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Abstract

After variable selection, standard inferential procedures for regression parameters
may not be uniformly valid ; there is no finite-sample size at which a standard test is
guaranteed to approximately attain its nominal size. This problem is exacerbated in
high-dimensional settings, where variable selection becomes unavoidable. This has
prompted a flurry of activity in developing uniformly valid hypothesis tests for a
low-dimensional regression parameter (e.g. the causal effect of an exposure A on an
outcome Y ) in high-dimensional models. So far there has been limited focus on model
misspecification, although this is inevitable in high-dimensional settings. We propose
tests of the null that are uniformly valid under sparsity conditions weaker than those
typically invoked in the literature, assuming working models for the exposure and
outcome are both correctly specified. When one of the models is misspecified, by
amending the procedure for estimating the nuisance parameters, our tests continue
to be valid; hence they are doubly robust. Our proposals are straightforward to
implement using existing software for penalized maximum likelihood estimation and
do not require sample-splitting. We illustrate them in simulations and an analysis
of data obtained from the Ghent University Intensive Care Unit.

Key words: Causal inference; doubly-robust estimation; high-dimensional inference; post-

selection inference.
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1 Introduction

We will consider a study design which collects i.i.d. data on an outcome Y , an exposure

of interest A and a vector of covariates L, some of which may confound the relationship

between A and Y . A common means of assessing the effect of A on Y is to fit a regression

model, adjusted for A and the covariates; the estimate of the coefficient for A is then used

to obtain inference on the exposure effect. In practice, there is often little prior knowledge

on which variables in a given data set are confounders, and furthermore how one should

model the association between these confounders and outcome. Hence, data-adaptive

procedures are typically employed in order to select the variables to adjust for and/or

choose a model for their dependence on Y . In particular, data-adaptive model selection

becomes increasingly necessary when the dimension of L is close to or greater than the

number of observations.

However, obtaining hypothesis tests and confidence intervals that approximately enjoy

their nominal size/coverage after model selection is challenging. The estimate of the effect

of A obtained directly via regularization techniques - e.g. using a penalized maximum

likelihood estimator (PMLE) - will inherit a so-called regularization bias. Furthermore,

the moderate-sample distribution of this estimator will typically be non-normal (Leeb and

Pötscher, 2005). This is because convergence to the asymptotic normal distribution is not

uniform with respect to the parameters indexing the model for Y . Therefore, there exists

no finite n such that normal-based tests and intervals are guaranteed to perform well. This

issue applies more generally to post-regularization estimators (where the model selected

via regularization is refitted using the chosen covariates) and routinely-used stepwise

variable selection strategies. Standard inferential procedures also ignore the additional

uncertainty created during the model-selection process.
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In the mathematical statistics literature, this has prompted the development of meth-

ods to obtain uniformly valid inference for a low-dimensional regression parameter in a

high-dimensional model. Initial focus was given to tests and confidence intervals for a

coefficient in a regression model fit using the Lasso (Belloni et al., 2014; van de Geer

et al., 2014; Zhang and Zhang, 2014); after which attention has turned to more general

data-adaptive methods (Ning and Liu, 2017; Chernozhukov et al., 2018). The key insight

has been that one should perform selection based on an additional working model for the

association between A and L (in addition to Y with A and L). The majority of the recent

proposals rely on strong assumptions on sparsity e.g. the number of relevant covariates

in L, which needs to be much smaller than the square root of the sample size n. In bio-

statistics, there were earlier developments in Targeted Maximum Likelihood Estimation

(TMLE), where data-adaptive methods are incorporated into the estimation of causal

effects (van der Laan and Rose, 2011). Much of the theory on TMLE is developed under

Donsker conditions from the empirical process literature (but not all of it e.g. Zheng and

van der Laan (2011)). These conditions are usually too restrictive in settings where the

dimension of covariates is allowed to grow with sample size.

In this work, we describe how to obtain uniformly valid tests of the causal null hypoth-

esis for a regression parameter in a high-dimensional Generalized Linear Model (GLM).

Our tests require postulation of working models for the conditional mean of the exposure

and the outcome given covariates. We will work under parametric models, as this is what

is typically done in practice. First, we describe a procedure for estimating the nuisance

parameters which yields a valid test so long as all working models are correct. However,

given that regularization/model selection is required because we do not know the true

models to start with, some degree of misspecification is likely. This is felt most acutely

when the number of covariates in the data set is very large relative to the number of
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observations. We then show how to amend the earlier procedure for nuisance param-

eter estimation, so that the test statistic will converge uniformly to a limiting normal

distribution if either working model is correct. Hence the test can be made uniformly

doubly robust. This is in contrast to several existing proposals, which give doubly robust

estimators but not inference (van der Laan and Rose, 2011; Farrell, 2015; Chernozhukov

et al., 2018; Shah and Peters, 2019). Furthermore, we will show that when both working

models are correct, then in certain cases the test will continue to attain its nominal size

under sparsity conditions weaker than those invoked in the literature. Our test statistic

is straightforward to construct, and all procedures for estimating the nuisance parame-

ters can be performed using existing penalized regression software. Sample-splitting is

not required, which makes our proposal much simpler to implement and less affected by

regularization bias in moderate sample sizes.

The paper is organized as follows: in Section 2, we state the null hypothesis we

are interested in testing and describe issues with obtaining valid inference in the high-

dimensional setting. Section 3 presents the score test statistic. In Sections 4 and 5 we

describe specific procedures for estimating the nuisance parameters, first when all working

models are correct and then under misspecification. We also discuss the asymptotic

properties of the various methods. We illustrate the methods via simulation studies in

Section 6 and an analysis of data from the Ghent University Intensive Care Unit in Section

7, where we consider the effect of a change in glycemia level on mortality in critically ill

patients.
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2 Motivation

We consider a test of the null hypothesis H0 that Y is independent of A within strata

defined by L, or

H0 : Y |= A|L. (1)

We will let the exposure A be binary e.g. it is coded as 1 if an individual undergoes a

particular medical treatment and 0 otherwise; extensions to more general exposures will

be discussed later in the paper. Then given the standard structural conditions in the

causal inference literature, in particular that L is sufficient to adjust for confounding, the

null hypothesis also expresses the absence of a causal effect of A on Y , conditional on L.

Simple methods for testing the null hypothesis of conditional independence are avail-

able via the regression framework. Standard score tests of H0 require estimation of

E(Y |L), since under the null, E(Y |A = a, L) = E(Y |L) (full conditional independence

implies mean conditional independence). In realistic settings where L has multiple con-

tinuous components, non-parametric estimators of this functional may perform poorly. A

common strategy is to instead postulate a parametric regression model B for the mean of

Y conditional on the covariates:

E(Y |L) = m(L; β),

where m(L; β) is a known function smooth in an unknown finite-dimensional parameter

β. Then, via maximum likelihood estimation of GLMs, under the pre-specified model B

one can obtain a consistent and uniformly asymptotically normal (UAN) score statistic

for testing H0 (where uniformity is with respect to β). This means that there exists a

finite-sample size such that for any value of β within the parameter space, the test statistic

will be approximately normally distributed. We note that although this is a valid test
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of H0, it is only consistent in the direction of alternatives that obey some form of mean

conditional independence between Y and A; the same holds for subsequent tests described

in this paper.

Unfortunately, this standard methodology does not straightforwardly extend to high-

dimensional settings. In low-dimensional settings, one can perform a score test of the

causal null H0 based on the asymptotic distribution of an unbiased (unscaled) score test

statistic U(β); for likelihood estimation of canonical GLMs, U(β) = A{Y − m(L; β)}.

Then let β̃ denote an estimate of β obtained either directly via some regularization method

or after model selection. Following a Taylor expansion,

1√
n

n∑
i=1

Ui(β̃) =
1√
n

n∑
i=1

Ui(β) +
1

n

n∑
i=1

∂Ui(β)

∂β

√
n(β̃ − β)

+OP (
√
n||β̃ − β||22) (2)

where ||.||2 denotes the Euclidean norm. For fixed β, by appealing to the oracle properties

of β̃ it may be argued that the right hand side of (2) is asymptotically normal. Indeed,

assuming that β̃ converges sufficiently quickly, the remainder term OP (
√
n||β̃−β||22) con-

verges to zero. But in general this does not prevent the existence of converging sequences

βn for which
√
n(β̃ − βn) and thus the test statistic has a complex, non-normal distribu-

tion. One root cause of this is the discrete nature of many data-adaptive methods e.g.

stepwise selection; in some samples β̃ will be forced to zero whereas in others it will be

allowed to take on its estimated value. This discrete behavior persists with increasing

sample size under certain sequences βn. The convergence of the resulting score test statis-

tic to the limiting standard normal is hence not uniform over the parameter space (Leeb

and Pötscher, 2005; Dukes and Vansteelandt, 2019). This is troubling, as one wishes there

to be a finite n where the normal approximation is guaranteed to hold well, regardless

of the (unknown) true values of the nuisance parameters, in order to guarantee that the
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procedure will work well in finite samples.

3 A uniformly valid test of the causal null hypothesis

We introduce in this section the statistic we will use for testing H0 in a high-dimensional

setting. Let us now formally define γ to be the nuisance parameter indexing the parametric

model A for the conditional mean of A given L:

E(A|L) = π(L; γ),

where π(L; γ) is a known function smooth in an unknown finite-dimensional parameter γ;

the conditional mean E(A|L) is known as the propensity score for binary A. Our analysis

is based on the score function

U(η) ≡ {A− π(L; γ)}{Y −m(L; β)}.

where η = (γT , βT )T . This will require initial estimates of γ and β under working models

A and B respectively. It is natural to model the dependence of A on L using a logistic

regression e.g. π(L; γ) = expit(γTL); if A were continuous, one might postulate a linear or

log-linear model instead and the proposal can then be easily adapted. The form that model

B takes will depend on the nature of the outcome. If Y is continuous and unconstrained,

one might postulate a linear model e.g. m(L; β) = βTL.

One can then construct a test statistic

Tn =

1√
n

∑n
i=1 Ui(η̂)√

1
n

∑n
i=1

{
Ui(η̂)− Ū(η̂)

}2

that we will compare to the standard normal distribution. Here, Ū(η̂) = n−1
∑n

i=1 Ui(η̂)

and η̂ is an estimate of η; in what follows, we will focus on regularized estimation of this

parameter. Note that in evaluating the functions π(L; γ) and m(L; β) at their limiting
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values, it follows that the mean of U(η) under the null is equal to

E[{E(A|L)− π(L; γ)}{E(Y |L)−m(L; β)}]

which equals zero if either model A or B is correct a.k.a under the union model A ∪ B.

Hence we refer to the score U(η) as doubly robust.

4 Estimation of η when all models are correct

4.1 Proposal

We will first consider data generating processes where both models A or model B are

correctly specified e.g. we will work under the intersection submodel A ∩ B. In high-

dimensional settings, under model A∩B one can estimate γ and β as γ̂ and β̂ respectively

using any sufficiently fast-converging sparse estimator. For example, with binary A and

continuous Y and using standard PMLE with a Lasso penalty, γ̂ and β̂ can be obtained

as:

γ̂ = arg min
γ

1

n

n∑
i=1

[log{1 + exp(γTLi)} − Ai(γTLi)] + λγ||γ||1

β̂ = arg min
β

1

2n

n∑
i=1

(Yi − βTLi)2 + λβ||β||1

(Tibshirani, 1996), where λγ > 0 and λβ > 0 are penalty parameters. To keep the notation

simple, we have omitted the dependence of γ̂ and β̂ on λγ and λβ respectively (as well as

on n). Plugging the resulting estimates into Tn will yield a test statistic that under the

null follows a standard normal distribution. We note that our Theorem 1 is quite general

and covers other penalized m-estimation methods (including variants on the Lasso).

To give some intuition about why one can plug γ̂ and β̂ into Tn and yet obtain a

UAN test statistic, by repeating the expansion in (2) for the score U(η̂), we observe the
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first-order term

1

n

n∑
i=1

∂Ui(η)

∂η

√
n(η̂ − η). (3)

We can control this term under the modelA∩B, since ∂U(η)/∂η will then have expectation

zero at the limiting value of η. For example, when π(L; γ) = expit(γTL) and m(L; β) =

βTL, then using the law of iterated expectation

E{∂U(η)/∂β} = E[E{A− π(L; γ)|L}L] = 0 and

E{∂U(η)/∂γ} = E [π(L; γ){1− π(L; γ)}E{Y −m(L; β)|L}L] = 0

under the null. This property helps to ensure that term (3) is asymptotically negligible,

regardless of the complex behavior of η̂ . Such phenomena (in the context of doubly robust

estimators) is well-understood when L is low-dimensional (Vermeulen and Vansteelandt,

2015). What is surprising is that it continues to hold in high-dimensional settings, even

when non-regular estimators are used for η (Belloni et al., 2016).

We recommend selecting the penalty parameters in practice via cross validation,

although there are limited theoretical results available on its validity in this context

(Chetverikov et al., 2016), and our inferences assume that these parameters are fixed.

The standard conditions are that λγ = o(
√

log(p ∨ n)/n) and λβ = o(
√

log(p ∨ n)/n)

(where a ∨ b denotes the maximum of a and b), which are required for our theoretical

results (see Appendix A). In practice, we also recommend refitting both working mod-

els; model refitting is typically done in the literature in order to improve finite-sample

performance (Belloni et al., 2016; Ning and Liu, 2017). Our theory can allow for this

by appealing to results on Post-Lasso estimators (Belloni et al., 2014, 2016). For any

vector a ∈ Rp, let us define its support as support(a) = {j ∈ {1, .., p} : aj 6= 0}; then we

refit each model A and B using support(γ) ⊆ support(γ̂) and support(β) ⊆ support(β̂)

respectively.
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4.2 Asymptotic properties

Let P be the class of laws that obey the intersection submodelA∩B; then we are interested

in convergence under a sequence of laws Pn ∈ P . We will allow for p to increase with

n, and for the values of the parameters γ and β to depend on n, and hence also models

A and B (although the notation with respect to the models will be suppressed). This is

done in order to better gain insight into the finite-sample behavior of the test statistic

when L is high-dimensional. Let γn and βn be the population values of the parameters

indexing models A and B respectively. Finally, let PPn() denote a probability taken with

respect to the local data generating process Pn.

Theorem 1. Let us define the active set of variables as Sγ = support(γn) and Sβ =

support(βn). Furthermore, let sγ denote the cardinality |Sγ| and likewise sβ = |Sβ|, and p

denote the length of the vectors γn and βn . Suppose, in addition to Assumptions 1 and 2

in Appendix A, the following sparsity conditions hold:

(i) (sγ + sβ) log(p ∨ n) = o(n)

(ii) sγsβ log2(p ∨ n) = o(n).

Then under H0 and the intersection submodel, for all estimators satisfying Assumption 2

in Appendix A, we have for any t ∈ R:

lim
n→∞

sup
Pn∈P

|PPn(Tn ≤ t)− Φ(t)| = 0 (4)

Remark. The key assumptions required for this result to hold are given in Appendix A.

Therein, Assumption 1 contains mild moment conditions, whereas Assumption 2 requires

sufficiently fast estimation of π(L; γ) and m(L; β) in the empirical `2-norm. Condition

(i) requires that both sγ << n and sβ << n; such conditions are quite standard in
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order to guarantee consistency of the sparse estimators. Condition (ii) implies that we

can allow for sγ to be large if sβ is small, and vice versa. We view this as useful given

that in many medical settings, doctors may rely on a limited number of factors when

deciding on a patient’s treatment. Hence it may even be plausible that the exposure

model is ‘ultra-sparse’ e.g. sγ <<
√
n. In contrast, it appears less likely that a model for

a clinical outcome (e.g. disease occurrence) can be well approximated by a small number

of covariates. These conditions are essentially equivalent to those given in Chernozhukov

et al. (2018) and in the Supplementary Appendix of Belloni et al. (2014), where sample-

splitting/cross-fitting is used; indeed, we obtain slightly sharper results than Belloni et al.

(2014) (who require that n2/rs log(p ∨ n) = o(n) for some r > 4 for uniformly valid

inference) by focusing on binary exposures.

Remark. In Farrell (2015), uniformly valid inference for the marginal treatment effect is

obtained under the stronger assumption that s2
β = o(n) (ignoring log factors). To obtain

uniformly valid estimators and tests based on trading-off assumptions on sγ and sβ, it

turns out to be crucial that first order terms like (3) have expectation zero, conditional only

on (Li)
n
i=1; in many estimation problems this is not possible, because fitting a model for Y

requires adjusting for/conditioning on the exposure, so the estimated coefficients depend

on (Ai)
n
i=1. One way to get round this could be to use sample-splitting (Chernozhukov

et al., 2018). However, under the null our score test statistic factorizes into a component

involving A and L, and a component involving Y and L. That factorization is much

like what one normally achieves via sample-splitting, and hence we can avoid doing this.

Indeed, the test statistic also converges to the standard normal under the weaker null

hypothesis that E(Y |A,L) = E(Y |L), although this result requires stronger sparsity

conditions (namely those of Theorem 2). Stronger conditions would also be required for

the above procedure if the working models are refitted using the union of the selected
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covariates support(β̂) ∪ support(γ̂) (Belloni et al., 2014), since the variables selected in

the model for E(Y |L) depend additionally on the data (Ai)
n
i=1 (Farrell, 2015).

Remark. Although we have focused on sparse estimators, Theorem 1 should hold for

more general machine learning methods for estimating π(L; γ) and m(L; β). The key

conditions required are that there is consistency in the prediction error, and shrinkage in

the product of the `2 norms of the errors as op(n−1/2); see Appendix A and Chernozhukov

et al. (2018) for further details.

5 Estimation of η under model misspecification

5.1 Proposal

Under the union model A∪B, plugging in an arbitrary high-quality sparse estimator η̂ of

η into Tn will not generally lead to the test statistic converging uniformly to the standard

normal. Hence although the score is doubly robust, plugging in η̂ will not yield uniformly

valid, doubly robust inference. This can be seen by replicating the Taylor expansion in

(2) for the score U(η̂); the gradient ∂U(η)/∂η is no longer guaranteed to be mean zero

and one would generally need to approximate
√
n(η̂ − η) to assess the variability in the

score function under the union model. However, as previously discussed, approximating

this term well is generally not possible in the high-dimensional setting.

We will handle the problematic term (3) by using the gradient ∂U(η)/∂η in order

to estimate η, so as to ensure that n−1
∑n

i=1 ∂Ui(η)/∂η is approximately equal to zero

at the estimator of the nuisance parameter. This leaves (aside from the remainder) only

the score function U(η), which we will show is UAN. Specifically, one can estimate η by
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solving the following subgradient estimating equations:

0 =
1

n

n∑
i=1

∂

∂β
Ui(η̂BR) + λγg(γ̂BR) (5)

0 =
1

n

n∑
i=1

∂

∂γ
Ui(η̂BR) + λβg(β̂BR) (6)

Here, g(a) denotes a vector of elements g(aj), where g(aj) = sign(aj) for j = 1, ..., p if

aj 6= 0 and g(aj) ∈ [−1, 1] otherwise. The penalty term in (5) corresponds to the sub-

gradient of the `1 norm ||γ||1 with respect to γ and likewise for the penalty in (6); hence

our procedure amounts to `1-penalized m-estimation. Whilst our procedure requires that

the initial working models A and B are of the same dimension, using a Lasso penalty will

tend to return nuisance parameter estimates with different numbers of non-zero compo-

nents. We again recommend refitting each working model using the covariates selected

via penalization. The above procedure extends the bias-reduced doubly robust estimation

methodology of Vermeulen and Vansteelandt (2015) to incorporate penalization; we thus

use γ̂BR and β̂BR to refer to the resulting estimators of γ and β respectively.

5.1.1 Example 1: continuous outcome

Returning to the example of Section 3, we might postulate a linear model for the outcome

and a logistic model for the exposure. In this case, the solutions to the equations (5) and

(6) specify the optima of the following convex optimization problems:

γ̂BR = arg min
γ

1

n

n∑
i=1

log{1 + exp(γTLi)} − Ai(γTLi) + λγ||γ||1 (7)

β̂BR = arg min
β

1

2n

n∑
i=1

[expit(γ̂TBRLi){1− expit(γ̂TBRLi)}(Yi − βTLi)2] + λβ||β||1. (8)

Hence one can estimate γ by fitting a logistic regression model with a Lasso penalty,

and then estimate β by fitting a linear regression model again with a Lasso penalty and

weights constructed using the estimates γ̂BR.
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5.1.2 Example 2: binary outcome

A more appropriate working model for the conditional mean of binary Y might be

E(Y |A = 0, L) = expit(βTL). Hence we now have two minimization problems

γ̂BR = arg min
γ

1

n

n∑
i=1

[expit(β̂TBRLi){1− expit(β̂TBRLi)}][log{1 + exp(γTLi)} − Ai(γTLi)]

+ λγ||γ||1

β̂BR = arg min
β

1

n

n∑
i=1

[expit(γ̂TBRLi){1− expit(γ̂TBRLi)}][log{1 + exp(βTLi)} − Ai(βTLi)]

+ λβ||β||1.

An additional complication is then that solving each set of equations requires initial esti-

mates of the other nuisance parameter. There are then two possible approaches one might

take; one is to estimate γ and β together by maximizing a joint penalized likelihood. Al-

ternatively, one could use the iterative procedure described in Algorithm 1 in Appendix

B, which could be easily adapted for other types of outcome.

Avagyan and Vansteelandt (2017) and Tan (2019) make a closely related proposal in

the context of estimation the average treatment effect; however, focusing on hypothesis

testing and conditional treatment effects enables some simplifications. Our approach for

nuisance parameter estimation is based on weighted `1-penalized maximum likelihood

estimation, so is both easier to implement using existing software and likely to be less

computationally demanding in high-dimensional settings. We will also be able to obtain

sharper results (in terms of conditions on sparsity) on the theoretical properties of the

test statistic; see Section 5.2. When the exposure model is linear, our estimator of the

unscaled test statistic n−1/2
∑n

i=1 Ui(η̂BR) reduces to the ‘decorrelated score’ approach of

Ning and Liu (2017). This work thus extends the robustness of their score function to the

construction of a test that is UAN under the model A ∪ B. Specifically, by allowing for
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arbitrary exposure and outcome models and scaling the statistic by a ‘sandwich estimator’

of the variance of Ui(η̂BR), our test has greater robustness to misspecification than the

proposals of Ning and Liu (2017), under equivalent assumptions on sγ and sβ (see Section

5.2).

5.2 Asymptotic properties

We will now study convergence of Tn under a sequence of laws Pn ∈ P∗, where P∗

represents a class of laws that obey the union model A∪B; hence this class is much larger

than that considered in Section 4.2.

Theorem 2. Suppose, in addition to Assumptions 1, 3 and 4 in Appendix A, the following

sparsity condition holds:

(iii) (s2
γ + s2

β) log2(p ∨ n) = o(n).

Then under H0 and the union model A ∪ B, using estimators γ̂BR and β̂BR, we have for

any t ∈ R,

lim
n→∞

sup
Pn∈P∗

|PPn(Tn ≤ t)− Φ(t)| = 0. (9)

Remark. This theorem states that under the key ultra-sparsity condition (iii), our pro-

posed test is uniformly doubly robust over the parameter space. This condition entails

that the number of non-zero coefficients in models A and B are small relative to the square

root of the overall sample size; this is much stronger than conditions (i) and (ii). Such an

assumption is common however in the growing literature on high-dimensional inference

(Belloni et al., 2016; Ning and Liu, 2017), where model misspecification is not generally

permitted. Assumptions 3 and 4 require sufficiently rapid estimation of the coefficients γ

and β (notably in `1-norm) as well as the functions π(L; γ) and m(L; β).
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An advantage of our proposal is that any a priori knowledge on the distribution of

the exposure can be easily incorporated into the test statistic. Indeed, note that when

E(A|L) is known, then following our proposal, one can estimate β using standard `1-

penalized regression without weights; hence the proposal reduces to the one described in

Section 4. This is because there is no gradient with respect to the parameters in model

A and the exposure model is guaranteed to be correct.

Corollary 1. Suppose that A is randomized, with randomization probability E(A|L) =

π(L; γ∗) for known γ∗. If γ∗ is plugged into Tn, one can obtain a uniformly valid test

using the weaker sparsity condition sβ log(p ∨ n) = o(n) regardless of whether model B is

correctly specified.

Remark. This corollary of Theorems 1 and 2 states that when we know the randomization

probabilities, one can rely merely on this weaker sparsity condition in order to get a valid

test, even if model B is misspecified.

When both working models are correctly specified and the outcome regression model

is linear, then we have some additional robustness to violations of sparsity, as the following

theorem illustrates:

Theorem 3. When m(L; β) is linear in β, and we restrict ourselves to the class of laws

in P∗ that obey the intersection submodel A ∩ B, then (using estimators γ̂BR and β̂BR)

the score test statistic converges uniformly as in (9) under H0, Assumptions 1-7 and the

conditions (i) (sγ + sβ) log(p ∨ n) = o(n) and

(iv) sγs∗ log2(p ∨ n) = o(n)

where s∗ = sγ ∨ sβ.
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Remark. In the context of linear models for Y , our proposal is thus ‘sparsity-adaptive’,

in the sense that when both models are correct, our proposal is valid under conditions

similar to those required for Theorem 1. As the example in Section 5.1.1 shows, estimated

weights dependent on (Ai)
n
i=1 are only required in this setting when fitting the outcome

model; the proof of Theorem 3 hinges on showing that estimating the weights is of lesser

impact than estimating β at fixed weights. For non-linear outcome models, an equivalent

result will be difficult to obtain, in light of the fact that fitting the exposure model also

requires weights that are dependent on (Yi)
n
i=1; however, a general result could be shown

using sample-splitting (by estimating the weights in a sample separate to the one used

in constructing the test statistic). Nonetheless, this illustrates the trade off between

modelling and sparsity conditions; if we wish to obtain inference under the union model

then we generally need stronger conditions on sγ or sβ.

Remark. The sparsity conditions required for Theorem 3 reduce exactly to those of

Theorem 1 (and thus Chernozhukov et al. (2018)) when sγ ≤ sβ. However, the converse

does not hold; even if sβ = 0, strong assumptions on sγ are still required. This reflects

that estimation of β could be harmed by poor quality estimates of the weights. We do

not see this asymmetry as a serious disadvantage as in many settings, we would expect

that model A is more likely to be sparse.

6 Simulation Study

In this section, we conduct a simulation analysis to compare the performance of the

proposed hypothesis test with that of different tests of the causal null hypothesis. In our

study, we consider the following tests for the null hypothesis (1):

1. A naïve post-selection approach where a t-test is considered for the null using a
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linear regression after the standard post-selection of β based on `1-penalized linear

regression. We study the performance of this approach both when the exposure is

forced (i.e., the treatment effect ψ is not penalised) and not forced to be included

in the model.

2. Tests based on the ‘post-double selection’ (PDS) and ‘partialling out’ (PO) ap-

proaches proposed in the econometrics literature by Belloni et al. (2014), where Y

is regressed on L and A on L also (both using linear models with a Lasso penalty).

PDS then uses a second-stage regression where a linear model for Y is fitted using

ordinary least squares, adjusted for A and the union of the covariates selected at

the first stage, whereas PO emulates the estimator from Robinson (1988) for the

partially linear model, also using refitting. Both approaches were implemented in R

using the package hdm.

3. The procedure described in Section 4, valid under model A ∩ B, where a score

test is considered using standard logistic regression and linear regression after the

post-selection of parameters γ and β based on `1-penalized logistic regression and

`1-penalized linear regression, respectively (hereafter, PMLE-DR).

4. The procedure described in Section 5, valid under model misspecification, where a

score test is considered for the null using standard logistic regression and weighted

linear regression after the post-selection of parameters γ and β based on `1-penalized

logistic regression (7) and `1-penalized weighted linear regression (8), respectively

(hereafter, BR-DR).

Note that all the considered approaches require the selection of penalty parameters.

In our simulation study, we use 10-fold cross validation technique to choose the tuning

parameters for the naïve approach as well as for PMLE-DR and BR-DR. We obtain λγ
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and λβ using R package glmnet through the argument lambda.min; this selects the value

which minimises the mean cross-validated error. In the hdm package, PDS and PO and

implemented using pre-specified values for the penalty parameters (Chernozhukov et al.,

2016); in order to study the impact of using different penalties, we also performed PDS as

described in Belloni et al. (2014) using cross-validation instead of the pre-specified values.

In the simulation analysis, we generate nmutually independent vectors {(Yi, Ai, LTi )T},

i = 1, ..., n. Here, Li = (Li,1, ..., Li,p) is a mean zero multivariate normal covariate with

covariance matrix Σ; either Σ = Ip×p (uncorrelated covariates) or Σ = [σi,j]1≤i,j≤p, where

σi,j = 2−1−|i−j| (correlated covariates). For simplicity we consider a binary exposure

model and linear outcome model. We let for each i = 1, ..., n, the dichotomous ex-

posure Ai take on values 0 or 1 with P (Ai = 1|Li) ≡ π(Li), the outcome Yi be nor-

mally distributed with mean m(Li) and unit variance, conditional on Li and Ai. Fur-

ther, the simulated data are analysed using the following parametric working models:

π(L; γ) = expit(γ0 +

p∑
i=1

γiLi) and m(L, β) = β0 +

p∑
i=1

βiLi , where β0 = 1, γ0 = 2. The

nuisance parameters β = (β1, ..., βp) ∈ Rp and γ = (γ1, ..., γp) ∈ Rp are defined as

b =
(

2 log(20)

n1/2 , 2
log(19)

n1/2 , ..., 2
log(2)

n1/2 , 020, ..., 081, 10 log(2)

n1/2 , ..., 10 log(20)

n1/2 , 0101, ..., 0p

)
, β = 2·b·(

∑p
i=1 b

2)
−1/2,

g =
(

40 log(20)

n1/2 , 40 log(19)

n1/2 , ..., 40 log(2)

n1/2 , 020, ..., 0p

)
, γ = 3·g ·(

∑p
i=1 g

2)
−1/2 where the subscripts

indicate the index (i.e., position) of 0 in the vector. The considered settings for nuisance

parameters are challenging in the sense that there are confounders that are strongly predic-

tive of the exposure and weakly predictive of the outcome. Moreover, there are covariates

which are moderately predictive of the outcome but are not associated with the exposure.

In order to evaluate the impact of model misspecification, we next generate data with

the following outcome model: m(L, β) = 1 + βT
(
|L.,[1:3]|;L.,[4:p]

)
. Finally, for the data

generating mechanism described above, we perform 1,000 Monte Carlo runs for n = 200

and p = 200, n = 500 and p = 500, n = 200 and p = 100, and n = 200 and p = 250.
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Tables 1 and 2 show the Type I errors based on 1,000 replications. The simulation

results show that the PMLE-DR and BR-DR approaches have rejection rates close to the

nominal level of 5%, so long as the outcome model is correctly specified. On the other

hand, we observe that even when both models are correctly specified, the naïve approaches

provide high rejection rates. Moreover, these rates do not diminish with larger sample

size. This poor performance is well aligned with the theory of Leeb and Pötscher (2005).

We also observe that the rejection rates of PDS and PO are relatively high. Part of this

poor performance appeared to be due to the particular data-driven procedure for selecting

the penalty parameters, which led to an insufficient number of covariates being selected.

However, even when using cross validation for PDS, there was still a discrepancy between

the methods. When the covariates were correlated and the outcome model was incorrect,

the PMLE-DR test was mildly anti-conservative relative to the BR-DR test; the fact

that PDS (which is not generally doubly robust) performed relatively well in this setting

indicates that the type of misspecification considered may not be particularly damaging.

In Appendix C, we also consider additional settings under the modified sparsity in the

propensity score model, as well as heteroscedasticity; similar results to those in 1 and 2

are seen across settings.

7 Data analysis

Glycemic control in critically ill patients is still the subject of controversy, in terms of the

optimal limits in which glucose levels are best kept. In the Leuven II randomised trial

(Van den Berghe et al., 2001), strict glycemic control (with the maintenance of glycemia

between 80 and 110 milligram per deciliter (mg/dl)) resulted in reduced mortality. Later

multi-center studies could not replicate these findings, including the NICE-SUGAR trial

(Finfer et al., 2009). Current guidelines usually recommend glycemic control between 140
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Table 1: Type I errors at the 5% significance level based on 1,000 replications: Σ = Ip×p.

Correct models
n = 200 n = 500 n = 200 n = 200

Methods p = 200 p = 500 p = 100 p = 250
Standard naïve (forced) 0.548 0.809 0.291 0.600
Standard naïve (not forced) 0.275 0.555 0.168 0.316
PDS (pre-specified) 0.517 0.761 0.536 0.498
PO (pre-specified) 0.508 0.748 0.519 0.482
PDS (CV) 0.074 0.074 0.068 0.072
PMLE-DR 0.055 0.054 0.070 0.075
BR-DR 0.053 0.069 0.078 0.073

Incorrect outcome model
n = 200 n = 500 n = 200 n = 200

Methods p = 200 p = 500 p = 100 p = 250
Standard naïve (forced) 0.368 0.586 0.210 0.425
Standard naïve (not forced) 0.175 0.313 0.115 0.197
PDS (pre-specified) 0.319 0.634 0.345 0.327
PO (pre-specified) 0.317 0.615 0.345 0.309
PDS (CV) 0.073 0.072 0.060 0.070
PMLE-DR 0.056 0.053 0.070 0.059
BR-DR 0.046 0.059 0.081 0.050

and 180mg/dl. In the Ghent University Intensive Care Unit (UZ Ghent ICU) a glycemic

protocol is used, targeting values between 80 and 150 mg/dl. In practice, glycemia in

patients often falls outside of this range, partly due to a lack of compliance in following the

protocol. We sought to investigate the relationship between glycemic control and 30-day

mortality, using routinely collected data from the UZ Ghent ICU on a large representative

cohort of intensive care patients. Specifically, we aimed to test the null hypothesis of no

effect of a change in glycemia level (from <110 to ≥110 mg/dl, and then from ≤150

to >150 mg/dl) at any day of follow-up on death within 30 days from ICU entry. We

restricted the analysis to patients that were alive in the ICU for at least 48 hours, thus

removing patients who died immediately upon arrival in the ICU.
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Table 2: Type I errors at the 5% significance level based on 1,000 replications: Σ =
[σi,j]1≤i,j≤p.

Correct models
n = 200 n = 500 n = 200 n = 200

Methods p = 200 p = 500 p = 100 p = 250
Standard naïve (forced) 0.448 0.387 0.190 0.522
Standard naïve (not forced) 0.178 0.164 0.100 0.193
PDS (pre-specified) 0.143 0.064 0.103 0.131
PO (pre-specified) 0.115 0.064 0.085 0.108
PDS (CV) 0.066 0.055 0.059 0.075
PMLE-DR 0.057 0.063 0.063 0.047
BR-DR 0.043 0.049 0.051 0.046

Incorrect outcome model
n = 200 n = 500 n = 200 n = 200

Methods p = 200 p = 500 p = 100 p = 250
Standard naïve (forced) 0.312 0.277 0.144 0.363
Standard naïve (not forced) 0.139 0.113 0.070 0.140
PDS (pre-specified) 0.094 0.057 0.079 0.091
PO (pre-specified) 0.077 0.050 0.060 0.077
PDS (CV) 0.071 0.061 0.057 0.073
PMLE-DR 0.063 0.057 0.060 0.056
BR-DR 0.030 0.051 0.044 0.041

Data were obtained from the electronic patient data management system of the UZ

Ghent ICU. The potential confounders were split up into variables assessed at admission

into the intensive care unit and variables where data were collected over time. For covari-

ates that were measured repeatedly, we took the mean of the measurements taken within

the previous 48 hours to the considered day of follow up in the ICU for continuous covari-

ates, and the maximum value for categorical covariates. Measurements on glycemia were

usually recorded multiple times per day, so in order to create the exposure, we took the

mean of the measurements from within the first 6 hours of the day. For this illustration,

any patients with missing data on the exposure, outcome or confounders were removed
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from the dataset. In order to perform our test, at each day we assumed (in individuals still

alive) a logistic regression model for the probability of glycemia level ≥110 mg/dl (or >150

mg/dl) as well as a logistic model for death within 30 days of entering hospital. To avoid

the issues associated with time-varying confounding described e.g. in Robins (1997), in

each regression model we adjusted only for covariate data, as well as previous exposures,

collected prior to the glycemia measurements on a given day. We then used an amended

version of the test for binary outcomes described in Section 5.1.2 (implemented using

Algorithm 1 described in Appendix C), allowing for potential misspecification in either

the exposure or outcome model. Given that the data consisted of multiple observations

per individual, then letting t denote a particular day, we replaced Ui(η̂) with
∑

t Uit(η̂) in

the statistic Tn (for t = 3, ..., 30). In our modeling, we included all confounders selected

by clinical experts, as well as quadratic terms of continuous variables and all two-way

interactions between main effects.

We obtained data on 12,105 patients entering the intensive care unit; after restricting

to patients still alive at day 3, 10,885 individuals remained. Further removing patients

entering prior to 2013 left 4,682 individuals, with a final dataset of 4,120 after removing

those with missing data. Given that patients were assessed on multiple days, there were

24,863 observations in the dataset; the median number of contributed observations was 3

(the minimum was 1 and the maximum 28). In this final cohort, 768 (18.6%) of individuals

died in hospital within 30 days of entering the ICU. Considering the mean glycemia values

for patients within the first 6 hours of day 3, the average of these values among all patients

was 131.6 (minimum: 45, maximum: 492). 927 (23.3%) patients had mean glycemia at

day 3 <110 mg/dl, 2,208 (55.5%) had a level ≥110mg/dl and ≤150mg/dl and 841 (21.2%)

had a level >150 mg/dl. After generating interactions, there were 148 covariates to adjust

for in the analysis. Looking at a change at each day from <110 to ≥110 mg/dl, the test

23



statistic Tn was -1.42 with a p-value of 0.156 whereas changing from ≤150 to >150 mg/dl

gave a test statistic of 6.98 (p <0.001). Hence, at the 5% level, we saw evidence of a

difference in 30 day mortality based on a change from moderate (≤150mg/dl) to high

(>150 mg/dl) glycemia levels on a given day. On the other hand, in comparing those

with low (<110mg/dl) vs. higher (≥110 mg/dl) glycemia levels, we did not observe a

statistically significant difference at the 5% level.

8 Discussion

We have proposed a general framework for constructing uniformly valid tests of GLM

parameters in high-dimensional settings. We hope to have clarified why locally doubly

robust methods (in this case, doubly robust under the null) have a privileged position

in the literature (Farrell, 2015); if all working models are correct, one can obtain a uni-

formly valid test by plugging in any sufficiently fast-converging sparse estimator of the

nuisance parameters. If one of the working models is misspecified, then one can still ob-

tain uniformly valid inference, so long as a specific estimation procedure for the nuisance

parameters is used. We have also indicated why score tests might be preferable in high-

dimensional settings, since then the outcome model can be fit under the null hypothesis,

enabling one to weaken conditions on sparsity.

In future work, we will extend our procedures to the estimation of regression param-

eters and the construction of confidence intervals. Consider the modelM defined by the

restriction

g{E(Y |A = a, L = l)} − g{E(Y |A = 0, L = l)} = ψa

where g(·) is a known link function. The score U(η) implies an estimator of ψ, the

conditional causal effect of A on Y . Let H(ψ) = Y − ψA when g() is the identity link

and H(ψ) = Y exp(−ψA) when g() is the log link; then estimation of ψ can be based on
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the function

U(ψ, η) = {A− π(L; γ)}{H(ψ)−m(L; β)} (10)

(Robins et al., 1992). An estimator of ψ based on (10) is consistent under modelM∩(A∪

B). The goal of constructing uniformly valid confidence intervals could require a revision

of the conditions given in Sections 4.2 and 5.2, since we are no longer working under the

null. It also remains an open question for which settings doubly robust estimators can

be constructed. For example, there currently exists no doubly robust estimator for the

Cox proportional hazards model or probit models. In practice it may be more feasible to

construct estimators and confidence intervals that are locally doubly robust e.g. under

the null, and in this context enjoy the properties of the tests described in this paper.

When ψ is multivariate, equations (5) and (6) deliver more estimating equations

than there are unknown nuisance parameters. To ensure that standard errors are valid,

one would also need to ensure that the estimating functions of each component of ψ

are orthogonal to those of the remaining components. Such a development would not

only be advantageous in terms of testing for and estimating interaction terms, but also

for obtaining uniformly valid inference in high-dimensional data with mediators and/or

time dependent confounders. Indeed, the estimators described above are special cases

of g-estimators (Robins et al., 1992), developed for fitting structural nested models in

complex longitudinal studies. Because it turns out to be essentially impossible to correctly

specify sequential regression models for an outcome, it is unlikely that existing proposals

for high-dimensional inference can be adapted to test the hypothesis of no causal effect

of any treatment regime on Y a.k.a the g-null hypothesis (Robins, 1997). In contrast,

although we perform selection on both the outcome and exposure models (in order for

the relevant gradients to be set to zero), in the proposal of Section 5 only the latter needs
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to be correctly specified in order to obtain a valid test of the g-null.
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A Appendix A

Define Np = {1, 2, ..., p}. We use EPn [] for taking expectation w.r.t. the local data

generating process (DGP), whereas En[] refers to sample expectations. Similarly, PPn []

and varPn [] denote probabilities and variances taken w.r.t. the local DGP respectively.

We define the `∞ norm of any matrix A as ||A||∞ = max
i,j
|Aij|. For a vector δ ∈ Rp and

indices T ⊂ {1, ..., p}, let δT denote the vector where δTj = δj if j ∈ T and δTj = 0

otherwise. Also, TC = {1, ..., p}\T . For sequences an and bn, we use an . bn to denote

that an ≤ Cbn for some constant C (an & bn is similarly defined). We view the gradients

∂Ui(η̂)/∂η and ∂Ui(ηn)/∂η as row vectors.

A.1 Proof of Theorem 1

In order to prove Theorem 1, we will rely on the following assumptions.

Assumption 1. (Data generating process) There exist constants C1, C2, C3 <∞, c4, c5 >

0 and 4 < r <∞ such that:

(i) EPn{|Y −m(L; βn)|4|L} ≤ C1 w.p. 1.

(ii) EPn{|Y −m(L; βn)|r} ≤ C2.

(iii) maxi≤n ‖Li‖∞ ≤ C3 <∞ w.p. 1.

(iv) c4 ≤ EPn [{A− π(L; γn)}2|L] and c5 ≤ EPn [{Y −m(L; βn)}2|L] w.p. 1.

Remark. Assumption 1(i) allows one to bound the conditional variance of Y −m(L; βn)

given L and also implies a bound on the variance given A and L. Assumption 1(ii)

places a bound on the higher order moments of Y − m(L; βn), and is required to show

uniform consistency of the variance estimator of U(η̂) and uniform asymptotic normality

of the test statistic. We note that Assumptions 1(i)-(ii) allow for non-Gaussianity and
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heteroscedasticity with respect to the error term Y −m(L; βn). Assumption 1(iii) requires

L to be restricted to a bounded set, which is an assumption commonly made in the liter-

ature (sometimes as a primitive condition for proving consistency of estimators) (van de

Geer et al., 2014; Farrell, 2015; Ning and Liu, 2017). Assumption 1(iv) places additional

bounds on the conditional variance, and implies a type of ‘positivity’ condition such that

there must be some variation in A at different levels of L.

Assumption 2. (Rates for prediction error with unweighted estimators)

(i) En[{π(Li; γn)− π(Li; γ̂)}2] = OPn(sγ log(p ∨ n)/n).

(ii) En[{m(Li; βn)−m(Li; β̂)}2] = OPn(sβ log(p ∨ n)/n).

Remark. Results 2(i)-2(ii) follow from the results of Belloni and Chernozhukov (2013),

Belloni et al. (2014), Farrell (2015) and Belloni et al. (2016) on Lasso and Post-Lasso-

based estimators. Rates on quantities like En[{γTnLi − γ̂TLi}2] also follow from those

papers.

Proof. The proof will proceed in four steps. In the first step, we show that

1√
n

n∑
i=1

Ui(η̂) =
1√
n

n∑
i=1

Ui(ηn) + oPn(1) (A.1)

in the second, that

En{Ui(ηn)}√
1
n
EPn{Ui(ηn)2}

d→ N (0, 1) (A.2)

in the third, that

En[Ui(η̂)2 − En{Ui(η̂)}2]−1 = EPn{Ui(ηn)2}−1 + oPn(1) (A.3)

Finally, we will use these results to show result (4) in the main paper.
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Step 1.

Consider the sample mean of Ui(η̂):

En{Ui(η̂)} = En{Ui(ηn) + Ui(η̂)− Ui(ηn)}

After some algebra, we have

√
nEn{Ui(η̂)} =

√
nEn{Ui(ηn)}+R1 +R2 +R3

where

R1 =
1√
n

n∑
i=1

{Ai − π(Li; γn)}{m(Li; βn)−m(Li; β̂)},

R2 =
1√
n

n∑
i=1

{Yi −m(Li; βn)}{π(Li; γn)− π(Li; γ̂)}

R3 =
1√
n

n∑
i=1

{m(Li; β̂)−m(Li; βn)}{π(Li; γ̂)− π(Li; γn)}

We aim to show that R1, R2 and R3 are all oPn(1) under model A ∩ B.

For R1, under the null as defined in (1),

EPn{R1|(Yi, Li)ni=1}

=
1√
n

n∑
i=1

[EPn{Ai|(Yi, Li)ni=1} − π(Li; γn)]{m(Li; βn)−m(Li; β̂)}

= 0

and

EPn{R2
1|(Yi, Li)ni=1}

= En
(
EPn [{Ai − π(Li; γn)}2|(Yi, Li)ni=1]{m(Li; βn)−m(Li; β̂)}2

)
≤ CEn[{m(Li; βn)−m(Li; β̂)}2]

29



where C is a constant. Furthermore, invoking Assumption 2(ii) and sparsity condition

(i), we have

CEn[{m(Li; βn)−m(Li; β̂)}2] = oPn(1)

and EPn [R2
1] = o(1). Hence one can then apply Chebyshev’s inequality to show that

|R1| = oPn(1).

Similarly, for R2,

EPn [R2
2|(Ai, Li)ni=1]

= En
[
EPn [{Yi −m(Li; βn)}2|(Ai, Li)ni=1]{π(Li; γn)− π(Li; γ̂)}2

]
≤ CEn[{π(Li; γn)− π(Li; γ̂)}2],

where C is a constant. This inequality follows from Assumption 1(i). Invoking Assump-

tion 2(i) and sparsity condition (i), we have

CEn[{π(Li; γn)− π(Li; γ̂)}2] = oPn(1)

so EPn [R2
2] = o(1) and using Chebyshev’s inequality, |R2| = oPn(1).

Finally, considering R3, by Hölder’s inequality∣∣∣∣ 1√
n

n∑
i=1

{m(Li; β̂)−m(Li; βn)}{π(Li; γ̂)− π(Li; γn)}
∣∣∣∣

≤
√
nEn[{m(Li; β̂)−m(Li; βn)}2]1/2En[{π(Li; γ̂)− π(Li; γn)}2]1/2

Then given the joint sparsity condition (ii) on sγ and sβ, and Assumptions 2(i) and 2(ii),

it follows that

√
nEn[{m(Li; β̂)−m(Li; βn)}2]1/2En[{π(Li; γ̂)− π(Li; γn)}2]1/2 = oPn(1)

Therefore |R3| = oPn(1) and we have result (A.1).
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Step 2.

Under the null, we have that

varPn{Ui(ηn)} = EPn{Ui(ηn)2}

= EPn [{Ai − π(Li; γn)}2{Yi −m(Li; βn)}2]

and by Assumptions 1(ii) and 1(iv), EPn{Ui(ηn)2} is bounded away from zero (necessary

for the inversion) and above uniformly in n.

For some ε > 0, such that 4 + 2ε ≤ r

EPn{|Ui(ηn)|2+ε}

≤ EPn{|Ai − π(Li; γn)|4+2ε}1/2EPn{|Yi −m(Li; βn)|4+2ε}1/2

≤ C

where C is a constant, by Assumption 1(ii). This verifies the Lyapunov condition, such

that using this result (and the fact that EPn{Ui(ηn)2} is finite) one can then invoke the

Lyapunov central limit theorem for triangular arrays to get result (A.2). We rely on array

asymptotics here in order to allow for the data-generating process to change with n.

Step 3.

Since EPn{Ui(ηn)2} is bounded away from zero uniformly in n and EPn{Ui(ηn)} = 0,

given the previous steps it suffices to show that En{Ui(η̂)2} = EPn{Ui(ηn)2}+ oPn(1). We

will first obtain the result

En{Ui(ηn)2} = EPn{Ui(ηn)2}+ oPn(1) (A.4)
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We have

PPn
[
|En{Ui(ηn)2} − EPn{Ui(ηn)2}|2 > ε

]
≤ 1

ε2
EPn

[∣∣∣∣ 1n
n∑
i=1

Ui(ηn)2 − EPn{Ui(ηn)2}
∣∣∣∣2]

≤ 1

ε2n2

(
2− 1

n

) n∑
i=1

EPn
[∣∣Ui(ηn)2 − EPn{Ui(ηn)2}

∣∣2]
where we first apply Chebyshev’s inequality. The second uses the Von Bahr-Esseen in-

equality: let q ∈ [1, 2], then for independent mean-zero variables X1, ..., Xn, we have

E

(∣∣∣∣ n∑
i=1

Xi

∣∣∣∣q) ≤ (2− 1

n

) n∑
i=1

E(|Xi|q)

(von Bahr and Esseen, 1965).

Since

EPn
(
[Ui(ηn)2 − EPn{Ui(ηn)2}]2

)
= varPn{Ui(ηn)2}

= varPn
(
{Ai − π(Li; γn)}2EPn [{Yi −m(Li; βn)}2|Ai, Li]

)
+ EPn

(
{Ai − π(Li; γn)}4varPn [{Yi −m(Li; βn)}2|Ai, Li]

)
then firstly

varPn
(
{Ai − π(Li; γn)}2EPn [{Yi −m(Li; βn)}2|Ai, Li]

)
≤ CEPn [{Ai − π(Li; γn)}2]2 = O(1)

where C is a constant, using Assumption 1(i). Secondly,

EPn
(
{Ai − π(Li; γn)}4varPn [{Yi −m(Li; βn)}2|Ai, Li]

)
≤ CEPn [{Ai − π(Li; γn)}4] = O(1)
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where C is again a constant, invoking Assumptions 1(i) and 1(ii). Result (A.4) then

follows.

It remains to show that

En{Ui(η̂)2} = En{Ui(ηn)2}+ oPn(1) (A.5)

By adding and subtracting En[{Ai−π(Li; γ̂)}2{Yi−m(Li; βn)}2] and applying the triangle

inequality, then

|En[{Ai − π(Li; γ̂)}2{Yi −m(Li; β̂)}2 − {Ai − π(Li; γn)}2{Yi −m(Li; βn)}2]|

≤
∣∣En([{Ai − π(Li; γ̂)}2 − {Ai − π(Li; γn)}2]{Yi −m(Li; βn)}2

)∣∣
+
∣∣En([{Yi −m(Li; β̂)}2 − {Yi −m(Li; βn)}2]{Ai − π(Li; γ̂)}2

)∣∣
= |R4|+ |R5|

Looking first at |R5|, after some algebra we have

∣∣En([{Yi −m(Li; β̂)}2 − {Yi −m(Li; βn)}2]{Ai − π(Li; γ̂)}2
)∣∣

≤ |En[{m(Li; β̂)−m(Li; βn)}2{Ai − π(Li; γ̂)}2]|

+ |2En[{Yi −m(Li; βn)}{m(Li; β̂)−m(Li; βn)}{Ai − π(Li; γ̂)}2]|

= |R5a|+ |R5b|.

Then,

|R5a| ≤ max
i≤n
{Ai − π(Li; γ̂)}2En[{m(Li; β̂)−m(Li; βn)}2] = oPn(1)

following Assumption 2(ii), the fact that A is binary and sparsity condition (ii). Further-

more,

|R5b| ≤ 2 max
i≤n
{Ai − π(Li; γ̂)}2En[{Yi −m(Li; βn)}2]1/2

× En[{m(Li; β̂)−m(Li; βn)}2]1/2
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As before, one can bound maxi≤n{Ai − π(Li; γ̂)}2, and En[{m(Li; β̂)−m(Li; βn)}2]1/2 =

oPn(1) by Assumption 2(ii). For En[{Yi −m(Li; βn)}2]1/2, note that by Assumption 1(ii),

EPn{|Yi−m(Li; βn)|4} = O(1) and hence EPn [{Yi−m(Li; βn)}2]1/2 = O(1) since the bound

on the higher-order moment implies the existence of the lower-order moment. To bound

the sample average En[{Yi −m(Li; βn)}2]1/2, by the Von Bahr-Esseen inequality:

PPn
(∣∣En{|Yi −m(Li; βn)|4} − EPn{|Yi −m(Li; βn)|4}

∣∣q > ε

)
≤ 1

εqnq

(
2− 1

n

) n∑
i=1

EPn
[∣∣|Yi −m(Li; βn)|4 − EPn{|Yi −m(Li; βn)|4}

∣∣q]
for q ∈ [1, 2]. Applying Minkowski’s inequality and using Assumption 1(ii):

EPn
[∣∣|Yi −m(Li; βn)|4 − EPn{|Yi −m(Li; βn)|4}

∣∣q]
≤
(
EPn

{
|Yi −m(Li; βn)|4q

}1/q
+ EPn

[
EPn{|Yi −m(Li; βn)|4}q

]1/q)q
= O(1),

hence En{|Yi−m(Li; βn)|4} = OPn(1) and also En[{Yi−m(Li; βn)}2]1/2 = OPn(1). There-

fore |R5| = oPn(1).

Similarly, for R4 we have

|R4| ≤En[{π(Li; γ̂)− π(Li; γn)}2{Yi −m(Li; βn)}2]

+ 2 max
i≤n
|Ai − π(Li; γn)|En{|Yi −m(Li; βn)|4}1/2

× En[{π(Li; γ̂)− π(Li; γn)}2]1/2

By invoking Assumptions 1(ii), 2(i) and the sparsity condition (i), one can show that the
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second term on the right hand side of the inequality is oPn(1). Regarding the first term,

En[{π(Li; γ̂)− π(Li; γn)}2{Yi −m(Li; βn)}2]

≤ max
i≤n
|π(Li; γ̂)− π(Li; γn)|En[{π(Li; γ̂)− π(Li; γn)}2]1/2

× En{|Yi −m(Li; βn)|4}1/2

= oPn(1)

using Hölder’s inequality, Assumptions 1(ii), 2(i), the previous result that En{|Yi −

m(Li; βn)|4} = OPn(1) and the sparsity condition (i). We have shown (A.5) and result

(A.3) follows.

Step 4.

Consider a sequence Pn ∈ P such that for any t ∈ R

lim
n→∞

|PPn(Tn ≤ t)− Φ(t)| > 0.

This directly contradicts the results given above that the test statistic Tn converges to a

normal distribution with mean 0 and variance 1 under any subsequence Pn in P .

A.2 Proof of Theorem 2

In the proofs of Theorems 2 and Theorem 3, we will rely on some additional assumptions.

Specifically, we will make use of the following rates:

Assumption 3. (Rates on error of estimated coefficients) Recall that s∗ = sγ ∨ sβ; then

(i) ||γn − γ̂BR||1 = OPn(s∗
√

log(p ∨ n)/n).

(ii) ||βn − β̂BR||1 = OPn(s∗
√

log(p ∨ n)/n).
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(iii) ||γn − γ̂BR||2 = OPn(
√
s∗ log(p ∨ n)/n).

(iv) ||βn − β̂BR||2 = OPn(
√
s∗ log(p ∨ n)/n).

Assumption 4. (Rates on prediction error for weighted estimators)

(i) En[{π(Li; γn)− π(Li; γ̂BR)}2] = OPn(s∗ log(p ∨ n)/n).

(ii) En[{m(Li; βn)−m(Li; β̂BR)}2] = OPn(s∗ log(p ∨ n)/n).

Remark. Our proposed nuisance parameter estimators are obtained via (weighted) `1

penalized regression. The rates in 3 and 4 again follow from the results of Belloni et al.

(2016) on weighted `1-penalized regression (e.g. their Theorem 4); see also Ning and Liu

(2017).

To obtain these rates in Assumptions 3 and 4, we need assumptions on the order of

the penalty (which we exploit in the proof); specifically, we need that

λγ = O

(√
log(p ∨ n)

n

)
(A.6)

λβ = O

(√
log(p ∨ n)

n

)
. (A.7)

These are standard assumption on the order of the penalty level in the literature, when

working either under the intersection submodel (Farrell, 2015; Belloni et al., 2016), or the

union model (Avagyan and Vansteelandt, 2017).

Proof. Repeating the previous decomposition of
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√
nEn{Ui(η̂BR)} −

√
nEn{Ui(ηn)}, for R1, we now have

1√
n

n∑
i=1

{Ai − π(Li; γn)}{m(Li; βn)−m(Li; β̂BR)}

=
1√
n

n∑
i=1

{Ai − π(Li; γ̂BR)}{m(Li; βn)−m(Li; β̂BR)} (A.8)

+
1√
n

n∑
i=1

{π(Li; γ̂BR)− π(Li; γn)}{m(Li; βn)−m(Li; β̂BR)} (A.9)

Then for (A.8), note that following a Taylor expansion,

1√
n

n∑
i=1

{Ai − π(Li; γ̂BR)}{m(Li; βn)−m(Li; β̂BR)}

= −
√
nEn

{
∂Ui(η̂BR)

∂β

}
(βn − β̂BR) +OPn(

√
n||βn − β̂BR||22)

and by Hölder’s inequality, ∣∣∣∣√nEn{∂Ui(η̂BR)

∂β

}
(βn − β̂BR)

∣∣∣∣
≤
√
nλγ||βn − β̂BR||1

using the stationarity conditions for the `1-penalised estimator of γ0. Therefore, given

(A.6), Assumptions 3(ii), 3(iv) and sparsity condition (iii),∣∣∣∣ 1√
n

n∑
i=1

{Ai − π(Li; γ̂BR)}{m(Li; βn)−m(Li; β̂BR)}
∣∣∣∣ = oPn(1)

Considering the other term (A.9), along the same lines as in the proof of Theorem 1, one

can show that∣∣∣∣ 1√
n

n∑
i=1

{π(Li; γ̂BR)− π(Li; γn)}{m(Li; βn)−m(Li; β̂BR)}
∣∣∣∣ = oPn(1)

using Hölder’s inequality, sparsity condition (iii) and Assumptions 4(i) and 4(ii). There-

fore |R1| = oPn(1). One can re-apply the argument given immediately above to show that

|R3| = oPn(1).
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By noting that

1√
n

n∑
i=1

{Yi −m(Li; β̂BR)}{π(Li; γn)− π(Li; γ̂BR)}

= −
√
nEn

{
∂Ui(η̂BR)

∂γ

}
(γn − γ̂BR) +OPn(

√
n||γn − γ̂BR||22)

and ∣∣∣∣√nEn{∂Ui(η̂BR)

∂γ

}
(γn − γ̂BR)

∣∣∣∣
≤
√
nλβ||γn − γ̂BR||1

one can also repeat the above arguments to show that |R2| = oPn(1), given (A.7), Assump-

tions 3(ii), 3(iv), 4(i), 4(ii) and sparsity condition (iii). Result (A.1) follows immediately

and the main result follows by essentially repeating Steps 2-4 from the proof of Theorem

1.

A.3 Proof of Corollary 1

Proof. As discussed in the main paper, when E(A|L) = π(L; γ∗) and γ∗ is known, the

proposal in Section 5 for estimating β reduces to standard (unweighted) PMLE. Then

repeating Step 1 of the previous proof,

1√
n

n∑
i=1

{Ai − π(Li; γ
∗)}{Yi −m(Li; β̂)}

=
1√
n

n∑
i=1

{Ai − π(Li; γ
∗)}{Yi −m(Li; βn)}

+
1√
n

n∑
i=1

{Ai − π(Li; γ
∗)}{m(Li; βn)−m(Li; β̂)}

Let us define R∗1 =
√
nEn[{Ai − π(Li; γ

∗)}{m(Li; βn)−m(Li; β̂)}].
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Then,

EPn{R∗21 |(Yi, Li)ni=1}

= En
(
EPn [{Ai − π(Li; γ

∗)}2|(Li)ni=1]{m(Li; βn)−m(Li; β̂)}2

)
≤ CEn[{m(Li; βn)−m(Li; β̂)}2]

where C is a constant. Invoking 4(ii) and sparsity condition (i), we have

CEn[{m(Li; βn)−m(Li; β̂)}2] = oPn(1),

hence EPn [R∗21 ] = o(1) and |R∗1| = oPn(1) using Chebyshev’s Inequality. Note that sparsity

condition (iii) has not been invoked.

A.4 Auxiliary results on weighted estimators

Here, we restrict to settings where m(L; βn) = βTnL and π(L; γn) = expit(γTnL). In this

case, note that γ̂BR = γ̂, since no weights are used in estimating this parameter. In order

to make transparent the dependence of the estimator β̂BR on the weights, we introduce

the notation β̂(γ̂) for when γ (required for the weights) is estimated from the data and

β̂(γn) otherwise.

In what follows, we will give a lemma (key to proving Theorem 3) regarding the

quantity β̂(γn) − β̂(γ̂). This will be helpful for understanding the impact of using esti-

mated weights on the distribution of the test statistic. Several additional assumptions are

required:

Assumption 5. (Fast convergence of estimating equations)∥∥∥En[w(Li; γn)[Yi −m{Li; β̂(γn)}]Li − w(Li; γ̂)[Yi −m{Li; β̂(γ̂)}]Li]
∥∥∥
∞

= OPn

(√
log p

n

)
(A.10)
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Remark. This assumption requires the difference between the estimating equations for

β̂(γ̂) and β̂(γn) to shrink very quickly. In low-dimensional settings, this difference is

exactly zero by virtue of the estimation procedure. In the high-dimensional setting, even

stronger results than (A.10) are available for our proposed estimators, if we represent our

estimator of β0 as the solution to estimating equations with a bridge penalty:

0 =
1

n

n∑
i=1

∂

∂γ
Ui(η̂BR) + λβδ|β̂BR|δ−1 ◦ sign(β̂BR).

Here, ◦ is the Hadamard product operator. As δ → 1+, the penalty term corresponds

to the subgradient of the `1 or Lasso norm penalty ||β||1 with respect to β. Using this

representation of our estimator, we can see that

En[w(Li; γn)[Yi −m{Li; β̂(γn)}]Li − w(Li; γ̂)[Yi −m{Li; β̂(γ̂)}]Li]

=
√
nλβδ[|β̂(γn)|δ−1 ◦ sign(β̂(γn))− |β̂(γ̂)|δ−1 ◦ sign(β̂(γ̂))]

=
√
nλβδ(δ − 1)|β̂(γ̂)|δ−2 ◦ sign(β̂(γ̂)){β̂(γn)− β̂(γ̂)}

+OPn(
√
n||β̂(γn)− β̂(γ̂)||22)

where the final equality follows from a Taylor expansion around β̂(γ̂). For any finite n,

we can choose δ to be close enough to 1 such that

√
nλβδ(δ − 1)|β̂(γ̂)|δ−2 ◦ sign(β̂(γ̂)){β̂(γn)− β̂(γ̂)}

is negligible, since β̂(γn)− β̂(γ̂) is assumed not to diverge as δ → 1+.

Assumption 6. (High-dimensional model selection)

Let ŝβ denote the cardinality |support{β̂(γ̂)} ∪ support{β̂(γn)}|; then ŝβ = OPn(s∗).

Remark. This assumption states that the number of non-zero entries common to both

β̂(γ̂) and β̂(γn) is of similar order to s∗, and is satisfied when |support{β̂(γ̂)}| = OPn(s∗);

note that it does not require perfect model selection (Belloni et al., 2014).
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Before giving Lemma 1, we will also review several regularity conditions necessary

for the consistency of `1-penalized estimators. This is done for clarity, since they will be

invoked in the following proofs. For example, we will use the concentration bound

‖En[{Ai − π(Li; γn)}Li]‖∞ = OPn

(√
log(p ∨ n)

n

)
; (A.11)

this can be shown to hold either using the theory of moderate deviations for self-normalised

sums (De la Peña et al., 2009; Belloni et al., 2012), or using sub-Gaussian primitive

conditions. Furthermore, restricted eigenvalues conditions are also required. For the

estimator β̂(γ̂) we need that for any constant ζ ≥ 1, there exists a finite constant κ > 0

such that

min

 δ̂TMδ̂∥∥∥δ̂∥∥∥2

2

: δ̂ ∈ Rp,
∥∥∥δ̂TC∥∥∥

1
≤ ζ

∥∥∥δ̂T∥∥∥
1
, δ̂ 6= 0

 ≥ κ > 0 (A.12)

where δ̂ = β̂(γ̂)− βn and M = En{Liw(Li; γn)LTi }.

Remark. If the cone constraint on δ̂ in (A.12) is satisfied (and the equivalent condition

is satisfied for δ̃ = β̂(γn)− βn), then by the triangle inequality,∥∥∥β̂(γ̂)TC − β̂(γn)TC
∥∥∥

1
=
∥∥∥β̂(γ̂)TC − βnTC + βnTC − β̂(γn)TC

∥∥∥
1

≤
∥∥∥δ̂TC∥∥∥

1
+
∥∥∥δ̃TC∥∥∥

1

≤ ζ
(∥∥∥δ̂T∥∥∥

1
+
∥∥∥δ̃T∥∥∥

1

)
.

Defining the set

∆ζ,T =
{
β̂(γ̂)− β̂(γn) ∈ Rp\{0} :

∥∥∥β̂(γ̂)TC − β̂(γn)TC
∥∥∥

1
≤ ζ

(∥∥∥δ̂T∥∥∥
1

+
∥∥∥δ̃T∥∥∥

1

)}
and the minimum restricted eigenvalue of M as

ϕ2
ζ(M) = min

β̂(γ̂)−β̂(γn)∈∆ζ,T ,|T |≤s∗

{β̂(γ̂)− β̂(γn)}TM{β̂(γ̂)− β̂(γn)}∥∥∥β̂(γ̂)− β̂(γn)
∥∥∥2

2

 ,
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condition (A.12) thus implies that

ϕ2
ζ(M) ≥ κ > 0. (A.13)

For a comprehensive discussion of suitable regularity conditions for proving the con-

sistency of `1-penalized estimators, we refer the interested reader to Bühlmann and van de

Geer (2011).

Lemma 1. In addition to the sparsity conditions (i) and (iv), suppose that the Assump-

tions 1(iii), 2(i), 3(i), 4(ii), 5 and 6 hold. Then it follows that for a given sequence Pn

we have that∥∥∥β̂(γ̂)− β̂(γn)
∥∥∥

1

= OPn

(
max
i≤n
|εi|
√
sγs∗ log(p ∨ n)

n
+
s∗
√

log(p ∨ n)(sγ
√

log(p ∨ n) + 1)

n

)
(A.14)

where ε = Y −m(L; βn).

Proof. Many of the arguments are similar to those in Appendix E of Ning and Liu (2017).

Let δ̄ = β̂(γ̂)− β̂(γn); then

δ̄TMδ̄ = En
(
w(Li; γn)(δ̄TLi)[Yi −m{Li; β̂(γn)}]

)
− En

(
w(Li; γn)(δ̄TLi)[Yi −m{Li; β̂(γ̂)}]

)
= En

(
w(Li; γn)(δ̄TLi)[Yi −m{Li; β̂(γn)}]

)
− En

(
w(Li; γ̂)(δ̄TLi)[Yi −m{Li; β̂(γ̂)}]

)
+ En

[
{w(Li; γ̂)− w(Li; γn)}(δ̄TLi){Yi −m(Li; βn)}

]
+ En

(
{w(Li; γ̂)− w(Li; γn)}(δ̄TLi)[m(Li; βn)−m{Li; β̂(γ̂)}]

)
= R6 +R7 +R8 +R9.
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Firstly,

|R6 +R7|

≤ ‖En[w(Li; γn){Yi − m̃(Li)}Li − w(Li; γ̂){Yi − m̂(Li)}Li]‖∞
∥∥δ̄∥∥

1

≤ C ′
√

log(p ∨ n)

n

∥∥δ̄∥∥
1

where C ′ is a constant, due to Assumption 5. For R8,

|R8| =
∣∣∣∣En [{ w(Li; γ̂)− w(Li; γn)

w(Li; γn)(γ̂TLi − γTnLi)

}√
w(Li; γn)(δ̄TLi)

×
√
w(Li; γn)(γ̂TLi − γTnLi){Yi −m(Li; βn)}

] ∣∣∣∣
≤ max

i≤n
|εi|(δ̄TMδ̄)1/2En

[
(γ̂TLi − γTnLi)2

]1/2
. max

i≤n
|εi|(δ̄TMδ̄)1/2

√
sγ log(p ∨ n)

n

under Assumption 2 and using the properties of the logistic link function. Next,

|R9| ≤ En[w(Li; γn)|γ̂TLi − γTnLi||δ̄TLi||m(Li; βn)−m{Li; β̂(γ̂)}|]

≤ max
i≤n
‖Li‖∞ ‖γ̂ − γn‖1 En[w(Li; γn)|δ̄TLi||m(Li; βn)−m{Li; β̂(γ̂)}|]

≤ max
i≤n
‖Li‖∞ ‖γ̂ − γn‖1

× (δ̄TMδ̄)1/2En
(

[m(Li; βn)−m{Li; β̂(γ̂)}]2
)1/2

. (δ̄TMδ̄)1/2

(
sγ
√
s∗ log(p ∨ n)

n

)
invoking Assumptions 1(iii), 3(i), 4 and (ii).

Putting this together,

δ̄TMδ̄ ≤C ′
√

log p

n

∥∥δ̄∥∥
1

+ (δ̄TMδ̄)1/2C∗

(
max
i≤n
|εi|
√
sγ log(p ∨ n)

n
+
sγ
√
s∗ log(p ∨ n)

n

)
(A.15)
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where C∗ is a constant. Let us consider two cases; firstly, assume

(δ̄TMδ̄)1/2 ≤ C∗

(
max
i≤n
|εi|
√
sγ log(p ∨ n)

n
+
sγ
√
s∗ log(p ∨ n)

n

)
holds. Note (A.13) implies that

(δ̄TMδ̄)1/2 ≥ ϕζ(M)
∥∥δ̄∥∥

2
&

1√
ŝβ

∥∥δ̄∥∥
1
.

Invoking Assumption 6 and combining the lower and upper bound,∥∥δ̄∥∥
1
. max

i≤n
|εi|
√
sγs∗ log(p ∨ n)

n
+
sγs
∗ log(p ∨ n)

n
(A.16)

On the other hand, if

(δ̄TMδ̄)1/2 ≥ C∗

(
max
i≤n
|εi|
√
sγ log(p ∨ n)

n
+
sγ
√
s∗ log(p ∨ n)

n

)
then rearranging (A.15), it follows that

(δ̄TMδ̄)1/2

{
(δ̄TMδ̄)1/2 − C∗

(
max
i≤n
|εi|
√
sγ log(p ∨ n)

n
+
sγ
√
s∗ log(p ∨ n)

n

)}

≤ C ′
√

log(p ∨ n)

n

∥∥δ̄∥∥
1

Using (A.13), we have

(δ̄TMδ̄)1/2 − C∗
(

max
i≤n
|εi|
√
sγ log(p ∨ n)

n
+
sγ
√
s∗ log(p ∨ n)

n

)

.

√
s∗ log(p ∨ n)

n

so

(δ̄TMδ̄)1/2 . max
i≤n
|εi|
√
sγ log(p ∨ n)

n
+
sγ
√
s∗ log(p ∨ n) +

√
s∗ log(p ∨ n)

n

and again by (A.13),∥∥δ̄∥∥
1
. max

i≤n
|εi|
√
sγs∗ log(p ∨ n)

n
+
s∗
√

log(p ∨ n)(sγ
√

log(p ∨ n) + 1)

n
. (A.17)

Taking the union of the bounds (A.16) and (A.17) completes the proof.
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A.5 Proof of Theorem 3

Assumption 7. (Regularity conditions on the errors)

maxi≤n |εi|
√
sγs∗ log(p ∨ n) = o(

√
n) w.p. 1.

Remark. This can be most simply shown to hold if maxi≤n |εi| = OPn(1). Belloni et al.

(2012) and Farrell (2015) suppose that maxi≤n |εi| = OPn(n1/r) for some r > 2, such

that larger values of r allow one to relax assumptions on sparsity in exchange for stronger

conditions on the distributions of the errors. If the εi are normal, then r can be arbitrarily

large. Alternatively, one can place the stronger sub-Gaussian conditions on εi, whereby

maxi≤n |εi| = OPn(
√

log n).

We now give the proof.

Proof. Decomposing
√
nEn{Ui(η̂BR)} −

√
nEn{Ui(ηn)} as in the proof of Theorem 1, one

can show |R2| = oPn(1) along the lines of the proof of Theorem 1, appealing to Assump-

tions 1(i), 2(i) and sparsity condition (i). Similarly, one can show that R3 is oPn(1) using

the joint sparsity condition (ii) and Assumptions 2(i) and 4(ii).

Then for R1,

1√
n

n∑
i=1

{Ai − π(Li; γn)}[m(Li; βn)−m{Li; β̂(γ̂)}]

=
1√
n

n∑
i=1

{Ai − π(Li; γn)}[m(Li; βn)−m{Li; β̂(γn)}]

+
1√
n

n∑
i=1

{Ai − π(Li; γn)}[m{Li; β̂(γn)} −m{Li; β̂(γ̂)}]

= R1a +R1b
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One can show |R1a| = oPn(1) using Assumption 4(ii) and sparsity condition (i). For R1b,∣∣∣∣ 1√
n

n∑
i=1

{Ai − π(Li; γn)}[m{Li; β̂(γn)} −m{Li; β̂(γ̂)}]
∣∣∣∣

≤
√
n ‖En[{Ai − π(Li; γn)}Li]‖∞

∥∥∥β̂(γn)− β̂(γ̂)
∥∥∥

1

= OPn(
√

log(p ∨ n))

×OPn

(
max
i≤n
|εi|
√
sγs∗ log(p ∨ n)

n
+
s∗
√

log(p ∨ n)(sγ
√

log(p ∨ n) + 1)

n

)

by (A.11) and Lemma 1. Hence under sparsity assumptions (i), (iv) and Assumption 7,

|R1b| = oPn(1) and thus R1 = oPn(1). By then repeating Steps 2-4 from the proof of

Theorem 1, the main result follows.

Remark. We note that it follows from the above proof that sharper results are also

available in linear models under misspecification than are given in Theorem 2. Namely,

when either model A or the linear model for B is misspecified, ultra-sparsity is only

required in the correct model. For example, if E(A|L) = π(L; γ), then we require s2
γ =

o(n) but only sβ = o(n) (ignoring log factors).

B Appendix B

In the figure on the following page, we describe an iterative method for γ and β (based

on the reasoning in Section 5), when both are parameters indexing logistic models. In

practice, one can take the penalty terms obtained via cross validation during the first

iteration of the algorithm (j = 1) and use the same terms in subsequent iterations.

C Appendix C

Here we include some additional simulation results. Compared with the setting considered

in Section 6 of the main paper, we allowed for a more dense model for the exposure A.

46



Algorithm 1 An algorithm for estimating η when Y is binary

1. Estimate γ and β as γ̂(0) and β̂(0) using (unweighted) `1-penalized logistic regression.
Let γ̌(0) and β̌(0) denote the refitted estimates.

2. Calculate the weights w(Li; γ̂
(0)) = expit(γ̂(0)′Li){1 − expit(γ̂(0)′Li)}, w(Li; β̂

(0)) =
expit(β̂(0)′Li){1−expit(β̂(0)′Li)}, w(Li; γ̌

(0)) and w(Li; β̌
(0)). Calculate the objective

function

ν̌(0) =
1

n

n∑
i=1

log{1 + exp(γ̌(0)′Li)} − Ai(γ̌(0)′Li) + log{1 + exp(β̌(0)′Li)}

− Yi(β̌(0)′Li)

3. Set j = 0 and carry out the following recursive algorithm:

(a) Set j = j + 1.

(b) Using the initial estimates, re-estimate γ and β as the solutions γ̂(j) and β̂(j)

to

0 =
n∑
i=1

w(Li; β̂
(j−1)′){Ai − expit(γTLi)}Li + λγδ|γ|δ−1 ◦ sign(γ)

0 =
n∑
i=1

w(Li; γ̂
(j−1)′){Yi − expit(βTLi)}Li + λβδ|β|δ−1 ◦ sign(β)

Similarly, using w(Li; γ̌
(j−1)) and w(Li; β̌

(j−1)), obtain the refitted γ̌(j) and β̌(j).

(c) Re-evaluate the objective function as:

ν̌(j) =
1

n

n∑
i=1

[
log{1 + exp(γ̌(j)′Li)} − Ai(γ̌(j)′Li)

]
w(Li; β̌

(j−1)′)

+

[
log{1 + exp(β̌(j)′Li)} − Yi(β̌(j)′Li)

]
w(Li; γ̌

(j−1)′)

(d) If |ν̌(j)−ν̌(j−1)| < 0.0001, stop the algorithm, and set γ̌BR = γ̌(j) and β̌BR = β̌(j).
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Specifically g =
(

40 log(20)

n1/2 , 40 log(19)

n1/2 , ..., 40 log(2)

n1/2 , 020, 021, 2
log(2)

n1/2 , ..., 2
log(60)

n1/2 , 081, ..., 0p

)
now.

Data generation process under the alternative outcome model (to evaluate the impact of

fitting a misspecified linear model) was the same as in the main paper.

We further relaxed the assumption in Section 6 of homoscedastic errors. Specifically,

the outcome Yi was normally distributed conditional on Li with mean 1+βiLi and standard

deviation

√(
(1 + βiLi)

2

En((1 + βiLi)2)

)
. In settings where we fitted a misspecified outcome model

Yi was normally distributed with mean 1 + βT
(
|L.,[1:3]|;L.,[4:p]

)
and standard deviation√√√√( {1 + βT

(
|L.,[1:3]|;L.,[4:p]

)
}2

En[{1 + βT
(
|L.,[1:3]|;L.,[4:p]

)
}2]

)
.

Table 3: Type I errors based on 1,000 replications in settings with a denser propensity
score: Σ = Ip×p.

Correct models
n = 200 n = 500 n = 200 n = 200

Methods p = 200 p = 500 p = 100 p = 250
Standard naïve (forced) 0.520 0.813 0.289 0.602
Standard naïve (not forced) 0.272 0.522 0.171 0.336
PDS (pre-specified) 0.526 0.779 0.523 0.517
PO (pre-specified) 0.517 0.758 0.521 0.502
PDS (CV) 0.074 0.070 0.066 0.079
PMLE-DR 0.061 0.053 0.067 0.077
BR-DR 0.054 0.061 0.064 0.054

Incorrect outcome model
n = 200 n = 500 n = 200 n = 200

Methods p = 200 p = 500 p = 100 p = 250
Standard naïve (forced) 0.363 0.576 0.205 0.456
Standard naïve (not forced) 0.169 0.304 0.114 0.196
PDS (pre-specified) 0.344 0.611 0.342 0.310
PO (pre-specified) 0.338 0.596 0.325 0.309
PDS (CV) 0.064 0.068 0.068 0.073
PMLE-DR 0.051 0.050 0.063 0.071
BR-DR 0.055 0.052 0.069 0.041
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Table 4: Type I errors based on 1,000 replications in settings with a denser propensity
score: Σ = [σi,j]1≤i,j≤p.

Correct models
n = 200 n = 500 n = 200 n = 200

Methods p = 200 p = 500 p = 100 p = 250
Standard naïve (forced) 0.431 0.368 0.197 0.505
Standard naïve (not forced) 0.173 0.174 0.088 0.203
PDS (pre-specified) 0.132 0.082 0.096 0.143
PO (pre-specified) 0.102 0.071 0.078 0.094
PDS (CV) 0.056 0.071 0.064 0.068
PMLE-DR 0.050 0.062 0.046 0.062
BR-DR 0.047 0.041 0.043 0.041

Incorrect outcome model
n = 200 n = 500 n = 200 n = 200

Methods p = 200 p = 500 p = 100 p = 250
Standard naïve (forced) 0.315 0.265 0.156 0.353
Standard naïve (not forced) 0.126 0.116 0.090 0.137
PDS (pre-specified) 0.097 0.066 0.070 0.091
PO (pre-specified) 0.073 0.066 0.056 0.074
PDS (CV) 0.063 0.060 0.060 0.068
PMLE-DR 0.055 0.063 0.048 0.064
BR-DR 0.038 0.043 0.048 0.037
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