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Abstract 

 

The current diagnostic and stratification pathway for prostate cancer has led to over-diagnosis and over-

treatment. This thesis aims to improve the prostate cancer diagnosis pathway by developing a minimally 

invasive blood test to inform diagnosis alongside mpMRI and to understand the true Gleason 4 burden 

which will help better stratify disease and guide clinicians in treatment planning. 

 

To reduce the number of patients who have to undergo prostate biopsy after indeterminate or false 

positive prostate mpMRI, we aimed to develop a new panel of mRNA detectable in blood or urine that 

was able to improve the detection of clinical significant prostate cancer (Gleason 4+3 or ≥6mm) in 

combination with prostate mpMRI. mRNA expression of 28 potential genes was studied in four prostate 

cancer cell lines and, using publicly available datasets, a new seven gene biomarker panel was 

developed using machine learning techniques. The signature was then validated in blood and urine 

samples from the ProMPT, PROMIS and INNOVATE trials.  

 

To redefine the classification of Gleason 4 disease in prostate cancer patients, digital pathology was 

used to contour and accurately assess the burden and spread of Gleason 4 in a cohort of PROMIS 

patients compared to the gold standard manual pathology. There was a significant difference between 

observed and objective Gleason 4 burden that has implications in patient risk stratification and 

biomarker discovery. 

 

The work presented in this thesis makes a significant step toward improving the patient diagnostic 

and risk classification pathways by ensuring only the right patients are biopsied when necessary, 

improving the current pathological reference standard.  
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Chapter 1. Introduction 

1.1. Summary 

Prostate cancer is the most commonly diagnosed malignancy in men (1). The incidence of prostate 

cancer varies from 1 in 9 in high-income countries to 1 in 52 in low-income countries (2). The diagnostic 

pathway for prostate cancer has dramatically changed in the last few years with imaging biomarkers 

included as a first-line investigation for people with suspected clinically localised prostate cancer (3). 

Despite these advances, over-diagnosis and over-treatment remain a challenge (4). Tissue and fluid 

biomarkers are currently being developed to fill the gaps in the diagnostic pathway, mainly reduce 

number of biopsies, find aggressive prostate cancer without the need for a biopsy and predict 

recurrence and death (5,6). Ideally such biomarkers would have analytic validity, clinical validity and 

clinical utility (7), across different populations, whilst complementing the clinical data in a reproducible 

manner.  

Like all cancers, prostate cancer has a spectrum of aggressiveness. The Gleason score was adapted 

into the Prostate Grading Group (PGG) to take into account the growing evidence that the proportion 

of Gleason 4 impacts patient outcomes (8–13). The current Gleason and PGG classifications rely on 

visual percentage estimation, with the inherent subjectivity and inter-observer variability from human 

readers (14,15). Digital pathology has allowed novel image analysis that has been successfully been 

linked to outcome in breast cancer (16). Since the objective for some biomarker panels is to find 

aggressive disease, efforts must be made to quantify aggressive disease as accurately as possible. 

Use of machine learning to aid Gleason scoring have already been published (17–21). 

This thesis focuses on describing the discovery of a new biomarker panel to complement 

multiparametric MRI (mpMRI) in deciding which patients benefit from a biopsy. Chapter 3 describes the 

panel in detail, followed by relative gene expression of the panel in cell lines. Finally, diagnostic 

accuracy in three publicly available datasets is described. In Chapter 4, the relative gene expression of 

the new panel in urine and blood, in three different cohorts is presented, followed by performance 

analysis of the panel. Finally, in Chapter 5,an  in-depth analysis and description of Gleason 4 burden 

was performed using digital pathology and geographical quantitative research in a cohort of 30 men. 

The following literature review will describe in depth the concepts briefly defined in here. 
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1.2.Context/literature review 

1.2.1. Prostate cancer  

1.2.1.1. The prostate 

The prostate is a pelvic organ located just above the bladder neck (Figure 1-1).It is composed of a mix 

of glandular (70%) and fibromuscular tissue (30%),and it is surrounded by a capsule that fuses with the 

stroma. The stroma is composed of collagen and smooth muscle that contracts during ejaculation. The 

prostate can be divided into distinct zones:  

1. Central zone: Located at the base of the bladder, it is conical in shape and surrounds the 

ejaculatory ducts. This zone contains 25% of the glandular tissue.  

2. Transitional zone: Surrounds the urethra and constitutes 5-10% of the glandular tissue. Benign 

prostatic enlargement usually originates from this area.  

3. Peripheral zone: This zone forms most of the glandular tissue (70%); it covers the posterior and 

lateral aspects of the gland. Traditionally, most cancers develop in this area (22).  

4. Fibromuscular stroma: Extends from the bladder neck to the urethral sphincter (striated). It can 

take up to one-third of the prostatic mass.  

A schematic representation is presented in Figure 1-1. 
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Figure 1-1 Anatomy of the prostate. Schematic representation of the zonal anatomy of the 
prostate.  

A. Axial sections of the prostate from posterior to anterior, with the seminal vesicles as the most 
posterior structure, followed by the base, midgland and apex of the prostate.  B. Sagittal section of the 
prostate, with the urethra traversing the prostate, the seminal vesicles just posterior to the prostate, and 
the ejaculatory duct connecting to the urethra. C. Coronal view of the prostate, the bladder located 
superiorly contiguous to the urethra. The seminal vesicles located just below the bladder. The prostate 
zones are coloured as follows:  peripheral zone = light blue, central zone = green, transitional zone = 
yellow, anterior fibromuscular zone = dark blue. Adapted from: “Synopsis of the PI-RADS v2 Guidelines 
for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use” by Barentz 
et al. (23). 
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1.2.1.2. Epidemiology 

Globally, prostate cancer is the most common cancer in men. In 2017, the incidence of prostate cancer 

was 1.3 million (95% CI, 1.2-1.7 million). Despite advances in treatment strategies and diagnosis, it 

remains the third cause of cancer-related death in men (1,2). Following the introduction of Prostate 

Specific Antigen (PSA) testing, the number of men with advanced disease at presentation has been 

reduced (24). However, PSA screening has led to over-diagnosis and over-treatment (4).  

There are three well-known risk factors for developing prostate cancer. First, older men have a higher 

risk of developing the disease; 85% of diagnosed men are >65 years old (25).Second, men with a family 

history have a higher risk of developing the disease (26). Third, the incidence and mortality due to 

prostate cancer in men of African descent are higher compared to Caucasians. The cause for this is 

considered to be multifactorial. Including socioeconomic, cultural and genetic predisposition (27,28). 

Whereas the incidence is the lowest in Asian men (28). Additional risk factors include obesity (29,30),  

metabolic syndrome (29,31,32),and hypertension (33). 

1.2.1.3. Androgens and the Androgen Receptor (AR) 

In 1941 Huggins and Hodges published their findings on the effects of androgen in metastatic prostate 

cancer in dogs (34). Improved understanding of androgens and the androgen receptor in relation to 

prostate cancer led to the development of hormone-blocking therapies (surgical and chemical 

castration). Androgens are steroid hormones that influence the development, maturation and 

maintenance of the male reproductive system (35). They ligate to the androgen receptor (AR), a nuclear 

transcription factor that mediates androgen activity by initiating the transcription of androgen-responsive 

genes (36,37). Understanding the role of the AR in prostate cancer, the gene activation/inactivation and 

mechanisms of androgen insensitivity have allowed for novel therapies and biomarkers. For instance, 

abiraterone is an androgen biosynthesis inhibitor that has shown to reduce mortality in men with 

metastatic prostate cancer (38). Additionally, the presence of the AR splice variant 7 (AR-V7) can be 

used for clinical decision making (39,40). Antonarakis et al. found that men with castrate resistant 

prostate cancer and AR-V7 have associated resistance to enzalutamide and abiraterone (41).   

In this thesis, the relative changes in gene expression of a panel of genes following androgen 

stimulation are presented. 
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1.2.1.4. The diagnosis of prostate cancer 

1.2.1.4.1. Prostate Specific Antigen (PSA) 

Prior to the discovery of the prostate specific antigen (PSA) by Wang et al., and subsequent use as a 

screening tool, men presented with a plethora of symptoms, due to advanced prostate cancer (42). 

Symptoms include, amongst others, haematuria, obstructive lower urinary tract symptoms, and bone 

pain due to metastatic deposits. Before the widespread use of PSA, there was no such thing as early 

detection in prostate cancer.  

In 1987, Stamey et al, measured the PSA in 127 newly diagnosed patients and found that increased 

PSA levels were associated with advanced disease. Additionally, the levels of PSA dropped following 

radical prostatectomy, confirming its use as a monitoring tool following surgery (42). This was followed 

by evidence that the use of PSA as a screening tool improved the detection of prostate cancer, in 

combination with clinical parameters (digital rectal examination and biopsy) (43). The use of PSA as a 

screening tool allowed physicians to diagnose patients earlier, this combined with better surgical 

techniques and therapies, have improved the outcomes of patients (defined as time to recurrence and 

cancer-related death) (44). While PSA is recognised as a relatively useful biomarker, its widespread 

use has been linked to over-diagnosis and over-treatment (4). Further background into PSA and its 

properties as a biomarker will be discussed in section 1.2.2.2.1.1.  

1.2.1.4.2. Prostate Biopsy 

Until recently, the diagnostic pathway consisted of screening of men with PSA in primary care, followed 

by digital rectal examination (DRE) and transrectal ultrasound random biopsies, if indicated. This 

diagnostic pathway relied on large palpable tumours to be detected by DRE, and on the concept that 

most tumours were located peripherally. Additionally, and unlike other solid tumours, the random 

transrectal systematic biopsy consists of blind biopsies roughly targeted to the peripheral zone. This 

method carries medical risks (infection, sepsis, death) and the risk of entirely missing the lesion, 

especially if the cancer is anterior (45,46) (See Figure 1-2). More importantly, 26% of men in the 

PROMIS trial had cancer missed by transrectal biopsies that were detected by a targeted sampling 

method (47).  

Reports of 6.9% risk of hospitalisation following transrectal biopsy highlight the need for careful patient 

selection (48). Patient reported outcomes following transrectal biopsies in the European Randomized 

Study of Screening for Prostate Cancer (Rotterdam section), reported 4.2% of patients developing fever 

(392 of 9241 questionnaires), and of those hospitalised following a biopsy 81% had an infection (48). 

The risk of sepsis following a transrectal biopsy has been reported between 0.5-3.1% (49). 

Alternative sampling methods have been used including an MRI targeted (to a lesion), systematic (every 

5 mm), sector biopsy (1-2 samples per sector), modified according to prostate size and combinations 

of the above, mainly targeted and systematic (See Figure 1-3) (50–54). Additionally, avoiding the 

transrectal route has increasingly become popular due to the lower risk of infection (49,55). Although 

the transperineal approach requires an operating theatre and general anaesthetic in some instances, 
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development of the technique and invention of novel devices may make this procedure a routine 

clinic/outpatient procedure (56,57).  
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Figure 1-2 Non-targeted biopsies miss significant cancer. Schematic representation of cancer 
detection and misses by non-targeted transrectal prostate biopsy.  
For simplicity two-needle cores represented with a black line, low-grade cancer in green, high-grade 
cancer in orange.  A. Random biopsy detects low-grade cancer on the left side (true positive). B. 
Random biopsy fails to identify low-grade cancer on the left side of the prostate (false negative). C. 
Detection of low-grade but non-detection of high-grade anterior tumour. D. Detection of two tiny foci of 
low-grade disease. E. Sampling of a tumour area of low-grade disease, while high-grade area remains 
un-sampled. F. Peripheral zone sampling completely misses large anterior tumour.  
  



32 
 

 

Figure 1-3 Simplified summary of prostate biopsies techniques and approaches. Schematic 
representation of the possible techniques that can be used when sampling the prostate.  
From top to bottom A. Approach refers to the route through which the needle is inserted for the sample, 
for simplicity abdominal and other routes are not plotted here. B. Sampling method refers to either 
random sampling (1) or targeted to a lesion using mpMRI (2), this can be either cognitive (2.1), using 
previously contoured lesions to guide the needle, or with the assistance of software (2.2). C. Approach 
refers to either free-hand sampling, or with the assistance of a grid. D. Sampling technique refers to 
how the biopsies are taken: by pre-determined sectors, targeted to a lesion, saturated every 5 mm or 
combination of the previously mentioned techniques. E. Anaesthesia can be local pudendal block, 
general or a combination of sedation and local anaesthetic.  
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1.2.1.4.3. Multiparametric MRI 

Until the emergence of multiparametric MRI (mpMRI), visualising prostate cancer was relegated to large 

visible tumours on ultrasound. The incidence of non-palpable tumours or T1c increased from 6% in 

1989 to 47% in 1999 (58). This may be linked to an increase in diagnosis of insignificant cancers with 

the widespread use of PSA, or due to the difficulty in visualising prostate cancer on ultrasound. MpMRI 

can be used as an imaging biomarker for diagnosis; if no lesion is detected there is a high probability 

of not having high-risk cancer (47,59–61). The PROMIS trial enrolled 576 men to study the diagnostic 

accuracy of mpMRI.  Using mpMRI as a triage, 27% of patients can safely avoid a biopsy, while lowering 

the number of men diagnosed with insignificant cancer (5%) (47). The value of mpMRI to aid the 

diagnosis of prostate cancer, while reducing over-diagnosis led to the addition to mpMRI as the first-

line investigation for men with suspected prostate cancer (3).  

For instance, the detection of transitional zone tumours can be difficult as they are not palpable on 

digital rectal exam. Patients with anterior tumours usually present following several negative transrectal 

biopsies and a persistently elevated PSA (62). Since mpMRI can improve detection of anterior tumours 

that would otherwise remain unseen; the incidence of anterior tumours may be higher than historically 

accepted. 

Additionally, mpMRI allows for targeting of lesions, whether cognitively or using specialised software, 

allowing for improved diagnostic accuracy compared to traditional transrectal biopsy (63–66). A 2019 

Cochrane review concluded that adding mpMRI to the diagnostic pathway improved the diagnostic 

accuracy of clinically significant cancer, while reducing the diagnosis of insignificant cancer (61). The 

NICE diagnostic pathway has been modified to include mpMRI before biopsy (new diagnostic pathway 

on Figure 1-4), and sets out the minimum requirements for appropriate imaging technique (67). 

Although this is the recommended pathway, access to mpMRI is not yet accessible to all patients. Data 

from Prostate Cancer UK’s Freedom of Information Act requests in 2016 and 2018 showed an increase 

of use of mpMRI in the UK (68). Additionally, 68% of the centres using MRI before biopsy use this 

information to avoid a biopsy if the MRI is negative. While encouraging, centres are limited by several 

factors including radiologist expertise, time in scanner and age of the scanner available (68).  

1.2.1.4.3.1. PIRADS v2 

The Prostate Imaging-Reporting and Data System (PIRADS) v2, was created by  the European Society 

of Urogenital Radiology (ESUR) to improve image acquisition, quality, and standardize mpMRI reporting 

(69–72). Compared to the first version, more emphasis is placed on T2 weighted imaging for transitional 

zone tumours, improving detection amongst benign nodules that mimic cancer (73–75). The PIRADS 

v2 categorizes the mpMRI parameters to obtain a final score from 1 to 5, as follows: 

• PI-RADS 1 – Very low (clinically significant cancer is highly unlikely to be present). 

• PI-RADS 2 – Low (clinically significant cancer is unlikely to be present). 

• PI-RADS 3 – Intermediate (the presence of clinically significant cancer is equivocal). 

• PI-RADS 4 – High (clinically significant cancer is likely to be present). 
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• PI-RADS 5 – Very high (clinically significant cancer is highly likely to be present). 

1.2.1.4.3.2. Likert score 

The Likert score is an mpMRI reporting tool that classifies lesions in a scale of 1 to 5. Unlike PIRADS, 

it considers clinical information (age, PSA, gland volume, PSA density, family history). Additionally, it 

does not rely on the findings in a dominant sequence. Similarly to PIRADS v2, each score relates to a 

degree of certainty of cancer being present in a lesion (67,76,77). However, the expertise and 

confidence of the reader and the prostate as a whole is taken into account in the Likert score.  

The Likert score is as follows: 

• Likert 1, presence of cancer is very unlikely. 

• Likert 2, presence of cancer is unlikely. 

• Likert 3, presence of cancer is indeterminate. 

• Likert 4, presence of cancer is likely. 

• Likert 5, presence of cancer is highly likely.  
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Figure 1-4 Current and NICE recommended prostate cancer diagnostic pathway.  
A. Current diagnostic pathway marked with* as not all centres have access to mpMRI and may continue 
to follow this pathway. B. The NICE diagnostic pathway includes mpMRI of the prostate following a 
confirmed abnormal PSA. Biopsy highlighted in blue. ** Discharge or observation depending on clinical 
parameters such as age, PSA level, prostate size, comorbidities and other prostatic diseases, such as 
prostatitis.   
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1.2.1.5. Gleason system 

In 1966, Dr Donald F. Gleason and colleagues at the Veterans Administration Cooperative Urological 

Research Group (VACURG) proposed a classification system for prostate cancer (78). This system 

compares the cancerous tissue to benign prostatic tissue in Haematoxylin & Eosin stained slides (H&E). 

The original classification included patterns 1 to 5 depending on four factors: tumour shape and borders, 

stromal invasion, tumour cell arrangement and gland size (78).Patterns 1 and 2 were later 

recommended not be reported and were practically removed from the classification in 2005. Currently, 

only patterns 3, 4 and 5 are reported (79). The Gleason score is assigned, taking into account the two 

most common Gleason patterns present in the specimen by visual inspection. The first number in the 

score corresponds to the most prevalent grade seen, and the second number to the second most 

common grade. This way a Gleason 4+5 consists predominantly of Gleason 4 (majority), with some 

Gleason 5 (minority). Whenever a tertiary pattern exists, if it corresponds to Gleason 4 and 5, it should 

be reported as it has an impact on pathological stage and progression (80). 

Gleason 3 consists of irregular and discrete glands with variation in size and shape. Gleason 4 includes 

fused, poorly formed and cribriform glands that are poorly defined with irregular borders. Gleason 5 

consists of solid sheets of tissue without glandular differentiation, forming chords or single “escaped’ 

cells (See Figure 1-5 A-D). As mentioned above, the distinction between the most common and second 

most common Gleason pattern is based on visual estimation, and this has interobserver variability (81–

84). For instance, in 2011 Netto et al. measured the agreement between local and central pathologists 

reading radical prostatectomy specimens of men that took part in the TAX 3501 trial, a randomised 

multinational trial comparing outcomes in patients with high-risk prostate cancer, following radical 

prostatectomy with or without adjuvant docetaxel. They found significant interobserver variations, with 

disagreement in 30% of cases, changing the progression-free survival estimates of miss-classified 

patients (83). Additionally, when the interobserver variability is measured for Gleason 4 only, fused and 

poorly fused glands seem to reduce the agreement between pathologists (85,86). This has led to the 

search for automated Gleason 4 grading systems to reduce variability (18,19,87–89). 

1.2.1.6. Prostate Grade Group 

In 2014, the International Society of Urological Pathology (ISUP) agreed on a new grading system for 

prostate cancer (Prognostic Grade Group or PGG), based on modifications to the original Gleason 

system in 2005 (90,91).The new grading system aims to simplify the Gleason score and taking into 

account the difference in prognosis of the different groups (Figure 1-5 E). Previously, men with Gleason 

7 were grouped as a single category, regardless of the amount of Gleason 4 present. This is 

problematic, as men with higher amounts of Gleason 4 have been shown to have worse outcome (8–

13), probably as Gleason 4 is molecularly distinct from Gleason 3 (92–94).  
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Figure 1-5 Benign and cancerous prostatic tissue. H&E Eosin digitally scanned sections of 
prostate tissue. 
Images obtained from PROMIS scanned slides, nuclei in blue and other structures in pink. A. Benign 
prostatic tissue with well-formed glands (black arrow), surrounded by basal cells (black square) and 
stroma (*) B. Gleason 3+4 cancer, Gleason 3 retains the glandular structure remains, although both 
size and shape are irregular. C. Gleason 4+3, in Gleason 4 the glands are fused and cannot be 
separated from each other, the glandular structure is poorly formed. D. Gleason 4+5, Gleason 5 lacks 
glandular differentiation and is characterised by solid sheets of tissue. E.  Table containing the Gleason 
sum value (left column), corresponding Gleason scores (middle column) and new Prognostic Grade 
Group (PGG).  
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1.2.1.6.1. The importance of Gleason pattern 4 in prostate cancer 

When compared to Gleason 6, men with Gleason 7 have a higher risk of death from prostate cancer 

(95). When examining historical radical prostatectomy specimens in men with localised disease, Sweat 

et al. found that at 15 years, the rate of death was 18% to 30% for Gleason 6 and 42% to 70% for 

Gleason 7 (95). When comparing the outcome of Gleason 3+4 versus 4+3, men with primary Gleason 

4 have been found to be more likely to have seminal vesicle involvement (34% versus 18%, p= 0.006), 

a higher pathological stage (pT3 55% versus 42%, N+ 13% versus 3%, 0.001) and extra-prostatic 

extension (58% versus 38%, 0.001) (96). In a separate study by Chan et al. tumours with primary 

Gleason 4 had a higher rate of extra-prostatic extension at radical prostatectomy (52.7% versus 38.2% 

for 3+4, p = 0.008), higher risk of progression at five years (15% 3+4, 40% 4+3) and earlier time to 

progression (3.2 years versus 4.4 years) (97).  

Changes in the classification of Gleason 4 such as including cribriform pattern as Gleason 4 rather than 

3, have led to increased understanding and classification of patient category risk. Patients with <5% of 

Gleason 4 can be candidates for active surveillance, with similar survival to men with Gleason 6 disease 

(13,98). When examining 12,150 prostatectomy specimens, Sauter et al. found a distinct and significant 

difference in time to biochemical recurrence when subdividing patients into 3+4 low (1-24% Gleason 

4), 3+4 high (25-49% Gleason 4), 4+3 low (50-74% Gleason 4) and 4+3 high (75-94% Gleason 4), 

p=<0.0001 each (9). In 2014 and 2019, the ISUP Consensus meeting recommended Gleason 4 

percentage should be reported to aid management planning (91,99). The percentage of Gleason 4 

involvement from the worst core (with highest Gleason 4) and overall Gleason 4% provide accurate 

information as predictors of prostate cancer death (13). 

 

1.2.1.7. Prostate cancer staging 

The Tumour, Node, Metastasis (TNM) staging in prostate cancer is schematically represented in Figure 

1-6. The prostate cancer staging is take into account in risk prediction nomograms and groups. Since 

MRI’s adoption in clinical practice, the local staging of prostate cancer has been facilitated, allowing for 

surgical planning (100–102). Other imaging techniques, such as molecular imaging have a role in 

detecting distant lymph node metastasis and recurrence following treatment (103).  

1.2.1.7.1. The D’Amico classification 

In 1998, Dr Anthony D’Amico proposed a model classifying patients into three risk categories depending 

on the TNM stage, Gleason score and preoperative PSA. The groups act as a predictor to the risk of 

biochemical recurrence after surgery. This classification continues to have clinical relevance but may 

require modernisation to adapt to current clinical practices (104).  

 The D’amico classification is presented below: 

1. Low risk: Clinical T1c-T2a, PSA level ≤10 ng/mL and Gleason score ≤6. 

2. Intermediate risk: Clinical T2b, PSA level of 10.1-20 ng/mL, or Gleason score 7. 
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3. High risk: Clinical T2c or PSA level greater than 20 ng/mL or Gleason score 8-10. 

1.2.1.7.2.  The CAPRA-S score 

The UCSF Cancer of the Prostate Risk Assessment (CAPRA) score, is a multivariate prognostic tool 

that aims to predict the risk of recurrence following treatment for localised prostate cancer. It takes into 

account the serum PSA, Gleason score (grouping 3+4 and 4+3), T stage, percentage of positive 

biopsies and age to give a score from 0 to 10 (105). The CAPRA score is then tiered into three groups: 

0–2 = low risk; 3–5 = intermediate risk; 6–10 = high risk. Many studies have researched the correlation 

between the CAPRA score and biochemical recurrence, with reported concordance scores between 

0.66–0.81 (106). 

1.2.1.7.3. The NCCN risk classification 

The National Comprehensive Cancer Network risk classification divides patients into five distinct 

categories. Very low, low, intermediate, high and very high risk taking into account PSA, pathological 

stage, PGG group and, number of positive cores. As this classification uses PGG instead of Gleason 

sum, it subdivides 3+4 and 4+3 into two different categories. Additionally, this risk classification 

recommends active surveillance to men with low secondary Gleason 4 (107). 

1. Very low risk: T1c and, PGG1 and PSA <10 ngmL, <3 positive cores, PSA density < 0.15 

ng/mg/mL.  

2. Low risk: T1-T2a and PGG1 and PSA <10 ng/mL. 

3. Intermediate risk: T2b-T2c, PGG 2 or 3, PSA 10-20 ng/mL and no high risk features. 

a. Favourable intermediate: PGG 1 or 2, <50% cores positive. 

b. Unfavourable intermediate: PGG 3, ≥50% of positive cores. 

4. High risk: T3a or PGG4-5 or PSA >20 ng/mL. 

5. Very high risk: T3b-T4 or primary Gleason 5 or >4 cores with grade group 4/5. 
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Figure 1-6 Prostate cancer TNM classification. Schematic representation of the prostate TNM, 
visible tumour represented in green.  
A. Tumour stage is divided in T1, T2, T3 and T4. As T1 stage represents not palpable/visible tumour, 
no lesion was drawn. B. Node stage, from not assessed (NX), no regional spread (represented by white 
lymph nodes) and regional lymph node compromise (N1). C. Metastasis stage, not assessed (MX), no 
distant metastasis (M0) and distant metastasis (M1). M1a, distant lymph nodes (supraclavicular), M1b, 
bone metastasis and M1c, lung metastasis (as an example).  
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Variable Value CAPRA-S points 

PSA level (ng/mL) 

0.00 -6.00 0 

6.01-10.00 1 

10.01-20.00 2 

20.1-30 3 

≥ 30 4 

Age at diagnosis 
Under 50 0 

50 or older 1 

Gleason score 

No pattern 4 or 5 0 

Secondary pattern 4 or 5 1 

Primary pattern 4 or 5 2 

Clinical stage 
T1 or T2 0 

T3a 1 

Percentage of biopsy cores 
involved with cancer 

Less than 34 percent 0 

34 percent or more 1 

 

Table 1.1. CAPRA score and variables.  
Table containing the variables included in the calculation of the CAPRA score (first column), followed 
by values (middle column) and points given depending on the values (right column).  
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1.2.2. Biomarkers 

1.2.2.1. Definition and types of biomarkers 

A biomarker or biological marker is a quantifiable indicator of a specific disease or the severity of a 

disease. The National Institutes of Health Biomarkers Definitions Working Group defines a biomarker 

as: “A characteristic that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention” (108). A 

biomarker can serve different purposes; The BEST (Biomarker, EndpointS, and other Tools) resource 

subdivides them into seven groups and for the purpose of this thesis, only biomarkers used for cancer 

will be defined here. The definitions have been modified from the BEST guidelines (109). 

1. Diagnostic biomarker: A diagnostic biomarker helps determine if the patient has cancer or a 

subtype of cancer. A perfect diagnostic biomarker would detect all patients with the disease of 

interest and no healthy patients (100% sensitivity and specificity). For example, PSA is used 

as a diagnostic biomarker; further information on this biomarker is discussed in section 

1.2.2.2.1.1. 

2. Monitoring biomarker: A biomarker measured successively in order to assess the status of a 

medical condition, or as evidence of exposure or effect due to a medical product or 

environmental agent.  Again, PSA can be used as an example when used to monitor patients 

following radical prostatectomy or radiotherapy to ensure disease control (110,111).  

3. Predictive biomarker: A biomarker that helps identify patients with a higher or lower risk of good 

or bad outcome following exposure to a medical product or environmental agent. For instance, 

the presence or absence of AR-v7 can help predict which patients will benefit from taxane-

based chemotherapy (39,40). 

4. Prognostic biomarker: A biomarker used to predict the probability of a clinical event, disease 

progression or recurrence. In prostate cancer, both PSA and Gleason score have been used 

as predictive biomarkers to determine the risk of recurrence (112,113).  

5. Susceptibility/Risk biomarker: A biomarker that indicates the likelihood of developing a disease 

in a patient that does not currently have the disease. The presence of BRCA2 mutations have 

been linked to a higher risk of prostate cancer (114). 
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1.2.2.2. Biomarkers for prostate cancer  

This section will focus on selected biomarkers currently used for the diagnosis of prostate cancer, and 

well as detection of Gleason 4 disease. This does not aim to be an extensive review or meta-analysis 

of the available evidence, but rather a summary of biomarkers currently used in clinical practice, and 

promising and emerging biomarkers. A summary of available biomarkers and use can be seen in Figure 

1-7 and Table 1.2.  
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Figure 1-7 Biomarker use in the diagnosis and treatment planning of localised prostate cancer. 
Schematic representation of a biomarker-based diagnostic pathway including screening (blue), 
diagnosis (green), treatment planning (yellow) and prognosis/need for adjuvant therapy (grey). 
Biomarkers in dashed-dotted squares.  
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Clinical 
pathway 

Test Company Tissue Marker Accuracy Cost-effectiveness 

Diagnosis 
Pre-biopsy 

4K score OPKO lab, 
USA 

Blood Total PSA, free PSA, intact 
PSA, hK2 and clinical factors 

Sensitivity of 0.74 (95% CI, 0.726-0.76), specificity of 
0.60 (95% CI, 0.59-0.61), AUC any cancer 0.69, 

0.72 Gleason ≥ 7 

 

Diagnosis 
Pre-biopsy 

PHI Beckham 
Coulter Inc.,  

USA 

Blood Total PSA, free PSA,  
[-2]proPSA 

Sensitivity 0.93 (95% CI, 0.90-0.95), specificity 0.26 
(95% CI, 0.25-0.28), AUC 0.72 for Gleason ≥ 4+3 

Not cost-effective (115) 

Diagnosis 
Pre-biopsy 

STHLM3 N/A Blood PSA, free PSA, intact PSA, 
hK2, MSMB, MIC1 and 254 

SNPs and clinical  

AUC 0.74 (95% CI, 0.72-0.75) For Gleason ≥ 7. 
Reduction of the overall number of biopsies by 32% 

 

Re-biopsy PCA3 Hologic,  
USA 

Urine PCA3 Sensitivity  47-75% ,  specificity  71-87%, AUC 0.68-
0.87 

Not cost-effective (115) 

Diagnosis 
Pre-biopsy 

ExoDX 
Intelliscore 

 
Urine PCA3, ERG, SPDEF and 

clinical parameters 
AUC 0.77 (95% CI, 0.71-0.83) to discriminate 
Gleason 7, cut-off value of 15.6 avoids 26% of 

biopsies 

Highest QALY when compared to 
standard of care, PHI and 4K test 

(116) 
Diagnosis 
Pre-biopsy 

Select MDx MDxHealth,  
USA 

Urine DXL1, HOXC6, KLK3 AUC of 0.90 (95% CI 0.87-0.93) with clinical 
variables. Cut-off of -2.8 (sensitivity: 96%, NPV 98% 

for Gleason ≥7), results in 42% reduction of total 
number of biopsies. 

Potential savings of €128 and a gain 
of 0.025 QALY per patient compared 

to the standard of care (117). 

Diagnosis 
Pre-biopsy 

MiPS University of 
Michigan ML 

labs, USA 

Urine PCA3, TMPRSS-ERG, 
ERSPC risk parameters 

0.84 (95% CI: 0.80-0.87) for diagnosis of prostate 
cancer. AUC 0.84 (95% CI: 0.78-0.85) if 

TMPRSS2:ERG ≥10 for diagnosis of Gleason ≥ 7. 

Projected savings of $1200-2100 per 
patient if used as a triage prior to 

biopsy (118). 
Re-biopsy? Confirm 

MDx 
MDxHealth,  

USA 
Tissue DNA hyper-methylation of 

GSTP1, APC and RASSF1 
AUC 0.76 and NPV of 96% for Gleason ≥7 using 

Intelliscore 
Savings of $588 per patient 

management (119). 
Treatment 
planning  
Adjuvant 
therapy 

Prolaris Myriad 
genetics, USA 

Tissue 31 cell cycle progression 
genes normalised to 15 

housekeepers 

Hazard ratio 1.88 per 1 point increase for 
biochemical recurrence. High score associated with 
risk of biochemical recurrence, metastasis and death 

(HR: 1.77) 

Small savings compared to its cost, 
not enough evidence to recommend 

(120). 

Treatment 
planning 

ProMark Metamark,  
USA 

Tissue 8 protein marker assay PPV of score ≤0.33 of 83.6% (95% CI 71.9-91.8%), 
specificity of 90%. 

0.04 more QALY and $700 less in 
costs compared with usual care (121). 

Treatment 
planning 

OncotypeDx Genomic 
Health, USA 

Tissue 12 prostate cancer-related 
genes and 5 reference genes 

20 point increase in the score  associated with  2.3 
fold increase of risk of high-grade disease (95% CI 

1.5-3.7) and 1.9 fold increase of risk of ≥pT3 disease 

Average saving of $2286 per patient 
as more are recommended to have 

active surveillance over surgery (122). 
Treatment 
planning  
Adjuvant 
therapy 

Decipher Genome Dx, 
Canada 

Tissue 22 RNA biomarkers Prediction of metastasis (HR: 1.30, 95% CI 1.14-
1.47, p <0.001), accumulated HR of 1.52 (95% CI 

1.39-1.67) per 0.1 unite increase. AUC of 0.81 for 10 
year metastasis when combined with clinical 

information 

Decipher based care was less costly 
and resulted in greater QALYs than 

100% adjuvant therapy. 100% 
adjuvant therapy had improved 

clinical outcomes at 5 and 10 years 
(123). 

Table 1.2 Summary of available biomarkers, with substrate, accuracy and cost-effectiveness evidence, if available.   
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1.2.2.2.1. Blood-based biomarkers 

1.2.2.2.1.1. PSA 

The performance of a diagnostic test relies on several indicators, mainly the ability of the test to find 

disease and not to diagnose healthy patients (sensitivity and specificity). The level of PSA to trigger 

investigations varies depending on age; for instance, a PSA of ≥3ng/mL triggers a referral to a urologist 

in a 50 year old man. An 85-year-old man would need to have a much higher PSA value and higher 

suspicion of cancer to be referred. This is based on two large randomised PSA-screening trials, the 

European Randomised Study of Screening for Prostate Cancer (ERSPC) and the Prostate, Lung, 

Colorectal and Ovarian Cancer (PLCO) trials  (124,125). The widespread use of PSA has led to 

controversy, as some believe the overuse of PSA has not necessarily reduced prostate cancer mortality. 

Therefore, different organisations recommend for or against the use of PSA as a screening tool (126–

128). In the UK, PSA is not used as a screening tool, instead it is requested on patient per patient basis, 

as part of an informed choice programme.   

The Prostate Cancer Prevention Trial performed prostate biopsy routinely in asymptomatic men with 

PSA values below, to investigate the prevalence of cancer in this group. 449 (15.2%) of patients had 

cancer, of which 67 (14.9%) were high grade (defined as Gleason 7 or greater) (129). Thompson et al. 

calculated the PSA Receiver Operating Curve (ROC) in the placebo group of the same trial, and found 

no optimal cut-off point with high sensitivity and specificity. For instance, the ROC for any cancer vs no 

cancer was 0.678 (95% CI, 0.666-0.689).  For Gleason ≥7 vs no or lower Gleason the ROC was 0.782 

(95% CI, 0.748-0.816), and Gleason ≥8 versus no or lower Gleason, the ROC was 0.827 (95% CI, 

0.761-0.893). Lower cut-off values of 1.1 ng/mL yielded a sensitivity of 83.4% and specificity of 38.9%, 

compared to 20.5% sensitivity and 93.8% specificity of a cut-off of 4.1 ng/mL (130). Furthermore, a 

meta-analysis calculated a pooled sensitivity, specificity, and positive predictive value for PSA of 72.1%, 

93.2% and 25.1%, respectively (131). Although PSA is not the perfect diagnostic and prognostic 

biomarker, the use of PSA derivatives have shown some promise as tools to improve the diagnostic 

pathway and risk stratification of patients. 

1.2.2.2.1.2. PSA density 

The PSA density (PSAd) value is obtained by dividing the PSA level by the prostate volume. This takes 

into account the fact that prostate cancer releases more PSA per unit of volume than benign prostatic 

enlargement (132,133). Although some authors have reported that PSAd is only useful in a subset of 

patients (134) or it does not improve biparametric-MRI detection of prostate cancer (135), others have 

reported utility in combining PSAd with mpMRI information to aid biopsy decision making (136–138). 

For example, Washino et al. found that PSAd acted as an independent predictor for prostate cancer 

and significant prostate cancer (Gleason ≥3 + 4 and/or an MCCL ≥4 mm). The AUC for PSAd was 0.815 

(95% CI: 0.767−0.863), compared to PSA alone (0.642, 95%CI: 0.578−0.706) when combining with 

mpMRI information (PIRADSv2), and applying PSA density ranges of <0.15, 0.15-0.29, ≥0.3; the 

detection rate was highest when MRI suspicion was high (PIRADS 4-5), and PSA density was high 
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(76% if 0.15-0.29, and 97% if PSAd ≥0.3). Additionally, in men with non-conclusive mpMRI (PIRADS 

3), a PSAd ≥0.3 had a detection rate of 86% (139).  

1.2.2.2.1.3. 4K score 

The 4K score (4 kallikrein) combines total PSA, free PSA, intact PSA and human kallikrein 2 (hk2) with 

factors such as age, digital rectal exam (DRE) findings and previous biopsy status (140–142).The 4K 

panel was initially developed on 740 men that underwent biopsy as part of the ERSPC trial. Here, 

Vickers et al. found that compared to PSA alone, the 4K panel improved the AUC from 0.68 to 0.83 

when including age and PSA in the model, and from 0.72 to 0.84 when including PSA and digital rectal 

exam (142). Based on these findings, a predictive model was created and validated in the French cohort 

of the ERSPC, resulting in a calculated reduction of unnecessary biopsies (573 per 1000 men with 

raised PSA), while missing a small number of men with cancer (42 per 1000 men) (141). This was then, 

further validated in the Rotterdam subset of the ERSPC cohort, with similar findings (140). The 4K score 

may aid clinician’s biopsy decision making, helping avoid between 41-71% of biopsies (143). In a meta-

analysis by Russo et al. found a pooled sensitivity of 0.74 (95% CI, 0.726-0.76), pooled specificity of 

0.60 (95% CI, 0.59-0.61) and a diagnostic odds ratio to detect high grade prostate cancer of 10.15 (95% 

CI, 8.06-12.79) (144). Currently, the European Association of Urology (EAU) guidelines do not 

recommend the routine use of 4K as an aid for prostate biopsy decision making (145).    

1.2.2.2.1.4. Prostate Health Index (PHI) 

This industry developed test, calculates an index based on total PSA, free PSA and [−2]proPSA ([-2] 

isoform of proenzyme prostate specific antigen) (146). The score is calculated as follows: ([−2]proPSA 

/ free PSA value) × √ total PSA value. Catalona et al. found that increasing PHI was related to a higher 

risk of prostate cancer (4.7 fold) and 1.61-fold increase of Gleason ≥7. When comparing PHI and 

percentage free PSA, PHI was better at discerning between Gleason ≥4+3 versus lower grade or 

negative biopsies. The authors concluded that PHI might be useful in reducing biopsies in men with a 

PSA between 2 and 10 ng/mL and a negative digital rectal exam (146). PHI has been approved by the 

US Food and Drug Administration (FDA) for use in the “grey” area when men have a PSA between 4-

10 ng/mL. Russo et al. calculated a pooled sensitivity and specificity of 0.93 (95% CI, 0.90-0.95) and 

0.26 (95% CI, 0.25-0.28), respectively (144). The same meta-analysis noted that there is some 

heterogeneity on cut-off values used in the different studies, to the advantage of sensitivity (144). For 

both 4K score and PHI, the index test is transrectal biopsy, and significant cancer is defined as Gleason 

7 without specifying Gleason 4 component or MCCL. When used in conjunction with mpMRI, PHI has 

been shown to enhance the diagnostic ability (147).  

1.2.2.2.1.5. Stockholm-3 (STHLM3) 

In 2015, Grönberg et al, published their findings on a prospective population-based diagnostic study in 

Stockholm, Sweden. Patients aged 50-69 years old were invited randomly to take part in the study. A 

new model called STHLM3 was developed and consists of plasma biomarkers (PSA, free PSA, intact 

PSA, hK2, MSMB and MIC1), genetic markers (254 SNPs) and clinical characteristics (DRE and 

prostate volume).  
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The STHML3 model aimed to identify men with Gleason ≥7, and was developed in a cohort diagnosed 

with transrectal ultrasound. The model helped reduce the overall number of biopsies by 32%, 17% in 

Gleason 6 and 44% of benign patients. When comparing the ability to detect MCCL 0-10 mm versus 

>10 mm, there was a reduction in detection of Gleason 3+3 tumours compared to a PSA threshold of 

3ng/mL ( 761 versus 608, p=<0.001), but not for Gleason >7 (p=0.82). In other words, using a 3ng/mL 

threshold detects more insignificant cancer compared to STHLM3 (0-10 mm), but detects a similar 

amount of high-grade tumours regardless of the MCCL length (148).  

The performance of this test in conjunction with mpMRI was tested in 532 men from a population-based 

study. Grönberg et al. found that using STHLM3 prior to targeted and systematic biopsy in men with a 

positive STHLM3 score, increased detection of Gleason ≥7 tumours by 10% (n = 178 vs 162; 95% CI 

1.03–1.18). While sparing 38% of performed biopsy procedures. Compared to performing systematic 

and targeted biopsies in all men, this approach shows a lower detection of Gleason ≥7 cancer (Relative 

sensitivity 0.92; 95% CI 0.88–0.95) (148).  

1.2.2.2.2. Urine based biomarkers 

1.2.2.2.2.1. PROGENSA Prostate Cancer Antigen 3 (PCA3)® 

In 1999 by Bussemakers et al. reported the discovery of a novel prostate-specific gene with high 

expression in prostate cancer (149). The transcripts of PCA3 mRNA can be detected in urine; this 

discovery led to the development of a commercially available quantitative test, measure following a 

digital rectal massage (150,151). A PCA3 score is calculated by dividing the PCA3 mRNA value by the 

PSA mRNA and the resulting value multiplied by 1000. This test is approved by the Food and Drug 

Administration (FDA) in men with a persistently raised PSA and negative biopsy. It has been reported 

to reduce the number of biopsies between 37 and 77.1% (59). Vlaeminck-Guillem et al. performed an 

analysis of 11 studies evaluating the diagnostic accuracy of PCA3 and found a sensitivity of 53-84% 

and specificity of 71-80% in biopsy naïve men. In men with a previous negative biopsy, the sensitivity 

was between 47-75%, and the specificity was between 71-87% (152). The ability of PCA3 to detect 

high-grade disease has been inconsistent, with some authors reporting a correlation between PCA3 

score and T stage, tumour volume or Gleason score (153–155), others have reported that PCA3 cannot 

predict either (156–160). When PCA3 and clinical information is added to mpMRI, the AUC improved 

from 0.76 (95% CI 0.70-0.82) to 0.80 (95% CI 0.742-0.874). Whereas PCA3 alone has AUC values of 

0.64 (95% CI, 0.58-0.70) with a threshold of ≥ 27, 0.59 (95% CI, 0.51-0.66) with a threshold ≥ 35 and  

0.67 (95% CI , 0.60-0.74) for a threshold of ≥ 44 (161). 

1.2.2.2.2.2. ExoDX/ Intelliscore 

ExoDX measures the expression of three genes (PCA3, ERG and SPDEF) from exosomes in urine 

(162). Exosomes are small vesicles secreted by normal and cancer cells that contain mainly mRNAs 

and microRNAs, making these vesicles enriched of material that may be low in cancer cells (162). It 

does not require a prior DRE or preservatives, improving its potential to apply to clinical practice (163). 

A score from 0-100 is obtained after applying an algorithm to the normalised PCA3/ERG RNA levels. 

McKiernan et al. examined the utility of the ExoDx and standard of care (PSA, age, race and family 
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history) versus standard of care alone to discriminate Gleason 7 and 6 and no cancer. A cut-off value 

of 15.6 avoided 26% of biopsies, while missing 5% of patients with dominant Gleason 4 patients. The 

calculated AUC was 0.77 (95% CI, 0.71-0.83) vs 0.66 (95% CI, 0.58-0.72) (p < 0.001) for standard of 

care alone (164). When comparing the cost-effectiveness of PHI, 4Kscore, Select MDX score, ExoDX 

and standard of care, the ExoDX provided the highest quality-adjusted life years (QALY) with an 

incremental cost-effectiveness ratio of $58,404 per QALY, whilst avoiding 34.17% of unnecessary 

biopsies and reducing over-diagnosis by 20%, when compared to standard of care (116). 

1.2.2.2.2.3. Select MDxTM 

The Select MDxTM measures mRNA relative expression of two genes: DLX1 and HOXC6.  KLK3 (PSA) 

is used as an internal reference. First described by Leyten et al. in 2015. When compared to PCA3 and 

PSA, Select MDx had an improved AUC of 0.77 (95% CI, 0.71–0.83) compared to PCA3 AUC of 0.68 

(95% CI, 0.62–0.75). This was further improved when serum PSA was added to obtain an AUC of 0.81 

(95% CI, 0.75–0.86) (165). The test was validated in two prospective cohorts, aiming to develop a model 

combining molecular profiling and clinical risk factors to identify Gleason ≥7 (166). The AUC for each 

marker was PCA3: 0.65, HOXC6: 0.73 DLX1: 0.65 and TDRD1 0.69. The combination of HOXC6 and 

DLX1 yielded the highest AUC of 0.74. A combined logistic regression model was created by adding 

clinical information including age, PSA, PSA density, family history DRE and history of prostate biopsy 

reaching an AUC of 0.90 (95% CI 0.87-0.93). When a cut-off of -2.8 was applied (sensitivity: 96%, NPV 

98% for Gleason ≥7), resulted in 53% decrease of unnecessary biopsies and a reduction of the total 

number of biopsies if 42% (166). 

Using SelectMDx could reduce over-diagnosis and over-treatment in men with PSA levels of >3ng/mL, 

with potential savings of €128 and a gain of 0.025 QALY per patient compared to the standard of care 

(117). Combination of SelectMDx with mpMRI has shown a statistically significant difference between 

PI‐RADS 3 and 4 (p = < 0.01) and between PI‐RADS 4 and 5 (p= <0.01) (167). Systematic transperineal 

biopsies combined with mpMRI fusion biopsies outperformed SelectMDx in a cohort of men in active 

surveillance, sensitivity: 66.6 versus 55.6%, specificity: 87.7 versus 65.8%, and diagnostic accuracy 

84.9 versus 70.3%, respectively (168).  

1.2.2.2.2.4. Mi Prostate Score (MiPS)TM 

The MiPS consists of is a post digital rectal exam urine test that measures RNA levels of the 

TMPRSS2:ERG fusion and PCA3 in addition to serum PSA levels (169). This test has been reported 

to improve the detection of prostate cancer and Gleason >6 disease with AUC of 0.77 (169). Other 

groups have measured the same biomarkers; for instance, Leyten et al. found that TMPRSS2:ERG 

provided additional predictive value to PCA3 and the European Randomised Study of Screening for 

Prostate Cancer (ERSPC) risk calculator parameters (serum PSA, volume, abnormal digital rectal exam 

and abnormal transrectal ultrasound). In the diagnosis of prostate cancer, the ERSPC parameters had 

an AUC of 0.79 (95% CI: 0.75-0.84), the addition of PCA3 score ≥25 increased the AUC to 0.83 (95% 

CI: 0.79-0.87), this was slightly increased to 0.84 (95% CI: 0.80-0.87) when TMPRSS:ERG was added. 

For detection of Gleason score ≥7 the values were 0.80 (95% CI: 0.73-0.86) for ERSPC parameters, 



50 
 

increased to 0.84 (95% CI: 0.78-0.85) if TMPRSS2:ERG ≥10 (170). This test is considered 

investigational by the EAU guidelines (145). When examining the cost-effectiveness of the MiPS test, 

42% of biopsies could be avoided and projected savings of $1200-2100 per patient if used as a triage 

prior to biopsy (118). The prevalence of the TMPRSS2:ERG fusion in different races was found to be 

higher in men of European descent (49%), followed by men of Asian descent (27%) and the lowest on 

men of  African descent (25%). This may limit the use of this test in minorities (171).  

1.2.2.2.3. Tissue based biomarkers 

1.2.2.2.3.1. ConfirmMDx® 

The ConfirmMDx® test evaluates DNA hyper-methylation of CpG islands of the promoter region of three 

genes: GSTP1 (DNA detoxification), APC (apoptosis), and RASSF1 (cycle cell regulation). This test 

studies negative formalin fixed paraffin embedded (FFPE) prostate biopsy tissue, in order to determine 

the risk of a nearby undetected tumour (172). ConfirmMDx® has been validated in a European cohort 

(United Kingdom and Belgium) and the United States of America (173–175). Stewart et al. tested the 

panel on bio-banked FFPE tissue from 498 patients with an initial negative biopsy, followed by repeat 

biopsy at 30 months. The NPV was 90% (95% CI 87-93). Following a multivariate model correcting for 

age, PSA, digital rectal exam and characteristics of the first biopsy (HGPIN, inflammatory atrophy and 

adenoids), the epigenetic panel was found to be an independent predictor of a positive subsequent 

biopsy (OR 3.17, 95% CI 1.81-5.53) (175). A separate study showed an NPV of 88% (95% CI 85-91), 

and an OR of 2.69 (95% CI 1.60-4.51) when the same multivariate model was applied (173). When 

validated on 211 African-American men, Waterhouse et al. found a similar diagnostic accuracy, with 

NPV of 78.8% (95% CI 71.5-84.6) for any prostate cancer and Gleason ≥7 94.2% (95% CI 88.7-97.1), 

this study had 81 men with cancer, of which 66% had Gleason 6 disease and included men with low 

PSA values (lowest value of 0.62 ng/mL); additionally, most men with cancer had incidental disease 

(T1c in 69%) (174). 

In 2016 Van Neste et al. published Episcore, a methylation intensity algorithm that was then combined 

with clinical characteristics resulting in an NPV of 96% for Gleason ≥7 (166). All these studies lack long-

term follow up and have small high grade (Gleason ≥7) cohorts. No comparison with or along mpMRI 

is available on the literature. 

1.2.2.2.3.2. Prolaris ® 

Also referred to as the Cell Cycle Progression score (CCP), this test is an RNA expression panel of 31 

genes relative to 15 housekeeper genes, for a total of 46 genes. The test can be performed on prostate 

biopsy and radical prostatectomy tissue, to predict several outcomes including decision making 

between active surveillance and radical treatment, prediction of biochemical recurrence following 

surgery and mortality (176–178). A systematic review and meta-analysis by Sommarivva et al. 

calculated a pooled hazard ratio (HR) for biochemical recurrence per 1 point increase in the score of 

1.88 on univariate analysis, in other words for each increase in the score the risk of biochemical 

recurrence almost doubles (179). The multivariate model, including clinical and pathological variables 

(extent of disease, age clinical stage and use of hormones) obtained a combined HR of 1.63. The ASCO 
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guidelines recommend this test can be offered only when the result may change management (180). 

When examining the correlation between CCP score and mpMRI features, Wibmer et al. found that 

men with mpMRI signs of extracapsular extension had a significantly higher CCP score. There was no 

significant association between the CCP score and any of the PIRADSv2 score, or other mpMRI 

features (tumour volume and length on T2 and ADC, tumour ADC value or restricted diffusion (181). A 

systematic review failed to find enough evidence to support the cost-effectiveness of the test due to low 

quality of studies; the authors found that the test appeared to affect clinical decision in 64.9% of cases. 

Additionally, Prolaris® offered small savings compared to its cost (120).  

1.2.2.2.3.3. ProMark ®  

In 2014, Shipitsin et al. published a new proteomic biomarker panel for the prediction of prostate cancer 

aggressively and lethality. The panel was developed using two tissue microarrays made up of tissue 

from radical prostatectomy, 37 samples from Gleason 3+3 and 35 with Gleason 4+3 or 3+3/3+4 with 

T3b disease. From each tumour area, a low and high-grade area were selected, to model for random 

biopsy sampling missing the index biopsy. 120 biomarkers were selected from publicly available data 

based on four biological criteria, followed by technical criteria based on tissue staining of 62 candidates. 

39 of these were then used to stain the tissue microarrays, to obtain a final 12 marker selection (182). 

The panel was further refined in 380 patients with an average 4 year follow up after radical 

prostatectomy, resulting in an 8 biomarker assay panel identifying favourable (Gleason ≤ 3+4, ≤ T2) 

versus unfavourable pathology ( Gleason ≥ 4+3, ≥T3/N/M). A risk score from 0 to 1 is calculated, the 

positive predictive value of a score ≤0.33 was calculated at 83.6% (95% CI 71.9-91.8%), with specificity 

of 90%. Only 23.1% of patients with a risk score >0.80 had favourable disease (95% CI 11.1-39.3%) 

(183). The authors proposed a potential use for active surveillance, but no clinical trials to evaluate the 

performance of this test have been done so far. As with Prolaris®, the use of this panel is recommended 

by ASCO only if clinical management is likely to be changed based on the result (180). 

1.2.2.2.3.4. Oncotype Dx Genomic Prostate Score ® 

This test was designed to be used on prostate biopsy FFPE tissue; it consists of five reference genes 

and 12 cancer genes with a known role in prostate cancer, including androgen pathway (AZGP1, KLK2, 

SRD5A2 and FAM13C), cellular organisation (FLNC, GSN, TMP2 and GSTM2), proliferation (TPX2), 

and stromal response (BGN, COL1A1 and SFRP4) (184). Normalised gene expression is calculated 

and used to generate individual group scores that are then algorithmically combined to obtain and 

unscaled Genomic Prostate Score (GPS), ranging from 1 to 100 (184). The score aims to predict 

adverse pathology in order to risk assess patients before active surveillance. Multivariate analysis by 

Klein et al. calculated that a 20 point increase in the score was associated with a 2.3 fold increase of 

risk of high-grade disease (95% CI 1.5-3.7) and 1.9 fold increase of risk of ≥pT3 disease (185). All 

cohorts described by Klein et al. had a high grade of upgrade at radical prostatectomy, for example; the 

validation cohort at biopsy had 94 men with Gleason 7 disease, this number increased to 207 (52%) 

with Gleason ≥ 7. This reflects the random biopsy approach with a relatively high proportion of patients 

upgraded at the time of surgery.  
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In an active surveillance retrospective study by Kornberg et al. men with a higher GPS score had a 

higher risk of biopsy upgrading (HR 1.28, 95% CI 1.19–1.39, p <0.01). The same was found comparing 

PI-RADSv2 scores 1-2 versus 4 (HR 2.62, 95% CI 1.45–4.76, p <0.01), and 1-2 versus 5 (HR 4.38, 

95% CI 2.36–8.16, p <0.01) (186). Although not discussed by the authors, the GPS score could be 

useful in men with PIRADS scores 1-2 to decide suitability to defer biopsy.  

1.2.2.2.3.5. Decipher®  

The Decipher® test or Genomic classifier (GC) was developed as an early prediction tool to determine 

the risk of metastasis after surgery. 545 patients from the Mayo Clinic Radical Prostatectomy Tumor 

Registry were included, all patients had a radical prostatectomy between 1987 and 2001 and were 

divided into three groups: no evidence of disease, PSA recurrence (matched controls) and clinical 

metastasis (cases). A 22 marker panel was generated from differential RNA expression using high-

density expression arrays, obtaining a score from 0 to 1. The markers biological function include cell 

differentiation and proliferation, adhesion and motility, immune response, cell cycle progression/mitosis 

and androgen receptor signalling (187). The performance on the validation cohort of the GC alone, 

clinical characteristics alone and in combination resulted in AUC of 0.75, 0.74 and 0.69, respectively. A 

meta-analysis of five studies including data for 855 patients found that the Decipher test was able to 

predict metastasis (HR: 1.30, 95% CI 1.14-1.47, p <0.001), with an accumulated HR of 1.52 (95% CI 

1.39-1.67) per 0.1 unite increase. The clinical model alone had a c-index of 0.76, increased to 0.81 

when the GC was added (188).  

The decipher test has been reported to predict metastasis at 10 years at point of biopsy with HR of 1.34 

to 1.75 per 10% increase in the score (185,189,190). In another study, the Decipher test had an AUC 

of 0.82, 95% CI 0.76-0.86, p=0.0003) when predicting metastatic prostate cancer following biochemical 

recurrence. Gleason score alone had an AUC of 0.63 (95% CI 0.58-0.70) (191). Higher GC has also 

been found to correlate to Gleason 4 percentage, expansive cribriform, both histopathological signs of 

tumour aggressiveness (192,193). As with Oncotype Dx, Prolaris and ProMark, the use of this test is 

only recommended by ASCO if management is likely to change when considered with clinical 

parameters (180).  
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1.3. The problem with current biomarker panels  

As described above, multiple biomarkers have been developed aimed at answering different questions 

in the clinical pathway (Figure 1-7). Most of these were aiming at reducing the number of unnecessary 

biopsies or decide whom to re-biopsy and were developed in an era when prostate cancer was 

diagnosed with blind and random biopsies. With the emergence of multiparametric MRI as a tool to 

visualise prostate cancer and aid targeting of samples, many of these biomarkers utility in the diagnostic 

pathway seems lost. For instance, PHI and PCA3 have been examined in conjunction with mpMRI, and 

were found not to be a cost-effective strategy for the NHS (115). Although there is some evidence that 

some of these biomarkers enhance the diagnostic ability of mpMRI (147,161,194), studies looking at 

mpMRI in conjunction with biomarkers are rare. Development and examination of biomarkers in 

conjunction with a technique that has been shown to reduce the number of biopsies and over-diagnosis 

should be a priority (47). Novel biomarker panels should aim to improve mpMRI, especially when the 

results are inconclusive.  

Additionally, the panels presented here were designed to detect “aggressive” disease, usually defined 

as Gleason ≥7. As discussed on 1.2.1.6.1, Gleason 3+4 and 4+3 are distinct entities, especially when 

the percentage of Gleason 4 is taken into account. The Gleason 7 classification has left to be forgotten 

and has been replaced by the distinction between 3+4 and 4+3 as two separate categories. Therefore, 

biomarker panels should aim to detect primary Gleason 4, or ideally percentage of Gleason 4 with limits 

based on long term follow up with death outcomes. Furthermore, the detection of Gleason 3+4/4+3 on 

most panels was based on transrectal blinded ultrasound; for instance, Confirm MDx aims to detect 

missed cancer following a negative biopsy, this can be reduced by using mpMRI prior to biopsy 

(195,196). 

Lastly, the estimation of Gleason 4 disease is performed visually by a trained histopathologist, as the 

exact percentage of Gleason 4 is of primordial importance both for risk stratification and as a target for 

biomarker development. Attempts should be made to streamline this process, possibly taking 

advantage of digital pathology and machine learning.  

In this thesis, the development and validation of a novel biomarker panel that can be detected in fluidic 

samples is presented, taking advantage of cohorts with mpMRI before transperineal prostate biopsy. 

The biomarker panel would act as an extra piece of information and will be evaluated on its performance 

alone and in conjunction with mpMRI. Second, Gleason 4 was examined using quantitative methods 

and to compare digital pathology estimations to the standard Gleason 4 percentage estimation.  
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1.4. Lay summary 

 

In the UK, one in six men will be diagnosed with prostate cancer in their lifetime. The prostate gland is 

located in the pelvis just below the bladder, and it depends on androgens to function. Like normal tissue, 

prostate tumours are dependent on androgens to grow and proliferate. This mechanism has been used 

to treat prostate cancer and has helped scientists understand how genes are turned on and off by 

increasing or decreasing the levels of androgens.   

Problem 1: The diagnostic pathway 

Currently, upon suspicion of prostate cancer, men will have a blood test called Prostate Specific Antigen 

(PSA), followed by samples of the prostate (biopsy), or in some centres, an image of the prostate using 

Magnetic Resonance Imaging (MRI) to decide if a sample needs to be taken. Although these tests have 

improved early diagnosis and lowered death rate, in some cases the tests miss men who need biopsies 

(false negative) or are inaccurate and advice a biopsy in a man who has no cancer (false positive). 

Additionally, the current pathway has led to significant over-diagnosis, ranging from 1.7 to 67% of cases.   

Most centres take these biopsies through the rectum, carrying a risk of serious infections that require 

hospitalisation. Samples can also be taken through the perineum (the skin between the testicles and 

the rectum), but this also has some side effects, including pain and bleeding. As such, taking biopsies 

of the prostate should be performed after careful consideration.  

Therefore, developing new tests with better accuracy, that reduce the number of unnecessary biopsies 

and over-diagnosis are acutely needed. Many companies have tried to develop such tests. 

Unfortunately, the available evidence does not support using these in clinical practice, and their use is 

minimal.  

Problem 2: Prostate cancer biopsy-based classification can be subjective 

If a man has a sample taken from their prostate, a pathologist will examine the tissue, and given a score 

called the Gleason score. Briefly, the pathologist compares the cancer to normal tissue. The Gleason 

score goes from 3 to 5, where 3 is very similar to normal tissue, 5 looks nothing like normal tissue, and 

4 is something in between. The two most common scores in the sample are used to give the final 

Gleason sum = most common + second most common.  Let us imagine a cancer with only Gleason 3 

and 4; if there is <50% of Gleason 3 then the final score would be 3+4, if there is ≥50% Gleason 4, the 

final score would be 4+3.  

Since greater amounts of Gleason 4 have been linked to increased mortality, many of the tests trying 

to see how aggressive the cancer in an attempt to predict when a patient has a lot of Gleason 4. This 

percentage calculation is performed visually by a trained histopathologist and can be influenced by 

experience. It can also change depending on who is examining the biopsy (subjective). New techniques 

like digital pathology, where the images are converted to digital images, could make this estimation 
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more accurate. For example, artificial intelligence algorithms have been used in pathology as a fast 

alternative that can be used to read the images and make the readings more objective.  

This thesis has two main aims: 

1. To describe the process of discovering and validating a new blood or urine test that measures 

to determine which patients would benefit from a biopsy (Chapter 3 and 4). 

2. Study the amount of Gleason 4 and cancer length (in a biopsy) using digital pathology and 

compare this to what the pathologist is reporting (Chapter 5). 
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Chapter 2. Materials and methods 

2.1. Materials 

Unless otherwise stated all chemicals and reagents were supplied by Sigma Aldrich. 

2.1.1. Cell lines and associated media 

LNCaP (ATCC, CRL-1740), C4-2 (ATCC, CRL-3314), C4-2B (ATCC, CRL-3315) and PC3 (ATCC, 

CRL-1435)  

Cultured in RPMI cell media supplemented with 10% FBS (Life technologies, Thermo Fisher Scientific, 

Massachusetts, US) stored at 4°C.  

 

LNCaP, C4-2, C4-2B and PC3 starvation media 

Phenol red free RPMI (GibcoTM through Thermo Fisher Scientific, Massachusetts, US) supplemented 

with 10% charcoal stripped FBS (Thermo Fisher Scientific, Massachusetts, US) stored at 4°C. 

 

2.1.2. Drugs  

Synthetic Androgen (R1881) 

R1881 (CHEMOS GmbH) was diluted in 100% ethanol (Thermo Fisher Scientific, Massachusetts, US) 

to a working concentration of 1 nM. 

 

2.1.3. RNA extraction  

Cell line RNA extraction 

miRNeasy mini kit (Qiagen, Machester, UK) was used to extract RNA. 

Blood mRNA extraction 

PAXgene blood RNA kit (Qiagen, Machester, UK) was used for extraction of RNA from blood stabilized 

in PAXgene blood RNA tubes (Qiagen, Machester, UK). 

Urine RNA extraction 

QIAzol lysis reagent (Qiagen, Machester, UK) 

Chloroform:Isoamyl alcohol 24:1  

Ethanol 100 % (Thermo Fisher Scientific, Massachusetts, US) 
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Nuclease-free water not DEPC-Treated (Ambion - Thermo Fisher Scientific, Massachusetts, US) 

 

2.1.4. RNA quality control  

Bioanalyzer automated electrophoresis  

Agilent RNA 6000 Pico and RNA 6000 Nano reagents were used depending on the final expected RNA 

concentration (Agilent, California, US). 

Qubit 

Qubit RNA HS Assay (Thermo Fisher Scientific, Massachusetts, US). 

 

2.1.5. cDNA  

2720 Thermal cycler (Life technologies - Thermo Fisher Scientific, Massachusetts, US) 

Cell line cDNA 

High-Capacity cDNA reverse transcription kit (Thermo Fisher Scientific, Massachusetts, US). 

 

Blood cDNA 

Fluidigm reverse transcription master mix (Fluidigm, San Francisco, US).  

 

2.1.6. Preamplification 

Urine 

Complete whole transcriptome amplification WTA kit (Sigma-Aldrich, Missouri, US) 

GenElute PCR clean-up kit  (Sigma-Aldrich, Missouri, US) 

 

PAXgene whole blood 

Preamp Master Mix (Fluidigm, San Francisco, US). 
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2.1.7. PCR  

2.1.7.1. qPCR  

Taqman gene expression assays (Thermo Fisher Scientific, Massachusetts, US) used in this thesis are 

described in Table 2.1. 

TaqMan fast advanced master mix (Thermo Fisher Scientific, Massachusetts, US) was used in all 

reactions. 

96 well hard-shell plate (BIO-RAD) 

CFX-Connect Real-Time System (BIO-RAD) 

2.1.7.2. Fluidigm high throughput qdPCR  

Taqman primers and fast advanced master mix were used in all Fluidigm chips.  

Control Line Fluid syringes for 192.24 and 96.96 IFC (Fluidigm, San Francisco, US). 

96.96 and 192.24 IFC Fluidigm chips ( Fluidigm, San Francisco, US) 

96.96 and 192.24 IFC Fluidigm reagents (Fluidigm, San Francisco, US). 

Juno System and Biomark HD System (Fluidigm, San Francisco, US) access courtesy of Dr Emma 

Ashton at Great Ormond Street Hospital for Children NHS Foundation Trust. 
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 Gene Taqman probe 

ABHD12 Hs01018047 

AGR2 Hs00356521 

EIF2B5 Hs00384949 

GFM1 Hs00227997 

MAD1L1 Hs00269119 

NDUFB11 Hs00372638 

NT5DC3 Hs00213132 

PECI (ECI2) Hs00196146 

SEC61A1 Hs01037684 

SLC26A2 Hs00164423 

STIL Hs00161700 

TM4SF1 Hs00371997 

TNFSF10 Hs00921974 

TRMT12 Hs00535286 

TSPAN13 Hs00917717 

XRCC3 Hs00193725 

AR Hs00907244 

CBLN2 Hs00699345 

COL6A3 Hs00915125 

GDF15 Hs00171132 

GTF2H4 Hs00231008 

MSMB Hs00159303 

NAALADL2 Hs00822484 

NT5C2L1 Hs00261330 

KLK3 Hs02576345 

SLC25A36 Hs00216785 

TMPRSS2 Hs00237175 

VPS28 Hs00211938 

PCA3 Hs01371939 

RPLP2 Hs01115128 

UBC Hs01871556 

GAPDH HS02758991 
 

Table 2.1 Gene name and Taqman assays.  

List of all Taqman assays used for qPCR and qdPCR for cell lines and human sample analysis. Colum 
on the left denotes gene ID name, column on the right indicates Taqman probe ID. All probes were 
purchased from Thermofisher.  
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2.2.Methods 

Unless indicated otherwise all experiments were repeated independently on at least three occasions. 

2.2.1. Cell culture   

2.2.1.1. Maintenance of cell lines  

Cell culture was performed in a class II laminar flow hood using aseptic technique.  Cells were grown 

up to 60-70% confluence, washed with room temperature PBS and treated with trypsin-EDTA. Cells 

were divided 1:3 (LNCaP), 1:5 to 1:8 (PC3, C4-2 and C4-2B) twice a week. Flasks were labelled to 

include date, cell line and passage number. 

 

2.2.1.2. Cell harvesting  

Cells were grown up to 60-70% confluence. Following removal of media, the flasks were placed on ice.  

Two washes with cold PBS cells were scraped on to 1ml of PBS and pipetted into a labelled eppendorf 

tube. The tube was centrifuged at 5000 RPM for 4 minutes. PBS was removed prior cell pellet 

processing.  

 

2.2.1.3. Cryopreservation of cell lines  

Cells were grown to 60-70% confluence, washed twice with PBS and treated with trypsin-EDTA. Cells 

well pelleted by centrifuging at 1100 RPM for 3 minutes. Pellets were re-suspended in 1 ml of cell media 

with 10% DMSO and transferred to a labelled cryovial. Cells were slowly frozen using Nalgene® Mr 

Frosty (Sigma-Aldrich, Missouri, US) at -80°C before transferring to long-term storage in liquid nitrogen. 

 

2.2.1.4. Retrieval of frozen cell lines  

Cryovials were removed from liquid nitrogen and placed in a water bath at 37°C until thawed. Cells were 

transferred onto a T75 flask with 15 ml of pre-warmed culture media ensuring cell separation. Cells 

were passaged at least twice before use in any experiments. 

 

2.2.1.5. Cell counting 

Cells were harvested at specific densities depending on experimental set up. Cells were washed twice 

with PBS and scrapped on to PBS to create a cell suspension. 0.5 ml of such suspension was pipetted 

onto an eppendorf tube and trypan blue (0.4% final concentration) was added to give a 1 in 4 dilution. 

100 µL of trypan blue-treated cell suspension was placed on the haemocytometer allowing the cell 

suspension to be drawn out by capillary action. The cells in the four large corner squares were counted 
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and an average cell number obtained. Using the following formula the number of cells per ml was 

calculated. 

Viable cells per ml=
Average of counted live cells

Number of squares (4)
 =Dilution ×10,000 

2.2.1.6. Androgen time course  

Cells at 50-70% confluence were serum starved using phenol red-free media and charcoal stripped 

FBS for 24 hours. 1 nM of R1881 or 0.01% ethanol was added prior cell harvesting and RNA extraction 

at 4, 8, 16, 24 and 48 hours. 

 

2.2.1.7. Androgen stimulated cells exposed to urine to simulate RNA degradation caused by 

urine. 

Donated urine from female volunteers was pooled and kept on ice. 160 ml of urine was taken and 

divided into four conical tubes. Two tubes were centrifuged at 2400 g for 20 minutes at 4°C to remove 

urine sediment (spun urine). Two labelled T75 flasks were filled with 40ml of unspun urine, two with 

spun urine and one with 40 ml of PBS.  

LNCaP cells that had been androgen stimulated for 24 hour were harvested on to an eppendorf tube 

and mixed with 4.5 ml of cold PBS and counted. The cells were divided equally into three T75 flasks 

(PBS, unspun and spun urine) and one eppendorf for immediate pelleting and freezing at -80°C. The 

five T75 flasks were incubated for one hour at 37°C.  

The contents of the T75 flasks were transferred to labelled 50 ml conical tubes and centrifuged at 4° C 

at 2400 g for 20 minutes. The supernatant was discarded and 1 ml of cold PBS added and mixed to re-

suspend the pellet. 2µl of tRNA (9mg/mL) was added to each sample and the sample were stored at -

80 °C for 30 minutes or until sample was frozen. tRNA was added to aid precipitation of low occurring 

RNA in the urine.  

 

2.2.2. RNA extraction  

Following extraction all RNA samples were aliquoted and diluted depending on experimental setting 

following extraction. Aliquots were frozen at -20 °C for short term storage and -80 °C for long term 

storage. 
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2.2.2.1. Cell line RNA extraction   

Total RNA from cell lines was extracted using miRNeasy mini kit (Qiagen) following the manufacturer’s 

instructions and omitting DNase digestion step. RNA was eluted in 40 µL of RNase free water. RNA 

yield and quality was measured using a Nanodrop spectrophotometer.  

 

2.2.2.2. PAXgene blood RNA extraction 

RNA was extracted using PAXgene blood RNA kit (RNA extraction was assisted by Ula Stopka-

Farooqui); this tube contains a preservative that protects RNA from degradation by RNAses and other 

molecules and triggers cell lysis of cells to reduce ex-vivo changes (197). An extra BR4 was buffer wash 

prior to elution was added to the protocol, following optimization performed by Ula Stopka-Farooqui. 

Following extraction RNA yield and quality was measured using a Nanodrop spectrophotometer, Qubit 

and Bioanalyzer as required for Fluidigm experiment. All samples were aliquoted as follows: 5uL for 

quality and control, 5uL for Fluidigm experiment, 10 and 60uL for future experiments.  

2.2.2.3. Urine RNA extraction 

Urine samples were collected as per local guidelines and RNA extracted by Dr Hayley Luxton and Dr 

Jonathan Kay with carrier RNA (PROMPT samples only). Cell pellets were lysed cells using QIAzol 

followed by a 5 minute incubation at RT. 200 µL of chloroform was added and samples repeatedly 

inverted for 15 seconds followed by a 2 minute incubation at RT. Samples were centrifuged at 12,000 

g for 15 minutes at 4 °C. The colourless upper aqueous phase was removed to a fresh eppendorf tube 

and RNA precipitated by adding 500 µL 100 % isopropyl alcohol followed by centrifugation at 12,000 g 

for 10 minutes at 4 °C. Supernatant was removed and 1 ml of 75% ethanol added before vortexing and 

centrifuging at 7,500 g for 5 minutes at 4° C. The pellet was briefly air dried and re-suspended in 40 µL 

of RNase free water.  

 

2.2.3. RNA quality control  

2.2.3.1. Nanodrop  

After zeroing with RNase free water, 1µl of each sample was used to measure RNA concentration. The 

amplitude of the curves and A260/230 and A260/280 ratios recorded to determine the concentration, 

purity or contamination of the samples prior to aliquoting. 

2.2.3.2. Bioanalyzer  

Agilent RNA Nano and Agilent RNA Pico kits were used following manufacturer’s instructions. The 

resulting RNA integrity number (RIN) was recorded. 
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2.2.3.3. Qubit 

RNA concentration was measured using Qubit RNA HS assay kit and 1 µl of sample. Prior to each use 

the machine was calibrated following manufacturer instructions.  

 

2.2.4. Gene based assays  

Unless otherwise specified all gene based assays and preparation was made on ice. 

 

2.2.4.1. cDNA synthesis  

Following normalisation of RNA concentration to 2µg (cell lines) or to the lowest concentration across 

all samples (urine), RNA was diluted to give a total volume of 10 µl. Following manufacturer’s 

instructions for the high-capacity cDNA reverse transcription kit cDNA, samples were placed in a 

thermal cycler for conversion to complementary DNA using the following parameters: 25 °C for 25 

minutes, 37 °C for 120 minutes, 85 °C for 5 minutes and 4°C indefinitely. 80 µl of RNAse-free water 

was added to the final cDNA to dilute it. 

 

2.2.4.2.  qPCR  

For all qPCR one to three housekeepers and a negative and positive control were included where 

available. 

2 µl of cDNA were loaded on to a 96 well hardshell PCR plate with 18 µl of mastermix (10 µl Taqman 

fast advanced mastermix, 1µl of Taqman assay and 7µl of RNAse free water). qPCR was performed 

using a CFX-Connect Real-Time System with a 2 minute UNG hold at 50 °C, followed by polymerase 

activation at 95 °C for 20 seconds and 40 PCR cycles (1 second at 95 °C to denature and 20 seconds 

at 60 °C to extend/anneal). For data analysis see 2.2.6.1.  

 

2.2.4.3. Preamplification  

RNA was amplified using the complete whole transcriptome amplification WTA kit following 

manufacturer’s instructions. The resulting cDNA was purified GenElute PCR clean up kit following 

manufacturer’s instructions.  
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2.2.4.4. Fluidigm qdPCR  

2.2.4.4.1. cDNA  

All samples were normalised to 80 ng. 4µl of reverse transcription pre-mix was added to 1 µl of RNA 

and place on a thermal cycler for reverse transcription following the manufacturer’s protocol. Samples 

were immediately pre-amplified.  

2.2.4.4.2. Preamplification  

Following the gene expression pre-amplification with Fluidigm PreAmp mastermix and Taqman assays 

protocol all samples underwent 16 cycles of Preamplification. A total of 25 assays were included in the 

Taqman assay pool (see  

Table 2.2). Products were diluted on 20 µl of TE Buffer (10mM Tris-HCL, 1.0 mM EDTA) and stored at 

-20 °C.   
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Chip Type 

96*96  192*24  

Chip number 

One Two and 
three 

Four and 
five 

Taqman assays 

NT5DC1 NT5DC1   

TRMT12 TRMT12   

ECI2 ECI2 ECI2 

NAALADL2 NAALADL2   

TM4SF1 TM4SF1 TM4SF1 

TSPAN13 TSPAN13 TSPAN13 

AR AR   

GFM1 GFM1   

NDUFB11 NDUFB11   

STIL STIL STIL 

SLC25A36 SLC25A36   

SLC26A2 SLC26A2 SLC26A2 

COL6A3 COL6A3   

EIF2B5 EIF2B5 EIF2B5 

TNFSF10 TNFSF10 TNFSF10 

TNFSF11 AGR2 AGR2 

GDF15 GDF15 GDF15 

ABHD12 ABHD12 ABHD12 

NT5DC3 NT5DC3   

GTF2H4 GTF2H4   

MAD1L1 MAD1L1 MAD1L1 

Housekeeper genes 

RPLP2 RPLP2 RLPL2 

UBC UBC UBC 

GAPDH GAPDH GAPDH 

 

Table 2.2 Taqman assays used for pooling prior to preamplification.  
A total of five chips were used for three sample and assay replicates. Genes used in each chip are 
denoted in left column (chip one), middle column (chips 2 and 3) and right column (chips 4 and 5).  



66 
 

2.2.4.4.3. Fluidigm planning and loading 

Depending on the Fluidigm chip to be used (96 x 96 or 192 x 24 wells) assays and sample position was 

planned using Excel. Each Fluidigm chip was primed on the Juno system and loaded following 

manufacturer’s instructions. Gene expression was measured using the Biomark module and data 

downloaded for analysis using the Fluidigm real time PCR analysis software.  

 

2.2.5. Digital pathology for measurement of Maximum Cancer Core Length (MCCL) and Gleason 

4 burden 

Pathologists were blinded to the PROMIS Gleason score; each patient was given an ID from 1 to 30, 

blinded from hospital number, PROMIS ID and pathology number. Using a random number generator 

(Excel) a patient was selected and assessed by two experienced uropathologists (Alex Freeman/Aiman 

Haider) using NDP.View 2 software. 

 

2.2.5.1. Scanning of H&E slides 

Haematoxylin and eosin (H&E)-stained 4 μm sections were retrieved from the UCL/UCLH Biobank for 

Studying Health & Disease. Slides were scanned using a Hamamatsu scanner (model C10730-12, 

Hamamatsu Photonics, Japan), uploaded to NDPscan software (Hamamatsu Photonics, Japan) at 

454nm/pixel resolution, source lens 40x, with capability to zoom up to 80x. All scanning performed by 

Dominic Patel (UCL/UCLH Biobank for Studying Health & Disease).  

 

2.2.5.2. Systematic assessment of digital slides 

Each slide was methodically assessed as follows: 1. Each core was numbered from left to right. 2. 

Length of cancer was measured. 3. Areas containing any cancer were contoured. 4. Areas containing 

Gleason 4 were contoured.  

 

2.2.5.2.1. MCCL measurement in digital images 

The MCCL was reported prospectively by the pathologists during the PROMIS trial using the integrated 

ruler in the microscope; this measurement was assigned as ‘visual’ MCCL. In PROMIS, the MCCL was 

reported by taking into account intervening benign glands (ISUP) and measuring cancer only (non-

ISUP). For the purposes of this thesis, the ISUP measurement was used. The ‘digital’ MCCL was 

derived as follows: If a core was straight, a single measurement was performed. If there was any 

curvature, manual sequential measurements were performed along the core axes and combined to give 

the final measurement (Figure 2-1 A). 
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2.2.5.2.2. Gleason 4 contouring 

All cancer was contoured in yellow (Figure 2-1B), followed by contouring of areas with Gleason 4 (Figure 

2-1B). Each Gleason 4 contour was given an ID based on its location on the core (Pathology number– 

block number, core number, contour number). 

2.2.5.2.3. Calculation of Gleason 4 percentage 

Percentage Gleason 4 (%G4) was not collected as part of the original trial, pathologists retrospectively 

visually estimated the %G4 per patient to the closest 10% using the annotated images. This was 

assigned as ‘visual’ %G4.  For digital %G4, the software performs instant area measurements based 

on the contours of all cancer and individual areas of pattern 4 previously delineated. The resulting area 

(for each yellow and black contours) was prospectively recorded, and an objective percentage of G4 

was calculated as shown in equation 1 (Figure 2-1C). This total was assigned as ‘digital’ %G4. A 

separate analysis of the index block was performed separately. The index block was defined as the 

block with the highest Gleason score and MCCL in combination with concordance with the index lesion 

on mpMRI. 

2.2.5.2.4. Data collection 

Study data were collected and managed using REDCap electronic data capture tools hosted at 

University College London (198,199). REDCap (Research Electronic Data Capture) is a secure, web-

based software platform designed to support data capture for research studies, providing an interface 

for validated data capture, audit trails for tracking data manipulation, automated export procedures; and 

procedures for data integration with external sources. 

The initial data dictionary was created with help of Feargus Hosking-Jervis and modified to fit the 

purpose of the study. Access to the database was extended to Urszula Stopka-Farooqui and Cristina 

Cardona Barrena for data input. The data collected includes: Pathology ID, PROMIS ID, pathologist 

scoring (AH) and revision of scoring (AF). For each patient, volume of each contour (cancer and 

Gleason 4) was recorded and added to obtain a volume per core. This was then added to obtain a total 

volume per patient.  
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Figure 2-1 Gleason 4 contouring and MCCL measurement.  
NDPview2 image of scanned H&E slide of prostate cores from transperineal biopsies, where nuclei are 
shown in blue, and other structures in pink. A. From left to right, MCCL measurement in a straight core 
of 8.5 mm. Approximate visual pathologist measurement marked with a red line (7.76 mm). Following 
the axis of the core, three measurements in black of 2.53 mm, 2.11 mm and 4.48 mm for a total of 9.12 
mm for the digital measurement. B. Three prostate cores, areas with cancer were contoured in yellow; 
areas with Gleason 4 were contoured in black. Close up of contours shown in black box. Non-contoured 
areas correspond to benign prostatic tissue. C. Block, core and contour numbering for data analysis. 
Each core was identified using the pathology ID starting with UH- number, followed by block ID 
(depending on location of biopsy) from A to T, and core number. Each black contour was given an 
identifier from top to bottom as X.1, X.2, etc. D. Equation used to derive percentage Gleason 4. 
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2.2.5.3. Applying geographical parameters, evenness and clustering to Gleason 4 patterns of 

distribution. 

In collaboration with Tian Lan from the UCL Geography department an in-depth analysis of the Gleason 

4 distribution was performed. The work presented here is Tian Lan’s contribution to this study. 

Annotations were extracted from NDP.View files onto .csv files. Analogy was drawn to the study of 

residential segregation among black and white ethnic groups in social science (200–202). Here, 

Gleason 4 was considered as the “minority” population surrounded by the majority population (Gleason 

3). 

Automated calculation of evenness and clustering scores was performed using Python 2.7.12 (64bit) 

and the following packages: Geojson 2.3.0, Fiona 1.7.11.post11, shapely 1.6.4.post1 and rtree 0.8.3 

(203–207). Annotations were extracted into GIS format file Geojson for processing, this was done core 

by core (Figure 2-2 A). To model the Gleason 3 and 4 distribution, the contoured areas were sampled 

into grid points and it was assumed that cells were distributed evenly.  

Each G3 or G4 point has a conceptualised “neighbourhood” (see Figure 2-2 E), which is a circular area 

around the point with pre-defined bandwidth or radius. Measurement H (Equation 1) and SP (Equation 

4) respectively quantify the average entropy and average pairwise distance of two group members in 

these neighbourhoods, weighted by population. 

The evenness and clustering are measured respectively by the spatial entropy index (Theil’s information 

theory index) H and spatial proximity index SP, these are explained in depth in Chapter 5 (Section 

5.3.2). For each core, an evenness and clustering score was obtained.  
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Figure 2-2 Calculation of clustering and evenness scores from H&E scanned slides. 
A. NDPview2 image of scanned H&E slide of prostate core, where nuclei are shown in blue, and other 
structures in pink. Cancer area contoured in yellow, Gleason 4 areas contoured in black. B. Converted 
core into Geojson format, where light green corresponds to Gleason 4 areas and dark green to Gleason 
3 areas. Grid distribution of Gleason pattern 4 in red and Gleason 3 in blue. Close up of a core region 
as H&E C. and as a Geojson image. D. Dots are evenly spaced for simplicity of the model. E. 
Neighbourhood conceptualization by Gleason 3 or 4, each point is surrounded by a circular area with a 
pre-defined bandwidth. Each dot corresponds to Gleason 4 (red) or Gleason 3 (blue), representing 
uneven distribution of the two Gleason grades.  
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2.2.5.3.1. Analysis of location and zone in relation to the evenness and clustering scores. 

In order to analyse the data, correlation analysis was performed by Saheer Saeed under supervision of 

Yipeng Hu (University College London). Four variables were used in this analysis:  

1. Core location using the 20 modified Barzell zones (Figure 2-3). 

2. Area of cancer obtained from cancer contours described on section 2.2.5.2. 

3. Clustering score. 

4. Evenness score. 

2.2.5.3.1.1. One-hot encoding for location information. 

In order to analyse categorical data, such as location in the prostate, data was one-hot encoded. This 

method involves creating dummy variables for each Barzell zone. Each dummy variable has a binary 

variable or either 1 if the sample comes from that zone, or 0 if it doesn’t (Figure 2-3 B, C). A total of 20 

dummy variables were created (A-T or 1-20)  

2.2.5.3.1.2. Ordinal encoding using a discrete 2D coordinate system.  

A coordinate system was created to obtain coordinates of zone location. A grid was overlaid onto the 

Barzell zone scheme, encoding location as follows: -3 to +3 from left to right and -2 to +2 from top to 

bottom. Each block/zone has a coordinate, for example: block 2 (1,-1), block 3 (-1,2), etc. (Figure 2-3D). 

All blocks were encoded using this coordinate system, creating two ordinal variables, corresponding to 

the location on the x-axis and y-axis (Figure 2-3 E).   

2.2.5.3.1.3. One-hot encoding for central and peripheral zone 

Two binary dummy variables were created for the central and peripheral zone. If a sample originates 

from the central zone, the dummy variable for central zone takes on a value of 1 and the dummy variable 

for peripheral zone takes a value of 0. 

2.2.5.3.1.4. Point bi-serial correlation analysis 

The point bi-serial test splits the population in two: a population where the binary variable is 1 and one 

where the binary variable is 0. Using the dummy variables, a correlation coefficient was obtained by 

doing a bi-serial test between the binary dummy variable for the Barzell zone and the area, evenness 

and clustering values. Similarly, a bi-serial test was performed for the zonal binary dummy variable and 

area, evenness and clustering.  

2.2.5.3.1.5. Spearman's rank correlation 

The Spearman’s rank correlation is a nonparametric test that measures the association between two 

ranked variables. This test was applied to the ordinal data obtained from the grid system.  
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Figure 2-3 Barzell zones and one-hot encoding of variables.  
A. Graphical representation of the anatomical position of each modified Barzell zone, from 1 to 20. 
Where zone 1 corresponds to block A, zone 2 to block B, and so on. Table contains exact anatomical 
position of each zone. B. Example of sample ID and corresponding Barzell zone. C. Hot-one encoded 
samples, where dummy variables are created for each Barzell zone, presence or absence of that core 
in X zone is encoded as 1 if present and 0 if absent. D. Grid overlaid onto Barzell zone map, red dashes 
correspond to discrete numbers from -3 to +3 from left to right, and -2 and +1 from bottom to top. E. 
Location coordinate of sample Barzell zones using the grid presented in D. F.  One-hot encoding for 
central and peripheral zones.   
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2.2.6. Data analysis  

2.2.6.1. ∆Ct and ∆∆Ct qPCR and qdPCR data analysis  

To obtain the ∆Ct values the genes of interest were normalised to between one and three housekeeper 

genes depending on experimental setting, in the case of human samples only ∆Ct was attainable, as 

no standard exists to obtain ∆∆Ct. The ∆∆Ct was calculated by subtracting the sample of interest minus 

a standard or reference sample (208). The resulting number was then unlogged by subtracting 2^ from 

the ∆∆Ct (See equation below). 

 

For data visualisation GraphPad Prism 7 or R programming environment (http://www.R-project.org/, 

version 3.5.1) and the ggpubr package were used (209).  

2.2.6.2. Statistical analysis  

2.2.6.2.1. Assessment of normality of data distribution 

Normality, or lack of, was analysed using a combination of visual methods and normality tests as 

follows: 

2.2.6.2.1.1. Quantile-quantile plots (Q-Q plots) 

Q-Q plots provide a visual representation of the correlation between given samples and the normal 

distribution. A perfect 45-degree reference line is added. A perfectly correlated dataset will plot on the 

x=y line. Plots were created using base R (210,211). 

2.2.6.2.1.2. Density plots 

The density plots provide another visual representation of the data distribution, and how it resembles a 

normal distribution bell shape. Plots were created using ggpubr package in R (209). 

2.2.6.2.1.3. Shapiro-Wilk’s test 

The Shapiro-Wilk tests the null hypothesis that a sample came from a normally distributed population. 

If the p value is below 0.05, the null hypothesis is rejected and data is considered not normally 

distributed. Analysis was performed using base R (210,211). 

 

2.2.6.2.2. Assessment equality of variances. 

Parametric tests, such as t-test and ANOVA, rely on equal variance distribution between the 

group/groups being compared. Equality of variances in this thesis was analysed using Bartlett’s/F test 

or Levene’s test if data was normally or not normally distributed, respectively.  
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2.2.6.2.2.1.  Bartlett’s test 

Bartlett’s test checks homogeneity of variances in normally distributed data (homoscedasticity). The 

null hypothesis is that there is no difference in variances between the groups. When the resulting p 

value is >0.05 there is homoscedasticity. Analysis done with base R (210,211). 

2.2.6.2.2.2. F- tests 

The F-test also measures the homogeneity of variances; this test is extremely sensitive to non-

normality. Analysis performed using base R (210,211). 

2.2.6.2.2.3. Levene’s test 

This is an alternative to Bartlett’s test, if data are not normally distributed. Analysis performed using car 

package in R (210,211). 

2.2.6.2.3. Comparison of means of two groups 

Student’s t-test was performed when samples were normally distributed and had homoscedasticity. If 

these conditions were not met, two alternatives are possible: Data with equality of variances but not 

normally distributed, here a Wilcoxon signed-rank test was performed. The second possibility is data 

that normally distributed with heteroscedasticity, here a Welch-Satterthwaite t-test was performed 

instead. Analysis done with base R (210,211). 

2.2.6.2.4. Comparison of means of more than two groups 

ANOVA test was performed when assumptions of normality and variance were met. Tukey post-hoc 

test was performed, comparing the mean of all groups against each other. The Kruskal-Wallis rank sum 

test, is the non-parametric alternative to the ANOVA test, when assumptions of normality and variance 

are not met. Post hoc test for the Kruskal-Wallis applied was Nemenyi test using the PMCMR package 

(212). 

2.2.6.2.5. Time course analysis  

Time course results were plotted using GraphPad Prism 7. A two tailed paired t-test was performed to 

compare each treated time point to the control using base R (210,211). 

2.2.6.2.6. Bland-Altman test 

The Bland-Altman method measures the correlation between two measurements measuring the same 

outcome. The resulting plot describe the agreement between the two measurements by constructing 

limits of agreement between the two tests. The difference between the two measurements is calculated 

and plotted against the mean of the two measurements. Ideally the plotted values should lie between 

±2s of the mean difference (213). 
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Bland–Altman plots allow identification of any systematic difference between the measurements 

(i.e., fixed bias) or possible outliers. The mean difference is the estimated bias, and the SD of the 

differences measures the random fluctuations around this mean. If the mean value of the difference 

differs significantly from zero based on a 1-sample t-test, this indicates the presence of fixed bias. 

If there is a consistent bias, it can be adjusted for by subtracting the mean difference from the new 

method. It is common to compute 95% limits of agreement for each comparison (average 

difference ± 1.96 standard deviation of the difference), which tells us how far apart measurements 

by two methods were more likely to be for most individuals. If the differences within mean ± 1.96 

SD are not clinically important, the two methods may be used interchangeably. The 95% limits of 

agreement can be unreliable estimates of the population parameters especially for small sample 

sizes so, when comparing methods or assessing repeatability, it is important to calculate 

confidence intervals for 95% limits of agreement. 

2.2.6.3. Missing data analysis 

Since statistical inferences are drawn from data analysis, ensuring that potential biases are taken into 

account can allow for a more accurate interpretation of the data. As a result, when missing data is 

simply deleted, sample size is reduced, biases are introduced as follows: 

1. The final population has changed, for example, if most missing values belong to one group. 

2. Effect estimates are biased, for example when comparing means in a t-test (as above). 

3. Sample analysis may no longer belong to a random population, by selecting samples that 

express a gene, data may be biased towards more aggressive tumours.  

In general, there are three missingness mechanisms: MCAR, MAR and MNAR (missing completely at 

random, missing at random and missing not at random, respectively) (214). Data is MCAR when there 

are no systematic differences between observed and not-observed data. Data is considered MAR, when 

there are systematic differences between missing and observed values and these can be explained by 

differences in the observed data. For instance, non-detectable PSA values in men who have had radical 

prostatectomy when comparing to men who had hormone therapy, the absence of a prostate could 

explain why PSA is not detectable in one group. Finally, data is MNAR, when there are systematic 

differences between observed and not-observed data but these cannot be explained by observed data. 

For example, when erectile function questionnaires are not filled by patients due to unwillingness to 

share personal data. In this case, erectile function cannot be predicted using other variables. 

Pattern analysis was performed using IBM SPSS Statistics for Windows, version 24.0 and UpSet 

package in R (210,211). Little’s multivariate MCAR test was performed, the null hypothesis being that 

values are missing independently from the data values (214,215).  

2.2.6.3.1. Multiple imputation for missing values  

A multiple random imputation method was used following confirmation that the data was missing 

completely at random. Thousands of logistical regressions based on existing data were made by using 
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IBM SPSS Statistics for Windows, Version 24.0. A random combination of imputed data was included 

in the existing database. Instances where no values or two out of three values were missing were not 

included in the simulation. The resulting data was included in the final analysis. 

2.2.6.4. Data mining  

Data from there previously published datasets was downloaded from PubMed Gene Expression 

Omnibus (GEO) by Benjamin Simpson using the following IDs: Taylor et al .(GSE21034), Varambally 

et al. (GSM74875) and Ross-Adams et al. (GSE70770) each .rar file was converted to csv file. Gene 

probe conversion was done using g:Profiler g:Convert functionality. When multiple probes were 

identified for one gene in Affymetrix, Jetset package was used. This package provides a score based 

on specificity, coverage, and degradation resistance (216). When more than one gene was found on 

Illumina, the most variable probe was selected (as measure by IQR), followed by sequence BLAST of 

the selected probe to confirm specificity to the gene of interest. 

2.2.6.5. Confusion matrix and calculation of accuracy parameters. 

Confusion matrices or 2 x2 contingency tables were obtained by Avi Rosenfeld (Jerusalem Institute of 

Tehcnology). Analysis of performance parameters were calculated using the formulas depicted on 

Figure 2-4. Confusion matrices allow visualisation of true positive (test positive, disease present), 

false positive (test positive, no disease), true negative (test negative, no disease) and false 

negative (test negative, disease present). From these parameters, the performance of a test can 

be calculated, obtaining the following measurements: 

2.2.6.5.1. Sensitivity 

Measures the proportion of positive cases that are correctly found by the test. It is also called true 

positive rate. It ranges from 0-100% (or 0-1). 

2.2.6.5.2. Specificity 

Measures the proportion of negative cases that do not have a positive test, in other words, measures 

the true negative rate. It ranges from 0-100% (or 0-1). 

2.2.6.5.3. Positive Predictive Value (PPV) 

The PPV takes into account the sensitivity, specificity and prevalence. It measures the probability that 

positive tests mean the disease is actually present. A result of 1 means all the positive tests have the 

disease. 

2.2.6.5.4. Negative Predictive Value (NPV) 

As with the PPV (2.2.5.2.9.2), it takes the sensitivity, specificity and prevalence into account, in this 

case to obtain the probability that a negative test is actually free of disease. A result of 1 means the a 

negative test has a 100% probability of not having the disease. 
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2.2.6.5.5. False Negative Rate (FNR) 

Measures the probability of a negative test to have the disease, or incorrectly identified as not having 

the disease. It is represented by the symbol α, where 1-α is equal to the specificity of the test.  

2.2.6.5.6. False Positive Rate (FPR) 

Is the proportion of positive tests that did not have the disease, or incorrectly identified as having the 

disease. It is represented by the symbol β, where 1-β equals the sensitivity of the test.   

2.2.6.5.7. False Discovery Rate (FDR) 

The FDR represents the proportion of type I errors (incorrectly rejecting the null hypothesis). It is 

complementary of the PPV, as a PPV of 70% would correspond to a FDR of 30%.The FDR can be used 

to adjust the test to detect more or less false positives, depending on the objective of the test.  

2.2.6.5.8. False Omission Rate (FOR) 

The FOR measures the proportion of having the disease when testing negative. It is complementary of 

the NPV. 

2.2.6.5.9. Accuracy 

Represents the number of correctly “diagnoses” cases in the entire population. In other words, how 

often does the test get it right?. 

2.2.6.5.10. Matthews Correlation Coefficient (MCC) 

The Matthews correlation coefficient (MCC) takes into account the results and performance of the 

test in the four categories studied in the confusion matrix: false and true positives and false and 

true negatives. The result is a number between -1 and 1. Where -1 indicates complete incongruity 

between the observation and prediction (test), 0 where there is not better than a random prediction 

and 1, where the test is perfect at predicting the outcome (217). 
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Figure 2-4 Confusion matrix and performance analysis of a test.  
A. Confusion matrix where prediction by the test is plotted against the confirmed diagnosis (disease). 
B.  Performance calculations on the left column and formula on the right column.  
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2.2.7. Cohorts 

2.2.7.1. Prostate cancer: Mechanisms of progression and treatment (ProMPT study) 

All clinical samples were collected from Cambridge University Hospitals NHS Trust, ethical approval 

was granted by the local research and ethics committee (LREC number: 02/281M) and by the 

multicentre research and ethics committee (MREC number 01/4/061). Informed consent was obtained 

from all subjects (218).  

2.2.7.2. Prostate MR imaging study (PROMIS) 

All clinical samples were collected from University College London Hospital NHS Trust patients who 

had consented to the study. Ethics committee approval was granted by National Research Ethics 

Service Committee London (reference 11/LO/0185). Access to biobank samples was obtained 

(reference (EC/21.16) (47). 

2.2.7.3. CombIning advaNces in imaging with biOmarkers for improved diagnosis of Aggressive 

prostate cancEr (INNOVATE) 

Ethics committee approval was granted by National Research Ethics Service Committee London 

(reference 15/LO/2099). Samples were collected from June 2017 to May 2018. Clinical samples were 

taken at University College London Hospital NHS Trust and Barts Health NHS Trust in consented 

patients only (219). 
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Chapter 3. Characterisation of a novel gene panel for diagnosis and risk stratification of 

prostate cancer.  

3.1. Introduction  

Molecular signatures in different biological matrices are one way to improve the accuracy of prostate 

cancer diagnosis and risk stratification (220–223). The utility of these signatures can only be measured 

if they are linked to meaningful key events such as biochemical recurrence, metastasis free survival or 

death (See section 1.2.2.1). Commercial biomarkers panels can be used for risk stratification and as 

decision making tools in the clinic (224). Many of these require tissue from either a prostate biopsy or 

radical prostatectomy. For example, the Oncotype DX® Assay, was developed by Genomic Health Inc., 

as a multi-gene validated assay that studies the patient’s tumour unique genetic makeup to help guide 

treatment decisions in breast, colon and prostate cancer (225–228). The Oncotype DX® Prostate 

Cancer Assay  was optimised on prostate biopsy tissue, and aims to estimate the probability of PGG3 

(Gleason 4+3) or >pT3 disease (184,229,230). The test has been found to correlate to adverse 

pathologic features, metastases and time to biochemical recurrence (230). 

In contrast, a liquid biopsy (blood or urine) could avoid unnecessary sampling and stratify patients to 

ensure biopsies are only performed if high suspicion of significant cancer exists. To create a novel fluid 

biomarker panel, companion to mpMRI that helps decide which patients to biopsy, I hypothesised that 

tissue-based biomarkers could be detectable in blood and urine.  

The discovery of new biomarker panels is limited by the inherent challenges of prostate cancer 

diagnostics including sampling error, heterogeneity, and a lack of true normal/benign samples due to 

the field effect (231,232). Since many available biomarkers rely on prostate tissue, I aimed to develop 

a new biomarker panel that can be detected in blood or urine, avoiding unnecessary biopsies to men 

at low risk of prostate cancer, thus preventing the risks associated with prostate biopsies. 

In 2013, Sharma et al. analysed AR DNA binding sites in prostate cancer tissue and identified a 16 

gene panel that differentiates advanced disease (castrate-resistant). The panel consisted of genes with 

overexpression in castrate resistant prostate cancer and downregulation in castration xenografts. This 

signature was identified as possible targets of progression and response to therapy in castrate-resistant 

prostate cancer (233). An additional 12 genes were added to this list from a panel showing promise in 

the Whitaker lab (234,235,244,236–243). 

It was hypothesised that the resulting 28-gene panel could act as a biomarker panel to aid in the 

diagnosis and risk stratification of prostate cancer in men. The primary aim of the signature was to 

correctly identify men that would benefit from a prostate biopsy, therefore avoiding unnecessary 

biopsies. Such panel would help differentiate clinically significant cancer that requires sampling from 

prostate cancer that poses no risk to the patient. This improved clinical pathway could reduce the 

number of unnecessary biopsies and streamline the prostate cancer diagnostic pathway.  
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Before the use of patient samples, the baseline expression of the gene panel in different cell lines was 

assessed. In addition, the degree of androgen regulation of selected genes was evaluated, to provide 

further biological information on the 28 genes and act as a positive control for future experiments. A cell 

line model was selected as it allows controlled experimental testing in different prostate cancer stages 

(from androgen-sensitive to insensitive). The four cell lines used for this work include LNCaP, C42, 

C42B and PC3.  

The LNCaP cell line was obtained from a lymph node needle aspiration of a man with prostate cancer. 

LNCaP and MS fibroblast cells were co-injected to immunocompromised mice, followed by harvesting 

of cells four weeks post castration to produce C4 cells. C4 cells were then co-injected with MS fibroblast 

cells to immunosuppressed-castrated mice and harvested at 12 weeks to produce the C4-2 cell line. 

The resulting C4-2 cells were inoculated onto castrated mice; the resulting bone deposits were then 

harvested and formed the C4-2B cell line. All of these retain their androgen sensitivity; in contrast, the 

PC3 cell line lacks the androgen receptor and is a model of androgen resistant disease (245,246). 

Unlike cell lines, RNA extracted from urine is not routinely processed to achieve preservation, since the 

urine is an acidic and hostile environment for RNA (247). Working under the hypothesis that RNA from 

prostate cancer cells would undergo degradation due to exposure to urine, a model using cancer cells 

exposed to urine was created. The effect of urine on potential fluid biomarkers was evaluated; here I 

demonstrated how the exposure to urine affects the measurement of relative gene expression; and how 

this can be overcome by amplifying the extracted RNA before PCR.  

Selection of the final signature based on cell line data can be flawed; due to cross-contamination, 

genetic and epigenetic changes secondary to prolonged culture and the inherent lack of a 

microenvironment (248). For this reason, taking advantage of the rise of bioinformatics tools to study 

publicly available prostate cancer datasets, the primary gene panel (28 genes) was further studied using 

data from a selection of studies with benign samples to act as a control. Through collaboration with Avi 

Rosenfeld (Jerusalem Institute of Technology, Israel), the primary gene panel was reduced to a refined 

diagnostic gene panel and a refined prognostic gene panel. A roadmap of this chapter can be seen on 

Figure 3-1. 
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Figure 3-1 Fluidic RNA gene panel selection roadmap. 

Initial gene panel is formed by 28 genes, of which 16 are part of a tissue-based signature (Sharma et 
al.), and 12 were added by the Whitaker lab based on previous and current work. Baseline cell 
expression was measured in 4 prostate cancer cell lines, followed by androgen time course for 72 hours. 
Data mining of three available datasets was used to obtain a final signature to measure in PAXgene 
blood 
  



83 
 

3.1.1.  The gene panel 

As mentioned in the section 3.1, the Sharma et al. panel was included in addition to 12 genes being 

developed at the Whitaker lab (Figure 3-1). A literature review was performed for all markers and key 

papers discussed below; the 28 genes were also analysed using Categorizer to identify enriched 

biological processes in the panel. Categorizer is a publicly available tool that categorises genes into 

predetermined categories and calculates p-values for the enrichment of the categories. It classifies the 

best-fit category for each gene by using semantic similarity measure of GO terms (249) (Table 3.1). 
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Function Gene Panel Evidence 

Apoptosis TNFSF10 S Selectively induces death in cancer cells Has a tumour supportive immuno modulatory role and cell migration (250–254), 

Cytoskeleton MAD1L1 S Mutation impairs the mitotic checkpoint, contribution in cell immortalization and chromosomal instability (255,256). 

STIL S Increased expression correlated with increasing grade and metastatic potential, knockdown induces apoptosis of cells. (257–259). 

COL6A3 W Decreased expression with increasing tumour stage in prostate cancer. Long isoform present in ~50% of metastatic prostate cancer (260–
263) 

DNA repair XRCC3 S SNP at exon 7 increase risk of breast and prostate cancer. Correlation to high Gleason score and metastasis (264). 

GTF2H4 W SNP potentially associated with prostate cancer risk. Linked to MYC-SL transcriptional machinery with potential druggable target (238,265). 

Golgi ER SEC61A1 S No other published data (233). 

GDF15 W Knockdown may improve sensitivity to docetaxel. SNPs associated with GDF-15/MIC-1 linked to aggressive prostate cancer. 
Overexpression initial control of local disease but promotion of metastasis in advanced disease (237,266,267). 

Metabolism NT5DC1 W No specific data on prostate cancer. Function unknown. 

NT5DC3 S Overexpression in sub-group of bone metastatic tumours giving better prognosis and response to therapy (233). 

ECI2 S Increased expression predicts poor outcome. Reduced glucose utilization and fatty acid accumulation when knocked-down (268). 

Mitochondria NDUFB11 S Overexpressed in tumours with low relapse free survival (269). 

SLC25A36 W Up-regulation in metastatic prostate cancer compared to localised (242,270). 

Receptors AGR2 S Overexpression in high-grade prostate cancer. May have a protective role in localised cancer, enhances invasion in metastasis (271–274). 

AR W Several reported mutations predispose to prostate cancer, this includes N-terminal domain repetitions, activation of androgen dependent 
transcription factors and structural changes of AR. Its role in prostate cancer is well known, and has been used as a target to treat prostate 
cancer (234,275–279). 

ABHD12 S Copy number aberration in colorectal cancer. (Yoshida) Acts as a brake of immune system, may have a role in enhancing T-cell response in 
cancer and infections (280). 

RNA processing TRMT12 S Overexpression in breast cancer, could affect wybutosine (yW) biochemical pathway resulting in hypo-modified tRNA (281). 

Signalling NAALADL2 W NAALADL2 was shown to predict poor survival following radical prostatectomy (240). 

Translation EIF2B5 S Head and neck cancers increased survival of cells under hypoxic conditions. Upregulated in liver cancer (282). 

GFM1 S Upregulation in mamosphere model of cancer. Potential tumour suppressor role in head and neck cancers (283,284). 

Transmembrane 
transport 

TSPAN13 S Inversely correlated with Gleason score and presenting PSA, its expression is correlated with favourable outcome. Potential anticancer 
target in breast cancer. When knockdown less migratory potential in osteosarcoma model (285–287). 

Vesicles KLK3 W Extensive evidence of its use in the diagnosis of prostate cancer. However its raised in benign conditions and its not reliable in stratification 
of risk (239,288,289). 

SLC26A2 S Mediator of TRAIL resistance in some cancers, significant decrease in relapse-free survival (290). 

VPS28 W Low or moderate VPS28 expression lower risk of recurrence compared to high expression (244,291).  

TMPRSS2 W Associated with more aggressive prostate cancer, it is believed that its fusion (TMPRSS2:ERG) mediate invasion (243,292–295). 

No location CBLN2 W Reported frequency in prostate cancer: 20-25% Primary cancer, 33% Advanced cancer , 50% DCT or CTC (235,296). 

MSMB W Downregulation in prostate cancer, levels in serum may be useful biomarker in prognosis and diagnosis in tissue.  Levels decrease when 
CRPC is present (241,297,298). 

TM4SF1 S Role in regulating tumour cell invasion and migration in ovarian, pancreatic and prostate cancer (299,300). 

Table 3.1. 28 gene panel GO term category classification by Categorizer.  

28 genes organised by Categoriser GO term category, where more than one category was found the highest enrichment was selected. CBLN2, MSMB and 
TM4SF1 had no category. Panel column is either S (Sharma) or W (Whitaker) signature. Evidence column contains literature based evidence for each gene. 
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3.1.2. Sharma et al. aggressive prostate cancer panel.  

ABHD12 and TNFSF10 have an immunomodulatory role in cancer, while ABHD12 may have a role in 

enhancing anti-tumour T-cell response, TNFSF10 has a tumour supportive role (254,280). Four genes 

have shown to have a potentially protective role in prostate cancer: AGR2, NDUFB11 and TSPAN13  

(269,274), also AGR2 has been found to enhance invasion in metastasis  (301). STIL, TM4SF1 and 

XRCC3 have a role in cell migration and metastasis (258,264,299). SLC26A2 and PECI overexpression 

are correlated with poor outcome and MAD1L1 and TRMT12 with cell immortalisation 

(255,268,281,290). There was no literature available on SEC61A1 relating to cancer.  EIF2B5 and 

GFM1 are expressed in head and neck cancers, increasing survival of cancer cells in hypoxic conditions 

and as a tumour suppressor respectively (283,302).  

3.1.3. Whitaker lab gene panel. 

The 12 extra genes were carefully selected based on published and unpublished data obtained in 

house. AR, TMPRSS2 and MSMB were included due to the extensive evidence of their roles in prostate 

cancer (234,241,243,275,276,293,297). CBLN2 is downregulated in castrate resistant prostate cancer; 

in contrast, SLC25A36 is upregulated (270). COL6A3 expression is inversely correlated with tumour 

stage, expression of NAALADL2 and VPS28 has been shown to predict poor survival post radical 

prostatectomy (240,261,291). Finally, GTF2H4 has an SNP that was associated with prostate cancer 

risk (265). NT5DC1’s function is unknown and was included as it is part of NT5DC family.  
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3.2.Objectives and hypothesis 

3.2.1.  Hypothesis 1  

The expression of the 28 gene panel varies depending on the cell line is measured and degree of 

androgen independence.  

3.2.1.1. Aim 1: Characterise the baseline expression of the primary panel in prostate cancer cell 

lines. 

Objective 1: Determine the baseline gene expression of the gene panel using qPCR in four commonly 

used prostate cancer cell lines that mimic the states of androgen responsive to androgen independent 

states as a model for the progression of prostate cancer.  

3.2.1.2. Aim 2: Study the varying degree of androgen regulation in the primary gene panel in 

androgen sensitive prostate cancer cell lines.  

Objective 2: Determine the androgen dependence or independence of the primary gene panel in 

androgen stimulated prostate cancer cell lines. 

3.2.2. Hypothesis 2 

Cell line RNA is degraded following exposure to urine, decreasing its downstream utility as a fluid 

biomarker source.  

3.2.2.1.  Aim 3: Characterise the RNA degradation following exposure to urine. 

Objective 3: Determine the effect in RNA yield, quality and gene expression in androgen stimulated cell 

lines following exposure to urine.  

3.2.3. Hypothesis 3 

Analysis of the expression of the primary gene signature in previously published datasets reveals a 

novel gene panel for the diagnosis and risk stratification of prostate cancer. 

3.2.3.1. Aim 4: To investigate the expression of the primary gene panel in publicly available 

datasets using data mining.  

Objective 4: Study the gene expression in previously published datasets and determine the ability of a 

refined panel of selected genes to diagnose and risk-stratify prostate cancer using machine-learning 

algorithms (Collaboration with Avi Rosenfeld, Jerusalem Institute of Technology, Israel).  
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3.3. Results 

3.3.1. Cell line model 

3.3.1.1. Cell lines and their characteristics 

Aggressive prostate cancer follows a progression from androgen sensitivity to androgen insensitivity 

and a tendency to metastasise to bone. The difference in baseline expression of four well-known cancer 

cell lines was measured to model different stages of the disease. Individual cell line characteristics were 

discussed in section 3.3.1.1. 

3.3.1.2. Baseline expression  

Cells were grown and harvested as described in materials and methods. RNA was extracted, followed 

by qPCR of the primary gene panel (see Figure 3-2). Data was analysed using the ∆∆Ct method as 

detailed in section 2.2.6.1 in the materials and methods.  

There was expression of all 28 genes in our primary gene panel in all the cell lines tested, with the 

exception of COL6A3 (Figure 3-2). Fold change between cell lines is shown for all the genes alongside 

example plots of a gene where expression was higher in androgen sensitive cell lines (TRMPSS2), a 

gene where expression was higher in androgen insensitive cell lines (TM4SF1) and a gene where 

expression levels did not change in the difference cell lines (XRCC3).  

The genes were grouped into three categories, group 1; higher expression in androgen-regulated cell 

lines (LNCaP/C4-2/C4-2B > PC3), group 2: no difference in expression between the cell lines and group 

3: higher expression in the androgen resistant cell line (PC3 > LNCaP/C42/C42B) (Figure 3-3).  

AR, KLK3, NAALAD2 and TMPRSS are all genes previously known to be androgen-regulated,  higher 

expression in the androgen regulated cells (group 1) is not surprising  (240,277,288). Most of the genes 

in the signature showed no difference in expression between the four cell lines (Group 2). Six genes 

had higher expression in the PC3 cells/castrate resistant model (Group 3). Genes and the groups are 

represented in Figure 3-3. 
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Figure 3-2 Taqman qPCR baseline expression in 4 commonly used prostate cancer cell lines, 
LNCaP, C4-2, C4-2B and PC3.  
mRNA expression of TMPRSS2, TM4SF1 and XRCC3 in 4 prostate cancer cell lines, each cell line has 
n=3 replicates, and the error line represents the standard deviation. A. TMPRSS2 expression in 
LNCaPs is higher compared to C4-2, C4-2B and PC3 (One-way anova:0.0002). B. TM4SF1 shows the 
opposite trend (One-way anova:0.0035). C. XRCC3 has no significant difference in expression. D. 
Heatmap representing the expression of the 28 genes, the top 13 genes have significant difference 
represented by the shades of blue. The following 14 genes show no difference in expression and 
COL6A3 was not detected in any cell line. Numbers represent fold change in reference to LNCaP (first 
three columns), C4-2 (columns 4 and 5) and C4-2B (column 6) * p < 0.05, ** < 0.01, *** p < 0.001, **** 
p < 0.0001  
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Figure 3-3 Difference of gene expression in 4 prostate cancer cell classifies genes into three 
groups.  
Group 1: Where gene expression was higher in cell lines that express androgen sensitivity. Group 2: 
No difference in expression between the cell lines, genes with an asterisk did not reach statistical 
significance but had higher expression in androgen sensitive cell lines* or insensitive cell line**. Group 
3: Higher expression of these genes was seen in the PC3 cell line. 
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3.3.1.3. Androgen regulation 

To further understand the relationship of androgen status and gene expression of the gene panel, 

LNCaP, C4-2 and C4-2B cells were stimulated with a synthetic androgen for up to 48 hours as described 

in materials and methods 2.2.1.6. Androgen exposure time courses were performed in a selection of 

genes from Group 1 (excluding NT5DC3), Group 2 (excluding SEC61A1, VPS28 and XRCC3) and 

Group 3 (excluding GTF2H4); COL6A3 was not detected on baseline measurement and was not 

measured in the time courses. The time course was not performed on the aforementioned genes, as 

they were not included in either refined gene panel. The resulting gene expression profile allowed for 

the identification of a positive control for future qPCR experiments in patients.   

Figure 3-4 represents data from three genes to show an example of a gene with downregulation (AR), 

no change (GDF15) and upregulation (TMPRSS2). Figure 3-4 also includes published where Massie 

et al. performed an androgen regulation time course, extracting RNA every 30 minutes for four hours 

and then every hour for 24 hours, the gene expression was measured using Illumina BeadArrays (37).  

A change in gene expression was seen for most genes; fold change in gene expression after androgen 

stimulation for all genes is shown in Figure 3-5. Genes were organised by upregulation (red), 

downregulation (blue) and no change (grey).  Upregulation was defined as sustained fold change of > 

2, with an upward trend for ≥4 hours compared to the control. Downregulation was defined as sustained 

fold change > 2 with a downward trend from the baseline for ≥4 hours.  

There was upregulation of six genes (most evident in TMPRSS2 and KLK3). CBLN2 showed initial 

downregulation followed by upregulation at 48 hours in LNCaP, whereas there was marked and 

sustained downregulation in C42B cells. This is possibly explained by a change in gene function in a 

more aggressive prostate cancer cell line in line with the baseline expression profile (Figure 3-3); where 

the expression of this gene in PC3 cells is extremely low if non-existent.  AR was downregulated 

following androgen stimulation as previously demonstrated (279). There was no significant change in 

two genes (TSPAN13 and NDUFB11).  The remaining genes are plotted in Appendix 1. 
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Figure 3-4 Taqman qPCR gene expression of three genes from the panel in androgen stimulated 
prostate cancer cell lines (LNCap, C4-2 and C42-B).  
Cells were stimulated with synthetic androgen R1881 (red) and ethanol as a control (blue), RNA was 
extracted at different time points (x-axis). The RQ values (2^-DDCt) are represented on the y-axis. The 
last column shows previously published sequencing data in LNCaP cell after stimulation with R1881 
(Massie et al.) A. mRNA expression of AR, B. TSPAN13 and C. TMPRSS2 in LNCaP, C4-2 and C4-2B 
cell lines. * p < 0.05, ** < 0.01, *** p < 0.001, **** p < 0.0001 
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Figure 3-5 Gene expression in LNCaPs, C4-2 and C4-2B cell lines following androgen 
stimulation.  
Heatmap representing gene expression ranked by upregulation, downregulation and no change. 
Gene on left column, followed by time in hours post stimulation (4, 8, 16, 24 and 48). Grey represents 
no androgen regulation after R1881 stimulation (no ∆). Red gradient represents statistical significance 
if there is upregulation (KLK3, TMPRSS2, and MSMB) and blue if there is downregulation (AR, CBLN2).  
If there was no statistically significant difference, the areas are in white (GDF15 in LNCaP) or in grey if 
not change was seen (EIF2B5). 
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3.3.2. Gene expression in degraded samples 

3.3.2.1. Simulation of degraded RNA 

Experiments were designed to explore the effect of urine on LNCaP cells in order to investigate the 

suitability and stability of urinary RNA for a biomarker panel. As discussed in the section 3.1, gene 

expression quantification relies on un-degraded RNA for appropriate detection of the gene of interest, 

urine exposure and its degradation of RNA affects the PCR target amplification. As a result, PCR 

primers may be unable to attach to the fragmented RNA; See Figure 3-6 for a schematic representation 

of this effect. To quantify the impact of RNA degradation in urine and the impact on the genes of interest, 

an experiment was designed to expose androgen stimulated LNCaPs to urine (see materials and 

methods 2.2.1.7).  

To determine the integrity of the RNA, quality and control was performed using the Bioanalyzer. The 

Bioanalyzer is a commonly used method to assess RNA degradation by providing a calculated RNA 

integrity number (RIN) (303). This tool uses the entire electrophoretic trace of the sample. Intact RNA 

will have a RIN above seven, as it is usually the case with cell line extracted RNA.  A RIN of three to 

seven is acceptable, while a degraded sample will have a RIN of equal to or less than three. RNA 

extracted from LNCaP cells had RIN numbers between 8.9 and 9.3 (n=3), whereas urine exposed 

LNCaPs had RINs of 2.3 of 2.6 consistent with RNA degradation. 

The urine exposed RNA was assessed by qPCR. Ct values are a relative measure of the concentration 

of target in the PCR reaction, the lower the Ct value the higher the relative concentration of the target. 

To assess the relative concentration, values of the genes of interest are compared to that of a 

housekeeper gene (a gene whose expression remains unchanged despite change in cell conditions). 

When cells were exposed to urine, the Ct values increased in all genes examined, there was an increase 

in average of 2.91 cycles when cells were exposed to PBS (range 1.98-5.53) compared to 4.72 (range 

3.27-6.10) when exposed to urine (Figure 3-7). An increase in Ct values indicates a lower relative 

concentration of the target. In three biological replicates a gene of interest, (NAALADL2) and a 

housekeeper (RPLP2) were plotted. LNCaPs not exposed to urine or PBS, had a high relative 

concentration of RPLP2, suggesting that when exposed to urine, is due to RNA degradation increases,  

resulting in lower product detection. This would suggest that any RNA from prostate cancer cells that 

finds its way into the urine would likely be degraded; alternative post-collection measures to improve 

the detection of targets were investigated.  
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Figure 3-6 Degraded RNA will affect primer effectivity in qPCR reactions.  
RNA integrity influences the PCR reaction. A. RNA represented in green as a continuous strand from 
5’ to 3’, with primer attachment and consequent cDNA reverse transcription and subsequent gene of 
interest detection with qPCR. B. When RNA is degraded, the primers cannot attach correctly with 
incomplete formation of the cDNA and ensuing lower product detection. 
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Figure 3-7 Exposure to urine reduces the detection rate of targets.  
A.  Averaged Ct values of nine genes following no exposure (LNCaP) and exposure to PBS and spun 
urine. Note the increase in Ct values following exposure to PBS and urine, more marked when exposed 
to urine. The effect is consistent in genes of interest and housekeepers (RPLP2). B. Ct values of 
NAALADL2 and RPLP2 (C) (housekeeper gene) in non-exposed cells (LNCaP), cells suspended in 
PBS and cells suspended in urine. Note the Ct value increases when cells are exposed to urine. 
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3.3.2.2. Strategies to overcome degraded RNA. 

If RNA degradation in patient biological fluids cannot be avoided, several measures can be used to 

compensate during the qPCR at four levels: Increasing the amount of cDNA added to the reaction, 

increasing the number of PCR cycles/longer PCR protocol and sample pre-amplification.  

3.3.2.2.1. Increasing cDNA concentration 

The concentration of cDNA used for the PCR reaction can have an impact in the reverse transcription 

reaction. This is more noticeable in abundant genes, as the rate of reverse transcription inhibition is 

higher in targets that are more concentrated; in other words, a higher initial concentration of cDNA will 

decrease the resulting Ct value. In addition, the reaction will be inhibited if initial cDNA concentration is 

too high (304).  

Since the housekeeper, genes used to normalise the reaction are the most likely affected, careful 

consideration of the optimal cDNA concentration was considered. The PCR reaction was done with a 

cDNA volume of 2 µL and 6 µL, two biological replicates and two technical replicates for one gene of 

interest (TMPRSS) and one housekeeper (RPLP2). Relative concentration (Ct) was lower at 6 µL for 

the housekeeper while it improved for TMPRSS. This confirmed that the optimal cDNA volume to use 

in future reactions was 2µL to reduce the risk of RT inhibition in more abundant genes (Figure 3-8A).  

3.3.2.2.2. Increasing number of cycles 

The target cDNA is subjected to cycles of denaturation, annealing, and extension. The number of cycles 

can vary depending on the amount of cDNA and desired yield of product, and is usually up to 40 cycles. 

Over 45 cycles, there is nonspecific amplification and accumulation of by-products lowering PCR 

efficiency (304). cDNA from cell lines, was cycled up to 45 times to determine if low occurring genes 

would be amplified at later cycles in degraded RNA, there was no difference in detection of targets 

between 40 and 45 cycles. In addition, a ChiP PCR protocol was used, with more extended incubation 

periods and time inversion in the amplification step (15 seconds at 95°C and 60 seconds at 60°C), there 

was no difference in detection of the genes of interest or housekeeper (Figure 3-8 B). 

3.3.2.2.3. Preamplification of degraded samples 

Pre-amplification of degraded RNA can improve the detection of genes with low availability. However, 

bias can be introduced if the amplification is uneven. A whole transcriptome amplification (WTA) kit by 

was used to reliably amplify degraded FFPE samples without 3’ bias, using quasi-random 3’ primers 

with universal ends. Preamplification can introduce bias in the final analysis. For example, poor 

efficiency in amplification of certain targets can result in under/over representation of the gene of interest 

if the gene is under or over pre-amplified. Amplification of urine exposed cells showed appropriate 

amplification of genes tested (Figure 3-8 C).   



97 
 

 

Figure 3-8 cDNA concentration and qPCR protocols do not affect Ct values, whereas 
Preamplification improves detection of target mRNA.  
A. Comparison of Ct values of a housekeeping gene (RPLP2) and TMPRSS2, there is no significant 
difference between using 2 o 6 µL of cDNA. B. Increasing the number of cycles or using a new PCR 
protocol did not improve the detection of the targets.. C. Preamplification of degraded samples improves 
the detection of target genes in an unbiased manner. * p < 0.05, ** < 0.01, *** p < 0.001, **** p < 0.0001, 
if no value the difference was not significant (A and B). 
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3.3.3. Gene expression in human samples 

3.3.3.1. Data mining and cohort introduction 

Prior to testing in clinical samples, bio-statistical analysis of the 28 genes in the original panel was 

performed in three publicly available cohorts with benign sample controls: Taylor, Varambally and Ross-

Adams (Table 3.2). Data was accessed using Gene Expression Omnibus (GEO) repository (see 

2.2.6.4). In total, Ross had data for 27/28 genes, Taylor 18/28 and Varambally 26/28 (Table 3.2). A 

proportion of Taylor and Ross-Adams patients had matched benign samples that could be directly 

compared, and although Varambally has benign samples, the cohort was small and had limited 

information available. Only data from the Cambridge arm were included in the analysis for the Ross-

Adams cohort. The gene expression in these cohorts was measured from tissue extracted from radical 

prostatectomy specimens (220,305,306). 
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Table 3.2 Data mining cohort summary and missing gene data.  
Summary of clinical characteristics of the three cohorts. Missing gene data for Taylor cohort and 
Varambally.  *aCGH array comparative genomic hybridization. ** Matched benign samples from 
cancerous prostates.   
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3.3.3.2. Gene expression of the panel in three separate cohorts 

3.3.3.2.1. Differentiation between benign and cancer in three independent cohorts using a refined 

diagnostic gene panel. 

In collaboration with Avi Rosenfeld- Roni Reznik (Israel Institute of Technology), the gene expression 

data from the three previously mentioned cohorts was analysed. The aim was to select genes that were 

present reliably in more than one dataset. To do this we used “stability” of a feature as a measurement 

of whether the likelihood that the set of markers in a signature are specific to the study, or applicable to 

other cohorts. i.e., to determine if an effect is real or biased due to patient selection.  

Data was then analysed to generate areas under the curve (AUC) data to predict benign versus cancer 

and different prostate prognostic grades (PGG). The data was ranked by the AUC; using the intersection 

of the top ten per cohort was used to establish which markers were consistently found in the three 

datasets (Figure 3-9). In the diagnostic signature, three genes (STIL, SLC26A2 and AGR2) were in the 

top 10 of all cohorts with ROC values >0.6. GDF15, NT5DC1, TSPAN13 and SLC25A36 were in two of 

three cohorts, of these five markers only GDF15 was absent from one cohort (Taylor) (See Figure 3-9 

A). 

Relative gene expression data from the three datasets was plotted comparing benign vs cancer. 

Appendix 2 shows this data for the final seven chosen for the panel. There is concordance, defined as 

a similar trend of gene expression between benign and cancer in all three cohorts, only for STIL and 

TSPAN13. GDF15 is concordant between Varambally and Ross; AGR2 expression matches between 

Taylor and Ross, SLC26A2 and SLC25A36 match between Taylor and Varambally (see Appendix 2). 

This could be explained by the difference in technologies and probes used in each study, the proportion 

of tumour content and population variability. Concordance was not used as a rationale for removing any 

genes from the panel (307).  
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Figure 3-9 Stability based selection of genes as markers for differentiation of benign and cancer 
reveals a seven gene signature in tissue (refined diagnostic gene panel).  
A. Faceted barplot for each cohort, x-axis denotes genes where those in the top ten for three and two 
cohorts are highlighted with a blue rectangle, and green rectangle respectively. Y-axis contains the 
values for the AUC for each gene. B. Table representing the stable feature selection; each cohort was 
ranked and the top ten markers were selected. Markers for the refined diagnostic gene panel were 
carefully chosen if they were present in three (blue) or two out of three cohorts (green). 
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3.3.3.2.2. Differentiation between prognostic grade groups (PGG) using gene expression data in three 

cohorts. 

The Gleason score expressed as the PGG, was grouped as PGG 1 and 2 (Gleason 3+3 and 3+4) vs 

PGG 3 (Gleason 4+3), 4 (Gleason 4+4) and 5 (any Gleason 5) to differentiate between lower and higher 

grade cancers (PGG ≤2 and PGG ≥ 3). Only two cohorts were included in this analysis (Ross and 

Taylor) as Varambally lacked PGG/Gleason score information. Three genes made up the final 

signature: NT5DC1, MAD1L1 and EIF2B5. These were present in both cohorts with AUC values > 0.57 

(lowest for MAD1L1 in Taylor), see Figure 3-10 A-B. When plotting the gene expression data across 

the grade groups for each gene selected for the panel, only NT5DC1 had significant differences 

between groups (one way ANOVA) in both cohorts (Figure 3-10 C-D). The distribution of the relative 

gene expression of this gene has a different distribution, where it increases in the Taylor cohort but 

decreases in the Ross samples.  

Gene expression data for all 28 genes across PGG can be found in Appendix 3 and Appendix 4. 
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Figure 3-10. Stability based selection of genes as markers for differentiation between PGG 
groups, finds a three-gene signature in tissue (refined prognostic panel).  
A. Faceted barplot for each cohort, the x-axis denotes genes that were ranked in the top ten for each 
cohort. Genes highlighted with a green rectangle if present in both cohorts. The y-axis contains the 
values for the AUC for each gene. B. Table representing the stable feature selection, each cohort was 
ranked, and the top ten markers were selected. Markers for the final gene panel were chosen if they 
were present in both cohorts. C-D. Boxplots of the relative gene expression of NT5DC1 in the Taylor 
(C) and Ross (D) cohorts. The x-axis contains the PGG groups from one to five, the y -axis the relative 
gene expression. Kruskal-Wallis value displayed if a significant difference on student t-test result is 
displayed. * p < 0.05, ** < 0.01, *** p < 0.001, **** p < 0.0001  
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3.4.Discussion 

3.4.1. Summary of findings 

In this chapter, the relative gene expression of a tissue-based gene panel in four different cell lines was 

measured (from androgen dependent to independent); grouping the genes in three groups (See Figure 

3-3). The gene expression of 22 genes following androgen stimulation also grouped the genes in three 

groups: upregulated, downregulated and not regulated (See Figure 3-5). Additionally, cell line RNA was 

significantly degraded following exposure to urine, adding a preamplification step improved the quality 

for downstream analysis (See Figure 3-6 and Figure 3-7, respectively). Finally, using previously 

published data, a novel biomarker panel was developed to aid detection of prostate cancer.  

Relative baseline gene expression of all genes in the four cell lines studied, allowed grouping of the 

genes based on in-vitro models of prostate cancer progression. Genes in-group 3 (higher expression 

in PC3 to other cell lines) may represent a signature for more aggressive forms of the disease.  Of 

these, AGR2 is associated with prostate cancer metastasis and aggressive prostate cancer, and 

TM4SF1 is known to contribute to cell motility and metastasis (274,299). While androgen regulation 

enhanced our understanding of the potential implication of these genes as possible biomarkers of 

disease.  

3.4.1.1. The refined diagnostic gene panel. 

The diagnostic refined gene panel was developed using publicly available data, consistent expression 

of the signature in three separate cohorts was demonstrated. There was concordant expression in at 

least two of the three cohorts. While concordance in all three studies would be ideal, the discrepancy 

between studies is expected, as there is heterogeneity in sample size, race, and methods of collection, 

patient selection and technologies used. While many approaches exist for scoring the relative 

effectiveness of markers, we chose the well-accepted AUC measure to determine the relative predictive 

ability of a given marker. We chose the top ten markers based on their AUC value for each of these 

datasets. Encouragingly, the seven genes had steadily high AUC values. Whilst a variety of ranking 

methods are available, we chose AUC as it consistently yielded a reliable range across all datasets. 

The Varamballly cohort had the highest AUCs, due to the smaller cohort size. The proposed refined 

diagnostic signature has the potential to enhance the current clinical diagnosis pathway. 

The refined diagnostic gene panel is comprised of androgen-regulated and non-androgen regulated 

genes. Here, these will be discussed according to the baseline group classification shown on Figure 

3-3. TSPAN13 (group 1), has been shown to be overexpressed in prostate cancer and has a potential 

role in prostate cancer progression (285). 

Five genes belonged to group 2, NT5DC1, STIL, SLC26A2, GDF15 and SLC25A36. The function of 

NT5DC1 is unknown. STIL, is a promotor of tumour growth that showed androgen downregulation in 

LNCaPs and upregulation in C42B cells, consistent with its ability to regulate pathways that influence 

invasion and apoptosis of prostate cancer cells (259). SLC26A2, this gene was upregulated when 

exposed to synthetic androgen, its exact role in prostate cancer is not entirely clear, but it has been 
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shown to mediate TRAIL resistance in breast cancer (290). GDF15, was also upregulated when 

exposed to R1881, it has been reported to have potential influence in metastatic disease (308) and as 

a possible biomarker for prostate cancer (309). SLC25A36 was not androgen-regulated, it is essential 

for the synthesis and breakdown of mitochondrial DNA and RNA, and has been shown to be 

upregulated in metastatic prostate cancer (270); this is one of two genes in this panel that lacks 

androgen regulation.  

The last gene part of the refined diagnostic signature is AGR2 (group 3), this gene showed androgen 

upregulation, and it is known to correlate to aggressive prostate cancer (274). 

3.4.1.2. The refined prognostic gene panel 

Accurate risk stratification of men with prostate cancer without relying on tissue would provide patient 

benefit. The signature described in here is formed of three genes: NT5DC1, MAD1L1 and EIF2B5. Only 

NT5DC1 is present in the refined diagnostic and prognostic panel, as previously mentioned its function 

is unknown. Interestingly, its relative expression plots between Ross and Taylor show conflicting trends, 

where in Taylor, the relative expression is higher in PGG5 compared to PGG1. In Ross, PGG1 is higher 

than PGG5. This is the case for some of the significant genes in the Ross and Taylor cohorts (Appendix 

3 and Appendix 4). 

MAD1L1 is a mitotic spindle assembly checkpoint protein, it has been found to induce stem-like cell 

properties in nasopharyngeal carcinoma (256). Mutant MAD1L1 has been correlated to chromosomal 

instability and immortalization in lymphoma cell lines (255). In the Taylor cohort, there was a significant 

difference in expression between PGG1 and PGG3, with an upward trend (Appendix 4). However, the 

PGG5 expression had the lowest median value; this could be explained by the presence of the more 

aggressive mutant form. Interestingly MAD1L1 expression did not change upon androgen stimulation 

in cell lines (Appendix 1).  

Finally, EIF2B5 is a translation initiation factor; it has been found to be upregulated in liver cancer and 

associated with the histologic and clinical stage (282). It has also been found in head and neck cancers 

cell, where cells adapt to hypoxia and increase their survival. This gene also had significant differences 

in the relative expression on the Taylor cohort. Its expression decreases with PGG grade.  

3.4.2. Methodological limitations 

The use of cell lines as a model for biomarker discovery offers several benefits including: availability, 

experiments can be scaled up rapidly, experimental settings can be rigorously controlled, therefore 

reducing potential confounding factors, and extensive available -omic data on public datasets. However, 

immortalised cell line models grown in 2D plastic plates and cannot be directly compared to a 3D cancer 

model in a living patient. Additionally, with increasing passage number, the risk of cross-contamination 

and novel mutations increases, altering the phenotype of the cells to the point it does not resemble the 

primary tissue (310,311). Additionally, with the exception of PC3, all cell lines used in this work share 

the same parental lineage.Therefore, although modelling of prostate cancer stages was attempted by 

using four different cell lines, the model is not a perfect simulation of clinical presentation. Alternative 
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prostate cancer cell lines such as DU-145 (no androgen receptor), LAPC-4 or VCaP (both androgen 

receptor and PSA positive), and “benign” cell lines such as BPH1 or RWPE-1 to compare expression 

could have been used (312). 

The androgen-stimulated experiment required several 96-plate qPCR. Regardless of care taken 

pipetting variations are expected in each plate and between plates. The experiments were planned to 

ensure each gene was represented per plate, however digital PCR would have been preferable to 

perform such large scale analysis, reducing the inter-plate variability (313).  

Regarding the selection of the genes for the signature, the 28 genes resulted from a combination of 

tissue based biomarkers and in-house developed genes. For some genes in the signature there is little 

or no literature available (Table 4.1). For instance, the function of NT5DC1 remains unknown. Other 

genes in the signature (SEC61A1 and GFM1) have no data in prostate cancer. Although this is not 

entirely a negative factor, further understanding of the role of these genes, and understanding their 

function prior to inclusion in the signature may have been beneficial to the project.  

Based on the RNA degradation caused by urine as discussed in Section 3.3.2, the development of a 

urine-based biomarker should include steps to improve the initial quality of the RNA, rather than rely on 

steps that can bias the results, such as pre-amplification. For instance, using RNA stabilisers like 

RNAlater, have shown success (314), such steps should be taken prior to RNA extraction to ensure the 

highest yield and quality of the RNA.  

Data mining using previously published cohorts allows the study of large amounts of data. In this case, 

all three cohorts had different amounts of available data. All cohorts are at least five years old, and 

since there have been advances in the pathological classification of prostate cancer, the findings 

described here may not reflect current clinical practice. Additionally, there is no data on mpMRI in these 

cohorts, since one of the hypothesis is that this panel could aid imaging biomarkers, this data would 

have been beneficial to improve the panel. Another limitation with the obtained data is that long-term 

outcomes were not taken into account when modelling the biomarker panel. As mentioned in the 

introduction of this chapter, novel biomarkers only have significance if linked to clinical outcome. This 

panel is meant to help decide which men benefit from a biopsy and which do not, by ignoring the fact 

that some will have no biopsy and may still harbour significant disease (false negatives) and correcting 

appropriately, the panel may not be as useful clinically as expected.  

In addition, each study used different technologies for sequencing. This explains why some genes were 

not available in all three cohorts. This also means that older sequencing technologies may have an 

inherent bias on the sequences used or may not be as accurate as newer kits. Both Taylor and Ross 

included benign samples; however, these are matched samples from a cancerous prostate; comparison 

between “benign” and “cancer” tissue may not reflect the state of a genuinely benign prostate in the 

clinical practice. This benign tissue may contain field-effect changes affecting the results (232).  
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3.4.3.  Clinical utility 

Expression of the gene panel was demonstrated in three independent cohorts (Ross-Adams, 

Varamballly and Taylor). However, all of these rely on prostate samples. The detection of these genes 

in blood and urine and validation of the relative expression between cancer and proven benign samples 

will allow for the development of a novel biomarker that can be incorporated into the clinical practice. 

We hypothesised that tissue detected biomarkers could be measured in biological fluids. The next 

chapter will explore the pitfalls of RNA expression measurement in clinical samples, and the results on 

the discovery cohorts.  
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3.5. Lay summary 

This chapter covers the study of a new panel of genes to choose patients who will benefit from a biopsy. 

The panel consists of 16 genes previously published by Sharma et al. and belong to a signature 

identified in tissue and linked to aggressive prostate cancer. Additionally, 12 genes currently being 

studied at the Whitaker lab were added, for a total of 28 genes.  

Prior to analysis in human samples, the gene expression of the 28 genes was measured in four cultured 

cell lines. These cell lines were selected as they represent different stages of prostate cancer: from 

cancer that still responds to therapy to unresponsive. Additionally, these cells were stimulated to 

determine if the gene expression changes with androgen (a testosterone–like hormone).  

To simulate conditions in the bladder, cells were incubated with urine and gene expression was 

compared to cells not exposed to urine. Since urine damages cells and affects the normal reading of 

gene expression, mechanisms to deal with the damage caused by the urine were explored. The best 

method was used in human samples.  

Using publicly available data from three large prostate cancer studies, a measure of performance called 

Area Under the Curve (AUC) was used. This measurement reflects how good a test is at finding a 

disease, with a score from 0 to 1. A value of 1 is perfect, the test is positive in all the men with cancer 

and none of the men without cancer. A value of 0.5 is equal to chance, you can toss a coin and the test 

will have the same chance of being correct.  The area under the curve was measured for each gene to 

answer two questions: 

1. Can any of the genes predict which men have cancer? 

2. Can any of the genes help classify men depending on how aggressive their cancer is? 

Taking the results for each gene two panels were created, grouping the best performing genes for each 

question.  

3.5.1. Objectives 

1. Study the gene expression of the 28 genes in four prostate cancer cell lines 

2. Study the gene expression of the genes after the cells are given an androgen-like hormone.  

3. Study how the urine degrades the molecules used to measure gene expression (RNA). 

4. Study mechanism to overcome the degradation of RNA and select the best method. 

5. Using publicly available datasets select a group of genes that selects men with prostate 

cancer. 

6. Using publicly available datasets select a panel that can distinguish between men with low 

grade and high grade prostate cancer. 

3.5.2.  Findings 

1. When measuring the gene expression in the four cell lines, the genes were divided in three 

groups:  
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a. Group 1: Gene expression higher in androgen sensitive cells. 

b. Group 2: Gene expression is the same in all cell lines. 

c. Group 3: Gene expression is higher in androgen insensitive cells.  

 

2. When measuring the gene expression after cells were stimulated with a testosterone-like 

hormone, the genes were subdivided in three groups: 

a. Higher expression following stimulation. 

b. No change 

c. Lower expression following stimulation. 

Take home message: The groups of genes selected are heterogeneous. Some are highly expressed 

in cells that behave similar to more aggressive cancer (Group 3 – higher expression in androgen 

insensitive cells). Some of these genes are turned on when androgen is added to the cells, and so 

therapies that block androgens could turn these genes off. This is important as the selected group of 

genes represent different biological stages of prostate cancer.  

 

3. The RNA is highly degraded when cells are exposed to urine.  

4. The best performing solution to degraded RNA was to perform a pre-amplification step. 

Where the limited amount of intact RNA is multiplied, this way when the final reaction is 

done a better idea of the gene expression is obtained.  

Take home message: Urine is a hostile environment; ideally the urine should be treated with chemicals 

that stop this degradation. However, this is not always possible; the urine used in this study was already 

collected without a preservative. The best method was found to be to multiply (pre-amplify) the available 

RNA to use in subsequent experiments.  

5. Two panels were created using information from publicly available datasets: 

a. Diagnostic panel (can select men with cancer). 

b. Risk stratification panel (can classify men depending on how aggressive their 

tumour is). 

Take home message: Using data from other studies, we can study the performance of the genes prior 

to analysis in patient samples. This analysis produced two gene panels that will be studied and validated 

in the following chapters.  

3.5.3. Limitations  

1. Cell lines are not perfect models for human disease as they grow flat in a plastic plate, 

whereas human cancers thrive in complex 3D models with many different cells.  

2. The studies used have no MRI data and thus are not the best group of patients to try to 

help MRI select patients for biopsy. Additionally, these studies lacked tissue from healthy 
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men, and instead samples from prostate cancer patients that were free of tumour were 

used as control/comparison. 
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Appendix 1. Gene expression in LNCaPs, C4-2 and C4-2B cell lines following androgen 
stimulation.  
Heatmap representing gene expression ranked by upregulation, downregulation and no change. Grey 
represents no androgen regulation after R1881 stimulation. Red gradient represents statistical 
significance if there is upregulation (KLK3, TMPRSS2, and MSMB) and blue if there is downregulation 
(AR, CBLN2).  If there was no statistically significant difference, the areas are in white (GDF15 in 
LNCaP) or in grey if not change was seen (EIF2B5).  
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Appendix 2. Gene expression of the seven genes in the panel correlates with clinical diagnosis 
in three different cohorts.  
The x-axis represents cancer and benign samples from each cohort, the  y-axis the relative normalised 
expression for AGR2 (A), STIL (B), SLC26A2 (C), SLC25A36 (D), TSPAN13 (E) and GDF15 (F) and 
NT5DC1 (G). Note the concordance in expression in all cohorts for STIL and TSPAN13. In contrast, 
note concordance of SLC25A36 and SLC26A2 between Taylor and Ross-Adams samples, and 
concordance of AGR2 between Taylor and Varambally. 
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Appendix 3. Boxplots of the relative gene expression of genes in the Ross cohort.  
The x-axis contains the PGG groups from one to five, the y-axis the relative gene expression. Kruskal-
Wallis value displayed. If a significant difference in student t-test result is displayed. Note downward 
trend (significantly lower in PGG5 compared to PGG1) in AGR2, GDF15, MSMB, SLC26A2 and 
TNFSF10. The opposite trend is seen on NAALADL2 and TRMT12. * p < 0.05, ** < 0.01, *** p < 0.001, 
**** p < 0.0001 
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Appendix 4. Boxplots of the relative gene expression of genes in the Taylor cohort.  
The x-axis contains the PGG groups from one to five, the y-axis the relative gene expression. Kruskal-
Wallis value displayed. If a significant difference in student t-test result is displayed. Note downward 
trend (significantly lower in PGG5 compared to PGG1) in EIF2B5 and KLK3. The opposite trend is seen 
on SEC61A1 and STIL. * p < 0.05, ** < 0.01, *** p < 0.001, **** p < 0.0001 
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Chapter 4. Measurement of mRNA gene panel expression in blood and urine samples in 

independent cohorts.  

4.1. Introduction  

The diagnosis of prostate cancer relies on a blood based biomarker (PSA), mpMRI and tissue 

examination under the microscope following a prostate biopsy (315,316). Unfortunately, these methods 

often over diagnose clinically insignificant disease and do not accurately identify all cases that require 

treatment  leading to over-treatment(125,317–319). There have been many efforts to identify novel 

biomarker panels to improve the diagnosis and identification of “clinically significant’ disease, with 

variable definitions and degrees of success. These biomarkers can be divided into fluidic (blood and 

urine), and tissue based; and further divided into diagnostic (to find the disease) and predictive (to 

predict risk and aid treatment decisions) (See 1.2.2).  

Whilst tissue based biomarkers provide valuable information, such as the genetic makeup of the cancer 

(See 1.2.2.2.3), the necessity of tissue acquisition to risk stratify patients following a biopsy or extirpative 

surgery does not encourage for early diagnosis. Relying on tissue for risk stratification may be affected 

by the availability of tissue, for instance quality of nucleotides from FFPE samples and heterogeneity 

inherent to sampling (320–324). This dependence on tissue could be bypassed by developing minimally 

invasive tests on fluidic samples. 

Many biomarker panels use clinical information to increase their performance, a biomarker that adds to 

the clinical information independently has not yet been found. For example, the STHLM3 model includes 

prostate exam and clinical factors (age, family history and previous biopsies) to the genetic panel and 

PSA results; resulting in an AUC of 0.74 for diagnosis (148). Using stepwise multivariate AUC, total 

PSA and risk factors combined (age, family history and previous biopsies) had an AUC of 0.58 (CI 0.56-

0.60), the genetic score (risk alleles for 232 SNPs) increased the AUC by 0.02 to 0.60 (CI 0.58-0.62), 

addition of MSMB, MIC1, free PSA, intact PSA, and hk2 improved the AUC to 0.70 (CI 0.68-0.72). 

Finally, the AUC value of 0.74 (CI0.72-0.75) was achieved by adding prostate exam information (digital 

rectal exam and prostate volume). Other biomarker panels are discussed on section 1.2.2. 

Perhaps the search for accurate biomarkers could focus on already available biomarkers such as PSA 

density (PSAd = PSA value divided by prostate volume). Recent efforts to combine mpMRI information 

to biomarkers (219,325,326), have shown that this approach may help improve diagnosis of significant 

prostate cancer. For instance, PSAd has proven to be a reliable marker improving the diagnostic 

accuracy of mpMRI (67,136,138,139,327). 

An alternative fluid for biomarker discovery is urine, as collection is painless and it is easily available. 

Many groups have studied optimal extraction methods, including adding stabilizer molecules such as 

RNAlater, or variation of extraction protocols (247,314). However, extraction of unstabilised urinary 

RNA can yield lower quality RNA (314,328,329). The urine used in this chapter was extracted without 

RNA stabilising solutions, therefore the quality of the RNA was expected to be low (See section 3.4.2). 

A literature review on urinary RNA preamplification prior to PCR analysis for prostate cancer biomarkers 
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was performed (118,294). The Whole transcriptome amplification (WTA) step was selected to produce 

cDNA in degraded samples (see 3.3.2.2.3). In this chapter the quality and quantity of previously 

extracted urinary RNA was analysed, to determine the relative gene expression of the refined diagnostic 

and prognostic gene panels (defined in 3.3.3.2), in a cohort of men that took part in the ProMPT trial.  

Since the detection or RNA markers in blood and ensuring the disease specificity is vital, we 

hypothesised that tissue based biomarkers could be detected in blood and used to diagnose and risk 

stratify patients with prostate cancer. For this work, two panels of prostate cancer tissue based 

biomarkers (Figure 3-9), previously cross validated in three independent published prostate cancer 

tissue cohorts (220,305,306), were further tested for their diagnostic ability in two biological fluids: urine 

and blood. In order to do this the relative gene expression of the two gene panels were measured in 

urine of patients from the ProMPT study and PAXgene blood from patients from the PROMIS and 

INNOVATE trials (47,219). Using area under the curve values, the gene panel accuracy was determined 

and compared to current biomarkers such as PSA, PSA density and mpMRI. 

Often, low quality RNA is obtained following extraction from blood or urine, and missing data is obtained 

after downstream applications, such as PCR. This may be due to RNA instability, and its susceptibility 

to biologically abundant RNA degrading substances (RNAses, alkaline pH, for example) (330–332). 

Additionally, errors in processing of RNA for downstream analysis, human error and low RNA 

concentration can produce missing data. A potential solution is to pre-amplify samples as discussed in 

section 3.3.2.2.3. Regardless of the intent of obtaining a full dataset, missing data will be present, and 

thus, understanding missing data is part of the research process and analysis (Analysis of the patterns 

of missing data are discussed in section 2.2.6.3). In this chapter established statistical methods were 

used to understand the patterns of missing data and to populate, where appropriate, missing values for 

downstream analysis.  

Due to the large number of samples and genes of interest, conventional qPCR was not feasible. 96 well 

plate qPCR is time consuming and adds to costs; in addition, inter-plate variation of experimental 

conditions carries additional analytical hurdles (333). Advances in micro-droplet dqPCR using the 

Fluidigm Biomark module allow for thousands of reactions to be performed using a single chip. This 

system uses nanoliter volumes to perform real time PCR by means of integrated fluidic circuits, allowing 

gene expression to be measured across multiple samples using a limited amount of reagents and 

sample.  
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4.1.1.  Cohorts for biomarker panel discovery and validation 

4.1.1.1. Cambridge ProMPT cohort 

The “Prostate cancer: Mechanisms of progression and treatment” (ProMPT study) is a national 

collaboration effort that aims to study hormone resistant and metastatic prostate cancer (National 

Institute of Health and Research ID 5837). The study includes a biobank of samples of men with no 

cancer (presumed benign), and proven prostate cancer that attended clinic due to a raised serum PSA. 

Wherever possible patients had longitudinal follow up including PSA levels, mpMRI (if available), 

pathological information (TNM stage, Gleason score). For further demographic of patients included and 

clinical information see Table 4.2. 

4.1.1.1.1. Urine samples cohort characteristics 

The ProMPT cohorts included in this thesis included men with metastatic disease (n=7), therefore the 

median serum PSA and PSA density in these groups are higher when compared to the PROMIS and 

INNOVATE group. Samples were collected from 2003 to 2014 with variable follow up available. These 

samples were collected prior to the widespread use of mpMRI and thus this information is not available.  

4.1.1.1.2. Blood samples cohort characteristics 

In total, 89 patients with varying degrees of disease were included. This included patients with no cancer 

(n=10), localised disease (n=34) and metastatic disease (n=45).Clinical data was revised to ensure 

correct staging; a group of patients were found to be misclassified, see Table 4.1. Mainly, patients were 

misclassified, as the clinical data used for group subdivision was not based on the clinical status at time 

of samples being taken. For example, a patient was misclassified as metastatic on hormones, when at 

the time of collection he was hormone naïve.  
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Group  Initial staging Corrected staging 
Benign 10 10 
Low risk 11 11 
Intermediate risk 11 10 
High risk 11 15 
Metastatic on hormones 16 11 
Metastatic hormone naïve 18 16 
Metastatic hormone resistant 12 16 

Table 4.1 ProMPT patient reclassification following data review.  
Groups using D’Amico classification, initial staging corresponds to classification of patients on original 
file. Corrected staging following review of clinical data.  
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4.1.1.2. Prostate MR imaging study (PROMIS) cohort at UCLH 

The PROMIS study is a multicentre trial to study the ability of mpMRI to detect clinically significant 

prostate cancer compared to the standard of care (TRUS biopsy) and full interrogation of the prostate 

every 5 mm (transperineal prostate biopsy) (47). Two definitions of significance were applied: Gleason 

≥4+3 or more, or a MCCL ≥ 6 mm in any location (primary) or Gleason ≥3+4 or a MCCL ≥ 4 mm 

(secondary). Patients from eleven centres took part, but only patients from UCL provided blood and 

urine samples for biomarker and genetic analysis (227 patients in total). Summary of clinical data is 

shown on Table 4.2. 

This unique study includes patients at the first referral to a urologist due to suspected prostate cancer, 

consequently there is a large number of patients with no prostate cancer as well as low grade prostate 

cancer. Interestingly this offers an opportunity to differentiate men in the benign group based on 

common histological abnormalities such as atrophy, inflammation, high grade PIN and ASAP and the 

few with none of these changes (true benign). In addition, since these men have had thorough sampling 

of their prostates, we can assume that their negative status is as accurate as possible, short of removing 

the prostate for full whole-mount analysis (which is clearly impossible in a diagnostic cohort). 

Furthermore, the extensive sampling of these men’s prostate allows for extensive pathological analysis 

in the cancer cohort, as well as correlation with imaging and fluid (blood and urine) mRNA expression 

profiles.  

The follow up in this cohort is limited as the sample collection started in 2012 up to 2015, therefore it is 

not possible to ascertain if any of the men in the benign group went on to develop prostate cancer or 

had undetected prostate cancer. In addition, it has not been long enough to observe the natural history 

for aggressive cancers evolving to hormone resistance.  

4.1.1.3. INNOVATE UCL cohort 

The INNOVATE study (CombIning advaNces in imaging with biOmarkers for improved diagnosis of 

Aggressive prostate cancEr) aimed to combine discovery and validation of known fluidic biomarkers in 

combination with mpMRI and a novel MRI sequence called VERDICT (219).  

The cohort in this trial includes men referred to the urology clinic due to suspicion of prostate cancer, 

with blood and urine samples taken prior to mpMRI in addition to the VERDICT sequence. Men with 

suspicious lesions (MRI Likert score ≥ 3) had a targeted transperineal biopsy (if clinically indicated), 

those with lesions scoring Likert ≤ 2 were discharged back to their GP. This reflects the current clinical 

practice at UCH; nonetheless, due to the nature of the study it is not possible to ascertain that men with 

negative biopsies or negative mpMRI are true negatives. Clinical data can be seen on Table 4.2 
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ProMPT 
(blood) 

ProMPT 
(urine) 

PROMIS 
(blood) 

INNOVATE 
(blood) 

p value 
D

is
e
a

s
e
 

s
ta

tu
s
 Benign 10 28 65 60 

 

Localised 31 44 129 29 
 

Metastatic 48 7 0 0 
 

C
li
n

ic
a
l 

d
a
ta

 

Age 
(range) 

67 
(49-93) 

62.1 
(39-84) 

62 
(39-79) 

63 
(43-81) 

<0.0001 

PSA 
(range) 

148 
(2-6470) 

11.03 
(1.18-95.58) 

6.77 
(0.9-15) 

7.5 
(0.75-37.8) 

< 0.0001 

Prostate volume 
(range) 

45 
(16-160)* 

N/A 48.4 
(17-126) 

54.5 
(14-180) 

0.063 

PSA density 
(range) 

1.02 
(0.03-16.9)* 

N/A 0.15 
(1.02-0.58) 

0.17 
(0.02-2.02) 

<0.0001 

P
G

G
 

1 12 12 34 3 
 

2 14 25 80 16 
 

3 4 3 15 5 
 

4 5 1 0 0 
 

5 30 10 0 5 
 

No data 14 0 0 0 
 

L
ik

e
rt

 s
c
o

re
 

(M
R

I)
 

1 ND ND 0 0 
 

2 ND ND 34 14 
 

3 ND ND 71 43 
 

4 ND ND 38 20 
 

5 ND ND 41 12 
 

 
Total 89 79 194 89 

 

Table 4.2 Cohorts disease status, clinical, pathological and imaging data.  
Three cohorts were included; the ProMPT samples originated in Cambridge University Hospital, in total 
89 patients were included in the analysis. 79 urine samples correspond to a different cohort of ProMPT 
patients. There is no mpMRI data in this cohort (ND). The UCL cohorts are PROMIS (blood) and 
INNOVATE (blood), both of which have imaging data but lack metastatic samples.  Disease status, 
clinical data (age, PSA, prostate volume and PSA density), PGG and Likert score values are plotted on 
this table. There was a significant difference amongst the three cohorts on the distribution of age, 
presenting PSA and PSA density (p <0.0001, 2 way ANOVA), this can be explained by an older cohort 
and the presence of patients with metastasis in the ProMPT cohort. There is no statistical difference in 
prostate volume across the cohorts.  
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4.2.Objectives 

4.2.1. Hypothesis 1:  

Urine RNA is of sufficient quality to detect prostate RNA and can be used as a diagnostic and prognostic 

biomarker. 

4.2.1.1. Aim 1: Evaluate whether RNA from urine cell pellets can be effectively used to measure 

the refined diagnostic and prognostic gene panels in a cohort of prostate cancer patients. 

Objective 1: Evaluate the quality and quantity of urine RNA. 

Objective 2: Measure relative gene expression of the refined diagnostic and prognostic gene panels 

developed in Chapter 2 in urinary mRNA. 

Objective 3: Evaluate the performance of the diagnostic and prognostic panels in urinary RNA. 

4.2.2.  Hypothesis 2: 

Blood PAXgene RNA can be used to diagnose and risk stratify prostate cancer patients. 

4.2.2.1. Aim 2:  Measure the RNA levels of the seven-gene panel in PAXgene blood RNA from 

prostate cancer patient samples. 

Objective 4: Evaluate the quality and quantity of PAXgene extracted RNA. 

Objective 5: Determine the relative gene expression of the two gene panels in PAXgene extracted RNA.  

4.2.2.2. Aim 3: Study the impact of the gene panel as a diagnostic and prognostic test. 

Objective 6: Understand the diagnostic accuracy of the gene panel in two independent clinical cohorts 

(PROMIS and INNOVATE), to help determine which patients will benefit from a biopsy.  

Objective 7: Understand the utility of the gene panel for use as a risk stratification tool in two 

independent cohorts (PROMIS and INNOVATE). 
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4.3.Results 

4.3.1. Urine as a fluid for biomarker discovery 

4.3.1.1. Quality and control 

Urine pellets from the PROMPT cohort of patients underwent RNA extraction as described in section 

2.2.2.3. The 260/280 ratio can give an indication of organic solvent contamination introduced during 

sample extraction which can affect the efficiency of downstream measurements (334,335). The average 

26/280 ratio of all samples was 1.69 (1.18-2.07). Carrier RNA was added at the time of extraction, which 

may account for a proportion of the final RNA concentration. In addition, 58 samples (73.4%) had a low 

260/280 ratio as seen on Figure 4-1 A, Only 26.6% (n=21) had an acceptable 260/280 ratio. Additionally, 

there was a strong linear relationship between the 260/280 ratio and final concentration (R: 0.8, p< 

0.0001) (see Figure 4-1 B). Samples with higher concentrations were found to have phenol or Qiazol 

contamination (peak at 230 nm) and low 260/230 ratio confirming organic contaminants.  

Bioanalyzer analysis revealed that the urinary RNA was severely degraded; 62% of samples had RIN 

number of 1 (n =49), 18 % RIN between 1 and 2.5 (n=18), 7.5% RIN of 2.6 and no reading (n= 6 

respectively), see Figure 4-1 C.  This poses a challenge prior to qPCR as discussed in chapter (3.3.2). 

4.3.1.2. Preamplification 

As suggested by Chan et al. and Nguyen et al., low concentration and degraded RNA can be 

preamplified prior to PCR (294,295). WTA was implemented on the urinary mRNA samples (For further 

information see section 3.3.2.2.3). This step can induce bias in the data, mainly uneven amplification 

of targets, producing unreliable results. Examination of the Ct values of a housekeeper gene (RPLP2) 

divided the samples into two groups: samples whose Ct values improved following amplification 

(expected outcome) and samples where there was no change or increased Ct value (undesired 

outcome), Figure 4-1 D and E, respectively. As a housekeeper acts as an internal control regardless of 

the PCR reaction, this biased amplification affects the delta Ct calculations and ultimate analysis of 

data. There was a reduction of the Ct value as expected in 15 samples (19%). In 57% of the cases, the 

Ct values increased or remained the same after amplification (n= 45), 6 samples had no Ct values 

before or after amplification (7.5%, n=6) and 13 samples became undetectable following amplification 

(16.5%) and are not plotted here. For ease of interpretation, data in Figure 4-1 D and E were plotted 

separately.  

PCR results of sample 202-585 for three genes confirmed the biased amplification; for instance, PCA3 

is undetected prior to amplification (no light blue bar), whereas both housekeepers (SDHC and RPLP2) 

are detected. Amplification results in detection of PCA3, whereas SHDC is undetected following 

amplification (no dark blue bar) (Figure 4-1 F). The WTA step was considered biased, PCR reactions 

were performed using unamplified RNA.   
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Figure 4-1 Low quality urinary mRNA in ProMPT patient samples are not suitable for unbiased 
preamplification prior to qPCR.  
A. Optical absorbance of extracted urinary RNA for samples 202-448, 202-768, 202-766 and LNCaP. 
Sample 202-448 has organic compound contamination as seen by peak at 230 nm. Sample ID and 
nanodrop concentration on table. B. Dot plot comparing the RNA concentration in ng/mL (y-axis) and 
the 260/280 ratio (x-axis), Red dashed line represents limit of ideal 260/280 ratio as values below 1.8 
are considered to be protein contaminated. C. Histogram representing the RIN number distribution 
amongst all urinary mRNA samples. D. Boxplot of Ct values or unamplified and amplified samples of 
the housekeeper gene RPLP2, were Ct values were lower following amplification and E. where the Ct 
value remained the same or increased. F. Barplot of Ct values for sample 202-585. PCA3 gene is not 
detected prior to amplification and has a high Ct value of 40 following amplification (n=3). Two 
housekeeper genes are plotted; SDHC became undetectable following amplification, whereas RPLP2 
had a significantly lower Ct value post amplification. **** p < 0.0001.  
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4.3.1.3. qPCR of degraded urinary RNA  

4.3.1.4. Missing data 

qPCR of unamplified urine samples revealed a high proportion of missing data, fitting one of eight 

patterns across the technical replicates (Figure 4-2 A). The most common missing pattern was non-

reads in all three replicates, followed by non-reads in two out of three replicates. The percentage of 

missing data per replicate can be seen on Figure 4-2 B, the gene with most missing data was STIL 

(96.8%-100% per replicate). When excluding the housekeeper RPLP2, a high percentage of data was 

missing on all genes (median 72.2%, range 42.8%-97.8%). RPLP2 had 22.0% of data missing (Figure 

4-2 C). Prior to inputting missing data, Little’s multivariate MCAR test was performed, the null hypothesis 

being that Ct values are missing independently from the data values (214,215); in this case the 

“missingness” cannot be explained by available or missing data and are therefore, missing completely 

at random (MCAR). If the p value is not below 0.05, then data is MCAR. All genes were found to be 

MCAR (Figure 4-2 D), with the exception of MSMB that was missing not at random (MNAR).  

Multiple random imputation was performed to input missing data, if data only was available in two 

readings and if the housekeeper was detected. One thousand simulations were performed and a 

random “complete” dataset was selected for final analysis. Data was only imputed if more than 8% of 

data was available; therefore, STIL was excluded as it had 97.8% missing data. 

Figure 4-3 A shows the Delta Ct values of the unamplified urine samples following qPCR. As expected, 

a large proportion of data is missing (grey). Following multiple random imputation, the amount of missing 

data is reduced as seen in Figure 4-3 B and C. However, following multiple random imputation, data 

was mostly populated in patients with cancer; Figure 4-2 D shows the amount of missing data per 

patient in the benign cohort. In average 5/14 genes were detected in all patients (range 0-13). Only five 

patients had more than 10 data points for analysis (gene expression detected).  

Relative gene expression as calculated as described in section 2.2.6.1. Prior to analysis, the data was 

examined to determine the best statistical test for analysis. Quantile-quantile plots (QQplot) per gene 

were generated; data was not equally distributed as seen in Appendix 5. Note this is especially true for 

the benign samples (black). Levene’s test was performed to determine the variance of relative gene 

expression between benign and cancer samples. There was unequal variance distribution in genes 

AGR2, AR, ECI2, PCA3, PSA and VPS13A. The remaining genes had equal variance distribution 

(Appendix 5). Welch-Satterthwaite t-test was performed for the unequal variance samples and a regular 

student t-test for the equally distributed samples.  When the relative gene expression of cancer and 

benign was compared, a statistically significant difference in genes AGR2, TMPRSS2, AR, ECI2, PSA, 

PCA3 and VPS13A was seen (Figure 4-4). Note the variation in patient numbers in the benign group.  

Due to the amount of missing data in the urine samples, and imbalance between the benign and cancer 

group, no further analysis was performed on urine samples.   
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Figure 4-2 Missing data following qPCR of unamplified urinary RNA.  
A. Eight possible missing data patterns per technical repeat (R1 = repeat one, R2= repeat two and R3= 
repeat three). Missing data in blue and non-missing data in white. B. table containing percentage of 
missing data per technical replicate per gene. C. Barplot representing the average total missing data 
per gene, RPLP2 has only 22% missing data and STIL has 97.8% of missing data. D. Chi square and 
p values following Little’s MCAR test for all genes confirming if data was MCAR or MNCAR.  
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Figure 4-3 Multiple random imputation reduces the number of missing data points.  
A. Heatmap representing the Delta Ct (DCt) values of 14 genes following qPCR, missing values are 
represented in grey. Gradient represents the DCt values from -5 to 10. B. Heatmap representing the 
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DCt values following multiple random imputation. Note reduced number of grey spaces and fewer 
extreme DCt values (bright yellow and dark purple) compared to A. C. Table containing the number of 
NA’s prior to and after multiple random imputation. D. Table representing patient in the benign group 
and the number of genes where data was available (mean = 5, range= 0-13). 



128 
 

 

 



129 
 

 

Figure 4-4 Relative gene expression of genes in urine RNA reveals 6 upregulated genes in 
cancer.  
Boxplots comparing benign and cancer samples in urine RNA, n= number of patients for each group, 
2^-Delta Ct represented in y-axis.. Welch-Satterthwaite t-test was performed on AGR2, AR, ECI2, 
PCA3, PSA and VPS13A. Student’s t-test was performed in EIF2B5, GDF15, MSMB, NAALADL2, 
NT5DC1, TMPRSS2, and TRMT12. * p < 0.05, ** < 0.01, *** p < 0.001, **** p < 0.0001, ns= not 
significant.  
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4.3.2. Studying gene expression using PAXgene whole blood 

4.3.2.1. Gene expression in PAXgene RNA in patients from the ProMPT study 

Gene expression of RNA extracted from PAXgene blood at Cambridge University was performed by Dr 

Thomas Johnston under supervision by Dr Hayley Whitaker. Data was shared for analysis. No data 

was available on quality and control. A concentration of 40ng was used for cDNA creation.  Initial 

analysis of samples consisted of reviewing quality of PCR plates. This was performed by examining 

housekeeper variability between the samples.  

Three housekeeper genes were included in three separate chips, including RPLP2, RPLP0 and SDHC. 

No samples showed fluorescence with RPLP0, this housekeeper was excluded. Data distribution and 

homogeneity of variances was examined for RPLP2 and SDHC, followed by one-way Anova or Kruskall 

Wallis depending on data normality (2.2.6.2). For the purpose of brevity, Ct values of RPLP2 and SHDC 

were found to be statistically different between different stages of disease. RPLP2 values were plotted 

and statistical results can be found on Figure 4-5. This data was not used for further analysis as 

normalisation to a housekeeper was not possible.  
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Figure 4-5 RPLP2 Ct values vary between disease stages and it is not an appropriate 
housekeeper gene for normalisation of PCR data.  
Ct values of RPLP2 gene plotted on y-axis. D’Amico group classification on x-axis as Benign*, LR = low 
risk, IR= intermediate risk, HR= high risk, MHN= metastatic hormone naïve, MOH= metastatic on 
hormones and MHR= metastatic hormone resistant. A corresponds to chip1, B to chip 2 and C to chip 
3. Data was normally distributed in chip1 and 3, variance distribution was homogeneous in all chips. 
One-way Anova was performed for chips 1 and 3, followed by Tukey post-hoc analysis. Kruskall Wallis 
was performed for Chip 2, followed by Nemenyi post-hoc test. p < 0.05, ** < 0.01, *** p < 0.001, **** p 
< 0.0001. 
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4.3.2.2. Gene expression in PAXgene RNA in patients from the PROMIS and INNOVATE studies 

4.3.2.2.1. Quality and control 

Blood samples from PAXgene RNA tubes were extracted following the extraction protocols (See 

methods in section 2.2.2.2). In total 208 samples from PROMIS and 96 samples from INNOVATE were 

extracted. Final sample selection for PCR was based on 260/280 ratio, final concentration and RIN 

value. A low 260/280 ratio indicates contamination from reagents used in the extraction protocol, this 

may affect PCR efficiency. For optimal micro-droplet PCR (Fluidigm) RNA concentration in 5 μL of 

reverse transcription reaction is 2.5 pg to 250 ng (336). For this study, a minimum concentration of 80 

ng in 5 µL was required. RIN values provide information on RNA integrity, as discussed in section 

3.3.2.1. RIN values below 5 were excluded. Samples that did not reach the concentration and quality 

thresholds were excluded (n=11). For instance, sample P108042 has a very low RNA concentration as 

was excluded from future experiments (Figure 4-6 A).  

As with urine, final concentration and 260/280 ratio were plotted (Figure 4-6 B). Density plots represent 

the distribution of RIN values in the INNOVATE and PROMIS cohorts (Figure 4-6 C). As two 

quantification methods were used (Qubit and nanodrop), comparison of final concentration values was 

performed (Figure 4-6 D).   
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Figure 4-6 PROMIS and INNOVATE blood RNA samples quality control.  
A. Optical absorbance of extracted blood PAXgene RNA for PROMIS samples P108035, P10804 and 
P108042 and INNOVATE samples INN-221 and BAR-002. Sample ID and nanodrop concentration on 
table. B. Dot plot comparing the RNA concentration and the 260/280 ratio from PROMIS samples; red 
dashed line represents limit of ideal 260/280 ratio below 1.8 and above 2.2. C. Density plot and boxplot 
representing the RIN number distribution amongst blood extracted mRNA samples. D. Scatterplot of 
nanodrop RNA concentration on the x-axis and Qubit RNA concentration on the y-axis. INNOVATE 
study represented in yellow, PROMIS study represented in blue. Correlation coefficient and p value in 
blue and yellow boxes, respectively. Density plots representing the distribution of concentration per trial. 



134 
 

 

4.3.2.2.2. Measuring the gene expression of all genes in the panel in PAXgene RNA using Fluidigm 

Micro-droplet dqPCR was used to measure the panel gene expression in blood RNA from PAXgene 

blood (Section 2.2.4.4).  Missing data analysis was performed as described in (Section 2.2.6.3). When 

examining all genes COL6A3, KLK3, PCA3, TMRPSS2 and AGR2 had >50% of missing data, in 47 

patients all data was missing for these genes (Appendix 6A-B).  

The relative gene expression data from the two panels (refined diagnostic and refined prognostic) was 

extracted to continue analysis. Missing data analysis was performed and plotted (See Figure 4-7). 

AGR2 had 78.8% of missing data; the high percentage of missing data for this gene was consistent for 

all technical replicates. For this reason, AGR2 was removed from future analysis, reducing the refined 

diagnostic panel from seven genes to six genes. All remaining genes had less than 6% of missing data 

and were deemed suitable for further analysis. The co-occurrence of missing data points was analysed 

using an UpSet plot (Figure 4-7-B), this confirmed that when AGR2 was not expressed it was in isolation 

(149 cases), with the exception of one patient, in whom SLC2536 was also not detected.  

Data distribution was examined using Quantile-quantile plots (QQplot) per gene and Levene’s test to 

determine the variance between benign and cancer samples (Appendix 7). Relative expression (2^-

DCt) was normalised to prostate volume and results were plotted as boxplots comparing benign and 

cancer patients (Figure 4-8). The difference in relative expression was significant for all genes in the 

diagnostic signature but not on the prognostic signature (Figure 4-8 B).  
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Figure 4-7 Missing data analysis of blood extracted mRNA from PAXgene blood.  
A. Tile plot representing missing data analysis. Missing data is plotted in black, present data in grey. 
Observations are plotted in the y-axis and genes in the x-axis. Missing percentage per gene is depicted 
below each gene name. B. UpSet plot representing the patterns of missing data in EIF2B5, MAD1L1, 
NT5DC1, SLC25A36 and AGR2. The intersection size is plotted in the y-axis, the dots represents the 
parts where missing data intersects.  
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Figure 4-8 Relative gene expression of genes in PAXgene blood extracted RNA in diagnostic 
and prognostic signature.  
A. Boxplots comparing benign and cancer samples in PAXgene blood RNA. Benign is plotted in light 
blue and cancer in dark blue. Normalised relative expression is plotted on y-axis (normalised by prostate 
volume).Benign and cancer plotted on x-axis. n= number of patients. Welch-Satterthwaite t-test was 
performed on GDF15 and TSPAN13. Student’s t-test was performed in remaining genes. B. Boxplots 
comparing three Prostate Prognostic Groups (PGG1, PGG2 and PGG3). Normalised relative 
expression is plotted on y-axis (normalised by prostate volume).PGG groups are plotted on the x-axis.  
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4.3.3.  Study of the accuracy of the diagnostic and prognostic panels. 

4.3.3.1. Assessment of accuracy of biomarker panels for diagnosis and risk stratification of 

prostate cancer 

In order to assess the applicability of the two gene panels as a combination of markers rather than 

individual levels of expression, the data was analysed in collaboration with the Rosenfeld lab, Jerusalem 

Institute of Technology, as detailed in methods section 2.2.6.5. 

4.3.3.2. Assessment of diagnostic accuracy of the six-gene refined diagnostic gene panel in the 

PROMIS cohort for model development.  

Confusion matrices were created to calculate the diagnostic accuracy estimates with 95% confidence 

intervals of the six-gene panel when evaluating: 

1. All benign cases versus all cancer cases. 

2. All benign cases versus cases meeting definition one in PROMIS (Gleason score ≥4+3 or 

cancer core length ≥6 mm). 

3. All benign cases versus cases meeting definition two in PROMIS (Gleason score ≥3+4 or 

cancer core length ≥4 mm). 

Cases that did not meet significance criteria described above were grouped with the no-cancer group. 

The corresponding tables are presented in Appendix 8. Area under the ROC curve plots were created 

for each parameter to represent diagnostic accuracy of PSA, PSA density, Likert and the six-gene panel 

(Figure 4-9 A). The combination of PSAd and the six-gene panel is plotted on Figure 4-1 B. The AUC 

was used to determine the performance of the test to correctly classify those with and without the 

disease. These values were plotted in Figure 4-9 C, whilst the six-gene panel improved the diagnostic 

accuracy compared to PSA alone (0.68, 95% CI 0.65-0.70 compared to PSA AUC 0.64, 95% CI 0.56-

0.73), PSA density performs better alone and in combination to mpMRI (AUC 0.76, 95% CI 0.69-0.83 

alone and 0.85, 95% CI 0.83-0.87). A summary of the analysis of performance of the panel is depicted 

in Figure 4-9 D.  
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Figure 4-9 ROC curves reveal similar performance of the refined diagnostic six-gene panel 
compared to PSA density, but not superior.  
A. ROC graph representing the true positive rate (TPR) against the false positive rate (FPR) for the 
diagnosis of prostate cancer (benign vs cancer). PSA in blue, six-gene panel in purple, PSA density 
(PSAd) in turquoise, Likert score in green and performance of a random test in yellow. The TPR is 
plotted on the y-axis, the FPR on the x-axis.  B. ROC graph for Likert alone (turquoise) and in 
combination to PSAd (blue) and the six-gene panel (purple). X-axis and y-axis as before. C. Barplot 
with values and confidence intervals (CI) for each parameter as error bars. Area under the curve (AUC) 
is plotted on the y-axis, parameters on the x-axis. Table below the plot contains AUC value and CI for 
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each test and corresponding combinations. D. Table depicting performance analysis of the test in all 
three conditions (Benign vs cancer, definition one and two). For information on formulas used see 
Materials and Methods 2.2.5.2.6  
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4.3.3.3. Assessment of accuracy of the refined prognostic three-gene panel for risk stratification 

of prostate cancer 

To determine the diagnostic accuracy of the refined prognostic three-gene panel for PGG classification, 

ROC plots and AUC where calculated. MCCL was not taken into account for this analysis, and so none 

of the previously described definitions were used in this analysis. Instead, the PGG was used as follows: 

1. PGG1: Gleason 3+3 

2. PGG2: Gleason 3+4 

3. PGG3: Gleason 4+3 

4. PGG4: Gleason sum 8 

5. PGG5: Gleason 9 and 10 

A combined plot for the refined prognostic panel was created and its ability to discriminate between 

PGG in the cohort. The AUC under the ROC was calculated. All results are plotted on Figure 4-10. The 

three-gene panel was unable to accurately identify the different PGG classifiers. 
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Figure 4-10 Refined prognostic three-gene panel fails to classify patients by PGG.  
A. ROC graph representing the true positive rate (TPR) against the false positive rate (FPR) for the 
detection of PGG’s. PSA in blue, three-gene panel in purple, PSA density (PSAd) in turquoise, Likert 
score in green and performance of a random test in yellow. The TPR is plotted on the y-axis, the FPR 
on the x-axis.  B. ROC graph for Likert alone (green) and in combination to the three gene panel in 
purple, and PSAd (blue). X-axis and y-axis as before. C. Barplot with values and confidence intervals 
(CI) for each parameter as error bars. Area under the curve (AUC) is plotted on the y-axis, parameters 
on the x-axis. Table below the plot contains AUC value and CI for each test and corresponding 
combinations. 
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4.3.4.  Panel validation in the INNOVATE cohort 

To determine the diagnostic accuracy of the refined diagnostic six-gene panel for the diagnosis of 

prostate cancer in an independent cohort, the INNOVATE cohort was utilised. The logistic regression 

model developed with the PROMIS data (Section 4.4.1.1) was tested in INNOVATE, as a validation 

cohort. Data was analysed (Rosenfeld lab) and confusion matrices were created to calculate the 

diagnostic accuracy estimates of the six-gene panel. When evaluating the same parameters as in the 

PROMIS cohort: 

1. All benign cases versus all cancer cases. 

2. All benign cases versus cases meeting definition one in PROMIS (Gleason score ≥4+3 or 

cancer core length ≥6 mm). 

3. All benign cases versus cases meeting definition two in PROMIS (Gleason score ≥3+4 or 

cancer core length ≥4 mm). 

The corresponding tables are presented in Appendix 8. As previously, a combined ROC curve was 

created for each marker alone and in combination with imaging as seen on Figure 4-11 A.  

The sensitivity of the panel was lower in the INNOVATE cohort compared to PROMIS, but the specificity 

was overall higher (Figure 4-11 D). The refined diagnostic six-gene panel was better at ruling in cancer, 

with a sensitivity of 45% and specificity of 88%, compared to 82% sensitivity and 66% specificity in the 

training set (PROMIS). The AUC was 0.65 (95% CI 0.61-0.69), only slightly lower than in PROMIS (AUC 

of 0.68, 95% CI 0.65-0.70), see Figure 4-10 D. The Matthews Correlation Coefficient (MCC), provides 

a measure of the quality of binary classifications; it yields a score of one only if the prediction obtained 

good results in all of the four confusion matrix (217) (see 2.2.6.5). A score of zero means the test is no 

better than random guess, whilst a score of one indicates perfect agreement between the test and the 

actual diagnosis. The panel highest MCC in the diagnostic setting was for the PROMIS (training) cohort, 

with a score of 0.47, lowering to 0.37 in the INNOVATE cohort.  

Performance in the INNOVATE cohort of the panel for detection of definition one (Gleason ≥ 4+3, MCCL 

≥6 mm) had a similar result. There was a lower sensitivity of 48% (76% in PROMIS) and specificity of 

88% (82% in PROMIS). The MCC was also lower in the INNOVATE cohort (0.38) compared to PROMIS 

(0.55).  

For definition two (Gleason ≥3+4, MCCL ≥4mm), the panel had a 33% sensitivity and better specificity 

of 84% (81% and 72%, respectively in PROMIS). However, the MCC was closer to 0 with a score of 

0.19 compared to 0.54 in PROMIS For all values see tables in Figure 4-9 D and Figure 4-11 D. 
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Figure 4-11 ROC curves reveal similar performance of the refined diagnostic six-gene panel in 
the INNOVATE cohort, but is not superior to PSAd.  
A. ROC graph representing the true positive rate (TPR) against the false positive rate (FPR) for the 
diagnosis of prostate cancer (benign vs cancer). PSA in blue, six-gene panel in purple, PSA density 
(PSAd) in turquoise, Likert score in green and performance of a random test in yellow. The TPR is 
plotted on the y-axis, the FPR on the x-axis. B. ROC graph for Likert alone (turquoise) and in 
combination to PSAd (blue) and the six-gene panel (purple). X-axis and y-axis as before. C. Barplot 
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with values and confidence intervals (CI) for each parameter as error bars. Area under the curve (AUC) 
is plotted on the y-axis, parameters on the x-axis. Table below the plot contains AUC value and CI for 
each test and corresponding combinations. D. Table depicting performance analysis of the test in all 
three conditions (benign vs cancer, definition one and two).  
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4.3.5. Defining the best performing qualifiers for diagnosis and risk stratification of prostate 

cancer. 

As seen in the previous sections, the panel performs well but not necessarily well enough to replace 

current clinical diagnostic and prognostic parameters. In order to understand which were the best 

predictors for diagnosis and diagnosis of clinically significant disease using a liquid biopsy; logistic 

models predicting the three separate outputs (benign vs cancer, definition one and definition two) were 

created, based on the PROMIS data (training set). Internal validation was performed on all combinations 

with predictive power set at 95% sensitivity. The best performing model for each output was selected 

for prediction of the three outcomes in the INNOVATE cohort.  For the diagnosis of prostate cancer 

(cancer vs benign) the best performing model was the six-gene panel + PSA density + Likert. PSA 

density + Likert, performed best for definition one and two. For each patient the model predicted the 

presence (1) or absence (0) of cancer, Gleason 4+3 or ≥ 6mm (definition one) or Gleason 3+4 or ≥ 4 

mm (definition two). The performance of the model is represented on Figure 4-12. Both sensitivity and 

specificity are high when PSA density and Likert are used to find clinically significant cancer in both 

definitions, but specially in definition two (sensitivity 81%, specificity 76%, NPV: 90%). 
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Figure 4-12 PSA density (PSAd) and Likert have high sensitivity and specificity for the diagnosis 
of significant prostate cancer.  
Table depicting performance analysis of the test in all three conditions (Benign vs cancer, definition one 
and two) using the best performing models following logistic models with 95% sensitivity. 
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4.4. Discussion 

4.4.1. Summary of findings 

The first aim of this chapter was to evaluate the potential utility of urine pellet mRNA to measure gene 

expression. The quality and concentration of the RNA extracted from urine made analysis difficult 

(Figure 4-1, Figure 4-2). For instance, nanodrop plots confirmed contamination probably due to the 

extraction method (low 260/280 ratio). Less contaminated samples (higher 260/280 ratio) had a higher 

concentration, but this may be secondary to carrier RNA added during the extraction procedure (see 

section 2.2.2.3).  Additionally, all RNA was highly degraded with RIN numbers below 2.5 and more than 

50% of patients with RIN values below 1.5. Based on findings described in the previous chapter (section 

3.3.2.2.3), the urine RNA was pre-amplified, unfortunately the resulting relative expression profile 

showed the pre-amplification was biased (Figure 4-1 D-F). PCR was performed in unamplified, 

degraded urinary RNA.  

Analysis of missing data revealed that most of the absent data belonged to men with no cancer; 

following multiple random imputation, the relative expression boxplots in Figure 4-4 showed a 

statistically significant difference in genes AGR2, TMPRSS2, AR, ECI2, PCA3 and VPS13A. However, 

several limitations to this work exist. First, the number of available data points in the benign group for 

each biomarker varied and thus it is not possible to perform meaningful comparisons or group data for 

accuracy analysis. Second, this cohort consists of a small group of patients with different disease 

stages, making study of these biomarkers in urine as a diagnostic tool unbalanced to more aggressive 

cancer.  Last, it is not possible to confirm if men in the benign group were indeed benign, men in this 

benign group included those with inflammatory and benign enlargement of the prostate, and most 

patients were eventually lost to follow up or discharged from clinic. Since most of these had only TRUS 

biopsies, and only a minority had mpMRI guided transperineal biopsies, it is not possible to ascertain if 

any of these men had indolent disease that was not found due to sampling error, or if these men due 

indeed represent a true benign group 

The second aim of this chapter was to determine if the refined diagnostic and prognostic panels could 

be detected in blood, and to study their ability to act as a diagnostic tool for the diagnosis and risk 

stratification of prostate cancer. Using PAXgene blood the RNA quality was markedly improved; in 

addition, the amount of RNA extracted was higher than that of urine without need for carrier RNA (Figure 

4-6). For instance, the RIN values are above 5 for both studies, only 6 patients had RIN values below 

5 and all were excluded from downstream analysis. This is in line with published studies (337,338). The 

missing data analysis revealed that AGR2 was missing in 78.8% of cases (Figure 4-7), for this reason, 

this gene was removed from further analysis. All normalised relative expression values were normalised 

to prostate volume as with PSA density (339).  

Data from the resulting refined diagnostic six-gene, and refined prognostic three-gene panels were 

analysed to obtain accuracy measurements of the performance of both panels. Whilst the refined 

diagnostic six-gene panel was able to differentiate between benign and cancer patients, this ability was 

only slightly better than PSA and not better than PSA density (Figure 4-10, Figure 4-11).The prognostic 



148 
 

panel was unable to differentiate PGG groups (Figure 4-10). While the panel and MRI had the highest 

AUC values, Likert alone performed better than the panel alone and the benefit is minimal to justify 

using this kind of genetic testing in the clinic.    

With mpMRI emerging as a tool for diagnosis and risk stratification, a genetic panel with the potential 

to enhance its accuracy would be helpful. Unfortunately, neither panel offers enough improvement to 

the AUC of mpMRI to suggest such use. In fact, the PSA density performs better than any of the panels 

whilst increasing the ability of mpMRI to accurately detect prostate cancer.  

4.4.2. Methodological limitations 

The urinary mRNA had a degree of phenol contamination (Figure 4-1 B) and low quality (seen by RIN 

values below 2.5 in Figure 4-1 C), this could be secondary to the extraction method used (Acid 

guanidinium thiocyanate-phenol-chloroform extraction). Additionally, the RNA was degraded due to 

exposure to urine, as explained on Chapter 3 (3.3.2.1). The large amount of missing data from the urine 

cohort was another limitation; this can be due to one of three reasons: no gene expression in the 

sample, expression is too low and is undetected or the primer used is faulty. The latter can be ruled out 

as these genes were successfully measured in cell lines, and in blood PAXgene mRNA. It is not possible 

to determine if the gene expression was too low to be detected, or if no expression exists in these 

samples. It is likely that with dilution in bodily fluids, even if the prostate cancer expressed this gene it 

would not be detectable. 

Analysis of data obtained from PAXgene RNA in the ProMPT cohort, highlighted the need for quality 

control of each PCR run. As seen in Figure 4-5, RPLP2 variation between disease stages disqualifies 

the housekeeper to act as a normaliser. The experience of reviewing previously acquired data also 

imparted the importance of record keeping, as this analysis would not have been possible if records 

were lost.  

Regarding the cohorts, the INNOVATE cohort characteristics reflect the current NICE guidelines and 

clinical practice at UCHL, where negative mpMRI patients can undergo follow up at their local GP 

practice. Due to the nature of the trial, it is not possible to fully ascertain that men with negative biopsies 

or mpMRI are true negatives. Additionally, these men only had a targeted biopsy, compared to full 

mapping biopsy done in PROMIS. This may account for the lower number of men with cancer in this 

cohort.   

Regarding the PGG classification, the three-gene panel failed to accurately separate the groups. The 

lack of PGG4 and PGG5 patients in this particular cohort, limits the analysis of the panel’s ability to 

stratify risk. When examining the tissue data from Chapter 3, difference in expression was seen when 

comparing PGG5 to lower risk PGG groups (see Appendix 3 and 4). The lack of these two groups could 

explain the failure of the signature. Interestingly, when inputting all 28 genes the AUC was similar to 

PSA density (Figure 4-10), however caution must be taken as this may reflect overfitting of the model 

(340,341). This improved AUC could reflect a better performance by genes that were not included in 

the final signature; future work could be done to study this effect. 
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4.4.3. Clinical application 

The search for gene based biomarker panels in fluidic samples has so far had mixed results. The 

application of biomarker panels, like the one presented in this chapter, is expensive and time 

consuming. The comparison with available biomarkers such as PSA density, mpMRI and the 

combination of the two, showed that the performance of these for diagnosis of prostate cancer, and 

discrimination between the two definitions from PROMIS for clinical significance of cancer, was vastly 

superior to PSA alone and the genetic panel. Having said that, the panel had a good performance, and 

added some information to both these markers, but the use of these panels cannot be recommended 

beyond research practice.  

There is increasing interest in finding new biomarkers that can be detected in blood, urine and other 

biological fluids. However, extrapolating tissue-based markers into biological fluids has so far failed to 

find markers that outperform cost-efficient alternatives. Based on these findings, and the increasing 

interest in finding minimally invasive tests that find aggressive cancer (mainly dominating Gleason 4 

disease), chapter 5 focuses on attempting to understand the distribution of Gleason 4 in a small cohort 

of men in the PROMIS trial. 
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4.5. Lay summary  

In chapter 3, two gene panels were created using publicly available data from the initial 28 genes. One 

panel for detecting prostate cancer and recommending a biopsy (diagnostic panel), and one to detect 

men with more aggressive disease (prognostic panel).This chapter focuses on the measurement of the 

two panels in blood and urine samples from patients that took part in three studies: 

1. Cambridge ProMPT cohort (Prostate cancer: Mechanisms of progression and treatment), a 

biobank of samples of men with and without prostate cancer.  

2. PROMIS (Prostate MR imaging study), a study comparing the diagnostic ability of the 

transrectal prostate biopsy to MRI of the prostate.  

3. INNOVATE study (CombIning advaNces in imaging with biOmarkers for improved diagnosis of 

Aggressive prostate cancEr), a study looking to combine blood and urine tests in combination 

to a new MRI technique.  

The panels were evaluated as a group using the area under the curve measurement and, calculating 

parameters to measure the performance of the panels. For example, sensitivity to see how many men 

with the disease had a positive test and specificity to see how many men without the disease had a 

negative test, amongst others. 

4.5.1. Objectives 

1. Evaluate the quantity and quality of the RNA obtained from patient urine. 

2. Measure the relative gene expression of the diagnostic and prognostic panels in urine samples 

from patients from the ProMPT study.  

3. Evaluate quantity and quality of the RNA obtained from patient blood (ProMPT, PROMIS and 

INNOVATE studies) 

4. Measure the relative gene expression of the diagnostic and prognostic panels in blood samples 

from patients from the PROMIS and INNOVATE studies. 

5. Understand the diagnostic accuracy of the gene panel in two independent clinical cohorts 

(PROMIS and INNOVATE). 

6. Understand the utility of the gene panel for use as a prognostic tool in two independent cohorts 

(PROMIS and INNOVATE).  

4.5.2. Findings 

1. The urinary RNA is severely degraded, the pre-amplification step was not successful as it 

“multiplied” genes unevenly, biasing the results.  

2. Relative gene expression of the degraded urine RNA had lots of missing data.  

Take home message: Urinary RNA can be used to measure gene expression of these genes; however, 

steps must be made to protect the RNA after collection of the urine. The results obtained here showed 

some genes were higher in cancer compared to no cancer, however the data is limited and no 

meaningful conclusions can be made.  
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3. RNA quality from blood is adequate for gene expression studies.  

4. The diagnostic panel performed very well in the PROMIS cohort. This was validated in the 

INNOVATE cohort with similar results. However, when compared to a commonly used 

biomarker (PSA density) the performance was not significantly better. 

5. The risk stratification marker (to find aggressive disease) was not able to group patients 

according to the disease aggressiveness. 

Take home message: The diagnostic panel performed well, especially in combination with MRI to 

select which patient would benefit from a biopsy. However, the performance was similar to that of PSA 

density, a biomarker already used in clinical practice.  

4.5.3. Limitations 

1. The urine had no preservative to avoid RNA degradation leading to a high proportion of missing 

data. 

2. The studies used for validation lack long term follow up, this limits the prognostic value of the 

signature as the findings cannot be linked to outcomes such as death or recurrence after death.  
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Appendix 5. Urine PCR relative gene expression data is not normally distributed and has 
unequal variance distribution.  
A. quantile-quantile plots per gene and separated by condition, the x-axis represents the theoretical 
quartiles and the y-axis the sample quantiles. Shapiro-Wilk test p value is presented inside each plot 
(p=). Cancer samples are plotted in dark blue, benign samples plotted in black. B. Table representing 
the Levene’s test results per gene. Eight genes have equal variance distribution, whilst six genes have 
unequal variance. Welch t-test was performed if variance was unequal (significance ≤0.05), t-test was 
performed if variance was equal (significance ≥ 0.05). 
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Appendix 6. Missing data analysis of PAXgene blood extracted mRNA PCR in Fluidigm. 
A. Table depicting missing data of Fluidigm analysed PCR mRNA, First column contains gene names, 
followed by number of missing values and percentage of missing data. B. UpSet plot representing the 
patterns of missing data for COL6A3, PAC3, AGR2, TMPRSS2 and KLK3 with an NA suffix. The 
intersection size is plotted in the y-axis, the dots represent the parts where missing data intersects. 
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Appendix 7. Blood PCR relative gene expression data is not normally distributed and has 
unequal variance distribution.  
A. quantile-quantile plots per gene and separated by condition, the x-axis represents the theoretical 
quartiles and the y-axis the sample quantiles. Shapiro-Wilk test p value is presented inside each plot 
(p=). Cancer samples are plotted in dark blue, benign samples plotted in black. B. Table representing 
the Levene’s test results per gene. Two genes have equal variance distribution, whilst six genes have 
unequal variance. Welch t-test was performed if variance was unequal (significance ≤0.05), t-test was 
performed if variance was equal (significance ≥ 0.05). 
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Appendix 8. Confusion matrices for the six-gene panel for the diagnosis of prostate cancer and 
PROMIS definitions of significant disease in the PROMIS and INNOVATE cohorts.  
A. Comparison between benign versus cancer includes all patients in the PROMIS cohort. B. 
Comparison between benign cases and men who meet criteria for definition one of PROMIS and C. 
Definition two. D, E. and F correspond to the same parameters for the INNOVATE cohort. For all of the 
above tables, test results are plotted as positive (1) or negative (0) on the horizontal axis. Histological 
diagnosis is plotted below the top tab labelled “Disease” as Cancer (1) and Benign (0). All positive and 
negative cases are added on the horizontal and vertical axes to obtain values of total diseased, healthy, 
positive and negative.
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Chapter 5.  Critical Evaluation Of Visual Proportion of Gleason 4 and Maximum Cancer Core 

Length  

5.1.Introduction 

In 2013 Pierorazio et al., retrospectively reviewed 7850 radical prostatectomy specimens to investigate 

the short-term biochemical outcome using a prognostic-based scoring system called the Prostate 

Grading Group (PGG). By separating the Gleason sum 7 group into 3+4 and 4+3, the authors found 

that men with 4+3 had worse outcome defined as biochemical recurrence-free survival (8). These 

findings were further validated and were subsequently endorsed by the 2014 International Society of 

Urological Pathology Consensus Conference and the World Health Organization (WHO) (91,342,343). 

Prior to this, the blanket term of ‘Gleason 7’ cast a “grey area” connotation to Gleason 3+4 and 4+3; 

patients in this risk group were considered higher risk, and so not necessarily suitable for active 

surveillance (344,345). 

The 2014 and 2019 ISUP recommendation calls for improved categorisation of the percentage of G4 

(%G4) in prostate cancer to allow for better risk stratification and inform treatment decisions (9,13,346–

348). The distinction between Gleason 3+4 (PGG2) and 4+3 (PGG3) is made when %G4 falls below or 

above 50%, respectively, as visually estimated by uropathologists (343). Additionally, the maximum 

amount of cancer in any core (maximum cancer core length, MCCL) has been used as a proxy for 

tumour volume estimation and can be used to define clinical significance (349,350).  

Most histological prostate cancer burden studies have been performed in radical prostatectomy 

specimens or on men who have undergone transrectal systematic biopsies. The Prostate MR Imaging 

Study (PROMIS) includes men who are biopsy naïve whose prostates were systematically sampled 

every 5mm providing a unique opportunity to perform an in-depth pathologist-driven annotation and 

digital analysis of the pathological slides and compare this to the visually-reported %G4 and MCCL 

(47).   

In this chapter, quantitative measurements more commonly used in the scientific field of geography 

were applied to prostate biopsy data, in an attempt to understand the distribution of Gleason 4 across 

the prostate, and how it may relate to mpMRI visibility and the index lesion. In collaboration with the 

Geography department at UCL, measurements of clustering and evenness were applied to the 

contoured digital images (Section 2.2.5.3). In geography, the study of spatial segregation, as applied to 

minorities and ghettos, has been used to understand racial differences to access to healthcare. Mehra 

et al. performed a review and meta-analysis studying racial segregation and adverse birth outcomes. 

They applied four formal measurements of segregation described in Massey and Denton’s framework. 

These include: exposure, evenness, clustering, concentration, centralization and hyper-segregation 

(Table 5.1) (200,201).  

For the purposes of this chapter, we will concentrate on evenness and clustering. These were 

considered the best two measurements to apply to the Gleason 4 data, as they measure the distribution 
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of Gleason 4 taking into account the region as a whole. Drawing a comparison of Gleason 4 forming 

“neighbourhoods” surrounded by Gleason 3, the evenness measures the proportion of Gleason 4 

versus 3; an even population in this case would be formed of 50% Gleason 3 and 50% Gleason 4.  

Clustering takes into account the Gleason 4 clusters (or neighbourhoods), and studies how they are 

grouped in relation to the Gleason 3; in other words, if determines if Gleason 4 neighbourhoods are 

more or less likely to be surrounded by Gleason 3 or Gleason 4, forming ghettos. The remaining 

measurements described in Table 5.1, these parameters relate to social exposure, proportion occupied 

by the minority in relation to the region and a combination of the four measurements if segregation is 

identified.  

 

Exposure Degree to which minority members are exposed to minority or majority 
members in the same neighbourhood. 

Evenness Degree to which each neighbourhood has the same proportion of minority 
and majority members as the region and a whole.  

Clustering Degree to which minority neighbourhoods are contiguous and tightly 
clustered.  

Concentration Degree to which minority members occupy a small proportion on the total 
area as a region 

Centralization Degree to which a minority group is centrally located 

Hyper-segregation High levels of segregation on at least four aforementioned local measures 

Table 5.1 Formal measures of segregation as described by Massey and Denton.  
Adapted from Mehra et al. Figure 2.  

 

Graphically represented, if Gleason 4 was the “minority” (plotted in blue in Figure 5-1), and Gleason 3 

was the majority (plotted in white), an even population would have a similar number of blue and white 

dots, spread at even intervals. The population plotted on A is less even than the population plotted on 

B, as the blue dots are move evenly distributed amongst the entire population. The dots on C are more 

clustered than those on D as they are more tightly packed, forming “ghettos”, plot D also has these 

clusters, however they are more spread and have fewer blue dots forming them.  
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Figure 5-1 Visual representation of the measurements of spatial segregation.  
Evenness plotted at the top, clustering at the bottom. Isolation and exposure plotted on the left and 
right, respectively. Blue dots correspond to the “minority” Gleason 4 and white dots to the “majority” 
Gleason 3. Adapted from Reardon & O’Sullivan, “Measurements of spatial segregation, Figure 1.  
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5.2. Aims and objectives 

5.2.1. Hypothesis 1:  

The digital measurement of MCCL differs from the visually obtained measurement. 

5.2.1.1. Aim 1: Measure the MCCL using digital images of H&E prostate core biopsies and 

compare these to the measurement obtained using the microscope ruler. 

5.2.2.  Hypothesis 2: 

Quantification of Gleason 4 burden differs from histopathologist visual estimation. 

5.2.2.1. Aim 2: Objectively quantify the burden of Gleason 4 disease in a cohort of 30 men from 

the PROMIS study.  

Objective 1:  Determine the “true” burden of Gleason 4 by manually contouring clusters of Gleason 4 in 

digital images 

Objective 2: Compare the percentage assessment given by pathologists to a calculated percentage 

based on objective 1 findings.  

Objective 3: Compare impact of the visual and digital Gleason 4 percentage estimation in the index 

lesion. 

5.2.3. Hypothesis 2: 

Geographical parameters can be used to characterise the spatial distribution of Gleason 4 in prostate 

biopsies. 

5.2.3.1. Aim 3: Understand the clustering of Gleason 4 disease by using geographical 

parameters. 

Objective 4: Apply geographical descriptors to describe the distribution of Gleason 4. 

Objective 5: Understand the randomness of distribution of Gleason 4 in prostate biopsies.  

Objective 6: Compare the geographical parameters with the index lesion derived from mpMRI Likert 

score. 

Objective 7: Compare the geographical descriptors with the Gleason 4 percentage visual estimation 

and digital measurement. 
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5.3. Results   

5.3.1. Comparison of visual and digital MCCL measurement reveals discrepancy in Gleason 4 

measurement.  

5.3.1.1. Selection of cohort 

Two-hundred and twenty-six patients from University College London Hospital took part in the PROMIS 

trial. Of 113 men with Gleason 7 PCa, 85 had significant disease (PROMIS definition 1: Gleason 4+3 

or MCCL ≥6 mm). 15 patients with Gleason 3+4 and 15 patients with 4+3 disease were selected from 

the 85, using a random number generator on excel (Figure 5-2 A). A mean of 14.2 ± 8.05 cores per 

patient (IQR: 9, range: 2-34) were taken, containing with any Gleason 4. 192 H&E slides from these 30 

patients were scanned as described on section 2.2.5.1. Gleason 4 and MCCL was measured as 

described in sections 2.2.5.2. 

Comparison of age, prostate volume, presenting PSA and PSA density between the 85 patient initial 

cohort and the final selected 30 patients showed no statistical difference between the two cohorts in 

age, prostate volume and presenting PSA, and a statistical difference in PSA density (Table 5.2). 

Boxplots comparing clinical characteristics can be seen on Figure 5-2 B and C.  

 

Characteristic Gleason 3+4 Gleason 4+3 

85 patients 
n=671 

30 patients 
n=151 

p 
value2 

85 patients 
n=181  

30 patients 
n=151 

p 
value2 

Age 
 

64  
(58, 70) 

63  
(55 ,70) 

0.7 66  
(62, 69) 

66  
(62, 70) 

> 0.9 

Prostate 
volume (cc) 

37  
(27, 46) 

29  
(25, 40) 

0.3 39  
(32, 44) 

40  
(30, 44) 

> 0.9 

Presenting 
PSA 

7.10  
(5.85, 8.90) 

7.90  
(6.15, 8.80) 

0.7 11.05  
(8.57, 12.85) 

10.50  
(8.65, 12.50) 

> 0.9 

PSA density 
(PSA/pvol) 

0.21  
(0.15, 0.26) 

3.93  
(3.29, 5.43) 

<0.001 0.30  
(0.24, 0.33) 

3.33  
(3.03, 4.18) 

<0.001 

Table 5.2 Comparison of age and clinical characteristics between the 85 patient cohort and the 
final 30 patient cohort.  
Gleason 3+4 and 4+3 separated to compare age, prostate volume, presenting PSA and PSA density. 1 

Data presented as median and IQR in parenthesis. 2 Wilcoxon rank sum test performed.  

 

5.3.1.2. Statistical analysis 

Patients were divided according to the original Gleason score from the PROMIS trial into 3+4 and 4+3. 

The routinely performed ‘visual’ estimation for both measurements was used as the reference standard 

for all comparisons. When comparing two groups, meeting normal distribution (Shapiro-Wilk test) and 

same variances (F-test), a student t-test was applied. Whenever data was not normally distributed, a 

Mann-Whitney test was performed (for more information see section 2.2.6.2). To quantify the agreement 

between the two methods, the Bland Altman method was performed (351). The visual method was used 

as a standard for comparison; bias was defined as the average of the difference between the two 

methods. Limits of agreement were calculated at 95% CI.  
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Figure 5-2 Gleason 4 PROMIS cohort selection process and demographics.  
A. Euler diagram representing the selection process for 30 patient undergoing in-depth Gleason 4 
analysis. B. Patient demographics including age, prostate volume, presenting PSA and PSA density for 
the entire Gleason 7 cohort and for the 30 selected patients C. Student t test performed on all except 
PSA density in the entire cohort, and prostate volume in the 30 men cohort as data was not normally 
distributed (Wilcoxon rank sum test performed instead). 
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5.3.1.3. Digital and visual MCCL measurement are comparable. 

When comparing visual vs digital MCCL, in 23 of the 30 patients the difference was up to ±2mm; taking 

into account the positive and negative values, the median difference between the two measurements 

was 0.58 mm (range -4.12 mm to +5.52 mm, t-test, p=0.64) (Figure 5-3 A, B). Seven patients had 

measurements that differed by ≥2mm between digital and visual estimation. When viewed as a density 

plot, there was a tendency to overestimate MCCL in the 3+4 group and under-estimate in the 4+3 group 

when using the visual method (Figure 5-3 C). 

The Bland Altman test aids comparison of two methods measuring the same outcome, on this case 

comparing the gold standard (visual estimation) to the digital measurement. The test was applied to 

understand the degree of agreement between the two measurements. There was no systematic 

difference (bias) between the visual and digital assessment of MCCL, and there was no correlation 

between increasing MCCL and the level of disagreement between the two measurements (Figure 5-4 

A).  When dividing the cohort into Gleason 3+4 and 4+3 there was no significant difference in MCCL 

visual estimation and digital measurement (p=0.8 for 3+ and 0.48 for 4+3) (Figure 5-6B). 
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Figure 5-3 Objective measurement of MCCL and shows a discrepancy with visual measurement 
and pathologist estimation.  
A. MCCL difference between visual and digital MCCL shows under-estimation in visual compared to 
digital MCCL. Bar plot of visual MCCL in yellow and digital MCCL in blue, organised by Gleason score. 
MCCL is plotted on the y-axis; each patient is plotted on the x-axis. Red dashed lines represent a 
threshold of 6 mm as the MCCL criterion for significance (PROMIS definition 1). Patients highlighted in 
red were over or underestimated in the original visual measurement. B. Waterfall plot representing the 
difference between visual and digital measurements as digital MCCL- visual MCCL by Gleason score 
(y-axis), patients plotted on the x-axis. Visual Gleason score is represented in yellow for 3+4 and blue 
for 4+3. Bars with a negative value represent measurements where the visual MCCL was shorter than 
the digital MCCL (underestimation). Bars with a positive value represent cases were the visual MCCL 
was higher than the digital MCCL. The difference in 80% of cases is ± 2mm (n= 24), red dashed line at 
-2 and 2 mm difference. C. Density plots representing the MCCL distribution between visual and digital 
images by Gleason scores. Y-axis represents the Kernel density estimation. The X-axis contains MCCL 
values. Visual MCCL score is represented in yellow and blue for the digital measurement. 4+3.The 
mean visual MCCL was 9.53 mm (5-15 mm) and the mean digital MCCL was 9.88 mm (5.01-15.74).  
  



164 
 

 

Figure 5-4 No significant bias is seen between visual and digital MCCL measurement.  
A. Bland-Altman plot representing the difference in measurement in the y-axis as visual MCCL – digital 
MCCL. The x-axis represents the mean MCCL measurement of both techniques as (visual MCCL + 
digital MCCL)/2. The bold black line represents complete agreement at 0. The purple dashed line 
corresponds to the bias at -0.34. The dotted purple line corresponds to the bias confidence interval (-
1.06 to 0.37). Dash and dotted blue lines correspond to the upper and lower limit of agreement and 
confidence intervals are plotted with dotted blue lines. Upper limit of agreement: 3.43 (2.18 to 4.67), 
lower limit of agreement: -4.12 (-5.36 to -2.87). B. Paired boxplot comparing MCCL values obtained 
from the visual and glass measurement separated by Gleason score. Lines connecting values to denote 
change of measurement from visual to digital. Wilcoxon signed-rank test performed to obtain p values.  

 

 

 



165 
 

5.3.1.4. Visual Gleason 4 overestimates Gleason 4 burden.  

The visual %G4 overestimated Gleason 4 burden when compared to the digital assessment in all cases 

(Figure 5-5 A). The 4+3 group had a mean difference of +26.6% (range: 9.6%-41.9%) compared to 

+10.8% (range: 1.3%-24.9%) for the 3+4 group (t-test, p=1.9 x 10-5). The average %G4 in the patients 

graded 3+4 was 11.2% (range: 4.7-17.9%) compared to 30.4% (range: 12.9-50.6%) in the 4+3 group 

(t-test, p<0.0001).  When pathologists were asked to assess the overall Gleason score based on the 

digital images (visual %G4), two patients were downgraded from their original clinical grading of 4+3 to 

3+4 by both pathologists (See yellow bars of patients 23 and 18 in Figure 5-5 A).  

The difference between the two measurements ranged between 1.31% and 42% (median 18% 

difference) Figure 5-5B. As seen on the density plot in Figure 5-5 C, the digital measurement was 

skewed to the left (lower percentage of Gleason 4) compared to the visual estimation. 

Using the established 50% G4 threshold to designate a 4+3 cancer, and based on the digital %G4  (blue 

bars), only one patient (number 19 in Figure 5-5 A) would be classified as 4+3. When dividing the digital 

%G4 into quartiles, two patients in the original 4+3 group had less %G4 than the upper quartile of the 

3+4 group (18 and 30). In other words, these two patients had less Gleason 4 than the men with the 

highest %G4 compromise in the original 3+4 group. Figure 5-6 A shows the Bland-Altman analysis; 

showing that there was a bias towards overestimation in the visual estimations as all values are located 

above the line of complete agreement (Complete agreement would result in a zero value). The 

disagreement was larger when more than 20% of G4 was present (R: 0.79, p: <0.0001).  

In order to try to understand which factors may have influenced the pathologist’s decision-making, 

several factors were correlated to the difference between visual and digital %G4. For instance, did the 

pathologists give a higher %G4 estimation if a patient had more blocks with G4? For this purpose, the 

number of blocks, cores, contours, cancer area and Gleason 4 area were correlated to the difference 

between the pathologist and the digital measurement. No significant correlations were found (Figure 

5-6 B).  
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Figure 5-5 Visual Gleason 4 appraisal overestimates burden of disease.  
A. Bar plot of the proportion of Gleason 4 estimation average between two uropathologists (yellow) and 
digital estimation (blue). %G4 is plotted on the y-axis; each patient is plotted on the x-axis. A threshold 
of 50% g4 for clinical significance is shown as a red dashed line. Patient number on the x-axis is 
highlighted in bold and underlined if the digital measurement of their %G4 would lead to reclassification 
based on the digital value. Patient marked with * has ≥50% G4 in the digital measurement. B. Waterfall 
plot representing the difference between visual and digital measurements as digital G4%- visual G4% 
by Gleason score (y-axis), patients plotted on the x-axis. Visual Gleason score is represented in yellow 
for 3+4 and blue for 4+3. C. Density plots representing the %G4 distribution between visual and digital 
images by Gleason scores. Y-axis represents the Kernel density estimation. The X-axis contains %G4 
values. Visual MCCL score is represented in yellow and blue for the digital measurement. 4+3.The 
mean visual MCCL was 9.53 mm (5-15 mm) and the mean digital MCCL was 9.88 mm (5.01-15.74).  
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Figure 5-6 Visual estimation of Gleason 4 % overestimates Gleason 4 burden.  
A. Bland-Altman plot representing the difference in measurement in the y-axis as visual %G4 – digital 
%G4. The x-axis represents the mean %G4 measurement of both techniques as (visual %G4 + digital 
%G4)/2. The bold black line represents complete agreement at 0. The purple dashed line corresponds 
to the bias at 18.71; the dotted purple line corresponds to the bias confidence interval (33.87 to 48.75). 
Dash and dotted blue lines correspond to the upper and lower limit of agreement and confidence 
intervals are plotted with dotted blue lines. Upper limit of agreement: 41.31 (33.87 to 48.75), lower limit 
of agreement: -3.87 (-11.31 to 3.56). Regression line is plotted as a continuous blue line. B. Scatter 
plots of the difference between visual and digital percentage G4 versus number of blocks, number of 
cores, number of contours, G4 area in mm² and any cancer area in mm². Regression line plotted in 
black, confidence interval in light grey. Pearson method was used to calculate the correlation coefficient.  
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5.3.1.5. Index block %G4 overestimation leads to patient reclassification 

Examination of the index block (block with the highest Gleason score and MCCL), revealed equivalent 

findings as those seen with all tumour containing cores (Figure 5-7 A).The visual assessment of 

digitised images downgraded four patients’ index block from 4+3 to 3+4 (patients 18, 30,16,and 23). 

When examining the digital %G4 , only two patients reached the 50% G4 threshold (27 and 19), and so 

would be the only two patients with 4+3 disease based on digital measurement. The Bland-Altman 

analysis revealed a similar trend to that of the overall %G4 analysis. One measurement had complete 

agreement between the digital and visual estimate (patient 6 in Figure 5-7 A).One patient had a higher 

digital estimation compared to the visual estimation (patient 4 in Figure 5-7 A). This is represented by 

the only dot in the negative area of Figure 5-7 B. The disagreement between measurements increased 

as the amount of %G4 increased (R: 0.6, p: <0.0001).  

When patients were classified using the clinical significance criteria used in PROMIS in which MCCL 

and Gleason score were combined to derive definitions 1 (≥4+3 or ≥ 6mm) and 2 (≥3+4 or 4mm) the 

digital analysis reclassified four patients’ index block as lower risk. When all blocks were compared 

using this system, 20 patients had discrepancy between the visual and digital classification, leading to 

reclassification to higher or lower risk in six and fourteen patients, respectively (Figure 5-8) 
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Figure 5-7 Objective measurement of Gleason 4 burden shows a discrepancy between visual 
measurement and the digital measurement for the index block.  
A. Visual %G4 for the index block 30 patients shown in yellow overlaid with digital %G4 in blue. Patients 
separated by original Gleason grade grouping; 3+4 or 4+3, and organized by visual %G4. A threshold 
of 50% G4 for clinical significance is shown as a red dashed line. Patient number on the x-axis 
highlighted in bold and underlined if the objective measurement of their %G4 would cause 
reclassification. B. Bland-Altman plot representing the difference in measurement in the y-axis as visual 
%G4 – digital %G4. The x-axis represents the mean %G4 measurement of both techniques as (visual 
%G4 + digital %G4)/2. The bold black line represents complete agreement at 0. The purple dashed line 
corresponds to the bias at 14.36; the dotted purple line corresponds to the bias confidence interval 
(9.78 to 18.94). Dash and dotted blue lines correspond to the upper and lower limit of agreement and 
confidence intervals are plotted with dotted blue lines. Upper limit of agreement: 38.40 (30.49 to 46.32), 
lower limit of agreement: -9.67 (-17.59 to -1.76). The regression line is plotted as a continuous blue line. 
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Figure 5-8 Digital assessment reclassifies patients when using the UCLH traffic light system.  
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Graphical representation of the 20 modified Barzell zones used for transperineal sampling in PROMIS 
comparing visual and digital assessment, each positive block is denoted by the traffic light system 
representing the UCH clinical significance classification. Gleason 3+3 and MCCL ≤ 3 mm (green), 
Gleason 3+4 and/or MCCL 4-5 mm (yellow) and Gleason 4+3 and/or MCCL ≥ 6 mm (red). The index 
block is highlighted with a black arrow. The table contains the anatomical description of each modified 
Barzell zone. Patients are separated by original Gleason grade grouping 3+4 (A) or 4+3 (B); the number 
corresponds to a patient number. * if index block was downgraded. Green boundary box if one or more 
blocks were downgraded. Red boundary box if one or more blocks were upgraded. 
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5.3.2.  Geographical parameters can be used to study the spatial distribution of Gleason 4 in 

prostate biopsies. 

Using the described methods in Section 2.2.5.3, Gleason 4 contours were converted to Geojson images 

to obtain measurements of clustering and evenness per core. The clustering index indicates how close 

together and enclaved Gleason 4 is in relation to 3, in other words, a low score indicates less segregated 

Gleason 4. A higher score indicates more segregated Gleason 4. In Figure 5-9 A, an example of 

clustering index across all Gleason 4 containing cores is depicted. Core H_3 has a lower clustering 

value of 1.42, as there are few, small areas of Gleason 4. Compare this to core Q_2, with a value of 

1.83, with many small Gleason 4 contours.   

Evenness provides a measure of proportion of Gleason 4 to Gleason 3. A low evenness value indicates 

a near 50/50 distribution. In other words, the “population” is evenly distributed. A high value indicates a 

higher proportion of one or the other Gleason, so that the “population” is uneven. For example, core 

Q_2 in Figure 5-9 B, has a very low evenness score of 0.04, corresponding to the core in this patient 

with the highest amount of Gleason 4 (Figure 5-9 C). Conversely, cores with lower amounts of Gleason 

4 have a higher evenness scores. For example, Core H_4 has an evenness index of 1.64 and 0.01 

mm2 of Gleason 4. Evenness scores above 1 are not expected and are seen where only one Gleason 

4 contour was drawn (Figure 5-10). 

Density plots were created to visualise the distribution of clustering and evenness indexes across twelve 

randomly selected patients (2.2.5.3) Overall, the distribution of the clustering index value was to the 

right, whereas the evenness index was to the left, as seen on Figure 5-11 A. Each patient was plotted 

separately to visualise the distribution of the clustering and evenness index, with the assumption that 

values would remain opposite (as in patients 4, 6, 8, 9 and 11). However, this was not the case; some 

patients had a more normally distributed curve (patient 1, for example).  
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Figure 5-9 Clustering and evenness indexes example in one patient.  
Barplots representing the clustering index value (A) and Evenness index (B) on all Gleason 4 containing 
cores in one patient. Index value on y-axis, each core H&E and contoured core on the x axis, labelled 
as mentioned on Figure 2.1, (2.2.5.2.3) C. Table depicting core name, cancer area in mm2, Gleason 4 
area in mm2, Percentage Gleason 4 as calculated depicted in Figure 2.1D, number of contours, 
clustering and evenness indexes.  
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Figure 5-10 Evenness index above 1 were found on cores where a single Gleason 4 contour was 
drawn.  
H&E images of cores with a single Gleason 4 contour in patients 1, 2, 4, 6, 7, 8, 10 and 11. Evenness 
index immediately below H&E image, core name in italic. Patient number in bold. Cancer area in yellow, 
Gleason 4 contour in black.   
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Figure 5-11 Clustering and evenness distribution in twelve patients  
A. Density plot representing the overall distribution of clustering and evenness values in all patients. 
Count on y-axis, index values on the x-axis. Marginal rug on x-axis representing the values per core. 
B. Density plot representing the clustering index values on the x-axis and a density count on the y-axis, 
each patient plotted separately. C. Density plot representing the evenness index values on the x-axis 
and a density count on the y-axis, each patient plotted separately.  
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5.3.2.1. There is no correlation between cancer area, clustering or evenness indexes and 

location in the prostate.  

In order to understand if the total cancer, clustering or evenness values are different across the prostate 

zones, the data was sent for further analysis as described in section 2.2.5.3.1. Briefly, one-hot encoding 

was performed for Barzell zones and ordinal encoding was performed for a virtual grid overlaid on top 

of a schematic representation of the Barzell zones. The aim was to determine if there was any 

correlation between the Barzell zone or ordinal coordinate system and the total cancer area, clustering 

or evenness score. There was no correlation between location, ordinal coordinate system or the values 

studied (Table 5.3 and Table 5.4). Significant p values for cancer are and Barzell zone H/8, T/20 and 

clustering and zone S/19 could be secondary to random significance (352). 
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Barzell 
zone 

Cancer area Clustering Evenness 

Correlation 
coefficient 

p value Correlation 
coefficient 

p value Correlation 
coefficient 

p value 

A = 1 -0.326 0.060 0.133 0.452 -0.244 0.165 

C = 3 0.014 0.936 -0.031 0.861 0.031 0.862 

D = 4 -0.189 0.285 0.086 0.630 0.171 0.335 

H = 8 -0.378 0.027* -0.276 0.114 -0.053 0.764 

I = 9 0.118 0.506 0.272 0.119 -0.298 0.086 

J = 10 0.023 0.896 -0.292 0.094 0.037 0.837 

L = 12 -0.300 0.085 -0.035 0.844 0.008 0.965 

M = 13 0.013 0.942 -0.242 0.168 -0.067 0.708 

N = 14 -0.021 0.908 -0.112 0.527 0.147 0.408 

Q = 17 0.167 0.345 0.108 0.544 -0.146 0.411 

S = 19 0.014 0.937 0.350 0.043* 0.195 0.269 

T = 20 0.399 0.020* -0.052 0.769 0.139 0.432 

Table 5.3 Correlation coefficients between Barzell zone and cancer area, clustering and 
evenness indexes.  
Barzell zones on first column, correlation coefficients and p values on subsequent columns. Values 
highlighted with *, represent p values <0.05.  

 

Ordinal 
coordinate 

system  

Cancer area Clustering Evenness 

Correlation 
coefficient 

p value Correlation 
coefficient 

p value Correlation 
coefficient 

p value 

Ordinal X -0.294 0.091 -0.229 0.192 -0.043 0.810 

Ordinal Y -0.165 0.351 0.303 0.082 -0.320 0.065 

Table 5.4 Correlation coefficients between the ordinal coordinate system and cancer area, 
clustering and evenness indexes.  
Ordinal coordinate values on first column, correlation coefficients and p values on subsequent columns.  
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5.3.2.2. Clustering index is raised in high Likert mpMRI index lesion. 

The index lesion on mpMRI is defined as the lesion with the highest Likert score or the largest in the 

event that two lesions are scored the same. The Likert score is a scale from one to five where 1 indicates 

a very low level of suspicion for prostate cancer; 2 a low level of suspicion; 3 is equivocal; 4, cancer is 

probable and 5, where the lesion is considered to definitely be cancer (353,354). The mpMRI index 

lesion has been shown to have good correlation to the pathological index lesion (75,355).  

For this study, the index lesion on mpMRI was cognitively matched to the Barzell zone histopathological 

scheme, if present, data was also recorded for the satellite lesion (additional contoured abnormal are 

on mpMRI). The evenness and clustering indexes corresponding block or blocks were extracted. To 

understand if there was a significant difference in evenness and/or clustering between the different 

Likert scores, the index values were plotted against the three available Likert scores.  

For each patient, the index lesion and satellite lesion were identified. A summary of all data is presented 

on Table 5.5. Patient 3 and 7 had only one lesion on mpMRI, the remaining patients had two visible 

lesions on mpMRI (Likert 3-5). Of these, four had values for both lesions (Patients 1, 2, 4 and 5). 

Whereas patients 6,8,9,10,11 and 12 had two lesions but there was no Gleason 4 identified on the 

matching blocks to the lesion on mpMRI. Absolute cancer area corresponds to the total cancer 

contoured as described on Section 2.2.5.2.2. The proportion of Gleason 3 to 4 was calculated for the 

index lesion alone and all the cores added.  

There was a significant difference in Clustering index for Likert 3 and Likert 5 (median 1.91 (IQR: 1.73-

1.97) in Likert 3 versus 1.82 (IQR: 1.86-2.00) for Likert 5, p=0.043) and between Likert 4 and Likert 5 

(median 1.78 (IQRL 1.65-1.89) for Likert 4 and 1.82 (IQR: 1.73-2.00) for Likert 5, p=0.0001), see Figure 

5-12 A. There was no significant difference between evenness index in the different Likert scores (Likert 

3 median evenness (0.41 (IQR: 0.18-0.50), Likert 4: median 0.45 (IQR: 0.20-0.69) and Likert 5: median 

0.45 (IQR: 0.18-0.50), p=0.92), see Figure 5-12 B.  
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Figure 5-12 The clustering index increases with the Likert score, but not the evenness.  
A. Boxplot containing data on the index lesion values of clustering. X-axis contains Likert score, y-axis 
the clustering index values. Kruskall-Wallis rank sum test was performed, Dunn post-hoc test performed 
due to inequality of group sizes. Comparison between Likert 3 and 4 was not significant (p=0.35). n 
corresponds to the number of values per block. B. Boxplot containing data on the index lesion values 
of clustering. X-axis contains Likert score, y-axis the evenness index values. Welch-one way test 
performed, no post-hoc test performed due to lack of significance.  
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Patient 
number 

Original 
 Gleason 

MRI Evenness 
Median  
(Range) 

Clustering 
Median  
(Range) 

Absolute (mm2) Proportion (%) Absolute total (mm2) 
Proportion  

(%) total 

Lesion T2 D C All Cancer area Gleason 4 Gleason 3 Gleason 4 Cancer area Gleason 4 Gleason 3 Gleason 4 

Patient 1 3+4 
1 4 4 4 4 0.48 (0.05-0.89) 1.57 (1.44-1.78) 11.02 0.51 95.38 4.62 

33.44 2.63 92.14 7.86 
2 3 4 4 4 0.04 (0.03-0.05) 1.80 (1.78-1.83) 12.63 1.86 85.28 14.72 

Patient 2 3+4 
1 4 3 4 4 0.62 (0.09-0.94) 1.86  (1.69-1.97) 6.83 1.13 83.46 16.54 

18.21 1.49 91.85 8.15 
2 3 3 4 4 0.74 (0.11-1.49) 1.57 (1.46-1.73) 11.8 0.28 97.63 2.37 

Patient 3 3+4 1 2 1 3 3 0.5 (0.16-1.0) 1.74 (1.52-2.01) 14.96 1.42 90.51 9.49 14.96 1.42 90.51 9.49 

Patient 4 4+3 
1 3 4 3 3 0.41 (0.05-2.03) 1.88 (1.60-2.03) 27.45 6.69 75.63 24.37 

52.15 9.87 81.06 18.94 
2 4 3 3 4 0.95 (0.46-1.51) 1.66 (1.51-1.82) 1.91 0.25 86.92 13.08 

Patient 5 4+3 
1 4 4 4 4 0.39 (0.11-0.91) 1.90(1.64-2.01) 28.68 11.25 60.78 39.22 

40.05 12.45 68.9 31.1 
2 2 2 3 3 0.37 (0.29-0.56) 1.74 (1.64-1.90) 9.56 0.65 93.21 6.79 

Patient 6 4+3 
1 4 5 4 5 0.60 (0.10-2.00) 1.89 (1.65-20.3) 18.25 4.11 77.48 22.52 

21.79 5.41 75.18 24.82 
2 3 3 4 4 NA NA NA NA NA NA 

Patient 7 4+3 1 4 5 5 5 0.47 (0.09-1.87) 1.93 (1.84-2.00) 27.74 8.79 68.32 31.68 29.24 9.48 67.59 32.41 

Patient 8 4+3 
1 5 5 5 5 0.26 (0.08-1.22) 1.9 (1.22-2.01) 63.88 20.31 68.21 31.79 

64.39 20.39 68.34 31.66 
2 2 3 3 3 NA NA NA NA NA NA 

Patient 9 4+3 
1 4 5 5 5 0.20 (0.06-0.50) 1.92 (1.83-2.01) 12.17 3.41 71.92 28.08 

12.17 3.41 71.92 28.08 
2 3 5 4 4 NA NA NA NA NA NA 

Patient 10 3+4 
1 3 5 4 4 0.48 (0.14-0.9) 1.70 (1.56-1.89) 41.96 1.65 96.07 3.93 

72.99 3.41 95.33 4.67 
2 3 5 5 4 NA NA NA NA NA NA 

Patient 11 4+3 
1 4 5 5 5 0.55 (0.10-2.05) 1.95 (1.65-2.05) 22.01 10.66 71.92 48.43 

28.03 11.88 57.62 42.38 
2 4 5 5 5 NA NA NA NA NA NA 

Patient 12 4+3 
1 4 3 5 4 0.34 (0.16-0.80) 1.87 (1.60-2.00) 17.85 2.52 85.89 14.11 

19.73 2.54 87.13 12.87 
2 2 1 3 3 NA NA NA NA NA NA 

Table 5.5 Summary of mpMRI lesions in relation to the evenness and clustering indexes and digitally obtained cancer areas and Gleason 4.  
Table containing original Gleason score, index mpMRI lesion and secondary lesion (if reported). mpMRI parameters include Likert score on T2, diffusion (D), 
contrast (C), and overall Likert (All) per lesion.  The clustering and evenness indexes median per lesion and range in parenthesis. Absolute cancer area in mm2 
as obtained from digital images, calculated proportion of Gleason 3 and 4. Absolute total corresponds to the total cancer area and derived Gleason 3 and 4 
from all the cores (as opposed to only the index blocks). NA when no matching cancer block with cancer aligned to the mpMRI.  
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5.3.2.3. The clustering index correlates to the visual and digital estimation of %G4  

With the aim to see if there was any relationship between the clustering/evenness indexes and the 

visual, digital estimation or difference of the two measurements, scatter plots were created and 

correlation coefficients calculated (Spearman). In all cases the clustering index had a good correlation 

between clustering and the visual estimation (R: 0.61, p=<0.0001), the difference between visual and 

digital %G4 (R: 0.33, p<0.0001) and digital %G4 (R: 0.59 (p=<0.0001), see Figure 5-11.  

There was no correlation between the evenness index and visual %G4% (R: 0.026 p=0.74), the 

difference between visual and digital %G4 (R: 0.011, p=0.89) or the digital %G4 (R: 0.048 P=0.55, as 

seen on the right column of Figure 5-13. The values for each patient were plotted separately and can 

be seen on Appendix 9 (clustering vs evenness), Appendix 10 (visual %G4 vs indexes), Appendix 11 

(difference between visual and digital and the indexes) and Appendix 12 (digital %G4 and the indexes). 
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Figure 5-13 Clustering index correlates to visual, digital estimation of Gleason 4 % and the 
difference between the two measurements.  
Scatter plots showing the correlation (or lack of) of the Clustering index on the x-axis (left column) and 
the evenness index (right column). Confidence interval in grey, regression line in black. A. Correlation 
to the visual %G4 estimation (y-axis) B. Correlation to the difference between the visual and the digital 
Gleason 4 % (y-axis). C. Correlation to the digital %G4 estimation (y-axis). 
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5.4. Discussion 

5.4.1. Summary of findings 

The first aim of this chapter was to compare the visual measurement of MCCL to a digitally derived 

measurement. The analysis shows that overall, the mean digital measurement is not significantly 

different to the integrated ruler measurement, and the measurements show no significant systematic 

difference between them; however, the variance within the data would have clinical meaning for some 

patients. The MCCL has importance in prostate cancer, as it can act as a proxy for tumour size. For 

instance, a threshold of 4mm and 6mm has been shown to correlate with 95% of lesions that have a 

volume higher than 0.2mL or 0.5mL, respectively (47). Demetrios et al. found that MCCL greater than 

10mm can predict T3 disease and large tumour volumes with a hazard ratio (HR) of 5.7314 (350). Using 

these thresholds and taking into account the difference in the MCCL measurements, there is a potential 

impact on the treatment options offered. For instance, patients reclassified as having <6mm MCCL 

could be candidates for active surveillance instead of radical therapy (Patients 6, 18, 19 and 20 in Figure 

5-3 A).  Interestingly, the visual measurement of men with 3+4 disease was more likely to be greater 

compared to men with 4+3 disease (Figure 5-3 B). Despite these differences, the Bland-Altman analysis 

showed good concordance between the two measurements; thus, the accuracy of the MCCL is not 

compromised when a digital tool is used (See Figure 5-4 A).  

The second aim was to quantify the Gleason 4 burden in a cohort of men that took part in the PROMIS 

study, and to compare this to the visual estimation provided by uropathologists. As previously 

mentioned on section 1.2.1.5, the current approach consists of visual estimation of Gleason 4 

percentage and a final Gleason sum based on this percentage; if a threshold of 50% of Gleason 4 is 

reached, the patient is classified as 4+3, anything below 50% is classified as 3+4. This partition could 

arbitrarily be classifying patients into two very broad classifications. A more detailed percentage 

reported could better sub-classify patients and provide better tools for the management decision 

making. In other words, a patient with very low Gleason 4 could be actively monitored instead of being 

offered and undergoing surgery, which has risk of side-effects. 

The total percentage of Gleason 4 when calculated digitally was much lower than expected (Figure 5-5 

A), with only one patient reaching the 50% threshold to be classified as 4+3. The visual estimation of 

Gleason 4 percentage differed from the digital one; accurate measurement of the G4 burden has been 

shown to help risk-stratify patients (9,10). In a study by de Souza et al., 20% of Gleason 3+4 tumours 

had more extensive G4 disease than the first quartile of 4+3 tumours in radical prostatectomy 

specimens (356). In 2014, Huang et al. found that 45% of men with ≤ 5% of G4 in prostate biopsy had 

insignificant cancer in radical prostatectomy (346). Additionally, several papers have shown that 

tumours with lower %G4 behave closer to PGG1 tumours (8,9,12,357,358). 

The visual estimation always overestimated the amount of G4 compared to a digitally calculated 

Gleason 4 percentage. For all of these patients, reclassification of the Gleason 4 percentage would 

potentially lead to a change in treatment options, and imaging follow up. For example, patient 18 was 

reclassified after digital assessment and would be downgraded from 4+3 of >6mm to 3+4 of <6mm 
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(Figure 5-5 A). The degree of disagreement between the two measurements, increased with the amount 

of Gleason 4 (Figure 5-6 A). 

When examining the index block (Highest Gleason and/or MCCL), the discrepancy in Gleason 4 

percentage remained (Figure 5-7). Additionally, when reclassifying patients using the UCL/PROMIS 

risk system, four patients were reclassified as lower risk (Figure 5-8).  

The third aim was to use geographical descriptors to understand the distribution of Gleason 4 contours 

in prostate biopsies. Quantitative qualifiers have been used in the past to study tumour heterogeneity 

and immune cell spatial distribution. Other groups have focused on applying ecological classifiers to 

analyse immune infiltrate and tumour heterogeneity, in breast cancer in relation to outcome; For 

instance, analysis of “hotspots” using the Getis-Ord hotspot analysis of immune infiltrate, was found to 

correlate to better outcome in oestrogen receptor-negative breast cancer (359). Maley et al. used the 

Morisita-Horn index to quantify co-localization of cancer cells and immune cells. This index is used in 

ecology to measure the similarity among community structure (360,361), when applied to breast cancer, 

high scores indicated a better prognosis in Her-2 positive cancer (362).  

In this work, a different clustering method was applied to prostate cancer biopsies to study the spatial 

distribution of Gleason 4. Prostate cancer is generally accepted to generate on the peripheral zone in 

about 80-85% of the cases (22,363,364) Transitional zone tumours are thought to be of lower grade 

and carry a better outcome (364–366). Here, there was no indication that either cancer area or the 

clustering/evenness index had any correlation with different zones within the prostate. No pattern of 

distribution can be found in the prostate in relation to the clustering and evenness of Gleason 4.  

Regarding the index block, the evenness index seems to distinguish between cores with low density of 

Gleason 4 contours (Figure 5-9). However, no correlation was found between the evenness index value 

and the visual or digital %G4 (Figure 5-13). This may be due to outlier values >2.0 in a few cores, these 

can be seen on Figure 5-12 B. On the other hand, the clustering index showed a very strong correlation 

with the pathologist visual estimation of %G4 and the digitally derived measurement (Figure 5-13). 

Finally, the clustering index was shown to be significantly raised in Likert 5 lesions, compared to Likert 

3 and 4 Figure 5-12). 

5.4.2. Methodological limitations 

The presence of cribriform pattern was not recorded separately in this study or included in the final 

analysis. In addition, the pathologists retrospectively assessed %G4 on annotated images, introducing 

potential bias in their assessment. Additionally, no long-term follow up currently exists for the PROMIS 

study, this limits the application of the findings in relation to prognostic significance. 

Regarding the contouring of Gleason 4, several limitations were identified: lumens and areas of stroma  

between glands could have had an impact on the difference in the visual and digital estimation, where 

pathologists can attempt to cognitively ignore this in the estimation of their final percentage; it was 

included in the digital calculations of area. An extra step to adjust for stromal areas was planned; 
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however a single value to “correct” for stroma measurement could not be obtained as the amount of 

stroma varied significantly between all the samples. Additionally, the manual contouring of Gleason 4 

is time consuming and varies between pathologists. Future work on this would include several 

pathologists contouring Gleason 4 areas and comparing the outlines; additionally, previously contoured 

and non-contoured images could be appraised by several pathologists to try and understand the 

decision process.  

The geographical measurement included a step where a grid was over-imposed to simulate the 

“neighbourhoods”, ideally each nuclei would have been annotated to avoid this step.  The small sample 

size makes analysis and statistical inference challenging, and although some correlations to zone were 

significant, caution is advised as to how to interpret this (Table 5.4).  

The evenness index when applied to geographical studies, produce a score between 0 and 1. When 

applied to this dataset the values were as high as 2.05 (Figure 5-11). The reason for this result is 

unknown, when inspecting cores with high evenness scores (above 1), these were found to be cores 

with a single Gleason 4 contour (Figure 5-10); a single Gleason 4 core (or minority) may skew the 

analysis and give a high evenness value. The data analysis to understand the area distribution in the 

prostate required averaging the evenness and clustering indexes values across cores to obtain a single 

measurement for a prostate zone. Due to the nested nature of the data, where one patient can have 

one or 20 blocks with Gleason 4, and each block can have up to 12 positive cores, with up to 50 contours 

each, a bootstrapping approach or hierarchical clustering approach may have yielded different results.  

5.4.3. Clinical application 

Integration of %G4 reporting in biopsies and radical prostatectomy specimens is already recommended 

(343). These findings suggest that a re-assessment of %G4 estimation may be required. 

Reclassification of G4 could lead to a re-evaluation of previously published biomarker and clinical 

studies and redefine the reference standard for research. The heterogeneity of studies of the prognostic 

importance of Gleason 3+4 disease as compared with Gleason 4+3 disease may be a reflection of 

uncertainty about how much G4 pattern disease is actually shown in specimens and is particularly 

relevant to treatments such as radiotherapy or ablation where there is no whole mount radical 

prostatectomy specimen to analyse.  

As we move toward the inclusion of digital pathology in standard clinical practice, it will be essential to 

investigate the differences between human and digital estimation of key pathological parameters and 

the potential impact this could have on patient care. Whilst the type of analysis used in this work would 

be currently challenging to embed directly into clinical practice due to the time taken to contour each 

region; work is already ongoing to automate this process (12,18,367,368). Further research is also 

needed to develop and validate new thresholds of the burden of G4 against medium and long-term 

cancer control outcomes. 

Application of quantitative methods in clinical practice would require validation of prediction of clinical 

outcome, and so a cohort with long term follow up. Study of these parameters, perhaps including 
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ecological measurements in radical prostatectomy specimens or in patients with long-term follow up 

and mpMRI.  
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5.5.Lay summary 

This chapter focuses on digital analysis of cancer length in prostate biopsy cores, and Gleason 4 

disease, and applying simple area calculations using pathologist drawings around the Gleason 4 

cancer. The obtained data was then analysed using geographical parameters to try to understand the 

clustering of Gleason 4. These parameters are called clustering and evenness. Clustering refers to how 

areas of Gleason 4 are surrounded by areas of Gleason 3, and how tight and big these areas are in 

comparison to the whole. Evenness refers to how even the Gleason 4 is in proportion of Gleason 3, a 

more even population has the same amount of Gleason 3 and 4 (50/50).  

5.5.1. Objectives 

1. Compare the pathologist visual estimation to a digital measure derived from pathologist drawing 

around Gleason 4.  

2. Compare the pathologist cancer length measurement to one obtained using digital 

measurements.  

3. Apply geographical parameters to study the distribution of Gleason 4 in the prostate.  

5.5.2. Findings 

1. The pathologist measurement overestimates the amount of Gleason 4 in prostate biopsies.  

2. The digital and visual cancer length measurement are comparable and there is no systematic 

difference between the two. 

3. The clustering score correlates to the pathologist percentage estimation, that is they give higher 

Gleason 4 % measurement the more clustered the cancer is.  

Take home message: The pathologist percentage Gleason 4 is classifying men as higher risk, possibly 

leading to unnecessary treatment. Using automated technologies, we could learn about this 

discrepancy and modify classification accordingly.  

4. The clustering correlates with what we see on the MRI, cancers with higher clustering scores 

are classified by radiologists as high likelihood of cancer. 

5. The evenness does not correlate to MRI results. 

Take home message: MRI of the prostate is a good tool to detect clustered Gleason 4. 

6. Gleason 4 appears and clusters anywhere in the prostate, and has no predilection to any zone. 

It was previously thought that prostate cancer was limited to the peripheral zone of the prostate. 

These findings dispute this.  

Take home message: Prostate cancer is thought to have area predilection, the random distribution of 

aggressive cancer in this small cohort shows that aggressive cancer can appear anywhere in the 

prostate.  
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5.5.3. Limitations 

1. The sample size is very small, only 30 men. This is due to the time-consuming element of the 

analysis. However, automated measurement of Gleason 4 could avoid this hurdle.  

2. The evenness index did not correlate to MRI or the pathologist measurement. This may be due 

to some cores with unusually high evenness scores. The algorithm seems unable to compute 

cancers with a single Gleason 4 value, and in the future, these should be excluded from the 

analysis.  

3. Exclusion of non-cancerous cells (stroma) should be excluded from future percentage 

calculations. This may lower the discrepancy between the pathologist and the digital 

percentage.  

4. Analysis of this kind should be correlated to long-term outcomes, and should be repeated in 

cohorts with death and recurrence data, to determine if the findings are clinically significant.  

5.5.4. Future work 

Based on the findings of this thesis, efforts should focus on understanding the role of PSA density as 

an adjunct biomarker to MRI to decide which patients will benefit from a biopsy. Ideally, a direct 

comparison between commercially available biomarkers and their performance in this cohort would 

better inform us on whether they perform better than PSA density.  

Automation of Gleason patterns would reduce variability. Training machines through machine learning 

algorithms has already begun, but most of these systems are trained to give a Gleason sum score 

instead of percentage of Gleason. Systems would need to be taught to provide percentage estimations. 

The geographical parameters are already automated, and so in a lager cohort that includes death and 

recurrence outcomes would provide information on the biological impact of clustering and evenness. 
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Appendix 9 There is a very weak correlation between the clustering and evenness indexes.  
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A.  Scatter plot showing the correlation (or lack of) of the Clustering index on the y-axis and the 
evenness index on the x-axis. Confidence interval in grey, regression line in black.  B. Scatter plots of 
evenness index on the x-axis and the clustering index on the y-axis by patient. C. Correlation 
coefficients (R), and p value per patient plotted on B.   
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Appendix 10 There is correlation between the clustering index and the visual estimation but not 
with evenness.  
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A.  Scatter plot showing the correlation (or lack of) of the Clustering index on the x-axis and the visual 
Gleason 4 % estimation on the x-axis, per patient. Confidence interval in grey, regression line in black.  
B. Scatter plot showing the correlation (or lack of) of the Evenness index on the x-axis and the visual 
Gleason 4 % estimation on the x-axis, per patient. C. Correlation coefficients (R), and p value per patient 
plotted on A and B.  
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Appendix 11 There is correlation between the clustering index and the difference between the 
visual and digital estimation but not with evenness.  
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A. Scatter plot showing the correlation (or lack of) of the Clustering index on the x-axis and the difference 
between the visual and digital Gleason 4 % estimation on the x-axis, per patient. Confidence interval in 
grey, regression line in black. B. Scatter plot showing the correlation (or lack of) of the Evenness index 
on the x-axis and the visual Gleason 4 % estimation on the x-axis, per patient. C. Correlation coefficients 
(R), and p value per patient plotted on A and B.  
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Appendix 12 There is correlation between the clustering index and the digital %G4 but not with 
evenness.  
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A. Scatter plot showing the correlation (or lack of) of the Clustering index on the x-axis and the digital 
Gleason 4 % estimation on the x-axis, per patient. Confidence interval in grey, regression line in black.  
B. Scatter plot showing the correlation (or lack of) of the Evenness index on the x-axis and the digital 
Gleason 4 % estimation on the x-axis, per patient. C. Correlation coefficients (R), and p value per patient 
plotted on A and B
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Chapter 6.  General discussion 

There is a need for a test that can accurately differentiate between men with and without prostate 

cancer, filling a gap in the diagnostic pathway of prostate cancer. More importantly, this test should 

differentiate between patients with the disease that require treatment and those who do not, to avoid 

unnecessary biopsies, treatment and side effects. Although mpMRI has markedly improved the 

diagnostic pathway, a small proportion of cancers are missed. Currently, mpMRI cannot be performed 

to the necessary standard in all centres, therefore there is great interest in finding a test measureable 

in blood or urine that can aid the biopsy decision making process.  

Many companies have attempted to find such test, using PSA isoforms (PHI, 4K test) and genetic 

testing in blood and urine (Section 1.2.2). Unfortunately, uptake of these commercial biomarkers has 

been slow with very limited impact in patient care. This thesis had two main aims. First, to describe the 

discovery and validation of a new biomarker panel quantifiable in urine or blood, that would accurately 

detect men with Gleason 4+3 or ≥ 6 mm prostate cancer, while improving the accuracy of mpMRI 

independently of available clinical data. The second aim, was to perform a morphometric analysis of 

Gleason 4 distribution in prostate biopsies while comparing this to the current gold standard.  

6.1.  Main findings presented in this thesis 

6.1.1. New biomarker panel is able to detect men with Gleason 4+3 and/or ≥ 6 mm but is not 

better than PSA density 

The described gene panel was able to detect all cancers and clinically significant cancer using both 

PROMIS definitions (definition one, Gleason 4+3 or ≥ 6 mm and definition two, Gleason 3+4 or ≥ 4mm). 

The panel was outperformed by PSA density in both the training and validation cohort (Figure 4-9 and 

4-11).  

6.1.2. Gleason 4 percentage is overestimated in the visual assessment 

When comparing digitally measured Gleason 4 percentage to visual assessment by uropathologists, 

the visual measurement always overestimated the percentage of Gleason 4 present in a small cohort 

of men. 

6.1.3. Gleason 4 is clustered in all regions of the prostate and correlated to mpMRI visibility 

The clustering of Gleason 4 is random across the entire prostate and has no predilection for zone. 

Additionally, the clustering of Gleason 4 is correlated to higher Likert scores on mpMRI.  
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6.2. Methodological limitations 

6.2.1. Biomarker panel discovery 

The panel described here was developed based on tissue based biomarkers and local expertise, 

followed by data mining of publicly available data. The Sharma et al. paper developed these markers 

as means to find metastatic disease and not as a diagnostic tool.  From the Whitaker lab signature, 

COL6A3, SLC25A3 and CBLN2 have been found to be higher on metastatic disease, a vastly different 

disease status than what the panel is aiming to find. While other panels have used tissue based 

biomarkers translated into urine (Select MDx), the utility of the 28 genes for diagnosis rather than risk 

stratification was not assessed prior to proceeding to detect in fluids.  

Another limitation to the biomarker discovery described in this thesis is the use of cell lines as means 

to study the biological impact of these genes. Whilst the data obtained is valuable to understand the 

androgen dependence or independence of the genes is not necessarily reflective of the biological 

behaviour of these genes in patients.  

The study of the utility of these genes in patients was initially performed in publicly available datasets 

(Taylor, Ross, and Varambally). Several limitations with this approach have been discussed in chapter 

2. The main concern with this validation on retrospective datasets is the lack of “normal” samples to 

compare the gene expression in order to use as a diagnostic tool. Additionally, sequencing technology 

greatly differs from dataset to dataset, meaning significant gene expression in one cohort may be 

insignificant in another with better probe alignment.   

Ideally, the first step in this would have included confirmation of expression in tissue samples from the 

PROMIS cohort. This would have allowed a comparison between true negative men (no inflammation, 

ASAP or HGPIN), and men with cancer. Followed by measurement in blood and urine of the genes to 

be able to determine if the marker detected in fluids truly corresponds to that secreted by the tumour. 

All cohorts used in this work are independent; therefore, it is not possible to confirm the origin of RNA 

measured in the fluidic samples. This has implications not only in the work presented here, but on how 

biomarkers are developed.  

It is generally assumed that RNA measured in fluids corresponds to the disease status of the donor, in 

other words the RNA signatures detected in blood or urine reflect the status of the tumour regardless 

of their location. Whilst there is evidence of the potential source of circulating nucleic acids, including 

necrosis in advanced tumours, apoptotic cells and bodies (369), no such evidence exists for localised 

tumours. Biomarker discovery in fluids seems to be flawed on the principle of what is being detected 

and our lack of understanding of this mechanism. Taking advantage of the PROMIS samples resource 

to attempt to investigate the origin of what is measured in these fluids could have been attempted here, 

comparing the RNA relative expression in tissue, blood and urine of the same patients while comparing 

this profile to men who have no histological disease on upwards to 60 biopsy samples per patient.  

Concretely, this work is limited by the assumption that tissue expression in historically obtained samples 

(from publicly available data), obtained with different technologies is comparable to the RNA extracted 
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from fluids, while being unable to prove the RNA detected truly represents a disease state. Additionally, 

it is not possible to determine if the urine results were true or false negatives as there is no standard of 

expression. That is it is not possible to establish that men with no expression of genes did in reality not 

express the gene of interest, as opposed to the gene was not measured due to quality of the RNA or 

the technology used.  

6.2.2. Urine as a fluidic biomarker 

Urine is an attractive fluid for biomarker discovery. Several issues were identified in the work presented 

in this thesis. First, the urine was highly degraded, making downstream analysis challenging. Despite 

attempting to simulate the degradation of cells exposed in urine, followed by pre-amplification to 

overcome the degradation, the resulting data was un-evenly amplified. For example, genes that are 

meant to act as housekeepers were undetected following pre-amplification. Following PCR, a large 

amount of missing data was present; making meaningful analysis of the results impossible.  

When urine is used for biomarker discovery, it should be processed to allow for the highest yield of RNA 

to be obtained. Although an attempt was made to extract high concentrations of RNA from these 

samples, it is unclear why the quality of the RNA was so poor. One possibility is that no RNA stabiliser 

was used on the urine samples. Additionally, the urine extraction method selected has a high risk of 

ethanol contamination as it is left to air dry. Other methods have shown better RNA yields and quality 

(370). Additionally, the selection of endogenous housekeepers for this work should have included a 

larger number of candidates, this could have possibly allowed for use of pre-amplified urine samples 

instead of discarding the data altogether.  

6.2.3. Obtaining meaningful outcomes from cohorts with limited follow up 

In this thesis, the comparison between digitally contoured Gleason 4 areas and visual estimation of 

percentage showed overestimation of the latter. Only one patient met the 50% threshold to be classified 

4+3. Within the methodological limitations already discussed in Chapter 5, it is difficult to define the 

clinical impact of this discrepancy. Not only the cohort studied is small, these patients have limited follow 

up. Therefore, it is not possible to determine if that patient with 50% of Gleason 4 had a worse outcome 

compared to one with 30% of Gleason 4. Additionally, no comparison was made with men who had a 

radical prostatectomy, where the ‘real’ total amount of Gleason 4 could have been measured.  

The morphometric analysis using geographical descriptors has a similar limitation, as it is not possible 

to determine if patients with higher clustering have a worse outcome. The results presented here are 

descriptive and no clinical impact analysis can be made based on them. However, the process of 

analysis of clustering and evenness has been automated and can be easily applied to a larger dataset 

of contoured digital images.  

6.2.4. Aim of the biomarker panel 

The panel aimed to help determine which patients would benefit from a prostate biopsy, by identifying 

Gleason ≥4+3 or 6 mm. the discovery cohort (PROMIS) lacked patients with PGG 4 and 5, therefore, 
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the panel was aiming to find Gleason 4+3 or ≥ 6 mm specifically. The UCLH PROMIS cohort reflects 

patients referred by a GP to urological review, but lacks men with more aggressive disease. The 

validation cohort (INOVATE) had patients with higher Gleason scores (5 patients with PGG5 out of 29), 

but was a smaller cohort compared to PROMIS (99 versus 194). Taking this into account, the cohorts 

available for this validation lacked sufficient patients with more aggressive disease, and may explain 

why the second panel of three genes (aiming to classify patients by PGG) failed to perform well.  

Additionally, mpMRI can detect clinically significant disease (47,60,63). While this was not the aim of 

the panel, an alternative question would be to improve mpMRI by specifically focusing on men with a 

negative mpMRI harbouring clinically significant disease. Simply put, a panel that specifically targets 

invisible cancers. Although this group of patients is relatively small, a panel that finds “hidden” cancers 

would reduce improve cancer detection while shedding light on patients with indeterminate Likert 

scores.  

6.2.5. Exclusion of clinical information in the biomarker panel performance review 

Many commercial panels include clinical information, such as age, DRE, previous biopsies and family 

history to improve the performance of new panels. Here, an attempt was made to create a panel that 

would independently predict aggressive disease, without the need for advanced algorithms. Such a test 

could be performed in developing countries, where prostate cancer is under-diagnosed and where 

clinicians are forced to rely on surgical castration as means of treatment. A separate analysis could 

have been performed to understand the impact of these clinical variables on the final performance of 

the panel, quite possibly improving its diagnostic accuracy.  
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6.3. Research implications 

6.3.1. Biomarker discovery 

The race for finding new biomarker panels for prostate cancer has not yet found a replacement PSA. 

While is not the aim of this thesis to explain why this is the case, it is worth discussing the impact of 

some of the findings in this context. Most of the biomarker panels presented on the introduction, aim to 

find Gleason 7 disease. Seeing as Gleason 4 has an impact in patient outcome, accurate determination 

of Gleason 4 burden is of vital importance. While manual contouring of Gleason 4 in large cohorts is 

unrealistic, new machine learning algorithms have managed to determine different Gleason patterns in 

digitalised images (17,18,20,89,371).Training of new algorithms to calculate percentage of Gleason 4 

and comparing this to visual estimation may lead to advancing our understanding of the impact of 

Gleason 4 in biomarkers and patient outcome. This may be achieved by performing a similar analysis 

in radical prostatectomy cohorts with long term follow up; due to the long natural history of prostate 

cancer alternative surrogates for overall survival could be used, such as metastasis free survival (372), 

followed by validation of biomarkers that aim to find Gleason 4.  

6.3.2. Investigating the utility of PSA density  

The performance of the panel was compared to PSA and PSA density as a point of reference. PSA 

density outperformed the panel, and PSA alone. The AUC was improved by the addition of PSA density 

to the Likert score, from 0.82 (95% CI 0.77-0.88) to 0.85 (95% CI 0.83-0.87) in the discovery cohort. In 

the validation cohort the AUC remained at 0.84 but the addition of PSA density reduced the 95% CI 

from 0.75-0.92 to 0.83-0.86.  

Although the potential utility of PSA density as an adjuvant to mpMRI has been explored (327,373,374), 

further work is required in identifying the optimal cut-off point. While this was not a planned outcome of 

this work, PSA density may already offer the discriminatory and complementary characteristics that 

were looked for as an aim to this thesis.  

6.3.3. Encouraging collaboration with physical sciences to advance our understanding of 

cancer 

Through a collaboration with the Geography department, a quantitative description of a biological 

phenomenon was achieved. The spatial distribution of Gleason 4 was described using metrics 

developed for studying populations. These metrics correlated to mpMRI visibility, while analysis of their 

spatial distribution in the prostate demonstrated that Gleason 4 not only appears in every studied 

anatomical zone of the prostate, it is not more likely to cluster in one area compared to another. While 

the notion that anterior tumours are less aggressive, these findings challenge this and point to another 

characteristic driving the aggressiveness of anterior tumours, possibly pertaining to volume or 

multiplicity of lesions rather than Gleason alone.  

Exploring the utility of such collaborations, where researchers from different backgrounds attempt to 

understand a problem may further our understanding of cancer.  
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6.4. Future research 

6.4.1. Biomarkers development using in the PROMIS cohort 

As mentioned previously, the PROMIS cohort benefits from mpMRI data, blood and urine samples and 

valuable tissue from systematic templated biopsies of the prostate. This valuable resource can be used 

to attempt to answer the question on whether what we are measuring in blood or urine truly corresponds 

to a higher expression in tissue. Advantage can be taken of the cohort of men in PROMIS that had no 

histologically observable abnormality in the examined tissue, these men are unique and can be used 

as a normal control instead of relying on benign tissue from radical prostatectomies. Steps to begin 

such analysis have already begun. A tissue microarray was constructed containing a total of 83 men 

with Gleason sum 7, 28 men with Gleason sum 6 and five men with no disease. The patients were 

randomised to one of six TMAs using a random number generator. Each TMA consists of 15 men with 

Gleason sum 7, five men with Gleason sum 6, five random benign cores and two liver controls. This 

resource can be used for analysis of protein expression using immunohistochemistry or targeted 

genome sequencing. The obtained data is then compared to expression data in blood and urine.  

6.4.2. Study of Gleason 4 percentage estimation and impact on patient outcome 

Application of an automated Gleason 4 percentage estimation can be achieved by using already 

developed machine learning algorithms. Digitised images of the PROMIS cohort, including that of 

patient who have had radical prostatectomy can then be sent to uropathologists nationwide to determine 

visually Gleason 4  percentage prior to and after contouring of Gleason 4. This can then be compared 

to prove or disprove the findings presented in this thesis. If the overestimation of visually assessed 

Gleason 4 is confirmed in larger datasets, reasons for this discrepancy must be discussed.  

If these findings are confirmed, analysis of radical prostatectomy cohorts and long term follow up can 

proceed. Aiming to determine the impact of Gleason 4 percentage estimation, ideally in the context of 

quantitative methods, such as the geographical parameters described here, or in collaboration with 

other earth and biological sciences.  
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