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Abstract
Sea-level rise constitutes a significant risk for over 600 million people in the Low-Elevation Coastal Zone. Considerable uncertainty

exists over the magnitude of possible future sea-level rise, because of poorly understood processes governing the stability of ice

sheets (continental sized glaciers). One such uncertainty is how meltwater interacts with ice under a warming climate.

Understanding of this process is limited by the inaccessibility of the subglacial zone, which lies beneath 100s or even 1000s of

metres of ice. One approach to address this uncertainty is to investigate areas where ice sheets have retreated, i.e., where their beds

are easily accessible. Eskers are landforms that record the location and dimensions of former subglacial meltwater channels, and are

common in glaciated regions. Recent years have seen a dramatic increase in the availability of high-resolution Digital Elevation

Models (DEMs) of glaciated regions, providing the opportunity to make detailed measurements of eskers from remotely sensed

data. Manual mapping of these features at the required level of detail is not feasible over the large areas occupied by palaeo-ice

sheets (e.g. most of Canada). We propose an automated method for detecting eskers in hillshaded digital elevation models, based on

Convolutional Neural Networks (CNN). The automated method maps esker locations to facilitate detailed morphometric study of

their form. Multiple CNN models are trained and tested via a specially–designed algorithm with built–in mechanism for selecting an

optimal model. Training and testing imagery data were obtained from a test area in Canada, consisting of 1041 esker positive JPEG

files and 37000 esker negative JPEG files. The CNN model performance on previously unseen images with and without eskers

yields high sensitivity and specificity respectively and we use the model outputs to elicit esker features from the images.

Discussions focus on how timely identifying esker locations enhance our understanding of why, how, and how fast the sea level rise

might happen. We also highlight the importance of gaining such knowledge in a timely manner within the context of the United

Nations Sustainable Development Goals (SDGs)–particularly SDG #13 and others relating to poverty and food security.

Key Words: Big Data, Convolutional Neural Networks, Data Science, Digital Elevation Models, Eskers, Glacier Surface Elevation,

Ice Sheet Hydrology, Machine Learning, Meltwater Channels, Supervised Modelling
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Background

❑Approximately 10% of the world’s population (> 600 million people) inhabit the low elevation coastal zone

(< 10m) above sea-level [1] and are therefore vulnerable to the impacts of sea-level rise.

❑Sea–level rise impacts millions of people world–wide. Understanding why, how, and how quickly the rise

might happen is vital to the United Nations Sustainable Development Goals (SDG)–particularly SDG #13

(on combating climate change), SDG #1 (on poverty) and SDG #2 (on food security).

❑Global mean temperature has increased by 1oC since 1900, resulting in global sea-level rise of about 20cm &

the Intergovernmental Panel on Climate Change (IPCC) predicts it to rise by approx. 60–74cm by 2100 [2].

❑Research into sea-level changes over the glacial-interglacial cycles shows that sea-level was 5-10m higher

than present [3], when temperatures were just 1-2oC warmer than 1900 (i.e. comparable to the next 30-50

years). The source of this extra sea-level rise can only be from the Greenland and Antarctic Ice Sheets.

❑Understanding the nature of the meltwater drainage systems beneath ice sheets is crucial to understanding

their dynamics [4], and ultimately their future contribution to sea-level rise, but this remains problematic due

to the difficulty of studying the inaccessible beds of modern ice sheets. This is the focus of this work.
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❑ Sea–level rise has a significant impact on human

habitats particularly those in the low elevation

coastal zone and directly impacts on the regions’

levels of SDG attainment, especially those

relating to poverty and food security.

❑ On the left hand side-the complex interactions of

the hydrological cycle, ground water and glaciers

and their impact on the sea level while the right

hand side shows the mutual dependence between

ocean properties like temperature, salinity and

density, on the one side, and ocean circulation on

the other, affecting both relative and geocentric

sea level, as they both vary with position.

Problem Area
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A graphical illustration of the climate–sensitive processes and 

components that can influence global and regional sea levels [2]

❑ Our understanding of how meltwater interacts with ice under a warming climate

is constrained by the inaccessibility of the subglacial zone.

❑ One plausible approach is to investigate areas where ice sheets have retreated,

which we seek to achieve via an automated mapping of high-resolution DEMs of

glaciated data, using deep learning techniques and the imagery data.



Background

❑Lakes on the surface of the Greenland Ice Sheet can

drain under the ice, affecting ice velocity (and so

delivery of water to the sea)

❑Little is known about how this water moves underneath

the ice because it is inaccessible

❑We can make use of areas where ice sheets used to be

present (e.g. Canada) to better understand how water

moved underneath the ice

❑Long, winding hills made of sand and gravel, known as

eskers, form a record of meltwater drainage

❑Measurements of eskers can be used to understand how

much water and sediment moved beneath ice sheets,

therefore improving our understanding of how water is

likely moving beneath the modern Greenland Ice Sheet.
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Background

❑Esker measurements in 3D have only recently been

made possible, following a dramatic increase in the

availability of high-resolution Digital Elevation

Models (DEMs) of formerly glaciated regions,

warranting detailed measurements of eskers from

remotely sensed data.

❑Manual mapping of these features at the required

level of detail is not feasible over the large areas

formerly occupied by ice sheets (e.g. most of

Canada).
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Background

❑We investigate subglacial meltwater flow via areas where ice sheets

have retreated–i.e., where their beds are easily accessible. Interest is in

eskers–landforms that record the location & dimensions of former

subglacial meltwater channels, commonly found in glaciated regions.

❑Esker patterns and properties have been used to understand the long-

term and large-scale behaviour of subglacial meltwater during periods of

climate warming and ice sheet retreat [9, 7, 10, 11, 12].

❑However, to date no work has systematically quantified esker

dimensions in 3D at the very large scales of ice sheets, due to limited

availability (until recently) of sufficiently high-resolution elevation data.

❑This work takes first steps towards a systematic morphometric analysis,

focusing on automatic detection of eskers from processed digital

elevation data, using Convolutional Neural Networks (CNN).

8



Advances in computing power and explosions in data generation, have triggered data–intensive research across

disciplines, through, inter–alia, different applications aimed at addressing global challenges and opportunities, a

typical example being the United Nations Sustainable Development Goals (SDG), as sources of Big Data [13, 14].

❑ The increased availability of high-resolution Digital Elevation

Models (DEMs) covering glaciated areas present the opportunity

to extract valuable metrics on esker dimensions such as height,

width and volume, which can be used to inform numerical

models of subglacial hydrology. However, the volume of data

available and its very high resolution mean that processing the

data and mapping features is a non-trivial task.

❑ Previous efforts to quantify esker morphometry have used

manual mapping of eskers from satellite imagery [11]. Such an

approach would be too time-consuming to be practical to map

features to the level of detail required for high resolution 3D

morphometry over extremely large areas.

❑ We therefore adopt a Big Data approach [13, 14] and develop an

automated process for detecting eskers in hillshaded DEMs,

based on Convolutional Neural Networks (CNN).

Motivation
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❑ By training a CNN to identify eskers based on a

training set of images where eskers have been

manually identified as either present or absent, we

aim to be able to identify the locations of eskers

over very large areas automatically.



We therefore define the research problem as: How can automatic detection of eskers enhance our

understanding of rising sea levels? The general aim of the work would then be to identify which images have

eskers present and which haven’t. We set the following objectives.

Research Question and Objectives
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1) To evaluate relevant past and current studies on meltwater interactions with ice.

2) To prepare, train, validate and test high–resolution imagery data for CNN modelling.

3) To address the issue of data randomness in training, validation and testing.

4) To evaluate extracted features against real images.

5) To highlight paths for interdisciplinary research studies in addressing global challenges.

Responding to the foregoing question and fulfilment of the objectives are based on deep learning underlying rules in

thousands of esker positive and esker negative imagery data using convolutional neural networks via a specially designed

algorithm for handling issues relating to data randomness. The adopted methods are outlined in next exposition.



Methods: Data Sources
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Training, validation and testing imagery data were obtained from a test area in Canada, consisting of 1041 esker positive
JPEG files and 37000 esker negative JPEG files. The data files are Digital Elevation Models (rasters where the pixel
value represents elevation), processed into a hillshade (a model of shadows based on an illumination angle, pixel values
representing shadow). From these hillshades the eskers can be identified and mapped.

Esker-positive images Esker-negative images

../../ISAR-6-TOKYO/IJDSA


Methods: Data Sources
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The chosen test area in Canada is a very large hillshade, reduced into 500m x 500m (250 x 250
pixels) JPEG files, placed into two folders depending on if an esker is present or not. The idea is to
train a CNN model on these positive and negative examples in order to identify what an esker
looks like, so that we could then feed it unmapped areas in order to detect patterns.

Eskers are long, winding ridges of stratified sand and gravel (LHS and middle panels), found in glaciated and formerly
glaciated regions of Europe and North America. The RHS panel is the sampled hillshaded DEM area in Canada
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Free parameters
Decided by the structure 

of the problem

Input neurons/Number X’s

# Output Nrns = # of Y’s

Input: X1 X2 X3 Output: Y Model: Y = f(X1 X2 X3)

X1

X2 X3

Y

0.5

0.6 -0.1 0.1
-0.2

0.7

0.1 -0.2

Parameters Example

# Input Neurons 3

# Hidden Layers 1

# Hidden Layer Size 2

# Output Neurons 1

Weights Specified

Methods: Techniques (Artificial Neural Networks) 



Convolutional Neural Networks for Imagery Data

❑Neurons at HLs are one dimensional while with

CNN, they are 3 dimensional (Width, Height and

Depth). The role of hidden layers in CNN is

played by Convolutions. Unlike ANNs, CNNs

don’t require full connectivity.

❑Curse of dimensionality: A 20x20 image would

require 1200 sets of weights-that is 20x20x3

(RGB). Convolution 1 will transform... Pass its

output on to convolution 2 which will process

and generate the output, in this case, an image.
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HL-1 HL-2



Convolutional Neural Network Architecture

❑Input Image: This is, in our case the two COVID-19 scenarios – positive and negative

❑Feature Extraction: Hidden layers – they consist of convolution, ReLU & Max Pooling.

❑Fully Connected layer then receives this as input, for classifying the image…
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❑ There are 3 types of these layers, namely: Convolutional (CL),

Pooling (PL) and Fully Connected (FC). Pooling layers lie between

CLs and aim to reduce parameters & improve robustness, by

retaining only the most important features.

❑ The main idea of CNN is to “convolve” an image with a filter aimed

at extracting the most important features from the image. That is to so

what a radiographer would do with a naked eye.

❑ Think of CNNs as a sequence of layers each transforming a volume

of activations to another through a differentiable functions (partial

derivatives) and ultimately connecting the output and input.



Methods: Activation Functions – the Engines of ANN/CNN

❑The sigmoid function returns 1 for all positive large inputs and 0.00 for all values less of

equal to zero while the hyperbolic tangent function values are [-1.0, 1.0].

❑Large networks using these functions tend to lose useful gradient information as the error is

back-propagated into the network. Each additional layer tends to decrease the back-

propagated error and as this is determined by the partial derivatives of the weights, it

causes a problem commonly referred to as vanishing gradient.
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❑The weight in a CNN play a similar role as coefficients in a linear regression model. It

expresses the rate of change in the total loss would change, as the weight changes by one

unit – i.e., the derivative of the Loss (L) with respect to W.

𝜕𝐿

𝜕𝑤
= lim

𝜕𝑤→0

𝐿 𝑤 + 𝜕𝑤 − 𝐿 𝑤

𝜕𝑤



Rectified Linear Unit ReLU

❑The pooling layer reduces the dimensionality of the rectified feature map. It uses different

filters to identify different parts of the image – like edges, corners, curves etc.

❑Flattening converts the 2-D arrays from the pooled layer into a one-dimensional vector.
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❑The Fully Connected layer then receives this as input,

for classifying the image. The Rectified Linear Unit

(ReLU) applies the activation function, the most

common of which being the following two:

Maxi Sigmoid

❑Maxi is a piecewise linear function that outputs the input directly if is positive or zero otherwise. In

other words, it is a binary rule that outputs the maximum positive number or zero otherwise.



18

Using the kernel to extract convoluted features from input data



Using the kernel to extract convoluted features from input data

To get the convolutional values, slide the kernel over the input data, multiplying the

corresponding values and summing up and fill the matrix of the same dimension as the kernel.
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The Kernel
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❑A 2x2 pooling layer, filtering with a sliding of 2 down-samples at

every depth of the input discards 75% of the activations.

❑In this example, we applied a 2D convolution filter (m x m), which

has a third dimension, equal to the number of channels of the input

image. For the grey-scale images, it is m x m x1 (black and white

channel), whereas for colour images, it is m x m x 3 (RGB).

❑Changing the dimension of the kernel has an impact on the way

features are learnt on the image under study.
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Training &Validating CNN Model

Testing CNN Model Performance
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Two Examples of Esker Positive & Negative Images as Seen at Different CNN Model Convolutions

The left hand side panels exhibit example of

esker positive and esker negative images as

seen at different CNN convolutions.

The right hand side panels exhibit another example of esker

positive and esker negative images as seen at different CNN

convolutions. In both cases the presence or absence of

protruding features on the images have a great impact on

whether the image will be predicted as positive or negative.
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Attaining training and validation

accuracy (LHS panel) is crucial for the

performance of all learning algorithms.

In this case here, both the training and

validation accuracies increase with the

number of epochs, although validation

appears to oscillate. The latter remains

below training (unsurprisingly)…

❑Loss is the quantitative measure of deviation or difference between the predicted

and actual values-it measures the mistakes the CNN makes in predicting the output.

When loss exceeds validation loss, we have the case of underfitting, a rarity.

❑The most common scenario is that of overfitting - i.e., when loss is significantly

less than validation loss, which implies that the model is adapting so well to the

training data that it considers random noise as meaningful data. In other words, the

model fails to generalize well to previously unseen data.

❑The ideal scenario is when loss is approximately equal to validation loss, as that

would mean that the model is perfectly fitting on both training and validation data.

Training &Validating CNN Model on Esker Positive/Negative Data (100x100 pixels & 50 Epochs)
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Training &Validating CNN Model on Esker Positive/Negative Data (250x250 pixels & 75 Epochs)

The ultimate goal of training, validating and testing machine learning, or indeed any, models,

is to attain replicability to new data. Learning rules from palaeo-ice sheet images using CNN

as done in this study is affected by a wide range of factors – from data randomness to

specific parameter settings of the CNN model. Data randomness can have a particularly

significant influence on modelling results. Hence, we deploy the SMA algorithm.

http://localhost:8888/notebooks/southafrica-chpc.ipynb


33

Dealing with Data Randomness: Sample-Measure-Assess (SMA) Algorithm

https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00373-y
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Predicting New (Previously Unseen) Cases of Eskers/No Eskers

The CNN model is set to run with a “check point” monitoring both training and validation accuracy,

saving the best weights and reporting each time performance improves, as follows.

#Esker positive images==[[1]]

#Esker negative images==[[0]]

# predicting previously unseen images

img1_path = "G:/ACADEMIC AND RESEARCH-

RELATED/CHPC-DIRISA/eskerpostests/DEM_HS744.jpg"

img1 = image.load_img(img1_path, target_size=(100,100))

x = image.img_to_array(img1)

x = np.expand_dims(x, axis=0)

images = np.vstack([x])

classes = model.predict_classes(images, batch_size=10)

print("Predicted class is:",classes)

Predicted class is: [[1]]

#Esker positive images==[[1]]

#Esker negative images==[[0]]

# predicting previously unseen images

img2_path = "G:/ACADEMIC AND RESEARCH-

RELATED/CHPC-DIRISA/eskernegtests/DEM_HS1182.jpg"

img2 = image.load_img(img2_path, target_size=(100,100))

x = image.img_to_array(img2)

x = np.expand_dims(x, axis=0)

images = np.vstack([x])

classes = model.predict_classes(images, batch_size=10)

print("Predicted class is:",classes)

Predicted class is: [[0]]

checkpointer = ModelCheckpoint(filepath="best_weights.hdf5", monitor = 'accuracy', verbose=1, save_best_only=True)

tracks=model.fit_generator(training, steps_per_epoch=trainsamples//batchsize, epochs=epochs, callbacks=[checkpointer],

validation_data=validation, validation_steps=validsamples//batchsize)

The saved best weights (the model) are then used to predict the class of any previously unseen image as follows.
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Conclusion
❑Ultimately, this work highlights the potential of machine learning in enhancing our understanding of the subtle

processes contributing to sea-level rise.

❑By automatically identifying eskers, we can quickly and easily map large areas of ice sheet beds and will be able to

constrain the dimensions of subglacial meltwater channels at unprecedented scales.

❑This morphometric information on esker size can be used to inform numerical models of ice sheet hydrology,

which in turn can feed into models predicting future ice loss and hence sea level rise.

❑While CNN models can detect patterns that might go unnoticed to the human eye, for all their power and

complexity, they do not provide thorough interpretations of the imagery data. For that we need interdisciplinarity.

❑Going forward, we have the following suggestions for the scientific community.

❑There can be no better way to view this bigger picture than through the Sustainable Development Goals (SDGs)

initiative. We will need an interdisciplinary approach to respond to new challenges and exploit new opportunities in

sectors like manufacturing, agriculture, business, health and education-sectors that have been badly hit by the

pandemic. Tracking global variations in recovery strategies in various sectors and addressing real-life issues like

food security, innovation, productivity etc., will be crucial.

❑The esker images used in this paper are bare basics of deep and machine learning methods in glaciology and related

fields, which we will need to explore further as a way of addressing climate change.
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