.14)

where, µ and σ are constant, and Wt is a Wiener process. Hereafter, we will drop the
subscript t for both a better understanding and simplicity. Let V = V (S, t) denote the
value of an option (or a contingent claim) that is sufficiently smooth, namely, its second-
order derivatives with respect to S and first-order derivative with respect to t are continuous
in the domain DV = {(S, t) : S ≥ 0, 0 ≤ t ≤ T}.
Then, for European options the Black-Scholes partial differential equality, under the as-
sumptions of no arbitrage, is,

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − d)S

∂V

∂S
− rV = 0 (3.15)

in the domain DV , with r the constant risk free rate, and d ≥ 0 the constant dividend rate.

Pricing an European Call Option with a CTMC approximation

In this example we compare the value of an European call option value C(S, t) computed
using the Back-Scholes formula and an approximated value C(n) based on the CTMC
approximation. Specifically we compare
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3.3 Numerical Introduction to CTMC and Examples 37

C(S, t) = StN(d1)−Ke−r(T−t)N(d2) (3.16)

where N is the N (0, 1) distribution function and

d1 =
1

σ
√
T − t

[
ln
(St
K

)
+
(
r +

σ2

2

)
(T − t)

]
d2 = d1 − σ

√
T − t (3.17)

which
C(n) = e−r(T−t)P

(n)
T−t1{X=St} ·max(X −K, 0) (3.18)

with P
(n)
T−t = e(T−t)A(n)

, and A(n) the generator matrix of the CTMC approximating the
diffusion in eq. (3.14) over the discrete state space X ⊂ (0,∞).

Figure 3.1: The left plot reports the values for an European call option, where C is cal-
culated using the Black-Scholes formula of eq. (3.16) and C(n) is the approximated value
based on the CTMC approximation of eq. (3.18). In this example we used the values
r = 5%, σ = 20%, t = 0, T = 1, and the strike K = 7. The generator matrix A(n) has
been constructed using eq. (3.8) and uniformly discretized state space X = {0, . . . , 20}
with n = 300.

In what follows a T = 5 years European call option is priced using a five states state
space. A constant interest rate of r = 5%, dividend yield of δ = 3%, flat volatility of
σ = 10% are assumed. We specify the CTMC states space as:

X = {x0, x1, x2, x3, x4} = {1, 100, 105, 110, 1000}

and underlying spot price of x1 = xspot) = 100 and strike of K = 100. We use the eq. (3.8)
to construct the generator A(n) which is

A(n) =


0 0 0 0 0

0.9713 −20.2020 19.2308 0 0
0 243.1012 −486.2025 243.1012 0
0 0 3.2717 −3.2901 0.0184
0 0 0 0 0

 .
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38 3. Mimicking Correlated Diffusions Using CTMC

The right eigenvector and eigenvalues of A(n) are respectively:

V =


0 0 0 0.5417 0

−0.0402 −0.5534 −0.9088 0.4880 0.0975
−0.9992 −0.5771 −0.3902 0.4853 0.1024
0.0066 −0.6005 0.1475 0.4826 0.1074

0 0 0 0 0.9841

 ,

and

Λ =


−497.6042 0 0 0 0

0 −0.1459 0 0 0
0 0 −11.9446 0 0
0 0 0 0 0
0 0 0 0 0

 .

The inverse of right eigenvector is:

V −1 =


−0.0010 0.4978 −0.9776 0.4808 −0.000
1.5022 −0.2256 −0.0186 −1.4393 0.1813
0.0765 −0.9409 −0.0320 0.8977 −0.0014
1.8461 0 0 0 0

0 0 0 0 1.0162

 .

The three matrices are the elements of the eigenvector and eigenvalue decomposition which
we use to calculate the transition probability matrix Pt,

Pt = etA
(n)

= eV ΛV −1t = V etΛV −1. (3.19)

We obtain:

eΛ5 =


0 0 0 0 0
0 0.4822 0 0 0
0 0 0.0 0 0
0 0 0 1 0
0 0 0 0 1



V eΛ5 =


0 0 0 0.5417 0
0 −0.2668 −0.000 0.4880 0.0975
0 −0.2783 −0.000 0.4853 0.1024
0 −0.2896 0.0054 0.4168 0.0566
0 0 0 0 1



Pt = V eΛ5V −1 =


1 0 0 0 0

0.5000 0.0602 0.0050 0.3841 0.0507
0.4778 0.0628 0.0052 0.4005 0.0536
0.4559 0.0653 0.0054 0.4168 0.0566

0 0 0 0 1


The European call option C(n) including a dividend yield can be priced using the following
equation

C(n) = P
(n)
T−t1{X=St} ·max(e−δ(T−t)X − e−r(T−t)K, 0) (3.20)
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3.3 Numerical Introduction to CTMC and Examples 39

which yields the value:

C(n) = 0.0000·0.5000+8.1907·0.0602+12.4943·0.0050+16.7978·0.3841+782.8279·0.0507 = 46.7041,

with input quantities as follows:

e−δt = e−0.03·5 = 0.8607 (3.21)

e−rt = e−0.06·5 = 0.7788

max(e−δtX − e−rtK, 0) = (0.0, 8.1907, 12.4943, 16.7978, 782.8279)

Pt1S0=100 = (0.5, 0.0602, 0.0050, 0.3841, 0.0507).

We included the ©MATLAB code referring to this section in Appendix A. Specifically
we include in listing A.1 the code for the infinitesimal generator matrix of the 1D Black-
Scholes operator. Listing A.2 contains code for the closed form Black-Scholes option pricing
formula, while listing A.3 contains code for the Black-Scholes option pricing through the
approximated infinitesimal generator matrix.

Useful state space transformations

In this section we look at simplifying the expression of the instantaneous local moments of
the diffusion through a state space transformation. If we consider the following SDE

dXt = bXtdt+ σXtdWt (3.22)

we can rewrite it as

d logXt = (b− σ2

2
)dt+ σdWt (3.23)

or as

d
{(

logXt − (b− σ2

2
)t
)
/σ
}

= dWt. (3.24)

Therefore
(

logXt − (b − σ2

2 )t
)
/σ ∼ N (0, t). Appendix A contains the ©MATLAB code

referring to this section. Specifically we include in listing A.4 the code that illustrates how
it is possible to build equivalent infinitesimal generators of a diffusion. In this case the
process dynamics is lognormal and we apply state space transformations.

3.3.1 Two-dimensional Examples

In this section we anticipate what will be the topic of the next Chapter 4, namely the
approximation by CTMCs of solutions to multidimensional paired diffusions, and all the
findings and results are based on Dalessandro & Peters [2017]. For example, below we
consider two correlated diffusions, and in the code listing A.5 we propose a way to construct
the corresponding approximated infinitesimal generator.

dXt = b1dt+ σ1dWt

dYt = b2dt+ σ2dZt

E[dWtdZt] = ρdt

(3.25)
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40 3. Mimicking Correlated Diffusions Using CTMC

We can decompose the correlated Brownian motions into their orthogonal components
dXt = b1dt+ σ1(ρdZt +

√
1− ρ2dW 1

t )

dYt = b2dt+ σ2dZt

E[dW 1
t dZt] = 0

. (3.26)

Let us rewrite the dynamic of Xt conditionally to the process dZt = z.

(dXt|dZt = z) = b1dt+ σ1(ρz +
√

1− ρ2dW 1
t ). (3.27)

However dZt can be expressed as a normalized dYt, namely dZt = 1
σ2

(dYt − b2dt) which
yields the equivalent expression

(dXt|dYt = y − y0) = b1dt+ σ1

(
ρ(

1

σ2
((y − y0)− b2dt)) +

√
1− ρ2dW 1

t

)
, (3.28)

with y0 denoting the starting value of the process Yt at t = 0.
Therefore we have that the conditional random process (dXt|dYt = y − y0) follows the
distribution with moments given by:

(dXt|dYt = y − y0) ∼ N
(
b1 + ρ

σ1

σ2
((y − y0)/dt− b2)dt, σ2

1(1− ρ2)dt
)
. (3.29)

Appendix A contains the ©MATLAB code referring to this section. Specifically we
include in listing A.5 the code for the operator matrix associated to paired lognormal
processes with instantaneous conditional moments as per eq. (3.29). In this case the joint
processes are lognormal and we apply state space transformations as per Section 3.3 .

3.4 Conclusions

We presented introductory concepts about continuous time Markov chains and the way they
can be used to construct an approximate solution to an SDE. The theory is accompanied by
illustrative examples and Matlab code listings. We aimed to convey to the readers sufficient
background on this topic and allow them to more comfortably access the content of the
following Chapter 4, based on Dalessandro & Peters [2017], where on the other hand, we
will give a full characterization of multidimensional approximation of correlated diffusion
by CTMCs and investigate rates of weak convergence.
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Chapter 4

Tensor Approximation of
Correlated Diffusions

In this chapter we develop a class of applied probabilistic continuous time but discretized
state space decompositions of a multivariate generalized diffusion process. This decompo-
sition is novel and in particular it allows one to construct families of mimicking classes of
processes for such continuous state and continuous time diffusions in the form of a dis-
crete state space but continuous time Markov chain representations. In this chapter we
present this novel decomposition and study its discretization properties from several per-
spectives. This class of decomposition both brings insight into understanding locally in
the state space the induced dependence structures from the generalized diffusion process
as well as admitting computationally efficient representations for evaluating functionals of
generalized multivariate diffusion processes.

In particular, we investigate aspects of semimartingale decompositions, approximation
and the martingale representation for multidimensional correlated Markov processes. A
new interpretation of the dependence among processes is given using the martingale ap-
proach. We show that it is possible to represent, in both continuous and discrete space, that
a multidimensional correlated generalized diffusion is a linear combination of processes that
originate from the decomposition of the starting multidimensional semimartingale. This
result not only reconciles with the existing theory of diffusion approximations and de-
compositions, but defines the general representation of infinitesimal generators for both
multidimensional generalized diffusions and, as we will demonstrate, also for the spec-
ification of copula density dependence structures. This new result provides immediate
representation of the approximate weak solution for correlated stochastic differential equa-
tions. We demonstrate desirable convergence results for the proposed multidimensional
semimartingales decomposition approximations.

4.1 Introduction

In this chapter we develop a class of applied probabilistic continuous time but discretized
state space decompositions of the characterization of a multivariate generalized diffusion
process. This decomposition is novel and in particular it allows one to construct families
of mimicking classes of processes for such continuous state and continuous time diffusions
in the form of a discrete state space but continuous time Markov chain representations.
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We present and develop different algebraic tensor representations of this novel decompo-
sition approach that are beneficial for different numerical approximation settings and in
particular we study the approximation behaviour and discretization properties from several
perspectives. This class of decomposition both brings insight into understanding locally in
the state space the induced dependence structures from the generalized diffusion process
as well as admitting computationally efficient representations for evaluating functionals of
generalized multivariate diffusion processes.

We consider multidimensional correlated diffusions, introduced in definition 19, with
stochastic differential equation (SDE) of the form

dXt = b(Xt)dt+ Ψ(Xt)dWt, (4.1)

where (dWt,Ft) is a d-dimensional Wiener process, b and Ψ are bounded Ft-adapted
processes such that Σ = ΨΨ′ is positive semidefinite.
We focus our analysis to time-homogeneous diffusions. The infinitesimal generator associ-
ated to the SDE of eq. (4.1) is,

A =

d∑
i

bi(x)
∂

∂xi
+

1

2

d∑
i,j

Σi,j(x)
∂2

∂xi∂xj
. (4.2)

We aim to mimic the diffusion Xt with a suitably constructed birth-dead process (BDP)

and its associated continuous time Markov chain X
(n)
t , with X

(n)
t := (X

(n1)
t , . . . , X

(nd)
t ) ∈ X

denoting its components vector at time t. In particular the Markov chain is constructed as

X
(n)
t : X → Rd, (4.3)

with X =
⊗d

i=1X i ∈ Rd denoting the d-dimensional tensor space and n = n1 · · ·nd.
Specifically we denote a countably finite set by X k := {x(k)

0 , . . . , x
(k)
nk } ∈ R, k = 1, . . . , d,

with nk the number of discretization points for the k-dimension, and X k represents the

state space for the Markov chain X
(nk)
t approximating Xk

t .

We shall see in this chapter that the chain X
(n)
t has transition probability at time t

equal to P
(n)
t which weakly converges to Pt, being Pt the distribution of the admitted weak

solution Xt of the SDE in eq. (4.1).
The aim of our work is then to calculate the approximate solution for the multivariate

correlated diffusion processes of eq. (4.1), in settings which may involve potentially very
high dimensional state spaces which display non-trivial dependence structures. We propose
two ways to calculate the weak solution of the SDE in eq. (4.1) in an approximate manner:

1. Direct approximation of the infinitesimal generator A with particular emphasis on
the structure of its mixed derivative terms.

2. Decomposition of the infinitesimal generator A into orthogonal components.

The approximation schemes we propose are based on tensor algebra decompositions such as
those considered in Hackbusch [2012]. The novelty of our work consists in the introduction
of new concepts like, correlated tensor representation, conditional infinitesimal generator
and the framework developed to perform a parametric copula function mapping as will be
detailed in the remainder of the chapter. In general the proposed results aim to develop a

42 of 158



4.1 Introduction 43

new characterization of the cross space among dimensions using tensor algebra. Further-
more, our schemes are supported by approximation and convergence results that constitute
a little utilised perspective to look at solutions of multidimensional SDEs.

Our investigation is focused on aspects of the semimartingale decomposition and mar-
tingale representation for multi-dimensional correlated Markov processes. The objective is
to construct a continuous time Markov chain (CTMC) that approximates or mimics such
processes and their dependence structures induced throughout the state space, which are
only implicitly defined by the joint structure of the marginal process volatility functional
forms and the joint coupling of the correlation structures in the driving noise processes.
Once such a mimicking process is obtained we may then transform its structure to produce
a copula function mapping theorem that allows one to obtain structural characterizations
of general dependence frameworks, through the specification of the mimicking multivariate
diffusion process.

This work is motivated by the problems of finding the expression of a multi-dimensional
CTMC that both closely follows the dynamics of the corresponding correlated Ito-processes
and also can effectively deal with the representation and simulation of large dimensional
processes that exhibit various correlation structures. Although the literature on Markov
processes and Markov chains is very rich and mature, see Rogers & Williams [2000]; Ethier
& Kurtz [2009]; Karatzas & Shreve [2000]; Kushner & Dupuis [2001], we find that there
is still room for further investigation and characterization of multi-dimensional chains and
the relationship between the correlation structure among marginal Markov chains and
dependence concepts like copula functions Nelsen [1999] and concordance measures of de-
pendence McNeil et al. [2015]; Scarsini [1984]. In fact these concepts have always been
treated separately, and there is lack in literature of a theory that begins to reconcile them.

Our findings and results show that our approach, based on linear and tensor algebra,
is a powerful way to produce accurate solutions of multidimensional correlated SDEs that
exhibit a correlation that can be fully modelled through copula functions. Specifically given
a multi-dimensional Ito processes whose drift and diffusion terms are adapted processes, we
show how to construct the approximated infinitesimal generator and how to characterize the
process properties by its associated continuous time Markov chain (CTMC). We construct
an approximated weak solution to the stochastic differential equation that weakly converges
to the distribution of the multi-dimensional Ito process.

We develop an interpretation for the correlation among processes using the martingale
approach applied to the study of diffusions. The novelty is that it is possible to represent, in
both continuous and discrete space, that a multidimensional correlated generalized diffusion
is a linear combination of processes that originate from the decomposition of the starting
multidimensional semimartingale.

The only assumption required by our approximation approach is that the martingale
problem for the associated generator of the multidimensional Markov process is well posed.
Stroock & Varadhan [2007] formulated the martingale problem as a means of studying
Markov processes, especially multidimensional diffusions. This approach is deemed to
be more powerful and more intrinsic than the alternative approaches represented by the
Markov process approach and the Ito approach. More recently some authors Brunick [2013]
extended the study of the martingale problem associated to operators of the same type as in
eq. (4.2) and showed that this is well posed when the covariance matrix takes a particular
lower-diagonal block form.
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44 4. Tensor Approximation of Correlated Diffusions

Our result reconciles with the existing theory of diffusion approximations and decom-
positions existing in the probability literature and is more closely related to the work of
Gyöngy [1986] and more recently to Brunick & Shreve [2013]. In the seminal manuscript
Gyöngy [1986] considers a multi-dimensional Ito process, and constructs a weak solution
to a stochastic differential equation which mimics the marginals of the original Ito process
at each fixed time instant. The drift and covariance coefficients for the mimicking process
can be interpreted as the expected value of the instantaneous drift and covariance of the
original Ito process, conditional on its terminal value. In Brunick & Shreve [2013] the
authors extend the result of Gyöngy [1986], proving that they can match the joint distri-
bution at each fixed time for various functionals of the Ito process. The mimicking process
takes the form of a stochastic functional differential equation and the diffusion coefficient
is given by the so-called Markovian projection. In our framework we further generalize
findings from Brunick & Shreve [2013] and the mimicking process takes the form of a se-
quence of conditional continuous time Markov chains with instantaneous drift and diffusion
coefficients given by projected instantaneous local moments. We use generalized diffusion
approximations, similarly to the work of E. Ekström & Tysk [2013], in order to produce
desired target multivariate distributions. However the results presented in E. Ekström &
Tysk [2013] are limited to the univariate case and the authors propose an approach that
involves the speed measure of a diffusion and time-changes of a Brownian motion allowing
for target distributions with arbitrary support. The results reported in this manuscript
define the general representation of the approximated infinitesimal generators for both
multidimensional generalized diffusions and for what we will define as the function copula
specification.

The chapter is organized as follows. The general theoretical construct for the processes
we will be working with are along the lines of Chapter 2, and in the section 4.2 we introduce
and characterize the approximation schemes for the infinitesimal generator of correlated
Markov processes while in section 4.3 we show some desirable convergence results of our
approximations. In section 4.4 we apply our results to calculate the approximate solution
of a multi-dimensional SDE.

4.2 Approximation of correlated Markov processes

In this section we illustrate two new approximation schemes based on tensor algebra for
correlated Markov processes where dynamics are expressed by the SDE in eq. (4.1). The
novelty we introduce in these approximations involves the characterization of the cross
space among dimensions using tensor algebra and in the introduction of new concepts like
correlated tensor representation, conditional infinitesimal generator and copula operators.
The proposed schemes we develop are based on tensor algebra which we will demonstrate
makes them highly amenable to address problems in high dimensional state spaces for
correlated processes. As an overview, the approximations we develop involve two aspects:

1. Direct approximation of the infinitesimal generator A with particular emphasis on
its mixed derivatives terms;

2. Decomposition of the infinitesimal generator A into orthogonal components.

In what follows we first illustrate the SDE approximation for d = 1, in order to establish
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4.2 Approximation of correlated Markov processes 45

some useful notation and the building blocks of the approximation schemes. We then
present the details of approximations of correlated processes when d ≥ 2.

4.2.1 Univariate diffusion approximation by CMTC

In order to mimic a one dimensional process Xt with a birth-death process (BDP) X
(n)
t ,

we construct a state space X := {x1, . . . , xn} ∈ R, k = 1, . . . , d, which is a countably
finite set. We denote with X o := X\∂X and h = xn−x1

n a positive constant that represents
the homogeneous state space discretization unit, and where the boundary ∂X consist of
the smallest (i.e. x1) and largest (i.e. xn) elements in X ,and the interior X o is the
complement of the boundary. We denote by πn : R→ X the bounded transformation from
the continuous state space to the discretized one.

It is possible to construct a BDP and its continuous time Markov chain X
(n)
t as the

mimicking process of the diffusion Xt on X by building a generator matrix A(n) := (aij) =
(a(xi, xj)) for all i, j = 1, . . . , n, that is the discretized approximation of the diffusion’s
generator A in eq. (4.2) and each entry can be calculated by solving the following system
of local moment matching equations:

a(x1, x2) = a(xn, xn−1) = 0,

a(xi, xi+1) = 1
2

(
b(xi)
h + σ2(xi)

h2

)
,

a(xi, xi−1) = 1
2

(
σ2(xi)
h2
− b(xi)

h

)
,

a(xi, xi) = −(a(xi, xi−1) + a(xi, xi+1)),

(4.4)

for all i = 1, . . . , n− 1, with −σ2(xi)
h ≤ b(xi) ≤ σ2(xi)

h . However, the discrete state space X
does not need to be uniform and alternative discretization routines are presented in Tavella
& Randall [2000].

Remark 2. In the following we will denote by A(n) = A
(n)
X := A

(n)
X (b(xi), σ(xi)), for all i,

the approximated infinitesimal generator for the Markov process Xt with local parameters

b(·) and σ(·). In particular A
(n)

Xk is the approximated infinitesimal generator for the Markov

process Xk
t . Furthermore, given a process Xk

t we will denote by X k the set corresponding
to its discrete state space.

Assumption 1. Note that for x ∈ ∂X , for computational aspects, we impose an absorbing
boundary condition. However, it is important to choose the boundary states sufficiently in

the extreme of the state space that the laws of the processes X
(n)
t and Xt are close to each

other during the finite time interval of interest in the approximation.

The resulting matrix A(n) is a tridiagonal matrix in Rn×n, with always positive extra-
diagonal elements. The previous system calculates the entries of this generator by specify-

ing the first and second instantaneous moments of the process X
(n)
t that have to coincide

with those of Xt on the set X o. This is equivalent to satisfying the following conditions:

EXt [(Xt+∆t−Xt)
z] = EXt [(X

(n)
t+∆t−X

(n)
t )z]+o(∆t), z ∈ {1, 2} and X

(n)
t ∈ X o. (4.5)

Furthermore, one could in principle produce more accurate results by matching higher
instantaneous moments of the process and in general there will be a trade off between the
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46 4. Tensor Approximation of Correlated Diffusions

number of local moments matched and the coarsity of the grid/stencil h. We also observe
that the numerical problem we face is of the same type as in eq. (2.16) and its analytic
solution is Ut = etAν which represents the transition probability of a Markov chain with n
states.

4.2.2 Multivariate diffusion approximation by CMTC

We are now in a position to introduce the approximation schemes for multivariate gener-

alized correlated diffusions Xt when d ≥ 2. Let A
(nk)

Xk ∈ Rnk×nk denote the approximated

infinitesimal generator for the continuous Markov process Xk
t , with k = 1, 2, . . . , d. This

notation is useful when describing d correlated processes and the unique approximated gen-

erator for the multidimensional process. Each matrix A
(nk)

Xk is tridiagonal and its entries
calculated using instantaneous local moment matching as described in eq. (4.5).

Under the local moment matching formulation the representation of the infinitesimal
generator for correlated Markov processes given in eq. (2.37) can be rewritten as follows:

A =
d∑
i

bi(x)
∂

∂xi
+

1

2

d∑
i,j
i=j

Σi,j(x)
∂2

∂xi∂xj
+

1

2

d∑
i,j
i 6=j

Σi,j(x)
∂2

∂xi∂xj
. (4.6)

Now denote this operator in two components,

A⊥X := AX1,...,Xd =
d∑
i

bi(x)
∂

∂xi
+

1

2

d∑
i,j
i=j

Σi,j(x)
∂2

∂xi∂xj
, (4.7)

and

A
(c)
X := A

(c)

X1,...,Xd =
1

2

d∑
i,j
i 6=j

Σi,j(x)
∂2

∂xi∂xj
, (4.8)

then we can rewrite A in eq. (4.6) as the sum of two linear operators

A = A⊥X +A
(c)
X = AX1,...,Xd +A

(c)

X1,...,Xd . (4.9)

In particular AX1,...,Xd is the continuous operator for the independent Markov processes

Xt = (X1
t , ..., X

d
t ), while A

(c)

X1,...,Xd is the continuous operator just for the dependence

structure of such processes. We denote by X :=
⊗d

i=1X i the state space for the mimicking

process X
(n)
t , where X k := {x(k)

0 , . . . , x
(k)
nk } ∈ R, k = 1, . . . , d, with nk the number of

discretization points for the k-dimension, and X k represents the state space for the Markov

chain X
(nk)
t approximating Xk

t . Next we develop two ways to approximate eq. (4.6) on a
discrete multidimensional space X :=

⊗d
i=1X i, namely:

1. With direct approximation of the processes Xt = (X1
t , ..., X

d
t ) and therefore calcu-

lating operator matrices A
(n1)
X1 , . . . , A

(nd)

Xd within the orthogonal dimensions and the

operator A
(c)

X1,...,Xd defined on the cross spaces;
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2. The operator is approximated only over the orthogonal spaces. This is possible

through the introduction of the notion of conditional operator A
(ni)

Xi|Xj=a
with a ∈ X j

and i 6= j, j = 1, . . . , d.

Definition 21 (Multidimensional approximated generator (independent processes)). The
multidimensional approximated generator for d independent Markov process Xt := (Xi

t), for

i = 1, . . . , d with approximated generators A
(nk)

Xk ∈ Rnk×nk , k = 1, 2, . . . , d is the A
(n)
X ∈

Rn×n matrix with n = n1 · · ·nd

A
(n)
X := A

(n1···nd)

X1,...,Xd = A
(n1)
X1 ⊕ · · · ⊕A

(nd)

Xd , (4.10)

where ⊕ denotes the standard Kronecker sum. The operator matrix A
(n)
X approximates A⊥X

over X .

Definition 22. Let the matrix I(n) ∈ Rn×n be the identity matrix of size n > 0, n ∈ N,

I
(n)
l ∈ Rn×n a matrix of all zeros and with lower diagonal equal to ones, and I

(n)
u ∈ Rn×n

a matrix of all zeros and with upper diagonal equal to ones, namely:

I
(n)
l =


0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 0

 I(n)
u =


0 1 0 · · · 0
0 0 1 · · · 0

0 0 0
. . . 0

...
...

...
. . . 1

0 0 0 · · · 0

 (4.11)

In the following proposition we propose a first way to characterize the infinitesimal

generator matrix for the mimicking chain X
(n)
t when there is correlation among the marginal

processes. Namely we exploit the linearity of the generator operator, and we construct the
joint generator matrix as the sum of a generator which does not include correlation plus a
generator characterizing only the correlation part.

Proposition 4 (Joint generator matrix ). Let Xt = (X1
t , X

2
t ) be two correlated Markov

processes and X
(n)
t = (X

(n1)
t , X

(n2)
t ) their mimicking BDPs, where X

(n)
t : X → R2 and

X =
⊗2

i=1X i with properties as described in Chapter 2 and with associated approxi-

mated infinitesimal generators A
(n1)
X1 and A

(n2)
X2 respectively. It is possible to define a DBP

Z
(n)
t : X → R2 with approximated generator the tridiagonal matrix A

(n)
Z . Then the infinites-

imal approximated generator of the correlated processes Xt with local correlation parameter

ρij := ρ(x
(1)
i , x

(2)
j ) can be written as

A
(n)
X = A

(n1)
X1 ⊕A

(n2)
X2 +A

(c)(n)
X (4.12)

with

A
(c)(n)
X = −

(
A

(n1)
Z ⊕A(n2)

Z

)
− diag

(
I(n1) ⊗ diag(A

(n2)
Z )

)
+ 1{ρ>0}

(
I(n2)
m ⊗A(m)(n1)

Z +A
(p)(n2)
Z ⊗ I(n1)

p

)
+ 1{ρ<0}

(
I(n2)
m ⊕A(p)(n1)

Z +A
(p)(n2)
Z ⊗ I(n1)

p

)
(4.13)
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48 4. Tensor Approximation of Correlated Diffusions

and where A
(n1)
Z and A

(n2)
Z denote the component generator matrices of A

(n)
Z that act on X 1

and X 2 respectively. The superscript (p) means that the A
(p)(n1)
Z has same upper triangular

entries as the matrix A
(n1)
Z , while A

(m)(n1)
Z has same lower triangular entries as A

(n1)
Z .

Furthermore eq. (4.12) can be interpreted and rewritten as

A
(n)
X = A

(n1)
X1|Z ⊕A

(n2)
X2|Z +A

(n)
Z . (4.14)

Proof. We start with the analysis of the mixed derivative terms in eq. (4.8) when d = 2. For
positive correlation the following approximations hold for finite difference approximations
for the partial derivative operators,

∂2f

∂x1∂x2
=

(
∂f
∂x2

)
i+1,j

−
(
∂f
∂x2

)
i,j

h1
+O(h1)

=
fi+1,j+1 − fi+1,j − fi,j+1 + fi,j

h1h2
+O(h1) +O(h2), (4.15)

∂2f

∂x1∂x2
=

(
∂f
∂x2

)
i,j−1

−
(
∂f
∂x2

)
i−1,j−1

h1
+O(h1)

=
fi,j − fi,j−1 − fi−1,j + fi−1,j−1

h1h2
+O(h1) +O(h2).

The above equations (4.15) can be combined together to yield,

∂fij
∂x1∂x2

=
fi+1,j+1 − fi+1,j −

(
fi,j−1 − 2fi,j + fi,j+1

)
− fi−1,j + fi−1,j−1

2h1h2

+O(h2
1) +O(h2

2) +O(h1h2).

(4.16)

Here we denoted by h1 and h2 the discretization unit for the state space X 1 and X 2

respectively. Note that the same discretization scheme applies for negative correlation. We
observe that eq. (4.16) can be decomposed into the following three terms

∂fij
∂x1∂x2

= T3− (T1 + T2),

where

T1 =
fi+1,j − 2fi,j + fi−1,j

2h1h2
,

T2 =
fi,j+1 − 2fi,j + fi,j−1

2h1h2
,

T3 =
fi+1,j+1 − 2fi,j + fi−1,j−1

2h1h2
. (4.17)

Next we observe that the operator A
(c),(n)
X is a ‘correlation’ operator acting on the joint

discretized product space X =
⊗2

k=1X k. The term T1 acts only along X 1, the term T2
acts only along X 2, while T3 acts only along the cross-space of X . We then use these finite
difference operators to calculate the entries of the operators in eq. (4.13). In fact we can
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give to the finite difference operators the interpretation of instantaneous BDP rates. In

particular, we use the scheme T1 for A
(n1)
Z , which entries are

A
(n1)
Z =


a(x1, x2) = a(xn, xn−1) = 0,

a(xi, xi+1) = 1
2
σ1σ2−ρ212(xi,yj)

h1h2
,

a(xi, xi−1) = 1
2
σ1σ2−ρ212(xi,yj)

h1h2
,

a(xi, xi) = −(a(xi, xi−1) + a(xi, xi+1)),

(4.18)

for xi ∈ X 1. We use the scheme T2 for A
(n2)
Z which entries are

A
(n2)
Z =


a(x1, x2) = a(xn, xn−1) = 0,

a(xi, xi+1) = 1
2
σ1σ2−ρ212(xi,yj)

h1h2
,

a(xi, xi−1) = 1
2
σ1σ2−ρ212(xi,yj)

h1h2
,

a(xi, xi) = −(a(xi, xi−1) + a(xi, xi+1)),

(4.19)

and T3 for 1{ρ>0}

(
I

(n2)
l ⊗ A

(n1),u
Z + A

(n2),l
Z ⊗ I

(n1)
u

)
, where A

(n1),u
Z is a upper diagonal

matrix with entries equal to the upper diagonal of the operator matrix A
(n1)
Z and A

(n2),l
Z

is a lower diagonal matrix with entries equal to the upper lower of A
(n1)
Z . The magnitude

of the local instantaneous intensities is ρ(xi, xj)σ(xi), σ(xj). We can therefore rewrite eq.
(4.12) as

A
(n)
X = (A

(n1)
X1
−A(n1)

Z )⊕ (A
(n2)
X2
−A(n2)

Z ) (4.20)

−
[
diag(I(n1) ⊗ diag(A

(n2)
Z )) (4.21)

+ 1{ρ>0}

(
I

(n2)
l ⊗A(n1),l

Z +A
(n2),u
Z ⊗ I(n1)

u

)
(4.22)

+ 1{ρ<0}

(
I

(n2)
l ⊕A(n1),u

Z +A
(n2),u
Z ⊗ I(n1)

u

)]
. (4.23)

Note that when correlation is zero A
(n)
X = A

(n1)
X1
⊕ (A

(n2)
X2

, therefore all the terms related
to the action of the BDP vanish. In particular we notice in eq. (4.20) how the generator

matrices A
(n1)
X1

and A
(n2)
X2

are compensated in the orthogonal dimensions by the action of
Z, which acts on the cross-space of X . If we define the following operators,

A
(n1)
X1|Z = (A

(n1)
X1
−A(n1)

Z ),

A
(n2)
X2|Z = (A

(n2)
X2
−A(n2)

Z ),

A
(n)
Z = −diag(I(n1) ⊗ diag(A

(n2)
Z )) + 1{ρ>0}

(
I

(n2)
l ⊗A(n1),l

Z +A
(n2),u
Z ⊗ I(n1)

p

)
+1{ρ<0}

(
I

(n2)
l ⊕A(n1),u

Z +A
(n2),u
Z ⊗ I(n1)

u

)
. (4.24)

This proves eq. (4.14).

Proposition 5 (Conditional Infinitesimal Generator). Let Xt a 2-dimensional diffusion
with infinitesimal generator

A =

2∑
i=1

bi(x)
∂

∂xi
+

1

2

2∑
i,j=1

Σi,j(x)
∂2

∂xi∂xj
(4.25)
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as per definition 4.2. We assume that the diffusions Xt = {X1
t , X

2
t }t≥0 are locally correlated

with instantaneous local covariation given by〈
σ1(x)dW 1

t , σ2(y)dW 2
t

〉
= σi(x)σj(x)ρij(x, y)dt, for all (x, y) ∈ R2. (4.26)

Let X
(n)
t : X → R the BDP mimicking Xt, with X =

⊗2
i=1X i. The conditional ap-

proximated infinitesimal generator A
(n1)
X1|X2 is defined by the sequence of operator matrices{

A
(n1)

X1|X2=x
(2)
i

}
∈ Rn1×n1 , x

(2)
i ∈ X 2 each of whose entries are obtained according to local

moment matching by:

A
(n1)

X1|X2=x
(2)
i

=



a(x
(1)
1 , x

(1)
2 ) = a(x

(1)
n1 , x

(1)
n1−1) = 0,

a(x
(1)
i , x

(1)
i+1) = 1

2

( b1(x(1)
i )+ρ12(x

(1)
i ,x

(2)
i )

σ1(x
(1)
i

)

σ2(x
(2)
i

)
((x

(2)
i+1−x

(2)
i )/dt−b2(x(2)

i ))

h +
σ2
1(x

(1)
i )(1−ρ212(x

(1)
i ,x

(2)
i ))

h2

)
,

a(x
(1)
i , x

(1)
i−1) = 1

2

(
σ2
1(x

(1)
i )(1−ρ212(x

(1)
i ,x

(2)
i ))

h2 −
b1(x

(1)
i )+ρ12(x

(1)
i ,x

(2)
i )

σ1(x
(1)
i

)

σ2(x
(2)
i

)
((x

(2)
i+1−x

(2)
i )/dt−b2(x(2)

i ))

h

)
,

a(x
(1)
i , x

(1)
i ) = −(a(x

(1)
i , x

(1)
i−1) + a(x

(1)
i , x

(1)
i+1)),

(4.27)

for all x
(k)
i ∈ X k, with −σ2

k(x
(k)
i )
h ≤ bk(x

(k)
i ) ≤ σ2

k(x
(k)
i )
h for k = 1, 2, ρ12(x

(1)
i , x

(2)
i ) ∈ [−1, 1],

and a(x
(k)
i , x

(i)
i+1) ≥ 0 and a(x

(k)
i , x

(i)
i−1) ≥ 0 for all i.

Proof. Let’s consider the two-dimensional Markov process Xt = (X1
t , X

2
t ) and how to

derive its corresponding infinitesimal generator approximation in matrix form. The local
instantaneous intensities are calculated in the same way as described in Section 4.2 for the
one dimensional case, namely using local moment matching as reported in eq. (4.5). For
the 2-dimensional case the instantaneous intensities are calculated using the local transition
kernel

p(X1
t+∆t, X

2
t+∆t|X1

t , X
2
t ), as ∆t→ 0. (4.28)

In particular considering the transition from a local state (x
(1)
i , x

(2)
j ) ∈

⊗2
k=1X k to the

state (x
(1)
i+1, x

(2)
j+1) the transition probability in eq. (4.28) can be rewritten in local form as

pt(x
(1)
i+1, x

(2)
j+1|x

(1)
i , x

(2)
j ) = pt(x

(1)
i+1|x

(2)
j+1, x

(2)
j , x

(1)
i )pt(x

(2)
j+1|x

(1)
j ), (4.29)

where we denote by

pt(x
(2)
j+1|x

(2)
j ) = p

(
X2
t+∆t = x

(2)
j+1|X

2
t = x

(2)
j

)
∼ N

(
b(yj), σ

2(yj)
)

(4.30)

pt(x
(1)
i+1|x

(2)
j+1, x

(2)
j , x

(1)
i ) = p

(
X

(1)
t+∆t = x

(1)
i+1|X

(2)
t+∆t = x

(2)
j+1, X

(2)
t = x

(2)
j , X1

t = x
(1)
i

)
∼

= N
(
b1(x

(1)
i ) +

σ1(x
(1)
i )

σ2(x
(2)
j )

ρ(x
(1)
i , x

(2)
j )((x

(2)
j+1 − x

(2)
j )/∆t− b2(x

(2)
j )), (1− ρ2(x

(1)
i , x

(2)
j )σ2

1(x
(1)
j ))

)
Therefore the generator of (X1|X2) which we denote as AX1|X2 can be approximated as a

sequence of conditional generators of operator matrices
{
A

(n1)

X1|X2=x
(2)
i

}
∈ Rn1×n1 , x

(2)
i ∈
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X 2 each of whose entries are obtained by matching the first two local conditional moments d
dtE[dX

(n1)
t |X(n1)

t = x
(1)
i , X

(n2)
t = x

(2)
j ] = b(xi) +

σ1(x
(1)
i )

σ2(x
(2)
j )

ρ(x
(1)
i , x

(2)
j )(dx

(2)
j /dt− b2(x

(2)
j ))

d
dtE[(dX

(n1)
t )2|X(n1)

t = x
(1)
i , X

(n2)
t = x

(2)
j ] = σ2(xi)(1− ρ2(x

(1)
i , x

(2)
j ).

(4.31)

for all x
(2)
j ∈ X 2 and in the same way as described in Section 4.2, and this completes our

proof. Extension to dimensions larger than two is straightforward due to independence of
each conditional operator.

Note that the instantaneous conditional drift in eq. (4.31) includes a temporal average
of the conditioning state with respect to the starting state, see example 3.3.1. This is not
an approximation but an exact quantity for the mean of a conditional normal distribution.

4.2.3 Exponential of the Multidimensional Infinitesimal Generator Ma-
trix

In this section we provide details on how to exponentiate a multivariate infinitesimal gen-
erator matrix of the type of eq. (4.43),

A
(n)
X = A

(n1)
X1 ⊕S {A

(n2)
X2|X1} ⊕S · · · ⊕S {A

(nd)

Xd|X1,...,Xd−1}. (4.32)

where each term of type {A(nj)

Xj |Xk}, j = 1, . . . , d and j 6= k represents the conditional

infinitesimal generator introduced in Proposition 5 or equivalently a series of infinitesimal
generator matrices,

{A(nj)

Xj |Xk} := {A(nj)

Xj |Xk=x
(k)
0

, A
(nj)

Xj |Xk=x
(k)
1

, . . . , A
(nj)

Xj |Xk=x
(k)
nk

} (4.33)

where

A
(nj)

Xj |Xk=x(k)
z

=



a(x
(j)
0 , x

(j)
1 ) = a(x

(j)
n1 , x

(j)
n1−1) = 0,

a(x
(j)
i , x

(j)
i+1) = 1

2

( bj(x(j)
i )+ρ(x

(j)
i ,x

(k)
j )

σ1(x
(j)
i

)

σk(x
(k)
z )

(x(k)
z −bk)

hj
+

σ2
1(x

(j)
i )(1−ρ2(x(j)

i ,x(k)
z ))

h2
j

)
,

a(x
(j)
i , x

(j)
i−1) = 1

2

(
σ2
j (x

(j)
i )(1−ρ2(x(j)

i ,x(k)
z ))

h2
j

−
bj(x

(j)
i )+ρ(x

(j)
i ,x(k)

z )
σj(x

(j)
i

)

σ2(x
(k)
z )

(x(k)
z −bk)

hj

)
,

a(x
(j)
i , x

(j)
i ) = −(a(x

(j)
i , x

(j)
i−1) + a(x

(j)
i , x

(j)
i+1)),

(4.34)

for X k = {x(k)
0 , . . . , x

(k)
nk }, k = 1, . . . , d. Note that, by Proposition 9, the matrix sequence

can be decomposed into

{A(nj)

Xj |Xk} = A
(nj)
Xj
− {Â(nj)

Xj |Xk}. (4.35)

In the following we formulate a decomposition of the conditional operator introduced in
Proposition 5. Let us consider a coupled diffusion process Xt = (X1

t , X
2
t ) and its mimicking

CTMC X
(n)
t on X =

⊗2
i=1X i. It is almost straightforward to see from eq. (4.27) that the

sequence of conditional generator matrices {A(n1)
X1|X2} can be decomposed into

A
(n2)
X2|X1} = A

(n2)
X2 − {A

(c)(n2

X2|X1} (4.36)
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We now give more details of the decomposition in eq. (4.36). We saw in eq. (2.58)
that the expression of the Kronecker sum of a matrix A ∈ ρq×q with a matrix sequence
{Bj}, Bj ∈ ρp×p can be written as:

A⊕S {Bj}T =
(
A⊗ I(p)

)
+
(
I(q) ⊗S {Bj}

)T
=
(
I(q) ⊗S {Bj}

)
+
(
A⊗ I(p)

)T
(4.37)

The expression of the approximated infinitesimal generator for the mimicking BDP X
(n)
t

on the state space X 1 ⊗X 2 reads

A(n) = A
(n1)
X1 ⊕S {A

(n2)
X2|X1}

=
(
A

(n1)
X1 ⊗ I(n2)

)
+
(
I(n1) ⊗S {A(n2)

X2|X1}
)

=
(
A

(n1)
X1 ⊗ I(n2)

)
+
(
I(n1) ⊗ {A(n2)

X2 }
)

+
(
I(n1) ⊗S {A(c)(n2)

X2|X1}
)

=
(
A

(n1)
X1 ⊕ {A

(n2)
X2 }

)
+
(
I(n1) ⊗S {A(c)(n2)

X2|X1}
)

= A
(n)⊥
X +

(
I(n1) ⊗S {A(c)(n2)

X2|X1}
)

(4.38)

In eq. (4.38) we then express the generator ofX
(n)
t as the sum of A

(n)⊥
X , which is the the gen-

erator matrix when X
(n1)
t and X

(n2)
t are independent, plus the matrix

(
I(n1)⊗S {A(c)(n2)

X2|X1}
)

defined on X 1 ⊗ X 2 which holds all the correlation structure of the joint process. In par-

ticular the matrix sequence {A(c)(n2)
X2|X1} is defined on X 2 and represents the instantaneous

projection of X
(n1)
t onto X

(n2)
t .

We will investigate this decomposition in greater detail in Chapter 5, where we shall see

that
(
I(n1) ⊗S {A(c)(n2)

X2|X1}
)

can specify an operator, that we name copula operator, which

is an approximated infinitesimal generator matrix sequence calculated as the difference
between the CTMC joint operator A(n) and the independent one A(n)⊥. In fact with some
algebra we have that:

{A(c)
X2|X1} = A

(n1)
X1 ⊕S {A

(n2)
X2|X1} − (A

(n1)
X1 ⊕A

(n2)
X2 )

=
(
A

(n1)
X1 ⊗ I(n2)

)
+
(
I(n1) ⊗S {A(n2)

X2|X1}
)
−
[(
A

(n1)
X1 ⊗ I(n2)

)
+
(
I(n1) ⊗A(n2)

X2

)]
=

(
I(n1) ⊗S {A(n2)

X2|X1}
)
−
(
I(n1) ⊗A(n2)

X2

)
(4.39)

with generator matrix entries given by:

{A(c)
X2|X1} =



a(x
(2)
1 , x

(2)
2 ) = a(x

(2)
n2 , x

(2)
n2−1) = 0,

a(x
(2)
i , x

(2)
i+1) = 1

2

(
σ2
1(x

(2)
i )(1−ρ2(x(2)

i ,x
(1)
i ))

h2
2

+
ρ(x

(2)
i ,x

(1)
i ))

σ1(x
(1)
i

)

σ2(x
(2)
i

)
(xj−b1(x(1)

i ))

h2

)
,

a(x
(2)
i , x

(2)
i−1) = 1

2

(
σ2
1(x

(2)
i )(1−ρ2(x(2)

i ,x
(1)
i ))

h2
2

−
ρ(x

(2)
i ,x

(1)
i ))

σ1(x
(1)
i

)

σ2(x
(2)
i

)
(xj−b1(x(1)

i ))

h2

)
,

a(x
(2)
i , x

(2)
i ) = −(a(x

(2)
i , x

(2)
i−1) + a(x

(2)
i , x

(2)
i+1)),

(4.40)

for all x
(1)
i ∈ X 1. The representation of the copula transition probability in tensor form

is:

P
(n)(c)
X2 = α

P
(n)
X1,X2

P
(n1)
X1 ⊗ P

(n2)
X2

= α
I(n1) ⊗S P (n2)

X2|X1

I(n1) ⊗ P (n2)
X2

= α
I(n1) ⊗S e

{A(n2)

X2|X1}

I(n1) ⊗ eA
(n2)

X2

(4.41)
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where α is just a scaling factor. Analogously,

P
(n)(c)
X1 = α′

P
(n)
X1,X2

P
(n1)
X1 ⊗ P

(n2)
X2

= α′
I(n2) ⊗S P (n1)

X1|X2

I(n2) ⊗ P (n1)
X1

= α′
I(n2) ⊗S e

{A(n1)

X1|X2}

I(n2) ⊗ eA
(n1)

X1

(4.42)

with α′ just a scaling factor. Note that P
(n)(c)
X2 = P

(n)(c)
X1 for standardized uniform marginals,

or equivalently X 2 = X 1.

Proposition 6 (Multidimensional approximated generator (correlated processes)). The
multidimensional approximated generator for d correlated Markov process Xt = (Xi

t),

for i = 1, . . . , d with approximated generators A
(nk)

Xk ∈ Rnk×nk , k = 1, 2, . . . , d is the
n1n2 · · ·nd × n1n2 · · ·nd matrix

A(n) = A
(n1···nd)

X1,...,Xd =
{
A

(n1)

X1|X2,...,Xd

}
⊕S · · · ⊕S A(nd)

Xd , (4.43)

where ⊕S denotes the Kronecker sum over a matrix sequence.

From proposition 5 it is clear that we can represent the approximated multidimensional
generator of eq. (4.10) as a decomposition of independent conditional generators. Further-
more it is also possible to exploit standard results of conditional probability partitioning
in order to facilitate the local characterization of the independent multidimensional condi-
tional generators. Given a multivariate Gaussian variable X ∼ N (b,Σ) and consider the
partition of X and equivalently of b and Σ into

X =

[
x1

x2

]
, b =

[
b1

b2

]
, Σ =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
(4.44)

Then (x1|x2) = y = x1 + Cx2, where C = −Σ1,2Σ2,2
−1, the conditional distribution of

the first partition given the second, is N (b,Σ), with mean

b = b1 + Σ1,2Σ2,2
−1(x2 − b2), (4.45)

and covariance matrix
Σ = Σ1,1 −Σ1,2Σ2,2

−1Σ2,1. (4.46)

More generally we denote by Σ = (Σi,j(x)) ∈ Rd×d the positive covariance matrix
introduced within the definition of the generator A in eq. (2.37) and eq. (4.6),

Σ =


Σ1,1 Σ1,2 · · · Σ1,d

Σ2,1 Σ2,2 · · · Σ2,d
...

...
. . .

...
Σd,1 Σd,2 · · · Σd,d

 . (4.47)

Conditional probability partitioning is a very important property when creating the
sequence of conditional approximated generators of eq. (4.27) because large multivariate
Gaussian vectors can be easily partitioned as the combination of sets of independent sub-
multivariate Gaussian vectors. Each of the sub-multivariate Gaussian vectors can be further
characterized and locally approximated through a principal component analysis (PCA).
Therefore it is possible to construct a reduced dimensionality infinitesimal generator of
a large dimension process without an aggregate PCA of the global process covariance
structure.
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54 4. Tensor Approximation of Correlated Diffusions

Example 1 (Three-dimensional approximated generator). Given the results in Proposi-

tions 5 and 6, we show how to calculate A
(n)
X = A

(n1n2n3)
X1X2X3. We can express the approximated

three-dimensional generator under a conditional decomposition according to

A
(n)
X = A

(n1)
X1|X2X3 ⊕S A

(n2)
X2|X3 ⊕S A

(n3)
X3 . (4.48)

Note that A
(n1)
X1|X2X3 =

{
A

(n1)

X1|X2=x(2),X3=x(3)

}
∈ Rn1×n1 with x(2) ∈ X 2 and x(3) ∈ X 3 and

A
(n2)
X2|X3 =

{
A

(n2)

X2|X3=x(3)

}
∈ Rn2×n2 with x(3) ∈ X 3 .

Remark 3. It is important to note that the joint infinitesimal generator approximation
in the Proposition 5 is not equivalent to the joint representation of Proposition 4. The
approximations do not produce the same instantaneous local correlations in the cross space,
but they produce equivalent ‘terminal’ joint distribution. We would like to introduce the
explicit expressions of the quadratic variation and quadratic covariation among CTMC with
generators approximated using the method introduced in Proposition 5. This is formalized
in the following Lemmas.

Lemma 1. [Orthogonal CTMCs and zero instantaneous covariation] Let X = (X
(n1)
1 , . . . , X

(nd)
d )′

be a d-dimensional CTMC and define its partition as X = [x1,x2]′. Let’s define y =
x1 + Cx2, where C = −Σ1,2Σ2,2

−1. Then the chains x2 and the conditional chains y are
orthogonal and var(y) = var(x1|x2).

Proof. We want to show that the instantaneous covariation of the chains x2 and y is zero.
Therefore we compute

cov(x2,y) = cov(x2,x1) + cov(x2,Cx2)

= Σ1,2 + Ccov(x2,x2)

= Σ1,2 −Σ1,2Σ2,2
−1Σ2,2 = 0 (4.49)

Furthermore we have

var(y) = = var(x1 + Cx2)

= var(x1) + Cvar(x2)C′ + Ccov(x1,x2) + cov(x2,x1)C′

= var(y|x2) = var(x1|x2). (4.50)

var(x1|x2) = var(x1 + Cx2)

= var(x1) + Cvar(x2)C′ + Ccov(x1,x2) + cov(x2,x1)C′

= var(y|x2) = var(y). (4.51)

Lemma 2 (‘Terminal’ covariance of orthogonal CTMCs). Given the settings and results
from proposition 5 and Lemma 1 we can obtain the covariance matrix Σ which is:

[y,x2]

[
Σ 0
0 Σ2,2

] [
y
x2

]
= [x1,x2]

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

] [
x1

x2

]
. (4.52)
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Theorem 5 (Equivalence of the joint ‘terminal’ representations). Given two correlated
Markov processes Xt = (X1

t , X
2
t ), with properties as described in Chapter 2, the approxi-

mated ‘terminal’ joint transition probability kernel P
(n)
t := P

(n)
Xt

= P
(n1n2)
X1,X2 is the solution

of the Cauchy problem of eq. (2.16) where the infinitesimal operator can be expressed in
either cross space and marginals decomposition or as conditional decomposition given by

Ā
(n)
X = A

(n1)
X1
⊕A(n2)

X2
+A

(c)(n)
X1,X2

, (4.53)

or

A
(n)
X = A

(n1)
X1|X2 ⊕S A

(n2)
X2 . (4.54)

The approximations in eq. (4.53) and eq. (4.54) produce equivalent ‘terminal’ joint tran-

sition probabilities, although while the generator matrix Ā
(n)
X spans also the cross space of

X , A
(n)
X is confined only on its orthogonal dimensions.

Proof. Refer to Lemma 1 and Lemma 2.

Proposition 7 (Correlated kernels tensor representation). Given d-correlated Markov pro-
cesses Xt, with properties as described in Section 4.1, the approximated weak of the SDE
in eq. (4.1), is given by the product measure representation involving the generator decom-
position according to,

P
(n)
t = etA

(n) ≈ e
t(A

(n1···nd)
X1,...,Xd

=A
(n1)

X1|X2,...,Xd
⊕S ···⊕SA

(nd)

Xd
)

(4.55)

= e
tA

(n1)

X1|X2,...,Xd ⊗S e
tA

(n2)

X2|X3,...,Xd ⊗S · · · ⊗S etA
(nd)

Xd (4.56)

Proof. In order to calculate the d-dimensional tensor product of eq. (4.55) we exploit the

orthogonality of the conditional approximated infinitesimal operators A
(ni)

Xi|...,Xd for all i.

This follows from Proposition 5. Then the transition density of eq. (4.55) is computed
along the same lines as in example 1.

Remark 4. We would like to remark that in eq. (4.55) we compute the approximate

solution P
(n)
t of a correlated diffusion Xt, which spans only the orthogonal dimension of

the space X =
⊗d

k=1X k, and not the cross-spaces of X , which is usually the space where
the approximation of correlation takes place. This has the remarkable numerical advantage
that a n-dimensional problem can be dealt as independent one-dimensional problems. The

solution P
(n)
t of eq. (4.55) is subject to an approximation error which has two sources: the

first one is due to the discretization of each support X k, while the other error contribution
occurs because the generator matrices do not commute. We elaborate about this last error

in the next section 4.2.4, while we discuss about weak convergence of the solution P
(n)
t in

section 4.3.

The use of orthogonal tensor spaces to overcome the curse of dimensionality is a very
well known practice, and used many different type of applications from statistics to big
data, see Kuang et al. [2014].
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4.2.4 Commutators in Exponential Operators

In this section we want to give more insights of the matrix exponential of the Kronecker
sum of a sequence of matrices, namely

exp
(
A⊕S {Bj}

)
≈ exp(A)⊗S exp({Bj}) +O([A, {Bj}]), (4.57)

where the notation {Bj}, j = 1, 2, . . . denotes a sequence of matrices {B1, B2, . . .}. We also
give details of exponential of matrix operators, a topic very well studied in mathematical
physics and extensively used in quantum physics, see Wilcox [1967].

Remark 5. We would like to remark that the matrices
(
A ⊗ I(p)

)
and

(
I(n) ⊗S {Bj}

)
in eq. (2.58) do not commute. However the key result in our proposed multidimensional
diffusion approximation is based on theorem 4, namely

exp
(
A⊕S {Bj}

)
≈ exp(A)⊗S exp({Bj}) +O([A, {Bj}]) (4.58)

While the left side of eq. (4.58) represents the expression of the diffusion approximation
that will be used in the study of weak convergence in section 4.3.4, the right hand side is
instead a further algebraic approximation that is key to a fast computation of the proposed
numerical scheme illustrated in section 4.3.4. We have that, while the left side of eq. (4.58)
can be interpreted as a multidimensional approximation of the transition probability at time
1, the right hand side represents the same multidimensional approximation made by one
dimensional approximations. The error term of order O([A, {Bj}]), is due to the fact that
the matrices A and the matrix sequence {Bj} do not commute.

In eq. (4.57) we utilise the definition that if A is an Rm×m matrix and {Bj}, j = 1, . . . ,m
is a sequence of m matrices in Rn×n, then the Kronecker product of a matrix sequence
A⊗S {Bj} is the nm× nm block matrix:

A⊗S {Bj} =

a11B1 · · · a1mBm
...

. . .
...

am1B1 · · · ammBm

 = (A⊗ In)(Im ⊗S {Bj}), (4.59)

where In ∈ Rn×n denotes the identity matrix, and

Im ⊗S {Bj} =

B1 · · · 0
...

. . .
...

0 · · · Bm

 . (4.60)

Therefore

A⊗S {Bj} =

a11In · · · a1mIn
...

. . .
...

am1In · · · ammIn


B1 · · · 0

...
. . .

...
0 · · · Bm

 . (4.61)

We would like to give some more details about the approximation in eq. (4.57). According
to the Baker-Campbell-Hausdorff (BCH) formula:

Z(X,Y ) = log(exp(X) exp(Y )) = X+Y+
1

2
[X,Y ]+

1

12
([X, [X,Y ]]+[Y, [Y,X]])+. . . (4.62)
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4.2 Approximation of correlated Markov processes 57

where Z, X and Y are linear operators associated to semigroups, and [X,Y ] := XY −Y X.
Note that when the groups X and Y commute then [X,Y ] = 0. In our specific case the
application of the above BCH formula up to the first commutator yields

exp
(
(A⊗In)+(Im⊗S{Bj})

)
= exp

(
(A⊗In)

)
exp

(
(Im⊗S{Bj})

)
exp

(
−1

2
[(A⊗In), (Im⊗S{Bj})]

)
.

(4.63)
In particular we would like to closely understand the expression of the commutator

[(A⊗ In), (Im ⊗S {Bj})]. (4.64)

We note that the matrix operator sequence {Bj} can be decomposed into a constant matrix
B and a state dependent matrix sequence {B̂j}, and therefore we can write,

Im ⊗S {Bj} =

B1 · · · 0
...

. . .
...

0 · · · Bm

 (4.65)

=

B · · · 0
...

. . .
...

0 · · · B

−
B̂1 · · · 0

...
. . .

...

0 · · · B̂m

 (4.66)

= Im ⊗S ({B} − {B̂j}) = Im ⊗B − Im ⊗S {B̂j}. (4.67)

Note that this decomposition is equivalent to the decomposition in eq. (4.35). Then eq.
(4.64) simplifies to

[(A⊗In), (Im⊗S{Bj})] = [(A⊗In), (Im⊗S{B̂j})] [because [(A⊗In), (Im⊗B)] = 0] (4.68)

Therefore the commutator C = [(A⊗ In), (Im ⊗S {B̂j})] reads

C =

a11In · · · a1mIn
...

. . .
...

am1In · · · ammIn


B̂1 · · · 0

...
. . .

...

0 · · · B̂m

−
B̂1 · · · 0

...
. . .

...

0 · · · B̂m


a11In · · · a1mIn

...
. . .

...
am1In · · · ammIn

 (4.69)

=



0 a12(B̂2 − B̂1) 0 · · · 0

a21(B̂1 − B̂2) 0 a23(B̂3 − B̂2) · · · 0
...

. . .
. . .

...
...

. . .
. . .

. . . 0

0 · · · am−1m−2(B̂m−2 − B̂m−1) 0 am−1m(B̂m − B̂m−1)

0 · · · 0 amm−1(B̂m−1 − B̂m) 0


.

Therefore eq. (4.63) can be rewritten as

exp
(
(A⊗ In) + (Im ⊗S {Bj})

)
= exp

(
(A⊗ In)

)
exp

(
(Im ⊗S {Bj})

)
exp

(
− 1

2
C
)
. (4.70)

Note that in all the applications presented in this thesis the terms (B̂i − B̂i−1) ≈ 0 for all
i.

57 of 158



58 4. Tensor Approximation of Correlated Diffusions

4.3 Convergence of the approximated CTMC

In this section we study the convergence of the proposed CTMC approximation towards
diffusion processes. The main references used for this investigation are Ethier & Kurtz
[2009]; Stroock & Varadhan [2007]; Billingsley [2013]; Baldi [2017]; Brzeniak & Zastawniak
[1999].

Specifically if the mimicking CTMC X
(n)
t has measure P (n) mimicking a diffusion process

Xt with infinitesimal operator

A =

d∑
i

bi(x)
∂

∂xi
+

1

2

d∑
i,j

Σi,j(x)
∂2

∂xi∂xj

and measure P .

Definition 23 (Weak convergence of probability measures). A sequence of of finite mea-
sures {P (n)}, on the measurable space (S,B(S)), converges to the measure P weakly if for
every contiuous bounded function f : S → R

lim
n→∞

∫
fdP (n) =

∫
fdP. (4.71)

In Section 4.2 we defined the Markov chain X
(n)
t approximating the multidimensional

generalized diffusion Xt. Here we present weak convergence results for X
(n)
t to the solution

of the SDE for Xt, introduced in eq. (4.1). The convergence is studied through different
methods:

1. From a semigroup point of view,

2. In a spectral way through a Fourier unitary transformation of the approximated
generator providing desired rate of convergence results,

3. Through the martingale problem for the associated infinitesimal generator.

4.3.1 Semigroup approach

We want that the continuous Markov chain X
(n)
t has a dynamics as close as possible to the

corresponding approximated process Xt. To this purpose we can define an error

εn(f) := sup
x∈S
‖A(n)f(x)−Af(x)‖. (4.72)

Using the semigroup approach to weak convergence we can state that, if εn(f) tends to

zero as n tends to infinity for f in D(S), then the sequences of processes {X(n)
t }, converges

weakly to Xt, in the space D(S). The following theorem states that if the error εn(f) goes
to zero as n tends to infinity, implying norm convergence of the approximated generator
A(n)f(x) to Af(x), this would imply also convergence of the corresponding approximated

semigroup P
(n)
t to Pt and of the chain X(n) to X for t ≥ 0.
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4.3 Convergence of the approximated CTMC 59

Definition 24. (Feller property, Feller Process, see Baldi [2017]) A transition function p is
said to enjoy the Feller property if, for every fixed h ≥ 0 and for every bounded continuous
function f : S → R the map

(t, x) 7→
∫
S
f(y)p(t, t+ h, x, dy) (4.73)

is continuous , or in the homogeneous case

x 7→
∫
S
f(y)p(h, x, dy) (4.74)

is a continuous function of x. A Markov process Xt is said to be a Feller process if its
transition function enjoys Feller’s property.

The Feller property introduced above is relevant to study the weak convergence of the
transition probability. In fact it is equivalent of stating that if the sequences tn → t and
xn → x then

p(tn, xn, ·) →
n→∞

p(t, x, ·) (4.75)

Examples of Feller processes include solutions to SDEs with Lipschitz continuous coeffi-
cients, the Brownian motion and the Poisson process. Therefore also a birth-death process
is a Feller process.

Theorem 6. Let Xt be a Feller process on S with infinitesimal generator A, and X
(n)
t :

X → R be a mimicking BDP with generator matrix A(n), and with π(n) : S → X a bounded
linear transformation. Then it holds that

lim
n→∞

εn(f) = 0 (4.76)

for every function f ∈ D(S), the set of f ∈ Mb(S) for which A exists, which is equivalent
to the statement that

T
(n)
t πnf → Ttf, for all f ∈ D(S), t ≥ 0.

Then X
(n)
t , converges weakly to Xt, in D(S).

Proof. From Theorem 6.1 in Chapter 1 pag. 28 of Ethier & Kurtz [2009], we have that if

{T (n)
t }, n = 1, 2, . . ., and {Tt} are strongly continuous contraction semigroups on S with

generators A(n) and A respectively, and let D(S) be a core for A, then the following are
equivalent:

(i) For each f ∈ S
P

(n)
t πnf → Ptf

uniformly on bounded intervals.

(ii) For each f ∈ S
P

(n)
t π(n)f → Ptf

for all t ≥ 0.
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60 4. Tensor Approximation of Correlated Diffusions

(iii) For each f ∈ D(S), there exists f (n) ∈ D(A(n))1 for each n ≥ 1 such that f (n) → f
and A(n)f (n) → Af .

Furthermore, following Ethier & Kurtz [2009], Chapter 4 pag. 172 Theorem 2.11, we have
that if {Tt} is a Feller semigroup on Mb(S) and that for each t ≥ 0 and Mb(S)

P
(n)
t π(n)f → Ptf.

If X
(n)
0 has limiting distribution ν, then there is a Markov Process Xt corresponding to Pt

with initial distribution ν and sample paths in S, and

X
(n)
t → Xt in S.

Therefore, in order to be able to use the result of the above Theorem 6, we need to prove
the convergence of the proposed approximated generator A(n) to the generator A and this
is done in the following theorem, using the argument that the operator A is local.

Proposition 8. (Local Infinitesimal Generator) If Br(x) denotes a sphere of radius r > 0
centered in x ∈ D and if

lim
t→0+

(p(t, x,Bc
r(x))) = 0, (4.77)

where Bc
r(x) denotes the complement set of the sphere Br(x), then A is local.

Theorem 7. For all f ∈ D(S) ⊂ Mb(S), with D(S) domain of the generator A as previ-
ously defined,

lim
n→∞

sup
x∈S
|A(n)f(x)−Af(x)| = 0,

with a rate at most of O(h2), where h denotes the discretization unit of X .

Proof. Let f ∈ D and x, y ∈ S , such that y = x+ ∆x ∈ Br(x). We recall that the action
of the generator A on a function f(x) ∈ D is equal to

lim
t→0+

1

t

(
Ttf(x)− f(x)

)
= lim

t→0+

1

t

∫
(f(y)− f(x))p(t, x, dy) (4.78)

and equivalently in a neighbourhood of the point x to

lim
t→0+

1

t

∫
Br(x)

(f(y)− f(x))p(t, x, dy). (4.79)

We now compute the Taylor expansion of the function f(y) about x which is

f(y) = f(x) +

d∑
i=1

∂f

∂xi
(x)(yi−xi) +

1

2

d∑
i,j=1

∂2f

∂xixj
(x)(yi−xi)(yj −xj) + o(|x− y|2). (4.80)

Therefore we have that

lim
t→0+

1

t

(
Ttf(x)− f(x)

)
= Af(x) + lim

t→0+

1

t

∫
Br(x)

o(|x− y|2)p(t, x, dy). (4.81)

1Where D(A(n)) denotes the domain of A(n).
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4.3 Convergence of the approximated CTMC 61

We now characterize the limit limt→0+
1
t

∫
Br(x) o(|x− y|

2)p(t, x, dy) using the notation de-

veloped in the thesis for the approximated generator A(n). By Taylor approximation

fn(x) = f(y) ≈ f(x+ h) ≈ f(x) + f ′(x)h+
1

2
f ′′(x)h2 + o(h2)

we obtain for all x ∈ X ,

A(n)fn(x) = a(x, x+ h)
(
f(x) + f ′(x)h+

1

2
f ′′(x)h2 + o(h2)− f(x)

)
+ a(x, x− h)

(
f(x)− f ′(x)h+

1

2
f ′′(x)h2 + o(h2)− f(x)

)
= f ′(x)h

(
a(x, x+ h)− a(x, x− h)

)
+

1

2
f ′′(x)h2

(
a(x, x+ h)− a(x, x− h)

)
+

(
a(x, x+ h)− a(x, x− h)

)
o(h2).

Due to the fact that f ∈ D, the error term o(h2) is uniform in x. We have that

a(xi, xi+1) + a(xi, xi−1) =
σ2(x)

h2
,

a(xi, xi+1)− a(xi, xi−1) =
µ(x)

h
.

In section 4.2 we made precise assumptions, see the assumption 1 on the behaviour at the
boundary of the process. Without loss of generality we can assume that the boundary is
at a point of infinity, i.e. not attainable in finite time and it is furthermore absorbing. It
is possible to express A(n)fn(x) for all x ∈ D, as

A(n)fn(x) = f ′(x)h
(b(x)

h

)
+

1

2
f ′′(x)h2

(σ2(x)

h2

)
+
(σ2(x)

h2

)
o(h2)

= Af(x) +
(σ2(x)

h2

)
o(h2).

We obtain

sup
x∈D
|A(n)f(x)−Af(x)| = sup

x∈D
|σ

2(x)

h2
o(h2)| ≤ σ2(x)

h2
KO(h3)

n→∞−−−→ 0. (4.82)

where K is a constant. In case of x ∈ ∂X , consisting of the smallest (i.e. x) and largest
(i.e. x) elements in X , are absorbing states of the Markov chain we can continue the above
analysis with a further investigation of the weak convergence. Furthermore the behaviour
on the boundary of the functions f ∈ D is f ′(x) = f ′(x) = 0. For x = x we have,

|A(n)f(x)−Af(x)| ≤ |A(n)f(x)−A(n)f(x+ h)|
+ |A(n)f(x+ h)−Af(x+ h)|
+ |Af(x+ h)−Af(x)|
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62 4. Tensor Approximation of Correlated Diffusions

The second term tends to 0 as shown above, the third term by continuity of Af in x. For
the first term we have

|A(n)f(x)−A(n)f(x+ h)| = |a(x, x+ h)(f(x+ h)− f(x))

− a(x+ h, x)(f(x+ 2h)− f(x+ h))

− a(x+ h, x+ 2h)(f(x+ h)− f(x))|
= O(h)o(h)

n→∞−−−→ 0.

since a(x, x + h), a(x + h, x), a(x + h, x + 2h) are on order o(h) and (f(x + h) − f(x)),
(f(x+ 2h)− f(x+ h)), (f(x+ h)− f(x)) are of order O(h) because f ′(x) = 0 for f ∈ D.
The result for x follows in the same way.

4.3.2 Weak Convergence through Spectral approach

For this purpose we need to introduce multiplication operators that are considered as an
infinite-dimensional generalization of diagonal matrices and they are extremely simple to
construct. Furthermore, they appear naturally in the context of the Fourier transform or
when one applies the spectral theorem and deals with spectral representation of operators
on Hilbert spaces. It is an equivalent way to represent the same operator and can be useful
for calculations and further analysis.

We recall that the definitions of discrete Fourier transform matrix and its inverse as a
unitary operator are given by,

Fs,k =
1√
n
e−i 2π

n
sk,

F−1
k,s =

1√
n
ei 2π

n
sk,∑

k

Fl,kF
−1
k,j = δl,j ,

where δl,j is the Kronecker delta, so these matrices give the resolution of the identity
matrix and define a unitary transformation. Also, if f(x) is a function belonging to the

space L2 and Bn the Brillouin zone defined as Bn =
{
− π

h + kh, k = 0, . . . , 2π
h2

= n
h

}
the

transformation Fn : L2(X ) 7→ L2(Bn)

Fn(f)(s) =
∑
x∈X

Fs,kf(x), (4.83)

is the discrete Fourier transform of f , with X := hZ 2 . In fact,

F(f)(s) =
1√
n

∫ π
h

−π
h

e−isxf(x)dx (4.84)

≈ 1√
n

n−1∑
k=0

eis
(
−π
h

+kh
)
f(−π

h
+ kh)︸ ︷︷ ︸

fk

, (4.85)

2In all our practical applications we consider X ⊂ D := [−K,K] ⊂ R, K ∈ (0,∞), with D the operator
domain and assuming for simplicity also periodic boundary conditions.
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4.3 Convergence of the approximated CTMC 63

where h = 2π
n . We now extend the above transformation to the d-dimensional case, and

the following results set the notation for our subsequent theorems and proofs.

Theorem 8. (See Jacod & Protter [2004], Theorem 16.1, pag. 126. ) X is an Rd-valued
Gaussian random variable if and only if its characteristic function has the form

ϕX(s) = exp
(

ibs− 1

2
s′Σs

)
(4.86)

where b ∈ Rd and Σ ∈ Rd×d is a symmetric semipositive definite matrix. Σ is then the
covariance of X and b is the mean of X, that is bk = E[Xk] for all k.

Theorem 9. (See Lukacs [1958], Theorem 3.2.3) Let f(s) be an arbitrary characteristic
function. For every real x the limit

p(x) = lim
T→∞

1

2T

∫ T

−T
e−isxf(s)ds (4.87)

exists and is equal to the saltus of the distribution function of f(s) at the point x.

We can obtain a spectral representation of the operator A
(n)
X by applying the above

unitary transformation leading to the following diagonal operator,

qn1···nd(s) = F(A
(n)
X (f))F−1(s) (4.88)

where the approximated generator A(n) can be written as

A(n) = µ′∇+
1

2
σ′H̃σ (4.89)

with ∇ the discrete d-dimensional gradient operator and H̃ the discrete d-dimensional
Hessian operator.

In order to derive some convergence properties of the operator (4.10) we do this by com-
paring the spectral representations of the probability density functions for the continuous
infinitesimal generator and its approximated counterpart, namely

pt(x,y) =
1

(2π)d

∫
Rd
ϕXe

is(y−x)ds.

and

P
(n)
t (x,y) =

1

(2π)d

∫
[−π

h
,π
h

]d
eqn1···nd (s)teis(y−x)ds,

In this way we are able to assess the order of convergence of the error

εn :=
∣∣∣pt(x,y)− P (n)

t (x,y)
∣∣∣. (4.90)

To assess the rate of convergence of eq. (4.90), we exploit the relationship between
the distribution function and its corresponding characteristic function and in particular we
refer to the Continuity Theorem.
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64 4. Tensor Approximation of Correlated Diffusions

Theorem 10 (Continuity Theorem, see Lukacs [1958], Theorem 3.6.1.). Let {Fn(x)} be a
sequence of distribution functions and denote by {fn(s)} the sequence of the corresponding
characteristic functions. The sequence {Fn(x)} converges weakly to a distribution function
F (x) if, and only if, the sequence {fn(s)} converges for every s to a function f(s) which
is continuous at s = 0. The limiting function is then the characteristic function of F (x).

We can therefore focus on the analysis of the passage to the limit h→ 0 of the following
spectral representation, conditional on a time t,

lim
h↓0

1

(2π)d

∫
[−π

h
,π
h

]d
eqn1···nd (s)teis(y−x)ds =

1

(2π)d

∫
Rd
ϕXe

is(y−x)ds. (4.91)

Theorem 11. (Convergence of the d-dimensional approximated operator) For all x we

consider the sequence of density functions P
(n1···nd)
t (x,y) and the sequence of the corre-

sponding characteristic functions {eqn1···nd (s)t}. The sequence {Fn(x)} converges weakly to
a distribution function F (x) if, and only if, the sequence {eqn1···nd (s)t} converges for every
s to a function ϕX which is continuous at s = 0. The limiting function is then the charac-
teristic function of F (x). Furthermore if h denotes the uniform discretization unit of the
space X , we found that the attainable rate of weak convergence is at most O(h2).

Proof. We prove convergence and characterization of the rate of convergence for d = 1 and
d = 2 being the proof in higher dimensions just an algebraic extension of the case of d = 2.
The calculation of qn1···nd(s)t is straightforward and it is just an application of the shift
theorem. For d = 1

Fn(A
(n1)
X1

)(f)(s) =
∑
x∈H

Fs,k

(
µ∇h1(f)(x) +

σ2

2
4h1(f)(x)

)

Fn(µ∇h1)(f)(s) =
∑
x∈H

Fs,kµ∇h1(f)(x)

= µ

n−1∑
k=0

Fs,k
f(kh+ h1)− f(kh− h1)

2h1

=
µ

2h1

(
eih1s

n−1∑
k=0

Fs,kf(kh)− e−ih1s
n−1∑
k=0

Fs,kf(kh)
)

= µ
eih1s − e−ih1s

2h1
F(f)(s) = −iµ

sinh1s

h1
F(f)(s).

Doing a similar calculation for F(σ
2

2 4h1)(f)(s) we obtain

qn1(s) =
(
− iµ

sinh1s

h1
+ σ2 cos(h1s)− 1

h2
1

)
(s). (4.92)

Let us consider the integral on the left-hand side of eq. (4.91) for d = 1 and it can be
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4.3 Convergence of the approximated CTMC 65

rewritten as

1

2π

∫ π
h1

− π
h1

e

(
−iµ

sinh1s
h1

+σ2 cos(h1s)−1

h21

)
(s)t
eis(y−x)ds

=
1

2π

∫ −K
− π
h1

e

(
−iµ

sinh1s
h1

+σ2 cos(h1s)−1

h21

)
(s)t
eis(y−x)ds

+
1

2π

∫ K

−K
e

(
−iµ

sinh1s
h1

+σ2 cos(h1s)−1

h21

)
(s)t
eis(y−x)ds

+
1

2π

∫ π
h1

K
e

(
−iµ

sinh1s
h1

+σ2 cos(h1s)−1

h21

)
(s)t
eis(y−x)ds

and it is possible to make the first and the third integral on the right end side arbitrary small
by choosing K = K(h1) and by selecting h1 > 0 sufficiently small, such that K(h1) → ∞
when h1 → 0. If we consider the second integral we can analyse the behaviour as h1 → 0.
We notice that for all s the function

lim
h1→0

(
iµ

sinh1s

h1

)
= lim

h1→0
iµ

s

s

sinh1s

h1

= lim
h1→0

isµ
sinh1s

h1s
= isµ

and

lim
h1→0

(
σ2 cosh1s− 1

h2
1

)
= lim

h1→0
σ2 s

2

s2

cosh1s− 1

h2
1

= lim
h1→0

σ2s2 cosh1s− 1

(h1s)2
= −1

2
σ2s2.

We would like to examine in more details the order of convergence of the above functions
as h1 → 0. For the limit

lim
h1→0

sinh1

h1
= 1,

using sinh1 = h1 −
h31
6 + . . ., we get

sinh1

h1
− 1 =

sinh1 − h1

h1
= −h

3
1

6h
+ . . . = −h1

2

6
+ . . .

we find an order of O(h2
1). In the same way using cosh1 = 1− h21

2 + . . ., we can assess the
order of convergence of the limit

lim
h1→0

1− cosh1

h2
1

=
1

2
,

1− cosh

h2
1

=
1−

(
1− h21

2 + . . .
)

h2
1

=
1

2
+ . . .
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66 4. Tensor Approximation of Correlated Diffusions

and convergence order of O(1). Therefore the order of convergence is at most O(h2
1). This

results can be extended to all the marginals of a d-dimensional approximated operator
in case of independent marginals. In the presence of correlation we have the presence of
mixed derivative terms. For d = 2 the calculation of qn1n2 is as follows:

Fn

(
A

(n1n2)
X1,X2

)
(f)(s)

= Fn

(
A

(n1)
X1 ⊕A

(n2)
X2 +A

(c)(n1n2)
X1,X2

)
(f)(s)

=
∑
x1∈X 1

∑
x2∈X 2

Fs,k

((
µ1∇h1 +

σ2
2

2
4h1 + µ2∇h2 +

σ2
2

2
4h2 + ρσ1σ2∇h1∇h2

)
(f)(x)

)
.

(4.93)

The above eq. (4.93) is equivalent to

Fn

(
A

(n1)
X1 ⊕A

(n2)
X2 +A

(c)(n1n2)
X1,X2

)
(f)(s)

= Fn
(
A

(n1)
X1

)
(f)(s)⊕Fn

(
A

(n2)
X2

)
(f)(s) + Fn

(
A

(c)(n1n2)
X1,X2

)
(f)(s).

Therefore it is sufficient to analyze the term

Fn

(
A

(c)(n1n2)
X1,X2

)
(f)(s), (4.94)

where the operator A
(c)(n1n2)
X1,X2 was introduced in proposition 4 as the correlation operator.

Fn

(
A

(c)(n1n2)
X1,X2

)
(f)(s)

=
∑
x1∈X 1

∑
x2∈X 2

Fs,k

(
ρσ1σ2∇h1∇h2

)
(f)(x)

)
= ρ12σ1σ2

1

h1h2

(
cos(h1s1 + h2s2)− cos(h1s1)− cos(h2s2) + 1

)
,

because of the mixed derivative term approximation of Proposition 4. The following ap-
proximations hold:

cos(h1s1 + h2s2)− 1 = −h
2
2s

2
2

2
− s1s2h1h2 −

h2
1s

2
1

2
+
h2

1s
2
1h

2
2s

2
2

4
+ (1 + h1 + h2

1)O(h2)3 +O(h)3,

cos(h1s1)− 1 = −s
2
1h

2
1

2
+O(h1)3,

cos(h2s2)− 1 = −s
2
2h

2
2

2
+O(h2)3.

Therefore,

lim
h1,h2→0

ρ12σ1σ2
1

h1h2

(
cos(h1s1+h2s2)−cos(h1s1)−cos(h2s2)+1

)
= −ρ12σ1σ2s1s2, (4.95)

that is exactly the characteristic function of the covariance term for the bivariate normal
distribution at time t. Given this proof, extension to higher dimensions is algebraically
straightforward.
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4.3.3 Weak Convergence Using the Martingale Central Limit Theorem

Here we present a weak convergence result for the multivariate diffusion approximation
introduced in Section 4.2, along the lines of the general diffusion convergence Theorem
4.1 at pag. 354 of Ethier & Kurtz [2009]. The convergence result we propose is based on
the arguments belonging to the formulation of diffusion theory in terms of the martingale
problem, see Stroock & Varadhan [2007], which requires minimal assumptions about the
smoothness of the coefficients of the SDE and can be seen as an extension of the martingale
central limit theorem [Martingale CLT, Theorem 1.4, Ethier & Kurtz [2009], pag. 339].
The results are mainly obtained by compactness arguments which do not require a priori
regularity. These arguments are the same as those devised to provide an existence theory
for the multidimensional SDE under consideration, and they just refer to properties of the
SDE coefficients as per Chapter 2.

Definition 25. The function space D([0, T ],Rd) = DRd [0, T ] if the set of all Rd-valued
functions f = (f1, . . . , fd) on [0, T ] that are right continuous at all t ∈ [0, T ) and have left
limits at all t ∈ (0, T ]. Therefore if a function f belongs to the set DRd [0, T ], then

lim
s→t+

f(s) = f(t+) exists and f(t+) = f(t), for t ∈ [0, T )

lim
s→t−

f(s) = f(t−) exists, for t ∈ (0, T ]. (4.96)

In particular for each function f ∈ DRd [0, T ] the number of discontinuities of f is finite.

Theorem 12. Let us consider the infinitesimal generator of a diffusion Xt which has the
expression

A =
d∑
i

bi(x)
∂

∂xi
+

1

2

d∑
i,j

Σi,j(x)
∂2

∂xi∂xj
(4.97)

where b := (bi(s, x)) : Rd → Rd, i = 1, . . . , d is a continuous drift vector function and
Σ = (Σij), i, j = 1, . . . , d be a continuous, symmetric, positive definite, d× d matrix valued
function with Σ = ΨΨ′ ∈ Rd and we assume that the martingale problem for (A, ν) is well

posed, with ν the initial distribution. For n = 1, 2, . . . let X
(n)
t and B

(n)
t be processes with

sample paths in DRd [0,∞) and let Σ
(n)
t = (Σ

(n)
ij (t)) be a symmetric d × d matrix-valued

process such that Σ
(n)
ij (t) has sample paths in DR[0,∞) and (Σ

(n)
t − Σ

(n)
s ) is positive for

t > s ≥ 0. Set the filtration of these processes equal to Fnt = σ
(
X

(n)
s , B

(n)
s ,Σ

(n)
s : s ≤ t

)
.

Let τ rn = inf{t : |X(n)
t | ≥ r or |X(n)

t− | ≥ r}, and suppose that

M
(n)
t = X

(n)
t −B(n)

t (4.98)

and

M
(n)
i (t)M

(n)
j (t)− Σ

(n)
ij (t) (4.99)

are Fnt -local martingales, and for each r > 0, T > 0, and i, j = 1, 2, . . . , d

lim
n→∞

E
[

sup
t≤T∧τrn

∣∣∣X(n)
t −X(n)

t−

∣∣∣2] = 0, (4.100)
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68 4. Tensor Approximation of Correlated Diffusions

lim
n→∞

E
[

sup
t≤T∧τrn

∣∣∣B(n)
t −B(n)

t−

∣∣∣2] = 0, (4.101)

lim
n→∞

E
[

sup
t≤T∧τrn

∣∣∣Σ(n)
ij (t)− Σ

(n)
ij (t−)

∣∣∣2] = 0, (4.102)

sup
t≤T∧θrn

∣∣∣B(n)
i (t)−

∫ t

0
bi(X

(n)
s )ds

∣∣∣ p−→ 0 (4.103)

and

sup
t≤T∧θrn

∣∣∣Σ(n)
ij (t)−

∫ t

0
Σij(X

(n)
s )ds

∣∣∣ p−→ 0. (4.104)

Suppose that P (X
(n)
0 ) ⇒ ν, with ν the starting distribution. Then X

(n)
t ⇒ Xt , with Xt

the solution of the martingale problem for (A, ν).

Proof. We aim to prove the validity of the above theorem when the approximating process

X
(n)
t is a BDP with rates satisfying local moment matching conditions as per eq. (4.31)

or more generally as eq. (4.27). Due to the fact that the martingale problem for (A, ν) is
well posed, the process Mt = Xt −Bt is a martingale, with Bt =

∫ t
0 bsds. By the optional

stopping theorem, see Rogers & Williams [2000], if τ is a stopping time also the stopped
martingale M(τ) is a martingale. In particular, if r > 0 is the radius of a sphere, this is
valid also for the stopping time

τ rn = inf{t : |X(n)
t | ≥ r or |X(n)

t− | ≥ r}.

The choice of this stopping time is not casual, as we have τ rn →∞ as r →∞. This extends
also to the stopped martingale Mn(t ∧ τ rn ∧ τa) where

τa = inf{t : Σ
(n)
ii (t)− t sup

|x|≤r
aii(x) > 1, for some i},

which existence derives from eq. (4.103) and implies that

P (τa ≤ T ∧ τ rn)→ 0, (4.105)

for all r > 0 and for all T > 0. Eq. (4.105) is a direct consequence of the Doob martingale
inequality theorem (see Varadhan [2007]) which also imply that the martingale

Σ
(n)
ij (t)−

∫ t

0
Σij(X

(n)
s )ds (4.106)

has zero quadratic variation, and therefore eq. (4.103) holds. Furthermore relative com-
pactness in a set C is a condition equivalent to the condition that each sequence in C
contains a convergent subsequence, see for example Billingsley [2013]. By eq. (4.98) the

process M
(n)
t = X

(n)
t − B(n)

t is a martingale. Relative compactness properties of the pro-

cess M
(n)
t implies relative compactness of X

(n)
t and B

(n)
t and therefore for X(n)(t∧ τn) and

B(n)(t ∧ τn) as in eq. (4.100) and eq. (4.101) respectively. In particular eq. (4.100) is the
definition of a Poisson jump magnitude which in our settings is identical to the jump sized

of the BDP jumps and it goes to zero as n → ∞. In fact the mimicking process X
(n)
t is

a birth-death process with jump sizes equal to local state space discretization which goes
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4.3 Convergence of the approximated CTMC 69

to zero as n → ∞, see Varadhan [2007]. For this reason also eq. (4.102) holds. B
(n)
t is a

continuous function of t and X
(n)
t and therefore also eq. (4.101) holds. This means that

every subsequence X(nk)(t ∧ τ rn) ⇒ X r̄(t ∧ τ r), where τ r = inf{t : |X r̄(t)| ≥ r}, for all
r̄ ≥ r > 0. Therefore the stopped processes

M r̄(t ∧ τ r) = X r̄(t ∧ τ r)−
∫ t∧τr

0
b(X r̄(s))ds (4.107)

M r̄
i (t ∧ τ r)M r̄

j (t ∧ τ r)−
∫ t∧τr

0
Σij(X

r̄(s))ds (4.108)

are martingales and by Ito’s lemma

f(X r̄(t ∧ τ r))−
∫ t∧τr

0
Af(X r̄(s))ds (4.109)

is a martingale for each f ∈ D, and Af(X r̄(s)) is the approximated infinitesimal generator
applied to the function f . In particular if the martingale problem is well posed uniqueness
argument for the solution hold and hold also for the solution for the stopped problem,
hence

X(n)(t ∧ τ r)⇒ X(t ∧ τ r) (4.110)

for all r. Also r →∞ implies τ r →∞. Therefore X(n) → X.

4.3.4 Numerical Study of Weak Convergence

In this section we present some numerical weak convergence results for the proposed CTMC
approximation of diffusions. Specifically we study numerically the behaviour of the L1-
norm error

e(n) = |Pt − P (n)
t | (4.111)

as n → ∞, with n the number of discretization points in each dimension where Pt is the

exact density at time t, P
(n)
t is the approximated one.

In particular with this analysis we aim to validate the convergence findings from previous
sections where we found that we can at most reach the following rate of convergence

e(n) = |Pt − P (n)
t | ≈ O(1/n2) ≤ C 1

n2
(4.112)

with C a suitable constant.
We produce numerical evidence that shows convergence for the case of Gaussian transi-

tion densities with constant coefficients, and convergence results are obtained against the
corresponding closed form expression of the probability density function.

One-dimensional case

We consider a one-dimensional diffusion of eq. (4.1) with b = 0 and σ = 1. We denote
its exact transition density solution as Pt at time t = 1. We approximate the diffusion
with a BDP over the support X = {−K,K}, with K = {4, 5, 6, 7, 8, 10} and corresponding
discretization points n = 2K . This means that the interval [−K,K] is larger as n → ∞.
This is illustrated in Figure 4.1, where we report all the density kernels for n = 2K ,K =
4, 5, 6, 7, 8, 10.
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70 4. Tensor Approximation of Correlated Diffusions

Figure 4.1: The plot illustrates the transition densities as the number n of the state space
discretization points increases. The exact density P is plotted in red while the blue dots
refer to the approximate density P (n), both computed at t = 1, and weak solutions to a
one-dimensional dimensional diffusion with b = 0 and σ = 1.

70 of 158



4.3 Convergence of the approximated CTMC 71

Figure 4.2: The plot illustrates the rate of convergence of the error e(n) in eq. (4.112) as
n→∞. The rate is clearly of order O(1/n2), and in particular C 1

n2 , C ≈ 3.2. This result
confirms and validates our theoretical rate of convergence investigation.
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72 4. Tensor Approximation of Correlated Diffusions

N-dimensional case

We produce some numerical weak convergence results for the proposed CTMC approxi-
mation of diffusions when the dimensionality of the diffusion of eq. (4.1) is d > 1, and
specifically d = 5. We study numerically the behaviour of the L1-norm error

e(n) = |Pt − P (n)
t | (4.113)

using the same settings as described above. However in this case we investigate the conver-
gence rate for different values of the correlation ρ and specifically ρ = −0.9,−0.5,−0.3, 0, 0.3, 0.5, 0.9.
Furthermore we compare the convergence rates of the CTMC approximation based on the
full generator matrix exponential, see proposition 4, and the rates obtained using a CTMC
approximation based on conditional generator matrices, see proposition 5.

Results are reported in Figure 4.3, where the left plot refers to the convergence rates
for the full generator matrix exponential (Setting 1), and the right plot the rates obtained
using a CTMC approximation based on conditional generator matrices (Setting 2).

It is important to remark few important facts regarding this convergence study:

1. Setting 1 is numerically more expensive than Setting 2, due to the fact that requires
the full generator matrix exponential and its computation becomes almost impossible
when d > 5. On the contrary computation within Setting 2 does not have any
numerical limitation because the generator matrix is always calculated as decomposed
across the orthogonal dimensions.

2. The convergence rate is the same when correlation is zero.

3. Setting 2 shows slower convergence rates than Setting 1.

Figure 4.3: Weak convergence rates for the CTMC approximation of a d-dimensional dif-
fusions, with d = 5. The left plot illustrates the convergence rates obtained for the full
generator matrix exponential, while the right plot reports the rates obtained using a CTMC
approximation based on conditional generator matrices.
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4.4 Application to the solution of multi-dimensional SDEs 73

4.4 Application to the solution of multi-dimensional SDEs

In this section we are going to apply the results developed in the previous sections to
calculate the approximate solution of a multi-dimensional SDE, as per eq. (4.1).
Let us consider the following pair of stochastic differential equations,

dXt = (θ −Xt)dt+ σ1dW
(1)
t (4.114)

dYt = bdt+ σ2dW
(2)
t (4.115)

where θ ≥ 0, σ1 > 0, b ≥ 0, σ2 > 0 are real-valued parameters, the initial conditions
X0 = x0, Y0 = y0 hold, and W (1) and W (2) are correlated Wiener processes with correlation

coefficient ρ, i.e. E[W
(1)
t W

(2)
t ] = ρt.

In this case of time-homogeneous correlated diffusion processes of eq. (4.114) and function
f = f(x, y) that are twice differentiable with compact support, the Markov generator A is
given by

Af = (θ − x)
∂f

∂x
+
σ2

1

2

∂2f

∂x2
+ b

∂f

∂y
+
σ2

2

2

∂2f

∂y2
+ ρσ1σ2

∂2f

∂x∂y
(4.116)

We are interested in calculating the transition probability P
(n)
t which approximates Pt, the

density which satisfies the partial differential equation

∂Pt
∂t

+APt = 0 (4.117)

with starting conditions ν0 = δ(z), with z = (x̄, ȳ), where δ is the Dirac delta function.
In order to approximate the two-dimensional diffusion process Zt = (Xt, Yt) with a BDP

Z
(n)
t , we construct the infinitesimal generator matrix A(n) following the algorithm below

based on the theory and results of the previous sections.

Description of the algorithm

• Define the state-space Z = X ⊗Y for the mimicking BDP Z
(n)
t . This implies that we

need to define a discrete state space for each dimension. A grid X := {x1, . . . , xnx} ⊂
R for the chain X

(nx)
t with nx ∈ N elements, such that xi < xj for any integers

0 ≤ i < j ≤ nx. Likewise, we create a grid Y := {y1, . . . , yny} ⊂ R for the chain

Y
(ny)
t with ny ∈ N elements.

• We then construct the infinitesimal generator matrix A(n) of eq. (4.116) as

A(n) = A(ny) ⊕S {A(nx)
X|Y }

T (4.118)

where:

1. The entries of the generator matrix A(ny), associated to the second of eq. (4.115),
are computed by locally solving the system of equations (4.4) which is

a(y1, y2) = a(yny , yny−1) = 0,

a(yi, yi+1) = 1
2

(
b
hy

+
σ2
2
h2y

)
,

a(yi, yi−1) = 1
2

(
σ2
2
h2y
− b

hy

)
,

a(yi, yi) = −(a(yi, yi−1) + a(yi, yi+1)),

(4.119)
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with hy =
yny−y1
ny

and −σ2
2 ≤ µhy ≤ σ2

2. However, the discrete state space Y
does not need to be uniform.

2. We need to construct the generator matrix sequence {A(nx)
X|Y }. Each conditional

infinitesimal generator matrix of the sequence {AnxX|Y } can be computed by

solving eq. (4.27). The conditional approximated infinitesimal generator matrix

A
(nx)
X|Y is defined by the sequence of matrices

{
A

(nx)
X|Y=yj

}
∈ Rnx×nx , yj ∈ Y each

of whose entries are obtained according to local moment matching by:

A
(nx)
X|Y=yj

=



a(x1, x2) = a(xm, xm−1) = 0,

a(xi, xi+1) = 1
2

( b1(xi)+ρ(xi,yj) σ1(xi)

σ2(yj)
(yj−b(yj))

hx
+

σ2
1(xi)(1−ρ

2(xi,yj))
h2
x

)
,

a(xi, xi−1) = 1
2

(
σ2
1(xi)(1−ρ

2(xi,yj))
h2
x

−
b1(xi)+ρ(xi,yj)

σ1(xi)

σ2(yj)
(yj−b(yj))

hx

)
,

a(xi, xi) = −(a(xi, xi−1) + a(xi, xi+1)),

for all yj ∈ Y, xi ∈ X , −1 ≤ ρ(xi, yj) ≤ 1, and birth rates a(xi, xi+1) > 0 and
death rates a(xi, xi−1) > 0 for all i, where b1(x) = (θ − x).

• Compute the transition probability using the generator matrix of eq. (4.118)

P
(n)
t = etA

(n)
= e

tA(ny)⊕S{A
(nx)
X|Y }

T

(4.120)

We can approximate the computation of the transtion probability of eq. (4.120)
further

P
(n)
t ≈ etA

(ny) ⊗S e
t{A(nx)

X|Y }
T

(4.121)

Although the transition probability obtained from eq. (4.121) is approximated, its
computation is faster than the one calculated using eq. (4.120) because the problem
of matrix exponentiation becomes one-dimensional.

Two-dimensional Example and Analysis of Results

In this example we apply the algorithm described in th previous section and compute

the joint transition density P
(n)
t for the coupled process Xt = (X1

t , X
2
t ) using the follow-

ing parameters for the first marginal process (b1, σ1) = (0.02, 0.4), and these parameters
(b2, σ2) = (0.03, 0.4) for the second process, with ρ1,2 = 0.6, t = 1, and with initial con-
dition given by (X1

0 , X
2
0 ) = (0, 0). The computation results are reported below in Figure

4.4.
We propose in listing A.6 the MATLAB code which closely follows the steps of the above
two-dimensional CTMC approximation algorithm.

4.5 Conclusion

In this chapter we investigated aspects of correlated diffusions approximation by means
of a multidimensional birth-death process. We formulated a new interpretation of the
dependence among Markov processes using the martingale approach. We showed that it
is possible to represent, in both continuous and discrete space, that a multidimensional
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Figure 4.4: Approximated transition probabilities computed using the above algorithms
with the suggested diffusion parameters with time t = 1. On the left hand side the tran-

sition probability corresponding to e
tA(ny)⊕S{A

(nx)
X|Y }

T

. In the middle we plot the transition

probability corresponding to etA
(ny) ⊗S e

t{A(nx)
X|Y }

T

, therefore simplifying the matrix expo-
nential problem from a two-dimensional one into two one-dimensional problems, and such
approximation is numerically faster than the computation of the exponential of the corre-
sponding two-dimensional matrix. On the right hand side we plot the difference of the two
obtained transition probability kernels.
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76 4. Tensor Approximation of Correlated Diffusions

correlated generalized diffusion is a linear combination of processes that originate from
the decomposition of the starting multidimensional semimartingale. This result not only
reconciles with the existing theory of diffusion approximations and decompositions, but
defines the general representation of approximated infinitesimal generators for both mul-
tidimensional generalized diffusions and, as we demonstrated, also for the specification of
copula density dependence structures. This new result provides immediate representation
of the approximate solution for correlated stochastic differential equations. We showed
convergence results for the proposed approximations.
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Chapter 5

Mimicking Copulas in a Tensor
Space and Generalized Copula
Mapping

In this chapter we propose a methodology to mimic any copula function in a tensor space
through the construction of a generalized local Gaussian copula function, which is a novel
class of functional copula representations for dependence based on the continuous time
Markov chain (CTMC) approximation of a generalized local Gaussian copula function
introduced in Chapter 4.

This can be viewed as a reinterpretation of Sklar’s well known copula representation
theorem of multivariate dependence and is achieved in a manner that allows one to char-
acterize any copula dependence function via a unique map to a generalized local Gaussian
copula function.

This unique mapping is obtained through the quantification of local Gaussian depen-
dence properties of the reference copula model over a discretized tensor space. Such a
representation is proven to be exact as the discretization interval of the target copulas
support diminishes, with known convergence rate.

In particular, in this chapter we study the tensor approximation and its numerical char-
acteristics for a wide variety of copula models, demonstrating how the functional copula
characterization proposed can accurately reconstruct any target copula by means of local
Gaussian copula projections. Developing such representations then has many advantages
for evaluation of integral functionals taken with respect to a variety of copula functions.
Importantly, it also allows one to visualize and interpret the target copula functions char-
acteristics. This is particularly useful in understanding the relationships between copula
model parameters and the strength of induced concordance structures captured by partic-
ular copula types.

5.1 Introduction

The subject of this chapter is the construction of Gaussian copula distribution functions,
approximated by continuous time Markov chains over a tensor space, whose values mimic
the behaviour of more complicated parametric copula distribution functions.
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The main motivation of our work is the necessity to better understand and interpret the
parameters of some complex copula functions and how their value contributes in creating
elaborated dependence structures. The method proposed to represent complex copula
functions can be classified as indirect method because it does not aim to just approximate
the copula with a numerical scheme, rather to mimic its local properties and functional
behaviour with a local equivalent Gaussian copula, which yields an identical correlation
structure but with a simpler interpretation.

Another more general motivation is to develop a functional approximating framework
for copula distributions which would make the computation of functional or integral of
copulas simpler.

Copulas are among the most important and used functions in statistics to character-
ize and study the dependence between the components of a random vector. A copula
distribution is simply a multivariate probability distribution for which the marginal prob-
ability distribution of each variable is uniform Nelsen [1999]. Copulas are often used in
high-dimensional statistical applications as they allow one to separate out the modelling
and estimation of the distribution of dependent random variables by estimating first the
marginals and then capturing the dependence structure through estimation of a copula
function. Their range of applications is very broad, see a recent review of many aspects
and applications of this modelling approach in Cruz et al. [2015a] and works such as De-
marta & McNeil [2005], Aas et al. [2009],Genest et al. [2011], Haff et al. [2013] and Patton
[2009]. Furthermore, there is an increasing number of copula models aimed at modelling
different forms of dependence, both parametrically and non-parametrically, see discussions
for instance in Nelsen [1999], Genest & Favre [2007], Cherubini et al. [2004], Joe [1997],
Embrechts et al. [2001] and Brigo et al. [2010a].

However, in many cases there is no clear and intuitive correspondence between the
magnitude of a copula’s parameters and the dependence structure they create.

This has led to numerous studies of asymptotic relationships between concordance mea-
sures such as tail dependence and the copula functions tail behaviours, as characterized by
the copula parameters. In some cases this has yielded simple relationships that are closed
form and analytic. However, more often than not there is still a need to better understand
how dependence manifests locally in the support of the target copula distribution, and how
it changes with changes in the copula parameters or the dimension of the copula since it
is often difficult to characterise in closed form.

In Taylor [2007] they provided a representation of the axioms of a concordance measure
explicitly in terms of copula models, which extends the work previously by Scarsini [1984].
This provides a direct link between these measures of dependence and the copula model.
However, a good understanding of the strength or significance of a concordance measure
as a function of the copula model parameters is not well understood and difficult to study
as they often involve complicated intractable integrations of copula functions, not easy to
achieve in a computationally efficient and accurate manner in arbitrary dimensions. In this
chapter we aim to address this challenge in a general approach that is numerically accurate
and computationally efficient.

5.1.1 Summary of the proposed methodology

Let us consider a d-dimensional copula distribution function, denoted by Ctarget(u; θc) :=
Ctarget(u) : [0, 1]d → [0, 1], with d > 1 and u := (u1, . . . , ud) ∈ [0, 1]d a random vector,
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and θc the set of copula parameters. The set θc can be large, its elements may not exhibit
direct correspondence with the statistical properties of Ctarget, which is a non-trivial copula
function. We aim to simplify the analysis of the statistical properties of Ctarget(u, θc) and
also its computation, by mimicking the distribution Ctarget(u, θc) with C(n), a discrete
local Gaussian copula distribution originated by a continuous time Markov chains (CTMC)
approximation of a correlated diffusion on a tensor space.

We report below a summary of the copula mimicking result, although we refer the reader
to the next sections of this chapter for a more rigorous introduction to the problem and to
our copula mapping methodology.

Let Xt, t ≥ 0 a d-dimensional Markov process on the probability space (Ω,F , P ) with
Xt := (X1

t , . . . , X
d
t ) ∈ Rd denoting its components vector at time t, with Rd denoting the d-

dimensional Euclidean space. Our modelling framework deals with the local approximation
of Xt by CTMC.

The Markov processes Xt has stochastic differential equation (SDE) of the form,

dXt = b(Xt)dt+ Ψ(Xt)dWt (5.1)

where (dWt,Ft) is a d-dimensional Wiener process, b and Ψ are bounded Ft-adapted
processes such that Σ = ΨΨ′ is positive definite. Then we saw in Chapter 4 that there exists

a continuous time Markov chain X
(n)
t approximating Xt, with X

(n)
t := (X

(n1)
t , . . . , X

(nd)
t ) ∈

X denoting its components vector at time t. In particular the Markov chain is constructed
as

X
(n)
t : X → Rd, (5.2)

with X =
⊗d

i=1X i ∈ Rd denoting the d-dimensional tensor space and n = n1 · · ·nd.
Specifically we denote a countably finite set by X k := {x(k)

0 , . . . , x
(k)
nk } ∈ R, k = 1, . . . , d,

with nk the number of discretization points for the k-dimension, and X k represents the

state space for the Markov chain X
(nk)
t approximating Xk

t .

The chain X
(n)
t has transition probability at time t equal to P

(n)
t which weakly converges

to Pt (see Chapter 4, sections 4.3 and 4.3.4), being Pt the distribution of the admitted weak
solution Xt of the SDE 5.1.

We then investigate properties for the Markov chain joint distribution function which is
defined as

F
(n)
t (x) = P

(n)
t (X

(n)
t ≤ x), x ∈ X ⊂ Rd, (5.3)

and we specify the approximated copula function C(n), as the joint distribution function
of the Markov chain

U
(n)
t = F

(n)
t (X

(n)
t ) (5.4)

with C(n) : U→ [0, 1], and U :=
⊗d

i=1 Ui ∈ [0, 1]d is the discretized unit hypercube, with

Uk := {u(k)
0 , . . . , u

(k)
nk } ∈ [0, 1], k = 1, . . . , d, such that

F
(n)
t (x) = C(n)(F

(n1)
t (x1), . . . , F

(nd)
t (xd)), for all x ∈ X ∈ Rd. (5.5)

Moreover for u ∈ U ⊂ [0, 1]d we have that

C(n)(u; ρ(u)) = F
(n)
t

(
F
−1,(n1)
t (u1), . . . , F

−1,(nd)
t (ud); ρ(u)

)
(5.6)
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We then compute the local likelihood with respect to each local Gaussian correlation
parameter ρ(u) based on the following local minimizer

min
ρ(u)

∥∥∥ log
(
C

(n)
target(u; θc)− C(n)(u; {θ, ρ(u)})

)∥∥∥
2
, for u ∈ U (5.7)

where Ctarget can be any target copula function and denote by C
(n)
target(u, θc) the evaluation

of the copula distribution Ctarget(u, θc) on a point u ∈ U. Therefore starting from the
correlated diffusion of eq. (5.1) we construct through a specific methodology detailed in
this chapter, the local Gaussian copula distribution function C(n)(u; ρ(u)) in eq. (5.6).
This is the main result of this chapter and in particular we focus on how it is possible with
this local approximated Gaussian copula to mimic more complex distributions, namely
Ctarget(u, θc) ≈ C(n)(u; ρ(u)) on the discretized hypercube U, and then understand in
a simpler way and also visualize the dependence properties of each Ctarget through the
inferred Gaussian local correlation coefficients ρ(u) : U→ [−1, 1].

5.1.2 Outline of Contributions

In this chapter, we aim to develop an alternative approach to representing any copula
distributional model that would facilitate three key objectives: the first is to exactly and
uniquely create a functional copula characterization of Sklar’s theorem, which is based on
a locally adapted generalized Gaussian copula representation, that will be applicable to
all copula distributions in arbitrary dimension. This functional copula is constructed from
a continuous time discrete state space mimicking Markov chain that we term a (CTMC)
functional generalized Gaussian copula; secondly, we aimed to develop such a representation
so that it may be numerically approximated efficiently in arbitrary dimensions, in any sub-
spaces of the support of the target copula distribution; thirdly, the characterization should
easily facilitate visualization, evaluation of functionals of the copula over local regions of
the support of the target copula, and greater understanding of the relationship between
the target copula model parameters and the concordance/dependence features present in
the copula model. Examples of such functionals of interest include as illustration, the
concordance measures characterized in Taylor [2007].

The approach we adopt involves extending the theoretical functional copula character-
izations first presented in Chapter 4 and summarized in a self-contained manner in the
next section 5.1.3. In in Chapter 4 we developed a class of applied probabilistic continuous
time but discretized state space decompositions of the characterization of a multivariate
generalized diffusion process. This decomposition is novel and, in particular, it allows one
to construct families of mimicking classes of processes for such continuous state and contin-
uous time diffusions in the form of a discrete state space but continuous time Markov chain
representation. At first sight, this doesn’t seem relevant to addressing the three objectives
targeted in this chapter, however it turns out to be the key to addressing this issue through
a functional copula representation. We demonstrate that the result they developed defines
the general representation of infinitesimal generators for multidimensional generalized dif-
fusions and, as demonstrated in their work, can also be used directly for the specification
of copula density dependence structures in what they term the functional copula charac-
terization. The work in Chapter 4 was of a purely theoretical nature, and didn’t provide
methodological or algorithmic approaches to demonstrate how such characterizations can
be adopted by statisticians, this chapter aims to develop these aspects.
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In this chapter, we develop the methodological aspects of this theoretical characteri-
zation to allow statisticians to implement and develop copula functions’ approximations
based on this characterization. The functional copula characterization developed allows
one to build a unique class of approximations replete with a variety of resulting numerical
implementations for working with and characterizing general copula distributions in arbi-
trary dimensions. In particular, in this chapter we study the tensor approximation and
its numerical characteristics for a wide variety of copula models, demonstrating how the
functional copula characterization proposed can accurately reconstruct any target copula.

The paper is structured as follow. In section 5.2, we develop a functional copula rep-
resentation of Sklar’s Theorem based on a continuous time, discrete state-space Markov
chain characterization of a multivariate generalized diffusion which aims to characterize
Gaussian copula projections locally in a tensor space. In section 5.3 we assess the accuracy
of the proposed functional local Gaussian copula approximations though a series of numer-
ical examples and we carry out a convergence analysis. In this section we illustrate how
the local Gaussian copula mapping performs when the target copula distributions belong
to either the Elliptical family, Archimedean or distorted Archimedean class. Section 5.4
concludes.

5.1.3 Background Results on Reconstruction of a Copula via a Tensor
Decomposition

In this section we briefly recall some relevant notations and definitions and results, derived
in details in Chapter 4, that will aid in the developments in future sections of this chapter.
The main idea of these background results is to illustrate a methodology on how to mimic
‘locally’ a multivariate correlated diffusion by means of a multivariate orthogonal birth-
death process (DBP). By ‘locally’ we mean on each coordinate of a suitable constructed
tensor space, of which we exploit both its local and tensor algebraic properties.

In each dimension of this tensor space, each mimicking BDP approximates the dynamics
of the diffusion projected in that dimension, and this is done through suitably constructing
the BDP associated infinitesimal generator matrix. This leads to the approximation of the
whole diffusion onto a space fully described by the tensor sum of generator matrices.

We remark ‘tensor’ sum instead of ‘Kronecker’ sum. In fact in our proposed method-
ology to mimic correlated diffusion in a tensor space, the terminology we use to indicate
operations on this space depends on how we look at generator matrices of the mimicking
BDP’s. The notions of Kronecker product on matrices and tensor product on linear maps
between vector spaces technically represent operations on different objects. However a gen-
erator matrix is linear map between vector spaces equipped with a chosen basis. Therefore
the Kronecker product of two generator matrices then represents the tensor product of the
two associated linear maps. And this is the way we have chosen to look at the algebra
within our proposed methodology.

We will build on these background results to propose the methodology for mimicking
a copula function in a tensor space and to map this mimicking copula onto any copula
function.

Below we provide a self contained summary of the key results and algorithms from
Chapter 4, which include:

1. Construction of a process mimicking a diffusion through local moment matching. At
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82 5. Mimicking Copulas in a Tensor Space and Generalized Copula Mapping

this purpose the mimicking process is a birth-death process (BDP), and we show
how to calculate its birth and death rate in a way to exactly replicate some target
moments. The BDP is represented through a continuous time Markov chain (CTMC).
See Section 4.2 and specifically 4.2.1.

2. Construction of a process mimicking a conditional diffusion. At this purpose we in-
troduce the concept of conditional infinitesimal generator matrix, which is a sequence
of generator matrices. We also introduce the concept of orthogonal projections in a
tensor space , see Section 4.2.1.

3. Approximation of the weak solution of a diffusion through the matrix exponentiation
of the infinitesimal generator matrix. See Proposition 4.

4. Approximation of the weak solution of a multidimensional diffusion through the
matrix exponentiation of an infinitesimal generator matrix which spans a tensor
Kronecker product space. The weak solution is approximated only over orthogo-
nal dimensions and this means that the multivariate weak solution is not directly
constructed rather calculated from elementary one dimensional conditional weak so-
lutions. See Proposition 7.

5.2 Developing a Functional Copula Representation of Sklar’s
Theorem

In the approach proposed, we will be required to work with a continuous time, discrete
state-space Markov chain characterization of a multivariate generalized diffusion. The rea-
son that one is interested in the generators of continuous time discrete state space multi-
variate Markov processes is that these may then be seen, after a functional transformation,
as decompositions of the multivariate distribution characterizing the process. Furthermore,
they may then be used to match or represent or mimic any target multivariate distribution.

This will be the key to the results presented in this manuscript when developing the
functional representation of Sklar’s theorem.

We are interested in considering new representations for a variety of statistical de-
pendence models, known as copula models. Copula models parametrically characterize
different structural dependence features, either explicitly or implicitly depending on the
class of copula model under consideration. However, understanding the relationships be-
tween copula parameters and their concordance (dependence) structures induced by the
parametrization considered is a challenge for statisticians.

We begin by recalling the formal definition of such dependence copula models, followed
by the unique representation theorem developed in Sklar’s theorem. This represents a
fundamental result about the relationship between marginals and joint distribution for
multivariate concordant (dependent) random variables.

Definition 26. [d-dimensional Copula Function] An d-dimensional copula is a function
C : [0, 1]d → [0, 1] which satisfies the following conditions:

1. Ci(u
(i)) = C(1, . . . , 1, u(i), 1, . . . , 1) = u(i) for every i ≤ d all u(i) ∈ [0, 1]. This means

that a copula on Rd is a cumulative distribution function (cdf) C whose marginal
cdf’s are all equal to the [0,1]-uniform cdf.
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5.2 Developing a Functional Copula Representation of Sklar’s Theorem 83

2. C(u) = 0 if u(i) = 0 for i ≤ d. It states that the joint probability of all outcomes is
zero if one marginal probability is zero.

3. C is d-increasing. This means that the C-volume of any d-dimensional interval is
non-negative. C assigns non-negative volumes to cuboids of [0, 1]d.

Properties 2 and 3 are general properties of multivariate distribution functions. It
follows that an d-dimensional copula function can be defined as an d-dimensional cdf
whose support is contained in [0, 1]d and whose one-dimensional marginals are uniform on
[0, 1]. Therefore a d-dimensional copula is an d-dimensional distribution function with all
d univariate marginals being U(0, 1).

The relationship between distribution functions and copulas is given by the following
well known result first developed by Sklar [1959] and further overviews in for instance Sklar
[1996].

Theorem 13 (Sklar’s Theorem. d-Dimendional Case.). Let F ∈ F(F1, . . . , Fd) be an d-
dimensional distribution function with marginals F1, . . . , Fd, where the set F(F1, . . . , Fi, . . .)
is the Fréchet class of the Fi’s which collects all multivariate joint distribution functions
that have the same marginals. Members of a Fréchet class only differ with respect to the
interdependence between their marginals. Then there exist a copula C ∈ F(U1, . . . , Ud)
with uniform marginals such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (5.8)

which is uniquely determined on [0, 1]d for distributions F with absolutely continuous
marginals. Conversely any copula function can be used together a set of univariate distri-
bution functions (F1, . . . , Fd) and produce a joint distribution function F using eq. (5.8).

5.2.1 Bivariate Functional Copula Constructions by CTMC approxima-
tion

In order to construct the framework of a functional copula representation by means of
CTMC, we first deal with some new decompositions of the infinitesimal generator of a
process that will be used to obtain such a representation.

The mimicking of the target copula model is achieve through local, in the state space,
moment matching conditions. To understand these conditions, we first recall a global
(holds over the entire support) decomposition result that will be then extended to a local
framework. We begin by providing a very simple motivating example in two dimensions
to motivate what will be presented in a very general class of results in proposition 10 and
proposition 12 which characterize the tensor copula representation of Sklar’s theorem in
this simple bivariate case.

Example 2. Consider the problem of estimating a random variable X given the value of
the variable Y . Let’s assume that X and Y are normal variables with positive variance and
define

X̂ = ρ
σX
σY

Y (5.9)

with ρ the correlation coefficient between X and Y . The variable X̂ is the linear least
square estimator of X. If we define by

X̃ = X − X̂ (5.10)
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the estimation error we have that the variables X̃ and Y are jointly normal, uncorrelated
and therefore independent, due to

E[Y X̃] = E[Y X]− E[Y X̂] = ρσXσY − ρ
σX
σY

σ2
Y = 0. (5.11)

Since X̂ is a scalar multiple of Y , it follows that X̂ and X̃ are independent. We have
therefore decomposed X into the sum of two independent normal random variables, namely,

X = X̂ + X̃ = ρ
σX
σY

Y + X̃ (5.12)

Taking the condition expectation of both sides of eq.(5.12) given Y , we obtain

E[X|Y ] = ρ
σX
σY

E[Y |Y ] + E[X̃|Y ] = ρ
σX
σY

Y = X̂ (5.13)

where E[X̃|Y ] = 0 due to independence between Y and X̃. Therefore the conditional
expectation E[X|Y ] is a linear function of the random variable Y .
We also note that the first two moments of X̂ are

E[X̂] = ρ
σX
σY

E[Y ] and Var[X̂] = ρ2σ2
X (5.14)

This illustrative bivariate example is a general characterization of the relationships be-
tween random variable X and random variable Y that holds over the entire support of the
two random variables (X,Y ). However, one can also define such dependence relationships
locally in the state space and in arbitrary dimensions. Therefore, this bivariate global
result is useful to serve as a familiar motivation of the following generalizations to arbi-
trary dimensions. In this generalization, we will utilise such results for local state space
representations of the structure of a random vectors dependence. Note, local here refers
to the fact that we consider a local area of the support of the reference joint distribution
under study.

We will now take the concept from the bivariate projection above, to utilise to create
a mimicking BDP which can locally match the first two conditional moments of a diffu-
sion. The aim is to be able to retrieve the approximate solution of a multidimensional
diffusion from conditional mimicking birth death processes which approximate the diffu-
sion only along orthogonal dimensions. This means that the proposed approximation of a
correlated diffusion does not involve cross-spaces and this will be extremely beneficial for
computational speed.

The following generalization of the above motivating example can be developed to pro-
pose a new decomposition of a bivariate distribution, locally in its state space (distribution
support), for Markov processes with correlated operators.

Proposition 9 (Conditional CTMC Operator Decomposition). Let X
(n)
t := (X

(n1)
t , X

(n2)
t )

be a bivariate continuous time Markov chain, a bivariate BDP, mimicking the diffusion
Xt := (X1

t , X
2
t ) with generator A(x) =

∑2
i=1 bi(x) ∂

∂xi
+ 1

2

∑2
i,j=1 aij(x) ∂2

∂xi∂xj
over the space

X :=
⊗2

i=1X i ∈ R2. The processes Xt exhibit non zero correlation. We then consider

the conditional process (X1
t |X2

t ) and construct the mimicking BDP (X
(n1)
t |X(n2)

t ), with its

associated conditional infinitesimal generator matrix sequence {A(n1)
X1|X2} by matching the
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first two conditional moments along the lines of Proposition 5. It is possible to show that
the generator sequence can be decomposed as the sum of the following operators

{A(n1)
X1|X2} = A

(n1)
X1 − {Â

(n1)
X1|X2} (5.15)

where A
(n1)
X1 is the marginal infinitesimal generator matrix of the Markov chain X

(n1)
t and

{Â(n1)
X1|X2} is the generator matrix sequence associated to the Markov chain sequence X̂

(n1)
t ,

the linear least square estimator.

Proof. We observe that each local conditional infinitesimal generator matrix A
(n1)
X1|X2=yj

∈

Rn1×n1 for the Markov chain process X
(n1)
t conditional on the value of the chain X

(n2)
t =

x
(2)
j for all x

(2)
j ∈ X 2, is constructed, as per Proposition 5, by matching the following

instantaneous local moments: E[X
(n1)
t+∆t −X

(n1)
t |X(n1)

t ] = b1(x
(1)
i ) + ρ(x

(1)
i , x

(2)
j )

σ1(x
(1)
i )

σ2(x
(2)
j )

(x
(2)
j − b2)

Var[X(n1)
t+∆t −X

(n1)
t |X(n1)

t ] = σ2
1(x

(1)
i )(1− ρ2(x

(1)
i , x

(2)
j ))

for all i, j. (5.16)

In this way we calculate the conditional birth and death rates entries for the BDP infinites-

imal generator matrix sequence. Then if we denote by {Â(n1)
X1|X2} ∈ Rn1×n1 the generator

matrix sequence associated to the Markov chain X̂
(n1)
t constructed by specifying the fol-

lowing local instantaneous moments E[X̂
(n1)
t+∆t − X̂

(n1)
t |X(n1)

t ] = −ρ(x
(1)
i , x

(2)
j )

σ1(x
(1)
i )

σ2(x
(2)
j )

(x
(2)
j − b2)

Var[X̂(n1)
t+∆t − X̂

(n1)
t |X(n1)

t ] = σ2
1(x

(1)
i )ρ2(x

(1)
i , x

(2)
j )

for all i, j, (5.17)

we have that A
(n1)
X1 = {A(n1)

X1|X2}+ {Â(n1)
X1|X2}.

Remark 1 We note that one can interpret this sequence of operator matrices {Â(n1)
X1|X2} as

representing the operator associated to the linear least squares estimator of the conditional

Markov chain process X
(n1)
t given local information on the marginal Markov chain process

X
(n2)
t , namely the process X̂

(n1)
t = ρ2(xi, yj)

σ(xi)
σ(yj)

X̂
(n2)
t .

Given the results in the above proposition 9 we can formulate the following proposi-
tion 10 which is the first result we present and denote as a CTMC functional Copula
infinitesimal operator, in this case for an arbitrary bivariate distribution of random vector
Xt := (X1

t , X
2
t ).

Proposition 10 (CTMC Functional Copula Infinitesimal Operator). Let X
(n)
t := (X

(n1)
t , X

(n2)
t )

be a bivariate continuous time Markov chain with approximate weak solution P
(n)
t , mim-

icking the correlated diffusion Xt := (X1
t , X

2
t ). Then the CTMC mimicking process can be

characterized by the bivariate functional copula density operator representation given by

c(n) = c(n1n2) := I(n1) ⊗S {exp(tÂ
(n2)
X2|X1)} (5.18)

where I(n1) ∈ Rn1×n1 is the unitary matrix, and {Â(n2)
X2|X1} is the operator matrix sequence

of the linear least square estimator of the conditional Markov chain process (X
(n1)
t |X(n2)

t )
as per proposition 9.
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Proof. In order to calculate the approximated expression for the mimicking copula density
c(n), we first look at how we can rewrite the approximate solution P (n). We have:

P
(n)
t := P

(n1n2)

X1
t ,X

2
t
≈ P

(n1)

X1
t
⊗S {P (n2)

X2
t |X1

t
} (5.19)

= exp(tA
(n1)
X1 )⊗S

(
{exp(tA

(n2)
X2|X1)}

)
= exp(tA

(n1)
X1 )⊗S

(
exp(tA

(n2)
X2 )× {exp(tÂ

(n2)
X2|X1)}

)
=

(
exp(tA

(n1)
X1 )⊗ exp(tA

(n2)
X2 )

)
×
(
I(n1) ⊗S {exp(tÂ

(n2)
X2|X1)}

)
Then we can rewrite

c(n) = I(n1) ⊗S {exp(tÂ
(n2)
X2|X1)} =

P
(n)
t

exp(tA
(n1)
X1 )⊗ exp(tA

(n2)
X2 )

(5.20)

The result of the above Proposition 10 is remarkable, because it allows us to directly com-
pute the approximated operator of a generic copula function together with its density. For
instance, given this result we may now extend it to the representation of joint distribution
function of any desired target bivariate distribution by using tensor algebra results from
the ancillary results section. Without loss of generality we present the result in two di-
mensions. Extension to higher dimensional case is straightforward. To achieve this we first
create a conditional generator in each orthogonal dimension of the partitioned state space
X , as per eq. (4.43) which we report below

A(n) = A
(n1)
X1 ⊕S {A

(n2)
X2|X1} ⊕S · · · ⊕S {A

(nd)

Xd|X1,...,Xd−1} (5.21)

This consists in creating sequences of generator matrices each conditional on a point or a
set of points of the state space. The complexity of the algorithm is at most equal to the
total number of state space points in X , which is n2 with n = n1 · · ·nd. The second step
is the calculation of P (n), which is straightforward given A(n) and using the reduced rank
approximation of the Kronecker product for sequence of matrices as per eq. (4.43).

5.2.2 Approximation Scheme for a Copula via a Tensor Decomposition

With these results we can now explain how to perform the representation of a target copula
distribution through this framework.

We denote by x := (x1, . . . , xd) ∈ Rd a d-dimensional vector, and inequalities x ≤ z

are intended componentwise, i.e., xi ≤ zi for all i = 1, 2, . . . , d. Let X
(n)
t a d-dimensional

Markov chain with d ≥ 2, specifically with X
(n1)
t , X

(n2)
t , . . . , X

(nd)
t marginal chains, each

with support X k = (x
(k)
1 , x

(k)
2 , . . . , x

(k)
nk ) ∈ R, where n1, n2, . . . denotes the number of cor-

responding chains’ states. Therefore

X
(n)
t : X → Rd, with X =

d⊗
i=1

X i ∈ Rd (5.22)
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We will use the equivalent notation X
(n1,n2,...,nd)
t for the Markov chain Xn

t , with n =
n1 · · ·nd. We denote the Markov chain joint distribution function by

F
(n)
t (x) = P

(n)
t (X

(n)
t ≤ x), x ∈ X ⊂ Rd, (5.23)

with marginal distribution functions

F
(nk)
t (x) = P

(nk)
t (X

(nk)
t ≤ x), x ∈ X k ⊂ R, k = 1, . . . , d. (5.24)

We specify the approximated copula function as the joint distribution function of the
Markov chain

U
(n)
t = F

(n)
t (X

(n)
t ) (5.25)

with marginal chains U
(nk)
t = F

(nk)
t (X

(nk)
t ), for k = 1, . . . , d, each with support Uk =

F
(nk)
t (Xk) = (u

(k)
1 , u

(k)
2 , . . . , u

(k)
nk ) ∈ [0, 1], where F

(nk)
t denotes the application of the distri-

bution function of the Markov chain X
(nk)
t to each point, for all k = 1, . . . , d.

We denote the approximated copula function by C(n) : U → [0, 1], where U :=⊗d
i=1 Ui ∈ [0, 1]d is the discretized unit hypercube, such that

F
(n)
t (x) = C(n)(F

(n1)
t (x1), . . . , F

(nd)
t (xd)), for all x ∈ X ∈ Rd. (5.26)

Moreover if u := (u1, . . . , ud) ∈ U ⊂ [0, 1]d is a d-dimensional vector in the unit hypercube,
we have that

C(n)(u) = F
(n)
t (F

−1,(n1)
t (u1), . . . , F

−1,(nd)
t (ud)) (5.27)

We denote by c(n)(u; θc) and C(n)(u, θc) the copula density and the copula distribution
function respectively, for all vectors u ∈ U ⊂ [0, 1]d with copula parameters’ set θc.

Then we calculate the copula density as

c(n)(u; θc) =
P

(n)
t (x; {θ, ρ(u)})
P

(n)
t (x; {θ, 0})

, for u ∈ U, for x = F−1,(n)(u). (5.28)

with t = 1, and {θ, ρ(U)} denoting the set of the Markov chain parameters with ρ(u) :

U→ [−1, 1] the local correlation function, and P
(n)
t (x; {θ, 0}) = P

(n)⊥
t .

Note that every coordinate vector u := (u1, . . . , ud) ∈ U ⊂ [0, 1]d may exhibit a specific
mapped local correlation, ρ(u) = ρ(u1, . . . , ud) ∈ [−1, 1].

In particular the parameters of copula distribution function in eq. (5.27) are linked to
the Markov chain distribution function by the relation

C(n)(u; θc) = F
(n)
1 (x; {θ, ρ(u)}). (5.29)

Eq. (5.29) is of key importance in our approach because it allows us to link the often
complex and not so intuitive copula parameters set θc to the local correlation parameter set
ρ(u). In this way the copula parametric dependence structure is explained and displayed
through an equivalent representation by means of local Gaussian correlation coefficients.
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5.2.3 Functional Copula Mapping to a Generalised Local Gaussian Cop-
ula

In this section we develop a class of general mappings that will allow us to characterise
any desired copula density locally in its support according to what we denote as a gener-
alized Gaussian copula which is achieved via a general mapping that will be detailed in
this section. In addition, we will also provide an algorithm to allow for efficient imple-
mentation of this mapping result. The aim of this section is effectively to take a target

copula distribution C
(n)
target(u; θc) with copula parameter θc and to develop a local discrete

mapping from this copula over the discretized support U, to a new generalized Guassian
distribution with implicit copula that we term the generalized Gaussian copula and denote
by C(n)(u; {θ, ρ(u)}). This result is important as it allows us to provide a unique charac-
terization of the target copula at local regions of the support of the target distribution state
space not in terms of θc but instead in terms of local sufficient statistics characterizing the
generalized Gaussian copula in that local region of support, denoted by parameter vector
in each local region by ρ(u) ∈ [−1, 1]. This automatically provides the local equivalent
Gaussian correlation information for the target copula such as local correlation structure,
which can characterize the copula and explain the local effect of the copula parameter in
inducing dependence locally in the state space.

Given a discretized target copula distribution function C
(n)
target(u; θc) over the unit hypercube

U its equivalent representation in a tensor space is given by

min
ρ(u)

∥∥∥C(n)
target(u; θc)− F (n)

1 (x; {θ, ρ(u)})
∥∥∥

2
, for u ∈ U, for x = F−1,(n)(u). (5.30)

Eq. (5.30) means that for a given target copula distribution function Ctarget with param-
eters set θc, belonging to any copula family it is possible to find a set of local Gaussian
correlations ρ(u) ∈ [−1, 1] , that would produce a joint distribution function F that has
minimal Euclidean distance from Ctarget over all the states u of the unit hypercube U. A
practical way to solve eq. (5.30) is to compute the local likelihood with respect to each
local Gaussian correlation parameter ρ(u)

min
ρ(u)

∥∥∥C(n)
target(u; θc)− C(n)(u; {θ, ρ(u)})

∥∥∥
2
, for all u ∈ U, (5.31)

where Ctarget can be any target copula function. The mimicking copula distribution func-
tion C(n) = C(n)(u; {θ, ρ(u)}) is locally evaluated in all vector points u = (u1, . . . , ud) ∈ U
and its value is of a Gaussian copula function with parameter ρ(u). This means that in a
two dimensional case the local minimization problem of eq. (5.31) needs to be solved for
all the grid points u ∈ U =

⊗2
i=1 Ui = U1 ⊗U2, as shown in the illustrative Example 3

below.

Example 3. Below we report in Figures 5.1 and 5.2 a first illustrative example of the
copula mapping presented above.
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5.2 Developing a Functional Copula Representation of Sklar’s Theorem 89

Figure 5.1: The left plot reports the copula distribution function C
(n)
target belonging to Stu-

dent’s t-copula, evaluated on the unit square U :=
⊗2

i=1 Ui ∈ [0, 1]2 and with parameters
θc = {ρ = 0.5, ν = 5}. The number of states used in this example is n1 = n2 = 35. This
represents the discretized target copula distribution, or the copula distribution we seek to
approximate. The right end side plot reports the error from solving eq. (5.31) across the

unit square U, namely minρ(u)

∥∥∥C(n)
target(u; θc)− C(n)(u; {θ, ρ(u)})

∥∥∥
2

for all u ∈ U.
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90 5. Mimicking Copulas in a Tensor Space and Generalized Copula Mapping

Figure 5.2: The plot on the left end side reports ρ(u) for all u ∈ U from solving eq.
(5.31) which represent the local Gaussian correlations equivalent to the Student’s t-copula
parameters θc = {ρ = 0.5, ν = 5}. This plot is the visualization of the dependence structure
of the target Student’s t-copula by means of local Gaussian correlation parameters ρ(u)
for all u ∈ U. Each point coordinate u = (u1, u2) on the discretized copula support U is
uniquely characterized by a Gaussian correlation value ρ(u1, u2) which gives the magnitude
of the dependency between the marginals. The plot on the right side displays the calculated
Student’s t-copula density c(u, {θ, ρ(u)}) function of the Gaussian local correlations ρ(u)
for all u ∈ U.

Example 4. Below we report in Figure 5.3 a second illustrative example of the copula
mapping presented above. The target distribution is the simplest possible case, a bivariate
Gaussian distribution. In this case the local generalize Gaussian copula will locally approx-
imate the target Gaussian copula and we characterize the outcome of the application of this
representation in Figure 5.3.
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5.2 Developing a Functional Copula Representation of Sklar’s Theorem 91

Figure 5.3: Plots of a 2-D example of local copula approximation results for a Gaussian
copula with parameter θc = 0.5. Top left plot approximated cdf of the target Gaussian

copula C
(n)
target(u; θc) in eq. (5.31) with correlation coefficient θ = 0.5; Top right plot is the

local approximation error solving eq. (5.31) for all the pairs u = (u1, u2); Bottom left plot
illustrates the obtained local Gaussian copula coefficients ρ(u); Bottom right plot shows the
calculated local Gaussian copula density using eq. (5.28). The number of states used in this
example is n1 = n2 = 50 and this means that we sought for a total of n = n1 × n2 = 2500
local correlation coefficients using eq. (5.31).

Theorem 14. [Fréchet-Hoeffding bounds, see Embrechts et al. [2001]] If C is a d-dimesional
copula, then for every u ∈ [0, 1]d, the Fréchet-Hoeffding inequality is

W d(u) ≤ C(u) ≤Md(u) (5.32)

where the functions W d(u) and Md(u) defined on [0, 1]d are as following:

W d(u) = max(u1 + . . .+ ud − d+ 1, 0)

Md(u) = min(u1, . . . , ud).

In particular the function Md is a d-dimensional copula for all d, however W d is not a
copula for d > 3.

Proposition 11 (Existence of the Minimizer of eq. (5.31)). Given a target d-dimensional
copula distribution C with parameters set θc, which we denote by Ctarget(u; θc) and a gen-
eralized local Gaussian copula C(n) defined on the discretized hypecube U we have that the
local minimizer

min
ρ(u)

∥∥∥C(n)
target(u; θc)− C(n)(u; {θ, ρ(u)})

∥∥∥
2

(5.33)
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92 5. Mimicking Copulas in a Tensor Space and Generalized Copula Mapping

always exists for all u ∈ U.

Proof. We observe that by the Fréchet-Hoeffding bounds theorem 14 we have that for all
u ∈ U

W d(u) = C(n)(u; {θ,−1}) ≤ C(n)(u; {θ, ρ(u)}) ≤ C(n)(u; {θ, 1}) = Md(u) (5.34)

However we have that such bounds are valid for any copula and in particular

W d(u) ≤ Ctarget(u; θc) ≤Md(u) (5.35)

Therefore for any given coordinate point u ∈ U it is always possible to find a correlation
value ρ(u) ∈ [−1, 1] which minimizes the local minimizer of eq. (5.33).

5.2.4 Sklar’s Theorem for joint Diffusion processes approximated by
CTMCs

We would like to propose the Sklar’s Theorem using the CTMC approximation for corre-
lated diffusions introduced in the previous section

Definition 27 (Sklar’s Theorem in Generator Space for Bivariate CTMC Processes). Let

P (n) = P
(n1n2)

X1
t ,X

2
t

be the transition probability which is the approximated weak solution of the

diffusion
dXt = b(Xt)dt+ Ψ(Xt)dWt

with infinitesimal generator

A =
2∑
i

bi(x)
∂

∂xi
+

1

2

2∑
i,j

Σi,j(x)
∂2

∂xi∂xj
. (5.36)

Then the approximated local copula function associated to the correlated approximated dif-
fusion is:

c(n) = I(n1) ⊗S {exp(tÂ
(n2)
X2|X1)} =

P
(n)
t

exp(tA
(n1)
X1 )⊗ exp(tA

(n2)
X2 )

(5.37)

while the local corresponding copula approximated distribution function is given by:

C(n) := F
(n)
t = F

(n1n2)

X1
t ,X

2
t
≈ F (n2)

X2
t
⊗S {F (n1)

X1
t |X2

t
}. (5.38)

Remark 6 (Orthogonality of the tensor basis). By construction the approximated local
copula density function c(n) is defined on a orthogonal basis, which is the basis resulting
from the tensor product of the constituent operators. In fact each operator matrix used in
its calculation is orthogonal by construction, see section 5.1.3. Furthermore we construct
the copula over the support X which may be represented as union of disjoint subsets {Bj},
i.e. X =

⊗d
i=1X i =

⋃n
j=1Bj, where each set Bj as coordinate vector point x in the space

X . If we then set B0 = {x = (x
(1)
0 , . . . , x

(d)
0 )}, B1 = {x = (x

(1)
1 , . . . , x

(d)
0 )}, . . . , Bn =

{x = (x
(1)
n1 , . . . , x

(d)
nd )}, therefore creating a countable and ordered sequence of sets spanning
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5.2 Developing a Functional Copula Representation of Sklar’s Theorem 93

the whole discretized support X then it is straightforward to obtain the copula distribution
functions as the cumulative sum over all the sets, i.e.

C(n)(Bz) =
∑
j≤z

c(n)(Bj) (5.39)

Remark 7 (Copula distribution integration in the tensor space). Integration of the mim-
icking local Gaussian copula C(n) over the unit hypercube U as per eq. (5.39) satisfies
the third condition of the copula definition 26. Note that the space U is constructed
from the state space X through the pointwise application of the marginal approximated
distributions, see eq. (5.25).

Remark 8 (Sklar’s Theorem in Tensor Space). We must now complete the picture, in the
bivariate setting, by linking the result just presented for Sklar’s Theorem in Tensor Space
for Bivariate CTMC Processes, that we denote as the functional Sklar representation for
a generalized Gaussian copula, with a general bivariate copula distribution.

One can show that this discretized state space, ie. the discrete approximation of a con-
tinuous distribution obtained via a mimicking CTMC process characterized by Sklar’s
representation in generator space can be made exact for a continuous distribution as the
discretization interval shrinks to zero.

Proposition 12 (Convergence of CTMC Sklar’s Theorem for Bivariate Copula). Let
Xt := (X1

t , X
2
t ) be correlated Markov processes with joint approximated distribution func-

tion F
(n)
t := F

(n1n2)

X1
t ,X

2
t

(x) as in eq. (5.38) and with marginal distributions FX1
t

and FX2
t
. Let

C(u1, u2) : [0, 1]2 7→ [0, 1] a continuous copula function. Then the following convergence
result holds:

lim
n1,n2→∞

F
(n1n2)

X1
t ,X

2
t

(x) = C(FX1
t
(x1), FX2

t
(x2)) (5.40)

Definition 28 (Weak Convergence, see Varadhan [2007]). A sequence {αn}n∈N of prob-
ability measures on the real line R with distribution functions {Fn(x)}n∈N is said to con-
verge weekly to a limiting probability measure α with distribution function F (x) (in symbols
αn ⇒ α or Fn ⇒ F ) if

lim
n→∞

Fn(x) = F (x) (5.41)

In order to prove the desired weak convergence properties of proposition 12 we recall
a fundamental theorem, which is the Lévy-Cramér continuity theorem (see Theorem 2.3,
pag. 25 from Varadhan [2007]) reported below.

Theorem 15 (Lévy-Cramér Continuity Theorem on R). The following are equivalent:

(i) αn ⇒ α or Fn ⇒ F .
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94 5. Mimicking Copulas in a Tensor Space and Generalized Copula Mapping

(ii) For every bounded continuous function f(x) on R.

lim
n→∞

∫
R
f(x)dαn =

∫
R
f(x)dα

(iii) If φn(s) and φ(s) are, respectively, the characteristic functions of αn and α for every
real s,

lim
n→∞

φn(s) = φ(s). (5.42)

.

Proof. See Varadhan [2007], pag 25.

Note that the extension of the Lévy-Cramér continuity theorem to Rd can be proved
exactly as in the one dimensional case and it suffices to show that the sequence {αn}n∈N of
probability measures is tight, see Varadhan [2007]. So we limit our convergence argument
to the one dimensional case.
However given a sequence of probability measures {αn}n∈N on R it is easier to show that
the moments ∫

xzαn(dx)→ mz ∈ R for each z ∈ N (5.43)

rather than to show that the characteristic functions of {αn}n∈N converge. It remains
to find the conditions on the moments sequence {mz}z∈N such that there exists a unique
probability measure α with

∫
xzαn(dx) = mz ∈ R for each z ∈ N. Furthermore the

condition on the moment sequence {mz}z∈N which would allow us to conclude that αn ⇒ α
for some probability measure α can be formulated as following. If

∫
x2αn(dx)→ m2 <∞

implies that supn
∫
x2αn(dx) = C <∞, C > 0 and therefore for any k > 0,

sup
n
αn(|x| > k) ≤ C

k2
(5.44)

which implies that {αn}n∈N is a tight family of probability measures and therefore subse-
quential weak limits are guaranteed to exist.

In our specific case we want to prove that the sequence of the first two moments of the
BDP approximated probability measure sequence {αn}n∈N converge to those of a Normal,
and this is referred as methods of moments for proving weak convergence.

Proof. [of proposition 12] In order to prove and show some properties of convergence as
presented in proposition 12 we need to first introduce the characteristic function of the
mimicking local BDP

dYt = h(dN+
t − dN

−
t ) (5.45)

We recall that if a random variable Y has moment generating function mY (s), then X =
aY +b has moment generating function mX(s) = esbmY (as). Therefore if the characteristic
function (CF) of a Poisson distribution with intensity parameter λ is:

φPoisson(s) = exp(λ(eis − 1)) (5.46)

consequently the CF of the BDP dYt of eq. (5.45) with birth and death rate respectively
λb and λd at time t = 1 is

φBDP(s) = exp(λb(e
ish − 1)) exp(λd(e

−ish − 1)) (5.47)
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5.2 Developing a Functional Copula Representation of Sklar’s Theorem 95

with moment generating function

mBDP(s) = exp(λb(e
sh − 1)) exp(λd(e

sh − 1)) (5.48)

with

m′BDP(s)|s=0 = λbh− λdh
m′′BDP(s)|s=0 = λbh

2 + λdh
2 − (λbh− λdh)2

which yields to the first two moments equal to respectively

E[Y ] = λbh− λdh
V ar[Y ] = λbh

2 + λdh
2 (5.49)

The moment generating function of a random variable Y ∼ N (µ, σ2) is mY (s) = exp(µs+
σ2s2

2 ) Therefore if we want the BDP to produce a distribution with first two moments iden-
tical to those of a normal random variable N (µ, σ2) then the expression of the intensities
needs to be:

λb =
1

2

(µ
h

+
σ2

h2

)
, λd =

1

2

(σ2

h2
− µ

h

)
, (5.50)

which are in line with the expression of the BDP intensities in eq. (4.4). Now we would
like to study numerically and analytically the following convergence:

BDP CF→ Normal CF for h→ 0,

and specifically how the following CF

φBDP(s) = exp
(1

2

(µ
h

+
σ2

h2

)
(eish − 1)

)
exp

(1

2

(σ2

h2
− µ

h

)
(e−ish − 1)

)
(5.51)

will converge to

φNormal(s) = exp
(

iµs− σ2s2

2

)
(5.52)

In order to show the convergence of the characteristic function we notice that since

eish − 1 = ihs− 1

2
s2h2 − 1

6
ih3s3 + h4O(s4)

e−ish − 1 = −ihs− 1

2
s2h2 +

1

6
ih3s3 + h4O(s4)

we can rewrite eq. (5.51) as

φBDP(s) = exp
(
λb(ihs−

1

2
s2h2 − 1

6
ih3s3 + h4O(s4)) + λd(−ihs− 1

2
s2h2 +

1

6
ih3s3 + h4O(s4))

)
= exp

(
(λb − λd)ihs− (λb + λd)

1

2
s2h2 − (λb − λd)

1

6
ih3s3 + (λb + λd)h

4O(s4)
)

= exp
(

iµs− σ2 1

2
s2 − i

1

6
µh2s3 + σ2h2O(s4)

)
= exp

(
iµs− σ2 1

2
s2 +O(h2)O(s3)

)
(5.53)
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Therefore the BDP CF of eq. (5.51) will converge to a Normal CF as h → 0 at a rate at
most O(h2). Note that the first two moments will always match by construction and the
error comes from the higher moments, and ultimately will converge to zero as h → 0. In
Figure 5.4 we show how the BDP density function obtained through fast Fourier inversion
converges to the Normal density function with same parameters as h→ 0.

Figure 5.4: Convergence of BDP density function obtained through fast Fourier inversion
to the Normal density function with same parameters as h→ 0.

5.2.5 Copula Marginals and Projections

In this section we discuss how to utilise the copula decompositions developed to consider
marginalization and conditioning. Consider the joint probability as P (A∩B), where A and
B are events on the same probability space, and express it in the most general way as a
function of the marginal densities, copula function, input correlation matrix. According to
Kolmogorov’s definition of probability spaces every set A with non-zero probability, that is
P (A) > 0 defines another probability measure Q(A) = P (B|A) = P (A∩B)

P (A) on the space. For

example, if we denote the joint density of the variables pair (X,Y ) by fX,Y with marginal
densities f(x) and g(y) then it is possible to express the conditional density

fX|Y (x, y) =
fX,Y (x, y)

f(x)
= g(y)c(F (x), G(y)) (5.54)
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5.2 Developing a Functional Copula Representation of Sklar’s Theorem 97

More generally we consider the case where each marginal distribution Fi is continuous
and differentiable. If the copula C and marginals F1, . . . , Fk are differentiable, then the
join density f(x1, . . . , xk) corresponding to the join distribution function F (x1, . . . , xk) can
be written by canonical represenatation as a product of the marginal densities and the
copula density

f(x1, . . . , xk) = c(F1, . . . , Fk)
k∏
i=1

fi(xi) (5.55)

which is exactly the result of proposition 10. Taking into account the univariate marginals
and joint density defined by the copula we can write the conditional density in the following
form:

f(xk|x1, . . . , xk−1) = fk(xk)
c(F1, . . . , Fk)

c(F1, . . . , Fk−1)
(5.56)

From an algebraic point of view each calculated infinitesimal generator matrix A
(ni)

Xi , i =
1, . . . , d defines an ni-orthogonal basis Bi spanning the associated vector space which we
denote with Vi.

The multidimensional approximated generator A(n) = A
(n1···nd)

X1,...,Xd is an element of V , the

tensor product V = V1 ⊗ . . .⊗ Vd. A(n) is a large very sparse matrix and corresponds to a
linear mapping.

It is useful to be able to identify the properties of A(n) over local subspaces of V . In
the following we provide some results on projection operator P on the space V .

Proposition 13. Let us consider a two dimensional approximated infinitesimal generator

A(n) = A
(n1n2)
X1,X2 with associated transition kernel P

(n1n2)

X1
t ,X

2
t

, t ≥ 0. If we define the operator

P2 = (eA
(n1)

X1 )−1 ⊗ In2 , t = 1, then the projected kernel on the space of V2 is

Pn1n2

X2
t |X2

t
= P2P

(n1n2)

X1
t ,X

2
t

(5.57)

We call P2 projection operator on V2 for P
(n1n2)

X1
t ,X

2
t

.

Proof. The generator A
(n1n2)
X1,X2 can be written as

A
(n1n2)
X1,X2 = A

(n1)
X1 ⊕A

(n2)
X2 (5.58)

= A
(n1)
X1 ⊗ In2 + In1 ⊗A

(n2)
X2

In order to obtain the projection on V2 it is necessary to subtract the component A
(n1)
X1 ⊗

In2 . The corresponding projection operator is therefore given by e
−
(
A

(n1)

X1 ⊗In2

)
, that is

equivalent to (eA
(n1)

X1 )−1 ⊗ In2 .

5.2.6 Numerical Algorithms for Evaluation of the Functional Copula
Characterization

A practical way to solve eq. (5.31) is to compute the local likelihood with respect to each
local Gaussian correlation ρ(u) ∈ [−1, 1] for all u ∈ U, and therefore obtain a full set
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98 5. Mimicking Copulas in a Tensor Space and Generalized Copula Mapping

off correlation coefficients which gives a representation of the dependency structure of the
target copula as a function of Gaussian correlation. By doing this we are mimicking a

target copula C
(n)
target(u; θc) which properties are specified by a set of parameters θc, to a

local Gaussian copula characterized by unique local parameter ρ(u) which is very intuitive
and gives immediate information about the magnitude of the local dependency.

The solution to this local mapping representation can be obtained via the following
algorithm.

Below we present a three steps algorithm for the computation of

min
ρ(u)

∥∥∥ log
(
C

(n)
target(u; θc)− C(n)(u; {θ, ρ(u)})

)∥∥∥
2
, (5.59)

where Ctarget can be any target copula function.

1. Step 1: Construction of 2-D infinitesimal generator matrix by means of a conditional
infinitesimal generator matrix sequence as described in Proposition 7. In this way we
can calculate the approximated correlated joint distribution P (n)(x; {θ, ρ(u)}), with
θ being the set of marginals’ parameters and ρ(u) the local Gaussian correlation
coefficient.

2. Step 2: 2-D copula density computation through the copula infinitesimal generator
matrix as per Proposition 10.

3. Step 3: Local Gaussian copula operator calibration as described in section 5.2.3 and
calculation of the local Gaussian copula coefficient projection ρ(u) using eq. (5.31).

The numerical complexity of this algorithm is at most n2. In fact is possible to associate
at most one value of local Gaussian copula correlation ρ(u) per each coordinate point
u ∈ U.

5.3 Assessing the Accuracy of the Functional Copula Ap-
proximations and Convergence Analysis

In this section we illustrate through examples how the local approximation of correlated
diffusions by a mimicking BDP, introduced in the previous sections, can be used in prac-
tice to approximate the distribution and density functions of a desired target copula. We
demonstrate the ability of our modeling framework to characterize the dependence struc-
ture of known copula functions in terms of the local correlation. Furthermore the proposed
examples give evidence to the findings and converge properties presented in proposition
12. The mapping procedure, which corresponds to eq. (5.31), is norm based and seeks for
the level of local correlation coefficients that can make the generalised Gaussian copula lo-
cally reproduce the dependence structure of other copula functions globally over the entire
discretized unit hypercube.

Firstly we illustrate how to build the local copula generator and visualize various cor-
relation structures that realize specific tail dependencies among the marginals. Secondly
we give details of the local Gaussian correlation produced by our methodology and show
how to map such local correlation to standard copula functions known in the literature.
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We provide examples using both categories of copula functions: those derived from
distributions, in the sense that typical multivariate distributions describe important de-
pendence structures, like elliptical copulas. And the copulas which functional expression
can be stated directly and have a quite simple form, like Archimedean copulas.

5.3.1 Functional Copula Characterizations of Elliptical Copula Families

We start this section discussing a widely used family of copula models known as the el-
liptical copula models. We will present the Student’s t-copula model and the grouped,
generalized and skewed t-copula models. Several parameterizations are available for the
skewed t-copula models, see discussions in Demarta & McNeil [2005] and Cruz et al. [2015b].
We note the following scale mixture relationship between these multivariate distributions.
They are all sub-families of copula models that characterize the dependence in the follow-
ing generalized hyperbolic family of d-dimensional multivariate distributions given by the
relationship:

X
d
= γW +

√
WZ, (5.60)

with Z ∼ N(0,Σ) independent of W ∼ Inv.Gamma
(
ν
2 ,

ν
2

)
and γ ∈ Rd denoting a skewing

vector of parameters. If γ = 0 and W = 0 then one has the joint distribution implying
a Gaussian copula case; if one has γ = 0 and W included one has the Student’s t-copula
case; and if γ 6= 0 then one has the model with an implicit skewed t-copula.

Constructing the Generalized Gaussian Copula Functional Copula for a Target
Student’s t-Copula

In practice, one of the most popular copulas in modeling multivariate data is perhaps
the t-copula implied by the multivariate Student’s t-distribution (hereafter referred to as
standard-t copula); see Embrechts et al. [2001] and Demarta & McNeil [2005]. This is due
to its simplicity in terms of simulation and calibration, combined with its ability to model
tail dependence.

It will be useful at this stage to introduce the following notation:

• Z = (Z1, . . . , Zn)′ is a random vector from the multivariate normal distribution ΦΣ(z)
with zero mean vector, unit variances and correlation matrix Σ.

• U = (U1, . . . , Un)′ is defined on [0, 1]n domain.

• V is a random variable from the uniform (0,1) distribution independent of Z.

• W = G−1
ν (V ), where Gν(·) is the distribution function of

√
ν/S with S distributed

from the chi-square distribution with ν dof, i.e. W and Z are independent.

• tν(·) is the standard univariate Student’s t-distribution and t−1
ν (·) is its inverse.

We may now define the d-dimensional Student’s t-copula as follows

Definition 29 (Standard Student’s t-copula). The d-dimensional random vector X =
(X1, . . . , Xd) is said to have a non-singular multivariate Student’s t-distribution with ν
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degrees of freedom, mean vector µ and positive definite dispersion or scatter matrix Σ,
denoted by X ∼ td(ν,µ,Σ), if its density is given by

f(x) =
Γ
(
ν+d

2

)
Γ
(
ν
2

)√
(πν)d|Σ|

(
1 +

(x− µ)TΣ−1(x− µ)

ν

)− ν+d
2

(5.61)

Where, under this parameterization one has Cov(X) = ν
ν−2Σ. Then the random vector

X = W × Z (5.62)

is distributed from a multivariate t-distribution and random vector

U = (tν(X1), . . . , tν(Xd))
′ (5.63)

is distributed from the standard t-copula where the distribution is implicitly given by

Ctν,P (u) =

∫ t−1
ν (u1)

−∞
· · ·
∫ t−1

ν (ud)

−∞

Γ
(
ν+d

2

)
Γ
(
ν
2

)√
(πν)d|P |

(
1 +

xTP−1x

ν

)− ν+d
2

dx (5.64)

where P is the correlation matrix implied by the dispersion matrix Σ.

In the case of d = 2 the bivariate t-distribution with ν degrees of freedom and correlation
ρ,

Ct(u1, u2; ν, ρ) =

∫ θ−1
ν (u1)

−∞

∫ θ−1
ν (u2)

−∞

1

2π(1− ρ)
1
2

(
1 +

s2 − 2ρst+ t2

ν(1− ρ)

)− ν+2
2
dsdt(5.65)

where θ−1
ν (u1) denotes the inverse of the cdf of the standard univariate t-distribution with

ν degrees of freedom. The two dependence parameters are (ν, ρ). The parameter ν controls
the heaviness of the tails. For ν < 3, the variance does not exist and for ν < 5, the fourth
moment does not exist. For ν →∞ , Ct(u1, u2; ν, ρ)→ ΦG(Φ−1(u1),Φ−1(u2); ρ).

In the following results we demonstrate the representation obtained for the generalized
Gaussian functional copula representation of a Student’s t-copula model for a range of
different parameter settings. In particular we focus on the following two sets of results:

Case Study 1: in this first study we consider both a bivariate and trivariate Student’s t-copula model.
We fix the parameters in the bivariate case to θ = (ν = 5, θ = 0.5) for the degrees
of freedom parameter and correlation parameter and in the trivariate case to θ =
(ν = 5, θ1 = 0.4, θ2 = 0.4). We perform a reconstruction of the resulting Student’s
t-copula model in terms of the generalized Gaussian functional copula representation
developed in this chapter. In the process we aim to study the influence of the stencil
mesh spacing, so we consider two illustrative settings one in which we use just a
small number of points n1 = n2 = 50 and then a second in the trivariate case with
n1 = n2 = n3 = 200 points. The aim of the study is to demonstrate that a very
accurate reconstruction can be achieve with minimal computational effort that yields
a detailed reconstruction of the local correlation in the state-space from the functional
copula mapping undertaken. The results of this analysis are presented in Figure 5.5.
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Case Study 2: in this second study we demonstrate how one can utilise the copula mapping to
study the local affect of dependence induced in different regions of the state space,
arising as one varies the parameters of the Student’s t-copula model. In particular,
we will construct the local correlation surface obtained from the generalized Gaussian
functional copula mapping and plot a range of such surfaces over the support of the
bivariate Student’s t-copula as we vary the copula parameters θ. The results of this
study are demonstrated in Figure 5.6.

In Figure 5.5 we show the results of the implementation of the approximation for the
copula generator representation given by proposition 10 which we used to obtain the ap-
proximated density function c(n1,n2).
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Figure 5.5: Top plots 2-D example of local approximation results for a Student’s t-copula
with parameters θ = 0.5 and ν = 5. Top left plot approximated cdf of the target Stu-
dent’s t-copula with correlation coefficient θ = 0.5 and ν = 5; Top right plot is the local
approximation error of the decomposition method; Bottom left plot is the local Gaussian
copula coefficients ρ(u1, u2); Bottom right plot is approximated t-copula pdf. The number
of discretization points is n1 = n2 = 50.
Bottom plot displays the approximated 3-D Student’s t-copula cumulative density function
with parameters ρ = 0.4 and ν = 0.5 and number of states n1 = n2 = n3 = 200.
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Figure 5.6: This set of local Gaussian copula correlation coefficients ρ(x, y) := ρ(u1, u2) sur-
faces is the result of the copula mapping where the target copula is a 2-D Student’s t-copula
with parameter θ = 0.5 and degree of freedom parameter ν = [0.1, 1, 3, 5, 7, 10, 20, 100].
With the copula mapping it is possible to visualize though the local value of the Gaus-
sian correlation ρ(u1, u2) how the parameter ν controls the heaviness of the Student’s
t-distribution tails . When ν → 0 the Student’s t-distribution exhibits the strongest tail
dependence, and this is visible in the above plot where the local Gaussian correlation co-
efficient ρ(u1, u2) diverges from θ = 0.5 to almost ρ(u1, u2) = 0.9. For ν = 20 the tail
dependence starts to exhibit and increases for smaller values of ν. On the contrary when
ν →∞ the Student’s t-distribution converges to a Gaussian distribution and this is illus-
trated by the fact that the local Gaussian correlation resulting from the copula mapping
procedure is equal to ρ(u1, u2) = 0.5 across all the unit square when ν = 100. The number
of discretization points used in this example is n1 = n2 = 50.
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Constructing the Generalized Gaussian Copula Functional Copula for Grouped
and Generalized Target Student’s t-Copulas

However, the standard t-copula is often criticized due to the restriction of having only
one parameter for the degrees of freedom (dof), which may limit its ability to model tail
dependence in multivariate case. To overcome this problem, Daul et al. [2003] proposed the
use of the grouped t-copula, where each of the variables are grouped into classes and each
class has its own standard t-copula with a specific dof. As a natural extension to address
this concern, recently, the grouped t-copula was developed and can be specified below.

Definition 30 (Grouped Student’s t-copula). Partition {1, 2, . . . , n} intom non-overlapping
sub-groups of sizes n1, . . . , nm. Then the copula of the random vector

X = (W1Z1, . . . ,W1Zn1 ,W2Zn1+1, . . . ,W2Zn1+n2 , . . . ,WmZn)′, (5.66)

where Wk = G−1
νk

(V ), k = 1, . . . ,m, is the grouped t-copula. That is,

U = (tν1(X1), . . . , tν1(Xn1), tν2(Xn1+1), . . . , tν2(Xn1+n2), . . . , tνm(Xn))′ (5.67)

is a random vector from the grouped t-copula. Here, the copula for each group is a standard
t-copula with its own dof parameter (i.e. νk is dof parameter of the standard t-copula for
the k-th group).

Recent extensions to the grouped t-copula have also been developed, where the general-
ized t-copula was specified with multiple dof parameters (hereafter referred to as generalized
Student’s t-copula); see Luo & Shevchenko [2010] and Venter et al. [2007]. This copula can
be viewed as a grouped t-copula with each group having only one member. It has the
advantages of a grouped t-copula with flexible modelling of multivariate dependences, yet
at the same time it overcomes the difficulties with a priori choice of groups.

For convenience, denote the new copula as t̃ν-copula, where ν = (ν1, ..., νd) denotes the
vector of dof parameters and d is the number of dimensions. Luo and Shevchenko (2010)
demonstrated that some characteristics of this new copula in the bivariate case are quite
different from those of the standard t-copula. For example, the copula is not exchangeable
if ν1 6= ν2 and tail dependence implied by the t̃ν-copula depends on both dof parameters.

Definition 31 (Generalized t-copula with multiple dof (t̃ν-copula)). Consider the grouped
t-copula where each group has a single member. In this case the copula of the random
vector

X = (W1Z1, W2Z2, . . . ,WnZn)′ (5.68)

is said to have a t-copula with multiple dof parameters ν = (ν1, . . . , νn), which we denote
as t̃ν-copula. That is,

U = (tν1(X1), tν2(X2), . . . , tνn(Xn))′ (5.69)

is a random vector distributed according to t̃ν-copula. Note, all Wi are perfectly dependent.

From the above definitions, it is easy to show that the t̃ν-copula distribution has the
following explicit integral expression

CΣ
ν (u) =

1∫
0

ΦΣ(z1(u1, s), . . . , zn(un, s))ds (5.70)
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and its density is

cΣ
ν (u) =

∂nCΣ
ν (u)

∂u1 . . . ∂un
=

1∫
0

ϕΣ (z1(u1, s), . . . , zn(un, s))

n∏
i=1

[wi(s)]
−1ds/

n∏
i=1

fνi(xi). (5.71)

Here:

• zi(ui, s) = t−1
νi (ui)/wi(s), i = 1, 2, . . . , n;

• wi(s) = G−1
νi (s);

• ϕΣ(z1, . . . , zn) = exp(−1
2z′Σ−1z)/[(2π)n/2(detΣ)1/2] is the multivariate normal den-

sity;

• xi = t−1
νi (ui), i = 1, 2, . . . , n;

• fν(x) =
(
1 + x2/ν

)−(ν+1)/2
Γ((ν + 1)/2)/[Γ(ν/2)

√
νπ] is the univariate t-density,

where Γ(·) is a gamma function.

If all the dof parameters are equal, i.e. ν1 = · · · = νn = ν, then it is easy to show that
the copula defined by eq. (5.70) becomes the standard t-copula; see Luo and Shevchenko
(2010) for a proof.

In the following results we demonstrate the representation obtained for the generalized
Gaussian functional copula representation of a generalized Student’s t-copula model for a
range of different parameter settings.

Case Study 1: in this study we demonstrate how one can utilise the copula mapping to study the
local affect of dependence induced in different regions of the state space, arising as
one varies the parameters of the generalize Student’s t-copula model. In particular,
we will construct the local correlation surface obtained from the generalized Gaussian
functional copula mapping and plot a range of such surfaces over the support of the
bivariate generalized Student’s t-copula as we vary the copula parameters θ. The
results of this study are demonstrated in Figure 5.7.
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Figure 5.7: Local Gaussian copula coefficients ρ(x, y) for the local approximation of a
Generalized Student’s t-copula. Right plot has parameters θ = 0.5 and ν1 = ν2 = 200;
Left plot has parameters θ = 0.5 and ν1 = 5 and ν2 = {5, 1}. The number of discretization
points is n1 = n2 = 50.

Constructing the Generalized Gaussian Copula Functional Copula for a Target
Skewed Student’s t-Copula

The skewed t-copula model is characterized relative to the Student’s t-copula model speci-
fied above. As observed it corresponds to the skewed infinite mixture between a transform
of a Gaussian random vector and an independent Inverse Gamma random variable, as dis-
cussed in eq. (5.60) above. The covariance matrix for this parameterization of the skewed
t-copula, denoted by Σ̃, can be obtained relative to the Student’s t-copula covariance ma-
trix, denoted by Σ, as follows (for ν/2 > 2):

Σ̃ = γγTVar [W ] + E[W ]Σ

= γγT
(

(ν/2)2

(ν/2− 1)2(ν/2− 2)

)
+

(
(ν/2)

(ν/2− 1)

)
Σ

(5.72)

where the shape and scale of the mixing Inverse Gamma distribution are given by ν/2. In
this parameterization one can obtain the d-dimensional multivariate skewed t-distribution
according to the density, see ,

fX(x) =

cK(ν+2)/2

(√
(ν +Q(x))γT Σ̃−1γ

)
exp

(
(x− µ)T Σ̃−1γ

)
(√

(ν +Q(x))γT Σ̃−1γ

)−(ν+d)/2

(1 +Q(x)/ν)(ν+2)/2

(5.73)

with the following functions

Q(x) = (x− µ)T Σ̃−1(x− µ),

c =
21−(ν+d)/2

Γ(ν/2)(πν)d/2|Σ̃|1/2
.

(5.74)
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Hence, the resulting implicit copula density function for this skewed t-distribution is given
by the ratio of this joint density over the marginal univariate skewed t-densities which are
given by

fXi(x) =

cK(ν+1)/2

(√(
ν + (x−µi)2

σ̃2
i

)
γ2i
σ̃2
i

)
exp

(
(x− µi) γiσ̃2

i

)
(√(

ν + (x−µi)2
σ̃2
i

)
γ2i
σ̃2
i

)−(ν+1)/2

(1 + (x−µi)2
νσ̃2
i

)(ν+1)/2

. (5.75)

In the following results we show the representation obtained for the generalized local
Gaussian copula mapping of a skewed Student’s t-copula model for a range of different
parameters settings.

Case Study 1: in this study we demonstrate how the marginal distribution of the skewed Student’s
t-copula can be obtained from the reconstructions developed. In particular, we can
study how accurate the marginal distributions are captured by the bivariate gener-
alized Gaussian functional copula reconstruction developed. The results are demon-
strated for a very efficient case with just a small mesh where n1 = n2 = 50. It is clear
that the marginals are very accurately reconstructed, we show this for a range of dif-
ferent parameter settings as we vary the skew parameters, for the skewed Student’s
t-copula model. The results of this analysis are presented in Figure 5.8.

Case Study 2: in this second study we demonstrate how one can utilise the copula mapping to study
the local affect of dependence induced in different regions of the state space, arising as
one varies the parameters of the skewed Student’s t-copula model. In particular, we
will construct the copula density obtained from the generalized Gaussian functional
copula mapping and plot a range of such surfaces over the support of the bivariate
skewed Student’s t-copula as we vary the copula parameters θ. The results of this
study are demonstrated in Figure 5.9.

Case Study 3: in this third study we demonstrate how one can utilise the copula mapping to study
the local affect of dependence induced in different regions of the state space, arising as
one varies the parameters of the skewed Student’s t-copula model. In particular, we
will construct the local correlation surfaces obtained from the generalized Gaussian
functional copula mapping and plot a range of such surfaces over the support of the
bivariate skewed Student’s t-copula as we vary the copula parameters θ. The results
of this study are demonstrated in Figure 5.10.
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Figure 5.8: Approximation of the marginal 1-D density for a skewed Student’s t-distribution
with parameters µ = 0, σ = 3, ν = 5. The parameter γ takes values (−2,−1, 0, 3). When
γ = 0 then the skewed Student’s t-distribution simplifies to the Student’s t-distribution.
The number of discretization points is n1 = n2 = 50.

Figure 5.9: Approximated skewed Student’s t-copula density with parameters µ = 0, σ =
1, ν = 2, ρ = 0.1. Left plot has parameter γ taking values (0, 1, 3, 8); Right plot has
parameter γ taking values (−1, 3). When γ = 0 then the skewed Student’s t-copula sim-
plifies to the Student’s t-copula density function. The number of discretization points is
n1 = n2 = 50.
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Figure 5.10: Local Gaussian copula coefficients ρ(x, y) for the local approximation of a
skewed Student’s t-copula. Left plot has parameters {ρ = 0.2, g = −1, ν = 19} and {ρ =
−0.5, g = −1, ν = 19} respectively; Right plot has parameters {ρ = 0.2, g = 1, ν = 19}
and {ρ = −0.5, g = 1, ν = 19} respectively. The Gaussian local correlation values reflect
the tail dependence structure of the target skewed Student’s t-copula. The number of
discretization points used is n1 = n2 = 50.

5.3.2 Functional Copula Characterizations of Archimedean and Distorted
Archimedean Copula Families

Another family of copula model that is widely used in practice is the family of Archimedean
copula models and the distorted extensions. We will consider the two most popular sub-
families of such copula models for practitioners, the Clayton and Gumbel copula models
before presenting some interesting recent developments based on Archimax copula involving
combinations of extreme value copula with Archimedean copula.

The first introduction to Archimedean copulas involves a specification in general via
generator functions where a d-dimensional Archimedean copula model is given by

C(u) = C (u1, . . . , ud) = ψ
(
ψ−1 (u1) + · · ·+ ψ−1 (ud)

)
, (5.76)

where ψ is a decreasing function known as the generator for the given copula; see Frees &
Valdez [1998]. To fully define an Archimedean copula one considers a generator function
whcih is at least d-monotone.

Definition 32. [Completely Monotone Generators and Existence of Archimedean Copulae]
If a generator ψ that is a mapping ψ : [0,∞] 7→ [0, 1] is continuous and strictly decreasing
such that ψ(0) = 1 and ψ(∞) = 0, that is, ψ ∈ C∞ (0,∞) and one has that (−1)kψ(k)(x) ≥
1 for k = 1, . . . then this class of generators can create Archimedean copulae models in any
dimension. This class of completely monotone generators for Archimedean copula in any
dimension are denoted by ψ∞.

The requirement for complete monotonicity is only required to create copula of any
dimension, so this was then further relaxed for d-variate Archimedean copula in further
studies to include only the positivity of derivatives for k = 1, 2, . . . , d for a d-variate
Archimedean copula; see discussion in McNeil & Nešlehová [2009], where it was shown
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that one only requires the necessary and sufficient conditions on the generator function to
be a d-monotone function as given in Definition 33 in order to create Archimedean copulae
models up to dimension d.

Definition 33. [D-Monotone Functions] A real function g(·) is d-monotone in a range
(a, b) for a, b ∈ R and d ≥ 2 if it is differentiable on this range up to order d − 2 and the
derivatives satisfy the condition that

(−1)kg(k)(x) ≥ 0, k = 0, 1, . . . , d− 2 (5.77)

for any x ∈ (a, b) and (−1)d−2g(d−2) is nonincreasing and convex in (a, b).

One can then conclude that a function ϕ is said to generate an Archimedean copula if
it satisfies the following properties.

Definition 34. [Archimedean Generator] An Archimedean generator is a continuous, de-
creasing function ϕ : [0,∞]→ [0, 1] that satisfies the following conditions:

1. ϕ : [0,∞) 7→ [0, 1] with ϕ(0) = 1 and limt→∞ ϕ(t) = 0;

2. ϕ is a continuous function;

3. ϕ−1 is given by ϕ−1(t) = inf {u : ϕ(u) ≤ t};

4. ϕ is strictly decreasing on [0, inf {t : ϕ(t) = 0}] =
[
0, ϕ−1(0)

]
.

Constructing the Generalized Gaussian Copula Functional Copula for Target
Clayton and Gumbel Copulas

The Clayton copula has a generator given by ϕθ(u) = 1
θ (u−θ − 1) and the density in the

d = 2 case therefore takes the form,

C(u1, u2; θ) = (u−θ1 + u−θ2 − 1)−
1
θ (5.78)

with the dependence parameter θ restricted on the region (0,∞). As θ approaches zero, the
marginals become independent. As θ approaches infinity, the copula attains the Fréchet
upper bound, but for no value does it attain the Fréchet lower bound. The Clayton copula
cannot account for negative dependence. It has been used to study correlated risks because
it exhibits strong left tail dependence and relatively weak right tail dependence.

The density of this copula is given by

c(u1, u2) =
∂2C(u1, u2; θ)

∂u1∂u2
= (1 + θ)(u1u2)−(1+θ)(u−θ1 + u−θ2 − 1)−

1
θ
−2 (5.79)

For the bidimensional Clayton copula there exist a relationship between the copula param-
eter θ and the concordance coefficient Kendall’s tau ρτ , given by the following estimator
for θ

θ̂ =
2ρ̂τ

1− ρ̂τ
(5.80)

The d-dimensional Clayton copula can be defined as following (see McNeil et al. [2015])

C(u1, . . . , ud; θ) =

(
d∑
i=1

u−θi − d+ 1

)− 1
θ

(5.81)
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The Gumbel copula has a generator given by [− log(u)]θ and the density then takes the
form,

C(u1, u2; θ) = exp
(
−
[
(− log(u1))−θ + (− log(u2))−θ

]) 1
θ

(5.82)

The dependence parameter is restricted to the interval [1,∞). Values of 1 and ∞ corre-
spond to independence and the Fréchet upper bound, but this copula does not attain the
Fréchet lower bound for any value of θ. Similar to the Clayton copula, Gumbel does not
allow negative dependence, but it contrast to Clayton, Gumbel exhibits strong right tail
dependence and relatively weak left tail dependence. If outcomes are known to be strongly
correlated at high values but less correlated at low values, then the Gumbel copula is an
appropriate choice. For the bidimensional Gumbel copula there exist a relationship be-
tween the copula parameter θ and the concordance coefficient Kendall’s tau ρτ , given by
the following estimator for θ

θ̂ =
1

1− ρ̂τ
(5.83)

The d-dimensional Clayton copula can be defined as following (see McNeil et al. [2015])

C(u1, . . . , ud; θ) = exp

{(
d∑
i=1

(− log ui)
θ

)− 1
θ
}
. (5.84)

Case Study 1: in this first study we demonstrate how one can utilise the copula mapping to study
the local affect of dependence induced in different regions of the state space, arising
as one varies the parameters of the Clayton copula model. In particular, we will pro-
vide four summary results: the reconstruction of the copula density and distribution
obtained from the generalized Gaussian functional copula mapping; the accuracy of
the reconstruction; and the local correlation surface obtained from the generalized
functional copula mapping. The results of this study are demonstrated in left panel
of sub-plots in Figure 5.11.

Case Study 2: in this second study we demonstrate how one can utilise the copula mapping to
study the local affect of dependence induced in different regions of the state space,
arising as one varies the parameters of the Gumbel copula model. In particular,
we will provide four summary results: the reconstruction of the copula density and
distribution obtained from the generalized Gaussian functional copula mapping; the
accuracy of the reconstruction; and the local correlation surface obtained from the
generalized functional copula mapping. The results of this study are demonstrated
in right panel of sub-plots in Figure 5.11.
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Figure 5.11: Local approximations for a Clayton copula with parameters θ = 0.4 (left
plots) and Gumbel copula with parameters θ = 1.4 (right plots). Top left subplots are
approximated cdf of the target copula; Top right subplots are the local approximation
error; Bottom left subplots are the local Gaussian copula coefficients ρ(x, y); Bottom right
subplots are the approximated density. The number of discretization points is n1 = n2 =
50.

Constructing the Generalized Gaussian Copula Functional Copula for Target
Archimax Copula

Recently there has been a growing interest in developing archimedean copula models with
distortion features, based on the works of Genest & Rivest [2001] and Morillas [2005]
which explore ways of distorting a given copula to obtain a new copula with additional
features. For instance, they explored the multivariate probability integral transform and
its application in distorting existing copula models to obtain new copula models.

For instance in Morillas [2005] they study under what conditions the following distortion
copula transform produces a valid copula where g(·) is assumed to be a strictly increasing
and continous function from [0, 1] to [0, 1] such that

Cg (u1, . . . , ud) = g−1 (C (g(u1), . . . , g(ud))) (5.85)

is a valid distorted copula.

Definition 35. Distorted Copula Define the function g to be some distortion function,
such that g : [0, 1] 7→ [0, 1] and is defined according to

g(t) = exp[−ϕ(t)], (5.86)

where ϕ is for instance an Archimedean generator function. Now denoted C as a based
copula that is to be distorted to create a new copula, then

Cg(u1, ..., ud) = g−1 (C(g(u1), , g(ud))) (5.87)

is a copula known as the distortion of C.
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Several examples of bivariate and multivariate distorted copula models have begun to be
studied. Though the current emphasis has focused on their specification and little is know
about their properties such as tail dependence features and other concordance measure
features they may exhibit.

Here we consider two examples based on ideas developed in Charpentier et al. [2014]. We
begin with a bivariate archimax copula given by a parameteric model of the distributional
form

Cφ,A (u1, u2) = ϕ

[{
ϕ−1 (u1) + ϕ−1 (u2)

}
A
{

ϕ−1 (u1)

ϕ−1 (u1) + ϕ−1 (u2)

}]
(5.88)

where A : [0, 1]→ [1/2, 1] and ϕ : [0,∞)→ [0, 1] such that

1. A is convex and for all t ∈ [0, 1] one has max(t, 1− t) ≤ A(t) ≤ 1.

2. ϕ is convex, decreasing and such that ϕ (0) = 1 and limx→∞ ϕ (x) = 0 with convention
that ϕ−1 (0) = inf {x ≥ 0 : ϕ (x) = 0}.

Two special cases arise from this model:

• If A = 1 one recovers the well known family of Archimedean copula dependence
models.

• If ϕ (t) = exp(−t) then one recovers the extreme-value copula.

As in Capéraà et al. [2000] we utilise in this study the choice of function

A(t) =
{
t1/α + (1− t)1/α

}α
Aα

{
t1/α

t1/α + (1− t)1/α

}
. (5.89)

where A(·) is the Pickands EVT dependence function given by

A(t) = 1−min {βt, α(1− t)} (5.90)

for some parameters α, β ∈ [0, 1].

Then we consider a d-variate distortion copula in the Archimax family, examples of
such extensions include the works of Bacigál & Mesiar [2012], Mesiar & Jágr [2013] and
Charpentier et al. [2014]. One possible version of such a d-dimensional Archimax copula
is defined through the use of a distortion function based on the stable tail function that
must satisfy certain properties described in detail in Charpentier et al. [2014]. In general
a multivariate stable tail function is obtained via the multivariate Generalized Extreme
Value distribution G via

− logG(x1, . . . , xd) = µ([0,∞)[0,x]), ∀x ∈ Rd+ (5.91)

such that G is the limiting distribution (max domain of attraction) of the normalized
component wise maxima of

Xn:n = (max {X1,i} , . . . ,max {Xd,i}) (5.92)

and then the stable tail function is obtained via measure µ or distribution G according to
the following

l(x1, . . . , xd) = µ([0,∞)[0,x−1]), ∀x ∈ Rd+ (5.93)

− logG(x1, . . . , xd) = l (− logG1(x1), . . . ,− logGd(xd)) (5.94)
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Definition 36. Stable Tail Function l A function l : [0,∞)d 7→ [0,∞) is a d-dimensional
stable tail dependence function if and only if it satisfies the following properties:

1. function l is homogeneous of degree λ = 1 which means that

l(λx1, . . . , λxd) = λl(x1, . . . , xd), ∀λ ∈ [0,∞). (5.95)

2. The function l must produce for all x1, . . . , xd ∈ [0,∞) that

Gl(x1, . . . , xd) = [max {0, 1− l(x1, . . . , xd)}]d−1 (5.96)

defines a d-dimensional survival function with B(1, d− 1) margins.

An example of such a stable tail function involves the transformation of a d-variate
extreme value copula CEV T given by

l(x1, x2, . . . , xd) = − ln
{
CEV T (exp(−x1), exp(−x2), . . . , exp(−xd))

}
(5.97)

and we have for instance the Gumbel extreme-value copula (symmetric logistic model)
producing for parameter θ ≥ 1 the function

lθ(x1, x2, . . . , xd) =
(
xθ1 + . . .+ xθd

)1/θ
. (5.98)

One can then combine this with an Archimedean generator ϕ(x) of an Archimedean
copula to produce the resulting family of d-dimensional Archimax copula, given by

Cϕ,l(u1, . . . , ud)− ϕ ◦ l
(
ϕ−1(u1), ϕ−1(u2), . . . , ϕ−1(ud)

)
. (5.99)

One can use this type of representation to develop the d-dimensional extension of the
bivariate example above, for instance using the Archimax copula structure of [Charpentier
et al., 2014, Corollary 6.3], which is defined as follows:

Cl∗,A∗ (u1, u2, . . . , ud) = exp

[
A∗ (t1, . . . , td−1)

d∑
i=1

ln(ui)

]
(5.100)

where A∗ is given by the function

A∗ = lα

(
t
1/α
1 , . . . , 1−

d−1∑
k=1

t
1/α
k

)
(5.101)

where tk = | ln(uk)|/
{∑d

i=1 ln(ui)
}

.

Case Study 1: in this study we demonstrate how one can utilise the copula mapping to study the
local affect of dependence induced in different regions of the state space, arising as
one varies the parameters of the Archimax copula model. In particular, we will con-
struct the local correlation surfaces obtained from the generalized Gaussian functional
copula mapping and plot a range of such surfaces over the support of the bivariate
Archimax copula as we vary the copula parameters θ. The results of this study are
demonstrated in Figure 5.12.
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Figure 5.12: Local Gaussian copula coefficients ρ(u1, u2) for a 2-D Archimax Copula with
Clayton generating function ϕ(x, θ) and Pickands function A(t). The parameters are θ =
1.7 and (a, b) = [(0, 0), (0.7, 0.3), (0.7, 0.7), (0.7, 0.95)]. Note that when (a, b) = (0, 0) then
the Archimax copula is equivalent to the Clayton one with the same θ parameter which is
equal to 1.7 in this specific example.

5.4 Conclusions

In this chapter we presented a numerical procedure to map any copula function to a
generalized local Gaussian copula function. This allows us to visualize a given copulas’
characteristics and better quantify the local correlation generated by the copula function.
In fact copulas’ parametric expressions are neither intuitive nor do they reflect the depen-
dence structure that they create. The proposed copula mapping is entirely based on tensor
algebra and is part of a new modelling framework we also introduced consisting in mim-
icking multidimensional correlated diffusions by means of continuous time Markov chains.
We demonstrated the simplicity and intuition behind the copula mapping through illus-
trative examples and all the copula functions mapping results are exact up to the tensor
space local discretization error and the error due to approximating the generator matrix
exponential.
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Chapter 6

Evaluating concordance measures
by tensor approximation

There is now an increasingly large number of proposed concordance measures available
to capture, measure and quantify different notions of dependence in stochastic processes.
However, evaluation of concordance measures to quantify such types of dependence for
different copula models can be challenging. In this work, we propose a class of new meth-
ods that involves a highly accurate and computationally efficient procedure to evaluate
concordance measures for a given copula, applicable even when sampling from the copula
is not easily achieved. In addition, this then allows us to reconstruct maps of concordance
measures locally in all regions of the state space for any range of copula parameters. We
believe this technique will be a valuable tool for practitioners to understand better the
behaviour of copula models and associated concordance measures expressed in terms of
these copula models.

6.1 Introduction

In Chapters 4 and 5 we developed a novel class of functional copula representations for
dependence that can be viewed as a reinterpretation of Sklars’ well known copula repre-
sentation theorem of multivariate dependence. This is achieved in a manner that allows
one to characterize any copula dependence function via a unique map to a generalized
Gaussian copula function. This unique mapping is obtained through the quantification of
local dependence properties of the reference copula model over a discretized representation.
Furthermore, we also demonstrated that such a representation is proven to be exact as the
discretization interval of the target copulas support diminishes, with known convergence
rate as studied in detail in 4.3.4. In this chapter we extend and develop this represen-
tation for the purpose of calculating and evaluation concordance measures, which can be
written as functionals of copula models. These can include concepts such as multivari-
ate upper negative (positive) dependence, lower negative (positive) dependence, negative
(positive) dependence; multivariate negative (positive) quadrant dependence; multivariate
association, co-monotinicity, stochastic ordering; regression dependence negative (positive)
and extreme dependence, asymptotic tail dependence and intermediate tail dependence; as
well as other concepts such as directional dependence, see Joe [1990, 1997]; Nelsen [2002].
Measuring the dependence between random variables has long been of interest to statisti-
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cians and practitioners alike. A history of the development of dependency measures can
be found in Mari & Kotz [2001]. One should realise that in general, the dependence struc-
ture between two random variables can only be captured in full by their joint probability
distribution, and thus any scalar quantity extracted from this structure must be viewed as
a representation of some feature of the dependence.

Scarsini [1984] gives the following intuitive definition of dependence:

Dependence is a matter of association between X and Y along any measurable
function, i.e. the more X and Y tend to cluster around the graph of a function,
either y = f(x) or x = g(y), the more they are dependent.

The choice of dependence measure is influenced by the type of dependence one seeks
to study, such as lower left quadrant, upper right quadrant, etc. However, in nontrivial
multivariate distributions, it is not possible to capture all of the possible combinations of
dependence patterns within a single dependence measure. For this reason there is now an
increasingly large number of proposed concordance measures available to capture, measure
and quantify different notions of dependence in stochastic processes. The study of such
measures of dependence began in pairwise constructions in the works of Cambanis et al.
[1976], Tchen [1980] and Yanagimoto & Okamoto [1969]. Where they demonstrated that
an ordering on discrete bivariate distributions, which formalized the notion of concordance,
was shown to be equivalent to stochastic ordering of distribution functions with identical
marginals. These notions were then generalised in multivariate settings by for instance Joe
[1990] and Scarsini [1984] with the latter introducing a formal axiomatic representation of
multivariate concordance measures given in Proposition 14. A detailed overview of these
concepts is provided in Cruz et al. [2015a].

Definition 37. Consider the following basic definitions for permutation and symmetry,
used throughout.

• Symmetries: a symmetry of [0, 1]d is a one-to-one, onto map φ : [0, 1]d 7→ [0, 1]d of
form φ(x1, . . . , xd) = (u1, . . . , ud) where for each i one has ui = xki or 1 − xki and
where (k1, . . . , kd) is a permutation of (1, . . . , n);

• Permutation: the map φ is a permutation if for each i one has ui = xki ;

• Reflection: the map φ is a reflection if for each i one has ui = xi or ui = 1− xi.

– Elementary reflections: an elementary reflection of the i-th component, de-
noted σi is given by

σi(x1, . . . , xd) = (x1, . . . , xi−1, 1− xi, xi+1, . . . , xd)

• Symmetry Length: the length of a symmetry is denoted by |φ| and corresponds
to the number elementary reflections required to obtain it.

We can now proceed to provide the general form of axioms for specification of a multi-
variate concordance measure as detailed in Scarsini [1984].

Proposition 14 (Multivariate Concordance Measures). A general concordance measures
κ is a function attaching to all d-tuples of continuous r.v.’s (X1, X2, . . . , Xd) defined on a
common probability space, when d ≥ 2, a real number κ (X1, X2, . . . , Xd) satisfying:
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• Normalization: κ (X1, X2, . . . , Xd) = 1 if each Xi is a.s. an increasing function of
every other Xj and κ (X1, X2, . . . , Xd) = 0 if X1, . . . , Xd are independent;

• Monotonicity: If X1, . . . , Xd is less concordent than Y1, . . . , Yd then
κ (X1, X2, . . . , Xd) < κ (Y1, Y2, . . . , Yd);

• Continuity: If Fk is the joint distribution of (Xk1, . . . , Xkd) and F the distribution
of (X1, . . . , Xd) and one has convergence in the sequence Fk → F as k → ∞, then
κ (Xk1, . . . , Xkd)→ κ (X1, . . . , Xd);

• Permutation Invariance: If (i1, . . . , id) is a permutation of (1, . . . , d) then
κ (Xi1 , . . . , Xid) = κ (X1, . . . , Xn);

• Duality: κ (−X1, . . . ,−Xn) = κ (X1, . . . , Xn);

• Reflection Symmetry:
∑

ε1,...,εd=±1 κ (ε1X1, . . . , εdXd) = 0 where the sum is over

2d vectors of the form (ε1X1, . . . , εdXd) with εi ∈ {−1, 1};

• Transition: There exists a sequence {rd} for d ≥ 2 such that every d-tuple of
continuous r.v.’s (X1, . . . , Xd) satisfies

rd−1κ (X2, . . . , Xd) = κ (X1, . . . , Xd) + κ (−X1, X2, . . . , Xd)

In addition, there is an increasing number of copula models aimed at modelling de-
pendence and in many cases there is no clear and intuitive correspondence between the
magnitude of a copula’s parameters and the dependence structure they create. Further-
more the form of concordance and the strength of that concordance measure in different
dimensions as a function of the value of the parameters of the copula model. We view the
work created in this manuscript as a useful class of representations and tools that can help
study such features in non-trivial copula models.

In Taylor [2007] they provided a representation of the axioms of a concordance mea-
sure from Scarsini [1984] early work, rewritten explicitly in terms of copula models. This
provides a link between these measures of dependence and the copula model, however a
good understanding of the strength or significance of a concordance measure as a function
of the copula model parameters is not well understood and difficult to study at present.
The main reason for this is that often the evaluation of these concordance measures for
different copula models can be very challenging and typically does not admit simple closed
form solutions except in some special well known cases. There are many copula families in
which a framework such as the one we propose in this manuscript will facilitate efficient and
computationally accurate methods to gain an understanding of the relationships between
different notions of concordance and the copula models parameters.

Therefore, the aim of this chapter is to develop a class of numerical approximations
that practitioners can utilise to study locally in the state space of the multivariate random
vector two important features: firstly the effects of parametric specifications of dependence
in the form of different copula models and their local induced concordance structures;
and secondly the role of each parameter in the copula model specifications in varying the
concordance measure strength locally in the state space. This should be achievable for
any copula model and any desired concordance measure. To achieve these goals we extend
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the class of methods developed in Chapters 4 and 5 by developing a highly accurate and
computationally efficient procedure to evaluate concordance measures for a given copula.

In Chapter 4 a theoretical framework for tensor representation is developed and the-
oretical convergence properties are proven along with computational rates of convergence
and complexity. Then in Chapter 5 we proposed a generic model for approximating any
target copula function which will allow us to develop a clear and efficient characterization
of their properties locally in any desired region of the state space (support of the target
copula model). This characterization admits a accurate reconstruction of a given copula
that we will demonstrate in this chapter allows one to then utilise to accurately calculate a
wide range of concordance measures of dependence both locally and globally in the support
of the given target copula model.

We recall that a copula is simply a multivariate probability distribution for which the
marginal probability distribution of each variable is uniform Nelsen [1999]. Copulas are
often used in high-dimensional statistical applications as they allow one to separate out the
modelling and estimation of the distribution of dependent random variables by estimating
first the marginals and then capturing the dependence structure through estimation of a
copula function.

Outline of Contributions

In section 6.2 we will investigate further the properties of the local Gaussian copula c(n)

developed in the previous Chapter 5 which make our proposed methodology to mimic
approximated target copulas extremely appealing when dealing with calculations involving
copulas and specifically the concordance measures.

In this chapter we extend these results to utilise the copula model decompositions to
evaluate efficiently and locally in the state space of the random vector a wide range of mul-
tivariate concordance measures of dependence. To achieve this in Section 6.3 we present
the relationship between concordance measures and copula models and then introduce our
tensor algebraic approximations for a range of multivariate concordance measures for dif-
ferent copula families. This allows us to study these concordance measures as a function of
the copula parameters to better understand how the copula parameters induce dependence
and what type of dependence is present for these copula models. This is far from trivial
to understand in the grouped, generalized and skewed Student’s t-copula cases and the
Archimax cases. We finish with illustrations of approximations of concordance measures
for multivariate rank correlations, directional dependences, intermediate tail dependence
and asymptotic tail dependence measures.

6.2 Properties of the Approximated Local Gaussian Copula
c(n)

In this section we give another explanation to the way we construct the copula approxi-
mation. We prove that the approximating function c(n) is interpretable the approximating
density or Radon-Nikodym derivative of the approximated measure P (n) with respect to
P (n)⊥, where the notation for the approximated density P (n) and approximated uncorre-
lated density P (n)⊥ is as described in Section 5.2.2.
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Remark 9 (Orthogonality of the tensor basis). By construction the approximated local
copula density function c(n) is defined on a orthogonal basis, which is the basis resulting
from the tensor product of the constituent operators. In fact each operator matrix used in
its calculation is orthogonal by construction, see Appendix 5.1.3. Furthermore we construct
the copula over the support X which may be represented as union of disjoint subsets {Bj},
i.e. X =

⊗d
i=1X i =

⋃n
j=1Bj, where each set Bj as coordinate vector point x in the space

X. If we then set B0 = {x = (x
(1)
0 , . . . , x

(d)
0 )}, B1 = {x = (x

(1)
1 , . . . , x

(d)
0 )}, . . . , Bn =

{x = (x
(1)
n1 , . . . , x

(d)
nd )}, therefore creating a countable and ordered sequence of sets spanning

the whole discretized support X then it is straightforward to obtain the copula distribution
functions as the cumulative sum over all the sets, i.e.

C(n)(Bz) =
∑
j≤z

c(n)(Bj) (6.1)

In order to prove the above properties we first need to remind some basic definitions of the
density and conditional distribution of a copula.

Definition 38. Let F1, . . . , Fd be continuous marginal distributions. Let C be a copula
distribution

C(u) = F (F−1
1 (u1), . . . , F−1

d (ud)) (6.2)

When the copula distribution C and the joint distribution F are both differentiable, the joint
density function P satisfies

c(u) =
P (F−1

1 (u1), . . . , F−1
d (ud))

P1(F−1
1 (u1)) · · ·PdF−1

d (ud))
= c(F1(x1), . . . , Fd(xd)) (6.3)

with c denoting the copula density which is linked to the distribution C by

c(u) =
∂d

∂u1 . . . dud
C(u). (6.4)

Therefore the copula density is the ratio of the joint density P (x), x ∈ Rd and the
density under independence which is equivalent to the product of the marginal density
function P1(x1) · · ·Pd(xd). It is therefore possible to interpret the copula as the adjustment
that we need to make to convert the independence pdf into the joint pdf.

However this adjustment can also have another interpretation: a Radon-Nikodym (R-
N) derivative. In our specific case it will be a R-N derivative for the discrete measure P (n)

constructed through the local Gaussian CTMC approximation.
If in eq. (6.3) we set P (u) = P (F−1

1 (u1), . . . , F−1
d (ud)) and P⊥(u) = P1(F−1

1 (u1)) · · ·PdF−1
d (ud))

for convenience of notation then

P (u) = c(u)P⊥(u). (6.5)

Let us give some more insights about the interpretation of eq. (6.5) in a more general
mathematical setting and the way the copula c(n)(u) is constructed in our proposed model.

For this purpose X = (X,F) is a measurable space, and we shall refer to the elements of
F simply as measurable sets omitting the σ-algebra F . All subsets of X and all functions
on X appearing below are measurable unless otherwise indicated.
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Definition 39 (Radon-Nikodym Theorem). Let µ and ν be two continuous measures on
X, with ν is σ-finite and µ absolutely continuous with respect to ν. Then there exists a
positive function such that

µ(B) =

∫
B
fdν (6.6)

for all subsets B of X. The function f is unique in the sense that if µ(B) =
∫
B gdν for all

B then f = g. The function f is called the Radon-Nikodym derivative or density of µ with
respect to ν and is denoted by dµ

dν .

Note that a necessary and sufficient condition that the Radon-Nikodym derivative f be
integrable is that µ is σ-finite. If we restrict the Radon-Nikodym derivative f to the space
(X,G) with G ∈ F a σ-subalgebra, the Radon-Nikodym derivative is

dµ

dν
|G =

1

P (G)

∫
G
fdµ = E[f |G]. (6.7)

We also remind the law of total expectation which plays an import role in the way we
construct the approximated copula density.

Definition 40. If X is a random variable whose expected value is E[X], and if {Bj},
i = 1, 2, . . . is a finite or countable partition of the sample space, then

E[X] =
∑
j

E[X|Bj ]P (Bj) (6.8)

We are now in a position to explain what is the relationship between a R-N derivative
λ and all its restrictions gj = E[λ|Bj ] over disjoint sets {Bj}, i = 1, 2, . . ., and we do this
in the discrete settings of the copula c(n).

Proposition 15 (Construction of the Approximated Copula cn). The copula c(n) : U →
[0,∞) in eq. (6.5) is the approximating density or R-N derivative of the approximated
measure P (n) with respect to P (n)⊥. Furthermore c(n) it is the results of the averaging of
R-N gj = E[λ|Bj ] which are the restriction of c(n) on disjoint set Bj spanning X =

⊗
iX i.

Proof. From eq. (6.5) we have that the copula density c(n) is interpretable as R-N derivative
of the approximated correlated measure P (n) with respect to the absolutely continuous
measure P (n)⊥ for all sets in U. Equivalently for the approximated copula c(n) we have that
P (n)(A) = E[1Ac

(n)] for A ∈ X . We then observe that in our framework the density support
X =

⋃n
j=1Bj can be represented as the union of countable disjoint sets Bj . Therefore we

can apply the law of total expectation to the discrete R-N derivative and obtain:

E[1Ac
(n)] = E

[∑
j

E[c(n)1Bj ]

P (Bj)
1Bj

]
=
∑
j

E[c(n)1Bj ] = gjE[1Bj ] (6.9)

being the variable gj is measurable with respect to Bj .

In our proposed framework we approximate the first two moments of each conditional
variable gj = E[λ|Bj ] with the first two moments of a conditional normal variable. Details
of the local construction of each approximated conditional variable are in Appendix 5.1.3.
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Using eq. (6.9) we can calculate a local conditional value, which is Gaussian in our case,
matching the local target copula value, and this is done by means of the local minimizer
of eq. (5.31). The existence of the local minimizer is explained by the above properties of
the R-N derivative. The fact that in this setting always exists a bounded R-N derivative
linking the two densities, and the approximation of the restricted R-N derivative to a
conditional Gaussian density, guarantees the existence of a local Gaussian copula value
and its corresponding correlation ρ(u).

6.2.1 Direct measure of directional dependence

In this section we show how our framework gives immediate measure of directional depen-
dence. At this purpose we recall some basic definitions.

Definition 41. [Directional Dependence] The pair (U1, U2) is directionally dependent in
joint behaviour if

E[U1|U2 = w] 6= E[U2|U1 = w] (6.10)

Directional dependence can be expressed in terms of regression using a copula distribution
function, see Sungur [2005].

Definition 42 (Directional Dependence through regression, see Sungur [2005]). Let (U1, U2)
denote a pair of random variables whose marginal distributions have uniform distribution
on [0, 1] and the joint distribution is a copula function C(u1, u2). Let Cu2(u1) denote the
conditional distribution of U1 given U2 = ū

Cu2(u1) = P (U1 ≤ u1|U2 = ū) =
∂C(u1, u2)

∂u2
. (6.11)

The copula regression function of U2 on U1 is the conditional expectation of U1 given
U2 = ū, which can be expressed by the copula as

rU1|U2
(ū) := E[U1|U2 = ū] = 1−

∫ 1

0
Cu2(u1)du1. (6.12)

The directional dependence from U2 to U1 is defined by using the copula regression function
on U1 as

ρ2
U2→U1

=
V ar(rU1|U2

(ū))

V ar(U1)
=

E[(rU1|U2
(ū)− 0.5)2]

1/12
= 12E[(rU1|U2

(ū))2]− 3 (6.13)

which can be interpreted as the proportion of total variance of U1 that has been explained
by the copula regression function rU1|U2

(ū).

We can immediately calculate eq. (6.12) in our framework which can be rewritten in terms
of approximated local Gaussian copula as

r
(n)
U1|U2

(ū) = 1−
∑
i

C
(n)

u(2)
(u1
i )∆u

(1). (6.14)

where

C
(n)

u
(2)
j

(u
(1)
i ) =

1

∆u
(2)
j

(
C(n)(u

(1)
i , u

(2)
j + ∆u

(2)
j )− C(n)(u

(1)
i , u

(2)
j )
)

(6.15)

with Uk = {u(k)
1 , u

(k)
2 , . . . , u

(k)
nk } the discretized support and ∆u

(k)
i = u

(k)
i+1−u

(k)
i . Note that

each support grid Uk is not uniformly spaced.
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6.3 Understanding Relationships between Copula Parame-
ter(s) and Concordance Measures

In this section we discuss the relationship between concordance measures of dependence
and the copula representations presented in the previous section. In particular we illus-
trate how to utilise such copula representations to develop a clearer understanding of the
relationship between a copula parameter and different measures of concordance which can
be generally applied to any form of dependence model captured by a copula. The choice of
dependence measure or concordance measure is influenced by the type of dependence one
seeks to study, such as: multivariate upper negative (positive) dependence, lower negative
(positive) dependence and negative (positive) dependence; multivariate negative and posi-
tive quadrant dependence; multivariate association, co-monotonicity and stochastic order-
ing; positive and negative regression dependence; and extreme dependence, tail dependence
and intermediate tail dependence. We start by discussing recent relationships between gen-
eral notions of concordance measures between random variables and their characterization
through copula parametric models. We recall first a general definition of a concordance
measure for a random vector.

Definition 43 (Concordance Measures for Random Vectors). A pair of random variables
are concordant if ‘large’ values of one tend to be associated with ‘large’ values of the other
and ‘small’ values of one with ‘small’ values of the other. Analogous definitions of discor-
dance are available in reverse directions.

There are numerous ways of mathematically trying to quantify this statement, so conse-
quently, many measures of concordance are available. Such a definition, offers the intuition
behind the need for measuring and quantifying concordance. However, from a statisti-
cal perspective a more formal understanding of concordance measures was mathematically
stated with regard to copula models in the recent works of Taylor [2007]. This selection
of axioms that are desirable for a concordance measure to satisfy are based on the copula
characterization of the earlier framework originally developed by Scarsini [1984] and pre-
sented in Proposition 14. In Taylor [2007] the following axioms for general concordance
measures κ specified generically via copula C are detailed below in Proposition 16.

Proposition 16 (Multivariate Concordance Measures via Copula). Consider a sequence
of maps κd : Cop(d) 7→ R and a sequence of numbers {rd}, such that if A,B,C and Cm
are d-copulas and n ≥ 2 then:

• Normalization:κ
(
Md
)

= 1 and κ
(
Πd
)

= 0.

• Monotonicity: If A <st B and A ≤st B then κd (A) ≤ κd (B)

• Continuity: If Cm → C, then κd (Cm)→ κd (C) as m→∞.

• Permutation Invariance: If (i1, . . . , id) is a permutation of (1, . . . , d) then
κ(c(ui1 , . . . , uid)) = κ(c(u1, . . . , ud).

• Duality: κd(c(1− u1, . . . , 1− ud) = κd(c(u1, . . . , ud))

• Reflection Symmetry:
∑

Ψ∈Rd κd
(
CΨ
)

= 0, where Ψ is a reflection, Ψ ∈ Rd is an
element of the subgroup of reflections in the group of symmetries under composition
S([0, 1]d).
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• Transition:

rnκd (C) = κn+1 (E) + κn+1 (E(1− u1, u2, . . . , ud))

whenever E is an (d+ 1)-copula s.t. C(u1, . . . , ud) = E(1, u1, . . . , ud).

Although we know these general relationships between the axioms that describe con-
cordance and dependence structures in general and we now know them in general terms
as specified by a statistical model in the form of a copula, it still remains a real chal-
lenge to evaluate and understand these relationships with regard to model parameters for
a given copula model. We aim to address this challenge using the representations of copula
developed previously in the chapter.

We note that one can also state the following theorem regarding the properties of
concordance measures that satisfy these axioms, see details in Taylor [2007].

Theorem 16 (Properties of Concordance Measures Satisfying Proposition 16).
Consider the d-copula that is permutation symmetric ie. Cζ = C for all permuations ζ of
[0, 1]d. Then for all measures of concordance κ and for all symmetries Ψ and ζ of [0, 1]d

one has

κd(C
Ψ) = κd(C

ζ) (6.16)

whenever |Ψ| = |ζ| or |Ψ|+ |ζ| = d

Recall: symmetry length | · | corresponds to the number elementary reflections required
to obtain it.

Corollary 1. For all d ≥ 2 and for all symmetries Ψ and ζ of [0, 1]d such that |Ψ| = |ζ|
or |Ψ|+ |ζ| = d one has

κd(M
Ψ) = κd(M

ζ). (6.17)

where M is the d-Frechet-Hoffding Upper Bound copula under permutation.

With regard to copula models there are numerous measures one can consider that sat-
isfy all or some subset of such axioms. Typically, the evaluation of these concordance
measures and the understanding of the relationship between these concordance measures
and the copula parameter(s) is non-trivial and changes as a function of both dimension and
copula parameter(s) value highly non-linearly. In this section we first discuss some impor-
tant examples of concordance measures and then we detail how the framework developed
previously may be utilise to provide a natural framework for evaluation of such measures,
thus providing the necessary understanding of the relationships between the copula family,
copula parameter(s) and the behaviour of the concordance measure.

6.3.1 Functional Copula Mapping for Approximation of General Multi-
variate Concordance Measures

Arguably the most widely known and utilised measure of dependence, Pearson’s Product
Moment Correlation Coefficient, was developed by Karl Pearson, see Pearson [1896], build-
ing on Sir Francis Galton’s approach using the median and semi-interquartile range, see
Galton [1894]. Pearson’s correlation coefficient is a measure of how well the two random
variables can be described by a linear function. The other popular measures often used
in practice when considering notions of pairwise dependence are Spearman’s ρ (Spearman
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126 6. Evaluating concordance measures by tensor approximation

[1904]), Kendall’s τ (Kendall [1938]) and Blomqvist’s β (Blomqvist [1950]). In the case of
Spearman’s ρ it is a measure that assesses how well the dependence between two random
variables can be described by a monotonic function. As such it is equivalent to the Pear-
son’s correlation coefficient between the ranked variables. In addition, one can consider
Spearman’s rho and Kendall’s τ each as a simple scalar measures of dependence that de-
pend on the copula of two random variables but not on their marginal distributions. As
noted in Fredricks & Nelsen [2007], one can consider Spearman’s ρ as forming a measure
of average quadrant dependence, while Kendall’s τ is a measure of average likelihood ratio
dependence. In the case of Blomqvist’s β the generalized form is discussed in any dimen-
sion in Joe [1990], Dolati & Úbeda-Flores [2006], and Nelsen [2002] where it is shown to
be expressed directly in terms of a copula distribution function. However, unlike Kendalls
τ and Spearmans ρ which are functionals integrated against the copula distribution, the
Blomqvists β is simple to evaluate given the copula distribution function. It simply re-
quires the evaluation of the copula distribution at a point ū = [1/2, . . . , 1/2]. We therefore
focus below on the evaluation of functionals with regard to the constructed copula and
demonstrate how to evaluate these efficiently.

First we observe the following results for Spearman’s and Kendall’s Rank correlations,
both can be specified directly in terms of a copula distribution in both the bivariate and
multivariate settings. We begin with the specification of multivariate Spearman rank.

Multivariate Spearman Rank Correlation Approximations

Definition 44 (Spearman’s Rank Correlation via Copula). The bivariate Spearman’s Rank
Correlation can be expressed explicitly via the bivariate copula C according to

ρ = 12

∫
[0,1]

∫
[0,1]

u1u2dC (u1, u2)− 3. (6.18)

In addition, a general multivariate extension of Spearman’s Rank Correlation is devel-
oped for d-dimensional loss random vectors and given below, see details in Nelsen [2002].

Definition 45 (Multivariate Spearman’s Rho via Copula). Consider the d-copula given
by C, then Spearman’s Rho concordance measure of dependence is given by

ρ(C) = h(d)
[
2d
∫

[0,1]d
C(u)du− 1

]
= h(d)

[
2d
∫

[0,1]d
Π(u)dC(u)− 1

]
(6.19)

where h(d) = d+1
2d−(d+1)

is the normalizing factor derived such that the maximum correlation

is equal to 1.

Definition 46 (Multivariate Generalized Spearman’s Rho via Copula). Consider the d-
copula given by C and the permuted copula Cσ, then the generalized Spearman’s Rho con-
cordance measure of dependence is given according to

ρd(C) = αd

(∫
[0,1]d

(C + Cσ) dΠd − 1

2d−1

)
(6.20)

where one has αd = (d+1)2d−1

2d−(d+1)
and Πd is the d-Independence Copula.
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From this definition of the generalized Spearman’s Rho rank correlation, we can also
define the local as well as the constrained versions of the state-space rank correlation.

Definition 47 (Local and Constrained Multivariate Generalized Spearman’s Rho via Cop-
ula). Consider the d-copula given by C and the permuted copula Cσ, then the local gener-
alized Spearman’s Rho concordance measure of dependence for vectors u localized in some
sub-space u ∈ Ω ⊂ [0, 1]d is given according to

ρd(C; Ω) = αd

(∫
Ω

(C + Cσ) dΠd − 1

2d−1

)
(6.21)

where one has αd = (d+1)2d−1

2d−(d+1)
and Πd is the d-Independence Copula. The constrained

version of the Spearman’s Rho is then given for vectors u constrained in some sub-space
u ∈ Ω ⊂ [0, 1]d according to

ρ̃d(C; Ω) = αd

(∫
Ω

(
C̃ + C̃σ

)
dΠ̃d − 1

2d−1

)
(6.22)

where one has αd = (d+1)2d−1

2d−(d+1)
and Π̃d is the d-Independence Copula. Where the C̃ notation

refers to the copula distribution given after renormalization by the truncation according to

C̃(B; Ω) =

∫
B

c(u)

C (Ω)
du (6.23)

for all sets B ∈ Ω.

An example where such a correlation measure is of interest arises when one considers
intermediate and extremal dependence measures, such as the following illustrative bivariate
examples where given a pair of uniform variable such that (U1, U2) ∼ C (u1, u2) and one
wishes to evaluate the truncated correlation or restricted correlations given for instance by

E [U1U2|U1 > u1, U2 > u2] =

∫
[0,1]

∫
[0,1]

u1u2dC(u1u2|U1 > u1, U2 > u2)

E[U1U2|U1 ≤ u1, U2 > u2] =

∫
[0,1]

∫
[0,1]

u1u2dC(u1u2|U1 ≤ u1, U2 > u2).

(6.24)

The important observation is that in general it can be very difficult to evaluate such quanti-
ties even using Monte Carlo procedures, as sampling the conditional or constrained copulas
is a great challenge in many families of copula. In the the following we specify an efficient
approximation based on the general functional copula mapping developed previously.

Proposition 17 (Approximating Local and Constrained Multivariate Generalized Spear-
man’s Rho via Functional Copula Mappings). Consider the d-copula given by C which is
discretely approximated by the functional copula mapping given by C(n)(u) for all vectors
u ∈ Uk, k = 1, . . . , d, and C(n)σ represents the functional copula mapping of the permuted
copula C obtained after permuting the base mimicking local Gaussian copula mapping C(n).
Then one has the functional approximations to the localized generalized Spearman’s Rho
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128 6. Evaluating concordance measures by tensor approximation

concordance measure of dependence in some sub-space Ω ⊆ U ⊂ [0, 1]d is given according
to

ρ
(n)
d (C(n); Ω)

= αd
∑
u∈Ω

[
C(n)(u) + C(n)σ(u)

] d∏
i=1

(u− u′)− αd
2d−1

(6.25)

where one has αd = (d+1)2d−1

2d−(d+1)
and u′ ∈ Ω is the neighbour of u.

The constrained version of the Spearman’s Rho is then given for vectors u ∈ Ω̄ ⊆ U,
therefore for vectors in a constrained some sub-space Ω̄ ⊂ [0, 1]d according to

ρ̃
(n)
d (C; Ω̄)

= αd
∑
u∈Ω̄

[
C̃(n)(u) + C̃(n)σ(u)

] 1

Card
{
U ∩ Ω̄

} d∏
i=1

(u− u′)− αd
2d−1

(6.26)

where one has αd = (d+1)2d−1

2d−(d+1)
and where the C̃(n) notation refers to the functional copula

mapping distribution given after renormalization by the truncation according to

C̃(n)(B; Ω̄) =
∑

u∈Ω̄∩B

c(n)(u)∑
u∈Ω̄ c

(n)(u)
(6.27)

for all sets B ∈ Ω̄.

Understanding Multivariate Spearman’s Rank Correlations in Copula Param-
eter Space

We illustrate the approximation of the multivariate form of Spearman’s rank correlation for
a range of different copula models: skewed Student’s t-copula; Archimax; and the Clayton
copula member of the Archimedean class. Note, we adopt identical parameterizations for
these copula models as detailed in the previous Chapter 5. Furthermore, the accuracy of
the reconstruction via the mimicking local Gaussian copula mapping for a general class of
copula is detailed in Section 5.3.

The first study we illustrate is to demonstrate the accuracy of our approximation method
for evaluation of multivariate Spearman’s rank correlation. To achieve this we consider one
of the few cases which involves a non-trivial copula model that admits an explicit closed
form relationship between the copula parameter and Spearman’s rank correlation. This is
the 2-dimensional Archimedean copula with the Clayton generator function. We illustrate
below in Figure 6.1 the exact Spearman’s Rho rank correlation as a function of θ the
Clayton copula parameter and we plot our approximation for a range of copula parameter
values as crosses. The local Gaussian copula distribution C(n) mimicking the parametric
Clayton copula is obtained through the mapping of Proposition 11 on a unit square U =
U1 ⊗U2, with n1 = n2 = 200 discretization points. The approximated Spearman’s Rho

ρ
(n)
d (C(n); U) is then computed following proposition 17, where the distribution C(n) is

integrated over the set U. The resulting approximated correlation measure is compared
with the closed form and it proves to be very accurate.
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Figure 6.1: Spearman’s Rho for a Clayton copula with parameter α. Solid line is the exact
rank correlation as a function of the copula parameter α ranging from α = 0 to α = 30,

whilst the crosses represent the approximated Spearman’s rank correlation ρ
(n)
d (C(n); U)

obtained using the mapped local Gaussian copula distributions C(n). Several Clayton
copula mappings CClayton(α) 7→ C(n) have been calculated each one corresponding to a
specific value of the Clayton copula parameter α ∈ [0, 30]. The values of the approximated

rank correlation ρ
(n)
d (C(n); U) coefficients are in line with the closed form ones and they

exhibit also the desired asymptotic behaviour ρ
(n)
d → 1 as α� 1.

Next we illustrate how this decomposition can be used to study the behaviour of the
copula parameter(s) and the effect varying such parameters will have on the resulting
induced concordance measure of interest which in this case will first correspond to the
multivariate rank correlation.

In a 2-dimensional illustration, we first consider the skewed Student’s t-copula model.
We present the case of two different values of skew parameter γ ∈ {1, 2} and we demonstrate
the range of the multivariate Spearman’s rho rank correlation as a function of the degree
of freedom parameter ν and the correlation parameter ρ. Below in Figure 6.2 we display
the results of the mapping

Cskewed t-copula(u; {ρ, γ, ν})→ C(n) → ρ
(n)
d (C(n); U) for γ ∈ {1, 2} , ρ ∈ [−1, 1], ν ∈ [10, 30].

(6.28)
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130 6. Evaluating concordance measures by tensor approximation

Figure 6.2: Approximated Spearman’s Rho ρ
(n)
d (C(n); U) for a skewed t-copula with pa-

rameters ν, γ and correlation ρ.

Firstly, we learn from this analysis that as the skewness parameter γ increases, the
Spearman’s rank correlation surface as a function of correlation ρ and degree of freedom ν
goes from a concave to a convex relationship. Furthermore, this inversion of the correlation
surface in the parameter space of ρ and ν is more pronounced at extreme correlations for
small degrees of freedom ν, compared to the Gaussian like tail cases, which begin to arise
as ν increases. In addition, we see from this analysis that as the skewness parameter γ
increases, there is a tendency for the model to more readily attain the maximal Spearman’s
rank correlation of 1 uniformly in the correlation parameter ρ as the degree of freedom pa-
rameter ν increases. We conjecture from this analysis that as γ ↓ 0 the maximal attainable
Spearman’s rank correlation is strictly less than 1 and ordered in the maximal correlation
attained in the parameter ρ for any given ν.

In the next illustration, see Figure 6.3, we demonstrate how the multivariate Spearman
rank correlation behaves for the Archimax copula which we constructed using a Pickands
function parameterised by α and β parameters and a Clayton generator with parameter
θ. Even for the 2-dimensional illustration example we present, very little is known about
the Spearman’s rank correlation for such models as a function of the parameters in this
increasingly popular Archimax model. Again, we illustrate the behavior of the Spearman’s
rank correlation for different fixed values of the Clayton copula parameter, as we vary the
Pickands distortion function parameters.
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Figure 6.3: Approximated Spearman’s Rho ρ
(n)
d (C(n); U) for a Archimax copula with

Pickands parmaters (α, β) and Clayton parameter θ.

We observe from this study several interesting features. Firstly, there is a lower bound
for the Spearman’s rank correlation for these models which is uniform across the parameter
space for the Pickands distortion function parameters α and β. Secondly, this lower bound
increases in magnitude towards the maximum of 1 as the Clayton generator parameter θ
increases. Thirdly, we observe from this analysis that the maximal values of Spearman’s
rank correlation for a given combination of (α, β) lie on the line α = β for any give Clayton
generator parameter θ.

Multivariate Kendall’s Tau Rank Correlation Approximations

In terms of the multivariate extension of Kendall’s tau rank correlation, one can obtain
the copula representation of the concept of this rank correlation as follows. Consider
the concordance function κ quantifying the difference in probabilities of concordance and
discordance for bi-variate random vectors (X1, Y1) and (X2, Y2) which are specified as
follows:

• Assume X1 and X2 have common continuous marginal FX ;

• Assume Y1 and Y2 have common continuous marginal FY ;

• Assume (X1, Y1) and (X2, Y2) have different copula C1 and C2 respectively.

Then Nelsen [2002] proposed to consider an alternative copula specified concordance func-
tion κ for the equivalent Kendall’s τ in a copula form as measuring the probability of
concordance and discordance given by

κ = Pr [(X1 −X2)(Y1 − Y2) > 0]− Pr [(X1 −X2)(Y1 − Y2) < 0]

= 4

∫ 1

0

∫ 1

0
C2(u, v)dC1(u, v)− 1.

(6.29)
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132 6. Evaluating concordance measures by tensor approximation

Therefore, with this copula based specification, one can then define analogously the func-
tional copula mapping approximation for a given copula for this concordance-discordance
copula based Kendall’s τ measure, as well as the local and constrained variants.

Proposition 18 (Approximating the Generalized, Local and Constrained Multivariate
Kendall’s Tau via Functional Copula Mappings). Consider the d-copula given by C which
is discretely approximated by the functional copula mapping given by C(n)(u) for u ∈ U .
Hence, one obtains the functional copula approximation for the copula based Kendall’s τ
according to

κ(n)(C(n); U) = 4
∣∣(u1 − u′1)(u2, u

′
2)
∣∣ ∑

u∈U
C

(n1,n2)
2 (u1, u2)c

(n1,n2)
1 (u1, u2)− 1. (6.30)

In addition, the functional approximations to the localized Kendall’s τ for some sub-
space Ω ⊆ U ⊂ [0, 1]d is given according to

κ(n)(C(n); Ω) = 4
∣∣(u1 − u′1)(u2, u

′
2)
∣∣ ∑

u∈U∩Ω

C
(n1,n2)
2 (u1, u2)c

(n1,n2)
1 (u1, u2)− 1. (6.31)

The constrained version of the Kendall’s τ is then given for vectors u constrained in some
sub-space u ∈ Ω ⊂ [0, 1]d according to

κ̃(n)(C(n); Ω) = 4
∣∣(u1 − u′1)(u2, u

′
2)
∣∣ ∑

u∈U∩Ω

C̃
(n1,n2)
2 (u1, u2)c

(n1,n2)
1 (u1, u2)− 1. (6.32)

where C̃(n) notation refers to the functional copula mapping distribution given after nor-
malization by the truncation, as in eq. (6.27).

Understanding Multivariate Kendall’s Tau Rank Correlations in Copula Pa-
rameter Space

In this section we illustrate the approximation of the multivariate form of Kendall’s tau rank
correlation for a range of different copula models: skewed Student’s t-copula; Archimax;
and the Clayton copula member of the Archimedean class. Again, the first study we
illustrate is to demonstrate the accuracy of our approximation method for evaluation of
multivariate Kendall’s tau rank correlation. To achieve this we consider one of the few cases
which involves a non-trivial copula model that admits an explicit closed form relationship
between the copula parameter and Kendall’s tau rank correlation. This is again the model
given by the 2-dimensional Archimedean copula with the Clayton generator function. We
illustrate below in Figure 6.4 the exact Kendall’s Tau rank correlation as a function of θ the
Clayton copula parameter and we plot our approximation for a range of copula parameter
values as crosses.
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Figure 6.4: Kendall’s tau for a Clayton copula with parameter α. Solid line is the exact
rank correlation as a function of copula parameter θ whilst the crosses represent the ap-
proximated Kendall’s Tau rank correlation κ(n)(C(n); U) of eq. (6.30) we obtained via the
use of the functional copula mapping summing over the unit square U = U1 ⊗U2, with
n1 = n2 = 200 discretization points.

To further illustrate the accuracy of the approximation, see Figure 6.5, we construct via
the functional copula mapping approach we also include the approximation for the calcula-
tion of Kendall’s tau coefficient for a second Archimedean copula model given by the gen-
erator for the Frank copula, see Nelsen [1999] . The copula generator is ϕ(t) = − ln e−θt−1

eθ−1
,

where θ ∈ R\{0}. This gives the Frank family

Cθ(u, v) = −1

θ
ln
(

1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1

)
(6.33)

It can be shown that Kendall’s tau is

τθ = 1− 4
1−D1(θ)

θ
(6.34)

where Dk(x) is the Debye function given by Dk(x) = k
xk

∫ x
0

tk

et−1dt, for k > 0.
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134 6. Evaluating concordance measures by tensor approximation

Figure 6.5: Approximated Kendall’s tau rank correlation κ(n)(C(n); U) of eq. (6.30)
obtained via the use of the functional copula mapping summing over the unit square
U = U1 ⊗U2, with n1 = n2 = 200 discretization points for a Frank copula with parame-
ters θ ∈ [−200, 200].

Constructing the Generalized Gaussian Copula Functional Copula for Target
Frank Copula

The Frank copula has generator inverse equal to

− 1

θ
log
(

1 + exp(−t)(exp(−θ)− 1)
)
. (6.35)

The density in the d = 3 case therefore takes the form,

C(u1, u2, u3; θ) = −1

θ
log
(

1+
(exp(−θu1)− 1)(exp(−θu2)− 1)(exp(−θu3)− 1)

(exp(−t)− 1)2

)
, θ ∈ R\{0}.

(6.36)
We demonstrate how one can utilise the copula mapping applied to eq. (6.36) to study
the local effect of dependence induced in different regions of the state space, arising as one
varies the parameter θ of the Frank copula model. Specifically we calculate

E[U1 − E[U1], U1 − E[U1], U2 − E[U2]], (6.37)

and
E[U1 − E[U1], U2 − E[U2], U3 − E[U3]], (6.38)

which can be computed using

∑
u

c(n)(u)(u− û), for all u ∈ U =
3⊗

k=1

Uk, (6.39)

or equivalently∑
u(1)

∑
u(2)

∑
u(3)

c(n)(u(1), u(2), u(3))(u(1)−û, u(2)−û, u(3)−û), for all u = (u(1), u(2), u(3)) ∈ U, û =
1

2
.

(6.40)
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Figure 6.6: The left plot reports the approximated 3-dimensions Frank copula distribution
C : U =

⊗3
k=1 Uk → [0, 1] as per eq. (6.36), with parameter θ = 6 and n1 = n2 =

n3 = 20. The scatter plot on the right report the mapped local Gaussian correlation
ρ(u) ∈ [−1, 1], for all u ∈ U. Note that for a Frank copula parameter θ = 6, we have only
positive intermediate tail dependence, which is evident after performing the local Gaussian
mapping.
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Figure 6.7: The plots report the mapped local Gaussian correlation ρ(u) :
⊗2

k=1 Uk →
[−1, 1] for two dimensional Frank copulas with parameters θ = {−10,−5, 0.01, 5, 10}. It is
evident the symmetry of the local Gaussian correlation when the Frank copula parameter
θ has opposite sign and this is confirmed in the last bottom right plot where we report the
Frank copula covariance cov = E[(U1 − E[U1])(U2 − E[U2])]. The number of discretization
points used in this calculation is n1 = n2 = 200.
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Figure 6.8: The plot reports the behaviour of the covariance for a mapped 3-dimensions
Frank copula with parameters θ = {−10,−5, 0.01, 5, 10}. The covariance cov = E[(U1 −
E[U1])(U2 − E[U2])(U3 − E[U3])] is computed using eq. (6.40). The covariance reflects the
symmetry of the Frank copula. The number of discretization points used in this calculation
is n1 = n2 = n3 = 200.

Next, as with the case of the Spearman’s Rho rank correlation, we now repeat the studies
of the Kendall’s tau approximation to the multivariate rank correlation for the skewed
Student’s t-copula and the Archimax copula comprised of Clayton generator and Pickands’
distortion function, the results are presented in Figure 6.9 and Figure 6.10.

Figure 6.9: Approximated Kendall’s tau κ(n)(C(n); U) for a skewed t-copula with param-
eters ν, γ and correlation ρ. The computation of eq. (6.30) has been done over the unit
square U = U1 ⊗U2, with n1 = n2 = 200 discretization points.
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Figure 6.10: Approximated Kendall’s tau κ(n)(C(n); U) for an Archimax copula with
Pickands parameters (α, β) and Clayton parameter θ. The computation of eq. (6.30)
has been done over the unit square U = U1 ⊗ U2, with n1 = n2 = 200 discretization
points.

6.3.2 Multivariate Directional Dependence Approximations

After considering these multivariate copula specifications of rank correlations, one can
also consider copula specifications of notions of directional dependence as detailed in for
instance the notions of intermediate directional dependence in the 3-dimensional context,
see details in Nelsen [2002]. We will denote such dependence measures as rho-directional
dependence, say in for instance the 3-dimensional setting are then easily obtained using
these functional copula approximations of the rank correlations as follows.

Proposition 19 (Functional Copula Approximations for 3-Copula ρ-Directional Depen-
dence). Let C(u), u = (u1, u2, u3) a 3-dimensional copula distribution function with contin-
uous marginals X = (X1, X2, X3) uniform on [0, 1]3 . Then for any direction (α1, α2, α3)
characterised by the vector components αi ∈ {−1, 1} for i ∈ {1, 2, 3}, one has the ρ-
directional dependence, expressed by a discretized copula function C(n), is given by

ρ
(n1,n2,n3)(α1,α2,α3)
X1,X2,X3

=
α1α2ρ

(n1,n2)
X1,X2

+ α2α3ρ
(n2,n3)
X2,X3

+ α3α1ρ
(n3,n1)
X3,X1

3

+ α1α2α3

[
ρ

(n1,n2,n3)
X1,X2,X3

]+
−
[
ρ

(n1,n2,n3)
X1,X2,X3

]−
2

(6.41)

with pairwise Spearman’s rho obtained via the functional copula approximations given above
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in Proposition 17 and

[
ρ

(n1,n2,n3)
X1,X2,X3

]+ (
C(n1,n2,n3)

)
= 8

∣∣∣∣∣
3∏
i=1

(ui − u′i)

∣∣∣∣∣ ∑
u∈U∩Ω

C
(n1,n2,n3)

(u)− 1,

[
ρ

(n1,n2,n3)
X1,X2,X3

]− (
C(n1,n2,n3)

)
= 8

∣∣∣∣∣
3∏
i=1

(ui − u′i)

∣∣∣∣∣ ∑
u∈U∩Ω

C(n1,n2,n3)(u)− 1.

(6.42)

Remark 10. The eight vectors which characterize directions (α1, α2, α3) where αi ∈ {−1, 1}
for i ∈ {1, 2, 3} in [0, 1]3 allow one to utilise the ρ-directional dependence to measure di-
rectional dependence in different quadrants.

Figure 6.11: Approximated Spearman’s Rho directional dependence for a 3-D Clayton
copula with parameter θ computed using eq. (6.42), over the unit cube U =

⊗3
i=1 Ui, with

n1 = n2 = n3 = 60. The plot on the left displays the set of directional dependence curves for
a standard 3-D Clayton copula, each of them is a different permutation of three distinct
direction coefficients (α1, α2, α3). The plot on the right reports directional dependence
curves for a 3-D Clayton copula rotated by 180o. The rotation of the copula imposes a
change in tail dependence that is accurately reflected by the directional dependence curves.
This behaviour is shown in the above plots and specifically by the red and black curves,
which interchange values.

6.3.3 General Copula Approximations for Intermediate and Asymptotic
Tail Dependence

The joint behaviour of extremes for a multivariate copula distribution often are directly
influenced through a non-trivial and often non-linear relationship between the copula pa-
rameter(s), the dimension and the choice of copula and direction in which extremes are
considered. For instance, if we consider extremes in the direction of some angle θ, special
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cases often get singled out, such as θ ∈ {π/4, 5π/4} which correspond to particular types
of quadrant dependence and are typically known as upper and lower intermediate and
asymptotic tail dependencies.

Tail dependence provides one approach to quantification of the dependence in extremes
of a multivariate distribution. Traditionally this notion of dependence was considered from
a pairwise construction due to tractability of expressions for the pairwise construction
when applied to copula models. However there is no reason to restrict this notion to
just pairwise analysis and below we consider first the pairwise definition and then the
generalized definition for d-variate random vectors.

In addition, there is also interest in studying related functions known as tail dependence
functions and tail orders. In some cases the tail dependence has been specified, for instance
by De Luca & Rivieccio [2012] and Li [2009], according to the formulation where for an
arbitrary d-variate cases, such that d > 2 one may quantify the tail dependence present
between sub-vector partitions of the multivariate random vector with regard to joint tail
dependence behaviours. Such a specification can be made as shown in Definition 48.

Definition 48 (Multivariate Tail Dependence). Let X = (X1, ..., Xd) be a d-dimensional
random vector with marginal distribution functions F1, ..., Fd and copula C.

1. One may define the coefficient of multivariate upper tail dependence (upper orthant
dependence) by:

λ1,...,h|h+1,...,d
u = lim

ν→1−
P
(
X1 > F−1(ν), . . . , Xh > F−1(ν)|Xh+1 > F−1(ν), . . . , Xd > F−1(ν)

)
= lim
ν→1−

C̄n(1− ν, . . . , 1− ν)

C̄n−h(1− ν, . . . , 1− ν)
(6.43)

where C̄ is the survival copula of C.

2. One may define the coefficient of multivariate lower tail dependence (lower orthant
dependence) by:

λ
1,...,h|h+1,...,d
l = lim

ν→0+
P
(
X1 < F−1(ν), . . . , Xh < F−1(ν)|Xh+1 < F−1(ν), . . . , Xd < F−1(ν)

)
= lim
ν→0+

Cn(ν, . . . , ν)

Cn−h(ν, . . . , ν)
(6.44)

where, h is the number of variables conditioned on (from the d considered).

Alternative definitions of multivariate tail dependence are also popular in the literature,
for instance the specification given in Klüppelberg et al. [2008] where they define the tail
dependence function according to Definition 49.

Definition 49 (Tail Dependence Function of a Multivariate Distribution). Consider a
d-dimensional random vector X = (X1, ..., Xd) ∈ Rd, d ≥ 2 with marginal distribution
functions F1, ..., Fd, then the tail dependence function is given by

λ(u) := λ (x1, x2, . . . , xd) = lim
t→0

1

t
Pr
[
F 1(X1) ≤ tx1, . . . , F 2(Xd) ≤ txd

]
, x ∈ Rd. (6.45)

In Joe et al. [2010] they studied properties of tail dependence functions and conditional
tail dependence functions, which they defined via the joint distribution on the unit d-
dimensional hyper-cube known as a copula, for a multi-variate distribution. The definition
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adopted in Joe et al. [2010] for the upper and lower tail dependence functions differs to that
provided in Definition 49 via the fact that each marginal can go to the limit at different
rates according to the functions:

• Lower Tail Dependence Function: the tail dependence function for the copula distri-
bution C (u1, . . . , ud) is given by

λl(t;C(u)) = lim
t↓0

C (tu1, . . . , tud)

t
, ∀ u = (u1, . . . , ud) ∈ Rd+ (6.46)

• Upper Tail Dependence Function: the tail dependence function for the copula distri-
bution C (u1, . . . , ud) is given by

λu(t;C(u)) = lim
t↑1

C (tu1, . . . , tud)

t
, ∀ u = (u1, . . . , ud) ∈ Rd+ (6.47)

where we denote by C (u1, . . . , ud) = C (1− u1, . . . , 1− ud) the survival copula dis-
tribution.

The existence of such limits in the definition of the tail dependence functions can be linked
to existence of multivariate regular variation on the copula distribution tails.

Given these definitions, one may now define the following intermediate and extremal
tail dependence measures

Definition 50 (Intermediate and asymptotic Directional Tail Dependence Functions).
Consider the d-dimensional random vector X = (X1, X2, . . . , Xd) ∈ Rd with joint distribu-
tion characterized by marginals Fi (xi) and joint copula distributions C (F1 (x1) , . . . , Fd (xd)).
The intermediate tail dependence function for a k-dimensional sub-vector y, k ≤ d for some
angular region Ω =

∏d−1
i=1 [θi, θ

′
i] ⊆

∏d−2
i=1 [0, π]× [0, 2π] and a radius r by

λ̃(x, k, d,Ω) = Pr
[
X1 ≤ F−1

1 (u(r)) , . . . , Xk ≤ F−1
k (u(r))

∣∣H(x, k, d,Ω)
]

(6.48)

where H(x, k, d,Ω) :=
{
Xk+1 ≤ F−1

k+1 (u(r)) , . . . , Xd ≤ F−1
d (u(r))

}
∩ {x ∈ Cd−1(θ ∈ Ω)} .

The asymptotic tail dependence coefficient is then given by the limiting behaviour of this
intermediate tail dependence function according to

λ(k, d,Ω) = lim
r→∞

Pr
[
X1 ≤ F−1

1 (u(r)) , . . . , Xk ≤ F−1
k (u(r))

∣∣H(x, k, d,Ω)
]

(6.49)

As with the other concordance measures, we may also approximate these measures using
the developed functional copula mapping approach. In the following example we illustrate
the behaviour of the tail dependence function specified directly above, in the 2-dimensional
case of the Clayton copula.

If we consider the two dimensional case with random variables X1 and X2 with distri-
butions Fi, i = 1, 2 and a density describing their dependence on the unit cube known as a
copula C. Then we may define for Ω = [0, π/2] the upper tail dependence coefficient by:

λu := lim
u↑1

Pr
[
X2 > F−1

2 (u) |X1 > F−1
1 (u)

]
= lim

u↑1

1− 2u+ C(u, u)

1− u
(6.50)
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and similarly we define for Ω = [−π,−π/2] the coefficient of lower tail dependence given
by:

λl := lim
u↓0

Pr
[
X2 ≤ F−1

2 (u) |X1 ≤ F−1
1 (u)

]
= lim

u↓0

C(u, u)

u
(6.51)

Note that C̃(1−u, 1−u) = 1− 2u−C(u, u) is known the survival copula of C. The above
relationships show that the upper tail dependence coefficients of copula C is also equal to
the lower tail dependence coefficient of the survival copula of C. Analogously, the lower tail
dependence coefficient of copula C is equivalent to the upper tail dependence coefficient of
the survival copula.

Remark 11. Similar to rank correlations, the tail dependence coefficient is a simple scalar
measure of dependence that depends on the copula of two random variables but not on their
marginal distributions.

Following we show how it is possible to compute coefficients of intermediate tail depen-
dence using the copula approximation framework proposed in the previous section. After
selecting few representative target copula functions we use the mapping of eq. (5.31) to
obtain the approximated copula distributions C(n) which are function of the local Gaussian
correlations. In the examples we used n = 200 as a number of discretization point across
the dimensions of the unit hypercube, which is the support of the mapped and discretized
copula distribution functions. Specifically in Figure 6.12 we calculate the approximated
intermediate and asymptotic lower tail directional dependence

λ
(n)
l (C(n)) =

C(n)(u,u)

u
, u = 0, . . . ,1, (6.52)

for a mapped Clayton copula C(n) with parameters θ = {1, 2, 3, 4, 5, 6, 7, 8, 9}. In Figure
6.13 we calculate the intermediate and asymptotic upper tail for a skewed Student’s t-
copula with parameters ρ ∈ [−1, 1], ν = 11 and g = −1. In Figure 6.14 we calculate the
approximated intermediate and asymptotic upper tail (UT) coefficient

λ(n)
u (C(n)) =

1− 2u− C(n)(u,u)

1− u
, u = 0, . . . ,1, (6.53)

for an approximated two dimensional mapped Archimax Copula C(n) with Clayton generat-
ing function ϕ(x, θ) and Pickands function A(t) with parameters θ = 3, a = {0, 0.3, 0.6, 0.9}
and b ∈ [0, 2]. The examples highlight how the proposed framework can deal with com-
plex dependence structure like the case of the Clayton copula with Archimax distortion
function.
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Figure 6.12: Intermediate and asymptotic approximated lower tail (LT) coefficient

λ
(n)
l (C(n)) for a Clayton copula with parameter θ computed using eq. (6.52). For u → 0

the value of the LT coefficient correspond to the asymptotic one.

Figure 6.13: Intermediate and asymptotic approximated upper tail (UT) coefficient

λ
(n)
u (C(n)) for a skewed Student’s t-copula with parameters g = −1, ν = 11 and corre-

lation parameter ρ ∈ [−1, 1], computed using eq. (6.53). For u → 1 the value of the UT
coefficient corresponds to the asymptotic one.
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Figure 6.14: Intermediate and asymptotic upper tail (UT) coefficient for a 2-D Archimax
Copula with Clayton generating function ϕ(x, θ) and Pickands function A(t). The param-
eters are θ = 3, a = [0, 0.3, 0.6, 0.9] and b ∈ [0, 2]. Note that when (a, b) = (0, 0) then the
Archimax copula is equivalent to the Clayton one with the same θ parameter that is equal
to 3 in this specific example. For u→ 1 the value of the UT coefficient corresponds to the
asymptotic one.

6.4 Conclusions

In this chapter we proposed a class of new methods that involves a highly accurate and
computationally efficient procedure to evaluate concordance measures for a given copula,
applicable when sampling from the copula is not easily achieved or the curse of dimension-
ality makes computation using the copula function impossible. Our methodology is based
on the numerical procedure introduced in Chapter 5 which allows us to map any copula
function to a generalized Gaussian copula function and to visualize a given copulas’ char-
acteristics and better quantify the local correlation generated by the copula function. We
showed how to reconstruct maps of concordance measures locally in all regions of the state
space for any range of copula parameters. We believe this technique will be a valuable tool
for practitioners to understand better the behaviour of copula models and associated con-
cordance measures expressed in terms of these copula models and also to capture, measure
and quantify different notions of dependence in stochastic processes. We demonstrated the
simplicity and intuition behind the concordance measures computation by copula mapping
through illustrative examples.

144 of 158



Chapter 7

Conclusion

We have presented numerical methods and algorithms based on CTMC which allow us to
compute the approximate solution of a multidimensional SDE and characterize its corre-
lation structure.

In Chapter 3 we introduced concepts and elementary notions about continuous time
Markov chains (CTMC) and the way can be used to both construct an approximate solution
to an SDE. The proposed approximation method is based on linear and tensor algebra.
The basic theory on Markov chains was accompanied by illustrative examples and Matlab
code listings.

In Chapter 4 we gave a full characterization of multidimensional approximation of corre-
lated diffusion by CTMCs, with the main results being the specification of the conditional
infinitesimal generator matrix in a tensor space given by Proposition 5. We also showed
that the mimicking process generates an approximated solution which converges in dis-
tribution to a multidimensional diffusion process and analysed its weak convergence in
Section 4.3.4.

In Chapter 5 we first proposed and then investigated the novel concept of local copula
operator derived from a CTMC approximation of diffusions and presented a numerical
procedure to map any copula function to a generalized Gaussian copula function. The
proposed copula mapping is entirely based on tensor algebra and is part of a new modelling
framework we also introduced consisting of the tensor approximation of the infinitesimal
generator associated to multidimensional correlated diffusions. The mapping procedure has
been described in Section 5.2.3 and we proved that there is always existence of a solution
to the mapping problem in Proposition 11.

We demonstrated the simplicity and intuition behind the copula mapping through illus-
trative examples and all the copula functions mapping results proved to be exact up to the
tensor space local discretization error and the error due to approximating the generator
matrix exponential.

In Chapter 6 we also showed how it is straightforward to study and quantify within
the proposed framework concordance measures of dependence. This allowed us to visualize
copula’s characteristics and better quantify the local correlation generated by the copula
function. In fact copulas’ parametric expressions are neither intuitive nor reflecting the
dependence structure that create. The proposed methodology proved to be an invaluable
tool to understand dependence of a given copula.

There are several open questions and applications related to this thesis. First, it would
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be instructive to further investigate the scalability properties of the introduced mimick-
ing approximation, based on linear and tensor algebra, when the number of correlated
marginals to approximate by CTMCs is very large (� 1000), being a natural application a
search engine exhibiting local correlations or a large scale stochastic control problem. Sec-
ond it would be important to study ways to improve the convergence rate, which can be
achieved either by constructing the mimicking CTMC using higher moments or by trans-
formation of the state space, such as unary transformations or interpolation by mean of
transcendental maps.

The third development can be related to a financial application and specifically to
the classification of stochastic volatility models. It would be beneficial, especially for the
financial practitioners’ community, to have a deeper insight into our proposed methodology
and formulate the approximate solution of existing and new stochastic volatility models
by means of CTMCs along the lines of this thesis. This would constitute an important
and useful numerical exercise, leading to a better insights of the computational advantages
associated to our methodology in comparison to existing numerical schemes for stochastic
volatility frameworks.
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Appendix A

Matlab® Code

This appendix reports the code listings for the examples of Chapter 3.

A.1 Examples

1 % Copyright Antonio Dalessandro
2

3 % 1−D example of infinitesimal generator matrix
4 % for any generalized diffusion
5 % Specifically this is the Black−Scholes operator
6

7 function [w, L] = markovGenerator(S, S0, vol, rate, beta, T)
8

9 % Generator for the chain that approximates
10 % diffusion: dS/S = rate dt + vol Sˆbeta dW
11

12 N = length(S); % number of points in the state−space
13 L(1,:)=0; L(N,:)=0; % absorbing boundaries
14

15 for x = 2:N−1
16 dSp = S(x+1)−S(x);
17 dSm = S(x−1)−S(x);
18

19 muS = rate;
20 volS = volˆbeta;
21

22 A = [dSp dSm; dSpˆ2 dSmˆ2];
23 b = [muS; volSˆ2];
24 lambda = A\b;
25 L(x,x+1) = lambda(1);
26 L(x,x−1) = lambda(2);
27 L(x,x) = −(L(x,x−1)+L(x,x+1));
28 end
29 v = zeros(N, 1);
30 v(S0)= 1;
31

32 W = expm((L)*T);
33 w = W'*v;
34 end

Listing A.1: ©MATLAB code for the infinitesimal generator matrix of the
1D Black-Scholes operator.



148 A. Matlab® Code

1 % Copyright Antonio Dalessandro
2

3 % Standard Black−Scholes option formula
4 function [C, P]= option bs(S,X,r,sigma,T)
5

6 % C: call price
7 % P: put price
8 % S: stock price at time 0
9 % X: strike price

10 % r: risk−free interest rate
11 % sigma: volatility of the stock price measured as annual standard ...

deviation
12 % Black−Scholes formula:
13 % C = S N(d1) − Xe−rt N(d2)
14 % P = Xe−rt N(−d2) − S N(−d1)
15

16 % for call
17 d1 = (log(S/X) + (r + 0.5*sigmaˆ2)*T)/sigma/sqrt(T);
18 d2 = d1 − sigma*sqrt(T);
19 N1 = normcdf(d1);
20 N2 = normcdf(d2);
21

22 C = S*N1 − X*exp(−r*T)*N2;
23

24 % for put
25 N1 = 0.5*(1+erf(−d1/sqrt(2)));
26 N2 = 0.5*(1+erf(−d2/sqrt(2)));
27

28 P = X*exp(−r*T)*N2 − S*N1;
29 end

Listing A.2: ©MATLAB code for the closed form Black-Scholes option pricing
formula.

1 % Copyright Antonio Dalessandro
2

3 % 1−D example of call option pricing using the Black−Scholes infinitesimal
4 % operator matrix
5

6 function main
7

8 n = 100;
9

10 % grid can be generated to be non−homogeneous and also
11 % with specific points of interest
12 S = linspace(0,20,n);
13

14 % SPOT AND STRIKE
15 K = 5; % strike
16 SpotIdx = max(find(S≤K));
17 Spot = S(SpotIdx);
18 K = Spot; % ATM
19

20 vol = .2;
21 T = 2;
22 rate = 0.05;
23 beta = 1;
24 disc = exp(−rate * T);
25

26 % here we calculate the transition probability using the infinitesimal
27 % generator matrix L
28 [Pr, L] = markovGenerator(S, SpotIdx, vol, rate, beta,T);
29
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30 payoff = max(S − K,0)';
31 plot(S,payoff,'r');
32 hold on
33 plot(S,Pr)
34 grid on
35 ylim([0,.07])
36

37 CallPrice = disc*(Pr'*payoff);
38

39 % B−S CLOSED FORM (this is just a standard BS closed form option pricing ...
function)

40 [C]= option bs(Spot,K,rate,vol,T);
41

42 fprintf('\n')
43 fprintf('−−−−−−−−−−−−−−−− BS Call Options −−−−−−−−−−−−−−−−−\n')
44 fprintf('time to maturity (Years):')
45 disp(T);
46 format long
47 fprintf('strike:')
48 disp(K);
49 fprintf('Call Prices: \n')
50 fprintf('Closed Form : ')
51 disp(C)
52 fprintf('Operator Price: ')
53 disp(CallPrice)
54

55 end

Listing A.3: ©MATLAB code for the Black-Scholes option pricing through
the approximated infinitesimal generator matrix.

1 % Copyright Antonio Dalessandro
2 % state space normalization
3

4 close all
5 clear all
6

7 n = 200;
8 S = linspace(0.001,10,n);
9 logS = log(S);

10

11 K = 4;
12 vol = .15;
13 T = 1;
14 rate = 0.0;
15 beta = 1;
16

17

18 SpotIdx = sum(S≤K);
19 [Pr, L] = markovGenerator(logS, SpotIdx, vol, rate − .5*volˆ2, beta,T);
20

21 shift = rate − .5*volˆ2;
22 SpotIdx r = sum((logS ≤ log(K)+ shift*T));
23

24 [Pr 2, L] = markovGenerator((logS − shift)/vol , SpotIdx r , 1, 0, beta,T);
25

26 plot(S,Pr);
27 hold on
28 plot(S,Pr 2,'rx'); grid on
29 legend('N(\mu − 0.5* \sigmaˆ2, \sigma)', 'N(0,1)')
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Listing A.4: ©MATLAB code that illustrates how it is possible to build
equivalent infinitesimal generators of a diffusion. In this case the process
dynamics is log-normal and we apply state space transformations.

1 close all; clear all
2 % INPUT parameters
3 T = 7;
4 n1 = 80; n2 = 200;
5 X1 = linspace(0.001,25,n1); % discretization state space 1
6 X2 = linspace(0.001,7,n2); % discretization state space 2
7 S1 = log(X1); S2 = log(X2);
8

9 F = 3;
10 v0 = 1;
11

12 X1 0 = sum(X1 ≤ F);
13 X2 0 = sum(X2 ≤ v0);
14 beta = 1;
15 RR = [0, −.3];
16

17 % volatility process
18 G2 = zeros(n2);
19 v2 = .15; r = .05;
20 mu2 = r − .5*v2ˆ2;
21

22 for i = 2:n2−1
23 h2 = S2(i) − S2(i−1);
24 G2(i,i+1) = (v2ˆ2)/(2*h2ˆ2) + mu2/(2*h2);
25 G2(i,i−1) = (v2ˆ2)/(2*h2ˆ2) − mu2/(2*h2);
26 G2(i,i) = −(G2(i,i+1) + G2(i,i−1));
27 end
28 P2 = expm(G2*T);
29 B = P2(X2 0,:);
30 %%
31 %%%%%%%%%%%%%%%%%%%%%%%%%%%
32 for ir = 1:length(RR)
33 corrI = RR(ir);
34 corrMtx = ones(n1,n2)*corrI; % correlation
35 %%%%%%%%%%%%%%%%%%%%%%%%%%%
36 v1 = .2;
37 mu1 = r − .5*v1ˆ2;
38

39 G1 = zeros(n1);
40 P1cP2 = zeros(n1,n1,n2);
41 for j = 1:n2
42 for i = 2:n1−1
43 h1 = S1(i+1) − S1(i);
44

45 mcc = mu1 + corrMtx(i,j)*(v1/v2)*((S2(j)− S2(X2 0))/T − mu2 );
46 cv = sqrt((1−corrMtx(i,j)*corrMtx(i,j))*v1*v1);
47

48 G1(i,i+1) = (cvˆ2)/(2*h1ˆ2) + mcc/(2*h1);
49 G1(i,i−1) = (cvˆ2)/(2*h1ˆ2) − mcc/(2*h1);
50 G1(i,i) = −(G1(i,i+1) + G1(i,i−1));
51 end
52 P1cP2(:,:,j) = expm(sparse(G1)*T);
53 end
54 A = P1cP2(X1 0,:,:);
55 P = repmat(B,n1,1).*reshape(A,n1,n2);
56 m2(:,ir) = sum(P,1);
57 m1(:,ir) = sum(P,2);
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58 end
59

60 %%
61 sum(sum(P))
62 plot(X1,m1(:,1)); hold on
63 plot(X1,m1(:,2),'r−X')
64 grid on

Listing A.5: ©MATLAB code for the operator matrix associated to paired
lognormal processes with instantaneous conditional moments as per eq. (3.29).
In this case the joint processes are log-normal and we apply state space
transformations as per section 3.3 .

1

2 % INPUT parameters
3

4 clear all
5 close all
6 T = 1;
7 mu1 = .02; v1 = .4; % marginal 1 drift and vol
8 mu2 = 0.03; v2 = .4; % marginal 2 drift and vol
9 n1 = 40; S1 = linspace(−2,2,n1); % discretization state space 1

10 n2 = 40; S2 = linspace(−2,2,n2); % discretization state space 2
11

12

13 corrI = −.6;
14

15 corrMtx = ones(n1,n2)*corrI; % correlation
16 h1 = S1(3) − S1(2);
17 h2 = S2(3) − S2(2);
18 G1 = zeros(n1);
19

20

21 % identity matrices
22 I1 = eye(n1);
23 I2 = eye(n2);
24

25 I2 G1 = zeros(n1*n2);
26

27 %P1cP2 = zeros(n1,n1,n2);
28 for j = 1:n2
29 for i = 2:n1−1
30 mcc = mu1 + corrMtx(i,j)*(v1/v2)*(S2(j) − mu2);
31 cv = sqrt((1−corrMtx(i,j)*corrMtx(i,j))*v1*v1);
32 G1(i,i+1) = (cvˆ2)/(2*h1ˆ2) + mcc/(2*h1);
33 G1(i,i−1) = (cvˆ2)/(2*h1ˆ2) − mcc/(2*h1);
34 G1(i,i) = −(G1(i,i+1) + G1(i,i−1));
35 end
36 I2 G1((j−1)*n1 + 1:(j−1)*n1 + n1,(j−1)*n1 + 1:(j−1)*n1 + n1) = G1;
37 %P1cP2(:,:,j) = expm(sparse(G1)*T);
38 end
39 G2 = zeros(n2);
40 for i = 2:n2−1
41 G2(i,i+1) = (v2ˆ2)/(2*h2ˆ2) + mu2/(2*h2);
42 G2(i,i−1) = (v2ˆ2)/(2*h2ˆ2) − mu2/(2*h2);
43 G2(i,i) = −(G2(i,i+1) + G2(i,i−1));
44 end
45 %P2 = expm(G2*T);
46 G2 I1 = kron(G2, I1);
47

48 G = G2 I1 + I2 G1;
49 P = expm(sparse(G));
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50 %P split = expm(sparse(G2 I1))*expm(sparse(I2 G1));
51

52 %%
53 % spot calculation
54 X1 0 = n1/2;
55 X2 0 = n2/2;
56 xx = n1*(X2 0 − 1) + X1 0 ;
57

58 % full generator
59 Pm = reshape(P(xx,:),n1,n2);
60

61 % rank−1 approximation
62 %Ps2 = reshape(P split(xx,:),n1,n2);
63 % A = P1cP2(X1 0,:,:);
64 % B = P2(X2 0,:);
65 % Ps = repmat(B,n1,1).*reshape(A,n1,n2);
66

67 % plot join densities
68 [X1, X2] = meshgrid(S1,S2);
69 % surf(X1,X2,Ps');
70 % figure
71 surf(X1,X2,Pm');

Listing A.6: ©MATLAB code for the Computation of the approximated
transition density for two coupled diffusions by tensor approximation .
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