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Abstract: Objective: the complexity of heart-rate variability (HRV) in amyotrophic lateral sclerosis
(ALS) patients with different pulmonary capacities was evaluated. Methods: We set these according to
their pulmonary capacity, and specifically forced vital capacity (FVC). We split the groups according
to FVC (FVC > 50% (n = 29) and FVC < 50% (n = 28)). In ALS, the presence of an FVC below
50% is indicative of noninvasive ventilation with two pressure levels and with the absence of
other respiratory symptoms. As the number of subjects per group was different, we applied the
unbalanced one-way analysis of variance (uANOVA1) test after three tests of normality, and effect
size by Cohen’s d to assess parameter significance. Results: with regard to chaotic global analysis,
CFP4 (p < 0.001; d = 0.91), CFP5 (p = 0.0022; d = 0.85), and CFP6 (p = 0.0009; d = 0.92) were enlarged.
All entropies significantly increased. Shannon (p = 0.0005; d = 0.98), Renyi (p = 0.0002; d = 1.02),
Tsallis (p = 0.0004; d = 0.99), approximate (p = 0.0005; d = 0.97), and sample (p < 0.0001; d = 1.22).
Detrended fluctuation analysis (DFA) (p = 0.0358) and Higuchi fractal dimension (HFD) (p = 0.15)
were statistically inconsequential between the two groups. Conclusions: HRV complexity in ALS
subjects with different pulmonary capacities increased via chaotic global analysis, especially CFP5
and 3 out of 5 entropies.

Keywords: amyotrophic lateral sclerosis; autonomic nervous system; cardiovascular physiology;
motor neuron disease; nonlinear dynamics

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting both
upper and lower motor neurons [1]. Characterized by progressive neuromuscular atrophy
(PMA) with the early involvement of the respiratory system, it may lead to pulmonary
collapse that requires mechanical ventilation [2]. Classical ALS corresponds to 70% of cases,
and can be classified as bulbar (33%) or spinal (66%) depending on symptom onset [1].

The weakness and fatigue of respiratory muscles eventually induce respiratory insuffi-
ciency, which is the main cause of death in this disease [3]. The second most frequent cause
is related to cardiovascular diseases [4]. There is recent evidence that ALS diagnosis can be
established before symptoms become apparent, such as through terminal phrenic nerve
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latency [3,5] that correlates with respiratory symptoms and through forced vital capacity
(FVC) [3].

Patients with motor neuron disease (MND) have a higher risk of sudden death, and
the heart is often affected in these patients. There is evidence that autonomic involvement
can result in sympathetic hyperactivity, increasing the risk of sudden death; however, there
is a lack of data on this cause [6].

Heart-rate variability (HRV) can be assessed from RR-intervals. These are derived from
an electrocardiographic PQRST-signature and can deviate in chaotic or irregular manner.
HRV is an inexpensive, noninvasive, and reliable method of monitoring sympathetic and
parasympathetic balance [7,8]. Variability analysis represents a novel means to evaluate and
treat individual to provide diagnostic, prognostic and pathophysiological information [9].

HRV verification checks are vital to detect disorders of cardiac autonomic dysfunction
in patients with ALS to avoid sudden death or other conditions that lead to a decrease
in life expectancy [10]. Despite evidence of autonomic dysfunction in these patients, few
managed to explain result divergence, sometimes showing sympathetic hyperactivity and
sometimes demonstrating parasympathetic hypoactivity. Merico and Cavanatato [11], and
Pinto [12] related this fact to phenotypic heterogeneity, highlighting bulbar involvement,
while Pinto [13] and Baltadzhieva [14] related it to the stage of the disease, such as the need
for ventilators.

In this study, we evaluate the complexity of HRV in ALS patients [15,16]. We diagnosed
these according to pulmonary capacity, specifically FVC. Pimentel et al. presented no
significant correlation between HRV and pulmonary capacity by linear methods, and
indicated a significant decrease in the SD2 index in the subjects who needed ventilatory
support [17]. The absence of significant differences in time (mean SD of normal RR intervals,
percentage of adjacent RR intervals with a difference of duration of 50 ms, and the root
of square successive differences between adjacent normal RR intervals) and frequency
(high frequency, low frequency, and low frequency to high frequency ratio) domains was
because nonlinear indices were highly sensitive at detecting changes. In addition, nonlinear
behavior was predominant in human physiological systems owing to their complex and
dynamic nature [16].

We assumed that the subjects’ RR intervals performed in a nonlinear way akin to dia-
betes mellitus [18], chronic obstructive pulmonary disease (COPD) [19], and epilepsy [20,21]
as dynamical conditions which can be quantified and assessed by applying globally chaotic
algorithms [22] and other nonlinear techniques. By assessing the level of chaotic response
via these techniques derived from nonlinear dynamical analysis, we can assess the proba-
bility of attaining “dynamical diseases” [23].

We can assume that impaired respiratory function is important, but this article high-
lights the importance of HRV as a prognostic predictor for ALS in order to detect early
abnormalities, estimate prognosis, and define treatment strategies; therefore, the objec-
tive of this study was to evaluate the complexity of HRV in ALS patients with different
pulmonary capacities.

2. Materials and Methods
2.1. Study Population

In this transversal study, we examined 57 patients with a medical diagnosis of ALS
spinal. For the present study, recruitment was performed in the Brazilian Association of
Amyotrophic Lateral Sclerosis (ABRELA) associated with the Department of Neuromus-
cular Diseases of UNIFESP from March to December 2016. This group was divided and
classified according to pulmonary capacity. ALS was confirmed by the identification of
features present in the El Escorial criteria for the diagnosis of ALS [24], supported by de
Carvalho et al. [25], who signed (patient or caregiver) authorization to participate in the
study. Patients with ALS bulbar and congenital abnormalities, heart diseases, pulmonary
malformations, and patients who used medications interfering with the autonomic ner-
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vous system response, such as antiarrhythmic medicines and insulin, were excluded from
the study.

2.2. Pulmonary Evaluation

Spirometry examination was performed to verify the vital capacity. Patients were
classified according to their pulmonary capacity (FVC) into two groups: (1) FVC > 50%
(n = 29) and (2) FVC < 50% (n = 28). Through these parameters, patients with less than 50%
FVC presented the need for non-invasive ventilation. (Table 1). In neuromuscular-disease
conditions such as ALS, the presence of FVC below 50% of the predicted was indicative
of non-invasive ventilation with two pressure levels, even in the absence of respiratory
symptoms [26]. Patients with bulbar ALS were excluded from the study because it is
common that bulbar involvement can cause facial weakness, which further impaired the
accurate assessment of vital capacity.

Table 1. Characterization of sample subjects. FVC, forced vital capacity.

Variable FVC > 50% FVC < 50%

n 29 28
Age (years) 57.8 ± 10 54.7 ± 9
Height (m) 1.65 ± 0.07 1.66 ± 0.07
Mass (kg) 67.3 ± 13.9 63.1 ± 9.6

FVC: forced vital capacity.

2.3. Experimental Protocol and HRV Analysis

Data collection was commenced at room temperature between 21 and 25 ◦C, and
with humidity between 50 and 60%. Patients were instructed to not ingest alcohol, caf-
feine, or other autonomic stimulants for 24 h prior to evaluation. Data collection was
achieved individually between 18:00 and 21:00 to standardize circadian influences [27].
Patients were instructed to remain in the sitting position, at rest, and to avoid conversation
during the experiment. Individuals with FVC < 50% were not under ventilation support
during recording.

After the initial evaluation, the heart-monitor belt was then placed over the thorax, and
aligned with the distal third of the sternum and the Polar RS800CX heart-rate receiver (Polar
Electro, Finland). RR intervals were recorded with a sampling rate of 1 kHz. They were then
transferred to Polar Precision Performance software (v. 3.0, Polar Electro, Finland). This
software allowed for heart-rate visualization and the extraction of a file relating to a cardiac
period (RR interval) in a txt file. After digital filtering supplemented with manual filtering
to eliminate artefacts, 1000 RR intervals were applied for data analysis. We included only
series with >95% sinus beats [28].

2.4. Nonlinear Analysis

Nonlinear HRV analysis included detrended fluctuation analysis (DFA) [29], chaotic
global assessments [30,31], high spectral entropy [19], high spectral DFA [32], spectral
multitaper method (sMTM) [22], chaotic forward parameters (CFP1 to CFP7), entropic
assessments; Shannon entropy [33], Renyi entropy [34,35], Tsallis entropy [36–38], approxi-
mate entropy (ApEn), sample entropy (SampEn) [39,40], and Higuchi fractal dimension
(HFD). Details about the abovementioned methods were previously reported [19,22,29–40].

2.5. Effect Size

To quantify the magnitude of difference between protocols for significant differences,
effect size was calculated using Cohen’s d for significant differences (p < 0.005) [8]. Large
effect size was considered for values > 0.9, medium for values between 0.9 and 0.5, and
small for values between 0.5 and 0.25 [41,42].
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2.6. Principal-Component Analysis (PCA)

Principal-component analysis (PCA) [43] is a multivariate technique for analyzing
the complexity of high-dimensional datasets. PCA is useful when (a) sources of data
variability need to be explained, and (b) it reduces data complexity and assesses data with
fewer dimensions through this. Primary PCA goals are to rationalize the sources of data
variability and to represent data with fewer variables while sustaining the majority of the
total variance.

3. Results
3.1. Mean, Standard Deviations, Unbalanced One-Way Analysis of Variance (uANOVA1),
and Cohen’s D

Mean and standard deviations were calculated for chaotic globals, DFA, Higuchi
fractal dimensions, and the five entropies. After assessments for normality (Ryan–Joiner,
Anderson–Darling, and Lilliefors), these were tested for significance by uANOVA1 [44].
The number of subjects in the two assessed groups was unequal; therefore, standard one-
way analysis of variance (ANOVA1) [45] or Kruskal–Wallis [46] techniques were unsuitable.

First, regarding chaotic globals (Figure 1 and Table 2), CFP4–CFP7 revealed the most
significant changes in response to the two conditions (FVC > 50% and FVC < 50%). They all
gave a significant increase in parametric response with the exception of CFP7. Effect sizes
corresponded with uANOVA1 p values, since four previously cited chaotic globals had low
p values (p ≈ 0.002) and high Cohen’s d (d ≈ 0.9). The other chaotic globals (CFP1, CFP2,
and CFP3) had high p values and low Cohen’s d effect sizes, and so were not considered
for statistical significance.
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chaotic globals, fractal dimensions, and entropies. 
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Figure 1. The multi taper method (MTM) power spectrum of a time series of 1000 RR intervals in
experimental subject (FVC < 50%). sMTM was the area beneath the spectrum but above the baseline
formed by broadband noise as signal becomes chaotic. High spectral entropy (hsEntropy) and high
spectral detrended fluctuation analysis (hsDFA) were derived by applying Shannon entropy and DFA
functions to MTM power spectrum. Parameters for MTM power spectra were set at (i) sampling
frequency, 1 Hz; (ii) time bandwidth for Discrete Prolate Spheroidal Sequences (DPSS), 3; (iii) Fast
Fourier Transform (FFT) length, 256; (iv) Thomson’s “adaptive” nonlinear combination method to
combine individual spectral estimates.
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Table 2. Mean values, standard deviation, unbalanced standard one-way analysis of variance
(ANOVA1), and Cohen’s d effect size for CFP1 to CFP7 for control (FVC > 50%) and experimental
(FVC < 50%) subjects.

Chaotic Global Mean ± SD
FVC > 50% (n = 29)

Mean ± SD
FVC < 50% (n = 28)

uANOVA1
(p Value)

Effect Size
Cohen’s d

CFP1 0.7718 ± 0.1495 0.8269 ± 0.1569 0.1797 0.35
CFP2 0.6633 ± 0.1372 0.6231 ± 0.1046 0.2196 0.33
CFP3 0.6736 ± 0.1659 0.6530 ± 0.1457 0.6211 0.13
CFP4 0.4889 ± 0.2429 0.7144 ± 0.2476 <0.001 0.91
CFP5 0.3127 ± 0.2014 0.4774 ± 0.1844 0.0022 0.85
CFP6 0.3651 ± 0.1632 0.5258 ± 0.1831 0.0009 0.92
CFP7 0.5033 ± 0.2651 0.2976 ± 0.2266 0.0027 0.83

FVC: Forced Vital Capacity; CFP 1 to CFP7: Chaotic Forward Parameters.

Next, DFA was significant with p value (p = 00358) and Cohen’s d (d = 0.57). Moderate
decrease was observed, which was expected. DFA responded in the opposite manner to
chaotic globals, fractal dimensions, and entropies.

Then, the five entropies (approximate, sample, Shannon, Renyi, and Tsallis) that were
calculated provided a significant increase with p values (p ≈ 0.0002) and Cohen’s d (d ≈ 1.0)
(Table 3). Sample entropy had a particularly high Cohen’s d value (d = 1.22) and largely
compensated for prevalent bias in approximate entropy.

Table 3. Mean values, standard deviation, unbalanced ANOVA1, and Cohen’s d effect size for five
entropic and DFA measures for control (FVC > 50%) and experiemental (FVC < 50%) subjects.

Entropy
or DFA

Mean ± SD
FVC > 50% (n = 29)

Mean ± SD
FVC < 50% (n = 28)

uANOVA1
(p Value)

Effect Size
Cohen’s d

Approximate 0.6435 ± 0.1829 0.8033 ± 0.1417 0.0005 0.97
Sample 0.6055 ± 0.1971 0.8176 ± 0.1445 <0.0001 1.22

DFA 0.4735 ± 0.2538 0.3279 ± 0.2569 0.0358 0.57
Shannon 0.5525 ± 0.1270 0.6809 ± 0.1348 0.0005 0.98

Renyi 0.9846 ± 0.0051 0.9898 ± 0.0050 0.0002 1.02
Tsallis 0.5930 ± 0.1173 0.7131 ± 0.1231 0.0004 0.99

Lastly, the Higuchi fractal dimension was not significant for all values of Kmax. The
highest significance was achieved for a Kmax of 40, where p ≈ 0.15 or 15% (Figures 2 and 3).
This was inconsequential because we set the level of significance to p < 0.005 (or 0.5%)
throughout [32,37].

3.2. Multivariate Analysis via PCA

CFP4 had the first (PC1) (0.486) and second (PC2) (0.061) principal components. Next,
CFP5 had PC1 (0.458) and PC2 (0.207). However, CFP6 had PC1 (0.486, identical to CFP4
PC1) and PC2 (−0.035 less than CFP4 PC2). Lastly, CFP7 had PC1 (−0.416) and PC2
(−0.314).

Only the first two components were considered due to the steep scree plot. Cumulative
influence as a percentage was 59.9% for PC1, and 99.4% for the cumulative total of PC1
and PC2. PC2 had 39.5% influence. So, CFP4, which applied two of the three chaotic global
techniques, was the optimal and most robust overall combination regarding influencing the
correct outcome. The two applied techniques were sMTM and hsDFA. Difference, however,
was marginal (Table 4).
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Figure 2. Values of chaotic forward parameters (CFP1 to CFP7) for control (FVC > 50%) and experi-
mental (FVC < 50%) subjects with 1000 RR intervals. Point closest to zero, minimum; point farthest
away, maximum. Point next closest to zero, 5th percentile; point next farthest away, 95th percentile.
Boundary of box closest to zero, 25th percentile; line within box, median; boundary of box farthest
from zero, 75th percentile. Difference between these points, interquartile range (IQR). Whiskers (or
error bars) above and below box, 90th and 10th percentiles, respectively.
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Figure 3. Box-and-whiskers plot for Higuchi fractal dimension of RR intervals of control (left: n = 29 with FVC > 50%)
and experimental (right: n = 28 with FVC < 50%) subjects calculated multiple times from 10 to 150 in equidistant units for
different levels of Kmax. Saturation point achieved at Kmax 40 (Figure 4). Point closest to zero, minimum; point farthest away,
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zero, 25th percentile; line within box, median; boundary of box farthest from zero, 75th percentile. Difference between these
points, interquartile range (IQR). Whiskers (or error bars) above and below box, 90th and 10th percentiles, respectively.
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Figure 4. uANOVA1 for Higuchi fractal dimension at varying levels of Kmax between 10 and 150 at
equidistant intervals of 10. Data control set had FVC > 50% (n = 29) and experimental dataset had
FVC < 50% (n = 28). The lowest p value and hence the greatest significance was accomplished for
Kmax 40 (p ≈ 0.15, ≈ 15%).

Table 4. Principal-component analysis for CFP for 7 groups of 28 experimental subjects with FVC < 50%.

Chaotic Global PC1 PC2 PC3 PC4 PC5 PC6 PC7

CFP1 0.354 −0.414 0.122 −0.556 0.461 0.146 −0.381
CFP2 0.019 −0.595 0.663 0.262 −0.096 −0.079 0.349
CFP3 0.139 −0.573 −0.556 0.407 −0.197 −0.177 −0.328
CFP4 0.486 0.061 0.003 −0.442 −0.602 −0.428 0.140
CFP5 0.458 0.207 0.255 0.305 −0.337 0.598 −0.343
CFP6 0.486 −0.035 −0.365 0.090 0.271 0.292 0.680
CFP7 −0.416 −0.314 −0.194 −0.400 −0.436 0.561 0.163

FVC: Forced Vital Capacity; CFP 1 to CFP7: Chaotic Forward; Parameters PC1 to PC7: Principal Component.

Regarding PCA values for the five entropies, a clear pattern was revealed. Shannon,
Renyi, and Tsallis entropies performed similarly. ApEn and SampEn were analogous
(Table 5). The first three components needed to be considered due to the relatively lesser
steep scree plot compared to chaotic globals. Cumulative influence as a percentage was
65.4% for PC1, and 89.3% for the cumulative total of PC1 and PC2. PC2 had 23.8% influence.
Cumulative influence as a percentage was 99.3% for the total of PC1, PC2, and PC3, and
PC3 alone had 10.0% influence. Shannon entropy had PC1 (0.474), almost the same as the
PC1 for Renyi (0.476) and Tsallis (0.475); PC2 (0.246) was again similar to PC2 for Renyi
(0.223) and Tsallis (0.243). Lasly, PC3 (−0.219 was similar to PC3 for Renyi (−0.230) and
Tsallis (−0.220).

Next, ApEn and SampEn performed in the same way. Once more, the first three
components needed to be considered. ApEn had PC1 (0.301) whereas SampEn was 0.351,
and PC2 (−0.662) was again similar to SampEn at −0.591. Lastly, PC3 was 0.052, whereas
SampEn was −0.004. Since PC1 had the greatest influence, the SampEn algorithm overall
slightly outperformed ApEn.

With regards to DFA (Table 5), we calculated PCA to assess its influence despite being
insignificant on the uANOVA1 test, and it peformed moderately on PCA.
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Table 5. Relevant principal-component analysis for five entropies and detrended fluctuation analysis (DFA) of 28 experi-
mental subjects with FVC < 50%.

Entropy
(or DFA) PC1 PC2 PC3 PC4 PC5 PC6

Approximate 0.301 −0.662 0.052 −0.651 0.211 < 0.001
Sample 0.351 −0.591 −0.004 0.698 −0.203 < 0.001

DFA 0.330 0.208 0.921 0.011 −0.015 < 0.001
Shannon 0.474 0.246 −0.219 0.104 0.467 −0.662

Renyi 0.476 0.223 −0.230 −0.274 −0.767 −0.084
Tsallis 0.475 0.243 −0.220 0.061 0.329 0.745

FVC: Forced Vital Capacity; Parameters PC1 to PC7: Principal Component; DFA: Detrended Fluctuation Analysis.

4. Discussion
4.1. Statistical Results

1. CFP4 and CFP6 performed best on chaotic global analysis. CFP5 and CFP7 per-
formed adequately, but CFP7 was different in that the transition from FVC > 50% to
FVC < 50% encouraged a significant decrease. Low p values corresponded with high
effect sizes, as was expected.

2. All five entropies performed well and attained an increase in chaotic response from
FVC > 50% to FVC < 50% cohorts. Low p values matched with high Cohen’s d
effect sizes, with sample entropy having a particularly high effect size (1.22) and was,
therefore, of high significance.

3. DFA did not attain a similarly significant response as those in the chaotic globals or
entropies. It failed to achieve significance on both uANOVA1 and the Cohen’s d effect
sizes. It did, nevertheless, attain a decreased chaotic response, which is to be expected
since the parameter usually responds in the contradictory manner.

4.2. Principal-Component Analysis

1. Those that were significant were CFP4, CFP5, CFP6 and CFP7. They all performed
similarly with regards to PC1. CFP7 presented the opposite response to that of
the others, so we did not discuss this combination further. PC2, CFP4, and CFP6
responded similarly, but CFP5 outperformed both on the second component; therefore,
CFP5 was the statistically best and most influential performing chaotic global.

2. Regarding five entropies and multivariate analysis through PCA, Shannon, Renyi, and
Tsallis entropies performed similarly on PC1, PC2, and PC3. We only considered the
first three components due to a moderately steep scree plot. Approximate and sample
entropies also performed similarly on PC1, PC2, and PC3, with sample entropy
slightly outperforming approximate entropy due to higher responses on the PC1
(0.351), the most influential component.

3. DFA was not significantly altered with regards to mean and standard deviations (see
above). It was, nevertheless, moderately influential on the basis of PCA, and was not
considered further.

4.3. Signal Processing

1. Different fractal-dimension algorithms could be applied to data in addition to the
Higuchi fractal dimension, for example, those by Katz [47] and Castiglioni [48].

2. The weighting of chaotic globals could be adjusted when calculating seven permuta-
tions of chaotic forward parameters.

3. Parameters of the multitaper-method (MTM) spectral technique enforced by the
chaotic globals could be modified: (a) sampling frequency, (b) time bandwidth for
DPSS, (c) FFT length, (d) Thomson’s nonlinear combination method.

4. The length of the datasets could be increased beyond 1000 RR, and the number of
subjects in the study could be increased.
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4.4. Clinical Interpretation

1. Nonlinear HRV analysis can significantly improve HRV utilization for risk stratifica-
tion [38].

2. Reduced HRV complexity is frequently achieved during stressful situations and
disorders [34]. We expected a diminished HRV chaotic response in ALS patients with
FVC < 50%; however, we revealed the opposite.

3. Previous evidence indicated that the elevated values of nonlinear HRV were not
always associated with physiological wellbeing [49–51]. Our results demonstrated
increased complexity of HRV in a pathological state of ALS. This finding helps to
break the paradigm that increased HRV complexity is related to better physiological
health.

4. Our results promote the hypothesis that ALS patients with FVC < 50% presented
increased HRV complexity because of their determination to overcome impaired
healthy condition. We encourage further studies to expand this technique by using
anti-inflammatory biomarkers.

Transition from FVC > 50% to FVC < 50% encourages significant increase rather than
decrease in chaotic response. The most apt parameters to be used when assessing this
chaotic status are CFP5 (function of hsDFA alone) from chaotic global permutations, and
Shannon, Renyi, or Tsallis entropy. We discourage the use of approximate and sample
entropies despite their significance, especially with regards to Cohen’s d for sample entropy.
These two tests are very parameter-dependent (M, embedding dimension; r, tolerance) and,
therefore, difficult to set to attain appropriate and optimal assessment. It is also normal
to apply (although different data respond in different ways) and M = 2 and r = 0.2 where
0.2 represents 20% of the standard deviation of RR interval time-series data. These standard
values were applied here, as is usually the case [52].

Consequently, the increase in chaotic response during the pathological state should
unexpectedly reduce the risk of developing dynamical diseases in subjects with ALS and
FVC < 50%.

5. Conclusions

HRV complexity in ALS subjects with different pulmonary capacities increased
through chaotic global analysis, especially CFP5 and 3 of 5 entropies. This study suggests
that nonlinear indices are highly sensitive in detecting changes in human physiological
systems; therefore, further studies should be carried out in order to use HRV verification in
detecting cardiac-autonomic-dysfunction disorders in ALS patients and early abnormalities,
estimating prognosis, and defining treatment strategies.
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