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Abstract. We investigate when fiber products of lattices are finitely gener-
ated and obtain a new characterization of bounded lattice homomorphisms
onto lattices satisfying a property we call Dean’s condition (D) which arises
from Dean’s solution to the word problem for finitely presented lattices. In
particular, all finitely presented lattices and those satisfying Whitman’s condi-
tion satisfy (D). For lattice epimorphisms g : A→ D, h : B → D, where A, B
are finitely generated and D satisfies (D), we show the following: If g and h are
bounded, then their fiber product (pullback) C = {(a, b) ∈ A×B | g(a) = h(b)}
is finitely generated. While the converse is not true in general, it does hold
when A and B are free. As a consequence we obtain an (exponential time) al-
gorithm to decide boundedness for finitely presented lattices and their finitely
generated sublattices satisfying (D). This generalizes an unpublished result of
Freese and Nation.

1. Introduction

A subdirect product of algebraic structures A and B is a subalgebra C of the di-
rect product A×B that projects onto both factors. In [7, 6] the second and third
authors studied conditions under which direct and subdirect products of various
algebras are finitely generated. Direct products of finitely generated lattices are
finitely generated. On the other hand, note that a congruence α of an algebra
A is a subdirect product of two copies of A. If α is finitely generated as subal-
gebra of A2, then it is clearly finitely generated as congruence of A as well. For
every non-finitely presented quotient F (X)/ρ of a finitely generated free lattice
F (X), the congruence ρ is a subdirect product of F (X) with itself that is not
finitely generated as a lattice. In [6, Example 7.5] an explicit example is given
of a congruence ρ such that F (X)/ρ is finite, hence finitely presented, but ρ is
not finitely generated as a sublattice of F (X) × F (X). The present paper is a
continuation of that work.
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We start by recalling a standard method for constructing subdirect products. Let
A, B be algebras with epimorphisms g : A → D and h : B → D onto the same
homomorphic image D. Then the subalgebra

C := {(a, b) ∈ A×B | g(a) = h(b)}

of A×B is called a fiber product (or pullback) of g and h. Clearly C is a subdirect
product of A and B. Note that when B = A and h = g the resulting fiber product
is precisely the kernel of g as a subdirect product in A× A.

Whether a fiber product of lattices is finitely generated turns out to be connected
to the following properties of homomorphisms that originally appeared in the
work of McKenzie on lattice varieties [8] and of Jónsson on free lattices [5]. Let
A,D be lattices. A homomorphism g : A→ D is lower bounded if for each d ∈ D
the set {x ∈ A | g(x) ≥ d} is either empty or has a least element (dually,
{x ∈ A | g(x) ≤ d} is empty or has a greatest element for upper bounded). If g
is surjective, this condition is equivalent to the preimage g−1(d) having a least
element (dually, greatest for upper bounded) for each d ∈ D. Further g is bounded
if it is both lower and upper bounded.

The existence of a lower bounded epimorphism from a free lattice has a strong
universal consequence. By [4, Theorem 2.13] the following are equivalent for any
finitely generated lattice D:

(1) There exists a finite set X and a lower bounded epimorphism f : F (X)→ D
from the free lattice F (X) onto D.

(2) For every finitely generated lattice A, every homomorphism h : A → D is
lower bounded.

If D satisfies one, and hence both, conditions (1),(2) above we say that D is
lower bounded. Of course, the duals of these statements also hold and define
upper bounded lattice. A lattice that is both upper and lower bounded is said to
be bounded.

We say a lattice D with finite generating set P satisfies Dean’s condition (D) if
for all finite subsets S, T ⊆ D,

∧
S ≤

∨
T ⇒


∃s ∈ S : s ≤

∨
T or

∃t ∈ T :
∧
S ≤ t or

∃p ∈ P :
∧
S ≤ p ≤

∨
T.

(D)

Every finitely presented lattice satisfies Dean’s condition (D) for an appropriate
generating set. More precisely every lattice F (P ) that is freely generated by
a finite partial lattice P satisfies (D) for P [3, Theorem 2-3.4], and [3, Section
2-3.1] gives a translation from finite presentations into finite partial lattices and
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conversely. Further every finitely generated lattice satisfying Whitman’s condi-
tion (W), ∧

S ≤
∨

T ⇒ ∃s ∈ S : s ≤
∨

T or ∃t ∈ T :
∧

S ≤ t, (W)

also satisfies Dean’s condition (D) for any finite generating set.

Our first result is that boundedness is a sufficient condition for finite generation
of fiber products:

Theorem 1.1. Let A,B,D be finitely generated lattices, and assume D satisfies
Dean’s condition (D). If g : A → D and h : B → D are bounded epimorphisms,
then their fiber product is a finitely generated sublattice of A×B.

Theorem 1.1 will be proved in Section 2. Its specialization for D a finitely pre-
sented lattice resembles a result in congruence permutable varieties: there, for
all finitely generated algebras A,B and finitely presented D, every fiber product
of epimorphisms g : A → D and h : B → D is finitely generated [6, Proposition
3.3]; for groups see also [1].

Finitely generated lattices satisfying Whitman’s condition (W) are not necessar-
ily finitely presented. See McKenzie’s example [3, Example 2-9.1] for a finitely
generated but not finitely presented sublattice L1 of a finitely presented lat-
tice. This lattice L1 satisfies Whitman’s condition as was pointed out to us by
Freese and Nation. However the bounded finitely generated lattices satisfying
Whitman’s condition (W) are exactly the projective finitely generated lattices
by Kostinsky’s Theorem [4, Corollary 5.9]. Hence Theorem 1.1 specialized to
D with (W) yields a direct proof, and in fact a strengthening, of the known re-
sult that finitely generated projective lattices are finitely presented. Indeed, if
F (X)/ρ with X finite is bounded and satisfies Whitman’s condition (W), then ρ
is finitely generated as sublattice of F (X)×F (X), hence also as a congruence of
F (X).

The following example shows that Dean’s condition (D) for D cannot be omitted
in Theorem 1.1:

Example 1.2. Let h : F (x1, x2, x3, y1, y2, y3)→ F (x1, x2, x3)× F (y1, y2, y3) with
h(xi) := (xi, 0) and h(yi) := (0, yi) for i ≤ 3 be the natural epimorphism from
the free lattice over 6 generators to the direct square of the free lattice over
3 generators. Note that the latter is bounded since it is a direct product of
bounded (free) lattices. However F (x1, x2, x3) × F (y1, y2, y3) is not finitely pre-
sented by [7, Theorem 3.10]. Hence bounded and finitely generated does not
imply finitely presented. Moreover kerh is not finitely generated as a congruence
of F (x1, x2, x3, y1, y2, y3) and in particular not finitely generated as a lattice.

The converse of Theorem 1.1 is not true in general as will be shown in Section 3:
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Theorem 1.3. There exists a finitely generated lattice M and an unbounded
epimorphism h : M → L onto a finite lattice L such that the kernel of h is finitely
generated as a sublattice of M ×M .

However, the converse does hold for fiber products of free lattices and, more
generally, of lattices that are generated by join prime and by meet prime elements
and satisfy Whitman’s condition (W). The latter include in particular all lattices
that are freely generated by some ordered set [4, Theorem 5.19].

Theorem 1.4. Let A,B be lattices that satisfy Whitman’s condition (W) and
are generated by join prime elements as well as by meet prime elements, let D
be a lattice. If the fiber product of epimorphisms g : A → D and h : B → D is a
finitely generated sublattice of A×B, then g and h are bounded.

Theorem 1.4 will be proved in Section 4. Together with Theorem 1.1 it yields
the following characterization of finitely generated fiber products of free lattices
(solving Problem 7.6 of [6]) as well as a new characterization of finitely presented
bounded lattices.

Corollary 1.5. For any finitely generated lattice D that satisfies Dean’s condi-
tion (D) the following are equivalent:

(1) D is bounded.

(2) There exists a finite set X and an epimorphism h : F (X) → D from the
free lattice F (X) onto D such that kerh is a finitely generated sublattice of
F (X)× F (X).

(3) For every finitely generated lattice A and epimorphism g : A→ D, the kernel
of g is a finitely generated sublattice of A× A.

(4) For all finitely generated lattices A,B, epimorphisms g : A→ D and h : B →
D, the fiber product of g and h is a finitely generated sublattice of A×B.

Note that (1)⇒(4) follows from Theorem 1.1; (4)⇒(3)⇒(2) are immediate; (2)⇒(1)
follows from Theorem 1.4.

The analogous question of characterizing finite generation of fiber products of
free semigroups and monoids was considered by Clayton [2] in the case where the
common quotient D is finite or free.

Comparing lattices and congruence permutable varieties again, recall that every
finitely generated congruence ρ of a finitely generated Mal’cev algebra A is finitely
generated as a subalgebra of A×A. By Corollary 1.5(1)⇒(3) this also holds for
congruences ρ of lattices A whenever A/ρ is bounded. In particular for every
bounded finitely presented lattice F (X)/ρ with X finite, ρ is not only a finitely
generated congruence of the free lattice F (X) but also finitely generated as a
sublattice of F (X)× F (X).
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In the course of proving Theorem 1.1 we obtain that an epimorphism g : A →
F (P ) is bounded if and only if the pre-images of P under g are bounded; see
Corollary 2.4.

Combining this with [3, Section 2-3.1] yields (1)⇔(3) in the following reformula-
tion of Corollary 1.5 for finitely presented lattices F (X)/ρ.

Corollary 1.6. Let X be finite. Then the following are equivalent for a congru-
ence ρ of F (X) generated as a congruence by a finite set R ⊆ F (X)× F (X):

(1) F (X)/ρ is bounded.

(2) ρ is finitely generated as a sublattice of F (X)× F (X).

(3) If u is an element of X or a subterm of a term occurring in R, the class
u/ρ is bounded in F (X).

By Corollary 2.4 boundedness for D with finite generating set P satisfying Dean’s
condition (D) is determined by pre-images of P . This yields an algorithm for
deciding whether certain types of such lattices D are bounded which we will
describe in Section 5. The assertion of the following theorem for the class of
finitely presented lattices was already known to Freese and Nation; see [4, page
251].

Theorem 1.7. Lower boundedness is decidable for finitely presented lattices and
their finitely generated sublattices satisfying Dean’s condition (D).

Finally let us add a small observation about subdirect products of lattices that
are not fiber products but closely related:

Remark 1.8. If the fiber product of epimorphisms g : A→ D and h : B → D is
finitely generated, then also

C = {(a, b) ∈ A×B | g(a) ≤ h(b)}

is finitely generated. Indeed if the fiber product of g and h is generated by G,
then C is generated by G ∪ {(0A, 1B)}.

2. Bounded homomorphisms imply finite generation

To facilitate inductive proofs on the complexity of lattice elements over some
generating set, we adapt the notation from [4, Section II.1].

Let A be a lattice with finite generating set X. For a subset W of A we define

W∧ :=
{∧

U
∣∣ U is a finite subset of W

}
,

W∨ :=
{∨

U
∣∣ U is a finite subset of W

}
,
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with the convention that 1 :=
∨
X =

∧
∅ and 0 :=

∧
X =

∨
∅ in A. Next define

an ascending chain

X = GX,0 ⊆ HX,0 ⊆ GX,1 ⊆ HX,1 ⊆ . . .

of subsets of A inductively as follows:

GX,0 := X, HX,k := G∧X,k, GX,k+1 := H∨X,k for k ∈ N. (2.1)

If the generating set X is clear from the context, we write simply Gk, Hk. Note
that Gk for k ≥ 1 is join-closed, Hk for k ≥ 0 is meet-closed and

A =
⋃
k∈N

Gk =
⋃
k∈N

Hk.

For g : A→ D an epimorphism, k ∈ N and d ∈ D, we define

αg,k(d) :=
∨
{w ∈ Gk | g(w) ≤ d}, βg,k(d) :=

∧
{w ∈ Hk | g(w) ≥ d}. (2.2)

Note that αg,0(d) is not necessarily contained in GX,0 = X, but for k ≥ 1 the
element αg,k(d) is the greatest w ∈ GX,k with g(w) ≤ d. Dually βg,k(d) is the
least w ∈ Hk with g(w) ≥ d for all k ∈ N. Furthermore (2.1) yields for all k ≥ 1

αg,k(d) =
∨
{w ∈ Hk−1 | g(w) ≤ d},

βg,k(d) =
∧
{w ∈ Gk | g(w) ≥ d}.

(2.3)

If the epimorphism g is clear from the context, we write αk instead of αg,k, etc.
Note that αk, βk depend on the choice of the generating set X of A.

In [4, Section II.1] Hk and βk are defined exactly as above. We have introduced
the non-standard notions of Gk and αk for our proof of Theorem 1.1.

Remark 2.1. There is a duality between Hk and βk on one hand and Gk and αk

on the other. However when referring to this duality one needs to bear in mind
the following:

• G0 = X and H0 = X∧ are not dual to each other with respect to X. Still
we will obtain completely dual formulas for αk and βk for all k ∈ N in
Lemma 2.2(4),(5) below.

• By (2.3), if a statement about Gk and αk also refers to Hk−1 and βk−1, then
its dual for Hk and βk will need to refer to Gk and αk (and not to Gk−1 and
αk−1).

In the following lemma we record some basic properties of our functions that
extend those given for βk in [4, Theorems 2.2, 2.4].

Lemma 2.2. Let g : A → D be a lattice epimorphism, a ∈ A, d, e ∈ D, and
k, ` ∈ N. The following hold:

(1) If d ≤ e, then αk(d) ≤ αk(e) and βk(d) ≤ βk(e).
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(2) If k ≤ `, then αk(d) ≤ α`(d) and βk(d) ≥ β`(d).

(3) If d ≤ g(a) ≤ e, then βm(d) ≤ a ≤ αm+1(e) for some m ∈ N.

(4) α0(d) =
∨
{x ∈ X | g(x) ≤ d} and for k > `

αk(d) =
∨{∧

U | U ⊆ Gk−1, g(
∧

U) ≤ d but g(u) 6≤ d for every u ∈ U
}
∨α`(d).

(5) β0(d) =
∧
{x ∈ X | g(x) ≥ d} and for k > `

βk(d) =
∧{∨

U | U ⊆ Hk−1, g(
∨

U) ≥ d but g(u) 6≥ d for every u ∈ U
}
∧β`(d).

(6) For each non-empty finite E ⊆ D∧
αk−1(E) ≤ αk(

∧
E),

∨
βk−1(E) ≥ βk(

∨
E).

Proof. Parts (1), (2) and (3) are immediate from the definitions.

Item (4) is proved by induction on k. The base case k = 0 is just the definition
of α0(d). Let k ≥ 1. From (2.3), Hk−1 = G∧k−1 and αk(d) ≥ αk−1(d) we have

αk(d) =
∨{∧

U | U ⊆ Gk−1, g(
∧

U) ≤ d
}
∨ αk−1(d). (2.4)

If a meetand u ∈ U ⊆ Gk−1 satisfies g(u) ≤ d, then
∧
U ≤ u ≤ αk−1(d), in which

case (
∧
U) ∨ αk−1(d) = αk−1(d) and

∧
U can be removed from the join in (2.4).

So we are left with

αk(d) =
∨{∧

U | U ⊆ Gk−1, g(
∧

U) ≤ d but g(u) 6≤ d for every u ∈ U
}︸ ︷︷ ︸

=:b

∨αk−1(d).

For k − 1 = ` this is the assertion already. Else for k − 1 > ` the induction
assumption yields

αk−1(d) =
∨{∧

U | U ⊆ Gk−2, g(
∧

U) ≤ d but g(u) 6≤ d for every u ∈ U
}︸ ︷︷ ︸

=:c

∨α`(d).

Since Gk−2 ⊆ Gk−1, we have c ≤ b and αk(d) = b ∨ α`(d) as required.

Item (5) is dual to (4). The only place in which their proofs differ is that the
base case for k = 0 follows from (2.3) instead of the definition.

For (6), note that βk−1(d) ∈ Hk−1 and gβk−1(d) ≥ d for all d ∈ D. Then
w :=

∨
{βk−1(d) | d ∈ E} is in H∨k−1 and hence in Hk. Since

g(w) =
∨
{gβk−1(d) | d ∈ E} ≥

∨
E,

we have w ≥ βk(
∨
E) and the claim follows. The proof of the other assertion is

dual. �
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Assume that g : A → D is a lower bounded epimorphism. We denote the least
element in the preimage of d ∈ D by

βg(d) :=
∧

g−1(d).

Note that for every d ∈ D there exists k ∈ N such that βg(d) = βg,k(d).

Dually for an upper bounded epimorphism g : A→ D the greatest element in the
preimage of d ∈ D is denoted by

αg(d) :=
∨

g−1(d).

It is not hard to see that βg preserves joins and αg preserves meets [4, page 27].
In general αg,k, βg,k do not preserve any lattice operations. Still we can obtain
some useful identities when D satisfies Dean’s condition (D).

Lemma 2.3. Let A be a lattice with finite generating set X, let D be a lattice
with finite generating set P satisfying Dean’s condition (D), and let g : A → D
be an epimorphism. Assume every p ∈ P has a least pre-image β(p) :=

∧
g−1(p)

in A and β(p) ∈ HX,0. Let k ∈ N. Then

(1) βk(
∧
E) =

∧
βk(E) ∧ β0(

∧
E) for each finite E ⊆ D;

(2) βk(d) = β(d) for all d ∈ HP,k.

Proof. (1) For k = 0 the statement is immediate from the monotonicity of β0
by Lemma 2.2(1). Let k ≥ 1. For d :=

∧
E let w ∈ H∨X,k−1 be one of the

meetands in the formula for βk(d) in Lemma 2.2(5); specifically, w =
∨
U for

some U ⊆ HX,k−1, where g(
∨
U) ≥ d and g(u) 6≥ d for all u ∈ U . We claim that

w ≥
∧

βk(E) ∧ β0(d). (2.5)

By Dean’s condition (D), the assumption g(w) = g(
∨
U) ≥

∧
E = d yields

g(u) ≥ d for some u ∈ U or g(w) ≥ e for some e ∈ E or g(w) ≥ p ≥ d for some
p ∈ P . We consider each case.

Case 1: g(u) ≥ d for some u ∈ U contradicts our assumption on w.

Case 2: g(w) ≥ e for some e ∈ E yields w ≥ βk(e) ≥
∧
βk(E).

Case 3: Assume g(w) ≥ p ≥ d for some p ∈ P . Then

w ≥ β(p)

= β0(p) by the assumption β(p) ∈ HX,0

≥ β0(d) by Lemma 2.2(1).

In any case we obtain (2.5). Thus by Lemma 2.2(5) we have

βk(d) ≥
∧

βk(E) ∧ β0(d).

The converse inequality follows from Lemma 2.2(1),(2).
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(2) We use induction on the complexity of d ∈ D over the generating set P . The
base case is the assumption that β0(d) = β(d) for all d ∈ GP,0 = P .

For k ∈ N we will use two induction steps alternatingly: from GP,k to HP,k and
from HP,k to GP,k+1. First assume that βk(e) = β(e) for all e ∈ GP,k. Let
d ∈ HP,k = G∧P,k and write d =

∧
E for E ⊆ GP,k. For ` ∈ N,

βk+`(d) =
∧

βk+`(E) ∧ β0(d) by item (1)

=
∧

βk(E) ∧ β0(d) by induction assumption

= βk(d) by item (1).

Hence βk(d) is the least element in A that g maps to d and βk(d) = β(d) for all
d ∈ HP,k.

Next assume that βk(e) = β(e) for all e ∈ HP,k. Let d ∈ GP,k+1 = H∨P,k and write
d =

∨
E for E ⊆ HP,k. Then

β(d) =
∨

β(E) since β preserves joins

=
∨

βk(E) by induction assumption

≥ βk+1(d) by Lemma 2.2(6).

Since the converse inequality holds trivially, βk+1(d) = β(d) for all d ∈ GP,k+1 ⊆
HP,k+1. This concludes both induction steps and the proof of (2). �

Lemma 2.3(2) yields in particular:

Corollary 2.4. Let g : A→ D be an epimorphism from a finitely generated lattice
A onto a lattice D with finite generating set P satisfying Dean’s condition (D).
Then g is lower bounded if and only if the pre-images under g of P are lower
bounded.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let A,B,D be lattices with finite generating sets X, Y, P ,
respectively, let D and P satisfy Dean’s condition (D), let g : A→ D and h : B →
D be bounded epimorphisms, and let E := g(X) ∪ h(Y ) ∪ P .

We will show that the fiber product

C :=
{(

a
b

)
∈ A×B | g(a) = h(b)

}
is generated by the finite set

Z :=
{(

x
αhg(x)

)
,

(
βgh(y)
y

)
,

(
αg(d)
βh(d)

)
,

(
βg(d)
αh(d)

)
| x ∈ X, y ∈ Y, d ∈ E

}
.



10 W. DEMEO, P. MAYR, AND N. RUŠKUC

Enlarging the original generating sets X, Y by finitely many elements if necessary,
we may assume that X and Y actually are the projections of Z onto its first and
second components, respectively.

We proceed via a series of technical claims. We begin by observing that the
following hold from the definition of Z:

(Z1) For all x ∈ X we have (x, αhg(x)) and (x, βhg(x)) ∈ Z ∩ (X × Y ).

(Z2) Let k ∈ N. For all a1 ∈ GX,k, a2 ∈ HX,k there exist b1 ∈ GY,k, b2 ∈ HY,k,
such that (a1, b1), (a2, b2) ∈ 〈Z〉.

(Z3) For every k ∈ N we have g(GX,k) = h(GY,k) and g(HX,k) = h(HY,k).

Of course the symmetric versions of statements (Z1), (Z2) with components (as
well as X and Y ) swapped hold as well.

Claim 1. The following hold:

(1) ∀b ∈ B ∃b′ ≤ b:

(
αg,0h(b)

b′

)
∈ 〈Z〉,

(2) ∀a ∈ A ∃a′ ≥ a:

(
a′

βh,0g(a)

)
∈ 〈Z〉.

Proof. (1) Let b ∈ B. Recall from Lemma 2.2(4) that

αg,0h(b) =
∨{

x ∈ X | g(x) ≤ h(b)
}
.

If {x ∈ X | g(x) ≤ h(b)} = ∅, then αg,0h(b) = 0. Since (0, 0) =
∧
Z, we can take

b′ = 0 in that case. Otherwise consider an arbitrary joinand x ∈ X from above.
Note that h(αhg(x) ∧ b) = g(x) ∧ h(b) = g(x) and hence αhg(x) ∧ b ≥ βhg(x).
Picking any a ∈ A with (a, b) ∈ 〈Z〉, we have

〈Z〉 3
[(

x
αhg(x)

)
∧
(
a
b

)]
∨
(

x
βhg(x)

)
=

(
x

αhg(x) ∧ b

)
.

Taking the join of these elements over all x with g(x) ≤ h(b) we obtain (αg,0h(b), b′) ∈
〈Z〉 for some b′ ≤ b.

(2) By Lemma 2.2(4) and (5) the formulas for α0 and β0 are dual to each other.
Hence the proof of (2) is just the dual of (1) after swapping first and second
components. �

The key technical step in our proof of Theorem 1.1 is to establish the next claim.
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Claim 2. The following hold for every k ∈ N:

∀b ∈ GY,k :

(
αg,kh(b)

b

)
∈ 〈Z〉, (2k)

∀a ∈ HX,k :

(
a

βh,kg(a)

)
∈ 〈Z〉. (2k+1)

Proof. We use induction on the index of the statements.

Base case: To prove statement (0) let k = 0 and b ∈ GY,0 = Y . Pick a ∈
GX,0 = X such that (a, b) ∈ Z. (The existence of such a, b is guaranteed by
the remarks immediately following the definition of Z above.) Then g(a) = h(b)
implies a ≤ αg,0h(b) by Lemma 2.2(4). By Claim 1(1) we also have b′ ≤ b such
that (αg,0h(b), b′) ∈ 〈Z〉. It follows that

〈Z〉 3
(
a
b

)
∨
(
αg,0h(b)

b′

)
=

(
αg,0h(b)

b

)
as required.

Induction step (2k)⇒(2k+1): Let a ∈ HX,k = G∧X,k and write a =
∧
T for

T ⊆ GX,k. Let d ∈ g(T ). By (2k) we have

〈Z〉 3
∧{(αg,kh(w)

w

)
| w ∈ GY,k, h(w) ≥ d

}
=

(
αg,k(d)
βh,k(d)

)
. (2.6)

To see that the above equality holds, first note that in the second component we
simply have (2.3). For the first component of (2.6) note that h(w) ≥ d implies
αg,kh(w) ≥ αg,k(d) by Lemma 2.2(1). Also, since d ∈ g(T ) ⊆ g(GX,k) = h(GY,k)
(see (Z3)), there exists w ∈ GY,k with h(w) = d and the equality in the first
component of (2.6) follows.

We take the meet over all elements in (2.6) for d in g(T ) and use Claim 1(2) to
obtain a′ ≥ a such that

〈Z〉 3
∧{(αg,k(d)

βh,k(d)

)
| d ∈ g(T )

}
∧
(

a′

βh,0g(a)

)
. (2.7)

The second component in the above meet is∧
βh,kg(T ) ∧ βh,0g(a) = βh,k

(∧
g(T )

)
= βh,kg(a)

by Lemma 2.3(1) (note that β(P ) ⊆ HY,0 by (Z1)).

The first component of the element in (2.7) is a′′ :=
∧

t∈T αg,kg(t)∧a′. Let t ∈ T .
Then Lemma 2.2(1) and g(t) ≥ g(

∧
T ) imply

αg,kg(t) ≥ αg,kg(
∧

T ) = αg,kg(a) ≥ a.
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Thus αg,kg(t) ≥ a for all t ∈ T and a′ ≥ a, which yield
∧

t∈T αg,kg(t) ∧ a′ ≥ a.
We conclude (

a′′

βh,kg(a)

)
∈ 〈Z〉 and a′′ ≥ a.

Now let b ∈ GY,k with (a, b) ∈ 〈Z〉. Then b ≥ βh,kg(a) and so

〈Z〉 3
(
a
b

)
∧
(

a′′

βh,kg(a)

)
=

(
a

βh,kg(a)

)
.

Induction step (2k-1)⇒(2k): This is dual to the proof of (2k) ⇒ (2k+1). For
completeness here is the whole argument verbatim except for switching first and
second components, meets and joins, as well as the replacements

HX,k, αg,k

GX,k, βg,k

}
→
{
GY,k, βh,k
HY,k−1, αh,k−1.

The shift of indices in the last part occurs since HX,k = G∧X,k but GY,k = H∨Y,k−1
in line with Remark 2.1.

Let b ∈ GY,k = H∨Y,k−1 and write b =
∨
T for T ⊆ HY,k−1. Let d ∈ h(T ). By

statement (2k-1) we have

〈Z〉 3
∨{( w

βh,k−1g(w)

)
| w ∈ HX,k−1, g(w) ≤ d

}
=

(
αg,k(d)
βh,k−1(d)

)
. (2.8)

To see that the above equality holds, first note that in the first component we
simply have (2.3). For the second component of (2.8) note that g(w) ≤ d implies
βh,k−1g(w) ≤ βh,k−1(d) by Lemma 2.2(1). Also, since d ∈ h(T ) ⊆ h(HY,k−1) =
g(HX,k−1) (see (Z3)), there exists w ∈ HX,k−1 with g(w) = d and the equality in
the second component of (2.8) follows.

We take the join over all elements in (2.8) for d in h(T ) and use Claim 1(1) to
obtain b′ ≤ b such that

〈Z〉 3
∨{( αg,k(d)

βh,k−1(d)

)
| d ∈ h(T )

}
∨
(
αg,0h(b)

b′

)
. (2.9)

The first component in the above join is∨
αg,kh(T ) ∨ αg,0h(b) = αg,k

(∨
h(T )

)
= αg,kh(b)

by (the dual of) Lemma 2.3(1). Denote the second component of the element
in (2.9) by b′′. For t ∈ T ⊆ HY,k−1 let d := h(t). Then b ≥ t ≥ βh,k−1(d) by the
definition of βh,k−1 in (2.2). So we conclude(

αg,kh(b)
b′′

)
∈ 〈Z〉 and b′′ ≤ b.
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0

1

a1 a2 a3 a4 a5 a6 a7

b1 b2 b3 b4 b5 b6 b7

Figure 1. The lattice L.

Now let a ∈ GX,k with (a, b) ∈ 〈Z〉. Then a ≤ αg,kh(b) and so

〈Z〉 3
(
a
b

)
∨
(
αg,kh(b)
b′′

)
=

(
αg,kh(b)

b

)
.

This completes the induction for Claim (2). �

We can now return to the proof of Theorem 1.1. Let (a, b) ∈ C be arbitrary.
Then there exists k ∈ N such that a ∈ HX,k, b ∈ HY,k. Using statement (2k+1)
of Claim 2 and its symmetric version with swapped components

〈Z〉 3
(

a
βh,kg(a)

)
∨
(
βg,kh(b)

b

)
=

(
a
b

)
.

Thus C = 〈Z〉 as required. �

3. A finitely generated fiber product with unbounded
homomorphisms

Proof of Theorem 1.3. We start with the lattice L of subspaces of the 3-dimensional
vector space over the field with 2 elements. Labelling its elements

{0, 1} ∪ {ai, bi | i = 1, . . . , 7},

we obtain the non-trivial comparisons

ai ≤ bk ⇔ k = i, i+ 1, i+ 3 (mod 7).

See Figure 1 for a graphical representation.
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ai,0

ai,1

ai,2

ai,3

ai,4

...

bi,0

bi,1

bi,2

bi,3

bi,4

...

Ai Bi

ai,0

ai,1

ai,2

ai,3

ai,4

...

bi+1,0

bi+1,1

bi+1,2

bi+1,3

bi+1,4

...

Ai Bi+1

ai,0

ai,1

ai,2

ai,3

ai,4

...

bi+3,0

bi+3,1

bi+3,2

bi+3,3

bi+3,4

...

Ai Bi+3

Figure 2. Comparisons between Ai and Bi, Bi+1, Bi+3.

Next, we ‘expand’ L to an infinite lattice M by ‘inflating’ each ai, bi to an infinite
chain isomorphic to ω = {0 < 1 < 2 < . . . }. Specifically, the elements are

M := {0, 1} ∪
7⋃

i=1

Ai ∪
7⋃

i=1

Bi,

where

Ai := {ai,j | j = 0, 1, . . . } and Bi := {bi,j | j = 0, 1, . . . }

and the comparisons are as follows. First, each Ai, Bi is an increasing chain,
i.e. ai,j ≤ ai,` and bi,j ≤ bi,` for all j ≤ `. The elements from different Ai are
incomparable, as are the elements from different Bi. Comparisons exist between
elements of Ai and Bk if and only if ai ≤ bk in L, i.e. if and only if k = i, i+1, i+3
(mod 7), and they are given by

ai,j ≤ bk,` ⇔

{
k = i, i+ 1, i+ 3 (mod 7) and j ≤ `; or

k = i, i+ 3 (mod 7) and j = `+ 1.

These comparisons are illustrated in Figure 2. Again, it is easy to verify that M
is a lattice. Moreover we claim that

M is generated by the finite set {ai,0, ai,1 | i = 1, . . . , 7}. (3.1)

This follows by a straightforward induction on j = 0, 1, . . . using that

bi,j = ai−1,j ∨ ai,j and ai,j+2 = bi,j+1 ∧ bi+3,j+1.

Now consider the mapping

h : M → L, 0 7→ 0, 1 7→ 1, ai,j 7→ ai, bi,j 7→ bi for i = 1, . . . , 7, j = 0, 1, . . .
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Clearly h is a surjective lattice homomorphism with

kerh =
{(

0
0

)
,

(
1
1

)}
∪

7⋃
i=1

(Ai × Ai) ∪
7⋃

i=1

(Bi ×Bi).

Furthermore, h is not bounded, since none of its kernel classes Ai, Bi have maxi-
mal elements. We claim that

kerh is finitely generated as a sublattice of M ×M. (3.2)

To prove this, consider

C1 :=
{(

0
0

)
,

(
1
1

)}
∪

7⋃
i=1

(
{ai,0} × Ai

)
∪

7⋃
i=1

(
{bi,0} ×Bi

)
⊆ kerh.

Since {0, 1} ∪ {ai,0, bi,0 | i = 1, . . . , 7} is isomorphic to L, it follows that C1 is
a lattice isomorphic to M . In particular, C1 is finitely generated by (3.1). By
symmetry,

C2 :=
{(

0
0

)
,

(
1
1

)}
∪

7⋃
i=1

(Ai × {ai,0}) ∪
7⋃

i=1

(Bi × {bi,0})

is a lattice isomorphic to M and is finitely generated. Any element from kerh

different from

(
0
0

)
,

(
1
1

)
has the form

(
ai,j
ai,k

)
or

(
bi,j
bi,k

)
. Furthermore(

ai,j
ai,k

)
=

(
ai,0
ai,k

)
∨
(
ai,j
ai,0

)
∈ C1 ∨ C2,

and a dual statement holds for

(
bi,j
bi,k

)
. Thus kerh is generated by its finitely

generated sublattices C1, C2, which implies (3.2), and completes the proof of
Theorem 1.3. �

4. Fiber products of free lattices

The following is our main tool for showing that fiber products are not finitely
generated.

Lemma 4.1. Let A,B be lattices. Assume A is generated by a finite set of
join prime elements X and satisfies Whitman’s condition (W). Let g : A → D,
h : B → D be epimorphisms onto a lattice D. Then for each finite subset Z of
the fiber product

C := {(a, b) ∈ A×B | g(a) = h(b)}
there exists N ∈ N such that

∀(a, b) ∈ 〈Z〉, ∀k ∈ N, ∀w ∈ HX,k : a ≥ w ⇒ b ≥ βh,k+Ng(w). (4.1)
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Proof. Since Z is finite, Lemma 2.2(3) implies that there exists N ∈ N such that
for all (a, b) ∈ Z we have b ≥ βh,Ng(a). We will show that (4.1) holds for this N
by induction on the complexity of (a, b) over the generating set Z. For the base
case let (a, b) ∈ Z and w ∈ HX,k such that a ≥ w. Lemma 2.2(1),(2) yield

b ≥ βh,Ng(a) ≥ βh,Ng(w) ≥ βh,k+Ng(w).

The inductive step splits into two cases:

Case 1: (a, b) = (a1, b1)∧(a2, b2), where (a1, b1), (a2, b2) ∈ 〈Z〉. If a = a1∧a2 ≥ w
for w ∈ HX,k, then ai ≥ w for each i ∈ {1, 2}. So the induction hypothesis
for (4.1) yields bi ≥ βh,k+Ng(w) for each i ∈ {1, 2}. Therefore, b = b1 ∧ b2 ≥
βh,k+Ng(w), as desired.

Case 2: (a, b) = (a1, b1)∨ (a2, b2), where (a1, b1), (a2, b2) ∈ 〈Z〉. We use a second
induction on k ∈ N. For the base case k = 0, assume a ≥ w ∈ HX,0. Then
w =

∧
W for some ∅ 6= W ⊆ X. By Whitman’s condition (W)

a1 ∨ a2 ≥
∧

W ⇒ a1 ≥ w or a2 ≥ w or a ≥ x for some x ∈ W.

Since generators X in A are join prime by assumption, the latter case yields a1 ≥
x or a2 ≥ x which implies a1 ≥ w or a2 ≥ w again. Applying the first induction
assumption (from the induction on term complexity), we find b1 ≥ βh,Ng(w) or
b2 ≥ βh,Ng(w). Therefore, b = b1 ∨ b2 ≥ βh,Ng(w) and the base case is proved.

Next assume k ≥ 1 and a ≥ w ∈ HX,k. By definition w =
∧
W for some

non-empty W ⊆ H∨k−1. By Whitman’s condition (W)

a1 ∨ a2 ≥
∧

W ⇒ a1 ≥ w or a2 ≥ w or a ≥ u for some u ∈ W. (4.2)

The first two alternatives are again straightforward using the first induction as-
sumption on term complexity which implies b1 ≥ βh,k+Ng(w) or b2 ≥ βh,k+Ng(w);
in either case, b = b1 ∨ b2 ≥ βh,k+Ng(w). For the third alternative in (4.2) recall
that u =

∨
U for some non-empty U ⊆ Hk−1. For each v ∈ U , we have a ≥ v

and hence b ≥ βh,k−1+Ng(v) by the second induction hypothesis (induction on k).
Thus

b ≥
∨
{βh,k−1+Ng(v) | v ∈ U}

≥ βh,k+N

(∨
{g(v) | v ∈ U}

)
by Lemma 2.2(6)

= βh,k+Ng(u)

≥ βh,k+Ng(w) by u ≥ w and Lemma 2.2(1).

This concludes the induction on k and the proof of (4.1). �

Lemma 4.2. Let A,B be lattices. Assume A is generated by a set of join prime
elements X and satisfies Whitman’s condition (W). Let g : A → D, h : B → D
be epimorphisms onto a lattice D.



BOUNDED HOMOMORPHISMS AND FIBER PRODUCTS 17

If the fiber product of g and h is a finitely generated sublattice of A× B, then h
is lower bounded.

Proof. Using contraposition we assume that h is not lower bounded. Then we
have d ∈ D such that h−1(d) does not have a least element.

Fix a finite subset Z ⊆ C and let N be as in Lemma 4.1 such that (4.1) holds.
Let k ∈ N such that g−1(d) ∩ HX,k 6= ∅; such k exists since g is surjective and
A =

⋃
k∈NHX,k. Let a ∈ g−1(d) ∩HX,k. Since h−1(d) has no least element, there

exists b ∈ h−1(d) such that b < βh,k+N(d). Then (a, b) ∈ C but (a, b) 6∈ 〈Z〉 by
Lemma 4.1. Since Z was an arbitrary finite subset of C, this proves that C is
not finitely generated. �

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. Assume the fiber product of g and h is a finitely generated
sublattice of A × B. Since A and B are generated by join prime elements by
assumption, h and g are lower bounded by Lemma 4.2. Moreover, since A and
B are also generated by meet prime elements, the dual of Lemma 4.2 yields that
h and g are upper bounded as well. �

5. Deciding bounded lattices

It is known to be decidable whether a finitely presented lattice is bounded by
an unpublished result of Freese and Nation; see [4, page 251]. We give a proof
for this and that it is decidable whether a finitely generated sublattice satisfying
Dean’s condition (D) of a finitely presented lattice is bounded.

Let P be a finite partial lattice, and let n ∈ N. Then S := P (∨∧)n∨ is a finite
join-subsemilattice of F (P ) with the join of the empty set, i.e.

∧
P , as its least

element. Because S is join closed, has a least element and is finite, any a, b ∈ S
have an infimum inf(a, b) ∈ S. Note that inf(a, b) ≤ a∧b where the latter denotes
the meet in F (P ); equality may hold e.g. if that meet happens to be defined in
the partial lattice P . Hence (S, inf,∨) is a finite lattice but not necessarily a
sublattice of F (P ). Instead (S, inf,∨) turns out to be a homomorphic image of
F (P ).

By [3, Lemma 2-6.11] and the subsequent discussion in the extended version of
that paper, the standard homomorphism

f : F (P )→ S, d 7→
∨
{w ∈ S | w ≤ d},

exists and is a lower bounded epimorphism. For any d ∈ S ⊆ F (P ) we have
f(d) = d and consequently d = βf (d).
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Lemma 5.1. Let A be a lattice with finite generating set X, let P be a finite
partial lattice, and let g : A → F (P ) be a homomorphism. Assume that g(A)
satisfies Dean’s condition (D) for the generating set g(X) and g(X) ⊆ P (∨∧)n∨ for
n ∈ N. Then g is lower bounded if and only if its composition fg : A → P (∨∧)n∨

with the standard homomorphism f is lower bounded.

Proof. The forward direction follows since the composition of bounded homomor-
phisms is bounded.

For the backward direction, assume that fg is lower bounded. Let d ∈ P (∨∧)n∨ ∩
g(A). Then f(d) = d yields βfg(d) = βg(d). Hence g−1(d) has a least element
for any d ∈ P (∨∧)n∨ ∩ g(A). In particular βgg(x) exists for any generator g(x) of
g(A). Thus g : A→ F (P ) is lower bounded by Corollary 2.4. �

We can now give the algorithm for deciding boundedness that proves Theorem 1.7.

Proof of Theorem 1.7. For D = F (P ) finitely presented, D is lower bounded if
and only if the lattice S := P∨ is lower bounded by Lemma 5.1 with A the free
lattice over the set P and g : A→ D the natural epimorphism.

In case D is generated by some finite subset X of F (P ) and satisfies Dean’s
condition (D), assume X ⊆ P (∨∧)n∨ for some n ∈ N. Then D is lower bounded if
and only if the sublattice S of P (∨∧)n∨ that is generated by X is lower bounded by
Lemma 5.1with A the free lattice over X and the natural epimorphism g : A→ D.

In either case it suffices to decide whether the finite lattice S is lower bounded.
This can be done in time O(|S|2) by [4, Theorem 11.20]. Note that |S| is at most
exponential in the size of the input P , X, respectively. Hence we can decide
whether D is bounded in exponential time. �

For the second case in Theorem 1.7 we note that a sublattice of F (P ) trivially
satisfies Dean’s condition (D) if F (P ) satisfies Whitman’s condition (W). By
Dean’s solution to the word problem for F (P ) [3, Theorem 2-3.4] this is equivalent
to P satisfying Whitman’s condition (W) whenever meets and joins are defined
in P . In other words, F (P ) fails (W) if and only if there is a failure in P using
the defined joins and meets.
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universal algebra (Colloq., József Attila Univ., Szeged, 1975), pages 223–257. Colloq. Math.
Soc. János Bolyai, Vol. 17. North-Holland, Amsterdam, 1977.
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