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Abstract 

 

Naturally regenerating tropical forests are increasingly important for their role in the global 

carbon (C) balance, particularly due to their ability to rapidly sequester large amounts of C in 

aboveground biomass during forest regrowth. Over half of all C in tropical forests is stored 

belowground, yet in contrast to the predictable pattern aboveground, there is no clear pattern 

of soil C accumulation with time during forest regrowth, and we are therefore currently unable 

to predict and increase soil C sequestration during tropical forest regrowth. Soil C turnover and 

storage depends on the input of plant-derived organic matter which is likely to be affected by 

shifts in tree community resource-use strategy (functional group) during secondary succession 

from light-demanding to shade-tolerant species, and the corresponding reduction in litter 

quality. As tree community composition can differ between forest stands of similar ages, I 

hypothesised that tree community functional composition would better predict  soil C dynamics 

during secondary tropical forest succession than stand age and specifically, that differences in 

litter quality between shade-tolerant and light-demanding tree species would influence rates 

of soil C turnover via litter decay rates and changes to the soil microbial community. The body 

of work presented in this thesis provides compelling evidence in support of my overarching 

hypothesis that soil C accumulation is more closely related to tree functional composition than 

forest age. My studies highlight some of the potential pathways by which tree community 

composition can influence soil C storage via plant-derived organic matter inputs representing 

substrate for the soil microbial community. Overall, the research presented in this thesis 

demonstrates that tree functional composition could be one of the main factors determining 

belowground C storage and therefore, my work represents an important first step towards 

using tree functional groups to predict soil C accumulation in secondary tropical forests. 
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Figure 4.4 NMDS representation of soil microbial community composition in four forest stands 

along an age gradient of naturally regenerating tropical forest in Panama, Central America; 

ordinations were based on Bray-Curtis dissimilarities of phospholipid fatty acid (PLFA) 

biomarkers in soil samples collected from 0-5cm in four blocks per stand, where 40 year 

old (40Y; blue diamonds), 60 year old (60Y; green triangles), 90 year old (90Y; orange 

circles) and old growth (OG; > 500 years old; red squares) forest stands. Significant (p < 

0.05) relationships between ordination axes and soil properties or tree functional 

characteristics (at 20 m2 radius) are fitted as vectors (black arrows), where RI.DEC is the 

relative influence of shade-tolerant (decelerating growth) tree species (%) per block, 

MEAN.B is the block mean species growth response to increasing light, pH is soil pH, TC is 

total carbon (%) and TN is total soil nitrogen (%); ellipses group blocks within stands based 

on 99% confidence intervals. ......................................................................................... 108 

Figure 4.5  Soil microbial biomarker groups from PLFA analysis along a successional gradient of 

four forest stands (40 year old, 60 year old, 90 year old and OG = old-growth (>500 year 

old) forest) for a) total microbial biomass, b) total fungal biomass, c) the relative 

abundance of arbuscular mycorrhizal fungi (AM fungi), d) the ratio between fungi and 

bacteria, e) the relative abundance of gram-negative bacteria, f) the relative abundance 

of gram-positive bacteria, and g) the ratio between gram-positive and gram-negative 

bacteria. Soil was sampled from 0-5 cm depth, PLFA data from each replicate block were 

combined resulting in n = 4 per stand. Significant differences among stands were 

determined by Tukey post-hoc analyses and indicated by different letters at p < 0.05. 

Boxes denote the 25th and 75th percentiles and median lines, whiskers indicate values up 

to 1.5 x the interquartile range, and dots indicate outliers............................................ 110 

Figure 4.6 Relationship between a) total soil microbial biomass and b) total fungal biomass and 

block-mean tree community growth response to light (mean b; Rüger et al., 2009) in four 

forest stands in a tropical forest in Panama, Central America; where microbial biomass is 

represented by total phospholipid fatty acids (PLFA) in soils sampled at 0-5 cm and stands 

are represented by age (years since last disturbance event and OG = old-growth forest).

 ....................................................................................................................................... 112 
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1 Introduction 
  
 

1.1 The new normal - regenerating tropical forests 

The world’s natural ecosystems are changing. Human activity has radically altered the natural 

environment to such an extent that undisturbed ‘pristine’ or ‘intact’ ecosystems are becoming 

a rarity and human-modified landscapes, in a myriad of conditions now dominate much of the 

planet (Foley et al., 2005). As the human population and patterns of consumption continues to 

expand, and the drivers of environmental change persist, human modified landscapes will 

become increasingly important as the primary providers of global ecosystem services (ESS). 

Tropical forests in particular are being modified by human activities at an alarming rate 

(Chazdon and Guariguata, 2016; FAO, 2018).  

To understand how changes to natural ecosystems might affect the cycling of matter and 

energy and the wider implications of this, there is a pressing need to advance scientific 

knowledge on ecosystem functioning in a changing world. Global carbon (C) cycling and its role 

in climate change, is high on the agenda as a research priority, most notably in the globally 

extensive and rapidly changing tropical forest ecosystems (FAO, 2018). A comprehensive, 

mechanistic understanding of C cycling and storage as tropical forests undergo change is 

essential to improve model predictions (Box 1), inform policies and practices to halt the release 

of carbon dioxide (CO₂) and help mitigate the effects of climate change through C 

sequestration. 
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1.2 Growing importance of secondary tropical forests for global 

carbon balance 

Although tropical forests occupy a small fraction of total land surface, they play a leading role 

in helping maintain life on Earth: they are estimated to support around half of all species and 

are key players in climate regulation, most notably for their crucial contribution to global 

terrestrial C storage and dynamics (Pan et al., 2011; Townsend et al., 2011; Martin, Bullock and 

Newton, 2013; Anderson-Teixeira et al., 2016). Often described as the ‘lungs of the planet’, 

tropical forests function as the largest component of the terrestrial C sink, as they are 

responsible for around c. 40% of net primary production (NPP; Cleveland et al., 2011) and store 

c. 45% of terrestrial C (Anderson-Teixeira et al., 2016), sequestering around half of global 

anthropogenic CO2 emissions (Yin, Wu and Li, 2018). They are also the largest natural source of 

CO2 (Sayer et al., 2011) returning C to the atmosphere via the decomposition or burning of 

organic matter. Hence, tropical forests play a key role in the global C cycle via major 

bidirectional transfer of CO2 with the atmosphere, and until recently, tropical forest ecosystems 

represented the most important terrestrial C sink. 

Over the last two decades, human activities have turned tropical forest regions from a C sink 

into a source of CO2 emissions (Malhi, 2010). Deforestation and land-use change such as logging 

and agricultural expansion continues to decimate vast areas of intact tropical forest annually 
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(Chazdon and Guariguata, 2016; FAO, 2018), which not only has devastating consequences for 

biodiversity  (Barlow et al., 2016) but has also led to growing uncertainties regarding the C 

balance of tropical forests. Tropical deforestation and land-use change is the second largest 

source of anthropogenic greenhouse gas emissions after fossil fuel use (FAO, 2018) with an 

estimated 2.6 Gt CO2 emitted between 2010-2014 due to the expansion of croplands, pastures 

and forestry plantations (Pendrill et al., 2019). Furthermore, recent research suggests that the 

ability of remaining intact tropical forests to sequester C is in decline (Hubau et al., 2020), while 

CO2 release from microbial activity is increasing (Bond-lamberty et al., 2018), raising the 

concern that tropical forests may now be functioning as a net C source rather than a sink 

(Baccini et al., 2017).  

As a consequence of wide-spread tropical deforestation and land-use change, over half of all 

remaining tropical forest is now classed as secondary, degraded or regenerating forest (FAO, 

2015; Poorter et al., 2016). Agricultural abandonment, as part the common practice of swidden 

agriculture, along with recovery from selective logging, has created an extensive mosaic of 

naturally regenerating ‘secondary’ or ‘regrowth’ forest throughout the tropics, which is 

expected to expand in the future (Chazdon, 2014). As such, secondary regrowth forests have 

received growing attention and are increasingly looked towards as critical providers of tropical 

forest ecosystem services for both biodiversity conservation (Chazdon et al., 2009) and climate 

regulation (Poorter et al., 2016).  

Naturally regenerating tropical forests can rapidly accumulate atmospheric CO2 in aboveground 

biomass (Pan et al., 2011) which is estimated to reach 90% of intact forests after c. 66 years 

with an average biomass recovery after 20 years of 122 megagrams per hectare (Poorter et al., 

2016). The net uptake of C by secondary regrowth forests (3.05 Mg C y-1) is 11 times that of old-

growth (Poorter et al., 2016). As such, natural regeneration of tropical forests is widely 

considered to be an effective low-cost mechanism to sequester large amounts of CO2 from the 

atmosphere (Pan et al., 2011; Chazdon, 2016), and therefore represents a significant climate 

change mitigation strategy (Chazdon and Guariguata, 2016; Schwartz et al., 2017; Lewis et al., 

2019; Romijn et al., 2019; Mackey et al., 2020). 

The C sequestration potential of naturally regenerating tropical forests can be an important 

motivating factor to reach national targets for forest restoration (Poorter et al., 2016) for 

example though initiatives such as The Bonn Challenge (https://www.bonnchallenge.org), and 

Initiative 20 × 20 (https://initiative20x20.org). To date, nearly 300 Mha of degraded land has 
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been committed for forest restoration in the tropics and subtropics through local and global 

initiatives (Lewis et al., 2019). However, the majority of this area has been earmarked for 

commercial plantations, which support local economies but are estimated to sequester around 

40 times less C than natural forests (Lewis et al., 2019). Along with the protection of remaining 

old growth forests in the fight against rising levels of atmospheric CO2 (Pan et al., 2011; Mackey 

et al., 2020), these findings further emphasize the significant potential of naturally regenerating 

tropical forests as a whole. This highlights the need for reliable predictions of C accumulation 

during forest regrowth to encourage greater inclusion of naturally regenerating forest in 

restoration pledges and policies and for modelling future C and climate change scenarios.  

Whilst evidence of rapid tree regrowth following disturbance highlights the huge C 

sequestration potential of naturally regenerating tropical forests aboveground, we know 

relatively little about the changes, interactions and processes involved in the storage and 

cycling of C in tropical forest soils during secondary forest regrowth (Marín-Spiotta and Sharma, 

2013; Martin, Bullock and Newton, 2013). 

 

Soil carbon dynamics in secondary tropical forests 

Soils make up the largest C pool in the terrestrial biosphere (Yang, Luo and Finzi, 2011) and 

account for over half of the C stock in tropical forests (Don, Schumacher and Freibauer, 2011). 

Tropical forest soils are an important part of the global C balance, but our understanding of soil 

C dynamics during secondary forest regrowth is hampered by the complexity of biogeochemical 

processes and interactions, the lack of studies in tropical regions, and inconsistent patterns of 

soil C losses and gains during forest disturbance and recovery (Yang, Luo and Finzi, 2011; Li, Niu 

and Luo, 2012; Marín-Spiotta and Sharma, 2013; Martin, Bullock and Newton, 2013; Powers 

and Marín-Spiotta, 2017).  

In contrast to the relationship between forest stand age (years since last disturbance event) 

and aboveground biomass C accumulation, patterns of C loss and gain in soils during tropical 

forest regrowth are less clear. For example, several studies, including meta-analyses and 

syntheses, have reported either a weak relationship, no significant change, or contrasting 

results for changes in soil C during tropical forest regrowth as a function of forest age (Li, Niu 

and Luo, 2012; Marín-Spiotta and Sharma, 2013; Martin, Bullock and Newton, 2013; Powers 

and Marín-Spiotta, 2017). Additionally, a global synthesis (including studies from other climate 

zones) concluded that the majority of individual studies showed no significant relationship 
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between soil C dynamics and forest fallow age (Yang, Luo and Finzi, 2011). These results suggest 

that forest stand age is of limited use for predicting soil C dynamics in secondary tropical forests 

and that other factors may better explain patterns in soil C during forest regrowth. 

Although the cycling and storage of C in tropical forest soils is partly determined by climate, soil 

characteristics and land-use history (Marín-Spiotta and Sharma, 2013), changes in tree 

functional groups and the quality and quantity of plant-derived organic matter during forest 

regrowth are expected to have a significant impact on soil C dynamics (Laird-Hopkins et al., 

2017; Kerdraon et al., 2019). Plant litter decomposition plays a fundamental role in soil C 

storage (Sayer, 2006; Prescott, 2010; Sayer and Tanner, 2010). During decomposition, C and 

nutrients are sequentially broken down and made available to plants, beginning with the more 

labile and soluble compounds within litter (e.g. sugars) and eventually the most recalcitrant 

forms (e.g. lignin) (Kutsch, Bahn and Heinemeyer, 2009). Plant-derived C compounds are either 

mineralised and returned to the atmosphere as CO2 or immobilised in the soil matrix (Kutsch, 

Bahn and Heinemeyer, 2009). The balance between soil C storage and release during 

decomposition could eventually determine whether a forest functions as a C source or sink and 

hence even slight changes affecting the decomposition of organic matter can have a significant 

effect on C dynamics (Sayer et al., 2011). 

Changes in organic matter quality, i.e. dominant C forms and nutrient concentrations, are 

expected to have important implications for soil C turnover by influencing the abundance, 

structure, and activity of the soil microbial community. Microbial biomass is a key driver of 

biogeochemical processes and is strongly linked to substrate availability (Kutsch, Bahn and 

Heinemeyer, 2009), whereby total microbial biomass tends to increase with increasing soil 

organic matter content (Yao et al., 2000). Recent research suggests that labile C compounds 

are used more efficiently and thus stimulate the turnover of microbial biomass, resulting in the 

production of increasingly stable C compounds (Cotrufo, Wallenstein and Boot, 2013). The 

formation of stable soil organic matter may also be partially explained by differences in soil 

microbial structure. For example, the metabolization of easily degradable compounds from 

nutrient-rich organic matter is generally associated with small-bodied, fast-growing 

microorganisms termed zymogenous or r-strategists (e.g. Gram-negative bacteria), which have 

high turnover rates. By contrast, degradation of more complex structural compounds generally 

found in nutrient-poor organic matter requires the activity of larger, slow-growing 

microorganisms termed autochtonous or K-strategists (e.g. fungi and Gram-positive bacteria), 
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which have slower turnover rates (Kutsch, Bahn and Heinemeyer, 2009; Zhou et al., 2017). 

Hence, soil carbon storage may be largely determined by microbial community composition, 

which in turn is shaped by the quality of plant litter inputs.  

 

Tree community functional changes during succession and influence 

on soil carbon dynamics  

The quality and quantity of organic matter inputs to the soil is largely determined by the 

functional composition of the plant community (De Deyn, Cornelissen and Bardgett, 2008), 

which changes during secondary succession (Chazdon, 2014). In tropical forests, light-

demanding tree species that invest in fast growth are characterised as having ‘high quality’, 

easily decomposable leaves, which have high nutrient concentrations (e.g. N, P), high specific 

leaf area (SLA) and low content of structural compounds such as lignin (Wright et al., 2004; 

Chazdon, 2014). Conversely, shade-tolerant trees preferentially invest in structure, defence and 

longevity, resulting in leaves characterised as ‘low quality’, typically with low nutrient 

concentrations, high fibre and lignin content and greater concentrations of foliar defence 

compounds such as tannins and phenols (Wright et al., 2004; Ostertag et al., 2008). Hence, 

changes in the functional composition of tree communities during secondary forest succession 

could greatly influence the turnover and storage of organic matter in the soil.  

Changes in tree species composition and functional groups during secondary succession are 

largely driven by changes in the availability of resources (light, water, and nutrients) as forests 

mature. During early succession, high light levels allow fast-growing ‘pioneer’ species to out-

compete slower-growing species to dominate the canopy. However, as light becomes more 

limited in later succession there is a progression towards a dominance of shade-tolerant species 

(Dent, DeWalt and Denslow, 2012; Chazdon, 2014; Whitfeld et al., 2014). The shift from light-

demanding to shade-tolerant species can also be characterised as a shift in the resource use 

strategy of the dominant tree species, from ‘acquisitive’ to ‘conservative’ along a fast-slow plant 

economic spectrum (Reich, 2014), which is reflected in a set of coordinated leaf functional traits 

(Conti and Díaz, 2013) resulting in ‘high’ and ‘low’ litter quality respectively (Wright et al., 2004; 

Ostertag et al., 2008; Chazdon, 2014). Hence, the shift from light-demanding to shade-tolerant 

tree functional groups during secondary succession and the accompanying reduction in litter 

quality is expected to influence rates of soil C turnover via changes to litter decomposition rates 

and microbial respiration.   
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However, the trajectory of tree community composition can be influenced by a multitude of 

factors, including soil physicochemical properties and former land-use (Chazdon, 2014) and as 

such, the functional characteristics of dominant tree species may differ within and among 

secondary forest stands of the same age (Norden et al., 2015; Boukili and Chazdon, 2017). 

Consequently, characterising tree communities in secondary tropical forests by functional 

groups rather than age (or time since last disturbance) may represent a better approach to 

reveal relationships between above- and belowground C dynamics during seconday succession. 

 

Thesis objectives  

The body of work presented in this thesis aims to address some of the challenges involved in 

predicting soil C accumulation during secondary forest succession by investigating the 

relationship between tree functional assemblages and soil C dynamics. The present thesis 

comprises five chapters: this introduction to the thesis (Chapter 1), three original pieces of 

research (Chapters 2-4) and an overall discussion of the work (Chapter 5).  

My studies assessed changes in tree functional groups, soil C, decomposition processes and soil 

microbial communities along a chronosequence of naturally regenerating moist tropical forest 

located within Barro Colorado Nature Monument (BCNM) in Panama: 

In Chapter 2 I test the hypothesis that tree functional groups have a stronger influence on soil 

C than forest age by assessing the relationship between the relative influence of shade-

tolerance tree species on soil C (concentrations and stocks) across five forest age classes. I 

demonstrate that surface soil C content is strongly related to tree community shade-tolerance, 

suggesting that high-quality plant inputs may play a key role in soil C accumulation during 

secondary succession. 

In Chapter 3 I test the hypothesis that the shift from light-demanding to shade-tolerant tree 

species during secondary succession is reflected in changes in C turnover and litter decay rates. 

I conducted an in situ decomposition experiment across an age gradient of naturally 

regenerating tropical forest, and measured litter decay and soil respiration rates to represent 

soil C dynamics. I demonstrate that litter from light-demanding species decomposes more 

rapidly than that of shade-tolerant species and the temporal response of soil respiration rates 

reflect differences in litter decay rates.  
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In Chapter 4 I test the hypothesis that dominant tree functional groups influence the 

abundance, structure and activity of soil microbial communities. My study assessed the 

relationships between soil microbial metrics, tree community shade-tolerance, and litter 

decomposition or soil respiration rates as proxies for soil C turnover across an age gradient of 

naturally regenerating tropical forest. I demonstrate clear links between tree community 

shade-tolerance, soil microbial biomass and soil microbial community structure, which 

influence decomposition and soil respiration. 
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2    Soil carbon in a regenerating tropical forest is 

related to tree functional composition, rather 

than stand age 

 

2.1 Abstract 

Regenerating tropical forests are increasingly important for their role in the global carbon (C) 

budget. Carbon stocks in aboveground biomass can recover to old-growth forest levels within 

60-100 years, but more than half of all C in tropical forests is stored belowground, and our 

understanding of C accumulation in soils during tropical forest recovery is limited. Importantly, 

soil C accumulation does not necessarily reflect patterns in aboveground biomass C accrual 

during forest regrowth, as factors related to past land-use, species composition, and soil 

characteristics may also be important controls of soil C accumulation during tropical forest 

recovery. In this study, I assessed the relationship between soil C, forest age, and stand 

characteristics during secondary forest succession across an age-gradient of between 40 to 

120Y naturally regenerating secondary forest (SF) and old-growth (OG) tropical forest stands in 

Panama. Using tree census data and light response classes (a proxy measure of shade tolerance 

and function) I assessed the relationship between the relative dominance of tree functional 

groups and soil C accumulation. As expected, soil C decreased with depth in all stands and there 

was no significant relationship between soil C and increasing stand age and no clear influence 

of past land-use. However, soil C decreased with increasing stand basal area and there was a 

strong relationship between tree functional groups and soil C content at 10-cm depth, whereby 

soil C increased with the increasing relative influence of light-demanding species. The 

accumulation of belowground C is more strongly linked to tree species composition than forest 

age or soil characteristics in these forests. The faster turnover of nutrients through the 

decomposition of generally more nutrient rich organic matter (leaf litter) could result in a 

greater build-up of C in the surface layer of soils in stands with a higher proportion of light 

demanding species. These findings help improve our understanding of above-belowground 

relationships during tropical forest secondary succession and crucially, the C sequestration 

potential of recovering and restored tropical forest.  
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2.2 Introduction 

Naturally regenerating tropical forests 

Tropical forests are critically important ecosystems for the rich biodiversity they support and as 

key providers of wider ecosystem services, in particular for their crucial contribution to global 

terrestrial carbon (C) storage and dynamics (Pan et al., 2011; Townsend et al., 2011; Martin, 

Bullock and Newton, 2013; Anderson-Teixeira et al., 2016). Human activity, such as logging and 

agricultural practices, continues to decimate vast areas of primary (intact) tropical forest 

annually (FAO, 2018). Over half of all remaining tropical forest is now classed as secondary, 

degraded or regenerating (FAO,  2015; Poorter et al., 2016), increasing the global importance 

of these forests as the dominant provider of key tropical forest ecosystem services (Chazdon, 

2014).  

Tropical forest regeneration, through natural regrowth, afforestation or restoration activities, 

can rapidly sequester large amounts of atmospheric carbon dioxide (CO2) in aboveground 

biomass. Following the cessation of agricultural practices such as crop production and pasture, 

naturally regenerating forests generally follow a predictable pattern of aboveground biomass 

recovery (Powers and Marín-Spiotta, 2017), characterised by rapid accumulation in the early 

stages of stand development until canopy closure, followed by gradual saturation, and then 

often a slight decline due to tree mortality in later stages of succession (Yang, Luo and Finzi, 

2011; Zhu et al., 2018). For example, in a multi-site chronosequence study in the Neotropics, 

naturally regenerating tropical forests recovered 90% of old-growth biomass values after c. 66 

years, with an average biomass recovery after 20 years of 122 megagrams per hectare 

(equivalent to a net uptake of 3.05 Mg of carbon per year) which is 11 times that of old-growth 

forests (Poorter et al., 2016). These results reinforce the importance of regenerating tropical 

forests for their contribution in the global C cycle.  

Although evidence of rapid tree regrowth following disturbance highlights the huge C 

sequestration potential of regenerating tropical forests, estimates suggest as much as 60% of 

the total tropical forest C stock is stored belowground in soils (Don, Schumacher and Freibauer, 

2011). In contrast to our understanding of aboveground C recovery during secondary 

succession, we know relatively little about the changes, interactions and processes involved in 

the storage and cycling of C in tropical forest soils during secondary forest regrowth (Marín-

Spiotta and Sharma, 2013; Martin, Bullock and Newton, 2013). 
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Controls of soil carbon storage and cycling during tropical forest 

regrowth  

Soil C does not follow a predictable pattern of loss and recovery with land-use change in tropical 

forests. Several meta-analyses and syntheses, which bring evidence together for multiple field 

studies in the tropics, have reported either a weak relationship, no significant change, or 

contrasting results for changes in soil C during forest regrowth as a function of forest age (Li, 

Niu and Luo, 2012; Marín-Spiotta and Sharma, 2013; Martin, Bullock and Newton, 2013; Powers 

and Marín-Spiotta, 2017). Similarly, a global synthesis (including studies from other climate 

zones) concluded that the majority of individual studies showed no significant relationship 

between soil C dynamics and forest fallow age (Yang, Luo and Finzi, 2011). Multiple factors (and 

their interactions) affect soil C dynamics during forest recovery, including climate (Marín-

Spiotta and Sharma, 2013), soil and vegetation characteristics (Laganière, Angers and Paré, 

2010), the extent of the initial disturbance, and the type, duration and intensity of previous 

land-use (Laganière, Angers and Paré, 2010). The relative influence of many of these factors 

remain poorly understood (Laganière, Angers and Paré, 2010; Li, Niu and Luo, 2012), 

particularly  in tropical forests, where the astonishing diversity of plant species and potential 

variability in tree functional change between different chronosequences may mask underlying 

mechanisms.  

 

Vegetation characteristics during succession 

As soil C dynamics are largely driven by input from plant material (from above and belowground 

biomass and exudates) the changing characteristics of forest vegetation are expected to have 

an important influence on soil C cycling in regenerating tropical forests (Laird-Hopkins et al., 

2017). Although a number of factors can influence aboveground biomass recovery (Johnson et 

al., 2000) and the successional trajectory of plant communities following human disturbance 

(Marìn-Spiotta et al., 2008; Arroyo-Rodríguez et al., 2017), under ‘optimal’ conditions where 

disturbance to soil and seedbank are minimal and forests can naturally regenerate, there are 

predictable changes in aboveground structural and functional characteristics during secondary 

succession (Chazdon, 2014).  
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Basal area change 

Changes in basal area during forest succession could influence soil C storage, as the 

aboveground biomass of trees is generally reflected belowground in their root systems, and 

greater inputs of organic matter from larger root systems (necromass and exudates)  as well as 

crowns, could contribute to soil C stocks. Although there is a general increase in tree basal area 

(BA) during the early stages of succession, basal area does not increase linearly with stand age, 

as ‘tree packing’ saturates and sometimes eventually declines with time. Although this 

‘intermediate peak theory’ (Denslow and Guzman, 2000) has sometimes been shown to be 

scale-dependent where larger, landscape-scale studies continue to see an increase in stand BA 

with time (Mascaro et al., 2012), BA is suggested to be a more useful predictor of successional 

changes during forest regrowth than forest age (Lohbeck et al., 2012) and might therefore also 

be a good predictor of soil C stocks.  

 

Functional change 

The trajectory of tree species and functional composition during secondary forest succession is 

largely driven by competition among species for changing resources (light, nutrients and water), 

as fast-growing, light-demanding trees with ‘acquisitive’ growth strategies (‘pioneer’ species) 

are gradually replaced by more slow-growing, shade-tolerant trees with ‘conservative’ growth 

strategies (Chazdon, 2014; Whitfeld et al., 2014). This shift in tree community shade tolerance 

and the associated changes in the physical and chemical properties of organic matter input to 

forest soils may significantly alter soil C and nutrient cycling throughout secondary succession 

through for example, the decreasing nitrogen (N) content in litterfall (Davidson et al., 2007). 

Acquisitive growth strategists prioritise investment in light capture and rapid growth; generally, 

have a larger specific leaf area (SLA), higher foliar nutrient concentrations (lower C:N) and lower 

investment in foliar defence (leaf toughness). Conversely, conservative growth strategists 

invest more in structure and defence, resulting in slower litter decomposition. As a result of 

these differences in plant functional traits, we might therefore expect the rates of litter 

decomposition and C cycling to be faster in forests with a comparatively greater proportion of 

light-demanding species (more common in early succession) than in (typically older) forests 

with comparatively more shade-tolerant species, and that soil C would accumulate over time 

as forests mature. 
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Influence of land use and soil characteristics on carbon accumulation 

during succession  

Former land use is an important predictor for initial soil C loss. For example, disturbance from 

ploughing in the conversion of forest to cropland causes greater initial soil C loss than land 

which maintains vegetative cover in the conversion to pasture (Don, Schumacher and 

Freibauer, 2011; Li, Niu and Luo, 2012). Highly disturbed soils therefore also have the greatest 

rate of soil C gain during recovery following the cessation of agriculture and forest regrowth 

(Laganière, Angers and Paré, 2010). Soil physical and chemical characteristics can also affect 

the accumulation and cycling of soil C; for example, soil pH can strongly affect the abundance 

and diversity of soil bacteria (Fierer and Jackson, 2006; Rousk et al., 2010; Zhou, Wang and Luo, 

2018), which play an essential role in soil C and nutrient dynamics through the decomposition 

of organic matter. An increase in soil N content is strongly correlated with soil C content and 

has been linked with the long-term sustainability of soil C sequestration (Yang, Luo and Finzi, 

2011) and changes in soil N dynamics have been shown to be related to changes in vegetation 

during forest recovery (Amazonas et al., 2011), however, soil N was not shown to increase with 

forest age in the SF stands on BCNM (Jones et al., 2019).   

 

Given the many potential influences on soil C accumulation during secondary succession, 

examining above-belowground processes and interactions during the recovery of naturally 

regenerating tropical forest provides an excellent opportunity to improve our understanding of 

belowground C dynamics during tropical forest regrowth and assess the wider potential of 

forest restoration activities to help mitigate atmospheric CO2 concentrations thought soil C 

sequestration. 

I investigated the relationship between functional changes in vegetation during secondary 

succession and patterns in soil C using an existing chronosequence of naturally regenerating 

moist tropical forest located within Barro Colorado Nature Monument (BCNM) in central 

Panama. The chronosequence provides an exceptional opportunity to study soil C recovery over 

a wide age range of recovering secondary tropical forest (40 – 120 years; Rozendaal et al., 2019) 

and old growth forest, for which extensive aboveground plant census data is available. 

Successional and functional patterns in aboveground communities have previously been 

characterised by Dent, DeWalt and Denslow (2012); their results revealed that tree community 
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shade tolerance increased with stand age for three size classes (seedling, sapling and adult 

trees) along the chronosequence. However, the relationship between changes in aboveground 

functional groups during succession and soil C has not yet been characterised. 

Given that soil C during secondary forest succession is likely to be strongly influenced by historic 

soil disturbance and soil characteristics, as well as the quantity and quality of plant inputs, I 

hypothesised that stand basal area and the proportion of different tree functional groups would 

have a greater influence on soil C content and stocks than stand age per se. Specifically, I 

hypothesised that: 

1) Soil C content and stocks will increase with stand basal area 

2) Soil C content and stocks will increase with greater dominance of shade-tolerant trees 

3) Soil C content and stocks will increase with increasing soil pH  and be greater in stands that 

were used only for pasture or were undisturbed than those that were ploughed for agricultural 

purposes. 

To test my hypotheses, I measured soil C concentrations, estimated soil C stocks, and assessed 

tree functional groups across 10 forest stands in five age classes, taking into account differences 

in former land-use and soil properties. 
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2.3 Methods 

Chronosequence description 

The chronosequence stands are located throughout the Barro Colorado National Monument 

(BCNM) which comprises the 1500-ha Barro Colorado Island (BCI) and five surrounding 

mainland peninsulas (Figure 2.1). The climate is classified as moist tropical with a distinct dry 

season from January to April with a mean annual temperature of around 27°C and an average 

annual rainfall of 2600 mm, of which 90% falls in the rainy season (Windsor, 1990).  

The chronosequence was chosen because it is considered to be largely representative of forest 

recovery following the wide-spread practice of ‘swidden’ agriculture in the tropics (Denslow 

and Guzman, 2000; Dent, DeWalt and Denslow, 2012), where deforestation for agriculture and 

subsequent farm abandonment over time has created a mosaic of old-growth (OG) and 

naturally regenerating secondary forests (SF). Past land-use within the chronosequence 

included pasture for cattle, fruit and vegetable production, and plantations (Denslow and 

Guzman, 2000; Leigh, Rand and Winsor 1983; Table 2.1). More recent human disturbance on 

the peninsulas of the BCNM form an extensive age gradient of tropical forest with 10 defined 

chronosequence stands comprising two replicate age categories which, at the time of the 

present study, were estimated at 40, 60, 90 and 120 years since agricultural abandonment, and 

two undisturbed OG stands (Dent, DeWalt and Denslow, 2012). Stand ages were determined 

using a combination of early publications and accounts; aerial photographs; and interviews with 

long-term residents, scientists, farmers and forest guards (Dalling and Denslow, 1998; Denslow 

and Guzman, 2000; Dewalt, Schnitzer and Denslow, 2000; Mascaro et al., 2012). The age 

estimates for the stands are considered to be approximate to within 10 years of accuracy 

(Dalling and Denslow, 1998; Denslow and Guzman, 2000; Mascaro et al., 2012). Stands were 

established on level terrain, running parallel to slopes and avoiding creeks and trails (Denslow 

and Guzman, 2000). Each stand has an area of at least 5 ha and there has been no further 

disturbance to stands since agricultural abandonment. (Denslow and Guzman, 2000; Dewalt, 

Schnitzer and Denslow, 2000; Dent, DeWalt and Denslow, 2012; Mascaro et al., 2012). The 

wider study area provides data on species composition, plant traits and forest dynamics (Leigh, 

Rand and Windsor, 1983; Leigh. et al., 2004; Kattge et al., 2011; Condit, Chisholm and Hubbell, 

2012). Species richness is quite constant across stands of different ages and attains levels of OG 

forest within 20 years of succession (Denslow and Guzman, 2000; Dent, DeWalt and Denslow, 

2012). Tree species composition between stands of the same age class is more variable in the 
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youngest forest stands and becomes more similar with stand age (DeWalt, Maliakal and 

Denslow, 2003; Dent, DeWalt and Denslow, 2012). In contrast to species richness, functional 

diversity (characterised as community-level shade tolerance from basal area weighed mean) 

increases with stand age and converges with that of OG forest over time (Dent, DeWalt and 

Denslow, 2012). 

The BCNM chronosequence overlies volcanic (andesite) and sedimentary (volcanic and marine 

derived) geological units, which have weathered to form a variety of soil types (Baillie et al., 

2007). Although the most significant difference in soil type is between those derived principally 

from volcanic composition (which weather to produce mainly kanditic and oxidic clays) and 

those from the sedimentary ‘Caimito marine’ facies (which produces more smectitic clays; 

Baillie et al., 2007), a number of studies report little variation in soil chemical properties across 

soil types (Yavitt and Kelman Wieder, 1988; Yavitt, 2000; Barthold, Stallard and Elsenbeer, 

2008). Soils on BCI are reported to be rich in nitrogen (N; Yavitt and Wieder, 1988)  and have a 

high cation exchange capacity (CEC) despite differences in derived parent material (Baillie et al., 

2007). However, Yavitt (2000) found that volcanic derived soils on BCI have slightly but 

significantly higher phosphorous (P) concentrations than those from sedimentary rocks. 

Soil C concentrations and stocks on BCI decrease significantly with depth but no significant 

variation was observed between soil types (Grimm et al., 2008). Across all soil types, the upper 

10 cm contains the highest SOC stocks but the standard deviation was high (Grimm et al., 2008). 

Soil texture is also positively correlated with SOC, with soils of higher clay content generally 

containing higher SOC concentrations and clay content rather than mineralogy is thought to be 

more important for stabilizing SOC in these soils (Grimm et al., 2008). Topography has a strong 

influence on SOC stocks in the topsoil with the highest values found at the foot of slopes and 

the lowest on the mid-slope locations, but this pattern was not observed at depth indicating 

that the influence of erosion on SOC is limited to the soil surface (Grimm et al., 2008). It is 

unclear whether soil-forming processes and/or past land use changes influence the distribution 

of SOC in the topsoil, but Grimm et al (2008) suggest that present-day biomass input is of more 

importance as differences in past land use were only weakly related to SOC in the upper 30 cm 

of soil. 
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Figure 2.1 Map of the Barro Colorado Nature Monument (BCNM), showing the approximate location of 

10 forest stands, two in each of five age classes; 40, 60, 90 and 120 year old secondary forest (SF), and 

two old-growth (OG) stands, in a chronosequence of naturally regenerating tropical forest in Panama, 

Central America. 

 

Table 2.1 Stand and soil characteristics for a chronosequence of 10 forest stands in Panama, Central 

America Subscript numbers indicate the data source, where 1 = Denslow and Guzman (2000) and  2 = 

The geological composition of the Panama Canal Watershed (STRI GIS Laboratory). 

Stand 
name1 

Age1  

(years) 

Geology2 Land-use1 pH₁ Standing 
litter₁ 

Soil bulk 
density₁ 

PED 40 Tb Pasture/swidden 5.88 417 0.57 

SAI 40 Tb Pasture/swidden 5.92 548 0.53 

END 60 Tb Plantation 6.52 507 0.51 

FOS 60 Tb Pasture/swidden 5.70 394 0.46 
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BOH 90 Tbo Pasture/swidden/agriculture 6.62 451 0.48 

POA 90 Tcv/Tcm Swidden 5.46 692 0.57 

BAR 120 Tcv Pasture 6.28 383 0.59 

PER 120 Tbo Pasture 6.24 535 0.56 

ARM OG Tb Old growth  5.98 549 0.50 

ZET OG Tcv Old growth 5.88 776 0.48 

 

Characterising successional and functional community change in 

forest stands 

To test the influence of variation in tree functional groups on soil C along a successional 

gradient, I derived several stand-level measures of aboveground successional status to compare 

chronosequence stands via a site-specific literature review and from tree census data (D.Dent, 

unpublished data). I used the simple metric of forest stand age as well as the extensive forest 

census data available for the chronosequence, and functional data based on recognised 

changes in structural and functional attributes during forest regrowth. Chazdon (2014) 

characterises forest successional stages through three main criteria: total aboveground 

biomass or basal area; forest age or size structure of tree populations; and species composition. 

I used tree basal area as an indicator of aboveground biomass (Chazdon, 2014) which is shown 

to quickly recover during tropical forest regrowth (Poorter et al., 2016) but the pattern of 

biomass accumulation during secondary succession can vary depending on factors such as site 

and the landscape-scale considered (Denslow and Guzman, 2000; Mascaro et al., 2012). I also 

use a well-supported general description of aboveground functional community change during 

tropical forest secondary succession to characterise forest stands, where competition between 

species for changing resource availability (e.g. nutrients and light) during secondary succession 

often results in a predictable pattern of functional community change, characterised by 

contrasting life-history strategies and plant functional traits (Table 2.1). This shift in tree 

functional composition occurs when ‘acquisitive growth strategists’ (fast-growing, light-

demanding, gap specialists) or ‘pioneer’ species, common in the early stages of forest regrowth, 

are gradually replaced by ‘conservative growth strategists’ (slow-growing, shade-tolerant, old-

growth specialists) or ‘climax’ species, as light levels decrease in the later stages of succession 
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(Zhang, Zang and Qi, 2008; Chazdon, 2014; Ghazoul and Chazdon, 2017) resulting in the 

establishment of a more shade-tolerant community (Dent, DeWalt and Denslow, 2012).  

 

Table 2.2 General changes in foliar traits during succession in tropical forest, modified from Chazdon 

(2014) 

Foliar traits Change with successional age 

Leaf nitrogen content High → Low 

SLA (specific leaf area per mass) High → Low 

Leaf LMA (leaf mass per unit area) Low → High 

Leaf density Low → High 

Leaf toughness Low → High 

 

Forest stand age and basal area 

To investigate patterns in soil C as a function of time, I adjusted the chronosequence stand ages 

from the original estimates by Denslow and Guzman (2000) to include the time since 

publication, and rounded them to nearest decade to obtain age classes. I calculated stand basal 

area from census data collected in 2011 (D. Dent, unpublished data). Stem diameter at breast 

height (1.3-m; DBH) for each individual >10 cm DBH was converted to stem basal area (m²; Eq. 

1) and the sum of all stems in each stand was then divided by the total area of the stand covered 

in the census to obtain mean stand basal area (Eq. 2). 

 𝑆𝑡𝑒𝑚 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 (𝑚2) = (
𝐷𝐵𝐻(𝑐𝑚)

200
)

2
∗ 𝜋                                                                                  Eq. 1 

   

 𝑆𝑡𝑎𝑛𝑑 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 (
𝑚2

ℎ𝑎
) =

∑ 𝑠𝑡𝑒𝑚 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎

𝑎𝑟𝑒𝑎 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑 (ℎ𝑎)
                                                                             Eq. 2 

 

Tree community shade-tolerance  

Following the findings of Dent, DeWalt and Denslow (2012), I used tree community shade 

tolerance to characterise changes in aboveground functional diversity during succession: where 

shade-tolerant species become increasingly dominant in the later stages of succession as the 
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canopy closes and the reduction in light affects sapling recruitment. I assigned each species to 

a light requirement category as detailed in Comita et al. (2007), which classifies species as gap 

specialist (G), intermediate (I), or shade-tolerant (S). I also used species growth response to 

increasing light, calculated from a species-specific light requirement index developed by Rüger 

et al. (2009; Box 1) as a robust metric of species shade tolerance.  

 

 

 

 

Table 2.3 Growth response categories for tree species along an age-gradient of lowland tropical forest 

sites in Panama Central America, based on tree sapling recruitment with increasing light (modified from 

Ruger et al. 2009). 

Growth 
response 

Description 

Accelerating (>1) Sapling recruitment increases with increasing light and the increase is higher at higher light 
levels  

Decelerating (<1) Sapling recruitment increases with increasing light, but the increase is lower at higher light 
levels 

Negative (<0) Sapling recruitment is higher at lower light and decreases with increasing light levels. 

 

To compare community shade tolerance across the chronosequence, I calculated the relative 

influence (RI) of each growth response category using tree census data (D. Dent, unpublished 
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data). I assigned mean light effect values from two census intervals to each species in the 

chronosequence and classified them as accelerating (ACC), decelerating (DEC), and negative 

(NEG); species without light effect values were classified as ‘unknown’ (Table 2.2). I then 

calculated Importance Values (IV; %) for each tree species in the chronosequence based on the 

number of individuals (frequency; Eq. 3) and the sum of the basal area (dominance; Eq. 4). I 

chose to express the IV as mean measure of frequency and dominance (Eq. 5), as species with 

large numbers of individuals as well as those with a large total biomass are considered similarly 

important for determining ecosystem processes (Lohbeck et al., 2012). Species frequency was 

calculated from the count of one stem per individual (regardless of number of stems per 

individual) to account for the limited spatial spread of root systems and possible constraints on 

canopy size of multi-stemmed individuals compared to that of an equal number of single-

stemmed individuals. Species dominance was calculated from the sum basal area of all stems 

of each individual tree.  

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (%) = (
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑝𝑒𝑟 𝑠𝑡𝑎𝑛𝑑
) ∗ 100                Eq. 3 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 (%) = (
∑ 𝑜𝑓 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑏𝑎𝑠𝑎𝑙 𝑎𝑟𝑒𝑎 𝑝𝑒𝑟 𝑠𝑡𝑎𝑛𝑑
) ∗ 100                 Eq. 4 

 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒 (%) =  
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦+𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒

2
                 Eq. 5 

 

Finally, I used the species IVs for each growth response category to calculate the relative 

influence (RI) of ACC, DEC and NEG species per stand, whereby the summed IVs for each growth 

response category were expressed as a proportion of the total per stand, allowing me to 

compare community shade tolerance across the chronosequence stands. Of the total 277 tree 

species across the chronosequence, light effect data were available for 200 species. Therefore 

c. 72 % of species were assigned to growth response categories (DEC = 129 species, ACC = 60 

species, NEG = 11 species, unassigned = 77 species) which amounted to c. 88 % of the total 

proportion of species expressed as RI (DEC = 60 %, ACC = 24 %, NEG = 4 %, unknown = 12 %).   
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Stand and soil characterisation 

Land-use history  

To test the influence of past land-use on soil C, I used the chronosequence stand descriptions 

from Denslow and Guzman (2000) and divided stands into ‘high’ or ‘low’ soil disturbance 

categories based on presumed initial soil disturbance (and therefore C loss) during land 

conversion. The ten chronosequence stands split equally into the two categories; low soil 

disturbance consisted of OG stands and stands used only for pasture; high soil disturbance 

included stands used for swidden agriculture and plantations. 

 

Soil sampling 

To assess the relationship between functional changes in vegetation during secondary 

succession and patterns in soil C in each of the ten chronosequence stands, I established four 

(20 m x 10 m) sampling blocks, spaced at 40 m intervals along a 160 m transect. I collected soils 

in each of the 40 sampling blocks between May and June 2016 at three sampling points (at 5, 

10 and 15 m along the transect section within the sampling block). I collected three cores per 

sampling point by first carefully removing the surface litter and then sampling the mineral soil 

in 10 cm increments from 0-30 cm depth using a 4.8-cm diameter soil corer and bulked them 

per depth interval resulting in 12 composite samples per stand (four blocks x three depths = 

120 total samples). Samples were stored at 4˚C within four hours of collection, sieved to <2 mm 

and subsampled in preparation for analyses within 48 hours of collection.   

 

Laboratory analyses 

To determine gravimetric soil water content, I oven-dried subsamples (20 g fresh weight) from 

the 0-10 cm and 10-20 cm depth increments at 105˚C for 48 hours. I measured soil pH on a 1:3 

mixture of fresh soil and deionised water using bench pH meter (STARTER 2100, OHAUS, New 

Jersey, USA) within 48 hours of collection. To determine percentage soil C and N content, I 

ground a subsample of homogenized, air-dried soil from each of the three depth increments 

per stand using a ball mill (Mixer Mill 400, Retsch, Haan, Germany), and total carbon and 
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nitrogen was analysed by high temperature combustion gas chromatography (Vario El III C/N 

analyser, Elementar, Stockport, UK).  

 

Estimation of soil C and N stocks 

Soil C stocks are expected to provide a more accurate comparison between stands as they take 

in to account differences in soil bulk density (BD), which can vary with soil type and land-use 

history and which generally increases with depth. I used mean soil bulk density values as 

measured by Jones et al. (2019) to calculate soil C stocks at the 0-10 and 10-20 cm depth 

increments using the following equation: 

                                                          𝐶𝑠𝑡𝑜𝑐𝑘 = 𝐷 ×  𝐵𝑑 ×  𝐶𝑐𝑜𝑛𝑐                                            Eq.6 

where Cconc  is percentage C, Bd is stand mean soil bulk density, C stock is the stock of carbon 

(Mg ha¯¹) and D is the depth of sample (cm). 

 

Data analysis 

I used linear mixed effects models (lme4 package; Bates et al., 2015) to assess the effect of each 

explanatory variable (age class, stand basal area, land-use history and tree functional groups) 

on soil C concentration (%) and stocks (Mg ha¯¹) using R version 3.5.2 (R Core Team, 2018). The 

relationship between stand-level characteristics (basal area, land-use history and tree 

functional groups) and soil C was assessed using mean values of soil C per stand and depth with 

stand included as a random effect to account for the non-independence of values. All other 

variables were assessed using mean values per sampling block and depth, with block nested 

within stand as random effects. Soil C content was log-transformed prior to analysis to correct 

for non-normal distribution of data. As soil C decreases strongly with depth and is a clear 

predictor of variation in soil C, I included depth in both full and null models and tested the 

interaction between each explanatory variable and soil depth. The significance of each term in 

the model was determined by sequentially dropping terms and comparison to appropriate null 

models using likelihood ratio tests. Results are reported as significant at p < 0.05 and non-

significant trends are reported at p < 0.09; for linear mixed effects models 2 and p values are 

given for the comparison between the final model and the corresponding null model. 
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2.4 Results 

Soil carbon across an age gradient of naturally regenerating tropical 

forest  

Soil carbon content (%) 

Stand mean soil C concentrations at 0-10 cm depth were 4.74  0.15%. Variability in mean soil 

C content between the two replicate forest stands within each age class was low (Figure 2.2a), 

and soil C declined strongly with depth in all age classes (Figure 2.2b; Table 2.2). Soil C content 

varied significantly among forest age classes and there was a significant interaction between 

age class and depth (2 = 75.76, p < 0.001) but there  was no clear pattern of increasing soil C 

content with forest stand age at any depth increment (Figure 2.2b; Table 2.2). The OG stands 

had the smallest decrease in soil C with depth, but only at the 20-30 cm depth increment was 

mean soil C content slightly (but not significantly) higher in the OG than in the SF stands (Figure 

2.2b; Table 2.2).  

 

Soil carbon stocks (Mg ha¯¹) 

Mean soil C stocks at 0-10 cm were 56.96  11.92 Mg ha¯¹. The variation in soil C stocks with 

forest age was roughly similar to that of C content but showed greater variation between 

replicate stands in each age class (Figure 2.2c; Appendix A:Table S2.2), lower values in the 0-10 

cm in the 60Y stand and generally lower variation between the 0-10 and 10-20 cm depth 

increments (Figure 2.2d; Appendix A:Table S2.2). There was a significant interaction between 

forest age class and soil depth (but this was not as strong as for soil C content). Forest age was 

a significant predictor for soil C stocks (² = 39.25, p = <0.001) but there was no clear pattern 

of increasing soil C stocks with forest age.  
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Figure 2.2 Soil carbon content at: a) 0-30 cm depth in each of the ten chronosequence stands, grouped 

by age category, and b) mean values per age class from three depth increments (dark blue = 0-10 cm, 

green = 10-20 cm, yellow = 20-30 cm). And soil carbon stock estimates (Mg ha-1)  at: c) 0-30 cm depth in 

each of the ten chronosequence stands, grouped by age category, and d) mean values per age class from 

two depth increments (dark blue = 0-10 cm, yellow = 10-20 cm) across an age gradient of lowland tropical 

forest sites in Panama, Central America. Boxes denote the 25th and 75th percentiles and median lines 

are given for n = 4 (a and c) and n = 8 (b and d from two stands per age class), whiskers indicate values 

up to 1.5x the interquartile range, and dots indicate outliers. 

 

Soil carbon with increasing stand basal area (m² ha) 

Stand basal area (BA) differed significantly among forest age classes (f4,25  = 60.47,  p = <0.05; 

Table Appendix A: Table S2.1) but did not increase with increasing stand age. The highest BA 

was in the intermediate age class (90Y stands).  

In contrast to my first hypothesis, there was a negative relationship between soil C and stand 

basal area (BA) (Figure 2.3). Soil C decreased with both increasing stand BA and depth but there 

was no interaction. The negative relationship with stand BA was significant for both soil C 

content (2 = 4.60, p = 0.032) and soil C stocks (2 = 5.41, p= 0.020). 
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Figure 2.3 Stand mean soil carbon concentration with increasing stand basal area (m² ha¯¹) in a 

chronosequence of lowland tropical forest Panama, Central America, showing soil carbon concentrations 

at three depth increments (0-10 cm, 10-20 cm, 20-30 cm) Points represent mean for n = 4, shaded area 

denotes 95% confidence interval from linear model (lm function) prediction.  

 

Relationships between soil carbon and the relative influence of tree 

functional groups   

The relative proportions of shade tolerant and light demanding tree species varied among 

forest age classes and differed significantly between the SF and OG forest stands. There was a 

general pattern of increasing DEC species, and decreasing ACC species with increasing forest 

age across the chronosequence in all but the 120Y stands where the RI of both ACC and DEC 

species was more similar to the 60Y stands than either the 90Y or OG stands (Appendix A Table 

S2.1). The RI of NEG species was low in all stands (>7%), and although there was no clear pattern 

with increasing stand age, the RI of NEG species was lowest in the 40Y and highest in the OG 

age category (Appendix A Table S2.1). The proportions of species not assigned to a growth 

response category was inconsistent across stands and age categories, the RI of ‘unknown’ 

species per stand ranged from 4.3 % - 21.6 % but there was no trend with forest stand age.  

There were clear differences in soil C (concentration and stocks) with the increasing relative 

influence (RI) of contrasting tree functional groups, and this relationship varied with depth 

(Figures 2.4 and 2.5). The effect of tree functional groups on both measures of soil C was 
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apparent only at the 0-10 cm depth increment but not at  greater depths, resulting in a 

significant interaction term between functional group and depth in all models.  

 

Increasing RI of accelerating species  

At 0-10 cm, soil C increased significantly with the increasing RI of ACC species in forest stands 

for both C content (2= 8.88, p= 0.031; Figure 2.4a) and stocks (²=  14.68, p= <0.001; Figure 

2.5a). The inclusion of soil pH did not significantly improve the models.  

 

Increasing RI of decelerating species  

In contrast, soil C decreased with the increasing RI of DEC species across the chronosequence 

at the 0-10 cm depth increment. The negative relationship between the RI of DEC species and 

soil C was significant for both C content (2= 17.12, p= <0.001; Figure 2.4b) and C stocks (²= 

10.63, p = 0.005; Figure 2.5b). Soil pH did not significantly improve the models. 

 

Increasing RI of decelerating: accelerating species  

The opposing relationships between soil C and the RI of ACC and DEC species resulted in a 

significant negative relationship between the ratio of DEC:ACC species in stands and both soil C 

content (2= 12.55, p= 0.006; Figure 2.4c); and C stocks (² = 9.83, p= 0.007; Figure 2.5c). In the 

case of soil C content, the inclusion of pH as a fixed effect significantly improved the model (2= 

3.99, p= 0.046). 
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Figure 2.4 Stand mean soil carbon concentration with an increasing relative influence of: (a) accelerating 

species, (b) decelerating species, and (c) the ratio between decelerating and accelerating species, at 0-

10 cm, 10-20 cm and 20-30 cm soil depth increments in a chronosequence of lowland tropical forest in 

Panama, Central America. Points represent mean for n = 4, shaded area denotes 95% confidence interval 

from linear model (lm function) prediction. 
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Figure 2.5  Estimates of stand mean soil carbon stocks (Mg ha¯¹) at 0-10 and 10-20 cm depth with the 

increasing relative influence (RI) of a) ACC species, b) DEC species and, c) DEC:ACC species in 10 stands 

of a chronosequence of naturally regenerating lowland tropical forest in Panama, Central America. Points 

represent mean for n = 4, shaded area denotes 95% confidence interval from linear model (lm function) 

prediction. 

 

Soil carbon and variation in soil characteristics and land-use history 

I found no relationship between soil C content (%) or C stocks (Mg ha¯¹) and land-use history at 

any depth increment using the broad classifications of past land-use and inferred soil 

disturbance. Soil C increased with increasing soil pH across the full 0-30 cm sample depth and 

although depth explained most of the variation in soil C content, the inclusion of pH, (without 

interaction) significantly improved the model (2 = 6.02, p = 0.014, Figure 2.6). However, the 

relationship between soil C stocks and pH was not significant and the relationship was not 

significant at separate depth intervals. As expected, there was a strong correlation between soil 

C and N content but there was no consistent variation in soil characteristics with increasing 

stand age (Table 2.3).  
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Figure 2.6 Soil carbon content along an increasing soil pH gradient from 10 stands in a chronosequence 

of naturally regenerating lowland tropical forest in Panama, Central America, at 0-10 cm, 10-20 cm and 

20-30 cm depth increments. Points represent mean for n = 4, shaded area denotes 95% confidence 

interval from linear model (lm function) prediction. 

 

Soil characteristics among forest age classes 

Nitrogen  

Soil N content (%) varied significantly among forest age classes (2 = 34.21, p = <0.001); it was 

lowest in the two 90Y stands and highest in the 60Y stands, but the relationship between forest 

age and soil N was not unidirectional. There was a significant interaction between forest age 

class and soil depth, and variation among stand age classes increased with increasing depth. N 

content varied among age classes at the 10-20cm (f4,5  = 5.36,  p = 0.047; Table 2.3) and 20-30 

cm (f4,5  = 7.99,  p = 0.0213; Table 2.3) depth increments and was higher in the OG stands than 

the SF stands at 20-30 cm depth. Soil N stocks also varied significantly among forest age classes 

at the 0-20 cm depth but not when tested at separate depths. 
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C:N 

The ratio of soil C to N content varied significantly among forest age classes across the full depth 

range of 0-30 cm and increased significantly with increasing soil depth. The 90Y stands had the 

highest C:N at each depth increment. 

 

pH 

Soil pH varied among stands, explained by significantly higher pH in one of the 60Y stands but 

there was no significant variation between forest age classes at the full 0-30 cm depth range, 

or at separate depth increments.  
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Table 2.4 Mean soil values per age class for: C and N concentration (%), C:N ratio and pH plus standard 

error at three depth intervals (0-10, 10-20 and 20-30 cm) sampled from 4 blocks in each of two replicate 

stands in five age classes, in a chronosequence of naturally regenerating tropical forest in Panama, 

Central America. Means and standard errors are given for n = 8 (4 x replicate blocks per stand, 2 x stands 

per age class). Different super-script letters indicate significant differences among forest age classes at p 

< 0.05 determined by ANOVAS with Turkey post-hoc comparisons and correction for multiple 

comparisons.   

Forest age class 40Y 60Y 90Y 120Y OG 

Soil C % 
With depth 

(cm) 

0-10 
4.89ab 

(± 0.29)          
5.30a 

(± 0.73) 
4.14b 

(± 0.22) 
5.22ab 

(± 0.34) 
4.18b 

(± 0.17) 

10-20 
2.34b 

(± 0.29) 
3.14a 

(± 0.22) 
1.96b 

(± 0.09) 
2.88a 

(± 0.10) 
2.74a 

(± 0.12) 

20-30 
1.63b 

(± 0.19) 
2.50a 

(± 0.31) 
1.34b 

(± 0.10) 
2.21a 

(± 0.13) 
2.56a 

(± 0.10) 

Soil N %   
with depth 

(cm) 

0-10 
0.40ab          

(± 0.04) 
0.46a   

(± 0.02)        
0.33b        

(± 0.07)   
0.43a       

(± 0.02)    
0.39ab 

(± 0.02) 

10-20 
0.15ab          

(± 0.03) 
0.23a 

(± 0.02)          
0.10b   

(± 0.01)        
0.22a    

(± 0.01)       
0.23a 

(± 0.02) 

20-30 
0.09b   

(± 0.01) 
0.17a         

(± 0.04) 
0.05b          

(± 0.01) 
0.13a     

(± 0.02)      
0.21a 

(± 0.01) 

Soil C:N  
with depth 

(cm) 

0-10 
12.45ab          
(± 0.48) 

11.54ab  
(± 0.28)        

12.96a        
(± 0.58)   

12.11ab       
(± 0.34)    

10.78b 

(± 0.37) 

10-20 
17.26ab          
(± 2.06) 

13.72b 

(± 0.60)          
23.52a   

(± 3.29)        
13.66b    

(± 0.75)       
12.00b 

(± 0.65) 

20-30 
19.65ab   
(± 1.73) 

17.64b          
(± 2.84) 

25.97a          
(± 1.90) 

18.20ab     
(± 2.08)      

12.46b 

(± 0.48) 

Soil pH  
with depth 

(cm) 

0-10 
5.68          

(± 0.10) 
5.90   

(± 0.19)        
5.53        

(± 0.13)   
5.86       

(± 0.16)    
5.52 

(± 0.17) 

10-20 
5.41          

(± 0.10) 
5.83 

(± 0.19)          
5.30   

(± 0.18)        
5.69   

(± 0.19)       
5.37 

(± 0.12) 

20-30 
5.19   

(± 0.08) 
5.65          

(± 0.19) 
5.09          

(± 0.17) 
5.48     

(± 0.17)      
5.36 

(± 0.07) 
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2.5 Discussion 

This study is the first to investigate the relationship between soil C and aboveground functional 

community change during tropical forest secondary succession, utilising an age-gradient of 

naturally regenerating tropical forest stands in Panama. My study demonstrated that, whereas 

other stand and soil characteristics had limited explanatory power for variation in soil C content 

and stocks, soil C at 0-10 cm depth increased with the relative influence of light-demanding tree 

species across stands of all age classes and decreased with stand-level basal area. My results 

suggest that high-quality plant inputs may play a key role in soil C accumulation during 

secondary succession. 

 

The relationship between soil carbon and aboveground successional 

processes during tropical forest regrowth 

I expected basal area to be a better predictor for soil C than forest age as stand BA is highest in 

the mid-successional stage stands used in this study (intermediate peak hypothesis; Denslow 

and Guzman 2000) and therefore, the largest input of organic matter to soil C was assumed to 

be in the mid-aged, not the oldest forest stands. Stand BA was a stronger predictor for variation 

in soil C than forest age, but in contrast to my first hypothesis, mean soil C content and stocks 

decreased with increasing stand BA (Figure 2.3). Although surprising given the assumptions 

regarding organic matter input, a similar unexpected negative relationship between soil organic 

C and stand BA was reported for recovering tropical forest in Australia (Paz et al., 2016). 

Interestingly, the relationship was only detected in soil derived from Andesite, which also 

underlies much of BCNM and may possibly help explain the unexpected pattern observed in 

this study.  Tree BA was also used to calculate the RI of ACC, DEC and NEG species in stands, 

therefore it’s effect was also assessed as a component of tree functional groups, which my 

study demonstrated was the strongest predictor of soil C stocks and concentrations in these 

forest stands. 
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Soil C with the increasing relative influence of contrasting tree functional groups 

My hypothesis rested on the assumption that changes in tree functional composition during 

secondary succession reflect changes in plant functional attributes (traits) and these influence 

litter decomposition rates and input of C to the soil. Changes in tree functional composition 

during succession is generally characterised by a shift from acquisitive (light-demanding) 

species to more conservative (shade-tolerant) species, as plants adapt to increasing light and 

nutrient limitation (Wright et al., 2004). My results partially support this general assumption as 

the proportion of ACC species was higher at young successional stages whereas the proportion 

of DEC species was highest in the old-growth forest, however the proportions of ACC and DEC 

species in mid-successional stands did not conform to the expected patterns of shifts in 

functional groups (Appendix A:Table S2.1).  

These functionally distinct tree groups are associated with contrasting plant traits which can 

have a strong influence on soil C and nutrient cycling. Plant traits most relevant to soil C cycling 

are those which control the input and stabilisation of soil C and/or those that influence soil C 

loss, but there is often a ‘trade-off’ between the two. Light-demanding species are associated 

with ‘competitor’ traits (Grime, 1974) which can influence the input of C to soils through the 

generation of large amounts of nutrient rich organic matter due to their rapid growth rate and 

photosynthetic capacity, but C can be quickly released back to the atmosphere during more 

rapid litter decomposition (De Deyn, Cornelissen and Bardgett, 2008). Conversely, shade-

tolerant species have traits which allow them to be more stress-resistant and produce longer-

lived, but poor-quality (e.g. high C:N, high lignin:N) organic matter (Grime et al., 1996) which 

inhibits litter decomposition (Kutsch, Bahn and Heinemeyer, 2009).  

The functional tree groups used in this study, based on species-specific light response, are 

assumed to correspond well with the popular definitions of ‘light-demanding’/pioneer and 

‘shade-tolerant’/climax species (Dent, DeWalt and Denslow, 2012) and be a proxy for 

acquisitive and conservative life-history strategies. Based on these assumptions, and as the 

quantity of litterfall was not seen to vary significantly between SF and OG stands (Denslow and 

Guzman, 2000), I expected that soil C input from litter might be more highly concentrated from 

DEC species than from ACC species (De Deyn, Cornelissen and Bardgett, 2008); and along with 

associated traits such as greater leaf toughness and the presence of defence compounds 



Chapter 2: Soil carbon in a regenerating tropical forest is related to tree functional composition, rather than stand age 

 

Abby Wallwork - January 2021   51 

 

(Bardgett, 2017) would decompose more slowly, resulting in a build-up of soil C in stands with 

a greater proportion of DEC species. However, the opposite was observed in these forest 

stands, with higher soil C found in stands with a greater proportion of light-demanding species. 

The assumption that litter decomposition rates differ between the two contrasting tree 

functional groups is maintained (Cornwell et al., 2008); but the relationship between litter 

decomposition rate and the incorporation of plant derived C into soil is often disconnected 

(Prescott, 2010; Cotrufo, Wallenstein and Boot, 2013). Plant litter decomposition drives SOM 

formation but does not directly control the accumulation and stabilisation of soil organic carbon 

(SOC), the largest component of SOM. Instead, a strong and growing body of research 

postulates that soil microbial products are the major contributors of C to SOM and that the 

products of successive microbial processes increase C stability in SOM through aggregation and 

chemical bonding in the soil matrix via what has been termed the Microbial Efficiency-Matrix 

Stabilisation framework (MEMS) (Cotrufo, Wallenstein and Boot, 2013). The MEMS framework 

hypothesises that the input of C from labile plant substrates (e.g. sugars) drive microbial 

processes and thus, the production of increasingly stable C compounds as they are more 

efficiently used by soil microbes than C from more recalcitrant plant material (Cotrufo, 

Wallenstein and Boot, 2013). My results support this hypothesis as soil C content and stocks 

were highest in stands with a higher relative influence of light-demanding ACC species (Figures 

2.4a, 2.5a); the litter of which is expected to contain more labile carbon compounds than that 

of the more shade-tolerant DEC species. 

 

Effect of former land-use and soil properties on soil carbon 

The influence of former land-use is one possible explanation why studies of secondary tropical 

forest succession have not found a consistent pattern of increasing soil C with stand age 

(Martin, Bullock and Newton, 2013; Orihuela-Belmonte et al., 2013). Previous soil disturbance, 

fertilizer application, or nutrient depletion by agricultural use have distinct and often 

contrasting effects on plant growth and soil C turnover, which can persist for decades (Detwiler, 

1986) and obscure trends in soil C accumulation over time, but contrary to my third hypothesis, 

the influence of past land-use on soil C content or stocks was not apparent at any depth 

increment. The effect of disturbance (e.g. from ploughing) on initial soil C loss is well 

documented (Guo and Gifford, 2002; Don, Schumacher and Freibauer, 2011), and I therefore 
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expected to detect differences between the stands used for crops, those used for pasture and 

the OG stands, however, the characterisation of former land-use relied on brief descriptions 

compiled from largely anecdotal accounts (Denslow and Guzman 2000), and therefore soil 

disturbance is only inferred and thus, may not accurately reflect current soil conditions . The 

sites included in my study spanned a range of soil types and key soil properties, including 

differences in soil N and pH, which can also influence soil C storage. Previous work in the 

secondary forest stands of the chronosequence showed no relationship between soil C storage 

and land-use or the underlying geology, but a strong relationship between soil C and soil N 

stocks (Jones et al., 2019). I observed a strong relationship between soil C, N and pH in the 

present study including the old-growth forest stands. These relationships are perhaps 

unsurprising, given that C and N are major components of soil organic matter (SOM) and soil 

pH is a key control of microbial community composition and decomposition processes (Fierer 

and Jackson, 2006; Tripathi et al., 2016). In my study, the similar patterns of decline in soil C, 

soil N and soil pH with depth largely explain the relationships among these variables. Hence, 

neither land-use nor soil properties fully explain the patterns in soil C accumulation during 

secondary succession. A further possible explanation for the lack of clear differences in soil C 

among stands with distinct former land use and soil type is that subsequent forest regrowth 

over time has weakened the effects of past disturbance (Grimm et al., 2008; Jones et al. 2019) 

and that input from present day vegetation has a greater influence on soil C storage. 

 

Further research 

The soil C content and stocks measured in this study provide only a snapshot observation and 

do not consider the rate of soil C turnover; particularly CO₂ release through microbial 

respiration, an important component of soil C dynamics in tropical forests. The rate of CO₂ efflux 

in tropical forests is largely determined by the mineralisation of labile organic C compounds by 

soil microorganisms during the decomposition of organic material. The differences in plant litter 

quality between tree functional groups may also result in differences in microbial community 

composition, which in turn can strongly influence soil C cycling. For example, the poor quality 

litter produced from conservative strategy (DEC) species should in theory, promote the 

preferential growth of fungi (rather that bacteria) which inhibits the cycling of C and nutrients 
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and thus leads to greater soil C storage, whereas high quality litter from acquisitive (ACC) 

strategists should encourage a greater proportion of bacteria in microbial communities during 

decomposition which is linked with more rapid C and nutrient cycling but also higher soil C loss 

(Bardgett, 2017). However, this theory has largely been developed from studies in grassland 

ecosystems and therefore these broad assumptions may not hold true in tropical forests, 

nevertheless, investigating changes in soil microbial community composition and function 

during tropical forest secondary succession may provide valuable insight into soil C cycling 

during secondary succession in recovering tropical forests. Another possible explanation for the 

positive relationship between soil C and light-demanding tree species is the effect of roots. 

Plant root traits influence soil C cycling through the release of labile C in to soil from root 

exudates, which stimulates microbial activity and the release of CO₂ back to the atmosphere 

and may also influence soil C cycling through traits related to nutrient foraging and associations 

with mycorrhizal fungi (De Deyn, Cornelissen and Bardgett, 2008). Root traits may help explain 

variation in soil C, and although sometimes shown to be only weakly coupled with leaf traits 

(De Deyn, Cornelissen and Bardgett, 2008), would most likely also be determined by tree 

functional group. Therefore, tree functional groups, characterised as light-demanding and 

shade-tolerant species, remain the best predictor of soil C content and stocks in these stands 

of naturally regenerating tropical forest.  

 

2.6 Conclusions 

This study identifies a strong link between the dominant functional group of trees and soil C 

content and stocks during tropical forest secondary succession and provides an interesting 

starting point for further research. Improving our ability to predict, and crucially, increase soil 

C accumulation during tropical forest regrowth will not only help improve global C models but 

help mitigate atmospheric CO2 concentrations through more efficient forest management 

practices and reforestation initiatives. My results indicate that successional changes in tree 

functional groups during forest regrowth influence soil C content and stocks and specifically, 

that the relative influence of light-demanding tree species in a stand is positively correlated 

with soil C content and stocks at 0-10 cm depth. I propose that the broad distinction between 

ACC and DEC species and their relative importance in stands provides the basis for a useful, 

quantitative method to investigate how successional dynamics in tree communities and 
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associated plant functional traits influence ecosystem scale C dynamics in recovering secondary 

tropical forests and could be used to promote natural regrowth and influence species selection 

in forest restoration strategies. 
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3    Soil carbon dynamics are linked to tree 

species shade-tolerance along an age 

gradient of naturally regenerating tropical 

forest. 

 

3.1 Abstract 

Secondary regrowth forests are the dominant type of forest cover in the tropics and are thus 

increasingly important for their role in the global carbon (C) balance. During recovery, tropical 

secondary forests rapidly accumulate aboveground biomass and whilst substantial amounts of 

plant-derived carbon are assimilated belowground through decomposition processes, soil C 

dynamics during forest regrowth have received much less attention. During secondary 

succession, shifts in tree community growth strategies from light-demanding to shade-tolerant 

species are accompanied by changes in litter quality, which may influence rates of C turnover 

both directly, via litter decay rates, and indirectly via the influence of tree functional groups on 

the decomposition environment. To explore the links between tree functional traits and soil 

carbon dynamics, I conducted an in situ litter decomposition experiment across an age gradient 

of naturally regenerating tropical forest. I used litter mixtures created from tree species 

differing in their shade tolerance as a key functional characteristic, including a single-species 

and bare-soil control. I observed litter mass loss and soil respiration as measures of C turnover 

over a five-month period. As expected, litter from light-demanding species decomposed more 

rapidly than that of shade-tolerant species and there was a corresponding temporal response 

in soil respiration reflecting differences in litter decay rates. Surprisingly, there was no 

unidirectional effect of forest successional age on litter decay rates or soil respiration. However, 

soil respiration from the litter treatment containing both light-demanding and shade-tolerant 

species was significantly higher in the younger than older forest stands. This study highlights 

the potential importance of functionally diverse plant inputs for soil carbon dynamics in tropical 

forests. Links between litter traits and soil microbial communities could further clarify the role 

of functional diversity in soil C dynamics and storage during secondary tropical forest 

succession. 
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3.2 Introduction 

Increasing importance of secondary forests  

Tropical forests are the largest terrestrial C sink as they are responsible for around c. 40% of 

net primary production (NPP; Cleveland et al., 2011) and store c. 45% of terrestrial C (Anderson-

Teixeira et al., 2016), sequestering around half of global anthropogenic CO2 emissions (Yin, Wu 

and Li, 2018). Land-use change from human activity such as logging and agricultural expansion 

continues to remove vast areas of intact tropical forest annually (Chazdon and Guariguata, 

2016), and has altered the functioning of remnant tropical forests, including above-ground C 

dynamics (e.g. Qie et al., 2017). Agricultural abandonment, as part the common practice of 

swidden agriculture along with recovery from selective logging, has created a mosaic of 

naturally regenerating ‘secondary’ or ‘regrowth’ forest throughout the tropics. These 

recovering forests now make up over half of all tropical forests and due to current land-use 

practices, their increase is expected to continue (Chazdon, 2014). As such, regrowth forests 

have received much attention and are increasingly looked upon as crucial providers of tropical 

forest ecosystem services for both biodiversity conservation (Chazdon et al., 2009) and climate 

regulation (Poorter et al., 2016). Tropical forest regrowth can be an effective C sink due to rapid 

C accumulation in aboveground biomass (Pan et al., 2011) which is estimated to reach 90% of 

intact forests after c. 66 years (Poorter et al., 2016) . Hence, secondary tropical forests play an 

important role in mitigating the effects of rising atmospheric CO2 concentrations.  

Despite the importance of secondary forest regrowth for C sequestration, we know little about 

the mechanisms of C accumulation belowground (Marín-Spiotta and Sharma, 2013; Martin, 

Bullock and Newton, 2013). Soils make up the largest C pool in the terrestrial biosphere (Yang, 

Luo and Finzi, 2011) and account for over half of the C stock in tropical forests (Don, 

Schumacher and Freibauer, 2011). Tropical forest soils are an important part of the global C 

balance but our understanding of soil C dynamics during secondary forest regrowth is 

hampered by the complexity of biogeochemical processes and interactions, the lack of studies 

in tropical regions, and inconsistent patterns of soil C losses and gains during forest disturbance 

and recovery (Yang, Luo and Finzi, 2011; Li, Niu and Luo, 2012; Marín-Spiotta and Sharma, 2013; 
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Martin, Bullock and Newton, 2013; Powers and Marín-Spiotta, 2017). Although the cycling and 

storage of C in tropical forest soils is partly determined by climate, soil characteristics and land-

use history (Marín-Spiotta and Sharma, 2013) changes in the quality and quantity of plant-

derived organic matter during forest regrowth are expected to have a significant impact on soil 

C dynamics. 

 

Changes in species composition during succession and impact on 

soil C dynamics 

Predictable and measurable changes in tree species composition and functional groups during 

secondary succession are largely driven by changes in the availability of resources (light, water, 

and nutrients) as forests mature. During early succession, an abundance of light reaches the 

forest floor and fast-growing ‘pioneer’ species out-compete slower-growing species to 

dominate the canopy. However, once the canopy closes (after c. 20 years; Denslow and 

Guzman, 2000 ), light becomes a limiting factor and conditions favour the slower-growing, 

shade-tolerant species that thrive in the understory. Over time, the shorter-lived pioneer 

species are gradually replaced by more long-lived species associated with old-growth forests, 

resulting in a progression towards a dominance of shade-tolerant species in later succession 

(Dent, DeWalt and Denslow, 2012; Chazdon, 2014; Whitfeld et al., 2014). The shift from light-

demanding to shade-tolerant species can also be characterised as a shift in the resource use 

strategy of the dominant tree species, from ‘acquisitive’ to ‘conservative’ along a fast-slow plant 

economic spectrum (Reich, 2014). This is reflected in a set of coordinated leaf functional traits 

(Conti and Díaz, 2013). Light-demanding species that invest in fast growth are characterised as 

having ‘high quality’ palatable leaves, which have high nutrient concentrations (e.g. N, P), high 

specific leaf area (SLA) and low content of structural compounds such as lignin (Wright et al., 

2004; Chazdon, 2014). Conversely, shade-tolerant species preferentially invest in structure, 

defence and longevity, resulting in leaves characterised as ‘low quality’, typically with low 

nutrient concentrations, high fibre and lignin content and greater concentrations of foliar 

defence compounds such as tannins and phenols (Wright et al., 2004; Ostertag et al., 2008). 

Hence, the shift from light-demanding to shade-tolerant tree functional groups during 

secondary succession is accompanied by marked changes in the quality of litter inputs, which 

will influence the rates of C and nutrient cycling both directly, via litter decomposition rates, 
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and indirectly via the influence of tree functional groups on the decomposition environment, 

for example, via nutrient exchanges with microbial communities  Cornelissen et al., 1999; Jewell 

et al., 2017).  

 

Influence of changing plant functional characteristics on litter 

decomposition and soil C turnover 

Plant litter decomposition plays a fundamental role in terrestrial ecosystem nutrient cycles and 

C dynamics (Sayer, 2006; Prescott, 2010; Sayer and Tanner, 2010). During decomposition, C and 

nutrients are sequentially broken down and made available to plants, beginning with the more 

labile and soluble compounds (Kutsch, Bahn and Heinemeyer, 2009). This preferential break 

down of litter by decomposer organisms results in an early release of soluble nutrients and 

labile C forms and an accumulation of structural compounds and recalcitrant C in remaining 

litter over time (Krishna and Mohan, 2017). Plant-derived C compounds are either mineralised 

and returned to the atmosphere as CO2 or immobilised in the soil matrix (Kutsch, Bahn and 

Heinemeyer, 2009) and this balance can eventually determine whether a forest functions as a 

C source or sink. Hence, even slight changes affecting the decomposition of plant material can 

have a significant effect on C dynamics (Sayer et al., 2011). The rate of litter decomposition is 

driven by both abiotic (climate and soil), and biotic (litter quality and the decomposer 

community) factors. Although moisture and temperature are strong predictors of 

decomposition rates globally (Powers et al., 2009), neither tend to be limiting in tropical 

rainforest environments, so plant litter quality is the dominant control on litter decomposition 

rates (Cornwell et al., 2008; Hattenschwiler et al., 2011). Consequently, changes in the quality 

of leaf litter inputs as a result of shifts in tree functional groups during secondary succession 

are likely to have a significant impact on litter decomposition rates and C turnover.  

Despite a growing body of research assessing the relationship between the fast-slow continuum 

of the plant economic spectrum and C turnover, much of our knowledge is derived from 

temperate studies focussing on a limited number of species, which may not apply to highly 

diverse tropical forests. Although the influence of specific leaf traits, such as foliar N 

concentrations, on litter decomposition rates has been well studied (Santiago, 2007; Cornwell 
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et al., 2008; Bakker, Carreño-Rocabado and Poorter, 2011; Szefer et al., 2017), there is a 

growing body of evidence to suggest that decomposition of species mixtures cannot necessarily 

be predicted from the decay rates of individual species (Gartner and Cardon, 2004; Gessner et 

al., 2010; Jewell et al., 2017). Decomposition rates of mixed species litter are often “non-

additive”, whereby the litter in mixtures decomposes more rapidly (synergistic) or more slowly 

(antagonistic) than would be expected based on the decay rates of individual component 

species. Non-additive effects likely arise as a result of nutrient transfer between different litter 

types, which facilitates the decomposition of more recalcitrant litter compounds 

(Hättenschwiler, Tiunov and Scheu, 2005), via the release of secondary metabolites which can 

inhibit decomposition (Chomel et al., 2016), or due to increased variation in physical 

microhabitat and decomposer interactions (Hättenschwiler, Tiunov and Scheu, 2005). Hence, 

litter mixtures might capture more of the complex interactions between plant litter traits and 

decomposer communities and better represent the influence of tree functional characteristics 

on soil C dynamics at the stand or community level. 

The functional characteristics and diversity of the living tree community also affect soil C 

dynamics by influencing the community composition and activity of decomposer organisms, 

particularly soil microbial communities that are the powerhouse behind litter decomposition 

processes (Prescott and Grayston, 2013). The presence and activity of soil microbes is strongly 

related to C turnover and storage, not only during the initial decomposition of plant material, 

but also because there is mounting evidence that soil microbial products are the major 

contributors of soil C (Cotrufo, Wallenstein and Boot, 2013; Liang, Schimel and Jastrow, 2017). 

The microbial C use efficiency (MEMS) framework (Cotrufo, Wallenstein and Boot, 2013) 

proposes that the products of successive microbial turnover increase C stability in soil organic 

matter (SOM) through aggregation and chemical bonding in the soil matrix. According to the 

MEMS framework, plant inputs of labile C compounds may play a greater role in soil C 

accumulation than previously assumed, as labile compounds are used more efficiently, which 

fuels microbial turnover and results in the production of increasingly stable C compounds 

(Cotrufo, Wallenstein and Boot, 2013) .  

The results of Chapter 2 suggest that microbial turnover of labile plant material contributes to 

SOM formation during secondary succession, as soil C content and stocks were highest in 

secondary forest stands with a greater relative influence of light-demanding species, which are 
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expected to have easily-degradable litter containing more labile carbon compounds than 

shade-tolerant species. And, due to the expected corresponding shift in the abundance and 

activity of decomposer groups during succession;  from labile C specialists to those more 

adapted to the breakdown of recalcitrant C compounds, we might expect higher rates of soil C 

turnover in the younger than older forest stands and a general decrease in soil C turnover and 

accumulation with increasing tree community shade tolerance. 

Hence, changes in the functional characteristics of tree species during secondary forest 

succession might have a substantial impact on soil C dynamics and storage. A mechanistic 

understanding of the links between soil C dynamics and plant functional traits during secondary 

tropical forest succession could therefore provide crucial information for forest management 

to maximise soil C storage and help parameterise ecosystem models (e.g. Pugh et al., 2019).  

In the present study, I conducted an in-situ litter decomposition experiment across an age 

gradient of naturally regenerating tropical forest to explore the links between tree functional 

traits and soil carbon dynamics. I used litter mixtures from tree species differing in their shade 

tolerance as a key functional characteristic, and measured litter mass loss and soil respiration 

to represent C turnover to test the following hypotheses: 

1.  Litter mixtures from light-demanding tree species will represent a high-quality resource to 

microbial decomposers, with high nutrient but low structural fibre content, and will 

therefore decompose faster than litter mixtures from slow-growing shade-tolerant trees. 

2.  Respiration rates will reflect differences in patterns of litter mass loss, with higher 

respiration rates from litter mixtures representing light-demanding species, especially 

during the early stages of decomposition, and lower respiration rates from litter 

representing shade-tolerant species.  

3.  Based on the shift from light-demanding to shade-tolerant tree species during secondary 

succession, young forest stands will have higher rates of litter decomposition and soil 

respiration than old forest stands. 
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3.3  Methods 

Study site 

The experiment took place across four stands of naturally regenerating regrowth forest in an 

established chronosequence within the Barro Colorado National Monument (BCNM) Panama, 

Central America. The climate is classified as moist tropical with a distinct dry season from 

January to April with a mean annual temperature of around 27°C and an average annual rainfall 

of 2600 mm, of which 90% falls in the rainy season (Windsor, 1990). Soils are described as clay-

rich oxisols and silty-clay alfisols on sedimentary and volcanic parent materials (Yavitt, 2000) 

but do not differ significantly in soil C and nutrients (Chapter 2; Yavitt, 2000; Grimm et al., 2008). 

The BCNM chronosequence consists of permanent plots in 10 forest stands: two stands for each 

of four forest age classes of secondary forest (SF), and two old growth forest (OG) stands for 

comparison, each at least 5 ha in size. The OG stands are aged at >500 years old (Dent, DeWalt 

and Denslow, 2012) and secondary forest (SF) stands are currently 40, 60, 90 and 120 years old 

(Denslow and Guzman, 2000). I selected a subset of four stands (subsequently 40Y, 60Y, 90Y 

and OG; Table 3.1) to represent a gradient of secondary regrowth forest succession. Within 

each stand, I established five replicate blocks, spaced at least 20 m apart on level terrain, 

avoiding obvious disturbances (e.g. footpaths, canopy gaps, animal activity) as far as possible. 

 

Table 3.1 Stand and soil characteristics for subset of four secondary forest stands (40, 60, 90 years old 

and OG) in Panama, Central America used in a litter decomposition experiment; where RI ACC = relative 

abundance of accelerating growth tree species, RI DEC = relative abundance of decelerating growth tree 

species, BA = total tree basal area, C = total soil carbon, N = total soil nitrogen, C:N = carbon:nitrogen 

ratio and pH = soil pH. Soil characteristics are given as means and standard error for n = 8  at 0-10 cm 

sampling depth. Superscript numbers indicate the data source, where 1 = The geological composition of 

the Panama Canal Watershed (STRI GIS Laboratory), 2 = Denslow and Guzman (2000), and 3 = Chapter 3 

of this thesis. Different super-script letters indicate significant differences among forest age classes at p 

< 0.05 determined by ANOVAS with Turkey post-hoc comparisons and correction for multiple 

comparisons. 

Forest age 
(years) 

Geology1 Land-use2 RI ACC 
(%)3 

RI DEC 
(%)3 

BA 
(m2/ha)3 

C Stock 
(Mg/ha2)3 

C  
(%)3 

N 
(%)3 

C:N 
3 

pH 
3 

40 
Tb Swidden 43.37 42.70 21.62 29.75 

(± 9.20)          
5.22 

(± 0.81) 
0.42ab         

(± 0.09) 
12.83ab          
(± 0.98) 

5.69b          
(± 0.16) 
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60 
Tb Plantation 26.15         56.15 22.06 24.53 

(± 3.56) 
4.81 

(± 0.35) 
0.44a   

(± 0.04)        
 11.10ab  
(± 0.38)        

6.39a  
(± 0.09)        

90 
Tcv/Tcm Swidden 19.77 68.75 40.29 18.05 

(± 3.35) 
3.76 

(± 0.35) 
0.26b        

(± 0.03)   
14.35a        

(± 0.44)   
5.68b        

(± 0.18)   

OG 
Tb Old growth  10.10 75.22 25.92 19.95 

(± 0.91) 
3.99 

(± 0.09) 
0.40ab 

(± 0.01) 
10.06b 

(± 0.41)   
5.78ab 

(± 0.14) 

 
 

Litter treatments representing tree functional groups 

To create functionally distinct litter mixtures, I used species-specific data on tree growth 

response to increasing light (Rüger et al. 2009) to represent tree community shade tolerance. 

Briefly, species were assigned to one of two growth-response categories; ‘accelerating’ or 

‘decelerating’ growth with increasing light based on a light effect parameter ranging from -0.6 

to 3.3 (Rüger et al. 2009; Chapter 2). Accelerating species (light effect >1) represent  light-

demanding, resource acquisitive ‘pioneer’ species, whereas decelerating species (light effect 

<1) represent shade-tolerant, resource conservative species (Rüger et al. 2009). To test the 

hypothesis that changes in tree functional groups during secondary succession explain 

differences in decomposition rates and soil respiration I created five distinct litter treatments: 

1) litter from species with an accelerating growth response to increasing light levels (ACC); 2) 

litter from species with a decelerating growth response to increasing light levels (DEC); 3) a 

mixture of ACC and DEC species (MIX); 4) natural mixed litter unique to each forest stand (NAT); 

and 5) a non-forest standard litter, Saccharum spontaneum L. (STD). I also included bare soil 

controls in each experimental block. Henceforth, the ACC, DEC and MIX litters are referred to 

collectively as ‘functional litter treatments’, whereas the NAT and STD litters are referred to as 

‘standard litter treatments’. 

To ensure that the litter treatments represented changes in tree functional groups during 

succession, while reflecting species composition at the study site, I used the following criteria 

to choose species within each growth response category, based on tree census data for the 

study sites: (a) the species showed a clear trend (positive or negative) in relative abundance 

with forest age; (b) the species were representative of earlier or later stages of succession based 

on other studies, and (c) the species’ leaf traits are considered broadly representative of 

successional stage. Based on the above criteria, the ACC treatment included litter from Luehea 
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seemannii Triana & Planch and Miconia argentea (Sw.) DC. to represent a young, light-

demanding, secondary forest community and the DEC treatment included litter from Protium 

panamense (Rose) I.M.Johnst. and Tetragastris panamensis (Engl.) Kuntze to represent a shade-

tolerant, old secondary or old-growth forest community (Figure 3.1; Table 3.2). The MIX 

treatment included all four species to represent intermediate successional stages.  

The tree species Luehea seemannii (Figure 3.1a) is described as one of the dominant species of 

secondary forests in all areas on the Pacific half of the Panama Canal Area. It also occurs sparsely 

in old-growth forest as a large tree but rare as a sapling, only appearing in natural tree-fall 

clearings (Condit, Pérez and Daguerre, 2011). Miconia argentea (Figure 3.1b) is described as 

being one of the most abundant species of secondary forests in the Panama Canal Area, 

occurring only where there is light in natural clearings within the forest (Condit, Pérez and 

Daguerre, 2011). Protium panamense (Figure 3.1c) is described as a widespread species on the 

Caribbean half of the isthmus of Panama and abundant at Barro Colorado, occurring only in the 

forest interior (Condit, Pérez and Daguerre, 2011). Finally, Tetragastris panamenis (Figure 3.1d) 

is described as a very widespread species in Panama and is one of the dominant trees in the 

old-growth forest canopy on BCI, with abundant saplings in understorey (Condit, Pérez and 

Daguerre, 2011). In addition, as a standard litter treatment (STD), I included Saccharum 

spontaneum L., locally known as ‘Paja Blanca’ (white straw), a C4 grass that was introduced to 

the area to prevent soil erosion along the Panama Canal but does not occur within the forests. 
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a) 

 

b) 

 

c) 

 

d) 

 
Figure 3.1 Leaves, flowers, fruit and trunk of the four tree species a) Luehea seemannii, b) Miconia 

argentea, c) Protium panamense and d) Tetragastris panamensis, which were selected to represent a,b) 

light-demanding trees common in young secondary tropical forest stands and c,d) shade-tolerant trees 

older secondary forest and old growth tropical forest stands, in Panama, Central America. Source: 

(Condit, Pérez and Daguerre, 2011). 

 

The selected species representative of younger secondary forest functional communities 

generally decreased in IV % with increasing forest age across the chronosequence and have 

relatively high foliar nitrogen content high specific leaf area (SLA), and relatively low leaf mass 

area (LMA) and leaf density (Table 3.2), which is regarded as characteristic of more light-

demanding species (Chazdon, 2014). Conversely, the selected species representative of older 

secondary/old growth forest tree communities generally increased in IV with increasing forest 
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age and have comparatively low foliar nitrogen, low SLA, and relatively high LMA and leaf 

toughness (Table 3.2).  
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Table 3.2 Selected functional characteristics of four tree species used to create three functionally distinct 

litter treatments (ACC, DEC and MIX) for a litter decomposition experiment in the BCNM Panama, Central 

America, where; mean (b) = species specific light effect parameter indicating either accelerating or 

decelerating growth (>1= accelerating growth (ACC), <1= decelerating growth (DEC), SLA = specific leaf 

area, LDMC = leaf dry matter content. Data source indicated with superscript 1 = Ruger et al, (2009), and 

superscript 2 =  S.J. Wright et al, (2012) accessed from the TRY Database (http://www.try-db.org). 

Species name Species 
code 

Litter 
treatment 

Mean 
(b)1 

Leaf 
density2 

(g cm-3) 

Leaf N2 

(mg/g) 
SLA2 

(mm2/mg-) 
LDMC2  
(g/g) 

Luehea seemanni LUEHSE ACC, MIX 2.00 0.30 22.38 17.02 0.42 

Miconia argentea MICOAR ACC, MIX 1.87 0.31 20.63 14.44 0.32 

Protium panamense PROTPA DEC, MIX 0.67 0.50 16.39 11.04 0.41 

Tetragastris panaensis TET2PA DEC, MIX 0.43 0.61 15.69 10.00 0.49 

 

Initial litter collection, processing, and analyses 

I collected freshly fallen litter for the four tree species (LUEHSE, MICOAR, PROTPA, TET2PA) 

during the dry season from February to April 2017, which coincided with the period of highest 

litterfall and minimised decomposition prior to collection. Litter was collected from the forest 

floor at least once a week to ensure fresh samples, avoiding specimens with visual signs of decay 

or disease, and species identity was double-checked in the laboratory. To obtain representative 

samples, I collected litter from beneath c. 10 individuals of each species within the age class of 

forest stand they represented. I also collected a mixture of freshly fallen leaves in each of the 

five blocks per stand which were then homogenised across the stand to create a stand-specific 

natural mixed litter (NAT) treatment, and the non-forest standard litter (Saccharum 

spontaneum) from three locations spaced c. 20 m apart within the BCNM. To characterise the 

litter from the four species and evaluate possible intra- and interspecific variation, I also 

collected replicate samples of freshly fallen litter for each species from a total of five different 

http://www.try-db.org/
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individuals (or groups of individuals, where it was not possible to distinguish the litter among 

closely grouped individuals) from age-representative stand(s) for litter nutrient analyses. All 

litter samples were oven-dried separately for 48 hours at 65°C to constant weight directly after 

collection. To achieve a standard size of litter fragments for the decomposition experiment, I 

removed petioles and cut larger leaves into pieces of <10 cm length. I then created the three 

functional litter treatments (ACC, DEC, MIX) using equal mass of the constituent species (Table 

3.3).  

 

Table 3.3 Treatments used in a decomposition experiment in Panama, Central America, showing the 

proportions and total dry weight (g) of each litter type in three functional litter treatments, and the total 

dry weight of litter for natural litter and standard litter treatments.  

Treatment Description Species 

  LUEHSE MICOAR PROTPA TET2PA 
1.  ACC Accelerating species 50% (6 g) 50% (6 g)   
2.  DEC Decelerating species   50% (6 g) 50% (6 g) 
3.  MIX Mix of ACC and DEC 25% (3 g) 25% (3 g) 25% (3 g) 25% (3 g) 

  Natural litter STD   
4. NAT Natural litter  100% (12 g)    
5. STD Standard litter  100% (12 g)   
6. CTL Bare soil control     

 

To determine the initial chemical and fibre content of litter treatments, I ground a subset of air-

dried litter from each species to < 1 mm. One composite sample from each species was analysed 

by HNO₃ digestion and ICP-OES detection for total mineral elements: Phosphorus(P) 

Potassium(K), Calcium(Ca), Magnesium(Mg), Sodium(Na), Manganese(Mn), Zinc(Zn), 

Aluminium (Al), Boron(B), Chromium (Cr), Copper(Cu), Iron(Fe) and Nickel(Ni) at the soil 

laboratory of the Smithsonian Tropical Research Institute in Panama, and a further two samples 

were analysed for P, K, Ca and Mg plus selenium (S) at a commercial laboratory (Central 

Analytical Laboratory, SRUC Veterinary Services, Midlothian UK). I analysed total litter C and N 

from five replicates per species using high temperature combustion gas chromatography on a 

Vario El III C/N analyser (Elementar, Stockport, UK) at Lancaster University. I determined total 

fibre and lignin content from three replicate samples per species using the acid detergent 

extraction described by Van Soest, Robertson and Lewis (1992); I analysed one set of samples 

at Lancaster University by a two-step extraction method to determine acid detergent fibre 



Chapter 3: Soil carbon dynamics are linked to tree species shade-tolerance along an age gradient of naturally regenerating tropical 
forest. 

 

 

68  Abby Wallwork - January 2021 

 

(ADF) and acid detergent lignin (ADL). Briefly, 1 g of ground sample was placed in a crucible with 

1 g of acetanilide and boiled for 1 hour with 100 ml of acid detergent solution (ADS) and four 

drops of n-Octanol using a FOSS fibertec™ 8000 fibre analysis system (FOSS, Hilleroed 

Denmark). Samples were rinsed with distilled water until acid-free and soaked with reagent-

grade acetone then dried overnight at 105°C before weighing. Weighed samples were then 

soaked in in 25 ml H2SO4 (72%) and stirred every hour for 3 hours, rinsed with hot distilled 

water and dried overnight at 105°C. The samples were then placed in a furnace at 525°C for 3 

hours then left to cool in desiccators at room temperature before weighing. To calculate total 

extracted fibre content (ADF), the weight of the processed sample was subtracted from the 

original sample weight. Lignin content was determined by subtracting the weight of the sample 

from the final stage from the weight of total extracted fibre (ADF). Both stages were corrected 

using blanks. To provide sufficient replicates, another two sets of samples were analysed using 

the acid detergent extraction method (ADF and ADL) and the neutral detergent extraction 

method (NDF and NDL) at a commercial laboratory, (Central Analytical Laboratory, SRUC 

Veterinary Services, Midlothian UK).  

 

Mesocosm installation  

To link measurements of litter decomposition and soil respiration, I used in situ mesocosms to 

delimit the experimental area from surrounding soil and litter. Mesocosms are an effective 

method to measure both litter decomposition and soil respiration in a single system; they 

provide comparable litter mass loss measurements to litter-bags while minimising disturbance 

and maintaining natural environmental conditions (Laird-Hopkins et al., 2017). The mesocosms 

were 20 cm diameter PVC tubes cut to c. 15-cm lengths and sunk into the soil to a depth of 2 

cm (Figure 3.2). The mesocosms were installed and natural litter removed in April 2017, at least 

two weeks before the first measurements to allow the soil to recover from initial disturbance. 

I installed 12 mesocosms in each of the five replicate blocks per stand, with two mesocosms for 

each of the five litter treatments and two mesocosms without litter (bare soil controls; CTL). 

One of the two mesocosms per treatment was used for repeated monthly measurements, and 

the second (duplicate) was used for destructive sampling during the experiment. Hence, I 



Chapter 3: Soil carbon dynamics are linked to tree species shade-tolerance along an age gradient of naturally regenerating tropical 
forest. 

 

Abby Wallwork - January 2021   69 

 

installed a total of 240 mesocosms (four stands, five replicate blocks, six treatments, two sets), 

giving n = 5 replicate values for each measurement and treatment. To contain the litter 

treatments within the mesocosms I used mesh ‘baskets’ (10-mm plastic mesh), which provided 

maximum contact between the litter and the soil during decomposition but also allowed for the 

removal of the litter to measure mass loss during the experiment (Laird-Hopkins et al., 2017) 

and to take belowground respiration (SRB) measurements from the underlying mineral soil 

(Figure 3.3). To calculate the appropriate dry weight of litter to use in the decomposition 

experiment, I collected standing litter from the forest floor in August 2016. I sampled four 

points in two stands of each forest age class by placing a 20-cm diameter section of PVC tube 

on the forest floor and cutting carefully cut around the outer edge to separate the sample from 

the surrounding litter. The samples were dried for 48 hours at 65˚C and weighed to determine 

the average litter standing crop dry weight per unit area. In May 2017, each basket received 12 

g dry weight of litter based on the average standing litter dry weight measured across the 

chronosequence and the tops of the mesocosms were covered with mesh (10-mm) to minimise 

additional inputs of natural litter. 

 

Figure 3.2 Soil mesocosms in of one of five replicate blocks, used for a litter decomposition experiment 

across an age gradient in four forest stands of naturally regenerating tropical forest in the Barro Colorado 

Nature Monument, Panama, Central America.   
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Figure 3.3 Experimental mesocosm showing the mesh basket which allowed the removal of the contained 

litter treatment for mass loss and soil respiration measurements during a litter decomposition 

experiment in the Barro Colorado Nature Monument, Panama, Central America. 

 

Field measurements 

To investigate the effects of functionally distinct litter treatments on soil and litter-derived CO₂ 

efflux from microbial respiration during litter decomposition I took monthly measurements of 

soil respiration (CO2 efflux) from May to October 2017 (6 months) using an infra-red gas 

analyser attached to a 20-cm diameter soil survey chamber (Li-8100; LI-COR Biosciences, 

Lincoln, NE, USA). I partitioned total soil respiration (SR) into litter-derived respiration (SRL) and 

belowground respiration (SRB), by first measuring SR over the decomposing litter, then 

removing the baskets with litter from each mesocosm to measure SRB, and estimating SRL from 

the difference between SR and SRB. To limit the effects of disturbance and CO₂ trapped below 

the litter, I waited c. 20 minutes (E. Sayer, pers. comm.) after the removal of litter baskets 



Chapter 3: Soil carbon dynamics are linked to tree species shade-tolerance along an age gradient of naturally regenerating tropical 
forest. 

 

Abby Wallwork - January 2021   71 

 

before measuring SRB. Measurements of SRB and SRL were not made in August due to time 

constraints. To account for the influence of soil moisture and temperature on respiration rates, 

I measured soil water content at 0-6 cm depth using a Thetaprobe (Delta-T Devices, Cambridge, 

UK) at three points within 1 m of each mesocosm, and soil temperature at a depth of 0-10 cm 

in the same area using a soil temperature probe (Fisher Scientific, Leicestershire, UK).  

 

Sample collection 

To assess the decomposition of the litter treatments and their influence on soil properties, I 

collected soil and litter samples from the duplicate mesocosms after four months of 

decomposition in September 2018 and from the remaining mesocosms at the end of the study 

in October 2018. The second sampling occurred earlier than planned because of substantial 

mass loss from two of the litter treatments (ACC and STD). All samples were sealed in individual 

plastic bags, transported to the laboratory within two hours, stored at 4°C and processed within 

two days. 

 

Litter sampling and decay rate calculation 

I removed the baskets with the remaining litter from each mesocosm and sealed them in 

individual plastic bags. To measure litter mass loss and decay rate, I first weighed the samples 

in ‘field condition’ then carefully picked through the litter on a clean sheet of aluminium foil to 

remove any large clumps of soil and extraneous material before weighing them again. I then 

weighed a subsample of this litter in a pre-weighed tin and washed it carefully for 2 minutes to 

remove any remaining soil particles before drying at 60°C for 48 hours and weighing again to 

calculate litter dry mass (g). 

The litter decay rate k was calculated from the dry mass of litter remaining in each mesocosm 

at the end of the experiment using the following equation (Olson 1963): 

         ln (
𝑋

𝑋0 
) =  −𝑘t                                                                        Eq.1 

Where: t is time in years, X is litter dry mass at collection, X0 is the initial litter dry mass (12 g).  
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Litter mass loss data was used to show comparisons in figures but as it was more normally 

distributed, I used decay rate data in models.  

 

Soil sampling and analysis 

I collected three soil cores (0-5 cm depth) from each mesocosm using a 4.8-cm diameter punch 

soil corer (after first carefully removing the litter layer), to make one composite sample per 

mesocosm plus a representative ‘block’ soil sample from outside of the mesocosms at the end 

of the experiment to allow comparison of soil from experiments with undisturbed ‘natural’ soil 

(4 stands x 5 blocks x 7 treatments = 140 samples in each duplicate set). Fresh subsamples were 

taken from each composite sample to determine soil moisture content and pH. To determine 

soil total C and N content, I ground subsamples of homogenized, air-dried soil using a ball mill 

(Mixer Mill 400, Retsch, Haan, Germany). Total C and N was analysed on 30 mg soil samples 

by high temperature combustion gas chromatography on a Vario El III C/N analyser (Elementar, 

Stockport, UK) at Lancaster University. Extractable P and K were measured using the modified 

Morgan’s method at a commercial laboratory (Central Analytical Laboratory, SRUC Veterinary 

Services, Midlothian UK) and soil pH was measured on a 1:3 mixture of fresh soil and deionised 

water using a STARTER 2100 Bench pH meter (OHAUS, New Jersey, USA) or Mettler Toledo® 

Seven Compact pH meter (Leicester, UK).  

 

Data analysis 

All statistical analyses were performed in R version 3.5.2 (R Core Team, 2018). Data were log-

transformed where necessary to meet model assumptions.  First, to isolate the overall influence 

of stand on litter decay rates, I compared means from the final time-point decay rate data for 

the standard litter treatments (NAT and STD) using linear models (lm function).  I then assessed 

the influence of treatment and stand (and their interaction) on the decay rates of functional 

litter treatments (ACC, DEC and MIX) in linear models, dropping non-significant (p-value > 0.05) 

terms sequentially to achieve a minimum adequate model (Crawley, 2007).  
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To assess which of the litter mixtures best represented natural forest litter in each stand, I used 

linear models to compare the decay rate of natural (NAT) litter with those of the three 

functional litter treatments for each stand separately. To assess the influence of stand on SR, I 

compared five months of active decomposition data (thus excluding May) for the bare soil 

controls (CTL) and the STD litter treatments using linear mixed effects models (lmer function; 

lme4 package (Bates et al., 2015)) with month and replicate block modelled as a random effects 

and stand as a fixed effect. Then, to assess broad temporal patterns in SRL between functional 

litter treatments in reference to litter decay rate and mass loss, I calculated mean SR values for 

two decomposition stages (early = June and July, late = September and October) and assessed 

the effects of stand, functional litter treatment and decomposition stage on SRL using linear 

mixed effects models with stand, litter treatment and decomposition stage and their 

interactions as fixed effects, and month and replicate block as random effects. Significance was 

determined by sequentially dropping terms until a minimum adequate model was reached, 

using AIC and p-values to check for model improvement. I used Tukey’s honest significant 

difference (HSD) for post hoc comparisons among factors in linear models (lm). Statistics for all 

linear mixed effects models (lmer) are given for the comparison of the final model to the 

corresponding null model using likelihood ratio tests and p-values for individual factors were 

derived by Satterthwaite’s approximation using the package lmerTest (Kuznetsova, Brockhoff 

and Christensen, 2017) and the model fit was assessed using diagnostic plots (Crawley, 2007).  

  

3.4 Results 

Mean nutrient content variation among standard and functional 

litter treatments 

Litter chemical properties varied significantly among functional treatments. In support of my 

first hypothesis, the ACC species litter treatment had significantly higher P, K, Mg, Na, S, Ca, Cu 

and Zn than DEC species, but lower content of acid detergent fibre (ADF) and neutral detergent 

fibre (NDF; Table 3.4). Total litter C content differed significantly among all treatments and 

surprisingly, was highest in the ACC and lowest in the DEC treatment (F3,16 = 156.3, p < 0.001; 

Table 3.3). Total N was significantly higher and the C:N ratio was significantly lower in the STD 

treatment than all other litters but did not vary significantly among the functional litter 
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treatments. As expected, the chemical concentrations in the MIX litter samples are 

intermediate between the ACC and DEC species. 
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Table 3.4  Litter properties from three functional litter treatment mixtures and a standard litter treatment 

used in a decomposition experiment in the BCNM, Panama, Central America; where ACC = light-

demanding (accelerating growth) species, DEC = shade-tolerant (decelerating growth) species, MIX = 

mixture of light-demanding and shade-tolerant species, and STD = non-forest standard litter treatment. 

ADF = acid detergent fibre, NDF = neutral detergent fibre,  TC = total carbon, TN = total nitrogen, CN ratio 

= carbon:nitrogen,  L:N ratio = lignin:nitrogen. Litter properties given as means and standard errors for n 

= 5 (TC, TN, C:N ratio), n = 3 (P, K, Mg, Na, Ca, Fe, Zn), n = 2 (ADF, NDF, S) and n = 1 (lignin, L:N ratio). 

Different super-script letters indicate significant differences among litter treatments at p < 0.05, 

determined by ANOVAs with Tukey post-hoc comparisons and correction for multiple comparisons. STD 

treatment consists of single species ‘Saccharum spontaneum’. See table 3.3 for species and treatment 

descriptions. 
 

Litter treatment 
 

ACC DEC MIX STD 

ADF (%) 46.58 b 

(±3.08) 

57.30 a 

(±0.23) 

51.94 b 

(±1.42) 

51.13 b 

(±4.23) 

NDF (%) 39.23 d 

(±0.18) 

46.65 b 

(±0.55) 

42.94 c 

(±0.36) 

75.10 a 

(±0.20) 

Lignin (%) 20.50 22.43 21.46 4.00 

TC (%) 43.19 a 

(±0.15) 

39.63 d 

(±0.14) 

41.41 c 

(±0.06) 

42.16 b 

(±0.11 ) 

TN (%) 1.15 b 

(±0.10) 

1.01 b 

(±0.05) 

1.08 b 

(±0.07) 

1.68 a 

(±0.05) 

C:N Ratio 38.76 a 

(±2.92) 

39.68 a 

(±1.87) 

39.22 a 

(±2.39) 

25.20 b 

(±0.82) 

L:N Ratio 17.53 22.43 21.46 2.38 

P (mg/g) 0.58 b 

(±0.02) 

0.33 d 

(±0.03) 

0.45 c 

(±0.02) 

0.94 a 

(±0.03) 

K (mg/g) 5.69 b 

(±0.25) 

1.37 d 

(±0.21) 

3.53 c 

(±0.23) 

15.37 a 

(±0.47) 

Mg mg/g 3.44 a 

(±0.12) 

2.60 c 

(±0.15) 

3.02 b 

(±0.13) 

0.99 d 

(±0.10) 

Na (mg/g) 1.55 a 

(±0.07) 

0.92 b 

(±0.24) 

1.24 ab 

(±0.16) 

0.59 c 

(±0.07) 

S (mg/g) 3.22 a 

(±0.39) 

1.03 c 

(±0.08) 

2.13 b 

(±0.23) 

2.32 b 

(±0.05) 
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Ca (mg/g) 16.52 a 

(±0.63) 

14.35 c 

(±0.37) 

15.44 b 

(±0.50) 

2.08 d 

(±0.20) 

Cu (mg/g) 8.04 a 

(±0.22) 

4.59 c 

(±0.49) 

6.31 b 

(±0.34) 

8.91 a 

(±0.22) 

Fe (mg/Kg) 63.84 b 

(±6.63) 

75.69 b 

(±13.47) 

69.76 b 

(±9.95) 

120.72 a 

(±14.50) 

Zn (mg/Kg) 41.93 a 

(±2.81) 

8.23 d 

(±0.92) 

25.08 b 

(±0.96) 

17.15 c 

(±0.93) 

 

The influence of stand on decomposition of standard litter 

treatments 

There was a strong influence of forest stand on the decomposition of the two standard litters 

STD and NAT (Figure 3.4; Table 3.5) but there was no clear directional relationship between 

decay rate and stand age. Overall, litter decayed at higher rates in the 60Y stand, and lower 

rates in the 90Y stands. STD litter decomposed faster than NAT litter across all forest stands and 

hence, the decay rates of standard litters among stands was best represented by the model 

including treatment and stand (without interaction; F7,26  = 10.96, p < 0.01), which explained c. 

71 % of variation. The decay rate in the 60Y stand was significantly higher than in the 40Y and 

90Y stands for STD (F3,10 = 6.56, p = 0.010) and the 90Y stand for NAT (F3,16 =  5.54, p = 0.008) 

when analysed separately, but decay rates did not differ significantly among the other stands. 
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Figure 3.4 Litter mass loss (%) of two litter treatments after five months of a litter decomposition 

experiment across an age gradient of four naturally recovering tropical forest stands in the BCNM 

Panama, Central America. Non-forest standard litter (STD) = yellow, stand specific natural litter (NAT) = 

dark blue. Boxes denote the 25th and 75th percentiles and median lines are given for n = 5, whiskers 

indicate values up to 1.5 x the interquartile range, and dots indicate outliers. 
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Table 3.5 Litter decay rates (k) for three functional litter treatments and two standard litter treatments 

across an age gradient of four tropical forest stands (40, 60, 90 year old SF and OG) after five months of 

a litter decomposition experiment in the BCNM Panama, Central America; where DEC = shade-tolerant 

(decelerating growth) species litter, ACC = light-demanding (accelerating growth) species litter, MIX = 

mixture of decelerating and accelerating species litter, NAT = stand specific natural litter and STD = non-

forest standard litter. Litter decay rates (k) given as means and standard error for n= 5. Significant 

differences between stands indicated with uppercase superscript and between litter treatments 

(excluding STD) with lowercase superscript determined by Tukey post-hoc analyses at p < 0.05.  

 

 

Stand and treatment effect on the decay rate of functional litter 

treatments 

There was a clear separation in the decay rates of functional litter treatments in all stands and 

although there was no directional pattern with stand successional stage, there was a significant 

effect of forest stand on litter decay rates. Therefore, the model containing treatment and 

stand (without interaction) was found to best explain variation in the decay rates of functional 

litter treatments (F5,53 = 43.36, p < 0.001; Figure 3.5). Decay rates differed significantly among 

functional litter treatments: across all stands, ACC decomposed fastest and DEC slowest, with 

intermediate rates of mass loss for MIX litter (treatment effect: p = < 0.01; Figure 3.5; Table 

3.5). Overall, the decay rates for all functional litter treatments were highest in the 60Y forest 

and lowest in the 90Y forest (stand effect: p = 0.02) but differences among stands varied with 

 Functional litter treatments Standard  litter treatments 

Forest age DEC ACC MIX NAT STD 

 
 
 

OG 
1.02c

 
AB 

(± 0.15) 

5.14a AB 

(± 1.29) 

2.27b AB
 

(± 0.29) 

3.24ab AB
 

(± 0.68) 

6.63AB 

(± 0.57) 

90Y 
0.98c AB

 

(± 0.10) 

2.47a B
 

(± 0.26) 

1.73b B
 

(± 0.10) 

2.08ab B
 

(± 0.15) 

4.97B 

(± 0.23) 

 
60Y 

1.41c A
 

(± 0.07) 

6.35a A
 

(± 1.59) 

3.73b A
 

(± 0.46) 

5.81ab A
 

(± 1.55) 

10.90A 

(± 0.38) 

 
40Y 

0.90c B
 

(± 0.06) 

2.85a AB
 

(± 0.19) 

1.70b B
 

(± 0.14) 

2.59ab AB 

(± 0.20) 

6.66B 

(± 1.59) 
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litter treatment: decay rates in the 60Y stand were significantly higher than the 90Y stand for 

the ACC (p = 0.021) and MIX (p < 0.001) treatments and significantly higher than in the 40Y 

forest for the DEC (p = 0.029) treatment. The decay rate of MIX litter was also significantly 

higher in the 60Y than 40Y (p < 0.001) forest stand. 

The comparison of decay rates between natural (NAT) litter and functional litter treatments 

demonstrated that the decay rate of NAT litter lay between the decay rates of MIX and ACC 

litter, but were consistently greater than the decay rates of DEC litter across all forest stands 

(Table 3.5). 

 

 

Figure 3.5 Litter mass loss of three functionally distinct litter mixtures after five months of decomposition 

across an age gradient of tropical forest in Panama, Central America; ACC = light-demanding, accelerating 

growth species (red), DEC = shade-tolerant, decelerating growth species (green), and MIX = a mixture of 

light-demanding and shade-tolerant species (blue). Boxes denote the 25th and 75th percentiles and 

median lines are given for n = 5, whiskers indicate values up to 1.5 x the interquartile range, and dots 

indicate outliers. See table 4.2 for treatment descriptions. 40Y, 60Y and 90Y refer to stand ages (years 

since last disturbance), OG refers to old growth, undisturbed forest.  
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Influence of forest stand on total soil respiration 

The comparison of respiration rates across stands demonstrated that SR from the STD and NAT 

litter treatments, and SRB from the CTL treatments differed significantly among stands but there 

was no pattern with stand age across the whole time series, with month modelled as a random 

effect. SRB generally increased throughout the experiment and was significantly lower in the 

90Y forest than the other three stands (2 = 32.91, p < 0.001; Figure 3.6a), which did not differ. 

SR from the STD litter treatment was significantly lower in the 90Y stand and significantly higher 

in the 60Y stand compared to the 40Y and OG stands, and significantly higher in the 40Y stand 

compared to the OG stand (2 = 47.19, p < 0.001; Figure 3.6b). SR from the NAT treatment was 

significantly lower in the 90Y compared to the 60Y and 40Y stands and significantly higher in 

the 60Y stand than the two older stands (2  = 12.79, p = 0.005; Figure 3.6c).  
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Figure 3.6 Soil respiration during six months of a litter decomposition experiment across an age gradient 

of four naturally regenerating tropical forest stands in Panama, Central America; OG = red squares, 90Y 

= olive green circles, 60Y = turquoise blue triangles and, 40Y  = purple diamonds. Separate figures show 

a) belowground respiration (SRB) from the bare soil control (CTL) treatment, b) total soil respiration (SR) 

from the decomposition of non-forest standard litter (STD) treatment and c) total soil respiration from 

the decomposition of natural litter (NAT). Means and standard errors are shown for n = 5 per time point. 

Full six months respiration data shown but active litter decomposition commenced in June, hence 

respiration data from May was excluded from analyses for the STD and NAT treatments 
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Influence of functionally different litter treatments on total soil 

respiration during decomposition 

Across all stands, the temporal patterns of SR differed among functional litter treatments: SR 

from the DEC treatment increased from the first month of decomposition (June) until the end 

of the experiment (October) whereas the ACC treatment generally increased until July but 

declined towards the end of the experiment (Figure 3.7). SR from the MIX treatment initially 

tracked the SR of the ACC treatment but was more similar to SR from the DEC treatment in the 

final month of the study (Figure 3.7). 

 

 

Figure 3.7 Mean soil respiration (SR) of three functional litter mixtures: light-demanding, accelerating 

growth species (ACC) = red squares, shade-tolerant, decelerating growth species (DEC) = green circles, 

and a mixture of light-demanding and shade-tolerant species (MIX) = blue triangles (see table 4.2 for 

description), from four forest stands measured over six months of a litter decomposition experiment in 

the BCNM Panama, Central America. Dotted lines indicate ‘early’ and dashed lines indicate ‘late’ 

decomposition stages. Full six months respiration data shown but active litter decomposition 

commenced in June, hence respiration data from May was excluded from analyses. 
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Functional litter treatment and forest stand influenced SR during decomposition and the effect 

differed among stands (Figure 3.8) therefore, the model that best explained variation in SR 

included litter treatment, stand and their interaction (2 = 56.94, p < 0.001). This interaction 

was largely explained by the significantly higher SR in the MIX treatment in the two younger 

(40Y and 60Y) stands compared with the two older (90Y and OG) stands (2 = 40.24, p < 0.001; 

Figure 3.9c). SR in the ACC treatment was significantly lower in the 90Y stand than other stands 

and significantly higher in the 40Y than the OG stand (2 = 19.1, p < 0.001; Figure 3.9a). SR in 

the DEC treatment was significantly higher in the 60Y than other stands and significantly lower 

in the 90Y than OG stand (2  = 19.46, p < 0.001; Figure 3.9b). 

 

 

 

Figure 3.8 Comparison of total soil respiration (SR) during the decomposition for three functionally 

different tree litter mixtures: light-demanding species (ACC) = red squares, shade-tolerant species (DEC) 

= green circles, and a mixture of ACC and DEC (MIX) = blue triangles, among three stands of naturally 

recovering tropical forest (aged, 40, 60 and 90 years) and an old growth stand, measured over six months 

of a litter decomposition experiment in the BCNM Panama, Central America. Full six months respiration 

data shown but active litter decomposition commenced in June, hence respiration data from May was 

excluded from analyses. 
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Figure 3.9 Soil respiration from three functional litter treatments during six months of a litter 

decomposition experiment across an age gradient of four naturally regenerating tropical forest stands in 

Panama, Central America; OG = red squares, 90Y = olive green circles, 60Y = turquoise blue triangles and, 

40Y = purple diamonds. Separate figures show a) litter from light-demanding, accelerating growth species 

(ACC), b) litter from shade-tolerant, decelerating growth species (DEC) and c) mixed litter from light-

demanding and shade-tolerant species (MIX). Means and standard errors are shown for n = 5 per time 

point. Full six months respiration data shown but active litter decomposition commenced in June, hence 

respiration data from May was excluded from analyses 

 

Analysis of the litter-derived portion of respiration (SRL) using mean values per decomposition 

stage confirmed the change in highest respiration rates between early and late stage 

decomposition for ACC and DEC treatments. In early decomposition (June and July) SRL from 

ACC was significantly higher than DEC (but not MIX), however, in late stage decomposition 

(September and October) SRL differed significantly between all functional treatments: DEC > 

MIX > ACC. The effect of stand was also an important predictor for variation in SRL due to 

significantly higher SRL in the 40Y stand than the other stands and marginally significantly higher 

SRL in the 60Y stand than two older stands (p = 0.057). Therefore, the model that best explained 

variation in SRL included treatment, decomposition stage (and their interaction) and forest 

stand (2 = 44.68, p < 0.001; Figure 3.10). 
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Figure 3.10 Mean litter-derived respiration (SRL) for three functional litter mixtures: light-demanding, 

accelerating growth species (ACC) = red, a mixture of light-demanding and shade-tolerant species (MIX) 

= blue. and decelerating growth species and shade-tolerant (DEC) = green, across an age gradient of four 

naturally regenerating tropical forest stands measured at two decomposition stages: ‘Early’ (June and 

July) and ‘Late’ (September and October) during a litter decomposition experiment in the BCNM Panama, 

Central America. 40Y, 60Y, 90Y and OG refer to stand ages. Boxes denote the 25th and 75th percentiles 

and median lines are given for n = 10, whiskers indicate values up to 1.5 x the interquartile range, and 

dots indicate outliers. 

 

3.5 Discussion 

Litter from light-demanding ‘ACC’ species decomposed more rapidly than that of shade-

tolerant ‘DEC’ species and there was a corresponding temporal response in SR and SRL reflecting 

differences in litter decay rates. However, despite evidence to support the first two hypotheses, 

there was no clear successional trajectory for litter decay rates or SR along the age gradient of 

tropical forest stands. 
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Differences in litter decay rates are related to distinct traits of tree 

functional groups 

Litter quality and decay rates conformed to expectations based on the differences in growth 

strategies between tree functional groups. As hypothesised, the ACC litter treatment 

representing early-successional light-demanding species had higher nutrient concentrations 

and lower content of structural fibre than the DEC treatment, which represented late-

successional shade-tolerant trees. The differences in litter quality clearly reflect the shift in 

resource investment of trees during secondary succession, from fast-growing acquisitive to 

slow-growing conservative strategies (Chazdon, 2014; Reich, 2014). The differences in litter 

quality of the ACC and DEC treatments were reflected in the faster decay rates of ACC litter and 

slower decomposition of DEC litter. The decay rates of MIX litter were largely additive, i.e. 

appeared to be intermediate as compared with the other two treatments. Differences between 

the decay rates of accelerating and decelerating species litter in this study are comparable with 

the decay rate of ‘pioneer’  and ‘old growth’ species litter mixtures at a nearby study site (Laird-

Hopkins et al., 2017), thus supporting the assumption that species in this study are 

representative of early and late succession. 

Surprisingly, some litter properties differed between the two single species in each functional 

litter mixture more than expected, resulting in lower variability between the composite litter 

treatments of the two opposing functional mixes than anticipated. For example, the ACC 

species Luehea seemannii had higher ADF and NDF values than the DEC species TET2PA, and 

the N content of TET2PA was closer to the ACC species MICOAR than the DEC species PROTPA 

(Appendix B Table S3.1). Since the experiment dealt with a relatively small species pool, and 

because traits tend to be highly coordinated (e.g. Wright et al., 2004) it was not possible to 

formally test the influence of specific traits on decomposition rates. In BCNM, litter P and K 

concentrations and lignin:N may be particularly important; these traits varied significantly 

between ACC and DEC species litter and in a fertilization experiment conducted in the BCNM, 

litter decomposition increased with P addition whereas cellulose (the primary constituent of 

leaf litter) decomposition increased with both P and K (Kaspari et al., 2008). Similarly, litter P 

and K content have been shown to be more important than N in explaining litter decomposition 

in a nearby forest stand (Kerdraon et al., 2020). This effect may be partly explained by the low 
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concentrations of P and K found in BCNM soils (Barthold, Stallard and Elsenbeer, 2008; Kaspari 

et al., 2008), thus increasing the importance of litter-derived nutrients as a source for 

decomposer organisms. Hence, the litter properties and decay rates in the present study 

suggest that leaf traits related to the life-history strategy of tree functional groups have a 

considerable influence on litter decomposition, providing evidence to support my first 

hypothesis.  

 

Similar patterns of litter decomposition and soil respiration across 

stands 

Soil respiration rates largely mirrored litter decomposition rates across stands and among litter 

treatments. High respiration rates in bare-soil controls indicate that SR is strongly influenced by 

belowground processes (e.g. root respiration from dominant trees), which will contribute to 

the sizeable differences in SR among stands. Nonetheless, the rates of SR and litter 

decomposition followed much the same order among stands: 60Y > 40Y  OG > 90Y. In further 

support of my second hypothesis, the differences in SRL among the functional litter treatments 

during early- and late-stage decomposition demonstrated the strong influence of different litter 

types on soil microbial activity via the accessibility and availability of labile compounds from 

decaying plant material (Berg and McClaugherty, 2007). Higher SR and SRL from ACC species 

litter during the early stages of decomposition correspond to rapid loss of highly soluble 

compounds during the first month of decomposition (Kutsch, Bahn and Heinemeyer, 2009) 

whereas higher SR and SRL from DEC litter during the later stages of decay could reflect the 

greater amount of substrate remaining, coupled with greater activity of slow-growing microbes 

capable of degrading tougher C compounds (Waldrop MP , Balser TC, 2000; Kutsch, Bahn and 

Heinemeyer, 2009). Hence, the differences in SR from ACC and DEC litter during early- and late-

stage decomposition likely reflect the sequential breakdown and processing of labile C during 

decomposition (Kutsch, Bahn and Heinemeyer, 2009; Powers et al., 2009). 
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Limited evidence for declining soil C turnover with stand age 

Soil C turnover is strongly linked to plant growth rates and the quality of plant inputs 

(Schlessinger and Andrews, 2000; De Deyn, Cornelissen and Bardgett, 2008). Based on the 

increasing relative influence of shade-tolerant tree species with forest age among the four 

stands, and the observed relationship between the relative influence of light-demanding (ACC) 

species and soil C (content and stocks) at 0-10 cm (Table 3.1), I therefore expected that C 

turnover would be fastest in younger stands, and this would be reflected in higher rates of litter 

decay and SR in younger compared to the older forest stands. 

In contrast to my initial hypothesis, variation in decay rates and SR of standard treatments 

among stands was not explained by shifts in tree functional groups among forest age classes, 

as the highest decay rates were recorded in the 60Y stand, and the lowest in the 90Y stand. 

Surprisingly, despite wide variation in soil C content and the relative importance of tree 

functional groups (Table 3.1), there was no difference in litter decay rates between the 

youngest (40Y) and oldest (OG) forest stands. Similarly, there was no clear successional 

trajectory of SR, although variation among stands generally mirrored those for litter decay rates 

with the highest values recorded in the 60Y stand and lowest in the 90Y stand.  

Rather than forest age, local soil conditions may have been especially important in determining 

decay and SR rates. Higher rates of decay and soil respiration in the 60Y stand can be at least 

partly attributed to higher soil water content, which likely boosted decomposition at the start 

of the experiment and during a period of low rainfall in September and October (STRI Physical 

Monitoring Program) and may partially explain the significantly lower decay rates and SR in the 

40Y compared to the 60Y stand. Similarly, slightly lower soil temperatures in old-growth forests 

are often a result of reduced light levels in the understorey (Denslow and Guzman, 2000; 

Lebrija-Trejos et al., 2010), which may also help maintain litter moisture levels optimum for 

decomposition. Hence, although my third hypothesis of declining decomposition rates and soil 

respiration with forest age was rejected, it is possible that the influence of stand-level functional 

development was confounded by differences in microclimate among stands. 

Differences in key soil properties among stands also contribute to the observed patterns of 

litter decomposition and soil respiration. Soil C and N content were highest in the 40Y and 60Y 

stands (Chapter 3; Jones et al., 2019), which will contribute to the higher rates of SR by 
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sustaining greater microbial biomass (Fierer et al., 2009). Correspondingly, the lower rates of 

decay and SR in the 90Y stand coincide with lower soil N content compared to all other stands 

(Table 3.1). Nitrogen availability can constrain decomposition processes and C turnover as 

cellulose degradation often increases with the increasing availability of N whereas lignin 

degradation can be confounded by N availability (Kutsch, Bahn and Heinemeyer, 2009), which 

may particularly influence early stage litter decomposition. Finally, variation in C turnover rates 

among stands could also be explained by differences in other soil chemical and nutrient 

properties and their relationship with soil microbial community composition and function. For 

example, higher soil pH in the 60Y stand (Table 3.1) could also contribute to the higher rates of 

litter decay and SR in this stand compared to the others, as soil pH exerts a strong influence on 

soil microbial community composition (Fierer and Jackson, 2006; Rousk, Brookes and Bååth, 

2009), which in turn controls rates of C turnover (Schimel and Schaeffer, 2012). Given the strong 

links between soil properties and tree functional composition at my study sites (Chapter 2), it 

is not possible to disentangle the influence of tree functional composition on soil C turnover 

from the influence of soil properties, however, it is clear that both act in concert to shape 

decomposition processes during secondary forest succession.  

 

Using functional litter treatments to represent the influence of tree 

functional groups during succession 

Although the functional litter treatments represented theoretical shifts in litter traits during 

secondary succession, the comparison between litter treatments and natural litter across stand 

revealed the importance of functional diversity in stands of all ages. As the proportion of light-

demanding (ACC) and shade-tolerant (DEC) species shifts towards a dominance in DEC species 

with increasing forest age (Table 3.1), I expected the ACC treatment to be more representative 

of the younger forest and the DEC treatment more representative of older forest litter. As such 

I anticipated the decay rate and SR from natural (NAT) litter would be closer to that of the ACC 

species litter in the younger (40Y and 60Y) stands but closer to DEC species litter in the older 

(90Y and OG) stands. Although the decay rate of NAT litter was most similar to ACC in the 

youngest (40Y) forest stand, NAT litter in the two oldest stands (90Y and OG) and the 60Y stand 
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decomposed twice as fast as DEC litter, and slightly faster than MIX litter (Table 3.5). It was 

surprising that the decay rate of NAT litter was not significantly different from ACC litter in any 

of the stands, particularly the two oldest stands, which had a higher proportion of DEC species. 

A possible explanation for this is that NAT litter from each stand was collected during the dry 

season, which is when the majority of litterfall occurs in this region (Wieder and Wright, 1995); 

and although research remains somewhat unclear, particularly in the tropics, it is feasible that 

litter collected during the dry season could contain a predominance of deciduous species leaves 

compared with the rest of the year. Leaves from deciduous species are generally characterised 

as being short lived with low structural investment and fast decomposition rates (Cornelissen, 

1996) and thus could explain why NAT litter decomposed more rapidly than expected. 

Interestingly, although there was no clear successional trajectory for litter decay rate or SR from 

standard litter treatments (CTL, STD and NAT), SR from the MIX treatments was significantly 

higher in the younger than older stands (Figure 3.9c). Functionally diverse litter mixtures such 

as the MIX treatment might be better able to capture differences in C turnover among 

functionally distinct tree communities because the treatment targets the broadest range of 

microbial species and processes. For example, a study in Canada using a functionally diverse 

litter treatment with four common species, revealed significant differences in decomposition 

rates among communities differing in species diversity (Jewell et al., 2017). In the present study, 

all the forest stands contained a mixture of ACC and DEC species, and there was also wide 

variation in litter traits between species within the same functional mixture (Appendix B: Table 

S3.1). Hence, mixed litter from both old growth (shade-tolerant) species and ‘pioneer’ (light-

demanding) species may provide a more realistic and directly comparable litter treatment to 

assess C turnover across highly diverse forest stands. 

 

3.6 Conclusions 

Based on the shifts in tree species composition from light-demanding to shade-tolerant species 

during secondary succession, and the assumption that chemical and physical traits of leaf litter 

reflect differences in species life-history strategies, I expected that rates of litter decomposition 

and soil respiration would decline with forest stand age. My study demonstrated that the decay 

rate of litter mixtures representing light-demanding and shade-tolerant species followed the 
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expected patterns of mass loss and influenced soil respiration rates. Although there was no 

clear pattern of declining C turnover with forest age, I identified interactions between litter 

mixtures and stand properties that indicate changes in soil C dynamics with shifts in plant traits 

during succession, but also that local soil environmental factors have a considerable role to 

play. My research highlights the potential importance of functionally diverse plant inputs for 

soil microbial activity in tropical forests, and future work on the links between litter traits and 

soil microbial communities could further clarify the role of functional diversity in soil C dynamics 

and storage during secondary tropical forest succession. 
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4    Soil microbial community composition is 

related to tree community shade-tolerance 

and soil chemical properties 

 

4.1 Abstract 

Secondary regrowth forests are increasingly important for their role in the global carbon (C) 

balance. Despite containing over half of all tropical forest C, our understanding of C storage and 

cycling in forest soils during secondary succession remains limited but is likely to be impacted 

by the  shift in tree community resource-use strategy from light-demanding to shade-tolerant 

species and the reduction in litter quality. I hypothesise that this change in litter quality 

influences rates of soil C turnover via changes to soil microbial abundance and structure, and 

specifically a shift towards K-strategist dominated decomposer microbial communities with 

decreasing organic matter quality. This study assessed relationships between soil microbial 

community composition, tree community shade-tolerance and soil C turnover along a 

successional gradient of recovering tropical forest stands in Panama. Overall, stands dominated 

by light-demanding tree species had higher microbial biomass but the prediction that stands 

dominated by shade-tolerant species would have higher relative abundances of K-strategist 

decomposers was not supported. Although there was no clear trajectory of shifts in microbial 

community structure with forest age across the chronosequence, results revealed there were 

significant differences in microbial biomarker groups between the OG and SF stands, and that 

litter decomposition and soil respiration rates decreased with an increasing ratio of gram-

positive to gram-negative bacteria.  

These results demonstrate a clear link between tree community shade-tolerance and soil 

microbial community structure across stands of different ages and suggest that more localised 

relationships exist between soil microbial communities and tree functional composition, which 

influence decomposition and soil respiration. As soil microbes play a fundamental role in soil C 

cycling and storage, understanding the relationship between aboveground tree community 

functional groups and the composition and activity of belowground microbial communities will 

allow us to better predict chances in soil C dynamics during tropical forest regrowth. 
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4.2 Introduction 

Tree functional changes during tropical forest succession  

Secondary forests are the dominant forest cover in the tropics (Chazdon, 2014) and they play 

an important for role in global carbon (C) dynamics as they can rapidly accumulate C in 

aboveground biomass during regrowth (Pan et al., 2011). Although a clear pattern of increasing 

C during forest regrowth is rarely observed belowground (Yang, Luo and Finzi, 2011; Li, Niu and 

Luo, 2012; Marín-Spiotta and Sharma, 2013; Martin, Bullock and Newton, 2013; Powers and 

Marín-Spiotta, 2017), it is estimated that a larger proportion of C is stored belowground in 

tropical forest soils than in aboveground vegetation (Don, Schumacher and Freibauer, 2011), 

demonstrating that soil C is another critical component of global C dynamics. One potential 

explanation for why soil C does not increase predictably with forest age is that the influence of 

tree community composition on biogeochemical processes is more important for soil C 

accumulation than forest age per se as tropical forests regenerate (Chapter 3). Hence, 

differences in soil C storage among forest sites might be expected due to differences in tree 

communities during secondary succession. The trajectory of tree community composition can 

be influenced by a multitude of factors including the degree and cause of original disturbance, 

soil physicochemical properties and dominance of invasive plant species (Chazdon, 2014) and 

as such, the functional characteristics of dominant tree species and average community level 

traits may differ within and among secondary forest stands of the same age (Norden et al., 

2015; Boukili and Chazdon, 2017).  

Tropical forest secondary succession is typically characterised by a shift in resource-use strategy 

from fast-growing light-demanding species in early succession, towards a dominance of slow-

growing shade-tolerance species in later succession (Dent, DeWalt and Denslow, 2012; 

Chazdon, 2014; Whitfeld et al., 2014). The shift in species dominance along this fast-slow 

resource-use continuum during secondary succession is reflected in corresponding shifts in 

plant functional traits (Conti and Díaz, 2013), which are likely to have a significant influence on 

the cycling of C and nutrients in forest soils via decomposition processes. Changes in tree 

functional traits, as the community shifts from light-demanding to shade-tolerant species 



Chapter 4: Soil microbial community composition is related to tree community shade-tolerance and soil chemical properties 

 

Abby Wallwork - January 2021   95 

 

(Cornelissen et al., 1999; Jewell et al., 2017) from ‘high quality litter’, with high nutrient 

concentrations and relatively high content of more labile C forms (Wright et al., 2004; Chazdon, 

2014) to ‘low quality’ litter, typically with low nutrient concentrations, high fibre and lignin 

content and greater concentrations of foliar defence compounds such as tannins and phenols 

which can inhibit decomposition (Wright et al., 2004; Ostertag et al., 2008). Differences in litter 

quality alter resource availability to soil faunal communities. Hence, differences in functional 

characteristics between light-demanding and shade-tolerant species, are expected to influence 

the abundance, composition and activity of soil microbial communities via changes to the 

quality of organic matter entering the soil food web (Bardgett et al., 2005; Kutsch, Bahn and 

Heinemeyer, 2009).  

 

Soil microbial community responses to changing resource quality  

Soil microbial communities have a significant influence on C dynamics as they are the 

powerhouse behind organic matter decomposition in soils (Prescott and Grayston, 2013) and 

ultimately determine the rate of plant-derived C that is either mineralised and returned to the 

atmosphere as CO2 or immobilised in the soil (Kutsch, Bahn and Heinemeyer, 2009). Microbial 

biomass is a key driver of biogeochemical processes and is strongly linked to substrate 

availability (Kutsch, Bahn and Heinemeyer, 2009), whereby total microbial biomass tends to 

increase with increasing soil organic matter content (Yao et al., 2000) and litter-derived soluble 

C content (Fanin, Hättenschwiler and Fromin, 2014) thus suggesting higher rates of microbial C 

turnover in nutrient-rich substrates. Changes in resource quality may thus have important 

implications for soil C sequestration, as evidence suggests that labile C compounds are used 

more efficiently and thus stimulate microbial turnover which results in the production of 

increasingly stable C compounds (Cotrufo, Wallenstein and Boot, 2013). This process is 

postulated in the Microbial Efficiency Matrix Stabilisation (MEMS) Framework which states that 

the products of successive microbial turnover increase C stability in soil organic matter (SOM) 

through aggregation and chemical bonding in the soil matrix (Cotrufo, Wallenstein and Boot, 

2013; Liang, Schimel and Jastrow, 2017). Although decomposition rates can be strongly 

influenced by moisture and temperature (Powers et al., 2009), in humid tropical forests, the 

strongest factor determining decomposition rates is the quality of plant-derived organic matter 

(Marín-Spiotta and Sharma, 2013).   
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In addition to microbial biomass, microbial community composition and relative abundances of 

different microbial functional groups can also reveal important information about belowground 

functioning and changes in resource quality. The metabolization of easily degradable 

compounds, from nutrient rich organic matter, is generally associated with small-bodied and 

fast-growing microorganisms termed zymogenous or r-strategists, whereas degradation of 

more complex structural compounds found in nutrient poor organic matter, requires the 

activity of larger and slower-growing microorganisms termed autochtonous or K-strategists 

(Kutsch, Bahn and Heinemeyer, 2009; Zhou et al., 2017). Fungi are typically regarded as K-

strategists as they are capable of degrading all biologically formed compounds including 

recalcitrant polymers such as lignin via the production of enzymes (Kutsch, Bahn and 

Heinemeyer, 2009). By contrast, bacteria (excluding actinomycetes) often lack enzymes capable 

of degrading complex biopolymers (Kutsch, Bahn and Heinemeyer, 2009) and may instead 

metabolise the products of fungi-biopolymer decomposition (Urbanová, Šnajdr and Baldrian, 

2015) and are therefore generally considered as r-stategists (Zhou et al., 2017). Nonetheless, 

different bacterial groups such as Copiotrophic or Gram-negative bacteria (Gneg: e.g. 

Proteobacteria and Bacteroidetes) and Oligotrophic or Gram-positive bacteria (Gpos; e.g. 

Acidobacteria and Actinobacteria) are also considered to correspond to r- and K-strategists, 

respectively (Fierer, Bradford and Jackson, 2007). Given the distinct capacities of microbial 

functional groups to utilise different resources, the abundance, activity and structure of the 

microbial decomposer community is expected to change as the quality of organic matter inputs 

shifts from a predominately nutrient-rich substate containing labile organic compounds (e.g. 

sugars) to an increasingly complex, nutrient-poor substrate containing a higher proportion of 

recalcitrant compounds (e.g. lignin). Hence, we would expect a shift from a Gneg-dominated 

microbial community in forest stands with a high proportion of fast-growing light-demanding 

tree species, towards a more fungal-dominated microbial community and an increasing relative 

abundance of Gpos bacteria in stands dominated by shade-tolerant trees.  

It is important to consider scale when comparing tree and soil communities. This is complicated 

by differences in the size and spatial arrangement of the organisms. Tree community 

composition is usually measured in plots of at least 0.25 ha, whereas microbial communities 

can change within a few centimetres. However, Barberán et al. (2015) report that the ‘large 

neighbourhood’ special scale (tree within a 20 m radii of soil sampling points) revealed the 
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strongest correlation between tree and microbial community composition, suggesting that 

whereas stand-level analyses might allow the detection of broad patterns, tree communities at 

the local scale may have the strongest influence on soil microbial communities. 

The strong links between resource quality, microbial community composition, and 

decomposition rates might provide a mechanism for the relationship between tree community 

shade-tolerance and soil C accumulation in secondary tropical forests (Chapter 3). To explore 

this, I examined how changes in tree functional characteristics influence soil microbial 

communities during secondary succession at two spatial scales. First, I evaluated broad patterns 

by assessing relationships between soil microbial community composition and tree functional 

characteristics at the stand level (0.32 ha) along a successional gradient of ten naturally 

recovering tropical forest stands. Second, to investigate the relationships between microbial 

communities, tree functional groups and soil properties in more detail I conducted a small-scale 

study in a subset of four stands representing different successional stages (Chapter 4) to test 

the following hypotheses: 

 

1. Differences in tree functional groups among forest stands will be reflected in a 

corresponding shift in soil microbial community composition, whereby the ratios 

of fungi:bacteria and Gpos:Gneg bacteria will increase with increasing tree 

community shade-tolerance 

2. Differences in soil chemical properties among forest stands will influence soil 

microbial community composition, particularly bacteria. 

3. Differences in soil microbial biomass and community composition will be related to 

soil C turnover, represented by rates of litter decomposition and soil CO2 efflux, 

whereby higher soil microbial biomass will have higher rates of soil C turnover. 
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4.3 Methods 

Study site 

The study was conducted within a chronosequence of naturally regenerating tropical forest in 

the Barro Colorado Nature Monument (BCNM), in Panama, Central America, which comprises 

the 1500-ha Barro Colorado Island (BCI) and five surrounding mainland peninsulas. The climate 

is classified as moist tropical with a distinct dry season from January to April, a mean annual 

temperature of c. 27°C and an average annual rainfall of 2600 mm, of which 90% falls in the 

rainy season (Windsor, 1990). Soils are described as clay-rich oxisols and silty-clay alfisols on 

sedimentary and volcanic parent materials (Yavitt, 2000) but are not considered to differ 

significantly in soil C and nutrients (Yavitt, 2000; Grimm et al., 2008). To assess the relationship 

between functional groups of trees and soil microbes at the stand level, I selected permanent 

plots in 10 forest stands: two stands for each of four forest age classes of secondary forest (SF), 

and two old growth forest (OG) stands for comparison, each at least 5 ha in size. The OG stands 

are >500 years old (Dent, DeWalt and Denslow, 2012) and the secondary forest (SF) stands are 

currently 40, 60, 90 and 120 years old (Denslow and Guzman, 2000). To assess the links 

between microbial communities and decomposition rates, I selected a subset of four stands 

(subsequently 40Y, 60Y, 90Y and OG; Chapter 2) representing a gradient of secondary regrowth 

forest succession. Within each stand, I established five replicate blocks, spaced at least 20 m 

apart on level terrain, and avoiding obvious disturbances (e.g. trails, canopy gaps, animal 

activity) as far as possible (further details in Chapter 3).  

The two spatial scales were used as it was not feasible to do the detailed study across all stands. 

Therefore, the stand level study captured all points on the age gradient, whereas the block level 

study better captured the within stand variability and the local tree community effects, but 

stand were still selected to capture the broadest successional gradient of tree communities. 

 

Tree functional groups 

To assess the relationship between functional changes in the tree community and soil microbial 

community composition during succession, I characterised tree community shade-tolerance 
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using tree census data and species-specific growth responses to increasing light. Briefly, tree 

species were assigned to one of two growth-response categories: ‘accelerating’ or 

‘decelerating’ growth with increasing light, based on a light effect parameter (mean b) ranging 

from -0.6 to 3.3 (Rüger et al. 2009; as per Chapters 2 and 3).Accelerating species (ACC; mean b 

>1) represent light-demanding, resource-acquisitive ‘pioneer’ species, whereas decelerating 

species (DEC; mean b <1) represent shade-tolerant, resource-conservative species (Rüger et al. 

2009). I used species frequencies (count) and dominance (basal area) to calculate the relative 

influence of light-demanding (RI ACC) and shade-tolerant (RI DEC) species at the stand-level 

(0.32 ha; all 10 stands) from 2011 census data (D. Dent, unpublished data). To assess the 

relationship between tree functional groups and soil microbial communities at a finer scale 

within the subset of four forest stands, all trees > 200 mm stem diameter at breast height (1.3 

m; DBH) within a 20 m2 radius of the centre of each replicate block were assigned to functional 

groups as above. RI values for block-level tree functional groups were calculated for each 

species per block and growth response values were given as the mean light effect value of all 

species per block (block-level mean b). 

 

 

 

Figure 4.1 Soil sampling design for microbial analysis on two spatial scales in a chronosequence of 
secondary tropical forest in Panama, Central America: a) samples collected along one 160 m transect (10 
stands x 4 blocks = 40 samples in total) and b) samples collected from four (20 x 20 m) sample blocks 
spaced at least 20 m apart in a subset of four stands (4 stands x 4 blocks x 4 samples = 64 samples in 
total). 

a) Large-scale soil sampling from four blocks in each of 10 chronosequence stands 

0             20            40             60            80            100          120         140        160 m 
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b) Fine-scale soil sampling from four blocks in subset of four stands  
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Soil sampling 

To characterise soil microbial communities and account for the influence of soil 

physicochemical properties, I sampled soils at the stand level and block level. At the stand level, 

I established four (20-m x 10-m) sampling blocks, spaced at 40-m intervals along a 160-m 

transect in each of the ten chronosequence stands (Figure 4.1a). I collected three soil cores (0-

10 cm depth) in each of the sampling blocks between May and June 2016 and mixed them to 

make one composite sample per block (10 stands  4 blocks = 40 samples in total). To 

characterise block-level soil microbial community composition, I collected four individual soil 

cores (0-5 cm depth) from each replicate block within the subset of four stands (4 stand x 4 

blocks x 4 cores = 64 sample in total) in September 2017 (Figure 4.1b). To characterise block-

level soil properties, I collected an additional three soil cores (0-5 cm depth) in each replicate 

block within four of the stands and mixed them to make one composite sample per block (4 

stands  4 blocks = 16 samples in total; Figure 4.1b). All samples were collected using a 4.8-cm 

diameter punch soil corer, sealed individually in plastic bags, and stored at 4˚C within four hours 

of collection. Subsamples were taken and frozen at -80 °C within 12 hours of collection before 

being freeze-dried. 

 

Soil physicochemical properties 

I measured soil pH on a 1:3 mixture of fresh soil and deionised water using bench pH meter 

(STARTER 2100, OHAUS, New Jersey, USA) or Mettler Toledo® Seven Compact pH meter 

(Leicester, UK). To determine percentage soil C and N content, I ground a c. 50 g subsample of 

homogenized, air-dried soil using a ball mill (Mixer Mill 400, Retsch, Haan, Germany), Total C 

and N was analysed on 30 mg soil samples by high temperature combustion gas 

chromatography on a Vario El III C/N analyser (Elementar, Stockport, UK) at Lancaster 

University. For the block-level soil samples, extractable P and K were measured using the 

modified Morgan’s method at a commercial laboratory (Central Analytical Laboratory, SRUC 

Veterinary Services, Midlothian UK) 
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Soil microbial analyses 

Soil microbial community composition was determined by phospho-lipid fatty acid (PLFA) 

analysis using c. 1 g freeze-dried soil. For stand-level analyses in each of the 10 chronosequence 

stands, PLFAs were extracted form 40 soil samples at 0-10 cm depth using the Bligh and Dyer 

(1959) method at Lancaster University, and from 64 samples at the block level at 0-5 cm in the 

subset of four stands (four replicates each of the ACC, DEC, MIX and NAT treatments per stand), 

following the high-throughput method of Buyer and Sasser, (2012) at a commercial laboratory 

(Microbial ID Inc., Newark, USA). The two methods were used for time purposes, but data 

generated are considered comparable. Extracts were analysed and peaks identified by gas 

chromatography (Perkin-Elmer GC-FID, UK, and Agilent Series II 6890, Palo Alto, USA, 

respectively) using an internal C19:0 standard at Lancaster University, UK or the Sherlock 6.2™ 

Microbial Identification System (MIDI, Newark, DE, USA). Total microbial and total fungal 

biomass were determined from the sum of raw fatty acid peaks (nmol g-1 dry weight soil) and 

relative abundance was calculated for groups of biomarkers representing broad microbial 

functional types (henceforth: biomarker functional groups; Appendix C: arbuscular mycorrhizal 

fungi (AM fungi), saprophytic fungi, Gram-positive bacteria, and Gram-negative bacteria. To 

assess differences in microbial community composition, the ratio of Gram-positive to Gram-

negative bacteria (Gpos:Gneg) and the ratio of fungi to bacteria (F:B ratio) were calculated as 

indicators of variation in microbial community structure (Bardgett, Hobbs and Frostegård, 

1996; Zhu et al., 2017). 

 

Litter decomposition and soil respiration rates 

To reflect the diversity of decomposing plant litter in tropical forests and thus capture 

relationships between block-level soil microbial communities, and soil C turnover, I used block-

mean litter decay rates (k), and total soil respiration (SRMEAN) data, calculated as the mean for 

five litter treatments per replicate block in each of the four forest stands (4 block x 4 stands = 

16 total) from a four-month decomposition experiment (Chapter 3).  
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Data analyses 

All statistical analyses were performed in R version 3.5.2 (R Core Team, 2018), using the vegan 

package for multivariate analyses (Oksanen et al., 2018) and the lme4 package for linear mixed 

effects models (Bates et al., 2015). Data were log-transformed or standardised where necessary 

to meet model assumptions. To assess relationships between soil microbial community 

composition, tree community shade-tolerance and soil C turnover in the subset of four stands, 

I first tested the influence of litter treatment on soil microbial community metrics using non-

metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarities and linear mixed 

effects models (Appendix C; Table S5.2; Figures S5.1 and 2). The results of these analyses 

revealed there was no significant difference in soil microbial community composition among 

litter treatments (Appendix C; Table S5.2; Figures S5.1 and 2). Therefore, I combined PLFA data 

from four soil samples in each replicate block and used block-mean data in subsequent models. 

To examine the effects of changes in tree functional groups on soil microbial community 

composition during secondary succession at both the stand- and block level, I performed non-

metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarities (metaMDS 

function) using PLFA data expressed as relative abundances. Stable solutions with stress scores 

< 0.2 and r2 > .95 were used for subsequent analyses, resulting in a two-dimensional solution. I 

assessed the influence of forest age class (stand-level) and stand (block-level) on soil microbial 

community composition using a permutational analysis of variance (PERMANOVA; adonis 

function), with 9,999 permutations stratified within blocks. To assess relationships between 

microbial community composition and litter decay rates, tree functional groups, and soil 

properties at the block-level, I used the envfit function to fit standardised variables as vectors 

to the NMDS ordinations, and significance values were generated with 9,999 random 

permutations. I tested the influence of forest age class (stand-level) and stand (block-level) on 

microbial biomass, biomarker functional groups and soil properties using linear mixed effects 

models (lmer function) and one-way ANOVAs (lm function), followed by Tukey’s honest 

significant difference (HSD) post hoc test for comparisons among forest age classes and stands 

at the respective spatial scale. I then assessed relationships between biomarker functional 

groups, tree functional parameters and soil characteristics at the block-level using stepwise 

linear regression, with the biomarker functional group as the response variable and soil or tree 
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functional characteristics as explanatory variables. The initial model included all explanatory 

variables (soil P, soil K, soil pH, RI.ACC, RI.DEC, and mean b) and I checked for variance inflation 

using the vif function in the HH package (Heiberger, 2020). Due to issues of co-linearity between 

RI.ACC and RI.DEC (variance inflation factor >5), I dropped RI.ACC as an explanatory variable. 

Subsequent models were then compared with forward and backward selection of variables 

using AIC values to assess each model fit until a minimum adequate model was reached (stepAIC 

function). Finally, I assessed the relationships between the response variables; mean decay rate 

and soil respiration rates and soil properties and/or microbial community parameters (soil P, 

soil K, soil pH, total microbial biomass, fungal biomass, F:B ratio and Gpos:Gneg ratio) using 

stepwise linear regression and linear mixed effects models following the same steps as 

described above. For all linear mixed effects models, significance was determined by 

comparison to appropriate null models (without explanatory variables) using likelihood ratio 

tests. Results are reported as significant at p < 0.05 for linear mixed effects models 2 and p 

values are given for the comparison between the final model and the corresponding null model. 

 

4.4 Results 

Stand-level soil microbial community composition along a tropical 

forest chronosequence 

The NMDS ordination showed no clear separation of microbial communities by forest age, 

whereby microbial communities in secondary forest stands could largely be considered a subset 

of the old-growth forest community (Figure 4.2). Nonetheless, PERMANOVA revealed 

significant differences in soil microbial communities among forest age classes (p = 0.037), 

indicating shifts in microbial community structure along the chronosequence.  
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Figure 4.2 NMDS representation of soil microbial community composition in 10 forest stands along an 

age gradient of naturally regenerating tropical forest; ordinations were based on Bray-Curtis 

dissimilarities of phospholipid fatty acid (PLFA) biomarkers in soil samples collected at 0-10 cm from four 

blocks in two stands in each of five age classes: 40 year old (40Y; blue diamonds), 60 year old (60Y; green 

triangles), 90 year old (90; orange dots), 120 year old (120Y; small maroon dots) and old-growth (OG; > 

500 year old; red squares) forest stands in Panama, Central America. Ordinations were based on Bray–

Curtis dissimilarities and hulls group samples within age classes. 

 

Relationship between stand-level soil microbial biomass and tree functional 

groups 

At the stand level, soil microbial biomass was related to the relative influence (RI) of tree 

functional groups. Mean total PLFA biomass (µg g-1) tended to increase with the relative 

influence of light-demanding (ACC) species and decrease with the relative influence of shade-

tolerant (DEC) species resulting in a moderate negative relationship between total PLFA 

biomass and the ratio of DEC:ACC species (R2 = 0.325, p = 0.05; Figure 4.3).  
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Figure 4.3 Relationship between soil microbial biomass and tree community shade tolerance in 10 forest 

stands of five age classes along a gradient of naturally regenerating tropical forest in Panama, Central 

America; where microbial biomass is represented by total phospholipid fatty acids (PLFA) in soils sampled 

at 0-10 cm, and shade-tolerance is represented by the ratio of shade-tolerant to light-demanding tree 

species at the stand level (0.32 ha); the forest age classes comprise: 40 year old (40Y; blue), 60 year old 

(60Y; green), 90 year old (90; orange), 120 year old (120Y; maroon) and old-growth (OG; > 500 year old; 

red). 

 

Block-level soil microbial community composition in four tropical 

forest stands   

Tree community functional characteristics, C turnover and soil properties among 

four forest stands 

Of the 47 tree species censused, 40 species were assigned to tree functional groups, accounting 

for c. 93 % of individuals. Although block-level mean b (species growth response to light) was 

twice as high in the 40Y than 90Y stand, and mean RI ACC in the two younger stands was more 

than double that in the two older stands, variability among blocks within each stand was high. 

Only the RI of shade-tolerant species (RI DEC) differed significantly among stands, whereby RI 

DEC was significantly higher in the OG stand than the 40Y and 60Y stands (F3,12  = 5.34, p = 0.014; 
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Table 5.1). Due to high values for RI ACC and DEC (e.g. 100 %) in some blocks, the ratio of 

DEC:ACC species was not used to characterise tree functional groups at the block-level. Soil 

properties differed among the four forest stands (Table 4.1), whereby soil C was significantly 

higher in the 40Y and 60Y compared to 90Y stand (F3,12  = 6.14, p = 0.009) and N (F3,12  = 7.74, p 

= 0.004) was significantly higher in the two younger (40Y and 60Y) stands than older stands, but 

the C:N ratio did not differ among stands. Soil pH in the 60Y stand was significantly higher than 

in the OG stand (F3,12  = 5.43, p = 0.014; Table 5.1) but soil P and K did not differ significantly 

among stands. Block-mean litter decay rate (k) differed among stands (F3,12  = 8.12, p = 0.003; 

Table 4.1) which was explained by significantly higher mean k in the 60Y than the 40Y and 90Y 

stands but there was no significant difference in block-mean total soil respiration (SR) among 

stands (Table 4.1). 
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Table 4.1  Tree community metrics, metrics representing soil C turnover, soil chemical properties and 

microbial community metrics for four tropical forest stands along a successional gradient in Panama, 

Central America; where 40Y, 60Y and 90Y denote the estimated stand age in years, and OG Is old-growth 

forest, where Mean b = mean growth response value to increasing light; RI DEC = relative influence of 

shade-tolerant species and RI ACC = relative influence of light-demanding species, SRMEAN = mean total 

soil respiration. Total soil respiration and decay rate measurements are from a separate study (Chapter 

4). Means and standard errors are given for n = 4 replicate blocks; significant differences among stands 

based on post-hoc tests are indicated by different superscript letters.  
 

Forest stand age 
Stand mean values   40Y 60Y 90Y OG 

Tree community metrics     

Mean b 1.07 ±0.24 0.81 ±0.15 0.52 ±0.17 0.59 ±0.07 

RI DEC (%) 24.13 ±14.56b 33.73 ±22.36b 77.69 ±15.76ab 99.6 ±0.25a 

RI ACC (%) 59.69 ±16.19 64.01 ±21.73 22.31 ±15.76 0.18 ±0.18 

Metrics of soil C turnover     

Litter decay rate (k) 2.64 ±0.24b 4.16 ±0.38a 2.10 ±0.24b 3.25 ±0.36ab 

Total soil respiration (SRMEAN) 7.60 ±0.29 8.73 ±1.05 5.70±1.17 6.82 ±0.86  

Soil chemical  properties     

Total carbon (C; %) 8.18  ±0.74a 7.96 ±1.03a 4.65 ±0.68b 5.15 ±0.37ab 

Total nitrogen (N; %) 0.58 ±0.06a 0.57 ±0.07a 0.30 ±0.05b 0.33 ±0.03b 

C:N ratio 14.22 ±0.20 14.50 ±0.51 15.90 ±0.99 16.06 ±0.36 

pH 5.88 ±0.08ab 6.30 ±0.08a 5.82 ±0.16ab 5.41 ±0.25b 

Phosphorus (mg/kg) 4.53 ±0.95 9.86 ±2.34 5.59 ±0.07 4.26 ±1.27 

Potassium (mg/kg) 725.96 ±86.56  1095.81 ±205.51 866.71 ±93.20 918.19 ±26.15 

Microbial community metrics      

Total microbial biomass (Nmol g-1) 393.20 ±23.79a 344.05 ±10.05a 256.53 ±18.93b 278.09 ±25.08b 

Fungal biomass (Nmol g-1) 29.26 ± 3.13a 27.55 ±1.66ab 19.11 ±1.15b 22.50 ±2.41ab 

AM fungi (%) 3.22 ±0.10ab 3.26 ±0.09ab 3.05 ±0.10b 3.63 ±0.19a 

Fungi: Bacteria ratio 0.13 ±0.01 0.14 ±0.00 0.13 ±0.00 0.14 ±0.01 

Gram positive bacteria (%) 32.75 ±0.88a 32.13 ±0.41ab 33.23 ±0.32a 29.56 ±0.75b 

Gram negative bacteria (%) 35.52 ±0.82ab 33.98 ±0.43b 35.07 ±1.29b 41.43 ±2.47a 

Gpos: Gneg ratio 0.93 ±0.05a 0.95 ±0.01a 0.95 ±0.04a 0.72 ±0.05b 
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Influence of soil properties and tree functional groups on soil microbial 

community composition  

At the block level, NMDS ordination revealed a clear separation of soil microbial communities 

among stands, particularly between the older (OG and 90Y) and younger (60Y and 40Y) forest 

stands (Figure 4.4; PERMANOVA: p < 0.001). Vector fitting to the NMDS ordination revealed the 

RI of DEC species (p = 0.032), soil pH (p = 0.039) and mean b (p = 0.048) explained separation 

along the first axis whereas soil C and N content best explained separation along the second 

axis (NMDS2 = 0.047, p = 0.003; Figure 4.4). Hence, the combination of local tree community 

shade-tolerance and soil properties explained differences in soil microbial community 

composition among stands.  

 

 

Figure 4.4 NMDS representation of soil microbial community composition in four forest stands along an 

age gradient of naturally regenerating tropical forest in Panama, Central America; ordinations were based 

on Bray-Curtis dissimilarities of phospholipid fatty acid (PLFA) biomarkers in soil samples collected from 

0-5cm in four blocks per stand, where 40 year old (40Y; blue diamonds), 60 year old (60Y; green triangles), 

90 year old (90Y; orange circles) and old growth (OG; > 500 years old; red squares) forest stands. 

Significant (p < 0.05) relationships between ordination axes and soil properties or tree functional 

characteristics (at 20 m2 radius) are fitted as vectors (black arrows), where RI.DEC is the relative influence 

of shade-tolerant (decelerating growth) tree species (%) per block, MEAN.B is the block mean species 
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growth response to increasing light, pH is soil pH, TC is total carbon (%) and TN is total soil nitrogen (%); 

ellipses group blocks within stands based on 99% confidence intervals. 

 

Microbial communities at the block-level differed among stands in both biomass and structure. 

Fitting the relative abundances of microbial functional groups as vectors to the NMDS 

ordination revealed that differences in the ratio of Gpos:Gneg bacteria (NMDS1 = 0.981, p = 

0.004) along with a non-significant trend for the relative abundance of AM fungi (p = 0.052) 

explained separation along the first axis and  differences in total microbial biomass (NMDS2 = 

0.996, p < 0.001) and total fungal biomass (NMDS2 = 0.920, p = 0.001) best explained separation 

along the second axis. The separation of stands was partly explained by higher total microbial 

biomass in the 40Y and 60Y stands, compared to the 90Y and OG stands (F3,12  = 9.44, p = 0.002; 

Figure 4.5a; Table 4.1), and higher fungal biomass in the 60Y compared to the 90Y stand (F3,12  

= 4.40, p = 0.026; Figure 4.4b). There was also a lower relative abundance of Gram-positive 

biomarkers (F3,12  = 6.65, p = 0.007; Figure 5.4f) and Gpos:Gneg ratio (F3,12  = 7.03, p = 0.006; 

Figure 4.4g) in the OG stand compared to the three secondary forest stands, but a higher 

relative abundance of Gram-negative bacteria  (F3,12  = 5.20, p = 0.016) in the OG stand 

compared to the three secondary forest stands. AM fungal biomarkers were higher in the OG 

than 90Y stand (F3,12 = 3.51, p = 0.049) the but there was no difference in the fungi:bacteria 

ratio among stands (Figure 4.5d; Table 4.1). 
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Figure 4.5  Soil microbial biomarker groups from PLFA analysis along a successional gradient of four forest 

stands (40 year old, 60 year old, 90 year old and OG = old-growth (>500 year old) forest) for a) total 

microbial biomass, b) total fungal biomass, c) the relative abundance of arbuscular mycorrhizal fungi (AM 

fungi), d) the ratio between fungi and bacteria, e) the relative abundance of gram-negative bacteria, f) 

the relative abundance of gram-positive bacteria, and g) the ratio between gram-positive and gram-

negative bacteria. Soil was sampled from 0-5 cm depth, PLFA data from each replicate block were 

combined resulting in n = 4 per stand. Significant differences among stands were determined by Tukey 

post-hoc analyses and indicated by different letters at p < 0.05. Boxes denote the 25th and 75th 

percentiles and median lines, whiskers indicate values up to 1.5 x the interquartile range, and dots 

indicate outliers. 
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Combined influence of tree functional groups and soil properties on soil 

microbial biomass and biomarker groups 

Stepwise multiple linear regressions revealed relationships between microbial community 

parameters and soil K, soil pH and mean b (full model results in Appendix C). Total microbial 

biomass and fungal biomass declined with increasing soil K content and increased with soil pH 

and mean b (R2 = 0.60, p = 0.003 and R2 = 0.40, p = 0.030 for total and fungal biomass, 

respectively; relationship between microbial biomass and mean b shown in Figure 4.6) but 

there were no significant relationships between the fungi:bacteria ratio and any stand or soil 

properties. The relative abundance of AM fungi increased with increasing soil K concentrations 

and declined with increasing soil pH (R2 = 0.33, p = 0.03). There was no relationship between 

the abundance of Gram-positive bacteria and any of the measured stand or soil characteristics. 

However, the abundance of Gram-negative bacteria declined strongly with increasing soil pH 

(R2 = 0.62, p < 0.001) and the Gpos:Gneg ratio increased with increasing pH (R2 = 0.40, p = 

0.005). Hence, although soil properties exerted control on the relative abundances of microbial 

functional groups, stands dominated by light-demanding trees determined higher levels of total 

microbial biomass and fungal biomass. 
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Figure 4.6 Relationship between a) total soil microbial biomass and b) total fungal biomass and block-

mean tree community growth response to light (mean b; Rüger et al., 2009) in four forest stands in a 

tropical forest in Panama, Central America; where microbial biomass is represented by total phospholipid 

fatty acids (PLFA) in soils sampled at 0-5 cm and stands are represented by age (years since last 

disturbance event and OG = old-growth forest). 

 

Linking soil microbial communities with soil C turnover  

Relationships between representative measures of soil C turnover (response terms) and 

microbial community parameters were indicated with stepwise multiple linear regressions (full 

models in Appendix C). The best model for litter decay rates included fungal (or total) biomass, 

the Gpos:Gneg ratio, soil K and soil pH (R2 = 0.72; p < 0.001), whereby decay rates declined 

strongly with increasing Gpos:Gneg ratio, and increased with fungal biomass, soil K and soil pH. 

Total soil respiration (SRmean) was best explained by total microbial biomass, the F:B and 

Gpos:Gneg ratios, and soil P and K, whereby SRmean increased with increasing microbial biomass, 

P and K but declined with increasing ratios of F:B and Gpos:Gneg (R2 = 0.71, p = 0.002). 
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4.5 Discussion 

To my knowledge, this is the first study to assess the relationship between tree functional 

groups and soil microbial communities along a chronosequence of tropical forest stands, using 

tree community shade-tolerance as the key functional characteristic. My study tested the 

assumption that the top-down influence of dominant tree functional groups on the soil food 

web would in turn, influence the abundance, structure and activity of soil microbial 

communities. I demonstrated clear links between tree community shade-tolerance and soil 

microbial community structure across stands of different ages. Although the shifts in microbial 

functional groups did not conform to expectations, my findings nonetheless demonstrated 

strong relationships between microbial community structure and local dominance of shade-

tolerant trees, and the local abundance of specific microbial functional groups explained 

differences in litter decomposition and soil respiration rates.   

 

Stand-level relationships between tree and microbial functional 

community composition 

Across the chronosequence, I expected that increasing shade-tolerance of the tree community, 

and the corresponding decline in organic matter quality with forest age, would be reflected by 

changes in soil microbial communities. However, although there were stand-level differences 

in microbial community structure, there were no clear differences in individual microbial 

functional groups along the successional gradient, and I did not observe the expected increase 

in the relative abundances of K-strategist decomposer organisms (i.e. increasing ratios of F:B 

and Gpos:Gneg bacteria). Nonetheless, despite the broad scale of the study (0.32 ha per stand), 

I revealed that total and fungal microbial biomass tended to decline with increasing dominance 

of shade-tolerant tree species, represented by the DEC:ACC ratio. As the soil microbial biomass 

is considered to be directly related to the quantity and quality of organic matter in the soil food 

web (Yao et al., 2000), the moderately significant stand-level relationships between tree 

community shade-tolerance and microbial biomass suggest that tree functional groups 

influence microbial communities via organic matter quality, with greater microbial biomass in 

stands of light-demanding species with higher litter quality (Fanin, Hättenschwiler and Fromin 

2014). It is noteworthy that soil microbial communities in the secondary forest stands largely 
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represented subsets of the old-growth forest microbial community (Figure 5.1) indicating that 

microbial communities may develop in complexity during forest recovery.   

The lack of strong relationships between tree species composition and microbial community 

structure at the stand level could be explained by differences in soil chemical properties among 

stands, particularly differences in soil pH (Chapter 2). Soil pH is widely considered one of the 

most influential factors affecting the microbial community (Rousk, Brookes and Bååth, 2009) 

and although it is often reported to have a stronger effect on bacteria (e.g. Barberán et al., 

2015), fungal communities are also influenced by soil pH (Bachelot et al., 2016). 

The increase in both total and fungal biomass with increasing soil pH is largely consistent with 

other studies covering a similar pH range (e.g. Rousk, Brookes and Bååth, 2009). As differences 

in soil pH can occur due to many factors (e.g. vegetation type, soil type, land-use practices) and 

can influence other soil properties such as C and nutrients (Rousk, Brookes and Bååth, 2009) it 

is not possible to disentangle the relative influence of soil pH and tree community composition 

on soil microbial communities. Differences in former land-use could also obscure relationships 

between above- and belowground communities, because the legacy effect of former 

agricultural land-use practices can influence soil physicochemical properties for decades (Foster 

et al., 2003). Although there is insufficient information to formally analyse the impact of land-

use history on soil microbial communities for the forest stands in this study, the legacy of former 

land-use practices could also explain some of the unexpected trends in microbial community 

structure. 

 

Block-level relationships between tree and microbial functional 

community composition 

There were clear differences in microbial communities among stands when measurements 

were made at a finer scale. The differentiation of microbial communities between young 

secondary forests (40Y and 60Y) and old-growth forest was particularly striking (Figure 4.3). 

Stronger relationships between tree functional groups and soil microbial communities were 

expected at the block level because the soils were taken within the radius of influence of the 

individual trees. For example, Barberán et al, (2015) revealed the tree community within a 20 
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m radius of soil sampling points had the strongest correlation between tree and microbial 

community composition. Although the results from the stand and block-level studies may not 

be directly comparable because of the different sampling times, block-level analyses revealed 

a stronger influence of tree communities on soil microbial communities than tree communities 

at the stand-level.  

Although there was some variability among replicate blocks in the subset of four stands, 

differences in the proportions of tree functional groups at the block-level generally conformed 

to the pattern of increasing relative influence of shade-tolerant tree species with stand age 

(Table 4.1). Hence, the subset of stands used in this study are likely to be representative of a 

natural successional gradient, demonstrating concurrent shifts in above- and belowground 

community composition. 

Interestingly, the within-stand variation in soil microbial communities was smallest in the 90Y 

stand (Figure 4.4), which may overlie a different geological formation from the other stands 

(40Y, 60Y and OG; Appendix B). Although measured soil properties (N, P, K and pH) did not differ 

between the 90Y and other stands, it is plausible that the 90Y stand had distinct soil physical 

characteristics such as clay content and water retention (Baillie et al., 2007) which in turn can 

have a significant influence on soil microbial communities (Lauber et al., 2008). 

Although organic matter quality was not explicitly measured as part of this study, I previously 

demonstrated that litter representing ACC species decomposes more rapidly than litter 

representing DEC species, and hence the greater microbial biomass in blocks dominated by 

light-demanding tree species is likely explained by greater inputs of high-quality litter (Yao et 

al., 2000; Bray, Kitajima and Mack, 2012). Nonetheless, in contrast to my initial hypothesis, 

there was no clear relationship between tree community shade-tolerance and structural 

metrics of the microbial community. I expected that the F:B and Gpos:Gneg ratios would 

increase with the relative influence of shade-tolerant trees, reflecting increasing abundance of 

K-strategist decomposer organisms in stands with low-quality litter inputs (Fierer, Bradford and 

Jackson, 2007; Zhou et al., 2017). However, there was no relationship between tree community 

composition and F:B ratios and, surprisingly, the lowest Gpos:Gneg ratios were measured in the 

old-growth forest stand (Figure 4.5d and g; Table 4.1). 

The difference between old-growth and secondary forests was particularly striking for Gneg 

bacteria, and it is possible that the lower abundance of Gneg bacteria in secondary forest stands 
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is related to abiotic stress, rather than resource quality. Younger forest stands have a more 

open canopy, which can result in greater variation in soil temperature and water content 

(Craven, 2015). Soil drying introduces matric and osmotic stress which will affect microbial 

community composition (Burns et al., 2013), and Gneg bacteria are thought to be more 

susceptible to dry conditions (Fierer, Bradford and Jackson, 2007) whereas Gpos bacteria are 

considered more stress tolerant (Waldrop MP , Balser TC, 2000). By contrast the F:B ratio is 

controlled largely by resource stoichiometry (Waring, Averill and Hawkes, 2013) because fungi 

have an advantage over bacteria at higher C:N ratios, whereas bacterial inhibition of fungal 

growth is stronger on low C:N substrates (Rousk and Bååth, 2007; Rousk et al., 2008). These 

expected patterns in F:B ratios are based largely on evidence from temperate systems, where 

nitrogen is more likely to be limiting to microbial activity – this may not apply in many tropical 

systems; indeed, N is not considered limiting in the study forest, and the soil C:N ratios did not 

differ among stands. 

Although soil nutrients had limited explanatory power for microbial community composition, 

both total microbial biomass and fungal biomass decreased with increasing soil K content. Soil 

K is considered limiting in these soils and may preferentially bind to humic substances (Barthold, 

Stallard and Elsenbeer, 2008; Kaspari et al., 2008) and it is also an important nutrient required 

by fungi for organic matter decomposition (Kaspari et al., 2008) so could be considered a 

limiting nutrient for soil microbial communities and activity. Interestingly, a fertilization study 

conducted nearby within the BCNM reported no significant effect of soil K on microbial biomass 

but instead a significant positive effect of soil P (Turner and Wright, 2014), thus the negative 

relationship between microbial biomass and soil K in this study is surprising. However, soil P 

and K appeared to influence respiration rates, whereby SR increased with increasing P and K. 

Litter decay rates also increased with increasing soil K, suggesting links between soil nutrient 

availability and microbial activity, which warrant further investigation 
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Links between soil microbial community composition and soil 

carbon turnover 

As microbial biomass is strongly related to soil biogeochemical cycling and forms a large 

proportion of soil organic C (Simpson et al., 2007; Kutsch, Bahn and Heinemeyer, 2009), I 

expected that soil C turnover (litter decomposition and soil respiration) would be higher in soils 

with greater microbial biomass. Surprisingly, microbial biomass was a weaker predictor for 

decay rates and soil respiration than microbial structure. Changes in microbial community 

composition alone can account for a substantial proportion of the variation in respiration rates 

during litter decomposition (Strickland et al., 2009) but microbial communities in the soil at 0-

5 cm depth are likely to differ from the microbial communities on the litter surface (McGuire et 

al., 2012). Nonetheless, the decline in decay rates and soil respiration with increasing 

Gpos:Gneg ratio suggests that soils with high a relative abundance of Gneg bacteria are 

characterised by high rates of microbial activity and soil C turnover, which likely indicates that 

they preferentially use labile substrate (Bardgett, Mommer and Vries, 2014). According to the 

MEMS framework, rapid turnover of labile organic matter by copiotrophic microbes such as 

Gneg bacteria would accelerate soil organic matter formation (Cotrufo, Wallenstein and Boot, 

2013), and hence distinct bacterial communities among stands might contribute to the 

observed patterns of soil carbon accumulation with increasing relative influence of light-

demanding trees (Chapter 2). 

Soil respiration, but not decay rates, also declined with increasing F:B ratios, which might also 

reflect differences in metabolic rates of fungi and bacteria, in particular because fungi tend to 

store more C than they metabolize (Singh et al., 2010). It is noteworthy that soil P and K content 

also explained some of the variation in total soil respiration, as both nutrients are thought to 

be limiting to plant growth in the study area (Sayer and Tanner, 2010; Yavitt et al., 2011).  

It is conceivable that overlap in soil microbial communities from old-growth and secondary 

forest stands is a result of the high plant diversity in tropical forests. Functionally diverse 

microbial communities comprising both r- and K-strategists are likely required to decompose 

mixed litter originating from a wide range of tree functional groups (Kerdraon et al., 2019, 

2020). Although my results provide initial evidence for links between tree functional groups, 

microbial community structure and soil C turnover in secondary tropical forests, more in-depth 
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analyses of microbial community composition (e.g. using sequencing techniques) and metabolic 

capacities is required to fully determine the mechanistic basis for these relationships. 

 

4.6 Conclusions 

This study reveals clear links between tree functional groups and soil microbial communities in 

secondary tropical forest stands. Although there was no clear trajectory of shifts in microbial 

community structure with forest age across the chronosequence, my findings suggest that 

more localised relationships exist between soil microbial communities and tree functional 

composition, which influence decomposition and soil respiration. Overall, stands dominated by 

light-demanding tree species had higher microbial biomass but the assumption that stands with 

a higher relative influence of shade-tolerant species would have higher relative abundances of 

K-strategist decomposers was unsubstantiated. My study highlights the important top-down 

influence of tree functional groups on soil microbial biomass and community composition, 

despite the important role of soil physicochemical properties which may obscure relationships 

between plant-derived organic matter and soil microbial communities in these forest stands. 

The unexpected shifts in microbial functional groups could underpin the relationship between 

tree community shade-tolerance and soil carbon storage during secondary forest succession 

and help explain the disconnect between above- and belowground C pools during forest 

recovery.  

Given the importance of secondary tropical forests for the global carbon cycle, further work on 

the links between soil microbial community composition and tree functional traits could 

elucidate important mechanisms of soil organic matter formation during secondary forest 

succession.  
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5 General discussion 

Secondary tropical forest regrowth is becoming increasingly important for C sequestration and 

storage (Poorter et al., 2016; Powers and Marín-Spiotta, 2017). Aboveground biomass C 

accumulates rapidly during regrowth after disturbance (Poorter et al., 2016), but there is no 

clear pattern of soil C accumulation over time during forest recovery (Yang, Luo and Finzi, 2011; 

Li, Niu and Luo, 2012; Marín-Spiotta and Sharma, 2013; Martin, Bullock and Newton, 2013; 

Powers and Marín-Spiotta, 2017). As tropical forests store more C belowground than in 

aboveground vegetation (Don, Schumacher and Freibauer, 2011), there is a pressing need to 

improve our understanding of soil C dynamics during tropical forest secondary succession. 

Whereas aboveground biomass C accumulation over time is a direct result of rapid tree growth 

during forest recovery (Poorter et al., 2016), soil C storage depends on both the quantity and 

quality of organic matter inputs from plants (Metcalfe, Fisher and Wardle, 2011; Castellano et 

al., 2015). The quality and quantity of plant inputs is determined by tree species composition, 

which changes during secondary succession and can differ markedly between forest stands of 

similar ages (Norden et al., 2015; Boukili and Chazdon, 2017). Hence, I hypothesised that 

functionally distinct tree communities during secondary succession would have a significant 

influence on soil C dynamics and storage via the quality of litter inputs to the soil. The body of 

work presented in this thesis provides compelling evidence in support of my initial hypothesis, 

demonstrating that soil C accumulation is more closely related to tree functional composition 

than forest age, and explores some of the potential mechanisms through which changes in the 

functional composition of trees can influence soil C dynamics.  

 

5.1 Characterisation of tree communities during secondary 

succession 

The characterisation of tree communities was an important component of my work as it 

underpinned my overarching hypothesis, as well as the hypotheses of the individual studies 

presented in each chapter. I characterised tree communities using growth responses to 

increasing light values (Rüger et al., 2009) to assign species to functional groups. I estimated 

the relative influence (RI) of tree functional groups based on their frequency (number of 

individuals) and dominance (basal area). Hence, my approach uses species growth responses 
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as a proxy for resource-use strategy, and accounts for the relative proportion of tree functional 

groups to estimate their influence on biogeochemical cycling. My approach and results differ 

from those of Dent, DeWalt and Denslow (2012), who previously characterised tree community 

shade-tolerance along the chronosequence using the same species-specific growth response to 

increasing light values (Rüger et al., 2009). However, in their study, Dent, DeWalt and Denslow 

(2012) used community-weighted mean values based on tree basal area to define the 

functional composition of forest stands and reported that tree community shade-tolerance 

increased with increasing stand age. By contrast, my approach accounted for the potential 

influence of many small individuals within a functional group, as well as the influence of large 

trees which I viewed as important in determining plant-soil interactions. Hence, my results 

suggest that the relative influence of tree community functional groups does not necessarily 

shift predictably during secondary succession in these forests. Importantly, the relative 

influence of light-demanding and shade-tolerant species was a significant predictor for C in the 

surface soil, which suggests that forest management to increase belowground C storage could 

be achieved via the functional composition of tree communities. It is now important to 

investigate whether similar relationships between the tree functional groups (as characterised 

in this study) and soil C content exist across other forest sites and at larger spatial scales. 

It is encouraging that the broad functional classifications I used in my thesis revealed such a 

strong relationship between tree community shade-tolerance and soil C content and 

demonstrates the potential for this approach to be extended. Notably, the functional 

classification I used was based on a single trait axis (the growth-survival trade-off), whereas a 

recent study suggests that a more detailed picture of forest dynamics during secondary 

succession can be achieved using two trait axes, resulting in five plant functional types (Rüger 

et al 2020). Importantly, the inclusion of a second trait axis (the stature-recruitment trade-off), 

allowed the authors to differentiate short-stature pioneers from the long-lived pioneers, which 

form a significant proportion of the canopy in secondary forest stands in the BCNM and in other 

tropical forests (Rüger et al., 2020), and explains the high RI values for light-demanding species 

in the late secondary and old-growth forest stands in my study. Therefore, future tests of the 

relationships between the functional structure of tree communities and soil C accumulation 

could benefit from the expanded categories of plant functional types proposed by Rüger et al 

(2020). 
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5.2 Linking tree functional groups to decomposition processes 

and soil respiration 

My initial results revealed that soil C content and stocks in the surface soil (0-10 cm depth) 

increased with the relative influence of light-demanding tree species across the 10 

chronosequence stands. Although these results supported my initial hypothesis, the direction 

of the relationship was unexpected, as I hypothesised that C accumulation would be promoted 

by the slow turnover of nutrient-poor litter derived from slow-growing shade-tolerant species. 

However, this unexpected result led me to consider an alternative hypothesis, whereby the 

input of labile organic material to soils promotes microbial turnover, and the products of 

successive microbial processing results in increasingly stable C compounds being incorporated 

into the soil matrix (the MEMS framework; Cotrufo, Wallenstein and Boot, 2013). Hence, based 

on my results in Chapter 2, I hypothesised that that the surface input of high-quality litter would 

explain soil C accumulation via increased rates of soil C turnover. I tested this hypothesis in 

Chapter 3 using an in situ litter decomposition experiment with functionally distinct litter 

treatments. My study demonstrated that litter representing light-demanding tree species (ACC) 

decomposed significantly faster than litter representing shade-tolerant species (DEC), and that 

changes in soil respiration reflected decomposition dynamics, whereby total soil (SR) and litter-

derived (SRL) respiration rates were significantly higher for the ACC than DEC treatment in the 

first two months of decomposition, whereas in the last two months the pattern was reversed 

with higher SR and SRL for DEC compared to ACC treatments. However, the effects of litter type 

were consistent across stands, and overall differences in decay rates and soil respiration among 

stands were not related to tree community shade-tolerance. My results suggest that although 

the quality of leaf litter reaching the forest floor may indeed influence soil C turnover via litter 

decay rates and soil respiration, these pathways do not fully explain the relationship between 

tree functional groups and soil C in these stands.  

Although the results of Chapter 3 revealed that litter decay rates and the temporal response of 

soil respiration differed with both litter quality and forest stand, the weak relationship between 

these measures of soil C turnover and the RI of tree functional groups, suggests that other 

processes connect tree community functional groups with soil C accumulation. As my study 

only considered the influence of aboveground litter inputs, the lack of a clear relationship 
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between tree functional groups and soil C turnover in this study could be explained by the 

influence of roots. Previously, aboveground inputs of plant organic matter were considered the 

primary contributor to soil C (e.g. Clark et al., 2001), however there is increasing recognition 

that belowground inputs may be of more importance, in particular the release of labile 

dissolved organic carbon (DOC) from root exudates (Gross and Harrison, 2019; Sokol and 

Bradford, 2019). Fine root turnover and the input of labile C via root exudates make a major 

contribution to the formation of soil organic matter (I Brunner et al., 2013; Bardgett, Mommer 

and De Vries, 2014; Sokol and Bradford, 2019), and are expected to form mineral-stabilized soil 

C more efficiently than aboveground inputs, due in part to their direct entry into the mineral 

soil and proximity to the microbial community within the rhizosphere (Sokol and Bradford, 

2019). At my study site, fine root biomass is largely concentrated in the surface soil horizons (c. 

50 % at 0-5 cm and 75% at 0-10 cm depth; Yavitt et al., 2011) and there is evidence to suggest 

that roots influence C cycling in these forests, for example via increased litter decomposition in 

the presence of roots (Nottingham et al., 2013) and increased soil C stocks with increasing fine 

root biomass (Cusack et al., 2018).  

The quality and quantity of root inputs are likely to differ strongly among tree functional groups 

and could contribute to the observed relationship between tree community shade tolerance 

and soil C accumulation. However, whereas there are clear global patterns in foliar traits (the 

leaf economics spectrum; Wright et al., 2004; Reich, 2014), root traits do not necessarily follow 

the same principles  (Mommer and Weemstra, 2012; Kramer-Walter et al., 2016). Indeed, we 

know very little about differences in root traits among plant functional groups, especially in the 

tropics, in part due to the difficulty of studying rhizosphere processes without disturbing them 

(Vitousek and Sanford, 1986). Hence, although the potential effect of root inputs on soil C 

dynamics was beyond the scope of my study, further research using root ingrowth cores 

(Brunner et al., 2013; Nottingham et al., 2013), root decomposition studies, and trenching 

methods (Hanson et al., 2000; Sayer and Tanner, 2010) to partition root-rhizosphere 

respiration, and isotope labelling techniques to trace C pathways though the food soil web 

(Pausch and Kuzyakov, 2018) may reveal important mechanisms underlying the relationship 

between tree community functional groups and soil C. 
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5.3 Soil microbial communities link tree functional groups and 

soil carbon dynamics 

The study presented in Chapter 4 revealed relationships between tree functional groups and 

soil microbial communities both within and between stands. Assessed at a comparatively broad 

spatial scale (0.32 ha) in each of the 10 chronosequence stands, my results indicated there was 

a relationship between soil microbial communities and tree functional groups, which differed 

among stands. Although the relationship was only moderately significant, soil microbial biomass 

increased with decreasing shade-tolerance of the tree community, indicating that organic 

inputs from light-demanding trees could enhance soil C accumulation by promoting microbial 

growth. The same pattern emerged within stands, whereby soil microbial biomass was 

significantly lower in blocks dominated by shade-tolerant trees. Interestingly, the broad-scale 

analyses revealed that microbial communities in the SF stands appeared to be a subset of the 

OG forest communities. This suggests that previously disturbed SF may have a narrower 

microbial community than undisturbed OG stands and that the microbial community develops 

over long timescales (e.g. many decades to hundreds of years). The analyses of microbial 

communities within the subset of four forest stands also demonstrated a clear separation in 

microbial community composition between the two older (90Y and OG) and two younger (40Y 

and 60Y) stands, which was largely explained by tree community shade-tolerance. 

The combined results of the studies in Chapters 3 and 4 provide some evidence to support to 

my hypothesis that microbial processing of labile C input from nutrient rich plant material would 

enhance soil C accumulation (Cotrufo, Wallenstein and Boot, 2013). The decomposition 

experiments in Chapter 3 demonstrated strong links between litter quality and decay rates, 

whereas the negative relationship between the soil microbial biomass and the relative influence 

of shade-tolerant tree species in Chapter 4 suggest that the overall microbial contribution to 

soil C, such as microbial necromass and the products of microbial C processing (Cotrufo, 

Wallenstein and Boot, 2013), might be more important than rates of soil C turnover 

represented by litter decomposition and respiration (Liang, Schimel and Jastrow, 2017).  

Surprisingly, I found no clear relationships between tree functional groups and microbial 

community structure or specific microbial biomarker groups. I had expected an increase in the 

relative abundance of K-strategists with increasing tree community shade-tolerance, but the 

results of the study in Chapter 4 instead revealed that there were no clear relationships 
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between specific microbial biomarker groups and tree functional groups. Nonetheless, 

differences in microbial functional groups revealed indirect links between soil microbial 

communities and tree functional groups, as litter decay rates and soil respiration declined with 

increasing Gpos:Gneg ratio, but increased with an increasing proportion of light-demanding 

species, suggesting that soils with high relative abundance of Gneg bacteria are characterised 

by high rates of microbial activity and soil C turnover.   

 

5.4 Potential influence of time, depth and soil characteristics on 

soil carbon accumulation 

My results also provide evidence to suggest that there may be a stabilizing effect in soils as 

forests mature over time, particularly at depth. For example, soil C at 20-30 cm depth was 

slightly higher in the OG than SF stands and interestingly, there was lower variation between 

the 10-20 and 20-30 cm depth increments in the OG than in the four SF age classes (Figure 2.2b; 

Table 2.3). A possible explanation for this is that as well as taking time for organic C to penetrate 

into deeper soil layers, the decrease in temperature, oxygen and nutrients with increasing soil 

depth, means microbial access becomes more limited which in turn leads to slower rates of C 

turnover and enables larger proportions of stable C to be stored at greater soil depths (e.g. 

Fontaine et al., 2007). Therefore, soil disturbances which alter the microbial environment at 

depth, such as agricultural land-use practices, may potentially disrupt the ability of deeper soils 

to accumulate C. In a recent global meta-analysis, Chen et al. (2020) highlight the importance 

of soil depth and time for the accumulation of SOC content and stock in mixed species 

environments and propose that roots are the main influence on soil C in deeper soil. As half of 

global soil carbon is stored at depths below 30 cm (Balesdent et al., 2018), and the immense C 

storage capacity in tropical soils is largely attributed to their depth (Jobbágy and Jackson, 2000), 

these results emphasise the need to assess relationships between tree functional 

characteristics and soil C at a range of soil depths. 

The physical protection and residence time of soil C at depth may be strongly influenced by soil 

physical and chemical properties. For example, soil clay content has been shown to have a 

stronger influence on soil C than vegetation (and climatic factors) at depth (Jobbágy and 
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Jackson, 2000; Gray, Bishop and Wilson, 2016). Hence, C accumulation at the surface is likely to 

be linked to tree functional groups because labile C inputs from high quality litter and 

rhizodeposits kick-start soil microbial biomass growth, and sequential microbial processing then 

results in increasingly stable soil C compounds (Cotrufo, Wallenstein and Boot, 2013). By 

contrast, the incorporation of soil C at greater depths is likely to be a function of time and soil 

physical and chemical properties. Isolating the influence of soil physical and chemical properties 

with controlled experiments may help unravel relationships between tree community 

functional groups and soil C dynamics. However, as my study demonstrates, despite 

considerable spatial heterogeneity in soil properties, soil C turnover is strongly influenced by 

vegetation. Therefore, a better understanding of the plant traits and pathways that underpin 

the relationship between tree species and soil C accumulation at the community scale will help 

us to better predict soil C dynamics during forest regrowth, and identify practical solutions to 

increase soil C sequestration through tropical forest restoration activities. 

 

5.5 Where my study fits in to wider research  

Studies assessing the relationship between tree communities and soil C dynamics in tropical 

forests are limited and comparisons are challenging because of the different approaches used 

to characterise the (functional) composition of tree communities and soil C turnover. 

Nevertheless, several studies have identified relationships between tree species and soil C 

dynamics, which my results may help to further elucidate. For example, in an 80 year old 

experimental plantation in the Democratic Republic of the Congo, Bauters et al. (2017) found 

that tree functional composition (explained by leaf C concentration and litter N and Ca) strongly 

affected pH at 0-5 cm, which in turn had a strong influence on soil C, thus suggesting that trees 

control soil C and nutrient concentrations primarily via their influence on soil pH. A study by 

Bréchet et al. (2009) using an experimental monospecific tropical plantation of French Guiana, 

revealed a strong relationship between soil respiration and tree species, which was explained 

by leaf litterfall, basal area, and litter (and soil) P. Although my study did not indicate direct 

relationships between the RI of tree functional groups and soil pH and P content, the significant 

positive relationship between soil pH and both microbial biomass and litter decay rate, and the 

positive relationship between soil P and soil respiration (SRMEAN) reported in Chapter 4 suggest 

these soil properties have a strong influence on the soil microbial community both in terms of 
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abundance and activity which drive soil C dynamics. Studies assessing the influence of specific 

tree functional groups on soil C dynamics in the tropics are fewer still and have yielded mixed 

results.  For example, in a lowland wet tropical forest in Costa Rica, Keller et al.(2013) assessed 

the influence of tree species on soil biogeochemistry between legume and non-legume tree 

functional groups, but found no direct relationships between tree functional groups and soil C. 

Whereas in a study in central Amazonia van Haren et al. (2010) found only weak relationships 

between tree species and CO2 fluxes, but that soil CO2 fluxes were higher in close proximity to 

large trees; they concluded that species‐dependent resource acquisition strategies, such as 

those underlying species‐specific growth rates and nutrient demand functions, are likely to be 

important for predicting ecosystem feedbacks to climate change. Similarly, in monodominant 

stands on abandoned pasture in Costa Rica Russell et al. (2010) reported that differences in 

species effects on forest C balances were primarily related to differences in growth rates, 

partitioning of C among biomass components, tissue turnover rates, and tissue chemistry. Thus, 

the work presented in this thesis complements these studies by linking soil C accumulation to 

the resource-use strategies of tree functional groups via litter quality and soil microbial 

communities and activity. Consequently, my studies highlight several promising lines of 

investigation into the relationships between tree functional groups and C dynamics and provide 

an important contribution to this emerging field of research. 

 

5.6 Future directions 

Natural forests sequester around 40 times more C than plantations (Lewis et al.,2019). 

However, despite being the most widely applicable and cost-effective method of tropical forest 

restoration, naturally regenerating forests are currently overlooked in favour of more financially 

productive commercial plantations (Lewis et al., 2019). The ability to predict and increase soil 

C accumulation during tropical forest regrowth could provide a vital motivating factor to 

encourage the inclusion of natural regrowth forests in land management and restoration 

schemes in the fight against climate change. 

Precise and accurate determination of current and potential soil C sequestration over large 

spatial and temporal scales during tropical forest regrowth would be expensive and time-
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consuming. Instead, indicator-based methods, which integrate several environmental and soil 

properties related with SOC storage, have been proposed as a promising alternative (Wiesmeier 

et al., 2019) as they are generally more  time- and cost-effective. Vegetation type is one of the 

key indicators but the effect of tree species on SOC storage in forests is still unknown 

(Wiesmeier et al., 2019). Classifying forest by age does not adequately capture patterns in soil 

C (Yang, Luo and Finzi, 2011; Li, Niu and Luo, 2012; Marín-Spiotta and Sharma, 2013; Martin, 

Bullock and Newton, 2013; Powers and Marín-Spiotta, 2017) but the strong relationship 

between tree community shade-tolerance and soil C revealed in this study provides an 

important step towards identifying a potentially important indicator for soil C storage, which 

can be tested in other forests and at larger spatial scales. To maximise soil C sequestration and 

inform land management practices future research should investigate whether the influence of 

light-demanding species on surface soil C accumulation is maintained despite repeated 

disturbance events (e.g. management of commercial forestry plantations, agroforestry 

schemes, selective logging). 

 

5.7 Concluding remarks 

As far as I am aware, this study is the first to investigate the relationship between soil C 

dynamics and tree community functional change during tropical forest secondary succession, 

accounting for the relative influence of shade-tolerant and light-demanding species. I highlight 

some of the potential pathways by which tree community composition could influence soil C 

storage via the quality and quantity of litter inputs representing substrate for the soil microbial 

community. More information on root traits and rhizosphere inputs, combined with high-

resolution analyses of soil microbial communities might greatly improve our mechanistic 

understanding of soil C dynamics during tropical forest secondary succession and thus enable 

more accurate estimates of the C sequestration potential in naturally recovering tropical 

forests, taking into account both above- and belowground components. Overall, the research 

presented in this thesis demonstrates that the tree functional composition of secondary forests 

could be one of the main factors determining belowground C storage and therefore, my work 

represents an important first step towards using tree functional groups to predict soil C 

accumulation in secondary tropical forests. 
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7 Appendices 

 

7.1 Appendix A – Supplementary Materials to Chapter 2 

Appendix A.1 Supplementary Tables 

In Chapter 2 I characterised tree community functional composition in five age classes in a 

chronosequence of 10 tropical forest stands in the Barro Colorado Nature Monument (BCNM), 

Panama. I calculated stand basal area (BA; m² ha¯¹) and the relative influence (RI; %) of  trees in 

three functional groups (ACC, DEC and NEG; Chapter 3) using species-specific growth response 

to increasing light values (Rüger et al., 2009) as a proxy for tree community shade-tolerance. I 

assessed the relationship between the RI of tree functional groups and forest age using mean 

values from two stands per age class. Table S2.1 shows the mean and standard deviation for 

stand BA and the RI each tree functional group and the RI of trees not assigned to a functional 

group. I assessed the relationship between stand age and soil C content (%) and stocks 

(Mg/ha¯¹) using mean soil C values from two stands per age class. Table S2.2 shows the mean 

and standard error for soil C stocks at 0-10 cm and 10-20 cm for n = 8 samples from two stands 

in each of five age categories. 
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Table S2.1 Relative proportions of three functional groups of trees and tree basal area (BA) in each age 

class of a chronosequence of naturally regenerating tropical forest in Panama, Central America. Values 

are mean and standard deviation for n = 2 stands per age class. RI ACC = accelerating growth species, 

DEC = decelerating growth species, RI NEG = negative growth species, RI NA = species not assigned to a 

functional group, see Table 3.1 for tree functional group descriptions. 

Forest age class 40Y 60Y 90Y 120Y OG 

Tree functional group      

RI ACC (%) 35.7 ± 7.7 24.6 ± 1.6 18.9 ± 0.8 24.5 ± 4 13.8 ± 3.7 

RI DEC (%) 46 ± 3.3 55.6 ± 0.5 67.4 ± 1.31 59.3 ± 3.9 73.9 ± 1.3 

RI NEG (%) 0.6 ± 0.4 4.4 ± 2.6 4.3 ± 2.8 3.9 ± 2.2 4.7 ± 0.4 

RI NA (%) 17.7 ± 4 15.4 ± 4.7 9.3 ± 5 12.4 ± 5.7 7.6 ± 2 

Basal area (m² ha¯¹) 21.1 ± 0.5 22.26 ± 0.2 35.7 ± 4.6 28.9 ± 0.5 25.5 ± 0.5 

 

Table S2.2  Soil C and N stocks at two depth intervals (0-10 and 10-20 cm) across five age classes of forest 

stands in a chronosequence of naturally regenerating tropical forest in Panama, Central America. Means 

and standard errors are given for n = 8 (4 x replicate blocks per stand, 2 x stands per age class). Different 

super-script letters indicate significant differences among forest age classes at p < 0.05 determined by 

ANOVAS with Turkey post-hoc comparisons and correction for multiple comparisons. 

Forest age class 40Y 60Y 90Y 120Y OG 

Soil C 
stocks 

(Mg/ha¯¹) 
with depth 

(cm) 

0-10 
64.6a  

(± 5.20) 
60.5ab 

 (± 2.19) 
48.8b 

 (± 2.76) 
63.9a 

 (± 3.95) 
47.0b  

(± 1.78) 

10-20 
38.2ab  

(± 4.80) 
47.5a 

(± 3.45) 
30.1b  

(± 1.42) 
43.7a 

 (± 2.20) 
39.1ab  

(± 1.67) 

Soil N 
stocks 

(Mg/ha¯¹) 
with depth 

(cm) 

0-10 
5.25  

(± 0.54) 
5.26 

 (± 0.28) 
3.86 

 (± 0.35) 
5.29 

 (± 0.36) 
4.38  

(± 0.21) 

10-20 
2.54ab  

(± 0.44) 
3.52a 

(± 0.37) 
1.52b  

(± 0.23) 
3.30a 

 (± 0.30) 
3.35a  

(± 0.25) 
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Appendix A.1 Supplementary References 

Rüger, N. et al. (2009) ‘Response of recruitment to light availability across a tropical 

lowland rain forest community’, Journal of Ecology, 97(6), pp. 1360–1368. doi: 

10.1111/j.1365-2745.2009.01552.x. 
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7.2 Appendix B – Supplementary Materials to Chapter 3 

Appendix B.1 Supplementary Methods 

In Chapter 3 I selected a subset of four stands to represent a successional gradient of naturally 

recovering secondary forest and an old-growth (OG) stand (Figure S3.1). Ideally, when 

substituting space-for-time in a chronosequence study such as this, all environmental factors 

across the stands would be equal with the only variable being forest age. However, the real 

world rarely provides such ‘clean’ and predicable conditions for field experiments, as 

demonstrated with the Barro Colorado Nature Monument (BCNM) chronosequence which 

overlies four geological formations (Baillie et al., 2007). As such it was not possible to select a 

suitable subset of stands overlying the same geological formation. Although existing research 

indicates that in general, chemical properties of soils derived from different parent materials 

do not differ significantly from one another (Yavitt and Kelman Wieder, 1988; Yavitt, 2000; 

Barthold, Stallard and Elsenbeer, 2008), I wanted to reduce potential variability as much as 

possible. Therefore, I conducted a site-specific literature review and characterised the soils 

across the chronosequence stands to select a suitable subset of stands to use in Chapter 3 and 

4.  
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Figure S3.1 Geological map of the Barro Colorado Nature Monument (BCNM) in Panama showing the 

underling geology of the subset of four forest stands used in a litter decomposition experiment; OG = 

old-growth (red diamond), 90Y = 90 year old stand (orange diamond), 60Y = 60 year old stand (blue 

diamond) and 40Y = 40 year old stand (green diamond). Map layer is ‘The geological composition of the 

Panama Canal Watershed’ from the Monitoring Project Canal Basin (PMCC), created in 1998. Source: 

STRI GIS Laboratory. Tb = Volcanic (intrusive and extrusive andesite), Tcm = Sedimentary marine 

(tuffaceous sandstone, tuffaceous siltstone, tuff and foraminiferal limestone), Tcv = Sedimentary volcanic 

(agglomerate and tuffaceous graywacke). Location of four forest stands determined from GPS 

coordinates.  

 

Appendix B.2 Supplementary Table 

Table S3.2 Litter properties from five single species used to create three functional litter treatment 

mixtures and a standard litter treatment in a decomposition experiment in the BCNM, Panama, Central 

America. ACC = light-demanding (accelerating growth) species, DEC = shade-tolerant (decelerating 

growth) species, STD = non-forest standard litter treatment. MICOAR = Miconia argentea, LUEHSE = 

Luehea seemannii, TET2PA = Tetragastris panamensis, and PROTPA = Protium panamense. ADF = acid 

detergent fibre, NDF = neutral detergent fibre,  TC = total carbon, TN = total nitrogen, CN ratio = 

carbon:nitrogen,  L:N ratio = lignin:nitrogen. Litter properties given as means and standard errors for n = 
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5 (TC, TN, C:N ratio), n = 3 (P, K, Mg, Na, Ca, Fe, Zn), n = 2 (ADF, NDF, S) and n = 1 (lignin, L:N ratio). See 

table 4.2 for species and treatment descriptions. 

Treatment        ACC DEC STD 

Species MICOAR LUEHSE TET2PA PROTPA PB 

ADF (%) 40.67 

(±3.90)  

52.50 

(±2.27) 

50.44 

(±1.26) 

64.17 

(±1.62) 

51.13 

(±4.23) 

NDF (%) 34.10 

(±1.00) 

44.35 

(±0.65) 

39.90 

(±0.00) 

53.40 

(±1.10) 

75.10 

(±0.20) 

Lignin (%) 15.00  26.00 14.85 30.00 4.00 

TC (%) 41.95 

(±0.21) 

44.44 

(±0.12) 

38.79 

(±0.31) 

40.48 

(± 0.50) 

42.16 

(±0.11) 

TN (%) 1.04 

(±0.07 ) 

1.26 

(±0.12) 

1.07 

(±0.04) 

0.95 

(±0.05) 

1.68 

(±0.05) 

C.N Ratio 40.99 

(±2.88) 

36.54 

(±2.96) 

36.44 

(±1.60) 

42.92 

(±2.14) 

25.20 

(±0.82) 

L:N Ratio 14.37 20.70 13.85 31.51 2.38 

P (mg/g) 0.36 

(±0.01) 

0.79 

(±0.03) 

0.28 

(±0.01) 

0.37 

(±0.04) 

0.94 

(±0.03) 

K (mg/g) 3.51 

(±0.30) 

7.87 

(±0.21) 

1.61 

(±0.18) 

1.13 

(±0.25) 

15.37 

(±0.47) 

Mg mg/g 2.85 

(±0.19) 

4.04 

(±0.06) 

2.83 

(±0.17) 

2.36 

(±0.12) 

0.99 

(±0.10) 

Na (mg/g) 1.80 

(±0.08) 

1.30 

(±0.07) 

0.87 

(±0.21) 

0.97 

(±0.28) 

0.59 

(±0.07) 

S (mg/g) 5.69 

(±0.69) 

0.74 

(±0.10) 

0.81 

(±0.04) 

1.26 

(±0.12) 

2.32 

(±0.05) 

Ca (mg/g) 16.52 

(±0.40) 

16.52 

(±0.86) 

13.12 

(±0.23) 

15.59 

(±0.51) 

2.08 

(±0.20) 

Cu (mg/g) 6.16 

(±0.06) 

9.91 

(±0.50) 

3.90 

(±0.18) 

5.28 

(±0.80) 

8.91 

(±0.22) 

Fe (mg/Kg) 53.90 

(±5.92) 

73.77 

(±8.03) 

75.04 

(±10.76) 

76.34 

(±16.36) 

120.72 

(±14.50) 

Zn (mg/Kg) 64.79 

(±5.17) 

19.07 

(±0.79) 

8.35 

(±1.13) 

8.11 

(±0.72) 

17.15 

(±0.93) 

 

Appendix B.2 Supplementary References 
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7.3 Appendix C – Supplementary Materials to Chapter 4 

Appendix C.1 Supplementary Methods 

In chapter 4 I assessed the relationship between soil microbial community composition, tree 

community shade-tolerance and soil C turnover using block mean data in the subset of four 

stands. Before combining PLFA data from four soil samples in each replicate block per stand, I 

first tested the influence of litter treatment within individual experimental mesocosms (Chapter 

3) on soil microbial community metrics after four months of active litter decomposition. I 

performed multivariate analyses using the vegan package (Oksanen et al., 2018) in R version 

3.4.0 (R Core Team 2018) to compare soil microbial communities among litter treatments. I 

used non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarities of the 

relative abundances of PLFA biomarkers (MetaMDS function) to visualise the data and tested 

the influence of litter treatment by permutational analysis of variance (PERMANOVA; adonis 

function), using 99999 permutations constrained within replicate blocks to generate 

significance values. I then tested the influence of litter treatment on microbial biomass and 

biomarker functional groups using linear mixed effects models (lmer function) and one-way 

ANOVAs (lm function) to ensure there was no significant influence of litter treatment on the 

soil microbial community before combining PLFA data by replicate block.  

 

Table S4.1  Model results from PERMANOVA (adonis function in R) testing the influence of forest stand 

and litter treatment (and their interaction) on soil microbial community composition after four months 

of a litter decomposition experiment across a successional gradient of four tropical forest stands in 

Panama, Central America. 

Model terms  Degrees of  
freedom 

Sum of  
squares 

Mean of squares F R2
 P 

Forest stand 3 0.46914 0.156379 10.6812 0.36709 < 
0.001 

Litter treatment 3 0.01048 0.003494 0.2386 0.00820 0.9656 

Stand  * Litter treatment 9 0.09561 0.010623 0.7256 0.07481 0.7405 

Residuals 48 0.70275 0.014641  0.54989  

Total 63 1.27798   1.00000  
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Appendix C.2 Supplementary Results 

NMDS ordination and PerMANOVA revealed that microbial community composition did not 

differ among the four litter treatments (F3,63 = 0.24, R2 = 0.008, p = 0.966; Figure S4.1; Table 

S4.1) and there was no effect of litter treatment on total soil microbial biomass ( p = 0.986; 

Figure S4.2a), total fungal biomass (p = 0.88; Figure S4,2b), the ratios of fungi:bacteria (p = 0.19; 

Figure S4.2d) and Gpos:Gneg bacteria (p = 0.997; Figure S4.2e) or the relative abundance of AM 

fungi (p = 0.594; Figure S4.2c), Gneg bacteria (p = 0.944; Figure S4.2f) and Gpos bacteria (p = 

0.921; Figure S4.2g) in any stand. 

 

 

Figure S4.2  NMDS representation of soil microbial community composition from PLFA analysis from soil: 

Samples collected from 0-5 cm in four blocks in each of four stands along an age gradient of naturally 

regenerating tropical forest stands, from four experimental litter treatments; NAT = natural litter (orange 

squares), ACC = light-demanding, accelerating growth species (purple circles), DEC = shade-tolerant, 

decelerating growth species (blue triangles) and MIX = a mixture of light-demanding and shade-tolerant 

species (dark green diamonds) after five months of litter decomposition in the BCNM, Panama, Central 

America. Ordinations were based on Bray–Curtis dissimilarities.  
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Figure S4.3 Soil microbial biomarker groups from PLFA analysis in four experimental litter treatments 

(where NAT = natural litter, ACC = light-demanding, accelerating growth species, DEC = shade-tolerant, 

decelerating growth species and MIX = a mixture of light-demanding and shade-tolerant species) along a 

successional gradient of four forest stands for a) total microbial biomass, b) total fungal biomass, c) the 

relative abundance of arbuscular mycorrhizal fungi (AM fungi), d) the ratio between fungi and bacteria, 

e) the ratio between gram-positive and gram-negative bacteria, f) the relative abundance of gram-

negative bacteria, and g) the relative abundance of gram-positive bacteria. Soil was sampled from 0-5 cm 

depth. Boxes denote the 25th and 75th percentiles and median lines are given for n = 4, whiskers indicate 
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values up to 1.5 x the interquartile range, and dots indicate outliers. See Chapter 4, Table 4.2 for 

treatment descriptions. 40Y, 60Y and 90Y refer to stand ages (years since last disturbance), OG refers to 

old growth, undisturbed forest. 

 

Appendix C.3 Supplementary Tables 

Table S4.2  Phospholipid fatty acid biomarkers used to represent microbial functional groups in soils along 

a successional gradient of tropical forest stands, Panama, Central America. The nomenclature is based 

on Bartelt-Ryser et al. (2005) and the classification follows Zelles et al. (1999), Bartelt-Ryser et al. (2005), 

and Ruess & Chamberlain (2010), using branched chain fatty acids (iso, anteiso) as indicators for gram-

positive bacteria, and monounsaturated, hydroxy, and cyclopropyl fatty acids for gram-negative bacteria 

(Kerger et al., 1986; Frostegård et al., 1993; Zelles, 1999). 

Biomarker group  Peaks 

   

AM Fungi 
 

16:1 w5c    
      

   

Gram-negative 
bacteria 

 

 
10:0 2OH  

 
10:0 3OH  

 
12:1 w8c  

 
12:1 w5c  

 
 

13:1 w5c  13:1 w4c  13:1 w3c  12:0 2OH  
 

 

14:1 w9c  14:1 w8c  14:1 w7c  14:1 w5c  
 

 

15:1 w9c  15:1 w8c  15:1 w7c  15:1 w6c  
 

 

15:1 w5c  14:0 2OH  16:1 w9c  16:1 w7c  
 

 

16:1 w6c  16:1 w4c  16:1 w3c  17:1 w9c  
 

 

17:1 w8c  17:1 w7c  17:1 w6c  17:1 w5c  
 

 

17:1 w4c  17:1 w3c  16:0 2OH  17:0 cyclo w7c  
 

 

18:1 w8c  18:1 w7c  18:1 w6c  18:0 cyclo w6c  
 

 

18:1 w3c  19:1 w9c  19:1 w8c  18:1 w5c  
 

 

19:1 w6c  19:0 cyclo w9c  19:0 cyclo w7c  9:1 w17c  
 

 

20:1 w9c  20:1 w8c  20:1 w6c  19:0 cyclo w6c  
 

 

20:1 w4c  20:0 cyclo w6c  21:1 w9c  21:1 w8c  
 

 

21:1 w6c  21:1 w5c  21:1 w4c  21:1 w3c  
 

 

22:1 w9c  22:1 w8c  22:1 w6c  22:1 w5c  
 

 

22:1 w3c  22:0 cyclo w6c  24:1 w9c  24:1 w7c  
 

 

11:0 iso 3OH  14:0 iso 3OH   
      

   

Gram-positive 
bacteria 

 

 
11:0 iso  

 
11:0 anteiso  

 
12:0 iso  

 
12:0 anteiso  

 
 

13:0 iso  13:0 anteiso  14:1 iso w7c  14:0 iso  
 

 

14:0 anteiso  15:1 iso w9c  15:1 iso w6c  15:1 anteiso w9c  
 

 

15:0 iso  15:0 anteiso  16:0 iso  16:0 anteiso  
 

 

17:1 iso w9c  17:0 iso  17:0 anteiso  18:0 iso  
 

 

17:1 anteiso w9c  17:1 anteiso w7c  20:0 iso 22:0 iso 
 

 

19:0 iso  19:0 anteiso    
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Table S4.3  Model results from stepwise linear regressions, assessing the relationship between biomarker 

functional groups and tree functional parameters and soil characteristics at the block-level in four tropical 

forest stands in Panama, Central America. Biomarker functional groups (from PLFA analyses) were 

response variables and soil or tree functional characteristics were explanatory variables. Initial models 

included all explanatory variables (RI.DEC + P + K + pH + mean b). Models compared with forward and 

backward selection of variables using AIC values to assess each model fit until a minimum adequate 

model was reached (stepAIC function). Where RI.DEC = the relative influence of shade-tolerant tree 

species (Chapter 3), P = soil phosphorus (%), K = soil potassium (%), pH = soil pH, and mean b = mean 

species growth response (Ruger et al., 2009; Chapter 3). 

Initial model: Total Biomass ~ RI.DEC + P + K + pH + mean b 

 
Final model: Total Biomass ~ K + pH + mean b 
F = 8.531, Adjusted R-squared = 0.6, p = 0.002 

 
Explanatory variable t-value p-value 

K -2.195 0.049 
pH 2.119 0.056 
Mean b 3.399 0.005 

 

Initial model: Fungal Biomass ~ RI.DEC + P + K + pH + mean b 

 
Final model: Fungal Biomass ~ K + pH + mean b 
F = 4.268, Adjusted R-squared = 0.3, p = 0.029 
 

Explanatory variable t-value p-value 

K -1.399 0.187 
pH 1.502 0.159 
Mean b 2.428 0.032 

 

Initial model: AM fungi ~ RI.DEC + P + K + pH + mean b 

 
Final model: AM  fungi ~ K + pH  
F = 4.662, Adjusted R-squared = 0.3, p = 0.030 

 
Explanatory variable t-value p-value 

K 2.251 0.042 
pH -2.701 0.018 

 

Initial model:  Gneg Bacteria ~ RI.DEC + P + K + pH + mean b 

 
Final model: Gneg Bacteria ~ pH 
F = 25.45, Adjusted R-squared = 0.6, p < 0.001 
 

Explanatory variable t-value p-value 

pH -5.045 < 0.001 
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Initial model:  Gpos:Gneg Bacteria ~ RI.DEC + P + K + pH + mean b 

 
Final model: Gpos:Gneg Bacteria ~ pH 
F = 10.95, Adjusted R-squared = 0.4, p = 0.005 
 

Explanatory variable t-value p-value 

pH 3.308 0.005 

 

Table S4.4 Model results from stepwise linear regressions, assessing the relationship between soil C 

turnover (litter decay rate and soil respiration) and microbial biomarker functional groups, tree functional 

parameters and soil characteristics at the block-level in four tropical forest stands in Panama, Central 

America. Litter decay rate (k) and total soil respiration (SR) were response variables and biomarker 

functional groups (from PLFA analysis), soil or tree functional characteristics were explanatory variables. 

Initial models included all explanatory variables (Total Fungal Biomass + Gpos:Gneg Bacteria + 

Fungi:Bacteria + RI.DEC + P + K + pH + mean b). Models compared with forward and backward selection 

of variables using AIC values to assess each model fit until a minimum adequate model was reached 

(stepAIC function). Where Decay rate = block mean litter decay rate (k) and MEAN SR = total soil 

respiration data, calculated as the mean for five litter treatments per replicate block in each of the four 

forest stands from a four month decomposition experiment (Chapter 3), Gpos:Gneg = ratio of Gram-

positive:Gram-negative bacteria, RI.DEC = the relative influence of shade-tolerant tree species (Chapter 

4), P = soil phosphorus (%), K = soil potassium (%), pH = soil pH, and mean b = mean species growth 

response (Ruger et al., 2009; Chapter 3). 

Initial model: Decay rate ~ Total Fungal Biomass + Gpos:Gneg Bacteria + Fungi:Bacteria + RI.DEC + P + 
K + pH + mean b 

 
Final model: Decay rate ~ Total Fungal Biomass + Gpos:Gneg + K + pH 
F = 10.47, Adjusted R-squared = 0.7, p < 0.001 
 

Explanatory variable t-value p-value 

Total Fungal Biomass 1.494 0.163 
Gpos:Gneg Bacteria -3.770 0.003 
K 3.201 0.008 
pH 2.394 0.036 
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Initial model: Decay rate ~ Total Microbial Biomass + Gpos:Gneg Bacteria + Fungi:Bacteria + RI.DEC + 
P + K + pH + mean b 

 
Final model: Decay rate ~ Total Microbial Biomass + Gpos:Gneg + K + pH 
F = 8.52, Adjusted R-squared = 0.7, p = 0.001 
 

Explanatory variable t-value p-value 

Total Microbial Biomass 1.501 0.002 
Gpos:Gneg Bacteria -4.120 0.203 
K 3.171 0.010 
pH 1.976 0.076 

 

Initial model: Mean SR ~ Total Microbial Biomass + Gpos:Gneg Bacteria + Fungi:Bacteria + RI.DEC + P 
+ K + pH + mean b 

 
Final model: Mean SR ~ Total Microbial Biomass + Gpos:Gneg + Fungi:Bacteria + P +K  
F = 8.51, Adjusted R-squared = 0.7, p = 0.002 
 

Explanatory variable t-value p-value 

Total Microbial Biomass 3.778 0.005 
Gpos:Gneg Bacteria -2.101 0.062 
Fungi:Bacteria -3.895 0.003 
P 4.775 < 0.001 
K 3.798 0.003 

 

Initial model: Mean SR ~ Total Fungal Biomass + Gpos:Gneg Bacteria + Fungi:Bacteria + RI.DEC + P + K 
+ pH + mean b 

 
Final model: Mean SR ~ Total Fungal Biomass + Gpos:Gneg + Fungi:Bacteria + P + K  
F = 8.37, Adjusted R-squared = 0.7, p = 0.002 
 

Explanatory variable t-value p-value 

Total Fungal Biomass 3.579 0.005 
Gpos:Gneg Bacteria -1.663 0.127 
Fungi:Bacteria -4.372 0.001 
P 4.606 < 0.001 
K 3.856 0.003 
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