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Abstract

Background: Severe malaria risk varies between individuals, and most of this variation remains unexplained. Here,
we examined the hypothesis that cytokine profiles at birth reflect inter-individual differences that persist and influence
malaria parasite density and disease severity throughout early childhood.
Methods and Findings: Cytokine levels (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-6 and IL-10) were measured at birth
(cord blood; N=783) and during subsequent routine follow-up visits (peripheral blood) for children enrolled between
2002 and 2006 into a birth cohort in Muheza, Tanzania. Children underwent blood smear and clinical assessments
every 2-4 weeks, and at the time of any illness. Cord blood levels of all cytokines were positively correlated with each
other (Spearman’s rank correlation). Cord levels of IL-1β and TNF-α (but not other cytokines) correlated with levels of
the same cytokine measured at routine visits during early life (P < 0.05). Higher cord levels of IL-1β but not TNF-α
were associated with lower parasite densities during infancy (P=0.003; Generalized Estimating Equation (GEE)
method), with an average ~40% reduction versus children with low cord IL-1β levels, and with decreased risk of
severe malaria during follow-up (Cox regression): adjusted hazard ratio (95% CI) 0.60 (0.39-0.92), P = 0.02.
Conclusion: IL-1β levels at birth are related to future IL-1β levels as well as the risk of severe malaria in early life.
The effect on severe malaria risk may be due in part to the effect of inflammatory cytokines to control parasite
density.
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Introduction

Despite renewed efforts at control and elimination, malaria
remains a major cause of morbidity and mortality in Africa,
where 174 million clinical cases occur annually, resulting in an
estimated 596,000 deaths [1]. Although factors such as sickle
cell trait are known to influence malaria severity [2], most of the
variation in risk between individuals remains unexplained [3].
Human genetics [4], parasite virulence [5], environmental
factors [6] and acquired immunity [7] can all contribute to
variations in risk.

During infection, cytokines play a dual role by controlling
parasite growth on the one hand while exacerbating pathology
on the other. These opposing effects have been attributed to
the timing of cytokine expression [8] as well as the balance
between inflammatory and anti-inflammatory cytokines [9]. For
example, the inflammatory cytokines TNF-α and IFN-γ can
mediate parasite inhibition and killing [10,11], but high levels of
TNF-α have also been associated with severe malaria
syndromes such as cerebral malaria [12,13]. Meanwhile, high
levels of the anti-inflammatory cytokine IL-10, or high IL-10/
TNF-α ratios, reduce the risk of severe malarial anemia [14,15],
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despite being associated with reduced parasite clearance in
children with uncomplicated malaria [16].

Cytokine levels at birth might reflect inter-individual
differences that persist and influence malaria outcomes during
childhood. In malaria endemic areas, fetal sensitization to
malaria antigens is common: cord blood lymphocytes often
respond to stimulation with malaria antigens by proliferating
[17,18] and producing type 1 and/or type 2 cytokine responses
[19]. Some newborns of infected mothers display a “tolerant”
phenotype (i.e. PBMC non-responsive to malaria antigens),
and have an increased risk of infection and lower hemoglobin
levels during early life [20].

To test the hypothesis that in utero immune profiles will
persist during early childhood and influence malaria outcomes,
we measured plasma cytokine levels at birth and analysed their
relationship with cytokine levels and the risk of severe P.
falciparum malaria during early life. We report for the first time
that high levels of IL-1β in cord blood persist, and are
associated with both improved control of parasite density and
with decreased risk of severe malaria during infancy.

Materials and Methods

Study population and clinical procedures
Mothers and newborns were enrolled in a birth cohort study

known locally as the Mother-Offspring Malaria Studies (MOMS)
Project at Muheza Designated District Hospital, Muheza,
Tanzania. Clinical procedures for the MOMS Project have been
previously described [21]. Children whose data are reported in
this study were enrolled between September 2002 and May
2006, and were followed for up to 4 years. Twins, stillbirths,
early neonatal deaths, infants with any evidence of HIV
infection (mother seropositive on voluntary testing, infant
presented with suggestive signs or symptoms or suffered HIV/
AIDS-related death during follow-up) or sickle-cell disease
were excluded. Of the 882 children who remained after
exclusions, 783 had cord blood cytokines measured and were
thus included in this analysis.

Children were examined and blood smears obtained by
finger or heel prick every 2 weeks during infancy and every 4
weeks post-infancy. Peripheral blood was collected into CPD
anticoagulant during routine visits at roughly 3 months of age
and then at ~6 month age intervals thereafter. Whenever
children developed symptoms, they were examined by a study
clinician. Children were classified as having severe malaria
according to WHO criteria [22].

Ethics
Written informed consent was obtained from mothers prior to

enrollment. Protocols for procedures used in this study were
approved by the International Clinical Studies Review
Committee of the Division of Microbiology and Infectious
Diseases at the US National Institutes of Health, and ethical
clearance was obtained from the Institutional Review Boards of
Seattle BioMed and the National Medical Research
Coordinating Committee in Tanzania.

Laboratory procedures
Cord blood samples were obtained by clamping the cord and

cannulating umbilical vessels immediately after delivery. After
removal of the umbilical cord and fetal membranes, placental
blood samples were obtained by manual compression of the
placental tissue in a grinder. Placental and cord blood samples
were anticoagulated with EDTA, and stored on ice until
processing the same day.

Malaria parasitemia diagnosis: Parasitemia was defined as
identification of any parasites in a Giemsa-stained blood smear
by microscopy, after counting at least 200 white blood cells at a
magnification of 100x.

Determination of red blood cell disorders: Hemoglobin type
(HbAA, HbAS and HbSS) was determined by cellulose acetate
paper electrophoresis according to the manufacturer’s
instructions (Helena Laboratories, Beaumont, Texas, USA).
Genotyping for α-thalassemia was done according to the
protocol described by Chong et al [23].

Cytokine assays: Plasma was obtained by centrifugation at
3,000 * g for 3 minutes and was stored frozen at -70°C until it
was thawed on the day that cytokine assays were performed.
Each plasma sample was analysed using a multiplex, bead-
based platform (BioPlex; Bio-Rad, Irvine, CA) and custom-
made assay kits as previously described [24]. For each plasma
sample, all analytes were assayed in a single day, thus
eliminating freeze-thaw cycles. All pipetting and sample
identification were performed with a bar code-enabled, high-
speed pipetting robot (Megaflex; Tecan, Research Triangle
Park, NC). The detection limits for the different analytes were
as follows: TNF-α, 0.10 pg/ml; IFN-γ, 0.04 pg/ml; IL-1β, 0.01
pg/ml; IL-4, 0.3 pg/ml; IL-5, 0.02 pg/ml; IL-6, 1.45 pg/ml; IL-10,
0.02 pg/ml. Cytokine levels were adjusted to account for
dilution in anticoagulant at the time of sample collection.

Statistical analysis
Non-parametric tests (Mann-Whitney and Kruskal Wallis

tests) were used to compare cord blood cytokine levels by
baseline variables (gender, parity, placental malaria status,
birth season, sickle cell and alpha-thalassemia genotypes).
Malaria transmission season was defined as high between May
and October, based on the peak incidence of parasitemia
observed in our cohort. Correlations between cytokines at birth
and at routine uninfected healthy visits were evaluated by
Spearman’s rank correlation coefficient. Bonferroni correction
was used in the pairwise correlations between cytokines at
birth.

Cox regression models were fitted to evaluate the
relationship between cord blood cytokine levels and the time to
first episode of severe malaria. Schoenfeld residuals were used
to test the proportional hazards assumption. Kaplan-Meier
curves were used to display severe malaria rates in children
with high versus low levels of cord cytokines IL-1β and TNF-α.
To account for the correlation between visits of the same child,
the association between cord blood cytokines and parasite
density (log-transformed) was assessed by Generalized
Estimating Equation (GEE) method. In this analysis, each
positive blood smear was included as an observation.
Exchangeable correlation structure and identity link function

Cord Cytokines and Severe Malaria Risk

PLOS ONE | www.plosone.org 2 October 2013 | Volume 8 | Issue 10 | e77214



were used; and robust standard errors were estimated.
Cytokine levels were included in Cox and GEE models as
binary variables, determined by the median: values above the
median were considered high and values below the median,
low. Median values (in pg/ml) for cord blood cytokines were:
TNF-α, 120.8; IL-1β, 6.0; IL-5, 2.6; IL-6, 7.0; IL-10, 3.5. Models
were adjusted for sickle cell trait status, alpha-thalassemia,
transmission season, bed net use, and village of residence.
Since parity and placental malaria interact to influence malaria
infection and clinical malaria risk [21,25], these variables were
included with interaction term.

Average parasite densities during infections in infants,
children aged 1 year or less, were estimated for children with
high and low cord IL-1β levels: geometric mean parasite
density during visits with infection was calculated for each
child; the geometric mean of these values was then estimated
for groups with different IL-1β levels at birth (Figure 1).

Data analyses were conducted using STATA version 11.1
(Stata Corporation, College Station, Texas, United States)

Results

Description of the study cohort
105 (13.4%) newborns were delivered by mothers with

placental malaria (PM+), and this was most common in first
and second time mothers (19.3%, 18.5% and 7.6% in
primiparae, secundiparae and multiparae, respectively; P <
0.001) (Table 1). Mean birth weight was lower in offspring of
PM+ versus PM- women in all parity groups (P < 0.05 for all

Figure 1.  Average parasite densities in children with high
and low cord IL-1β levels.  Only infections occurring in the
first year of life were included in this analysis, since the
association between levels of this cytokine at birth and
subsequent parasite levels was only present during infancy
(GEE model). (N=504, children with at least one infection
during infancy) Concentrations of parasites per μL were
estimated by assuming 8000 leukocytes/μL of blood. Children
were defined as having high cord IL-1β levels if their IL-1β
levels at birth were higher than the median in the study
population (6 pg/ml); if IL-1β levels at birth were lower than the
median value, these levels were considered low.
doi: 10.1371/journal.pone.0077214.g001

groups) [26]. 61.5% of children used bed nets. Sickle cell trait
was frequent in this population (16.6%).

Cord blood cytokine levels vary in relation to in utero
factors

Cord blood levels of some cytokines differed according to
malaria transmission season, placental malaria status and
maternal parity (Table 2). Cord blood IFN-γ was more often
detected during high versus low malaria transmission season
among primi- (P=0.06) and multiparae (P<0.001), but not
secundiparae (P=0.58). Placental malaria and birth during high
transmission season were associated with higher cord blood
levels of IL-10 (P=0.04 and P=0.05, respectively), a cytokine
that is also elevated in maternal samples during episodes of
inflammatory placental malaria [27,28]. Cord blood levels of
IL-10 were also significantly higher in primiparae than other
groups (P=0.003). Cord IL-4 was more frequently detected in
children born during high transmission season (P=0.002).
Sickle cell trait and alpha-thalassemia in the children did not
influence levels of cord blood cytokines.

Pro- and anti-inflammatory cytokines in cord blood are
positively correlated

Pro-inflammatory and anti-inflammatory cytokines can be
counter-regulatory. We analysed pairwise relationships
between and within these two groups of cytokines at birth
(Table 3). The pro-inflammatory cytokines TNF-α and IL-1β
were highly correlated and both were correlated to IL-4 and
IL-10 levels, which suggests that cytokines in cord blood were

Table 1. Demographic characteristics of the cohort.

 Number (%)
Parity  
Primiparae 218 (27.8)
Secundiparae 184 (23.5)
Multiparae 381 (48.7)

Gender  
Female 379 (48.4)
Male 404 (51.6)

Placental Malaria (PM) status  
PM+ 105 (13.4)
PM- 678 (86.6)

Birth season  
High 367 (46.9)
Low 416 (53.1)

Residence  
Bwembwera 132 (16.9)
Magilla 130 (16.6)
Mkanyageni 169 (21.6)
Muheza township 352 (45.0)
 Median (Q1-Q3)
Follow-up duration (in years) 2.15 (1.22-2.98)
 Mean (SD)
Number of visits per child 44.6 (19.6)

doi: 10.1371/journal.pone.0077214.t001
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most likely influenced by a common process (eg, inflammation)
rather than factors that alter expression of specific cytokines
(eg, single nucleotide polymorphisms).

IL-1β and TNF-α levels at birth correlate with levels
during early childhood

We examined the relationship between cord levels of
cytokines at birth, and levels measured in peripheral blood of
these children during follow-up (Table 4). We included only
measurements made at visits when the child was healthy and
aparasitemic (N = 1,359 visits). IL-4 and IFN-γ levels were
often undetectable, and therefore we used logistic regression
to analyse these cytokines as binary variables (detectable vs.
undetectable). Cord levels of TNF-α and IL-1β correlated
significantly to levels measured later in life: TNF-α at birth
correlated to levels measured throughout childhood, while
IL-1β correlated to levels measured during the first year of life
but not thereafter. Cord levels of other cytokines measured in
this study did not correlate with peripheral blood levels
throughout infancy or early childhood.

High IL-1β levels at birth predict reduced parasite
densities and severe malaria risk in infancy

During a malaria infection, pro-inflammatory cytokines are
rapidly released from innate and adaptive immune cells, and
may contribute to control of parasite density [29]. We analysed
the relationship between cord levels of the cytokines IL-1β and
TNF-α, and parasite densities during subsequent infections.
High levels of IL-1β in cord blood were related to lower parasite
levels during infections in infants (P=0.003, GEE model [Table
5]), equal to ~40% reduction in average parasite density
(geometric mean parasite density in children with high cord
IL-1β 2100 95% CI [1692 - 2607] versus children with low cord
IL-1β 3528 95%CI [2927 - 4253] parasites per μL; Figure 1).
Cord TNF-α levels did not predict parasite densities during
subsequent infections.

Finally, we analysed the influence of cord blood TNF-α and
IL-1β levels on severe malaria risk. Kaplan-Meier curves
(Figure 2) indicate that children with high cord levels of IL-1β
(but not TNF-α) are protected against severe malaria. In Cox

Table 3. Correlation between cord cytokine levels
(Spearman’s rank correlation).

 TNF-α IL-1β IL-4 IL-5 IL-6 IL-10 IFN-γ
TNF-α        

IL-1β 0.64       

IL-4 0.22 0.23      

IL-5 0.4 0.34 0.17     

IL-6 0.14 0.37 0.13 0.15    

IL-10 0.32 0.34 0.23 0.27 0.45   

IFN-γ 0.35 0.3 0.34 0.25 0.16 0.34  

All correlations had Bonferroni-adjusted p-values<0.001, except correlations
between IL-6 and TNF-α (P=0.002) and between IL-6 and IL-4 (P=0.003)
doi: 10.1371/journal.pone.0077214.t003

Table 4. Correlation between birth levels and early
childhood levels of cytokines.

Age (in weeks) TNF-α IL-1β IL-5 Il-6 IL-10 Number of Children
< 12 0.27* 0.16* 0.1 0.01 0 162
12-24 0.18* 0.14* 0.06 0.07 0.04 287
24-48 0.30* 0.21* 0.05 -0.01 0.04 229
48-76 0.14* 0.07 0.05 0.05 0.05 225
76-100 0.18* -0.04 -0.09 0.07 0.08 182
100-124 0.23* 0.07 0.1 -0.07 -0.01 146
124-148 0.28* 0.02 0.01 0.05 -0.02 88

Correlation coefficients (Spearman’s rank correlation) at different age intervals are
presented. IL-4 or IFN-γ were only detected in a minority of samples, and were
therefore analyzed by logistic regression to assess whether cytokine positivity at
birth predicted cytokine positivity during childhood. Detectable cord levels of IL-4
were associated with detectable IL-4 in samples collected before 12 weeks of age
(odds ratio 2.46 95%CI [0.93 - 6.52], P=0.07). Detectable IFN-γ levels at birth were
associated with IFN- γ detection in the first 12 weeks of life (odds ratio 2.26 95%CI
[1.08 - 4.72], P=0.03), and with IFN- γ negativity between weeks 124 and 148
(odds ratio 0.20 95%CI [0.06 - 0.68], P=0.01).
*. P<0.05
doi: 10.1371/journal.pone.0077214.t004

Table 2. Cord cytokine levels stratified by parity, transmission season and placental malaria status (Median [Q1-Q3]).

 Parity  Transmission Season  Placental Malaria

 Primiparae Secundiparae Multiparae p-value High Low p-value PM + PM - p-value

TNF-α
118.7 (70.5 -
180.9)

132.7 (72.2 - 201.9)
116.5 (68.1 -
173.8)

0.15  
122.8 (72.1–
192.7)

116.9 (64.5 -
173.5)

0.31  
128.9 (79.7 -
191)

119.6 (68.2 -
180.7)

0.29

IL-1β 5.8 (2.9 - 10.7) 6.4 (3.0 - 11.8) 5.9 (3 - 11.9) 0.8  5.8 (3 - 11.1) 6.3 (2.9 - 11.9) 0.84  5.8 (3.1 - 9.9) 6.1 (3 - 11.9) 0.5

IL-4 * 12.4 9.8 10.5 0.67  14.4 7.7 0.002  10.5 10.9 0.89

IL-5 2.4 (0.7 - 4.9) 2.7 (1 - 5.2) 2.7 (1.1 - 5.3) 0.35  2.9 (0.7 - 5.4) 2.4 (1 - 5.2) 0.45  2.5 (0.4 - 6) 2.6 (1 - 5.2) 0.39

IL-6 7.3 (2.3 - 17.5) 5.6 (1.3 - 15.3) 7.7 (2.4 -20.9) 0.13  6.9 (2.3 -22.3) 7 (1.9 - 16.2) 0.44  5.6 (1.2 - 12.8) 7.1 ( 2.3 - 19.1) 0.14

IL-10 4 (2.1 - 6.9) 2.9 (1.3 - 5.5) 3.3 (1.3 - 5.8) 0.003  3.6 (1.6 - 6.5) 3.2 (1.5 - 5.3) 0.05  3.9 (1.9 - 6.9) 3.3 (1.5 - 5.9) 0.04

IFN-γ * 22.9 21.7 18.6 0.41  25.6 16.1 0.001  20.5 20.9 0.91

Cytokine levels are presented as pg/ml.
*. Percentage with detectable cytokine
doi: 10.1371/journal.pone.0077214.t002
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regression analyses, high levels of IL-1β at birth decreased the
risk of first severe malaria episode (hazard ratio (95% CI, P-
value) of 0.60 (0.39 - 0.92, P = 0.02)) (Table 5). In a
multivariate Cox model that included all cord blood cytokines
as well as other baseline covariates, only IL-1β levels at birth
had a significant effect on the time to first severe malaria event,
reducing the risk of severe malaria episode by 42% (hazard
ratio (95% CI, P-value) 0.58 (0.35 - 0.97 , P=0.04)).

Discussion

In this study, we investigated whether cord blood cytokines
of children living in a malaria endemic area are related to
cytokine levels during early life and whether they predict severe
malaria risk. Our results show for the first time that higher
levels of the pro-inflammatory cytokine IL-1β at birth are
significantly associated with improved control of parasite
density and with decreased risk of severe malaria during early
life. These findings support the idea that in utero sensitization
or constitutive expression levels of cytokines, reflected by cord
blood cytokine levels, contributes to the risk of severe malaria
during childhood.

Previous studies have shown that cord blood cytokine
responses might influence the risk of common childhood
diseases. In the US, greater IFN-γ secretion by cord blood
mononuclear cells (CBMC) reduces the risk of acute lower
respiratory illness in the first year of life [30]. In a prospective
birth cohort study in Kenya, children of malaria-infected women
whose CBMC did not produce cytokines (IFN-γ, IL-2, IL-13,
and/or IL-5) in response to blood stage malaria antigens were
at increased risk of infection and had lower hemoglobin levels
during childhood [20]. The effect of specific cytokines or
immune responses on malaria severity has not previously been
assessed.

In our birth cohort, infants with high levels of TNF-α and
IL-1β at birth persist in this pattern during infancy, and these
intrinsically higher levels might act early during an infection to
control parasite density. TNF-α is a major effector cytokine and
is implicated in both protection and pathogenicity during
malaria infection. Several studies have observed that plasma
levels of TNF–α are significantly higher in infected humans

Table 5. Cox model on time to first severe malaria episode
and GEE model on parasite density.

 Severe Malaria Parasite density

Cytokine Cox Model* GEE model (< 1st year)¤

IL-1β 0.60 (0.39-0.92) P=0.02 -0.16 (-0.26 -0.05) P=0.003
TNF-α 0.68 (0.45-1.03) P=0.07 -0.09 (-0.20 - 0.01) P=0.09

For Cox regression results, hazard ratios adjusted for factors that might influence
severe malaria risk (sickle cell trait status, alpha-thalassemia, transmission
season, parity vs. placental malaria, bed net use and village of residence) are
shown. Regression coefficients are presented for GEE models that assess the
influence of IL-1β or TNF-α on parasite density
*. Hazard ratio
¤. Regression coefficients
doi: 10.1371/journal.pone.0077214.t005

presenting with severe malaria [12,13]. In our study, high cord
levels of TNF-α were associated with decreased risk of severe
malaria, although this association was only marginally
significant. The protective role of TNF-α is suggested by animal
studies in which malaria-resistant C57BL/6 mice had higher
levels of TNF-α mRNA in the spleen and liver during the early
phase of infection, which enhanced clearance of infection [31].
In humans, TNF-α production during the acute phase of
malaria similarly predicts a more rapid clinical and
parasitological cure [32,33]. In a prospective study from Papua
New Guinea, children with increased TNF-α levels during a P.
falciparum infection were at lower risk of subsequent P.
falciparum clinical episodes [34], which is consistent with more
rapid clearance of parasites. In Gabon, children with a history
of severe malaria had fewer T cells producing TNF-α in
response to parasite antigen than children with a history of only
mild malaria [35].

IL-1 acts synergistically with TNF-α to enhance NO and IFN-
γ production in murine models of malaria [36]. PBMC IFN-γ
production in response to malaria antigens has been
associated with protection against reinfection in children with
mild malaria [37], and NO has a direct parasite killing effect
[38]. IL-1 also inhibits the intra-hepatocytic development of the
rodent malaria parasite P. yoelii, an effect partly mediated by
IL-6 secretion [39], and controls blood stage parasitemia in
mice infected with P. berghei [40]. Our finding that high levels
of cord blood IL-1β reduce the risk of severe malaria is also
consistent with a study showing that IL-1β promoter haplotype
-31C/-511A is associated with decreased production of IL-1
and increased risk of severe malarial anaemia in Kenyan
children [41]. In our cohort, the protection associated with cord
IL-1β against both parasite density and SM during infancy
(reductions of ~40% and 40%, respectively) was similar in
degree to the independent effects of HbAS throughout early
childhood (reductions of 42% and 43%). Future studies should
assess the contribution of polymorphisms affecting the
inflammasome, a multi-protein complex responsible for
processing and secretion of IL-1β: mutations that enhance
inflammasome activity might result in increased levels of IL-1β
at birth and afterwards.

Malaria infection during pregnancy modifies the risk of
malaria infection and disease for the offspring [25,42]. In
Tanzania, we previously observed that offspring of infected
multiparae but not primiparae have increased risk of malaria
infection [21], and more recently that these offspring have an
increased risk of severe malaria (manuscript submitted). In
Gabon, Schwarz et al found that the risk of clinical malaria is
higher in children born to multigravidae with placental malaria
[25]. We speculated that the effect of pregnancy malaria on
malaria outcomes in their offspring might be mediated by
altered cytokine responses in offspring that would be evident at
birth. However our analyses do not identify a relationship of
placental malaria at delivery to cord levels of IL-1β. Further
research is warranted to identify the mechanisms by which
maternal malaria modifies the risk of childhood malaria in
offspring.

Future studies should also determine the mechanisms that
control or modify cord blood cytokine profiles. Other maternal

Cord Cytokines and Severe Malaria Risk

PLOS ONE | www.plosone.org 5 October 2013 | Volume 8 | Issue 10 | e77214



Figure 2.  Kaplan-Meier curves for the risk of severe malaria.  (a) High cord levels of IL-1β were associated with longer time to
first severe malaria episode (P=0.008, log-rank test); (b) High levels of TNF-α at birth were marginally associated with a longer time
to first severe malaria episode (P=0.08, log-rank test). High levels of cord IL-1β and TNF-α were defined based on median values
(TNF-α 120.8 pg/ml; IL-1β 6 pg/ml).
doi: 10.1371/journal.pone.0077214.g002
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infections endemic in the study area such as lymphatic filariasis
could be modifying cord blood cytokine production, but were
not studied in this cohort. Alternatively, children may have
intrinsic differences in cytokine expression, owing to, for
example, genetic polymorphisms or in utero imprinting, and
these differences could influence parasite density and severe
malaria risk during early life. We have found that all cytokines
tested are positively correlated at birth, suggesting that
cytokine levels in cord blood might have been influenced by a
common mechanism (such as inflammation) more so than by
individual genetic polymorphisms.

Severe malaria represents a heterogeneous group of clinical
presentations, including severe anemia, cerebral malaria, and
respiratory distress, among others. These different syndromes
might be associated with specific immune responses: for
example, children with severe anemia have lower IL-10 levels
compared to children with cerebral malaria [14,43]. Future
studies with sufficient sample sizes should assess whether
elevated IL-1β levels at birth reduce risk of all severe malaria
symptoms equally or only of specific syndromes, and also
whether a threshold level of IL-1β is required for the protective
effect.

In conclusion, IL-1β levels in cord blood predict IL-1β levels,
parasite density, and severe malaria risk throughout infancy.

Therefore, factors that influence the cytokine profile or pro-
inflammatory bias of the unborn child may have a significant
impact on the outcome of malaria infections throughout early
life. Placental malaria also increases parasite density and
severe malaria risk in offspring, but it does not influence cord
cytokine levels and therefore acts independently of the cord
cytokine effect. Further study is needed to identify the factors
that influence the fetal cytokine profile, as well as interventions
that might target these factors to improve malaria outcomes
during early childhood.
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