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A robust multi response surface approach for 

optimization of multistage processes

Abstract
Purpose: In a multistage process, the final quality in the last stage not only depends on the quality of the 

task performed in that stage but also is dependent on the quality of the products and services in intermediate 

stages as well as the design parameters in each stage. One of the most efficient statistical approaches used 

to model the multistage problems is the response surface method (RSM). However, it is necessary to 

optimize each response in all stages so to achieve the best solution for the whole problem. Robust 

optimization can produce very accurate solutions in this case.

Design/methodology/approach: In order to model a multistage problem, the RSM is often used by the 

researchers. A classical approach to estimate response surfaces is the ordinary least squares (OLS) method. 

However, this method is very sensitive to outliers. To overcome this drawback, some robust estimation 

methods have been presented in the literature. In optimization phase, the global criterion (GC) method is 

used to optimize the response surfaces estimated by the robust approach in a multistage problem.

Findings: The results of a numerical study show that our proposed robust optimization approach, 

considering both the sum of square error (SSE) index in model estimation and also global criterion (GC) 

index in optimization phase, will perform better than the classical full information maximum likelihood 

(FIML) estimation method.

Originality/value: To the best of the authors’ knowledge, there are few papers focusing on quality oriented 

designs in the multistage problem by means of RSM. Development of robust approaches for the response 

surface estimation and also optimization of the estimated response surfaces are the main novelties in this 

study. The proposed approach will produce more robust and accurate solutions for multistage problems 

rather than classical approaches.

Paper Type: Research paper

Keywords: Multi-response surface method; Multi-stage process; Multi-variate robust regression; Global 

criterion method.
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1. Introduction

One common approach in quality engineering is to find out the relations between input parameters 

and response variables in order to improve outputs. Response surface methodology (RSM) 

explores mathematical and statistical relationships between a response variable and a number of 

control variables in order to develop a proper functional relationship. RSM can be applied to 

multistage processes in order to establish the design optimization with the goal of quality 

improvement. By process parameter design, the process parameters can be designed and optimized 

to improve the accuracy of the process and achieve a better quality level. Consequently, RSM used 

in multistage processes is a powerful technique for designing process parameters.

In some problems with different outputs, determining optimal level of control variables is an 

important issue in a process design. This problem is called multi-response optimization (MRO) 

problem. A brief review of the literature reveals that only a few researches have concentrated on 

surveying multiple quality problems with taking into account the correlations. Considering 

correlation could be meaningfully effective in MRO problems. Some studies on MRO besides 

RSM approaches have been reviewed in Shah and al. (2004), Khuri and Mukhopadhyay (2010), 

He and al. (2010), Edwards and Fuerte (2011), Costa and al. (2012), Ardakani and Wulff (2013), 

Hejazi and al. (2014), Hejazi and al. (2015) and Bera and Mukherjee (2016). Recently, the 

correlated responses in MRO problems have been studied by Datta and al. (2009), Bashiri and 

Hejazi (2012) and Salmasnia and al. (2013). Moreover, Chiao and Hamada (2001), Kazemzadeh 

and al. (2008) and Hejazi and al. (2012) presented a probabilistic approach to take correlations into 

consideration. 

In order to explain and analyze the results of an experiment, RSM is often used by the 

researchers. After gathering experimental data, a relationship between the factors (i.e. input data) 

and the response(s) (i.e. output results) is defined to analyze the procedure. If a suitable model 

cannot be constructed in order to define the precise relation between the input variables and the 

response(s), then the analyses will not be reliable. One of the most common approaches for 

regression coefficient estimation is the ordinary least squared (OLS) method. Since this approach 

is very sensitive to outliers and contaminations, the consequent models will not be reliable and 

accurate for future analysis. To overcome this drawback, some better approaches such as robust 

regression methods have already been proposed in the literature to obtain better results. 
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The concept of robustness in the regression was first introduced by Huber (1981). The M-

estimator is a common robust estimation approach. Some robust estimators of multivariate 

regression models were studied by several researchers. Maronna and Morgenthaler (1986) 

proposed a robust covariance estimator, and Koenker and Portnoy (1987) proposed a multivariate 

regression M-estimator approach. Cummins and Andrews (1995) presented a M-estimator which 

works iteratively and uses a different function than what the classical approaches use, i.e. the sum 

of squared residuals of the OLS. This procedure is called iteratively reweighted least squares 

(IRLS). Morgenthaler and al. (1999) studied robust response surfaces based on design of 

experiments in chemistry. Maronna and al. (2006) discussed the most recent robust regression 

algorithms. Wiens and Wu (2010) presented a study of M-estimators in which they compared 

different aspects of these estimators. 

Recently, robust approaches in RSM have been studied by several researchers. Bashiri and 

Moslemi (2013a) proposed an iterative weighting method to modify both the outliers, that follow 

abnormal trends, and the residuals, that have non-equal variations. Moreover, Bashiri and Moslemi 

(2013b) proposed a multi-response problem in which each surface is estimated with an iterative 

M-estimator method and by considering uncorrelated responses. Moslemi and al. (2014) proposed 

robust estimation of response surfaces based on robust M-estimators. From the literature review it 

is revealed that using robust regression approaches in order to estimate the response surface 

coefficients could be more effective than classical OLS approach. In the next paragraphs, the 

application of RSM in multistage processes as the main idea of this paper is briefly reviewed.  

Multi-response problems and their applications are novel concepts in multistage processes. In 

order to manufacture products or offer services several stages should be involved. A multistage 

process is a system consisting of multiple components and stations which are required to be 

performed to finalize the product or service. Several manufacturing processes such as assembly, 

machining, and welding and also many service operations such as public transportation, banking 

systems, and many complex service systems can be mentioned as examples of multistage systems. 

RSM and its applications in multistage processes have been introduced by Zantek and al. (2002). 

Quality oriented optimization models in multistage problems are presented by Shi and Zhou 

(2009). Quality-oriented design defines response variables and desirable directions of each 

response using experimental designs. Quality oriented design is divided into two main categories: 

i) quality inspection strategy and ii) process parameter design. Designing multistage systems 
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means determining response variables, assuming their targets or desirable directions, and finding 

those design parameters that affect the responses. Mukherjee and Ray (2009) presented a method 

in which all stages of a multistage process are considered in an integrated approach. They stated 

that an integrated view is necessary to improve the overall quality in multistage systems because 

considering each stage of the system individually will cause some errors in the results.  Shin and 

al. (2010) presented a model that considers the parameter and the tolerance design simultaneously. 

Mukherjee and Ray (2012) investigated the superiority of meta-heuristic algorithms in solving the 

multi-response optimization problems. Hejazi and al. (2013) presented a mathematical program to 

model the general quality chain-design problem for the first time. They proposed a method to solve 

the problem using multiple RSM. Periyanan and Natarajan (2014) proposed the Taguchi quality 

loss function analysis to examine and explain the influences of three process parameters (feed rate, 

capacitance and voltage) on the output responses such as material removal rate (MRR) and surface 

roughness.

 Mondal and al. (2016) presented a comprehensive methodology for modelling and analysis 

of multistage processes considering a number of relevant tools and techniques such as multivariate 

regression, control charting and simulation within the broad framework of Taguchi method. In 

another study, Mondal (2016) presented a surrogate measure of process robustness. A hybrid 

method consisting of simulation, regression and robust design was presented in order to survey a 

manufacturing process and the variation of process performance was studied using R charts. Hejazi 

and al. (2017) proposed a multistage stochastic programming and also principle component 

analysis (PCA) technique in order to make the response variables uncorrelated at each stage. Yin 

and al. (2018) proposed a goal-oriented and backward iterative optimization approach based on 

genetic algorithm to determine the globally optimal operating conditions of coal preparation 

systems. Du and al. (2018) presented a novel Markov model for multi-product two-stage systems 

and multi-product multi-stage systems to obtain an acceptable probability for product quality. 

Recently, Pan and al. (2018) proposed a multivariate linear regression model for a multistage 

manufacturing system in which both the auto-correlated process outputs and the correlations 

occurring between neighboring stages were considered.

Recently, in multistage problems, robustness concept has been studied as a novel idea and a 

few researchers have concentrated on this idea. Moslemi and al. (2018) presented a robust 

coefficient estimation method for multi-response surfaces in multistage processes based on M-
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estimators. In this approach, covariates in experimental designs were used in order to connect 

different stages. Moslemi and al. (2018) proposed a method based on the posterior preference 

approach in order to optimize multistage processes robustly using response surfaces. In this 

methodology NDSs are generated using multi-response surfaces by epsilon constraint method and 

consequently the most preferred solutions based on proposed criteria are selected.

Following these studies, to the best of our knowledge, this paper is the first study that aims to 

design a multistage process using robust multi-response problem and simultaneously optimizing 

the process using a multi-objective decision-making approach. To have a comprehensive model 

for the process parameter design in multistage processes, response surfaces based on experimental 

designs are applied while the intermediate response variables act as covariates in the follower 

stages. A robust estimation of the coefficients in regression equations that relate control factors to 

the response variables in multistage problem is used. To obtain the best designs and parameters in 

different stages, the estimated response surfaces must be optimized. In order to optimize the robust 

multi-response problem in multistage processes, global criterion (GC) multi-objective 

optimization method is proposed. This is because the outputs responses are not the same to be 

optimized and in many cases there is no priori information to solve the multi-response surface 

optimization (MRSO) problem.

A summary of the literature related to our study is presented in Table 1. As can be seen, little 

attention has been paid to the use of a robust approach in the analysis of multistage processes using 

MRSO method.

* Insert Table 1 about here *

The organization of this paper is as follows. In Section 2, a robust approach for the multistage 

model is developed and its construction procedures and also GC optimization method are 

presented. A numerical example is given in Section 3 to illustrate the application of the proposed 

methodology. Finally, Section 4 concludes the study.   

2. Material and methods

Some common methods to estimate the parameters through a system of equations have been 

proposed by different authors. Various methods such as ordinaryleast squares (OLS), seemingly 

unrelated regression (SUR), and full information maximum likelihood (FIML) have been proposed 
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to solve multi-response problems. In a multi-response problem, robust estimation of the regression 

coefficients is an important issue which affects the optimization phase. Besides, due to correlations 

between multiple responses, treating each response separately and applying robust single response 

procedures may lead to incorrect interpretations of the results. Therefore, it is necessary to consider 

all responses and estimating their variance-covariance. 

Consider a multistage process consisting of several stations in a series. Every stage has its 

own response variables and these responses might be correlated. It is also possible that the different 

responses from different stages have meaningful correlations to each other. So, the response 

variables in each stage might be affected by the existing stage’s controllable factors and covariates 

as well as responses of the previous stages. Figure 1 provides a schematic of the multistage process, 

where , , and denote the vector of factors, covariates, and responses at stage i, ( i )X ( i )C ( i )Y

respectively. 

* Insert Figure 1 about here*

The main concern in this problem is to find the optimal combination of the controllable factor 

levels that results in the most desirable quality characteristics. 

2.1  Model description

Considering covariate variables, response surfaces can model each stage and the multistage 

process can be optimized by using multi-response surfaces. A multi-response optimization 

problem can be presented as:  

𝑚𝑖𝑛𝑅(𝑥) = (𝑅1(𝑥)
𝑅2(𝑥)

⋮
𝑅𝑝(𝑥)

)
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:𝐿 < 𝑥 < 𝑢

(1)

where  denotes the response surface for ith quality characteristics and x is vector of control 𝑅𝑖(𝑥)

factors.

2.2  Response surface building

By introducing indices and to represent replicates and responses, respectively, we define i j

variables  to be the residual associated with the replicate of 1 2 1 2ijr ; i , ,..., l , j , ,...p  thi
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the response. The residuals for each response are first obtained using initial estimates of the thj jY

responses  as . Then, the scaled residuals for each response, denoted by , are jŶ ij ij ij
ˆr Y Y  ijsr

obtained by subtracting their values from their sample mean ( ) and then dividing the result by jr

their variation measure (sample standard deviation ). In other words,
jrs

(2)
j

ij j
ij

r

r r
sr

s




The correlations between the responses are estimated using scaled residuals. These estimates 

are used to obtain the covariance matrix . The covariance matrix should be robustly estimated Σ̂

using M-estimator since it can also be under influence of outliers. Assuming  responses and p

denoting the scaled residual matrix of the responses in the 1 2 1 2i i ip( ) [ sr ,sr ,...,sr ] ; i , ,...l r i

replicate, the Mahalanobis distance is computed and consequently the weighting scheme is thi

obtained based on this distance. The Mahalanobis distance of each estimated response in a replicate 

is obtained as:

            (3)    1ˆd  Tr(i) r(i) Σ r(i)

The distribution of the squared Mahalanobis distance is approximately a chi-square with p

degrees of freedom (Montgomery 2005). The critical point of this distribution at  confidence 

level ( ) is used to assign the weights. In other words, if the squared Mahalanobis distance is x p
2

,

less than , then the weight will take the value of 1. Otherwise, the weight is obtained x p
2

,

proportional to sum of the distances using Equation (4).

(4)

 

 

2

2

1

1

otherwise

p ,

p ,i
l

j

; if d

w ;
d











 



 





r(i)

r(i)

The performance of the proposed robust approach in terms of sum of squared error of 

estimates (SSE) is investigated. The error involved to estimate regression coefficient  using  is  ̂

defined as:
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                                                                                   (5) Error ˆ  

2.3  Optimizing response surfaces with GC method

Each stage contains some response surfaces as objective function which should be optimized in 

order to find out the optimum controllable factors and consequently optimize response surfaces. 

Global criterion method, as a useful multi-objective method, allows one to transform a multi-

objective optimization problem into a single-objective problem. Distance is a traditional function 

used in this problem. The multi-objective method can be written as follows:

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒    𝐹(𝑥) = (∑
𝑖

|𝑇𝑖 ― 𝑅𝑖(𝑥)
𝑑𝑖 |

𝑟)
[𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒]

1
𝑟

Subject to:   the same constraints in the main problem

  (6)

where Ti is the target value of the objective functions when only ith objective is considered; di is 

the range of ith response (Donoso and Fabregat, 2007). Global criterion (GC) index can illustrate 

the performance of the optimization. This index is better to be small. Sequential steps of the 

proposed approach are as follows in Figure 2.

* Insert Figure 2 about here *

Consequently, the proposed approach can be explained briefly as follows: first, all the 

important and most significant input and output variables are selected. Then a proper design and 

experiments are selected. Initial response surfaces should be estimated in order to find out the 

effective factors. The coefficient parameters of the response surfaces are estimated in the next 

stage by proposed robust approach. At the optimization phase, a multi-objective model considering 

all the response surfaces in different stages is constructed. Global criterion method is applied to 

solve the mentioned multi objective problem. Considering the GC criterion, the classical and 

robust model building approach can be compared.

3. Results and discussion

In this Section, the proposed approach is tested on a multi-stage process in order to reveal its 

application. The case which is presented in this section is based on experiments reported in “quality 
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dimension’s standard statistical datasets”. The source of the data used for this problem is available 

at http://www.cpkinfo.com/.

A manufacturing problem with three controllable variables and two covariates is designed 

through which the first stage of the proposed method to be analyzed. The outputs are conversion (

) and activity ( ) levels. Also for the second stage, one of the response variable ( ) 𝑅1
1 𝑅1

2 𝑅1
1

conversion, would be as covariate variables ( ) for the second stage and also the process time (𝐶2
1

) can be mentioned as response variable. For the first stage, a Central Composite Design (CCD) 𝑅2
1

design is selected. Table 2 shows the results of experiments gathered by CCD. Also a CCD design 

is used for the second stage.

* Insert Table 2 about here *

In order to evaluate the approaches, we can define a model in which the outliers and 

contaminated data can be omitted from the computations. We call this model as a pure model. So 

we can use three approaches for coefficients estimation such as “Pure FIML” (in which we have 

no outliers and contamination), OLS based methodology such as FIML approach, and finally, our 

robust multivariate approach. In Table 2 some responses seem to be as contaminations. We 

illustrate these runs in bold. Figure 3 shows that some data deviate markedly from other 

observations.

* Insert Figure 3 about here *

The responses, i.e. “conversion” involved in the second stage of the process are covariates for 

the responses in the second stage. The central composite experimental design of this stage along 

with the response variables and/or covariates are shown in Table 3.

* Insert Table 3 about here *

After considering the initial relations between input and output variables, modeled in the 

Minitab software version 16, the variables which are more effective should be selected and 

considered to construct the equations. For example for the first response of the first stage, the 

results are given as follows:
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Estimated Regression Coefficients for Conversion (R1)

Term                             Coef   SE Coef      P
Constant                      79.6003    3.355   0.000
Time (X1)                      1.0288    3.534   0.660
Heat (X2)                      3.925     3.636   0.016
Catalyst (X3)                  6.2042    3.645   0.022
Humidity (C1)                 -48.9311    4.589  0.508
Temp (C2)                      1.8812    3.316   0.595
Time (X1) *Time (X1)          -5.2099    4.695   0.318
Heat (X2) *Heat (X2)           3.0210    4.871   0.016
Catalyst (X3) *Catalyst (X3)  -5.0190    5.101   0.041
Humidity (C1)*Humidity (C1)    1.309     0.966   0.511
Temp (C2) *Temp (C2)           0.9257    5.242   0.867
Time (X1) *Heat (X2)           8.7783    8.027   0.324
Time (X1) *Catalyst (X3)      11.4810    7.374   0.010
Time (X1) *Temp (C2)          -0.5302    6.538   0.939
Heat (X2) *Catalyst (X3)      -4.0070    7.820   0.028
Heat (X2) *Temp (C2)          -2.6728    6.950   0.716
Catalyst (X3)*Humidity (C1)    -3.952   26.899   0.907
Heat (X2)*Humidity (C1)        19.588   76.793   0.841
Time (X1)*Humidity (C1)       -6.698   31.223    0.279
Catalyst (X3) *Temp (C2)      -2.6715    5.605   0.654

S = 6.243   R-Sq = 93.0%   R-Sq(adj) = 73.3%

𝑅1
1 ∝  𝑥1. 𝑥2.𝑥3.𝑥1𝑥3.𝑥2𝑥3.𝑥2

2. 𝑥2
3

𝑅1
2 ∝  𝑥1. 𝑥3.𝑐1.𝑐2.𝑥1𝑐2. 𝑥2

3

𝑅2
1 ∝  𝑥1.𝑦1.𝑥1𝑥1.𝑥2𝑥2 

The case is analyzed by the proposed robust approach and FIML. The response surfaces 

regressed by the FIML method are given in Table 4. Minitab version 16 has been used to estimate 

the coefficients.

* Insert Table 4 about here. *

In order to find the efficiency of the proposed robust approach, we can estimate the response 

surfaces by pure FIML approach. Considering sum of square (SE) of estimation errors criteria, the 

efficiency of the proposed approach can be presented. The model is presented in Equation (7).

𝑅1
1(𝑋.𝐶) = 78.1 + 1.01𝑥1 + 3.58𝑥2 + 6.02𝑥3 + 10.99𝑥1𝑥3 ― 4.27𝑥2𝑥3 + 3.981𝑥2

2 ― 4.51𝑥2
3

𝑅1
2(𝑋.𝐶) = 28.73 + 1.129𝑥1 + 2.69𝑥3 + 1.89𝑐1 + 10.99𝑐2 ― 6.121𝑥1𝑐2 + 0.77𝑥2

3

𝑅2
1(𝑋.𝐶) = 7.14 + 0.81𝑥1 ― 0.007𝑦1 + 0.17𝑥1𝑥1 + 0.09𝑥2𝑥2

(7)

A comparison between classical FIML based model and the proposed robust multivariate 

regression methods based on the pure model is presented in Table 5.
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* Insert Table 5 about here *

The results in Table 5 show that in comparison with the FIML, the robust multivariate 

regression procedure has the smallest SE to estimate the coefficients of all responses. After 

estimating the response surfaces for the responses in both the first stage and second stage, the 

multi-objective optimization model is constructed. The multi-objective mathematical model for 

this problem is given in Eq. (8). Table 6 gives a summary of optimal solutions obtained by solving 

the response surfaces for each objective function separately.

𝑀𝑎𝑥 𝐹 = (𝑅1
1(𝑋.𝐶)

𝑅1
2(𝑋.𝐶)

𝑅2
1(𝑋.𝐶))

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:( ―1.68
―1.68
―1.68) ≤ (𝑥1

1
𝑥1

2
𝑥1

3
) ≤ (1.68

1.68
1.68)

( ―1.078
1 ) ≤ (𝑥2

1
𝑥2

2) ≤ (1.078
3 )

(8)

* Insert Table 6 about here *

In order to finalize the optimization approach, GC method’s main objective function in Eq. 

(9) will be applied to this example considering robust response surface and all three responses in 

this case.

𝑀𝑖𝑛 𝐺𝐶 = ((𝑅1
1(𝑋.𝐶) ― 100

46 )
2

+ (𝑅1
2(𝑋.𝐶) ― 71.65

14.7 )
2

+ (𝑅2
1(𝑋.𝐶) ― 15.96

7.23 )
2)

1/2

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:( ―1.68
―1.68
―1.68) ≤ (𝑥1

1
𝑥1

2
𝑥1

3
) ≤ (1.68

1.68
1.68)

( ―1.078
1 ) ≤ (𝑥2

1
𝑥2

2) ≤ (1.078
3 )

(9)

Table 7 shows the optimal solution and the related objective values for each stage and each 

response considering both FIML and proposed robust modelling approaches.

* Insert Table 7 about here*
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As shown in Table 7, our proposed robust method performed better in optimizing the 

responses in multistage problem while considering GC criteria for both stages and the controllable 

factors besides covariates are obtained by solving this multi-objective problem. More robust 

approach applied in model building phase, more accurate solutions can be obtained in optimization 

phase.

4. Conclusion and future works

The multi-response surface optimization problem in multistage processes was investigated in 

this paper. In multistage processes, as the products are moved forward through the stations, the 

quality characteristics change. This paper proposed a new robust multi-response surface approach 

in multistage processes in which a multivariate robust regression method was used to predict the 

correlated responses in each stage. Also, the global criterion (GC) method was applied to optimize 

the whole multistage problem.

We showed that outliers affected the parameter estimates of the regression coefficients and 

that the usual assumptions involved in a regression model were violated when the OLS method 

was used for estimation. However, the proposed approach guarantees that if the coefficients are 

estimated robustly, they are not affected by the outliers. By applying this M-estimator based 

approach, the process weighs the residuals iteratively while considering the correlations between 

the responses. In order to optimize robust response surfaces, GC as a simple multi-objective 

approach was applied.

The results show that, in order to obtain more robust and accurate results from optimizing 

multistage problems, one common way could be representing robust models with considering 

response surfaces and then applying the multi-objective approach to solve the problem. As it was 

shown in the case surveyed in this paper, the robust approach had less GC criteria in optimization 

problem and it performed better in terms of both the SE and GC criteria.

This work can be extended to be applied for tolerance design. Furthermore, the use of other 

robust approaches such as MM-estimates, S-estimates and also Tou-estimates in order to estimate 

regression coefficients can be considered in future studies. Also for further studies, the mixed set 

of categorical and numerical responses is suggested. In this work, only the variances of observed 

values were considered. Therefore, the variances of predicted responses can be another future 
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research on this subject.  Moreover, other multi-objective optimization approaches can be surveyed 

as a possible solution for this problem.
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Figure 1. A schematic of a multistage process.

Identify input and 
outputs variables

Selecting a proper 
experimental design

Develop a system 
equation (Initial RSM for 
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stage)
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objective optimization 
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problem

Applying GC method to 
solve the multi-

objective model for the 
multistage problem

Figure 2. The proposed method.

Page 16 of 22

http://mc.manuscriptcentral.com/ijqrm

International Journal of Quality & Reliability Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Quality & Reliability M
anagem

ent

2

Residual

P
e

rc
e

n
t

420-2

99

90

50

10

1

Fitted Value

R
e

si
d

u
a

l

9080706050

4

2

0

-2

Residual

F
re

q
u

e
n

cy

43210-1-2

16

12

8

4

0

Observation Order

R
e

si
d

u
a

l

2018161412108642

4

2

0

-2

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Conversion (R1)

Residual
P

e
r
c
e

n
t

1.00.50.0-0.5

99

90

50

10

1

Fitted Value

R
e

s
id

u
a

l

70656055

1.0

0.5

0.0

-0.5

Residual

F
r
e

q
u

e
n

c
y

0.750.500.250.00-0.25-0.50

16

12

8

4

0

Observation Order

R
e

s
id

u
a

l

2018161412108642

1.0

0.5

0.0

-0.5

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Residual Plots for Activity (R2)

Figure 3. The Normal probability plot and residual behavior considering contaminated data for 
the responses in the first stage.
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Table 1. A summary of the relevant studies.

Multi-response optimization approach
Multistage Processes 

(Quality Oriented Design)

Optimization approach
Authors Location Dispersion Correlation Robust 

approach MODM Posterior 
Method

Inspection Parameter 
design

Chiao and 
Hamada (2001) 

Shah and al. 
(2004) 

Kazemzadeh and 
al. (2008)   



Hejazi and al. 
(2012) 



Salmasnia and al. 
(2013) 



Zantek (2002) 

Shin and al. 

(2010)


Mukherjee and 
Ray (2012)  

Hejazi and al. 
(2013)   

Hejazi and al. 
(2015)  

Hejazi and al. 
(2017)  

Moslemi and al. 
(2018)  




This study    
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Table 2. The first stage experimental designs.

Rows Time (X1) Heat (X2) Catalyst (X3) Humidity (C1) Temp (C2) Conversion (R1) Activity (R2)

1 -1 -1 -1 41% 16.7 74 53.2

2 1 -1 -1 55% 17.3 51 62.9

3 -1 1 -1 67% 19.3 88 53.4

4 1 1 -1 55% 12.3 70 62.6

5 -1 -1 1 12% 11.5 71 57.3

6 1 -1 1 95% 18.5 90 67.9

7 -1 1 1 65% 19.2 66 59.8

8 1 1 1 96% 16.5 97 67.8

9 0 0 0 30% 13.2 81 59.2

10 0 0 0 59% 14 75 60.4

11 0 0 0 46% 16.4 76 59.1

12 0 0 0 57% 16.4 83 60.6

13 -1.682 0 0 59% 13.5 76 59.1

14 1.682 0 0 33% 13.9 79 65.6

15 0 -1.682 0 48% 15 85 60

16 0 1.682 0 385 13.1 97 60.7

17 0 0 -1.682 295 12.7 55 57.4

18 0 0 1.682 205 15.8 81 63.2

19 0 0 0 25% 11.5 80 60.8

20 0 0 0 75% 19.1 91 58.9
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Table 3. Experimental design data of the second stage.

Rows Covariate Control factor Response

Conversion Heat (X1)  Ni (X2) Process time (R1)

1 74 -1 1 7.88
2 51 1 1 9.02
3 88 -1 1 7.90
4 70 1 1 8.99
5 71 -1.078 1 7.91
6 90 1.078 1 8.99
7 66 0 1 9.09
8 97 0 1 9.22
9 81 0 1 9.24
10 75 0 1 9.14
11 76 -1 2 7.19
12 83 1 2 8.87
13 76 -1 2 7.43
14 79 1 2 8.69
15 85 -1.078 2 7.31
16 97 1.078 2 9.09
17 55 0 2 8.81
18 81 0 2 8.89
19 80 0 2 8.86
20 91 0 2 8.79
21 77 -1 3 7.95
22 80 1 3 9.07
23 76 -1 3 8.05
24 77 1 3 9.04
25 82 -1.078 3 7.88
26 86 1.078 3 9.00
27 71 0 3 9.09
28 85 0 3 9.19
29 84 0 3 9.09
30 89 0 3 9.16
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Table 4. Estimated response surfaces using FIML and robust multivariate method.

Method Estimated responses

𝑅1
1(𝑋.𝐶) = 78.9 + 1.04𝑥1 + 3.62𝑥2 + 6.04𝑥3 + 11.01𝑥1𝑥3 ― 4.13𝑥2𝑥3 + 3.61𝑥2

2 ― 4.81𝑥2
3

𝑅1
2(𝑋.𝐶) = 43.23 + 0.909𝑥1 + 2.57𝑥3 + 1.125𝑐1 + 10.059𝑐2 ― 5.921𝑥1𝑐2 + 0.89𝑥2

3
Robust 

approach
𝑅2

1(𝑋.𝐶) = 7.97 + 0.72𝑥1 ― 0.06𝑦1 + 0.2𝑥1𝑥1 + 0.07𝑥2𝑥2

𝑅1
1(𝑋.𝐶) = 79.6 + 1.028𝑥1 + 3.925𝑥2 + 6.204𝑥3 + 11.481𝑥1𝑥3 ― 4.007𝑥2𝑥3 + 3.021𝑥2

2 ― 5.01𝑥2
3

𝑅1
2(𝑋,𝐶) = 23.33 + 0.889𝑥1 + 2.17𝑥3 + 2.595𝑐1 + 10.859𝑐2 ― 5.811𝑥1𝑐2 + 1.287𝑥2

3FIML

      𝑅2
1(𝑋.𝐶) = 8.77 + 0.66𝑥1 ―0.002𝑦1 ―0.75𝑥1𝑥1 +0.34𝑥2𝑥2

Table 5. Total squared errors of the estimated coefficients for the response surfaces.

𝑹𝟏
𝟏 𝑹𝟏

𝟐 𝑹𝟐
𝟏

Robust 
multivariate

FIML Robust 
multivariate

FIML Robust 
multivariate

FIML

Total SE 0.89 3.88 30.365 211.8192 0.698 3.588

Table 6. Pay off matrix of GC method.

Methods of estimation Z1 Z2 Z3 𝑹𝟏
𝟏 𝑹𝟏

𝟐 𝑹𝟐
𝟏

FIML 0 0 0 100 78.796 15.96
Target

Robust 0 0 0 100 71.653 13.24

Best Observed 0.106 0.003 0.045 97 67.9 12.4

Worst Observed 1.541 2.272 0.7 51 53.2 5.17

Table 7. Optimal results of the numerical example.

Page 21 of 22

http://mc.manuscriptcentral.com/ijqrm

International Journal of Quality & Reliability Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



International Journal of Quality & Reliability M
anagem

ent

Approach X C 𝑹𝟏
𝟏 𝑹𝟏

𝟐 𝑹𝟐
𝟏 GC

FIML (1.224
0.464
1.38 ) ( 0.501

14.996) 100 78 - 0.0522
First 

stage
Robust (1.209

0.418
1.68 ) ( 0.501

15.422) 100 70.037 - 0.011

FIML (1.15
2 ) (62) - - 15.96 0.043Second 

stage Robust (1.24
1.89) (68) - - 13.24 0.0078

Page 22 of 22

http://mc.manuscriptcentral.com/ijqrm

International Journal of Quality & Reliability Management

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


