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Abstract: The physical origins of the transverse optical 
binding force and torque beyond the Rayleigh approximation 
have not been clearly expressed to date. Here, we present 
analytical expressions of the force and torque for a dual 
dipolar dielectric dimer illuminated by a plane wave 
propagating perpendicularly to the dimer axis.  Using this 
analytical model, we explore the roles of the hybridized 
electric dipolar, magnetic dipolar, and electric-magnetic 
dipolar coupling interactions in the total force and torque on 
the particles. We find significant departures from the 
predictions of the Rayleigh approximation, particularly for 
high-refractive-index particles, where the force is governed 
by the magnetic interaction. This results in an enhancement 
of the dimer stability by one to four orders of magnitude 
compared to the predictions of the Rayleigh approximation. 
For the case of torque, this is dominated by the coupling 
interaction and increases by an order of magnitude. Our 
results will help to guide future experimental work in 
optical binding of high-refractive-index dielectric particles. 

I.  INTRODUCTION 

Optical binding originating from the mutual scattering of 
electromagnetic (EM) waves among objects enables micro- and 
nanoparticles to form stable spatial arrangements. Therefore, it 
has attracted great attention in light-controlled self-assembly of 
particles [1, 2]. For a pair of particles (or dimer), when the incident 
light wave vector is perpendicular to the dimer axis, the resulting 
force between particles is named the transverse optical binding 
force (TOBF) [3]. For the case of the light wave propagating along 
the dimer axis, the force is termed the longitudinal optical binding 
force [4].  

TOBF offers a novel way to assemble dielectric and metallic 
particles into complex steady structures, such as one-dimensional 
chains [3] and waveguides [5], two-dimensional optical matter [6, 
7], clusters [8], arrays [9-11], and mirrors [12], and three-
dimensional clusters [13]. Furthermore, it can dynamically 
manipulate particles, e.g. inducing oscillations in particle chains 
[14], rotation and spinning of particles [15, 16], and forming a 
bound state of two rotating micro-gyroscopes [17]. Currently, an 
emerging research field is the dependence of the TOBF on EM 
hybridization coming from the interaction between electric 
and/or magnetic multipoles in adjacent particles. In detail, 
the sign of the TOBF in a silver disk-ring nanostructure reverses 
multiply due to the hybridized interference between the electric 
dipole of disk and the electric high-order modes of ring [18]. 

Analogous phenomena were found in Au nanorod heterodimers 
[19]. Further numerical results showed that the TOBF for a silicon 
dimer changes from an attractive force to a repulsive one with 
variation of wavelength [20]. The repulsive force originates from 
the hybridization between the broad electric dipole and narrow 
magnetic dipole in the particles. Recent theory indicated that TOBF 
induced by the interference of surface plasmon polarizations 
(SPPs) of two metallic particles over a metallic substrate is an 
order of magnitude larger than the TOBF without SPPs [21].  

While the TOBF is well-studied for low-refractive-index 
dielectric (index<2.5, e.g. polystyrene and glass) and metallic 
particles in the Rayleigh approximation [15, 22], optical binding for 
high-refractive-index dielectric particles with n>3.5, such as silicon 
and germanium, has received little attention because analytical 
solutions of the TOBF beyond the Rayleigh approximation have 
remained absent [1, 23, 24]. Such particles are of interest in the 
area of dielectric metamaterials, where they can be harnessed for 
optical devices without the high heating rates associated with 
plasmonic particles [25], and in optical trapping because their 
strong oscillatory dynamics can be utilized as a thermal 
engine [26]. Further, their morphology can be manipulated 
to customize their form birefringence to provide optical 
microfluidic actuators  [27], and they can be used to create 
nano-heterostructure semiconductor devices [28]. In this paper, 
we analytically study the TOBF and torque on two dual dipolar 
dielectric particles orthogonally-illuminated by an arbitrarily 
polarized plane EM wave, as shown in Fig. 1. We show that the 
contributions to the force and torque due to electric dipolar, to 
magnetic dipolar, and to electric-magnetic dipolar coupling 
interactions are dominant in different regimes of refractive index, 
and therefore are essential for the full description of the TOBF, 
going beyond the Rayleigh approximation. 

The paper is organized as follows. In Sec. II, we present the 
results of our derivation of analytical expressions for the TOBF and 
optical torque. Meanwhile, the physical meanings of the 
expressions are discussed. In Sec. III, the contributions of the 
electric dipolar, magnetic dipolar, and electric-magnetic dipolar 
coupling interactions to TOBF, torque, and stability of the dimer 
are numerically investigated in detail. Finally, conclusions are 
drawn in Sec. IV. 

II. THEORETICAL MODEL 

Based on the optical force on a single dual dipolar particle [29] 
and EM mutual scattering between two particles [30] (see details 
in Appendices A-F), we derive the TOBF  (F) (exerted along the y-
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axis in Fig. 1) on particle B, which is equal but oppositely directed 
to the force on particle A. F consists of three parts: 
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where   and   represent the real and imaginary parts of a 

complex number, * denotes complex conjugation, ε0 and εs are 
respectively the permittivity of vacuum and relative permittivity of 
the medium, E0, x and E0, y are x and y components of the incident 
electric field, R is the distance between the centers of the two 

particles, R   denotes the partial derivative with respect to the 

distance, k=2π/λs is the wavenumber in the medium, and the 
dressed polarizabilities 

ey% , 
my% ,

em-p,1% , 
em-p,2% ,

em-s,1%  and
em-s,2%  

represent the polarization of the particle induced by the incident 
light and hybridization while μ, κ, and η are eigenvalues of electric 
and magnetic dyadic Green's functions of a point dipole (see details 
in Appendices A and B).  

Fe is the electric component of F. The first term denotes the 
interaction between the y-components of the electric dipole 
moments (py) of the two particles, while the second term is the 
interaction between the z-components of the electric dipole 
moments (pz). The third term is the force on the z-component of 
the electric dipole moment in particle B ( B

zp  ) acted on by the x-

component of the magnetic dipole moment in particle A ( A

xm ). The 

combination of these first three terms (in the first parenthesis) 
represents Fe in the case of illumination by p-polarization (i.e. along 
the dimer axis). The fourth term is the interaction between the two 
px while the last one denotes the force exerted on B

xp  by A

zm . 

These last two terms (in the second parenthesis) represent Fe for 
illumination by s-polarization. On the other hand, Fm is the 
magnetic component of F. The first term denotes the interactions 
between two mx while the second one is the force exerted on B

xm  

by A

zp . The first two terms (in the first parenthesis) represent Fm 

in the case of p-polarization. The third and fourth terms denote 
respectively the interactions between two my and between two mz. 
The last term shows the force exerted on B

zm  by A

xp . The last 

three terms (in the second parenthesis) determine Fm for s-
polarization. Finally, Fem is the electric-magnetic coupling 
component of F. The first term comes from the interference 
between B

zp  and B

xm and represents Fem for p-polarization. The 

last term originates from the interference between B

xp  and B

zm

and represents Fem in the case of s-polarization.  

For Rayleigh particles (αm=0) whose refractive index or radius is 
small enough to satisfy the relation kr=2πnpr/λ<<1, F is 
determined by only the first and fifth terms in Eq. (1) while Fm=Fem 
=0. In this case, the force is the classical optical binding force (FRay) 
between two electric dipolar particles, the same as Eq. (3a) in Ref. 
[15]. On the other hand for magnetic dipolar particles (αe =0) such 
as Au core-Si shell nanospheres [31], the only non-zero 
contributions to F are the first and third terms in Eq. (2), which 
together constitute  the magnetic binding force [32], while Fe=Fem 
=0.  

 

Fig. 1. (Color online) A pair of dielectric spheres with radius r located 
symmetrically at positions yA and yB along the y axis of a Cartesian 
system (O-xyz). R represents the distance between the centers of the 
two particles. A plane EM wave with electric (E0) and magnetic (H0) 
field vectors is incident on the dimer along the z axis, as shown by the 
wave vector k. θ is the polarization angle of the wave, measured 
between the E0 and y axis.  

In addition to the binding force, the incident light also causes an 
extrinsic optical torque (Г) on the dimer [15] which causes the 
dimer to rotate around the z axis. The torque is also composed of 
three parts: 
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Гe is the electric component of Г. The first term denotes the 
interaction of B

xp  with A

yp  and the interaction of B

yp  with A

xp . 

The last two terms (in the last square brackets) indicate 
respectively the interaction of B

zp  with A

ym  and interaction of B

yp  

with A

zm . In addition, Гm is the magnetic component of Г. The first 

term represents the interaction of 
 

B

xm  with A

ym  and interaction of

B

ym  with A

xm . The last two (in the last square brackets) represent 

respectively the interaction of B

ym  with A

zp  and interaction of B

zm  

with A

yp . Moreover, Гem is the electric-magnetic coupling 

component of Г. The first term originates from the interference 
between B

yp  and B

zm  while the second one comes from the 

interference between B

zp  and B

ym .  

For Rayleigh particles,  Гe is determined by only the first term in 
Eq. (4) while 

em-s,2% reduces to
ex% . This agrees with the classical 



torque on a Rayleigh-approximation dimer [15]. Meanwhile 
Гm=Гem=0. On the other hand, for purely magnetic dipolar particles, 
Гm is determined only by the first term in Eq. (5) and 

em-p,2%  is 

simplified to 
mx% , in agreement with magnetic optical torque 

between two magnetic dipolar particles in [32]. In this case, Гe=Гem 
=0. Note that for p- and s-polarizations the torque vanishes. 
Equations (1)-(6) are general for a plane wave in the near-field, 
intermediate-field, and far-field. They are the main results in this 
paper. Our numerical calculations are based on Eqs. (1)-(6). 

Furthermore, the force and torque can be simplified in the far-
field region (kR>>1) where we retain only the highest order terms 
of kR in μ, κ and η. For p-polarization, Equations (1)-(3) are 
respectively simplified as  

( )
( )

 
22 25

e m0
e e22

cos
2

,
4

s
k k

kR
R

F
R

n I

c






 

  
=  

  

+

                           

(7) 

( )
23

m0
m sin ,

4

s
kn I

F kR
c R




= −                                                               (8) 

( )   ( )   
26

m0
em e e2

cos sin ,
24

s
kn I

F kR kR
c R


 


=   − 

 

(9)

          

 

where 
00 0

2
2sI c En=  is the intensity of the incident wave in the 

medium, c is light speed in vacuum, E0 is the amplitude of the 
incident electric field, αe=i6πa1/k3 and αm=i6πb1/k3 are the electric 
and magnetic polarizabilities with radiation reaction terms of the 
particles where a1 and b1 are respectively the electric and 
magnetic dipolar Mie scattering coefficients [33], and i is the unit 
imaginary number. Equations (7)-(9) demonstrate that Fe is 
proportional to R-2 as shown by the red short dashed curve in Fig. 2 
(a) while Fm and Fem are proportional to R-1 as shown by the blue 
dash-dotted and green dash-dot-dotted curves. The results 
indicate that Fe decays faster than Fm and Fem in the far-field. For 
Rayleigh particles, the binding force is completely determined by 
the first term in Eq. (7), which is in agreement with Ref. [34]. On 
the other hand for a purely magnetic dipolar dimer, the binding 
force is completely determined by Eq. (8). In the case of s-
polarization, Fe is expressed by Eq. (8) by replacing αm with αe, 
which is the binding force in the Rayleigh approximation. Fm and 
Fem are respectively written as Eqs. (7) and (9) by exchanging αm 
and αe. Therefore, Fm ∝ R-2 as shown by the blue dash-dotted curve 
in Fig. 2 (b) while Fe and Fem ∝ R-1 as shown by the red short 
dashed and green dash-dot-dotted curves. It means Fm decays 
faster than Fe and Fem. The first term in Fm represents the binding 
force between two pure magnetic dipolar particles. Finally, for left-
hand circular polarization with ( )0 0 1, ,0 exp( ) 2E ii kz=E

[35], Fe and Fm are expressed by Eq. (8) through employing 
respectively αe and αm. In this case, Fe= FRay and Fm is the binding 
force between two magnetic dipolar particles. Moreover, the 
coupling component of the binding force is read as 
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The above results show that the binding force F ∝ R-1. Additionally, 
the electric component of torque is read as 

( )

( )  

( )  

( )  

2 2

e m e
4

0
e 2 2 m e

e

m e

.cos 2
2 4

sin 2

sn I k
kR

c R
kR

  

 
 

 

 + 
 
 

 =     −
−  

 +  −   

      (11)                                                                                                                                      

The magnetic component of torque Гm is also expressed by Eq. 
(11) through exchanging αe and αm. Moreover, the coupling 
component of torque Гem is written as  
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Notice that Гe and Гm   ∝ R-2 while, interestingly, Гem is independent 
of R. Therefore, the torque is dominated by the coupling 
interaction, which is completely different to the binding force. 
Furthermore, the torque in the Rayleigh approximation (αm=0) is 
simplified from Eq. (11) as 
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On the other hand, for a magnetic dipolar dimer, the torque ГM is 
also expressed by Eq. (13) through replacing αe by αm. Notice that 
we focus on the optical binding between dual dipolar particles 
without considering the electric quadrupole-assisted force. This is 
because the electric quadrupole is not dominant compared to the 
dipolar resonances within our parameters.  

III. RESULTS AND DISCUSSIONS 

A. The TOBFs for p- and s-Polarized Waves 
We consider two spheres with high refractive index np=4, i.e. 

Germanium [36], immersed in water (ns=1.33) (A discussion of the 
forces and torques on particles with lower refractive index is given 
in Appendices G – L). The wavelengths of the incident wave in 
vacuum and water are λ0=532nm and λs=λ0/ns=400nm, 
respectively. The power density of the wave in water is 
I0=10mW/μm2. To demonstrate the applicability of our model 
beyond the Rayleigh regime, we model spheres of radius r=100nm 
or 150nm. As expected, in the small r limit, our model will 
degenerate to the Rayleigh approximation, as discussed in Eqs. (1)-
(6). The force, torque, and distance (R) are respectively in units of 
pN, pN μm, and λs.  

Figure 2 shows F (black solid curve) as well as Fe (red short 
dashed curve), Fm (blue dash-dotted curve), and Fem (green dash-
dot-dotted curve) between dielectric particles with r=100nm and 
np=4 as a function of the distance R between the centers of the two 
particles for (a) p-polarized and (b) s-polarized waves. Additionally, 



FRay (purple dashed curve) is presented as a comparison. It can be 
seen from Fig. 2 (a) that in the case of p-polarization Fm greatly 
exceeds Fe and Fem and dominates F. Physically, the effects of 
hybridization are particularly pronounced for high-refractive-
index particles. For example, the re-radiated field by mx in one 
particle is strong enough to induce pz in the neighboring one. Thus 
Fe does not only depend on the interaction between A

yp and B

yp , 

which is the case for Rayleigh particles, but also by the interactions 
between A

xm  and B

zp  and between A

zp  and B

zp . Previous 

theoretical work demonstrated that the magnetic TOBF of an ideal 
magnetic dimer can be enhanced to the same magnitude as the 
TOBF for Rayleigh particles [32]. But what is surprising here is that 
the Fm is an order of magnitude larger than not only FRay but also Fe. 
The reason is that the py induced in the two particles by the 
incident wave is nearly suppressed at wavelength λ0=532nm while 
the two mx are excited even though they do not reach the 
maximum resonance (see Figs. 2 and 3 in Ref. [37]). As a result, F is 
dominated by contributions from Fm while the stable equilibrium 
positions of F (black circles) are determined by those of Fm (blue 
stars) instead of those of Fe (red triangles) and Fem (blue diamonds). 
The results demonstrate that FRay dramatically underestimates F 
for dielectric particles with high refractive index. Similar 
phenomena are observed in s-polarization in Fig. 2 (b). With 
increasing refractive index, the relative contribution of Fe to the 
binding force is gradually overtaken by that due to Fm (see details 
in Appendices H and I). However, we emphasize that even for low- 
refractive-index-particles such as polystyrene (np=1.59), non-
negligible components of Fm and Fem already arise, and the 
magnitudes of these exceed the magnitude of Fe for moderate 
refractive indices such as silicon (np=3.5) in p-polarization (see 
details in Appendices G and H). Additionally, F in the case of p-
polarization is larger than that for s-polarization. The reasons are 
that the interaction between two side-by-side parallel mx in p-
polarization is larger than that between two head-to-tail collinear 
my in s-polarization, while the electric dipolar interactions are 
suppressed.    

Moreover, we calculated the first stable equilibrium positions of 
F, Fe, Fm, and Fem (see details in Appendix I) as well as the stiffness 
at these positions for dielectric particles with np from 1.4 to 4 in 
cases of p- and s-polarizations in Fig. 3. Within this range, many 
materials of interest in optical trapping are concentrated, e.g. 
polystyrene (np =1.59) [38], diamond (np =2.4) [39], silicon (np =3.5) 
[40], bismuth (np =3.89) [28], and germanium (np =4) [26]. The 
particle′s radius is set to 150nm in order to improve further its 
magnetic response because the magnetic dipole moment caused 
by the displacement current in the particle increases with the 
particle size. In detail, for p-polarization in Fig. 3 (a), the stiffness of 
Fe (red curve with triangles) decreases sharply in the blue shaded 
region 2.7<np <3.6, meaning that Fe is barely sufficient for the 
formation of a stable bound state. The stable equilibrium vanishes 
completely at np=3.1 (vertical black dashed line) where Fe has no 
stiffness and formation of a stable dimer is prohibited (see details 
in Appendix J). On the other hand, the stiffness of Fm (blue curve 
with stars) is much larger than those of Fem (green curve with 
diamonds) and Fe.  Notably, for particles with np from 2.7 to 3.6, the 
stiffness of Fe decreases rapidly and even vanishes, because the 
suppressed electric dipolar responses cause the electric 
dipole-dipole interaction to provide barely sufficient potential well 
depths to bind the two particles. However, the stiffness of Fm is 1 

to 4 orders of magnitude larger than that of Fe.  Surprisingly, out of 
this region, the stiffness of Fm is still one order of magnitude larger 
than that of Fe. This means that F (black curve with circles) is 
mainly dominated by Fm, which shows the predominant ability of 
Fm to bind the dielectric dimer for p-polarization. For s-polarization 
in Fig. 3 (b), the stiffness of Fe and Fem are of the same order of 
magnitude and much larger than that of Fm. Interestingly, in the 
region 2.9< np <3.24 (faint blue area), the stability of the dimer is 
dominated by Fm; but in the neighboring region 3.24<np<3.5 (faint 
red area), the stability is dominated by Fe. Therefore, Fe and Fm 
supplement each other to enable stable formation of the dimer. It 
can be clearly seen from Fig. 3 that the magnetic dipolar 
interaction dominates the stability of the dimer in p-polarization 
while the electric dipolar interaction is dominant in s-polarization. 
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Fig. 2.  (Color online) Binding force versus distance (R) between the 
centers of two spheres (r=100nm and np=4) for p-polarization (a) and 
s-polarization (b). F (black solid curve) is the binding force while Fe  

(red short dashed curve), Fm (blue dash-dotted curve), and Fem (green 
dash-double-dot-dotted curve) are respectively the electric, magnetic, 
and coupling components of F. FRay (purple dashed curve) is the 
binding force in the Rayleigh approximation. The digits in (a) indicate a 
multiple of the magnified forces. The triangles, stars, diamonds, circles, 
and hollow circles represent respectively the stable equilibrium 
positions of Fe, Fm,, Fem , F, and FRay.                                                                                  
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Fig. 3. (Color online) The stiffness at the first stable equilibrium 
positions of F, Fe, Fm, and Fem versus refractive index (np) of particles 
with r=150nm for p-polarization (a) and s-polarization (b). The faint 
blue shaded area where 2.7<np <3.6 in (a) denotes the region where 
the stiffness of F is dominated by that of Fm. The vertical black dashed 
line marks the location np =3.1. The faint blue (2.9<np <3.24) and red 
(3.24<np <3.5) shaded areas in (b) represent the regions where the 
stiffness of F is respectively dominated by those of Fm and Fe.   
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Fig. 4. (Color online) Optical binding for left-circular polarization. (a) 
Binding force F including Fe, Fm, and Fem versus distance R. The black 
circles denote the stable equilibrium positions of F. (b) The stiffness at 
the first stable equilibrium positions of Fe, Fm, Fem, and F versus np. The 
faint blue (2.9<np <3.25) and red (1.4<np <1.59 and 3.25<np <3.45) 
shaded areas in (b) show the regions where the stiffness of F is 
respectively dominated by those of Fm and Fe . (c) Torque Γ including 
Γe, Γm, and Γem versus distance R. The digits in (c) indicate a multiple of 
the magnified torques. The parameters in (a) and (c) are the same as in 
Fig. 2.  The parameters in (b) are the same as in Fig. 3. 

B. The TOBF and Torque for Circularly Polarized Waves 

Fig. 4 (a) shows F, Fe, Fm and Fem for left-hand circular 
polarization for the same parameters as in Fig. 2. The electric 
dipoles are again greatly suppressed compared to the magnetic 
dipoles and Fm provides the leading contribution to F. As a result, 
the stable equilibrium positions of F are very close to the 
counterparts of Fm (not marked). This is similar to the p- and s-
polarized cases in Fig. 2. Figure 4 (b) shows that the radial (along 
dimer’s axis) stability (stiffness) of the dimer at the first radial 
stable equilibrium position (see details in Appendix K) is 
determined by different components of F. In the low-refractive-
index region (left faint red area 1.4 <np <1.59) the stability is 
determined by Fe. With increase of np, the stability is controlled by 
all components of F. Interestingly in the middle-refractive-index 
region (faint blue area 2.9<np <3.25) Fm provides robust stability 
where the stiffness of Fe and Fem drops sharply. On the contrary, Fe 
sustains the stability where the stiffness of Fm and Fem reduces 
sharply (right faint red area 3.25<np <3.45). Hence, Fe and Fm 
supplement each other in the radial stability of the dimer which is 
similar to the s-polarization in Fig. 3 (b).  

Under circularly polarized light, a dimer experiences not only a 
radial force due to the TOBF, but is also subjected to a torque about 
the centre of mass. Figure 4 (c) shows the torque (Γ) and its 
components Γe, Γm, and Γem as functions of R. The envelopes of Γe 
and Γm decay ∝ R-1 as shown by Eq. (11). Interestingly, the 
envelope of Γem is independent of R (as shown by Eq. (12)) which is 
similar to magnetodielectric particles [24]. Hence, Γem plays the 
leading role in Γ, which is completely different to the binding force.  
(see details in Appendix L).  

As expected, when the polarization is changed from left- to right-
handed circular, the binding force stays the same but the torque in 
Fig. 4 (c) changes sign. 

IV. CONCLUSIONS 

In summary, we have presented analytical solutions for the 
TOBF and torque on two identical dual dipolar dielectric particles 
in a plane EM wave.  The electric and the magnetic dipolar 
interactions dominate the force in different regimes of 
refractive index, while the torque experienced by the dimer 
in circularly-polarized light is always dominated by the 
electric-magnetic coupling interaction. This shows that all 
three components must be considered for an accurate 
understanding of the stability and dynamics of dimers 
formed from high refractive index particles. Furthermore, 
the force, torque, and stability of the dimer with high refractive 
index are significantly enhanced by both magnetic and coupling 
interactions. The conclusions demonstrate clearly that the force, 
torque, and stability of the particles may be underestimated to a 
high degree if one uses the Rayleigh Approximation. Our results 
have potential applications in light-controlled self-assembly of 
dielectric materials of high–refractive-index. Visualizing these key 
differences between the different regimes of refractive index 
would be intriguing in an experimental optical binding geometry. 
We note that in typical experiments the dimer is suspended in 
liquid medium and subjected to optical and random forces. For a 
quantitative agreement between experiment and the results 
presented here, it may therefore be necessary to enforce a stable 
transverse configuration between the dimer and incident beam, 
e.g. by using a standing-wave optical trap [41, 42]. In addition to 
the accurate determination of particle positions of the dimers 



there are also prospects for observing the inter-particle field 
directly using multiphoton excitation of the medium in which the 
particles are suspended [43].  
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APPENDIX A:  CALCULATION OF OPTICAL FORCE 

It is assumed that a dimer consisting of two identical dielectric 
nanospheres is immersed in water and illuminated by an 
arbitrarily polarized plane EM wave. The configuration is shown 
by Fig. 1 in the main text. The total field encircling one particle is 
the sum of the incident field and the field scattered by the 
neighboring particle.  For instance, taking into account the mutual 
scattering between particles, the total electric (EB) and magnetic 
(HB) fields surrounding particle B are expressed as [30]  

  ( ) ( )B B A A

0 E B A M B A

0

1
,

s

iZ
 

= + −  + − E E G r r p G r r m

          

 

(A1)   

       

 

( ) ( )B B A A

0 M B A E B A

0

,
s

i

Z 
= − −  + − H H G r r p G r r m    (A2)       

where rA and rB are positions of the centers of the two 
particles and Z=[μ0μs/(ε0εs)]1/2 is the impedance of the 
medium.

 
pA=ε0εsαeEA and mA=αmHA represent respectively 

the electric and magnetic dipole moments in particle A 
induced by the total electric (EA) and magnetic (HA) fields at 
particle A (the expressions for p and m in particle B are 
obtained by substituting the letter A by B). ( )E B A−G r r and 

( )M B A−G r r are free-space electric and magnetic dyadic 

Green's functions
 

of a point dipole [44] (see details  in 
Appendix B ). The first term in Eq. (A1) [Eq. (A2)] represents 
the incident electric (magnetic) field at particle B, the 
second one denotes the scattered electric (magnetic) field 
on particle B by the electric dipole in particle A, and the last 
term expresses the scattered electric (magnetic) field on 
particle B by the magnetic dipole in particle A. Additionally, 
the total electric and magnetic fields in the nearby particle A 
are also described by Eqs. (A1) and (A2) through 
interchanging the superscripts B and A while considering 
the relations ( ) ( )E B A E A B=− −G r r G r r  and 

( ) ( )M A B M B A=− − −G r r G r r .
 

Hereafter we simplify the 

notation ( )E B A E− G r r G and ( )M B A M− G r r G  
for 

convenience. By decomposing vector Eqs. (A1) and (A2) into 
scalar equations along the three axes and solving them for 
particles A and B in terms of μ, κ, and η, the x, y, and z 
components of the electric and magnetic dipole moments in 
each particle are derived in Eqs. (A7)-(A12).  

It is convenient to define dressed polarizabilities to 
describe the polarization of the particles under the incoming 
waves. In detail, the electric dressed polarizabilities are 
described by  

        

e e e
e e e

e e e

, , ,
1 1 1

x y z

  
  

     
= = =

− − +
        (A3)        

where 
e (ν=x, y, and z) is caused by the hybridization of two ν 

components of the electric dipole moments (pν) in different 
particles. On the other hand, the magnetic dressed polarizabilities 
are expressed as 

       

m m m
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(A4)      

where 
m  is the result of hybridization between ν 

components of the magnetic dipole moments (mν) in two 
particles. In addition, the p-polarized dressed 
polarizabilities are given by  
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where 
em-p,1  originates from the hybridization of pz in one 

particle with pz and mx in another while 
em-p,2  is a result of 

the hybridization of mx in one particle with mx and pz in 
other one. They can be thought of being induced by the p-
polarized wave (H0 is perpendicular to the incident plane 
and along x axis) which causes the mx in the two particles. 
Moreover, the s-polarized dressed polarizabilities are 
written as 

       

e

2

e m

e m
em-s,1 em-s,22

e m

,
1

,
1

x

x

x z

x zz

  
 

  



  
=

−
=

−
           (A6) 

where 
em-s,1  comes from the hybridization of mz in one 

particle with mz and px in the other, while 
em-s,2  stems from 

the hybridization of px in one particle with px and mz in the 
neighboring one. They can be regarded as a result of the s-
polarized wave (E0 is perpendicular to the incident plane 
and along x axis) which induces the px in the two particles. 
The self-consistent electric and magnetic dipole moments in 
the two particles induced by an arbitrarily polarized EM 
wave and hybridization between the particles are expressed 
as 

                               

A B

0 em-s,2 0, ,x x s xp p E  = =                                

(A7) 

                              

A B

0 e 0, ,y y s y yp p E  = =                                       
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A B
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(A9) 

A B

em-p,2 0, ,x x xm m H= =                                     (A10) 

                              

A B

m 0, ,y y y ym m H= =                                            

(A11) 

                              

A B

em-s,1 0, .z z ym m i H= − =                                   (A12) 

Equation (A7) denotes that px in one particle is partly 
excited by the incident electric field E0, x and partly 
hybridized by both px and mz in neighboring particle. 
Equation (A8) indicates that py in one particle is hybridized 
by py in the other in addition to the induction by the incident 
electric field E0, y. Equation (A9) shows that pz in one particle 
is hybridized by both pz and mx in the other particle, rather 
than by the induction of the incident electric field. Equation 
(A10) reveals that mx in one particle is not only induced by 
the incident magnetic field H0, x but also hybridized by both 
pz and mx in the other particle. Equation (A11) exhibits that 
my in one particle is caused by the incident magnetic field H0, 

y and hybridized by my in the neighboring particle. Equation 
(A12) denotes that mz in one particle is hybridized by both 
px and mz in the neighboring particle and independent of the 
incident magnetic field (see details in Appendix C). For a p-

polarized wave, 
my ,

 mz ,
ex , 

em-s,1 , and 
em-s,2  disappear

 
as 

well as A(B) A(B) A(B) 0x y zm mp = = =   due to the absence of E0, x and 

H0, y. On the other hand, for s-polarization without E0, y and 

H0, x, the 
mx ,

  ey ,
 ez ,

 em-p,1 , and 
em-p,2

 
vanish while

 
A(B) A(B) A(B) 0y z xp mp = = = .  

For calculation of the optical force, taking particle B as an 
example, the spatial derivatives of the total electric and   
magnetic fields at particle B are solved as 
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H G GH
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where u  denotes the partial derivative with respect to 

the arguments x and y. The partial derivatives of the located 
fields E and H at particle A also can be calculated by Eqs. 
(A13) and (A14) through exchanging the letter A and B 
while considering the relations 

E E
A B
u u  = − G G and 

M M
A B
u u  =  G G . The matrix forms of 

E(M)G
 
and 

E(M) u G , and the scalar decompositions of Eqs. (A13) and 

(A14) are presented in Appendices D and E. The time-
averaged optical force on a dielectric particle with induced 
electric and magnetic dipoles is given by [29] 

( ) ( ) ( )
4

* * *

0

1
.

2 6
s
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=   +  −  

 
F p E m H p m

       

(A15) 

The first two terms on the right-hand of Eq. (A15) are 
respectively the forces on the electric and magnetic dipoles 
while the last one is the electric-magnetic coupling force due 
to the interference between the two dipoles.   

 APPENDIX B: EIGENVALUES OF 
EG AND

MG . 

The free-space electric (
EG ) and magnetic (

MG ) dyadic 

Green’s functions are written as [44]  
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R R
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where I  is unit dyad. Equation (B2) is derived from Eq. 
(B1) by utilizing the orthogonality relation 

M E( ) / k= G G . For simplified calculations of the 

induced dipole moments in particles and TOBF, 
EG  is 

expressed in terms of the eigenequation [22] as 

( )E 2
,

R
  = − +

RR
G I                                                 (B3) 

where the eigenvalues κ and μ of 
EG are determined by 
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Since any vector V can be decomposed into two components 
V|| and V┴  who are respectively parallel and perpendicular 

to vector R, based on Eq. (B3), the dot product between 
EG

and
 
any vector V is given by  

E // ,  ⊥ = +G V V V   (B6) 

which denotes that the eigenvectors of κ and μ are 
respectively parallel and orthogonal to vector R. Then, we 
have 

                           ( ) ( )E , , , , ,x y z x y z   =G e e e e e e  (B7) 

where ex, ey, and ez are unit vectors along x, y, and z axes in 
the Cartesian system. On the other hand, the eigenequation 

of 
MG  is written as 

M ,R= G R I                                                       (B8)   



where the eigenvalue η of 
MG is expressed as 
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ikR
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Equation (B8) demonstrates that the eigenvector of η is orthogonal 
to vector R. Analogous to Eq. (B6), based on Eq. (B8), the dot 

product between 
MG  and any vector V is expressed by 

 M . ⊥ =G V V                                              (B10) 

Hence, the dot product between 
MG and

 
unit vectors is 

expressed as 

                          
( ) ( )M , , , 0, .x y z z x  = −G e e e e e                  (B11) 

APPENDIX C: INDUCED DIPOLE MOMENTS IN DIMER 

By substituting Eqs. (B7) and (B11) into Eq. (A1), the 
three components of the total electric field on particle A (B) 
are expressed by     
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Notice that for electric field on particle A, the signs of the 
third term in Eq. (C1) and the second term in Eq. (C3) are 
respectively negative and positive while they are opposite 
for particle B. The regulations of the signs are also 
appropriate for the following Eqs. (C4) and (C6). 
Considering the relation p=ε0εsαeE, the three components of 
the electric dipole moment in particle A (B) are given by  

A(B) ( ) B(A) B(A)

0 0, 0 ,A B

x m e x e x m e zp E p iZ m        = +       (C4) 

A(B) A(B) B(A)

0 0, ,y m e y e yp E p    = +                                                (C5) 

A(B) B(A) B(A)

0 ,z e z m e xp p iZ m     =                                        (C6) 

where A(B)p
 and A(B)m  

(ν= x, y, and z) represent 

respectively the three components of the electric and 
magnetic dipole moments induced in particle A (B); E0, ν and 
H0, ν stand for the incident electric and magnetic fields along 
the three axes. In detail, Eq. (C4) shows that px in one 
particle is excited by the incident electric field E0, x (first 
term) and the re-radiated electric fields by both px (second 
term) and mz (the third terms) in the neighboring particle. 
Equation (C5) denotes that py in one particle is caused by 

the incident electric field E0, y (first term) and the re-excited 
electric field by py (second term) in the other. Equation (C6) 
illuminates that pz in one particle originates from the re-
radiated electric fields by both pz (first term) and mx (second 
term) in the other particle.  

On the other hand, substituting Eqs. (B7) and (B11) into 
Eq. (A2), the three components of the total magnetic field on 
particle A (B) are expressed by     
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Notice that for magnetic field on particle A, the signs of the 
second term in Eq. (C7) and the first term in Eq. (C9) are 
respectively positive and negative while they are opposite 
for particle B. The regulations of the signs are also 
appropriate for the following Eqs. (C10) and (C12). Owing to 
the relation m=αmH, the three components of the magnetic 
dipole moment in particle A (B) are determined by   
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Equation (C10) shows that mx in one particle is induced by 
the incident magnetic field H0, x (first term) and the re-
excited magnetic fields by both pz (second term) and mx (last 
term) in the other. Equation (C11) indicates that the my in 
one particle is caused by the incident magnetic field H0, y 
(first term) and the re-radiated magnetic field by my (second 
term) in the neighboring particle. Equation (C12) indicated 
that mz in one particle comes from the re-excited magnetic 
fields by px (first term) and mz (second term) in the 
neighboring particle. Notice that the pz and mz are not 
directly excited by the incident electric and magnetic fields 
without a non-zero z component. Equations (C4)-(C6) and 
(C10)-(C12) demonstrate clearly the hybridizations 
between the electric and magnetic dipoles in different 
particles. 

APPENDIX D: MATRIX AND SPATIAL PARTIAL DERIVATIVES 

OF 
EG AND 

MG . 

For calculating the TOBF, the matrix forms and spatial 

partial derivatives of 
EG and 

MG must be known. 

Substituting the tensors RR/R2 and I into Eq. (B3), the 

matrix of 
EG in terms of κ and μ is expressed as 
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In addition, based on Eq. (B3) and (D1), the spatial partial 

derivatives of 
EG  with respect to the x and y axes are given 
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On the other hand, we have  
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where R I  denotes the matrix generated by the cross-

product of R with each column vector of I [44]. Substituting 

Eq. (D4) into Eq. (B8), the matrix of 
MG  in terms of η

 
is 

described as 
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Moreover, based on Eqs. (B8) and (D5), the spatial partial 

derivative of 
MG with respect to the  x and y axes are read as 
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Notice that 0x z   =   =  and y R   =    (ϑ=κ, 

μ, and η) because R is along the y axis. 

APPENDIX E: SPATIAL PARTIAL DERIVATIVE OF TOTAL EB 
AND HB 

Let's take particle B as an example. First, Eq. (A13) is 
decomposed into scalar equations along the three Cartesian 
axes. Second, Eqs. (D2), (D3), (D6), and (D7) are substituted 
into the three components of Eq. (A13) while using the 

relation B A

0, 0, 0u ux y   =   =  (ζ=E and H, u= x and y) for a 

plane wave propagating along the z axis. Finally, the spatial 
partial derivative of the total electric field in the nearby 
particle B with respect to the x axis are expressed as  
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In addition, the spatial partial derivative of the total electric field 
along the y axis are written as  
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Analogously, Eq. (A14) is decomposed into scalar equations along 
the three axes while Eqs. (D2), (D3), (D6), and (D7) are substituted 
into the three components of Eq. (A14). The spatial partial 
derivative of the total magnetic field in the nearby particle B with 
respect to the x axis are expressed by  
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Meanwhile, the spatial partial derivative of the total magnetic field 
along the y axis are described as  
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APPENDIX F: TOBF AND TORQUE 

By substituting Eqs. (A7)-(A12) and  Eqs. (E1)-(E12) into 
Eq. (A15), the electric component of the binding force along 
the dimer axis is expressed as   
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the magnetic component of the binding force is expressed as 
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and the electric-magnetic coupling component of the 
binding force is given by 
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On the other hand, the electric component of the torque 
along the z axis is expressed as                                                                                                                             
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the magnetic component of the torque is given by                                                                                                                                 
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and the electric-magnetic coupling component of the torque 
is expressed as 

( )4 * * *0
em e em-s,1 em-p,1 m 0, 0, .

12

s
y y y xk E E

 
   


  =  +
 
% % % %   (F6) 

APPENDIX G:  BINDING FORCE FOR LOW- AND MODERATE-
INDEX PARTICLES. 

Figure 5 (a) shows that Fm (blue dash-dotted curve) and Fem 
(green dash-dot-dotted curve) have non-ignorable contributions 
to F (black solid curve) compared to Fe (red short dashed curve) 
even for a low-refractive-index dielectric dimer (np=1.59), i.e., 
polystyrene spheres [45] for p-polarized wave. In detail, although F 
is mainly determined by Fe when R is smaller than the first stable 
equilibrium position of F (the first solid black circle on R axis), the 
contributions of Fm and Fem to F cannot be completely ignored. In 
particular, the first stable equilibrium position of F coincides with 
the counterpart of Fem (the first solid green diamond) instead of 
that of Fe (the first solid red triangle) even though Fe is an order of 
magnitude larger than Fem. In addition, as R increases, the decay of 
Fem is slower than that of Fm while the decay of Fm is slower than 
that of Fe. The reasons are the same as in Fig. 2 (a) and as shown in 
Eqs. (7)-(9) in the main text. The phenomena also exist in Figs. 5 
(b). Consequently, the contribution of Fm to F is as much as that of 
Fe, when R goes beyond the first stable equilibrium position of Fe. 
As a result, the second stable equilibrium position of F (the second 
solid black circle) diverges from the counterpart of Fem (the second 
solid green diamond) and approaches to the corresponding 
equilibrium position of Fm (the second solid blue star). This 
phenomenon is more obvious in the vicinity of the third stable 
equilibrium position of F (the third solid black point). Additionally, 
FRay overlaps completely Fe, while the stable equilibrium positions 
of FRay (hollow purple circles) are consistent with those of Fe. The 
reason is that, for a low-refractive-index dielectric dimer, the 
hybridization between the two particles is much weaker. It can be 
seen that Fem is an order of magnitude smaller than Fe and Fm. 
Generally, the x component of magnetic dipole moment mx in one 
particle excites the z component of the electric dipole moment pz in 
the other due to the hybridization. But this hardly occurs for low-
refractive-index particles because of the weak magnetic response. 
Hence, Fe originates just from the electric dipole-dipole interaction 
between two particles while each electric dipole is induced by the 
incident electric field and re-excited electric field of the 
neighboring electric dipole. The physical mechanism is identical to 
FRay. 

Interestingly, for particles with moderate refractive index np=3.5, 
i.e., silicon spheres [40],  Fm and Fem are enhanced to exceed Fe as 
shown in Fig. 5 (b). As expected, the stable equilibrium positions of 
F are determined by all components of F, and therefore the 
positions deviate largely from the corresponding stable 
equilibrium positions of Fe. Importantly, F has been dramatically 
strengthened by one order of magnitude compared to the particles 
with np=1.59 in Fig. 5 (a). As a result, the stability of the dimer at 
the stable equilibrium positions is improved by one order of 
magnitude. The reason is the enhanced magnetic response and 
hybridization of the dimer with increase of the refractive index of 
particles. It is worth noting that FRay overestimates 
(underestimates) Fe at the first dip (peak) of Fe in front of the first 
stable equilibrium position of F (see details in Appendix J) 
Additionally, the stable equilibrium positions of Fe move to large R 
compared to that of FRay (hollow purple circles).  



Fig. 5 (c) and (d) show the TOBF and its three components for s-
polarized wave. For particles with np=1.59 in Fig. 2(c), Fm and Fem 
are an order of magnitude smaller than Fe. Therefore, F is almost 
completely determined by Fe and the stable equilibrium positions 
of F and Fe are in agreement. Physically, for an s-polarized wave, 
the electric dipoles induced in the two particles are side-by-side 
parallel and directed along the x axis. On the other hand, the y 
components of the two magnetic dipole induced by both the 
incident magnetic field and hybridization between them are head-
to-tail colinear. As we know, the radiated field by a dipole focuses 
mainly on the direction perpendicular to the dipole moment. 
Hence, the radiative interaction between two px is stronger than 
that between two my. Additionally, mz in each particle is caused by 
the induced px in the neighboring one. However, the secondary 
interaction between two mz is much smaller than not only the 

interaction between A

xp and B

xp  but also the interaction between 

A

ym  and B

ym . Furthermore, every corresponding stable equilibrium 

position of Fe and FRay overlaps. Meanwhile, the Fe matches 
completely with FRay when R exceeds λs. The reason is that the two 
forces originate from the same electric dipolar interaction between 

A

xp and B

xp . What is different, however, to the case of p-

polarization is that the decay of Fem is the slowest while that of Fm is 
the fastest with increase of R. The reasons are that Fm is 
proportional to R-2 while Fe and Fem are proportional to R-1 in the 
far-field region. The phenomena also exist for moderate-refractive-
index particles in Fig. 5 (d). 

With an increase of the refractive index of particles to np=3.5 as 
in Fig. 5 (d), F and FRay are dramatically enhanced by about 50 
times compared to Fig. 5 (c). As a result, the stability of the dimer at 
the stable equilibrium positions of F are greatly enhanced as same 
as the p-polarization in Fig. 5 (b). In addition, Fem is heightened to 
half of Fe compared to the particle with np=1.59 in Fig. 5 (c) due to 
the enhanced hybridization. But Fe is still an order of magnitude 
larger than Fm because of the unchanged configurations of electric 
and magnetic dipoles in the dimer. As a result, F is almost 
determined by both Fe and Fem while the stable equilibrium 
positions of F are nearly dominated by the counterparts of Fe. 
Notice that FRay underestimates (overestimates) Fe at the first dip 
(peak) of Fe although the two forces are coincident at large R, 
which is contrary to the p-polarization in Fig. 5 (c), (see details in 
Appendix H).   
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Fig. 5.  (Color online) Binding force upon sphere B with radius 100nm 

versus distance (R) between the centers of two spheres with refractive 
index np=1.59 (a), (c) and 3.5 (b), (d) for p-polarization (a), (b) and s-
polarization (c), (d). F (black solid curve) is the binding force while Fe 

(red short dashed curve), Fm (blue dash-dotted curve), and Fem (green 
dash-dot-dotted curve) are electric, magnetic, and coupling 
components of F. Additionally, FRay (purple dashed curve) is the 
binding force on the same sphere in electric dipolar dimer calculated 
by the typical Rayleigh approximation [Eq. (3a) in Ref. [15]]. The digits 
in (a), (c) and (d) indicates a multiple of the magnified force. The solid 
red triangles, blue stars, green diamonds, black circles, and hollow 
purple circles represent respectively the stable equilibrium positions of 
Fe, Fm, Fem, F, and FRay.  

Appendix H: THE DIFFERENCE BETWEEN Fe AND FRay FOR P-
AND S-POLARIZATION 
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Fig. 6. (Color online) Fe together with its all terms and FRay versus 
distance (R) between the centers of two spheres with refractive index 
np=3.5 for p-polarization (a) and s-polarization (b). (a) Fe (black solid 
curve) and FRay (purple thick dash-doted curve) are the same as the 
counterparts in Fig. 5 (b). The red dashed, blue short dashed, and green 
dash-dot-dotted curves are respectively calculated by the first, second, 
and third terms in Eq. (1) in the main text. Meanwhile, they denote 
respectively the interactions between A

yp  and
 

B

yp , between A

zp and 

B

zp , and between A

zp and B

xm . (b) Fe and FRay are the same as the 

corresponding forces in Fig. 5 (d). The red dashed and blue short 
dashed curves are individually calculated by the fourth and fifth terms 
in Eq. (1) in the main text. The former denotes the interaction between

A

xp  and
 

B

xp  while the latter indicates the interaction between A

xp

and B

zm . The parameters are the same as in Fig. 2 in the main text.           

Figure 6 shows Fe together with each of its terms and FRay 
as function of distance (R) between the centers of two 
spheres with np=3.5 for p-polarization (a) and s-polarization 
(b). Figure 6 (a) shows that FRay overestimates 
(underestimates) Fe at the first dip (peak) of Fe in front of 



the first stable equilibrium position of F for p-polarization. 
From physical viewpoint, in the vicinity of the dip, the 
phases of the two py in the different particles, which are 
respectively induced by the incident electric field and the re-
radiated electric field by the electric dipole in the 
neighboring particle, are almost synchronous. And then, the 
two py form a head-to-tail colinear configuration and attract 
each other, the same as the Rayleigh dimer. In addition, the 
hybridization arises because of the increase of the refractive 
index of particles. In detail, the mx in one particle induced by 
the incident magnetic field excites pz in the neighboring one. 
Figure 6 (a) shows that the force due to the interaction 
between A

yp  and
 

B

yp  
(red dashed curve), which is described 

by the first term in Eq. (1) in the main text, coincides with 
FRay (purple thick dash-dotted curve) because of the same 

physical origin. Additionally, the interaction between A

zp and
 

B

xm  is repulsive (green dash-dot-dotted curve) while A

zp  and 

B

zp are antiparallel and attractive (blue short dashed curve). 

The two forces are respectively expressed by the third and 
second terms in Eq. (1) in the main text. But the latter is the 
secondary interaction and smaller than the former. 
Therefore the attractive force is partly offset by the 
repulsive force. It means that the Fe (black solid curve) is 
reduced by the hybridization compared to FRay. In a word, 
FRay overestimates Fe at the dip of Fe. On the contrary, at the 
peak of Fe mentioned above, the phases of the two py are 
nearly inverse since the increase of R. This leads to head-to-
head colinear configuration of the two py. Thus the force due 
to the interaction between A

yp  and
 

B

yp  (red dashed curve) 

becomes repulsive while the interaction between A

zp and
 

B

xm  

is still repulsive (green dash-dot-dotted curve). As a result, 
the repulsive Fe is enhanced which means that FRay 
underestimates Fe at the peak of Fe. But the difference 
between Fe and FRay is unremarkable at large R because of 
the weak hybridization. 

It is contrary to the p-polarization that Fig. 6 (b) denotes 
that FRay underestimates (overestimates) Fe at the first dip 
(peak) of Fe in the case of s-polarization. This can be also 
explained by the hybridizations as in the analyses of p-
polarization. In detail, the re-radiated magnetic field by px in 
one particle is strong enough to induce mz in the 
neighboring one. On the one hand,

 
the interaction between

A

xp and
 

B

xp  expressed by the fourth term in Eq. (1) in the 

main text is repulsive (red dashed curve). On the other, the 

interaction between
 

A

xp and B

zm  (blue short dashed curve) 

described by the fifth term in Eq. (1) in the main text is 
attractive in front of the first peak of Fe. And then the former 
is partly offset by the latter, which is the reason why FRay 
(purple thick dash-doted curve) is larger than Fe (black solid 
curve) around the first peaks of Fe. However, the interaction 

between A

xp and B

zm  
is still attractive when the interaction 

between A

xp and B

xp changes to attraction at the first dip of 

Fe. As a result, Fe is enhanced and larger than FRay. As 
expected, the effects become weaker and weaker with 
increment of distance (R). 

APPENDIX I: STABLE EQUILIBRIUM POSITIONS OF BINDING 
FORCE IN P- AND S- POLARIZATIONS. 
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Fig. 7. (Color online) The first stable equilibrium positions of F (black 
curve with circles), Fe (red curve with triangles), Fm (blue curve with 
stars) and Fem (green curve with diamonds) versus refractive index 
(np) of the particles for p-polarization (a) and s-polarizations (b). The 
particle radius is 150nm. The two horizontal red dashed lines denote 
the positions 2.41λs and 3.42λs. The three vertical black dashed lines in 
(a) correspond to the locations np =3, 3.05, and 3.1.   

We have calculated the first stable equilibrium positions of F, Fe, 
Fm, and Fem for p- and s- polarizations. At these positions, the 
particles experience a restoring force whose intensity is zero and 
slope is negative. Importantly, the stability of the dimer can be 
characterized by the stiffness defined as the absolute of the slope of 
restoring force at the stable equilibrium positions [46]. In general, 
it is only interesting in the first stable equilibrium position of the 
binding force because the bound state of the dimer is the most 
robust at the position due to the maximum stiffness. For p-
polarization, the first stable equilibrium position of Fe (red curve 
with triangles) in Fig. 7 (a) fluctuates slightly around 1.3λs with 
increase of np. However, the position moves rapidly to 2.41λs and 
3.42λs (two horizontal red dashed lines) at locations np =3 and 3.05 
(left and middle vertical black dashed lines), respectively. 
Meanwhile, the stiffness of Fe decreases sharply at the two 
locations, meaning Fe is hardly sufficient to enable the dimer to 
form a stable bound state. Moreover, the stable equilibrium even 
vanishes at np =3.1 (right vertical black dashed line) where Fe has 
no stiffness (vertical black dashed line). As expected, Fe without 
stable equilibrium cannot cause the dimer to form stable 
configuration at all (see details in Appendix J). On the other hand, 
the first stable equilibrium position of Fem (green curve with 
diamonds) fluctuates with increase of np. Importantly, the first 
stable equilibrium position of F (black curve with circles) is close 
to the counterpart of Fm (blue curve with stars) around λs for all np. 
For s-polarization in Fig.  7 (b), the stable equilibrium position of F 
is close to that of Fe and Fem in the regions 1.4< np <2.9 and 2.5< np 
<4.  

APPENDIX J: F AND Fe ON PARTICLE WITH np=3, 3.05, AND 3.1 
FOR P-POLARIZATION 
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Fig. 8. (Color online) Binding force F calculated by the sum of Eqs. (1)-
(3) in the main text and the electric component Fe, in Eq. (1) versus 
distance (R) between the centers of two spheres with refractive index 
np=3 (red), 3.05 (blue) and 3.1 (green) for p-polarized wave. The solid 
thin red, blue, and thick green curves represent individually F for np=3, 
3.05, and 3.1. The digits indicate a multiple of the magnified forces. The 
solid red triangles, blue stars, and green diamonds represent 
respectively the stable equilibrium positions of F while the hollow red 
triangles and blue star denote the counterparts of Fe, for np=3, 3.05, and 
3.1. The hollow red triangles at positions R=2.41λs and 3.38λs denote 
the first and second stable equilibrium positions of Fe  on particles with 
np=3. The hollow blue star at position R=3.42λs denotes the unique 
stable equilibrium position of Fe for particles with np=3.05. The solid 
thick green short-dotted curve corresponding to Fe for np=3.1 has no 
stable equilibrium position. The radius of particle and parameters of 
both water and wave are same as in Fig. 2 in the main text.  

Figure 8 shows F calculated by the sum of Eqs. (1)-(3) in 
the main text and the electric component Fe in Eq. (1) versus 
distance (R) between the centers of two spheres with 
refractive index np=3 (red), 3.05 (blue) and 3.1 (green) for a  
p-polarized wave. It can be seen that Fe (red dashed and 
blue dash-dotted curves) has respectively two (red hollow 
triangle at 2.41λs and 3.38λs) and one (blue hollow star at 
3.42λs) stable equilibrium positions for particles with np=3 
and 3.05. Meanwhile, Fe is two order of magnitude less than 
F  (blue and thin red solid curves) for both cases of np=3.05 
and 3. In addition, the stiffness of Fem is also far less than 
that of F (see Fig. 3 (a) in the main text). As a result, F is 
dominated by Fm. The stable equilibrium positions of F are 
respectively shown by the solid red triangles and blue stars 
for np=3 and 3.05. Moreover, for particles with np=3.1, Fe 
(green short-dotted curve) is three orders of magnitude less 
than F (thick green solid curve) and has no stable 
equilibrium position while the stable equilibrium positions 
of F (solid green diamonds) are dominated by Fm. 

APPENDIX K: RADIALLY STABLE EQUILIBRIUM POSITIONS IN 
CASE OF CIRCULAR POLARIZATION. 

In the case of circular polarization, the first radially stable 
equilibrium position of Fem (green curve with solid diamonds) in 
Fig. 9 fluctuates with increase of np while that of Fe (red curve with 
solid triangles) jumps in the vicinity of np=3.1. Interestingly, the 

corresponding positions of Fm (blue curve with solid stars) and F 
(black curve with solid circles) are near λs and change little. As 
expected, other stable equilibrium positions of F lie in near-integer 
multiples of λs while the radial stability of the dimer at the 
positions decreases in turn. 

1.6 2.0 2.4 2.8 3.2 3.6 4.0
0.5

1.0

1.5

2.0

2.5
 F

e

 F
m

 F
em

 F

 

 

T
h
e

 f
ir
s
t 
ra

d
ia

lly
 s

ta
b
le

 

e
q
u

ib
ri
u

m
 p

o
s
it
io

n
(

s
)

n
p  

Fig. 9. (Color online) The first radially stable equilibrium positions of 
the binding force (F) including all three components (Fe, Fm, and Fem) 
versus refractive index (np) of particles for left-circularly polarized 
wave. The parameters are same as in Fig. 2 in the main text.  

APPENDIX L: BINDING FORCE AND TORQUE FOR LOW- AND 
MODERATE-REFRACTIVE-INDEX PARTICLES FOR CIRCULAR 

POLARIZATION. 

Figures 10 (a) and (b) show Fe, Fm, Fem, and F with np 
=1.59 and 3.5 for circularly polarized wave. Firstly, for low-
refractive-index in (a), the electric dipole has advantage 
over the magnetic dipole. And then, Fe (red dashed curve) is 
greatly larger than Fm (blue dash-dot-doted curve) and Fem 
(green short dashed curve). As a result, F (black solid curve) 
is mainly dominated by Fe while the stable equilibrium 
positions of F (black solid circles) are very close to the 
counterparts of Fe (not marked). This is similar to the p- and 
s-polarized cases in Figs. 5 (a) and (c). Secondly, for 
moderate-refractive-index in (b), the electric and magnetic 
dipoles are effectively induced. Therefore, all components of 
F are enhanced by two orders of magnitude compared to 
Fig. 10 (a). Naturally, Fe, Fm and Fem all contribute non-
negligibly to F. As expected, the stable equilibrium positions 
of F are determined by the Fe, Fm, and Fem together.  

Figure 10 (c) and (d) show Γe, Γm, Γem, and Γ with np =1.59 
and 3.5 for circularly polarized wave. Firstly, even though 
for particles with low refractive index in Fig. 10 (c), Γ (black 
solid curve) is almost dominated by Γem (green short dashed 
curve) since Γm (blue dash-dot-dotted curve) and Γe (red 
dashed curve) are respectively twenty and five times 
smaller than Γem. Meanwhile, Γm and Γe decay with increase 
of R. Interestingly, the envelopes of Γem and Γ do not decay 
as shown by Eqs. (11) and (12) in the main text. Secondly, 
for particles with moderate refractive index in Fig. 10 (d), Γ 
and Γem are dramatically strengthened by three orders of 
magnitude compared to Fig. 10 (c). It means that the 
increase of refractive index of particles is in favor of torque. 
In addition, Γm is largely enhanced relative to Γ compared to 
Fig. 10 (c). The two facts benefit from the enhanced 
magnetic response and hybridization of the two particles. 



Here, Γ is still controlled by Γem because Γem is stronger than 
Γe and Γm.  
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Fig. 10. (Color online) Binding force and torque on particles for a left-
circularly polarized wave. Total binding force (F) and each of the three 
components (Fe, Fm, and Fem) on sphere B versus distance (R), with 
refractive index np=1.59 (a) and 3.5(b). The solid black circles denote 
the stable equilibrium positions of F. Total torque (Γ) upon the dimer 
and each of the three components (Γe , Γm , and Γem) versus distance (R) 
with refractive index np=1.59 (c) and 3.5(d). The digits in (c) and (d) 
indicate a multiple of the magnified torques. The parameters are the 
same as in Fig. 2 in the main text.  
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