
Fair Refinement for Asynchronous Session Types?

Mario Bravetti1 , Julien Lange2 , and Gianluigi Zavattaro1

1 University of Bologna / INRIA FoCUS Team, Bologna, Italy
2 Royal Holloway, University of London, Egham, UK

Abstract. Session types are widely used as abstractions of asynchronous
message passing systems. Refinement for such abstractions is crucial as
it allows improvements of a given component without compromising its
compatibility with the rest of the system. In the context of session types,
the most general notion of refinement is the asynchronous session subtyp-
ing, which allows to anticipate message emissions but only under certain
conditions. In particular, asynchronous session subtyping rules out can-
didates subtypes that occur naturally in communication protocols where,
e.g., two parties simultaneously send each other a finite but unspecified
amount of messages before removing them from their respective buffers.
To address this shortcoming, we study fair compliance over asynchronous
session types and fair refinement as the relation that preserves it. This
allows us to propose a novel variant of session subtyping that leverages
the notion of controllability from service contract theory and that is a
sound characterisation of fair refinement. In addition, we show that both
fair refinement and our novel subtyping are undecidable. We also present
a sound algorithm, and its implementation, which deals with examples
that feature potentially unbounded buffering.
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1 Introduction

The coordination of software components via message-passing techniques is be-
coming increasingly popular in modern programming languages and development
methodologies based on actors and microservices, e.g., Rust, Go, and the Twelve-
Factor App methodology [1]. Often the communication between two concurrent
or distributed components takes place over point-to-point fifo channels.

Abstract models such as communicating finite-state machines [5] and asyn-
chronous session types [21] are essential to reason about the correctness of such
systems in a rigorous way. In particular these models are important to rea-
son about mathematically grounded techniques to improve concurrent and dis-
tributed systems in a compositional way. The key question is whether a com-
ponent can be refined independently of the others, without compromising the
correctness of the whole system. In the theory of session types, the most general
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Fig. 1. Satellite protocols. T ′
G is the refined session type of the ground station, TG is

the session type of ground station, and TS is the session type of the spacecraft.

notion of refinement is the asynchronous session subtyping [14, 15, 26], which
leverages asynchrony by allowing the refined component to anticipate message
emissions, but only under certain conditions. Notably asynchronous session sub-
typing rules out candidate subtypes that occur naturally in communication pro-
tocols where, e.g., two parties simultaneously send each other a finite but un-
specified amount of messages before removing them from their buffers.

We illustrate this key limitation of asynchronous session subtyping with Fig-
ure 1, which depicts possible communication protocols between a spacecraft and
a ground station. For convenience, the protocols are represented as session types
(bottom) and equivalent communicating finite-state machines (top). Consider
TS and TG first. Session type TS is the abstraction of the spacecraft. It may
send a finite but unspecified number of telemetries (tm), followed by a message
over — this phase of the protocol typically models a for loop and its exit. In the
second phase, the spacecraft receives a number of telecommands (tc), followed
by a message done. Session type TG is the abstraction of the ground station. It is
the dual of TS , written TS , as required in standard binary session types without
subtyping. Since TG and TS are dual of each other, the theory of session types
guarantees that they form a correct composition, namely both parties terminate
successfully, with empty queues.

However, it is clear that this protocol is not efficient: the communication is
half-duplex, i.e., it is never the case that more than one party is sending at any
given time. Using full-duplex communication is crucial in distributed systems
with intermittent connectivity, e.g., in this case ground stations are not always
visible from low orbit satellites.

The abstraction of a more efficient ground station is given by type T ′G, which
sends telecommands before receiving telemetries. It is clear that T ′G and TS
forms a correct composition. Unfortunately T ′G is not an asynchronous subtype
of TG according to earlier definitions of session subtyping [14,15,26]. Hence they
cannot formally guarantee that T ′G is a safe replacement for TG. Concretely, these
subtyping relations allow for anticipation of emissions (output) only when they
are preceded by a bounded number of receptions (input), but this does not hold
between T ′G and TG because the latter starts with a loop of inputs. Note that
the composition of T ′G and TS is not existentially bounded, hence it cannot be
verified by related communicating finite-state machines techniques [4,19,20,24].
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In this paper we address this limitation of previous asynchronous session
subtyping relations. To do this, we move to an alternative notion of correct com-
position. In [14] the authors show that their subtyping relation is fully abstract
w.r.t. the notion of orphan-message-free composition. More precisely, it captures
exactly a notion of refinement that preserves the possibility for all sent messages
to be consumed along all possible computations of the receiver. In the spacecraft
example, given the initial loop of outputs in T ′G, there is an extreme case in which
it performs infinitely many outputs without consuming any incoming messages.
Nevertheless, this limit case cannot occur under the natural assumption that
the loop of outputs eventually terminates, i.e., only a finite (but unspecified)
amount of messages can be emitted.

The notion of correct composition that we use is based on fair compliance,
which requires each component to always be able to eventually reach a success-
ful final state. This is a liveness property, holding under full fairness [32], used
also in the theory of should testing [30] where “every reachable state is required
to be on a path to success”. This is a natural constraint since even programs
that conceptually run indefinitely must account for graceful termination (e.g., to
release acquired resources). Previously, fair compliance has been considered to
reason formally about component/service composition with synchronous session
types [29] and synchronous behavioural contracts [11]. A preliminary formali-
sation of fair compliance for asynchronous behavioural contracts was presented
in [10], but considering an operational model very different from session types.

Given a notion of fair compliance defined on an operational model for asyn-
chronous session types, we define fair refinement as the relation that preserves it.
Then, we propose a novel variant of session subtyping called fair asynchronous
session subtyping, that leverages the notion of controllability from service con-
tract theory, and which is a sound characterisation of fair refinement. We show
that both fair refinement and fair asynchronous session subtyping are undecid-
able, but give a sound algorithm for the latter. Our algorithm covers session
types that exhibit complex behaviours (including the spacecraft example and
variants). Our algorithm has been implemented in a tool available online [31].

Structure of the paper The rest of this paper is structured as follows. In § 2
we recall syntax and semantics of asynchronous session types, we define fair
compliance and the corresponding fair refinement. In § 3 we introduce fair asyn-
chronous subtyping, the first relation of its kind to deal with examples such as
those in Figure 1. In § 4 we propose a sound algorithm for subtyping that sup-
ports examples with unbounded accumulations, including the ones discussed in
this paper. In § 5 we discuss the implementation of this algorithm. Finally, in
§ 6 we discuss related works and future work. We give proofs for all our results
and examples of output from our tool in [9].

2 Refinement for Asynchronous Session Types

In this section we first recall the syntax of two-party session types, their reduction
semantics, and a notion of compliance centred on the successful termination of



4 Mario Bravetti, Julien Lange, and Gianluigi Zavattaro

interactions. We define our notion of refinement based on this compliance and
show that it is generally undecidable whether a type is a refinement of another.

2.1 Preliminaries: Asynchronous Session Types

Syntax The formal syntax of two-party session types is given below. We follow
the simplified notation used in, e.g., [7,8], without dedicated constructs for send-
ing an output/receiving an input. Additionally we abstract away from message
payloads since they are orthogonal to the results of this paper.

Definition 1 (Session Types). Given a set of labels L, ranged over by l, the
syntax of two-party session types is given by the following grammar:

T ::= ⊕{li : Ti}i∈I | &{li : Ti}i∈I | µt.T | t | end

Output selection ⊕{li : Ti}i∈I represents a guarded internal choice, specify-
ing that a label li is sent over a channel, then continuation Ti is executed. Input
branching &{li : Ti}i∈I represents a guarded external choice, specifying a proto-
col that waits for messages. If message li is received, continuation Ti takes place.
In selections and branchings each branch is tagged by a label li, taken from a
global set of labels L. In each selection/branching, these labels are assumed to
be pairwise distinct. In the sequel, we leave implicit the index set i ∈ I in input
branchings and output selections when it is clear from the context. Types µt.T
and t denote standard recursion constructs. We assume recursion to be guarded
in session types, i.e., in µt.T , the recursion variable t occurs within the scope
of a selection or branching. Session types are closed, i.e., all recursion variables
t occur under the scope of a corresponding binder µt.T . Terms of the session
syntax that are not closed are dubbed (session) terms. Type end denotes the
end of the interactions.

The dual of session type T , written T , is inductively defined as follows:
⊕{li : Ti}i∈I = &{li : T i}i∈I , &{li : Ti}i∈I = ⊕{li : T i}i∈I , end = end, t = t,
and µt.T = µt.T .

Operational characterisation Hereafter, we let ω range over words in L∗, write ε
for the empty word, and write ω1 ·ω2 for the concatenation of words ω1 and ω2,
where each word may contain zero or more labels. Also, we write T{T ′

/t} for T
where every free occurrence of t is replaced by T ′.

We give an asynchronous semantics of session types via transition systems
whose states are configurations of the form: [T1, ω1]|[T2, ω2] where T1 and T2
are session types equipped with two sequences ω1 and ω2 of incoming messages
(representing unbounded buffers). We use s, s′, etc. to range over configurations.

In this paper, we use explicit unfoldings of session types, as defined below.

Definition 2 (Unfolding). Given session type T , we define unfold(T ):

unfold(T ) =

{
unfold(T ′{T/t}) if T = µt.T ′

T otherwise
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Definition 2 is standard, e.g., an equivalent function is used in the first session
subtyping [18]. Notice that unfold(T ) unfolds all the recursive definitions in front
of T , and it is well defined for session types with guarded recursion.

Definition 3 (Transition Relation). The transition relation → over configu-
rations is the minimal relation satisfying the rules below (plus symmetric ones):

1. if j ∈ I then [⊕{li : Ti}i∈I , ω1]|[T2, ω2]→ [Tj , ω1]|[T2, ω2 ·lj ];
2. if j ∈ I then [&{li : Ti}i∈I , lj ·ω1]|[T2, ω2]→ [Tj , ω1]|[T2, ω2];
3. if [unfold(T1), ω1]|[T2, ω2]→ s then [T1, ω1]|[T2, ω2]→ s.

We write →∗ for the reflexive and transitive closure of the → relation.

Intuitively a configuration s reduces to configuration s′ when either (1) a
type outputs a message lj , which is added at the end of its partner’s queue; (2)
a type consumes an expected message lj from the head of its queue; or (3) the
unfolding of a type can execute one of the transitions above.

Next, we define successful configurations as those configurations where both
types have terminated (reaching end) and both queues are empty. We use this
to give our definition of compliance which holds when it is possible to reach a
successful configuration from all reachable configurations.

Definition 4 (Successful Configuration). The notion of successful configu-
ration is formalised by a predicate s

√
defined as follows:

[T, ωT ]|[S, ωS ]
√

iff unfold(T )=unfold(S)=end and ωT =ωS=ε

Definition 5 (Compliance). Given a configuration s we say that it is a cor-
rect composition if, whenever s →∗ s′, there exists a configuration s′′ such that
s′ →∗ s′′ and s′′

√
.

Two session types T and S are compliant if [T, ε]|[S, ε] is a correct composition.

Observe that our definition of compliance is stronger than what is generally
considered in the literature on session types, e.g., [16, 23, 24], where two types
are deemed compliant if all messages that are sent are eventually received, and
each non-terminated type can always eventually make a move. Compliance is
analogous to the notion of correct session in [29] but in an asynchronous setting.

A consequence of Definition 5 is that it is generally not the case that a session
type T is compliant with its dual T , as we show in the example below.

Example 1. The session type T = &{l1 : end, l2 : µt. ⊕ {l3 : t}} and its dual
T = ⊕{l1 : end, l2 : µt.&{l3 : t}} are not compliant. Indeed, when T sends
label l2, the configuration [end, ε]|[end, ε] is no longer reachable.

2.2 Fair Refinement for Asynchronous Session Types

We introduce a notion of refinement that preserves compliance. This follows
previous work done in the context of behavioural contracts [11] and synchronous
multi-party session types [29]. The key difference with these works is that we are
considering asynchronous communication based on (unbounded) fifo queues.
Asynchrony makes fair refinement undecidable, as we show below.
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Definition 6 (Refinement). A session type T refines S, written T v S, if for
every S′ s.t. S and S′ are compliant then T and S′ are also compliant.

In contrast to traditional (synchronous and asynchronous) subtyping for ses-
sion types [14, 18, 26], this refinement is not covariant on outputs, i.e., it does
not always allow a refined type to have output selections with less labels.3

Example 2. Let T = µt. ⊕ {l1 : t} and S = µt. ⊕ {l1 : t, l2 : end}. We have
that T is a synchronous (and asynchronous) subtype of S. However T is not a
refinement of S. In particular, the type S = µt. &{l1 : t, l2 : end} is compliant
with S but not with T , since T does not terminate.

Next, we show that the refinement relation v is generally undecidable. The
proof of undecidability exploits results from the tradition of computability the-
ory, i.e., Turing completeness of queue machines. The crux of the proof is to
reduce the problem of checking the reachability of a given state in a queue ma-
chine to the problem of checking the refinement between two session types.

Preliminaries Below we consider only state reachability in queue machines, and
not the typical notion of the language recognised by a queue machine (see, e.g., [7]
for a formalisation of queue machines). Hence, we use a simplified formalisation,
where no input string is considered.

Definition 7 (Queue Machine). A queue machine M is defined by a six-tuple
(Q,Σ, Γ, $, s, δ) where:

– Q is a finite set of states;
– Σ ⊂ Γ is a finite set denoting the input alphabet;
– Γ is a finite set denoting the queue alphabet (ranged over by A,B,C,X);
– $ ∈ Γ −Σ is the initial queue symbol;
– s ∈ Q is the start state;
– δ : Q× Γ → Q× Γ ∗ is the transition function (Γ ∗ is the set of sequences of

symbols in Γ ).

Considering a queue machine M = (Q,Σ, Γ, $, s, δ), a configuration of M is
an ordered pair (q, γ) where q ∈ Q is its current state and γ ∈ Γ ∗ is the queue.
The starting configuration is (s, $), composed of the start state s and the initial
queue symbol $.

Next, we define the transition relation (→M ), leading a configuration to
another, and the related notion of state reachability.

Definition 8 (State Reachability). Given a queue machine M=(Q,Σ, Γ, $, s, δ),
the transition relation →M over configurations Q × Γ ∗ is defined as follows.
For p, q ∈ Q, A ∈ Γ , and α, γ ∈ Γ ∗, we have (p,Aα) →M (q, αγ) whenever
δ(p,A) = (q, γ). Let →∗M be the reflexive and transitive closure of →M .
A target state qf ∈ Q is reachable in M if there is γ ∈ Γ ∗ s.t. (s, $)→∗M (qf , γ).

3 The synchronous subtyping in [18] follows a channel-oriented approach; hence it has
the opposite direction and is contravariant on outputs.
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Since queue machines can deterministically encode Turing machines (see,
e.g., [7]), checking state reachability for queue machines is undecidable.

Theorem 1. Given a queue machine M and a target state qf it is possible to
reduce the problem of checking the reachability of qf in M to the problem of
checking refinement between two session types.

In the light of the undecidability of reachability in queue machines, we can
conclude that refinement (Definition 6) is also undecidable.

2.3 Controllability for Asynchronous Session Types

Given a notion of compliance, controllability amounts to checking the existence
of a compliant partner (see, e.g., [12, 25, 33]). In our setting, a session type is
controllable if there exists another session type with which it is compliant.

Checking for controllability algorithmically is not trivial as it requires to con-
sider infinitely many potential partners. For the synchronous case, an algorithmic
characterisation was studied in [29]. In the asynchronous case, the problem is
even harder because each of the infinitely many potential partners may generate
an infinite state computation (due to unbounded buffers). The main contribution
of this subsection is to give an algorithmic characterisation of controllability in
the asynchronous setting. Doing this is important because controllability is an
essential ingredient for defining fair asynchronous subtyping, see Section 3.

Definition 9 (Characterisation of Controllability, T ctrl). Given a session
type T , we define the judgement T ok inductively as follows:

end ok

end ∈ T T{end/t} ok
µt.T ok

T ok

&{l : T} ok
∀i ∈ I. Ti ok
⊕{li : Ti}i∈I ok

where end ∈ T holds if end occurs in T .
We write T ctrl if there exists T ′ such that (i) T ′ is obtained from T by

syntactically replacing every input prefix &{li : Ti}i∈I occurring in T with a
term &{lj : Tj} (with j ∈ I) and (ii) T ′ ok holds.

Notice that a type T such that T ctrl is indeed controllable, in that T ′, the
dual of type T ′ considered above, is compliant with T (the predicate end∈T in
the premise of the rule for recursion guarantees that a successful configuration is
always reachable while looping). Moreover the above definition naturally yields
a simple algorithm that decides whether or not T ctrl holds for a type T , i.e.,
we first pick a single branch for each input prefix syntactically occurring in T
(there are finitely many of them) and then we inductively check if T ′ ok holds.

The following theorem shows that the judgement T ctrl, as defined above,
precisely characterises controllability (i.e., the existence of a compliant type).

Theorem 2. T ctrl holds if and only if there exists a session type S such that
T and S are compliant.
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Example 3. Consider the session type T = µt. &{l1 : &{l2 : ⊕{l4 : end, l5 :
µt′. ⊕ {l6 : t′}}, l3 : t}}. T ctrl does not hold because it is not possible to
construct a T ′ as specified in Definition 9 for which T ′ ok holds. By Theorem 2,
there is no session type S that is compliant with T . Hence T is not controllable.

3 Fair Asynchronous Session Subtyping

In this section, we present our novel variant of asynchronous subtyping which
we dub fair asynchronous subtyping.

First, we need to define a distinctive notion of unfolding. Function selUnfold(T )
unfolds type T by replacing recursion variables with their corresponding defini-
tions only if they are guarded by an output selection. In the definition, we use the
predicate ⊕g(t, T ) which holds if all instances of variable t are output selection
guarded, i.e., t occurs free in T only inside subterms ⊕{li : Ti}i∈I .

Definition 10 (Selective Unfolding). Given a term T , we define selUnfold(T ) =

⊕{li : Ti}i∈I if T = ⊕{li : Ti}i∈I
&{li : selUnfold(Ti)}i∈I if T = &{li : Ti}i∈I
T ′{µt.T ′

/t} if T = µt.T ′, ⊕g(t, T ′)

µt.selUnfold(selRepl(t, t̂, T ′){µt.T ′
/̂t}) with t̂ fresh if T = µt.T ′, ¬ ⊕ g(t, T ′)

t if T = t

end if T = end

where, selRepl(t, t̂, T ′) is obtained from T ′ by replacing the free occurrences of t
that are inside a subterm ⊕{li : Si}i∈I of T ′ by t̂.

Example 4. Consider the type T = µt.&{l1 : t, l2 : ⊕{l3 : t}}, then we have

selUnfold(T ) = µt.&{l1 : t, l2 : ⊕{l3 : µt. &{l1 : t, l2 : ⊕{l3 : t}}}}

i.e., the type is only unfolded within output selection sub-terms. Note that t̂ is
used to identify where unfolding must take place, e.g.,
selRepl(t, t̂,&{l1 : t, l2 : ⊕{l3 : t}}) = &{l1 : t, l2 : ⊕{l3 : t̂}}.

The last auxiliary notation required to define our notion of subtyping is that
of input contexts, which are used to record inputs that may be delayed in a
candidate super-type.

Definition 11 (Input Context). An input context A is a session type with
several holes defined by the syntax:

A ::= [ ]k | &{li : Ai}i∈I | µt.A | t

where the holes [ ]k, with k ∈ K, of an input context A are assumed to be pairwise
distinct. We assume that recursion is guarded, i.e., in an input context µt.A,
the recursion variable t must occur within a subterm &{li : Ai}i∈I .
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We write holes(A) for the set of hole indices in A. Given a type Tk for each
k ∈ K, we write A[Tk]k∈K for the type obtained by filling each hole k in A with
the corresponding Tk.

In contrast to previous work [6,7,13–15,26], these input contexts may contain
recursive constructs. This is crucial to deal with examples such as Figure 1.

We are now ready to define the fair asynchronous subtyping relation, written
≤. The rationale behind asynchronous session subtyping is that under asyn-
chronous communication it is unobservable whether or not an output is antici-
pated before an input, as long as this output is executed along all branches of
the candidate super-type. Besides the usage of our new recursive input contexts
the definition of fair asynchronous subtyping differs from those in [6,7,13–15,26]
in that controllability plays a fundamental role: the subtype is not required to
mimic supertype inputs leading to uncontrollable behaviours.

Definition 12 (Fair Asynchronous Subtyping, ≤).

A relation R on session types is a controllable subtyping relation whenever

(T, S) ∈ R implies:

1. if T = end then unfold(S) = end;

2. if T = µt.T ′ then (T ′{T/t}, S) ∈ R;

3. if T = &{li : Ti}i∈I then unfold(S) = &{lj : Sj}j∈J , I ⊇ K, and ∀k ∈
K. (Tk, Sk) ∈ R, where K = {k ∈ J | Sk is controllable};

4. if T = ⊕{li : Ti}i∈I then selUnfold(S) = A[⊕{li : Ski}i∈I ]k∈K and ∀i ∈
I. (Ti,A[Ski]

k∈K) ∈ R.

T is a controllable subtype of S if there is a controllable subtyping relation R s.t.
(T, S) ∈ R.

T is a fair asynchronous subtype of S, written T ≤ S, whenever: S controllable
implies that T is a controllable subtype of S.

Notice that the top-level check for controllability in the above definition is
consistent with the inner controllability checks performed in Case (3).

Subtyping simulation game Session type T is a fair asynchronous subtype of S
if S is not controllable or if T is a controllable subtype of S. Intuitively, the
above co-inductive definition says that it is possible to play a simulation game
between a subtype T and its supertype S as follows. Case (1) says that if T is
the end type, then S must also be end. Case (2) says that if T is a recursive
definition, then it simply unfolds this definition while S does not need to reply.
Case (3) says that if T is an input branching, then the sub-terms in S that are
controllable can reply by inputting at most some of the labels li in the branching
(contravariance of inputs), and the simulation game continues (see Example 5).
Case (4) says that if T is an output selection, then S can reply by outputting all
the labels li in the selection, possibly after executing some inputs, after which the
simulation game continues. We comment further on Case (4) with Example 6.
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Example 5. Consider T = &{l1 : end, l2 : end} and S = &{l1 : end, l3 :
µt.⊕{l4 : t}}. We have T ≤S. Once branch l3, that is uncontrollable, is removed
from S, we can apply contravariance for input branching. We have I = {1, 2} ⊇
{1} = K in Definition 12.

Example 6. Consider TG and T ′G from Figure 1. For the pair (T ′G, TG), we apply
Case (4) of Definition 12 for which we compute

selUnfold(TG) = A[⊕{tc : µt′.⊕ {tc : t′, done : end}, done : end}]

with A = µt.&{tm : t, over : [ ]1}. Observe that A contains a recursive sub-term,
such contexts are not allowed in previous works [14,15,26].

The use of selective unfolding makes it possible to express TG in terms of a
recursive input context A with holes filled by types (i.e., closed terms) that start
with an output prefix. Indeed selective unfolding does not unfold the recursion
variable t (not guarded by an output selection), which becomes part of the input
context A. Instead it unfolds the recursion variable t′ (which is guarded by an
output selection) so that the term that fills the hole, which is required to start
with an output prefix, is a closed term.

Case (4) of Definition 12 requires us to check that the following pairs are
in the relation: (i) (T ′G,A[µt′. ⊕ {tc : t′, done : end}]) and (ii) (µt′. &{tm :
t′, over : end},A[end]). Observe that TG = A[µt′. ⊕ {tc : t′, done : end}].
Hence, we have T ′G ≤ TG with

R={(T ′G, TG), (end, end), (µt′.&{tm : t′, over : end}, µt.&{tm : t, over : end})}

and R is a controllable subtyping relation.

We show that fair asynchronous subtyping is sound w.r.t. fair refinement. In
fact, fair asynchronous subtyping can be seen as a sound coinductive characteri-
sation of fair refinement. Namely this result gives an operational justification to
the syntactical definition of fair asynchronous session subtyping. Note that ≤ is
not complete w.r.t. v, see Example 7.

Theorem 3. Given two session types T and S, if T ≤S then T v S.

Example 7. Let T = ⊕{l1 : &{l3 : end}} and S = &{l3 :⊕{l1 : end, l2 : end}}.
We have T v S, but T is not a fair asynchronous subtype of S since {l1} 6=
{l1, l2}, i.e., covariance of outputs is not allowed.

Unfortunately, fair asynchronous session subtyping is also undecidable. The
proof is similar to the one of undecidability of fair refinement, in particular we
proceed by reduction from the termination problem in queue machines.

Theorem 4. Given two session types T and S, it is in general undecidable to
check whether T ≤S.
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4 A Sound Algorithm for Fair Asynchronous Subtyping

We propose an algorithm which soundly verifies whether a session type is a
fair asynchronous subtype of another. The algorithm relies on building a tree
whose nodes are labelled by configurations of the simulation game induced by
Definition 12. The algorithm analyses the tree to identify witness subtrees which
contain input contexts that are growing following a recognisable pattern.

Example 8. Recall the satellite communication example (Figure 1). The space-
craft with protocol TS may be a replacement for an older generation of spacecraft
which follows the more complicated protocol T ′S , see Figure 2. Type T ′S notably
allows the reception of telecommands to be interleaved with the emission of
telemetries. The new spacecraft may safely replace the old one because TS ≤T ′S .

However, checking TS ≤T ′S leads to an infinite accumulation of input con-
texts, hence it requires to consider infinitely many pairs of session types. E.g.,
after TS selects the output label tm twice, the subtyping simulation game con-
siders the pair (TS , T

′′
S ), where also T ′′S is in Figure 2. The pairs generated for

this example illustrate a common recognisable pattern where some branches
grow infinitely (the tc-branch), while others stay stable throughout the deriva-
tion (the done-branch). The crux of our algorithm is to use a finite parametric
characterisation of the infinitely many pairs occurring in the check of TS ≤T ′S .

The simulation tree for T ≤S, written simtree(T, S), is the labelled tree rep-
resenting the simulation game for T ≤S, i.e., simtree(T, S) is a tuple (N,n0,�
, λ) where N is its set of nodes, n0 ∈ N is its root, � is its transition function,
and λ is its labelling function, such that λ(n0) = (S, T ). We omit the formal def-
inition of �, as it is straightforward from Definition 12 following the subtyping
simulation game discussed after that definition. We give an example below.

Notice that the simulation tree simtree(T, S) is defined only when S is con-
trollable, since T ≤S holds without needing to play the subtyping simulation
game if S is not controllable. We say that a branch of simtree(T, S) is successful
if it is infinite or if it finishes in a leaf labelled by (end, end). All other branches
are unsuccessful. Under the assumption that S is controllable, we have that all
branches of simtree(T, S) are successful if and only if T ≤S. As a consequence
checking whether all branches of simtree(T, S) are successful is generally unde-
cidable. It is possible to identify a branch as successful if it visits finitely many
pairs (or node labels), see Example 6; but in general a branch may generate
infinitely many pairs, see Examples 8 and 12.

In order to support types that generate unbounded accumulation, we charac-
terise finite subtrees — called witness subtrees, see Definition 13 — such that all
the branches that traverse these finite subtrees are guaranteed to be successful.

Notation We give a few auxiliary definitions and notations. Hereafter A and A′
range over extended input contexts, i.e., input contexts that may contain distinct
holes with the same index. These are needed to deal with unfoldings of input
contexts, see Example 9.
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?tc
?done

!tm
!over

?tc

?done

!tm

!over

T ′
S = µt .&

{
tc : ⊕{tm : t, over : µt′. &{tc : t′, done : end}},
done : µt′′.⊕ {tm : t′′, over : end}

}
T ′′
S = &

{
tc : &{ tc : T ′

S ,
done : µt′′.⊕ {tm : t′′, over : end} },

done : µt′′.⊕ {tm : t′′, over : end}
}

Fig. 2. T ′
S is an alternative session type for TS , see Example 8.

The set of reductions of an input contextA is the minimal set S s.t. (i)A ∈ S;
(ii) if &{li : Ai}i∈I ∈ S then ∀i ∈ I.Ai ∈ S and (iii) if µt.A′ ∈ S then
A′{µt.A′

/t} ∈ S. Notice that due to unfolding (item (iii)), the reductions of an
input context may contain extended input contexts. Moreover, given a reduction
A′ of A, we have that holes(A′) ⊆ holes(A).

Example 9. Consider the following extended input contexts:

A1 = µt. &{l1 : [ ]1, l2 : &{l3 : t}} A2 = &{l3 : µt. &{l1 : [ ]1, l2 : &{l3 : t}}}

unfold(A1) = &{l1 : [ ]1, l2 : &{l3 : µt. &{l1 : [ ]1, l2 : &{l3 : t}}}}

Context A2 is a reduction of A1, i.e., one can reach A2 from A1, by unfolding
A1 and executing the input l2. Context unfold(A1) is also a reduction of A1.
Observe that unfold(A1) contains two distinct holes indexed by 1.

Given an extended context A and a set of hole indices K such that K ⊆
holes(A), we use the following shorthands. Given a type Tk for each k ∈ K,
we write AbTkck∈K for the extended context obtained by replacing each hole
k ∈ K in A by Tk. Also, given an extended context A′ we write A〈A′〉K for
the extended context obtained by replacing each hole k ∈ K in A by A′. When
K = {k}, we often omit K and write, e.g., A〈A′〉k and AbTkck.

Example 10. Using the above notation and posing A = &{tc : [ ]1, done : [ ]2},
we can rewrite T ′′S (Figure 2) as A〈AbT ′Sc1〉1bµt′′.⊕ {tm : t′′, over : end}c2.

Example 11. Consider the session type below

S = &{l1 : &{l1 : T1, l2 : T2, l3 : T3}, l2 : &{l1 : T1, l2 : T2, l3 : T3}, l3 : T3}.

Posing A = &{l1 : [ ]1, l2 : [ ]2, l3 : [ ]3} we have holes(A) = {1, 2, 3}. Assuming
J = {1, 2} and K = {3}, we can rewrite S as A〈AbTjcj∈J〉JbTkck∈K .

Example 12. Figure 3 shows the partial simulation tree for TS ≤ T ′S , from Fig-
ures 1 and 2 (ignore the dashed edges for now). Notice how the branch leading
to the top part of the tree visits only finitely many node labels (see dotted box),
however the bottom part of the tree generates infinitely many labels, see the
path along the !tm transitions in the dashed box.
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(TS , AbT ′
S , T

′
1c{1,2})

(µt′.&{tc : t′, done : end}, A〈AbT ′′
1 c1〉1bendc2)

(µt′.&{tc : t′, done : end}, AbT ′′
1 c1bendc2) (end, end)

(TS , A〈AbT ′
Sc1〉1bT ′

1c2)

!over

?tc
?done

!tm

(TS , T
′
S)

!tm

(µt′.&{tc : t′, done : end}, AbT ′′
1 c1bendc2)

(end, end) (µt′.&{tc : t′, done : end}, T ′′
1 )

(end, end) (µt′.&{tc : t′, done : end}, T ′′
1 )

!over

?done
?tc

?done
?tc

=

A = &{tc : [ ]1, done : [ ]2}
T ′
1 = µt′′.⊕ {tm : t′′, over : end}
T ′′
1 = µt′. &{tc : t′, done : end}

Fig. 3. Simulation tree for TS ≤ T ′
S (Figures 1 and 2), the root of the tree is in bold.

Witness subtrees Next, we define witness trees which are finite subtrees of a
simulation tree which we prove to be successful. The role of the witness subtree
is to identify branches that satisfy a certain accumulation pattern. It detects an
input context A whose holes fall in two categories: (i) growing holes (indexed
by indices in J below) which lead to an infinite growth and (ii) constant holes
(indexed by indices in K below) which stay stable throughout the simulation
game. The definition of witness trees relies on the notion of ancestor of a node
n, which is a node n′ (different from n) on the path from the root n0 to n. We
illustrate witness trees with Figure 3 and Example 13.

Definition 13 (Witness Tree). A tree (N,n0,�, λ) is a witness tree for A,
such that holes(A) = I, with ∅ ⊆ K ⊂ I and J = I \ K, if all the following
conditions are satisfied:

1. for all n ∈ N either λ(n) = (T,A′〈AbSjcj∈J〉JbSkck∈K) or
λ(n) = (T,A′〈A〈AbSjcj∈J〉J〉JbSkck∈K), where A′ is a reduction of A, and
it holds that

– holes(A′) ⊆ K implies that n is a leaf and

– if λ(n) = (T,A[Si]
i∈I) and n is not a leaf then unfold(T ) starts with an

output selection;

2. each leaf n of the tree satisfies one of the following conditions:

(a) λ(n) = (T, S) and n has an ancestor n′ s.t. λ(n′) = (T, S)
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(b) λ(n) = (T,A〈AbSjcj∈J〉JbSkck∈K) and n has an ancestor n′ s.t. λ(n′) =
(T,A[Si]

i∈I)
(c) λ(n) = (T,A[Si]

i∈I) and
n has an ancestor n′ s.t. λ(n′) = (T,A〈AbSjcj∈J〉JbSkck∈K)

(d) λ(n) = (T,A′[Sk]k∈K
′
) where K ′ ⊆ K

and for all leaves (T, S) of type (2c) or (2d) T ≤S holds.

Intuitively Condition (1) says that a witness subtree consists of nodes that
are labelled by pairs (T, S) where S contains a fixed context A (or a reduc-
tion/repetition thereof) whose holes are partitioned in growing holes (J) and
constant holes (K). Whenever all growing holes have been removed from a pair
(by reduction of the context) then this means that the pair is labelling a leaf of
the tree. In addition, if the initial input is limited to only one instance of A, the
l.h.s. type starts with an output selection so that this input cannot be consumed
in the subtyping simulation game.

Condition 2 says that all leaves of the tree must validate certain conditions
from which we can infer that their continuations in the full simulation tree
lead to successful branches. Leaves satisfying Condition (2a) straightforwardly
lead to successful branches as the subtyping simulation game, starting from the
corresponding pair, has been already checked starting from its ancestor having
the same label. Leaves satisfying Condition (2b) lead to an infinite but regular
“increase” of the types in J-indexed holes — following the same pattern of
accumulation from their ancestor. The next two kinds of leaves must additionally
satisfy the subtyping relation — using witness trees inductively or based on the
fact they generate finitely many labels. Leaves satisfying Condition (2c) lead
to regular “decrease” of the types in J-indexed holes — following the same
pattern of reduction from their ancestor. Leaves satisfying Condition (2d) use
only constant K-indexed holes because, by reduction of the context A′, the
growing holes containing the accumulation A have been removed.

Remark 1. Definition 13 is parameterised by an input contextA. We explain how
such contexts can be identified while building a simulation tree in Section 5.

Example 13. In the tree of Figure 3 we highlight two subtrees. The subtree in the
dotted box is not a witness subtree because it does not validate Condition (1) of
Definition 13, i.e., there is an intermediary node with a label in which the r.h.s
type does not contain A.

The subtree in the dashed box is a witness subtree with 3 leaves, where the
dashed edges represent the ancestor relation,A = &{tc : [ ]1, done : [ ]2}, J = {1}
and K = {2}. We comment on the leaves clockwise, starting from (end, end),
which satisfies Condition (2d). The next leaf satisfies condition (2c), while the
final leaf satisfies Condition (2b).

Algorithm Given two session types T and S we first check whether S is uncon-
trollable. If this is the case we immediately conclude that T ≤S. Otherwise, we
proceed in four steps.
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S1 We compute a finite fragment of simtree(T, S), stopping whenever (i) we
encounter a leaf (successful or not), (ii) we encounter a node that has an ancestor
as defined in Definition 13 (Conditions (2a), (2b), and (2c)), (iii) or the length
of the path from the root of simtree(T, S) to the current node exceeds a bound
set to two times the depth of the AST of S. This bound allows the algorithm to
explore paths that will traverse the super-type at least twice. We have empirically
confirmed that it is sufficient for all examples mentioned in Section 5.
S2 We remove subtrees from the tree produced in S1 corresponding to successful
branches of the simulation game which contain finitely many labels. Concretely,
we remove each subtree whose each leaf n is either successful or has an ancestor
n′ such that n′ is in the same subtree and λ(n) = λ(n′).
S3 We extract subtrees from the tree produced in S2 that are potential can-
didates to be subsequently checked. The extraction of these finite candidate
subtrees is done by identifying the forest of subtrees rooted in ancestor nodes
which do not have ancestors themselves.
S4 We check that each of the candidate subtrees from S3 is a witness tree.

If an unsuccessful leaf is found in S1, then the considered session types are not
related. In S1, if the generation of the subtree reached the bound before reaching
an ancestor or a leaf, then the algorithm is unable to give a decisive verdict, i.e.,
the result is unknown. Otherwise, if all checks in S4 succeed then the session
types are in the fair asynchronous subtyping relation. In all other cases, the
result is unknown because a candidate subtree is not a witness.

Example 14. We illustrate the algorithm above with the tree in Figure 3. Af-
ter S1, we obtain the whole tree in the figure (11 nodes). After S2, all nodes in
the dotted boxed are removed. After S3 we obtain the (unique) candidate sub-
tree contained in the dashed box. This subtree is identified as a witness subtree
in S4, hence we have TS ≤T ′S .

We state the main theorem that establishes the soundness of our algorithm,
where �∗ is the reflexive and transitive closure of �.

Theorem 5. Let T and S be session types s.t. simtree(T, S) = (N,n0,�, λ). If
simtree(T, S) contains a witness subtree with root n then for every node n′ ∈ N
s.t. n�∗ n′, either n′ is a successful leaf, or there exists n′′ s.t. n′ � n′′.

We can conclude that if the candidate subtrees of simtree(T, S) identified
with the strategy explained above are also witness subtrees, then we have T ≤S.

5 Implementation

To evaluate our algorithm, we have produced a Haskell implementation of it,
which is available on GitHub [31]. Our tool takes two session types T and S
as input then applies Steps S1 to S4 to check whether T ≤S. A user-provided
bound can be given as an optional argument. We have run our tool on a dozen
of examples handcrafted to test the limits of our algorithm (inc. the examples
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discussed in this paper), as well as on the 174 tests taken from [6]. All of these
tests terminate under a second.

For debugging and illustration purposes, the tool can optionally generate
graphical representations of the simulation and witness trees, and check whether
the given types are controllable. We give examples of these in [9].

Our tool internally uses automata to represent session types and uses strong
bisimilarity instead of syntactic equality between session types. Using automata
internally helps us identify candidate input contexts as we can keep track of
states that correspond to the input context computed when applying Case (4)
of Definition 12. In particular, we augment each local state in the automata
representation of the candidate supertype with two counters: the c-counter keeps
track of how many times a state has been used in an input context; the h-
counter keeps track of how many times a state has occurred within a hole of an
input context. We illustrate this with Figure 4 which illustrates the internal data
structures our tool manipulates when checking TS ≤ T ′S from Figures 1 and 2.
The state indices of the automata in Figure 4 correspond to the ones in Figure 1
(2nd column) and Figure 2 (3rd column).

The first row of Figure 4 represents the root of the simulation tree, where
both session types are in their respective initial state and no transition has been
executed. We use state labels of the form nc,h where n is the original identity
of the state, c is the value of the c-counter, and h is the value of the h-counter.
The second row depicts the configuration after firing transition !tm, via Case (4)
of Definition 12. While the candidate subtype remains in state 0 (due to a self-
loop) the candidate supertype is unfolded with selUnfold(T ′S) (Definition 10).
The resulting automaton contains an additional state and two transitions. All
previously existing states have their h-counter incremented, while the new state
has its c-counter incremented. The third row of the figure shows the configuration
after firing transition !over , using Case (4) of Definition 12 again. In this step,
another copy of state 0 is added. Its c-counter is set to 2 since this state has been
used in a context twice; and the h-counters of all other states are incremented.

Using this representation, we construct a candidate input context by building
a tree whose root is a state qc,h such that c > 1. The nodes of the tree are
taken from the states reachable from qc,h, stopping when a state q′c′,h′ such that
c′ < c is found. A leaf q′c′,h′ becomes a hole of the input context. The hole
is a constant (K) hole when h′ = c, and growing (J) otherwise. Given this
strategy and the configurations in Figure 4, we successfully identify the context
A = &{tc : [ ]1, done : [ ]2} with J = {1} and K = {2}.

6 Related and Future Work

Related work We first compare with previous work on refinement for asyn-
chronous communication by some of the authors of this paper. The work in [10]
also considers fair compliance, however here we consider binary (instead of mul-
tiparty) communication and we use a unique input queue for all incoming mes-
sages instead of distinct named input channels. Moreover, here we provide a



Fair Refinement for Asynchronous Session Types 17

Last transition State of TS Representation of T ′
S

ε 0
00,010,020,030,0 40,0 50,0

?tc

?done

!tm

!over

?tc

?done

!tm

!over

!tm 0
00,110,120,130,1 40,1 50,1

01,0

?tc
?done

?tc

?done

!tm

!over

?tc

?done

!tm

!over

!over 1

00,210,220,230,2 40,2 50,2

01,1

02,0

?tc

?done

?tc

?done

?tc

?done

Fig. 4. Internal representation of the simulation tree for TS ≤ T ′
S (fragment).

sound characterisation of fair refinement using coinductive subtyping and pro-
vide a sound algorithm and its implementation. In [13] the asynchronous sub-
typing of [7, 14, 15, 26] is used to characterise refinement for a notion of correct
composition based on the impossibility to reach a deadlock, instead of the possi-
bility to reach a final successful configuration as done in the present paper. The
refinement from [13] does not support examples such as those in Figure 1.

Concerning previous notions of synchronous subtyping, Gay and Hole [17,18]
first introduced the notion of subtyping for synchronous session types, which is
decidable in quadratic time [22]. This subtyping only supports covariance of out-
puts and contravariance of inputs, but does not address anticipation of outputs.
Padovani studied a notion of fair subtyping for synchronous multi-party session
types in [29]. This work notably considers the notion of viability which corre-
sponds, in the synchronous multiparty setting, to our notion of controllability.
We use the term controllability instead of viability following the tradition of
service contract theories like those based on Petri nets [25, 33] or process cal-
culi [12]. In contrast to [29], asynchronous communication makes it much more
involved to characterise controllability in a decidable way, as we do in this pa-
per. Fair refinement in [29] is characterised by defining a coinductive relation
on normal form of types, obtained by removing inputs leading to uncontrollable
continuations. Instead of using normal forms, we remove these inputs during
the asynchronous subtyping check. A limited form of variance on output is also
admitted in [29]. Covariance between the outputs of a subtype and those of
a supertype is possible when the additional branches in the supertype are not
needed to have compliance with potential partners. In [29] this check is made
possible by exploiting a difference operation [29, Definition 3.15] on types, which
synthesises a new type representing branches of one type that are absent in the
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other. We observe that the same approach cannot work to introduce variance
on outputs in an asynchronous setting. Indeed the interplay between output an-
ticipation and recursion could generate differences in the branches of a subtype
and a supertype that cannot be statically represented by a (finite) session type.

Padovani also studied an alternative notion of fair synchronous subtyping
in [28]. Although the contribution of that paper refers to session types, the for-
mal framework therein seems to deviate from the usual session type approach.
In particular, it considers shared channel communication instead of binary chan-
nels: when a partner emits a message, it is possible to have a race among several
potential receivers for consuming it. As a consequence of this alternative seman-
tics, the subtyping in [28] does not admit variance on input. Another difference
with respect to session type literature is the notion of success among interacting
sessions: a composition of session is successful if at least one participant reaches
an internal successful state. This approach has commonalities with testing [27],
where only the test composed with the system under test is expected to succeed,
but differs from the typical notion of success considered for session types. In [2,3]
(resp. [14]) it was proved that the Gay-Hole synchronous session subtyping (resp.
orphan message free asynchronous subtyping) coincides with refinement induced
by a successful termination notion requiring interacting processes to be both in
the end state (with empty buffers, in the asynchronous case).

Several variants of asynchronous session subtyping have been proposed in [14,
15, 26] and further studied in our earlier work [6, 7, 13]. All these variants have
been shown to be undecidable [7, 8, 23]. Moreover, all these subtyping relations
are (implicitly) based on an unfair notion of compliance. Concretely, the defi-
nition of asynchronous subtyping introduced in this paper differs from the one
in [14,15] since no additional constraint guaranteeing absence of orphan-messages
is considered. Such a constraint requires the subtype not to have output loops
whenever an output anticipation is performed, thus guaranteeing that at least
one input is performed in all possible paths. In this paper, absence of orphan
messages is guaranteed by enforcing types to (fairly) reach a successful termi-
nation. Moreover, our novel subtyping differs from those in [14, 15, 26] since we
use recursive input contexts (and not just finite ones) for the first time — this
is necessary to obtain T ′G≤TG and TS ≤T ′S (see Figures 1 and 2). Notice that
not imposing the above mentioned orphan-message-free constraint of [14, 15] is
consistent with recursive input contexts that allows for input loops in the super-
type whenever an output anticipation is performed. In [6], we proposed a sound
algorithm for the asynchronous subtyping in [14]. The sound algorithm that we
present in this paper substantially differs from that of [6]. Here we use witness
trees that take under consideration both increasing and decreasing of accumu-
lated input. In [6], instead, only regular growing accumulation is considered.

Future work In future work, we will investigate how to support output variance
in fair asynchronous subtyping. We also plan to study fairness in the context
of asynchronous multiparty session types, as fair compliance and refinement
extend naturally to several partners. Finally, we will investigate a more refined
termination condition for our algorithm using ideas from [6, Definition 11].
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