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45 Summary

46  Tropical forest degradation is widely recognised as a driver of biodiversity loss and 

47 a major source of carbon emissions. However, in contrast to deforestation, the more 

48 gradual changes from degradation are challenging to detect, quantify, and monitor. 

49 Here we present a field protocol for rapid, area-standardised quantifications of 

50 forest condition, which can also be done by non-specialists. Using the example of 

51 threatened high-biodiversity forests in Tanzania, we analyse and predict 

52 degradation based on this method. We also compare the field data to optical and 

53 radar remote sensing datasets, thereby conducting a large-scale, independent test of 

54 the ability of these products to map degradation in East Africa from space. 

55  Our field data consist of 551 ‘degradation’ transects collected between 1996 and 

56 2010, covering >600 ha across 86 forests in the Eastern Arc Mountains and coastal 

57 forests. 

58  Degradation was widespread, with over one third of the study forests – mostly 

59 protected areas – having more than 10% of their trees cut. Commonly-used optical 

60 remote-sensing maps of complete tree cover loss only detected severe impacts (≥25% 

61 of trees cut), i.e. a focus on remotely sensed deforestation would have significantly 

62 underestimated carbon emissions and declines in forest quality. Radar-based maps 

63 detected even low impacts (<5% of trees cut) in ~90% of cases. The field data 

64 additionally allowed to differentiate different types and drivers of harvesting, with 

65 spatial patterns suggesting that logging and charcoal production were mainly driven 

66 by demand from major cities.
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67  Rapid degradation surveys and radar remote sensing  can provide an early warning 

68 and guide appropriate conservation and policy responses. This is particularly 

69 important in areas where forest degradation is more widespread than deforestation, 

70 such as in east and southern Africa.  

71

72 Key words

73 Carbon Emissions; Community-based Forest Management; East Africa; Biodiversity 

74 Conservation; Global Forest Watch; Human Disturbance; Synthetic Aperture Radar; 

75 Village Land Forest Reserves

76

77 Societal Impact Statement

78 Vast areas of tropical forest are degraded. Whilst a lot of progress has been made with 

79 assessing deforestation from space, quantifying degradation remains challenging. Thus, 

80 whilst global tree cover is being mapped with increasing accuracy, much less is known 

81 about the quality of that tree cover. Here we present a field protocol for rapid 

82 assessments of forest condition. Using extensive field data from Tanzania we show that 

83 a focus on remotely-sensed deforestation on its own would not detect significant 

84 reductions in forest quality, while radar-based remote-sensing of degradation had good 

85 agreement with the ground data. The ground data provided additional insights into the 

86 nature and drivers of degradation, an understanding of which is vital to conserving 

87 forest resources and ensuring their long-term support of ecosystem services. We 

88 recommend the use of rapid field assessments in combination with remote sensing to 

89 provide an early warning, and to allow timely and appropriately targeted policy 

90 responses.
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91 Introduction

92 Large areas of tropical forest are degraded through human impacts such as overexploitation, 

93 fragmentation, pollution, exotic species invasion and fire (Sloan and Sayer, 2015). While there 

94 is no globally agreed definition for forest degradation, it can be broadly defined as changes to 

95 a forest stand resulting in the long-term reduction of particular attributes and functions, such 

96 as biodiversity, and the potential supply of goods and services (FAO, 2011; Ghazoul et al., 

97 2015). Deforestation – the complete replacement of forest by another land use – is easier to 

98 define, detect and monitor, and consequently has been the focus of global policy development 

99 (Sasaki and Putz, 2009). As a result, the impacts of forest degradation on biodiversity and 

100 carbon balances are comparatively poorly understood, but they are likely to be significant 

101 (Alroy, 2017). For instance, recent studies have shown that carbon emissions from forest 

102 degradation may have been underestimated and could account for as much as 25-69% of the 

103 combined gross carbon losses due to deforestation and degradation in the tropics (Baccini et 

104 al., 2017; Berenguer et al., 2014; Pearson et al., 2017). 

105

106 Significant progress has been made with measuring deforestation and forest degradation from 

107 space (Woodcock et al., 2020). Changes in tree cover and biomass can now be monitored at 

108 high spatial and temporal resolution, providing policy makers and conservation planners with 

109 an unprecedented wealth of data to guide interventions (Blackman, 2013; DeVries et al., 2015; 

110 Fuller, 2006). The technology is also increasingly available to non-specialists (Asner, 2009). 

111 Whilst there are many easily accessible datasets to assist national and global monitoring of 

112 forest cover (e.g. Hansen et al., 2013; Miettinen et al., 2011; Sexton et al., 2013), remotely-

113 sensed forest degradation data are sparser and more challenging to obtain. At a country level, 

114 quantitative assessments of degradation are often lacking (Romijn et al., 2015). Radar data hold 

115 particular promise as they overcome the challenges presented by cloud cover and variable 

116 phenology, and they correlate with changes in biomass (McNicol et al., 2018; Mitchell et al., 

117 2017; Ryan et al., 2012). However, using such data sources for detecting and quantifying 

118 degradation from space remains limited by the extent to which degradation is associated with 

119 a reduction in canopy cover and/or biomass (Ryan et al., 2012). Airborne radar and Light 

120 Detection and Ranging (LiDAR; Ene et al. (2017)), as well as the use of unmanned aerial 

121 vehicles (Baena et al., 2018; Ota et al., 2019) can provide higher resolution data, but these 

122 technologies require expertise, lack global coverage and historical archives, and can be 

123 prohibitively expensive. Ground-based sensing methods such as hemispherical photographs 

124 (Fournier and Hall, 2017) and terrestrial LiDAR (Decuyper et al., 2018) are also increasingly 
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125 used to quantify stand structural attributes also hold promise, but again, using these 

126 technologies requires expertise.    

127

128 At the other end of the spectrum there are detailed field assessments (Thompson et al., 2013), 

129 such as permanent sample plots for assessing changes in forest vegetation. Collecting data on 

130 species, stem diameter, height, crown cover and various biotic and abiotic parameters, they are 

131 an extremely important tool in biodiversity and environmental research (Baker et al., 2017), 

132 and are used to locally characterise biodiversity, growing stock, biomass, carbon, ecosystem 

133 function, and impacts of degradation. However, permanent plots are also labour intensive and 

134 time consuming to set up, and surveying them requires expertise. Consequently, few countries 

135 conduct exhaustive plot-based inventories as part of their national forest reporting, and even 

136 fewer consistently monitor them (FAO, 2011). In addition, whilst permanent plots are essential 

137 to understand the impacts of degradation, they are often not the most effective method to 

138 understand the extent and patterns of degradation itself. Unless they are systematically placed 

139 to cover an entire area at high density, they rarely capture the breadth of degrading activities 

140 that occur. On the contrary – the presence of researchers and permanent tags on trees may deter 

141 illegal activities. Plots are also often placed in a stratified random or subjective fashion, i.e. 

142 purposefully located in pre-selected areas viewed as representative of a given vegetation type 

143 and/or level of disturbance. In addition, as degradation is generally not the main focus, it is 

144 often not quantified in a robustly comparable and systematic way. 

145

146 Consequently, whilst countries increasingly monitor wall-to-wall forest cover change using 

147 remote sensing, and they also have some inventory data, they still lack representative 

148 quantitative data on forest degradation (Romijn et al., 2015). Difficulties with monitoring forest 

149 degradation and associated gaps in policy interventions create opportunities for unregulated 

150 and/or illegal logging and corruption. There can be a tendency to shift the blame for forest loss 

151 among actors, whereby existing prejudice against already marginalised groups such as farmers 

152 practising shifting cultivation or charcoal producers may be reinforced (Hosonuma et al., 2012; 

153 Ryan et al., 2014). Knowledge of which forests are degraded, where degradation is likely to 

154 spread to next, and what the main drivers are is vital for formulating appropriately targeted 

155 policy interventions and management. 

156

157 Here we present a framework protocol for rapid area-standardised assessments of forest 

158 condition. The protocol sits in the middle of the spectrum between detailed ground surveys and 
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159 remote sensing, and its implementation does not require professional training. The protocol 

160 assesses human use and disturbance, which depending on their levels and the forest type may 

161 lead to a deterioration of stocks and services, and thus degradation.

162  

163 Using the example of threatened and highly biodiverse forests in Tanzania we investigate

164 (1) how ground data collected using this protocol compare to remotely-sensed datasets; 

165 specifically, radar-based maps of biomass change (McNicol et al., 2018) and commonly 

166 used maps of complete tree cover loss (which underpin ‘Global Forest Watch’; Hansen 

167 et al., 2013);

168 (2) the value of ground data for understanding and predicting degradation in combination 

169 with spatially explicit models (for example, whether data collected using this approach 

170 in 1996-2010 could have predicted human impacts in 2020).  

171 The overall aim is to assess whether these rapid assessments are a useful addition to remote 

172 sensing and detailed vegetation assessments in (permanent) plots in informing conservation 

173 policy and practice. 

174

175 Methods

176 Protocol overview

177 The method presented here rapidly quantifies standing woody resources and resource 

178 extraction in forests with a view to gauging forest condition (Frontier Tanzania, 2001). While 

179 the protocol is flexible and can be adjusted to the target vegetation and area, the assessment 

180 obviously needs to be standardised to facilitate comparisons. The assessment is done along 

181 transects, which typically have a width of 10 m. Their length is variable and can be adjusted to 

182 the target vegetation type and forest size. The transects are located in either a random, stratified 

183 random, or systematic fashion, and should cover the forest edge as well as the interior. Within 

184 each transect all trees, as well as stumps and other signs of human use (such as charcoal 

185 production or clearance for agriculture) are recorded. The minimum assessment threshold is 

186 typically 5 cm diameter at breast height (dbh; measured 1.3 m above ground), but this can be 

187 adjusted to the type of vegetation being surveyed. In its simplest form the method focusses on 

188 assessing the number of cut trees versus those that are (left) standing or died naturally. Size 

189 categories can be added to distinguish cutting for different end uses. Depending on the aims of 

190 the sampling, recording can be simple counts within categories, or include more detailed 

191 information such as diameter (over bark), height, species identification, and voucher collection. 

192 Identifying at least the commonly-used timber species will indicate resource preference and 
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193 hint at the likely nature of the market behind that – e.g. whether trees are cut for local use or 

194 international export (Furukawa et al., 2011) (fully noting that timber trade names often refer to 

195 collectives of species and/or an entire genus, i.e. overharvesting of individual species can be 

196 masked when using trade names only). However, the time spent collecting, measuring and 

197 identifying trades off against the primary aim of the method – to rapidly cover many areas, 

198 often with the help of non-specialists, in order to obtain reasonably reliable estimates of 

199 degradation and to support the identification of areas in need of conservation interventions. A 

200 detailed protocol and a recommended set of core measurements are provided as part of the 

201 Supporting Information.  

202

203 Example application

204 Study Area

205 The study area (see also Methods S1) spans the Eastern Arc Mountains and part of the coastal 

206 forests, both of which are of global importance for biodiversity conservation due to high levels 

207 of localised endemism (Mittermeier et al., 2011; Olson and Dinerstein, 2002; Stattersfield, 

208 1998). These forests systems also provide critical ecosystem services to local communities and 

209 the nation as a whole (Ashagre et al., 2018; Fisher et al., 2011; Schaafsma et al., 2014; Swetnam 

210 et al., 2011). In southern Africa (here defined as roughly -1⁰ to -34⁰ latitude) the livelihoods of 

211 an estimated 150 million people are thought to be dependent on the goods and services provided 

212 by woodlands and forests (Ryan et al., 2016). Rapid urbanisation and population growth mean 

213 that demand for wood products is substantial and increasing, with fuel wood being the main 

214 source of energy for over 90% of the population (Bailis et al., 2005). The Tanzanian forestry 

215 sector – both formal and informal - is also an important source of income, GDP, and 

216 employment (Doggart et al., 2020; United Republic of Tanzania, 2001). Whilst the trade in 

217 wood products is often small-scale and livelihood driven (Cavanagh et al., 2015), wood is also 

218 exported to generate foreign revenue (Lukumbuzya and Sianga, 2017). Exact figures are 

219 difficult to obtain (Lukumbuzya and Sianga, 2017), but although Tanzania has a 

220 comprehensive legal framework for the conservation and management of forest resources, and 

221 although the forests studied here mostly occur in protected areas, overharvesting is likely to be 

222 widespread (Milledge et al., 2007). An ability to monitor and to identify drivers and patterns 

223 of forest loss and degradation is vital to the conservation of these forest systems, and to ensure 

224 the long-term provision of forest resources for sustainable livelihoods.   

225

226 Field data
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227 The data used for this example application were collected between 1996 and 2010 (median 

228 2004-2005) by a wide range of institutions and individual collectors (see Acknowledgements). 

229 In total there were 551 transects of 10 m width with a combined length of 609 km from 86 

230 forests. The transects were placed in either a systematic or stratified random fashion to sample 

231 both easily accessible and remote areas (Fig. 1a). All transects recorded standing, naturally 

232 dead and cut trees in two size categories: ‘poles’ (=slender stems frequently used in house 

233 construction; ≥5 – 15 cm dbh), and ‘trees’ (>15 cm dbh). In total 430,116 stems and stumps 

234 were recorded. Stumps were classed into two age categories: recent (generally cut ≤6 months 

235 prior to observation) or old, and records were made of all other types of extractive activities 

236 such as the presence of charcoal kilns. A small subset of transects (n=45 covering 18.75 ha in 

237 the coastal forests; Ahrends et al., 2010) made more detailed assessments, including exact dbh 

238 measurements and species identification. For spatially explicit analyses (comparison with 

239 remotely sensed datasets and modelling) we excluded 11 transects where the length and/or 

240 locality description did not match the length or locality given by GPS coordinates.  

241

242 Comparison with remotely-sensed datasets

243 We compared the ground data against two remotely-sensed datasets: 

244 (1) widely used maps for tree cover loss produced by the initiative ‘Global Forest Watch’ 

245 (Hansen et al., 2013), hereafter GFW, which are based on Landsat data and assess complete 

246 canopy loss at an approximate resolution of 28 m on the ground;

247 (2) a radar based dataset (McNicol et al., 2018) (hereafter MN18), which uses a probabilistic 

248 approach to map deforestation and degradation in southern Africa between 2007 and 2010 

249 based on L-Band radar from ALOS-PALSAR; MN18 averaged the data from a resolution 

250 of 25 m to 100 m. We focussed on cells with a probability ≥0.5 of degradation or 

251 deforestation.   

252

253 For both comparisons we looked at buffers of up to 100 m around transects. The ground data 

254 were restricted to the relevant period of satellite data acquisition (2000-2005 for comparisons 

255 to GFW, and 2007-2010 for comparisons to GFW and MN18). Only ‘recent’ stumps (i.e. 

256 stumps no older than 6 months) were included. Degradation counted as ‘detected’ if the 

257 remotely-sensed data reported a pixel as degraded or deforested anywhere within that buffer. 

258 Here we focus on true positives only. Due to widespread harvesting it was not possible to assess 

259 the rate of false positives, which however has equally important implications for the practical 

260 application of these datasets. 
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261

262 Modelling and predicting degradation

263 We used a spatially explicit modelling approach to investigate which factors were most 

264 influential in explaining the spatial patterns of degradation, and whether the spread was 

265 predictable. Models were developed using Boosted Regression Trees – an ensemble method, 

266 which combines regression trees and boosting, and fits multiple simple regression trees in a 

267 forward iterative fashion. The algorithm is able to fit complex non-linear patterns and 

268 interactions, and handles different type of predictor variables (Elith et al., 2008). We focussed 

269 on three dependent variables: (1) density of charcoal kilns, (2) percentage of poles (stems ≥5-

270 15 cm dbh) cut, and (3) percentage of trees (>15 cm dbh) cut. A transect constituted an 

271 individual data point. For modelling the percentage of trees cut we discarded transects with an 

272 overall tree density <50 ha-1 and no reported logging (n=25), assuming that in these areas there 

273 were hardly any trees to be cut in the first place. We considered 15 candidate predictors 

274 representative of physical accessibility, likely demand, availability of resources, forest 

275 management type and tenure (Tables S1 and S2). For each dependent variable we tested eight 

276 models with different (pre-selected) combinations of predictors (Table S3), including a 

277 correction for spatial autocorrelation. The final models were selected based on model 

278 performance when validated against test data (cross-validation correlations on up to 25% of 

279 randomly set aside test data) and maximum parsimony in terms of the number of predictors 

280 used (Table S4). Further details on model settings, parameterisation and performance are 

281 summarised in Tables S3-5, and software notes are provided in Methods S2. In order to test the 

282 predictive ability of the models we extrapolated them at 1 km resolution for all ~12,000 km2 

283 of forest reserves in the study area, using predictor values for 2020 (from scenarios developed 

284 in 2010; Swetnam et al. (2011)). These scenarios (broadly correctly) predicted population to 

285 increase at a rate of 3% annually, but they are conservative in that they did not make predictions 

286 around infrastructure expansion. The predictions were then compared to actual tree cover losses 

287 recorded by GFW and local reports on degradation.  

288

289 Results 

290 Observed rates of tree cutting

291 Tree cutting (here ≥5 cm dbh; see Notes S1 for trees >15 cm dbh only) occurred in all but one 

292 forest between 1996 and 2010. Over one third of forests surveyed during this time had at least 

293 10% of trees ≥5 cm dbh cut (mean among transects). Rates were very variable across forests, 

294 ranging from 0-81% with a mean of 10% (±15% SD) and a median of 5% (±6% MAD [median 
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295 absolute deviation]). The availability of standing trees was greatly reduced in some forests, 

296 being as low as <100 stems ≥5 cm dbh per ha in some of the most degraded forests (as opposed 

297 to >1,000 in some of the least degraded forests, and a mean stem density of 849 ±89 SE). Losses 

298 were particularly severe in the lowland coastal forests (mean across forests 20% ±28% SD; 

299 median 8% ±8% MAD), which are in direct vicinity of Dar es Salaam, a major centre of 

300 demand. The statistics for larger trees only were similar (Notes S1). 

301

302 While the above statistics represent tree cutting over several years (the lifetime  of a stump), 

303 the density of recent stumps can be seen as indicative of offtake rates at a given time (with a 

304 recent stump generally being 6 months or maximally 1 year old). On average (among forests) 

305 there were 3 (±0.74 SE) recent stumps >15 cm dbh per ha between 1996 and 2010. If logging 

306 rates were thus 3-6 trees per ha and year, then some 2.2-4.3 million trees >15 cm dbh would 

307 have been felled annually across the forest reserves in the study area (here restricted to ~7,200 

308 km2 with tree cover ≥50% according to GFW). Using a very simple above-ground tree biomass 

309 function (Chave et al., 2001; FAO, 2011) (which does not assume any knowledge of species 

310 or stand-level wood densities) this would be equivalent to a gross carbon loss of 0.41-0.82 TgC 

311 yr-1 if the cut trees were 20 cm dbh. However, establishing above-ground carbon is extremely 

312 challenging without detailed dbh measurements and wood density estimates. In addition, recent 

313 tree cutting was highly spatially and temporally clustered. While our data thus did not allow 

314 for a robust quantification of annual carbon losses between 1996-2010, they did however 

315 indicate that losses were substantial. In addition, there was evidence for an increase in cutting 

316 rates over the 14 years covered by the data – from less than one tree per ha and year 

317 (approximately) pre 2000 (0.4 ±0.36 SE), to around three trees per ha and year between 2000-

318 2005 (3.3 ±1 SE), and c. four trees per ha and year post 2005 (4 ±1.2 SE). Out of 16 forests 

319 that have been visited twice (in ~2004 and ~2010) 13 had a greater density (and 14 a larger 

320 percentage) of recently cut trees in 2010 (Figure S1).  

321  

322 A subset of transects (n=45 covering 18.75 ha in the coastal forests; Ahrends et al., 2010) with 

323 more detailed assessments allowed for the computation of above-ground tree biomass based on 

324 exact dbh and species or genus level wood specific gravity (extracted from Chave et al. (2009)). 

325 Following equation 7 from Chave et al. (2014) and assuming a carbon fraction of dry matter of 

326 0.5 we estimate that the area lost 8.9 MgC per ha due to cutting (over the lifetime of a stump), 

327 and 1.1 MgC in the year of the survey (2004/05). Reducing the data to the type of information 

328 that would be available with the simpler counting methodology (and assuming that poles 
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329 measure 10 cm dbh and trees 20 cm dbh) we calculate a loss of 8.1 MgC per ha using Chave 

330 et al. (2001). Figures for standing carbon are 28.4 and 35.3 MgC per ha, respectively. Thus, (1) 

331 the area lost a significant amount of carbon of standing carbon due to cutting (24% over the 

332 lifetime of a stump, and 4% in the survey year, which was characterised by a logging boom 

333 (Milledge et al., 2007));  and (2)  while the simple rapid counting methodology can provide 

334 rough carbon estimates, more detailed dbh measurements and the inclusion of at least stand-

335 level averages for wood specific gravity will considerably enhance the accuracy of these 

336 estimates. 

337

338 Comparison with remotely-sensed data datasets

339 There was broad agreement between the spatial patterns of tree (cover) losses recorded in the 

340 field and by GFW. However, as one would expect, more subtle degradation was not picked up 

341 by this dataset focusing on  complete tree cover loss in ~28×28 m cells. GFW reported tree 

342 cover losses for only 20% of the transects that recorded new tree cutting between 2000 and 

343 2005. The larger the proportion of cut trees the more often GFW detected loss (Table 1). A 

344 very similar picture emerged when looking at a lower dbh threshold of ≥5 cm dbh (Table S6). 

345

346 To illustrate this with specific examples, Figure 2 shows a comparison of ground data and 

347 remotely-sensed data for three coastal reserves visited in 2004. While GFW detected some 

348 canopy losses between 2000 and 2005 (affecting 2% of the area with ≥50% canopy cover in 

349 2000), degradation on the ground was already severe (with a mean of 11 ±7 SD recently cut 

350 trees ≥5 cm dbh, and 10 ±7 SD charcoal pits per ha). GFW record large losses from these areas 

351 in the following years (26% of the area with ≥50% canopy cover in 2000), confirming the early 

352 warning signals provided by the ground data. Indeed, a field survey in 2016 estimated that, 

353 since 2004, the density of trees in these areas had halved, with timber trees densities having 

354 dropped three-fold, and above-ground carbon being reduced by 40% (Ahrends et al., 2020). In 

355 one of the reserves (Vikindu) trees had almost entirely disappeared by 2016 (Fig. 2l), and the 

356 site has since been degazetted for agricultural clearing. The GFW data did not reflect Vikindu’s 

357 severe state of degradation in 2004 (when much of the natural vegetation had been replaced by 

358 Eucalyptus, and widespread logging and charcoal production was occurring), nor the 

359 disappearance of much of the remaining forest by 2016. Less than 1% tree cover loss was 

360 detected by GFW between 2000 and 2005, and ‘only’ another 15% loss between 2006 and 2018 

361 (1% and 18% of tree cover ≥50%, respectively).    

362
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363 The radar-based maps on the other hand did detect subtle changes in forest condition. MN18 

364 classed at least one pixel as either degraded or deforested in 81% of transects that recorded 

365 losses between 2007 and 2010, whereas GFW recorded losses for less than a third of these 

366 transects (Tables 2 and S7). As above, the larger the percentage of cut trees the more often 

367 losses were detected from space. The field data did not allow for a robust quantification of 

368 specificity (false positive rate) of either dataset; there were only three transects from the 2007-

369 2010 period that recorded no losses at all (recent and old), and both GFW and MN18 recorded 

370 losses for one of these transects. The losses may well have occurred after the ground data were 

371 collected (mostly 2009), and/or may not have taken the form of tree cutting. 

372

373 Overall, MN18 and GFW recorded similar amounts of deforestation (187 and 198 km2, 

374 respectively) between 2007 and 2010 (data aggregated to 100 m resolution, and masked to 

375 9,565 km2 in forest reserves for which there was radar data). Aggregated to the scale of 

376 individual reserves (n=143), the two datasets provided moderately correlated estimates of 

377 percentages of area deforested (Pearson’s R=0.51). Assessing both deforestation and 

378 degradation, MN18 reported an additional 727 km2 of degradation. While some reserves 

379 experienced both deforestation and degradation, the degradation data did not correlate with the 

380 deforestation data, and instead highlighted a different set of reserves as particularly impacted.

381

382 Modelled predictions of resource harvesting

383 Forest resource extraction increased steeply with accessibility and proximity to centres of 

384 demand (Figures S2-S4). Particularly in the case of charcoal production, and to some extent in 

385 the case of tree cutting, models that only considered local factors such as population density 

386 and management type performed less well than models that included predictors representative 

387 of city distance and wider population pressure (with a correlation [R] between predictions and 

388 test data under 10-fold cross validation of 0.57 as opposed to 0.75 in the case of charcoal 

389 burning, and 0.62 versus 0.68 in the case of tree cutting; Table S4). Protected area management 

390 explained some variation (Tables S4-S5), with harvesting being highest in unreserved areas. 

391 However, it is important to note that the reserve categories conflate a range of factors, e.g. all 

392 productive reserves analysed here were situated at Tanzania’s easily accessible coast. In 

393 addition, sample sizes were unequal (e.g. there were over 400 transects for 54 government 

394 forest reserves, and only 27 transects for 13 reserves on village land). Management on its own 

395 explained comparatively little variation (with cross-validation correlations of 0.39-0.56), which 
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396 will in part be due to the data inadequacy mentioned above, and in part due to the overriding 

397 influence of demand and accessibility. For more details see Figure S5.

398

399 The relative importance of predictors differed for the different types of disturbances. Spatial 

400 patterns in tree cutting were almost entirely explained by urban population pressure (a distance 

401 decay function of population density; Table S1), with additional variation accounted for by 

402 distances to Dar es Salaam, roads, major cities, and steepness of terrain. Patterns in charcoal 

403 production were also mainly related to distance to Dar es Salaam and population pressure. Pole 

404 cutting, on the other hand, was best explained by a multitude of factors, including management, 

405 distances to Dar es Salaam, roads and cities, and local population density (Table S5). In 

406 interpreting the relative importance of predictors, it is important to note covariation and a 

407 degree of inter-exchangeability between them (Table S2). For instance, dropping population 

408 pressure from the full model only had a moderate effect on model performance as long as 

409 population size and city distance where still present. However, overall there was a notable 

410 difference between tree cutting and charcoal production on the one hand (almost entirely 

411 explained by variables related to accessibility from urban centres), and pole cutting on the other 

412 hand where local population density and management played a greater role in explaining the 

413 variation. 

414

415 All final models performed reasonably well, achieving ten-fold cross validation correlations 

416 between 0.68-0.78 (Table S4). When setting aside 20% of the reserves as test data it was 

417 generally possible to predict the top three most degraded forests from the rest of the data. 

418

419 In order to broadly investigate whether the model for tree harvesting (>15 cm dbh) was able to 

420 indicate areas under future threat, we extrapolated the model to ~2020 and compared the 

421 predictions to tree cover losses recorded by GFW between 2000 and 2018 (Fig. 3) and local 

422 reports (see below). There was general agreement between the areas predicted to face high 

423 levels of cutting by ~2020 and tree cover loss detected by GFW (Fig. 3). Obvious differences 

424 arose in areas managed as rotational plantations, where GFW detected large losses while the 

425 model predicted low impacts (Fig. 3a). For instance, Sao Hill southwest of Iringa has lost a lot 

426 of tree cover due to plantation rotation, but according to local reports the non-plantation natural 

427 forest is not impacted by degradation (BirdLife International, 2013). In several other areas the 

428 model predicted high levels of tree cutting and GFW did not report major losses; here the 

429 modelled predictions were generally confirmed by local reports suggesting that degradation 
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430 has occurred, but may not (yet) have manifested as complete tree cover loss at the Landsat 

431 pixel scale. For example, Chome, Kwizu and Chambogo Forest Reserves in the Pare Mountains, 

432 Kisimagonja in the West Usambara Mountains, and Nianganje in the Udzungwa Mountains 

433 (Fig. 3b) are all reported to have been extensively degraded (BirdLife International, 2020; 

434 BirdLife International, 2020; Gereau et al., 2014; Makero and Malimbwi, 2012). Moderate 

435 levels of disturbance have also been reported for Uluguru and Mkingu Nature Reserves (Gereau 

436 et al., 2014). However, it is important to note that all of these reports are qualitative and terms 

437 such as ‘extensively degraded’ or ‘managed well’ are likely to be used in different ways across 

438 these reports. In addition, while GFW measure complete tree cover loss in 28 m pixel the model 

439 predicts tree harvesting pressure (not clear felling). Thus, the GFW data cannot be used to 

440 validate the model predictions and vice versa.
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441 Discussion

442 Here we presented a tested protocol for rapid quantitative assessments of degradation in the 

443 field, and we compared data collected with this method in Tanzanian forests with optical and 

444 radar-based remotely-sensed datasets. Covering over 600 ha our field data allowed for one of 

445 the first large-scale independent tests of these spatial datasets in southern Africa. Radar-based 

446 maps (McNicol et al., 2018) appeared to perform well, with even low levels of tree cutting 

447 generally coinciding with the detection of biomass loss. However, our study also suggests that 

448 there still is an important role for field data, which provided valuable additional information 

449 on the types of degradation and likely drivers. For instance, patterns in the field data implied 

450 that a major driver of forest degradation is demand for woody resources emanating from larger 

451 cities – a pattern that has also been confirmed in radar-based assessments (McNicol et al., 2018). 

452 The field data additionally allowed for a finer differentiation of the underlying processes, 

453 suggesting for example that it is specifically urban demand for timber and charocal which 

454 drives a lot of harvesting, with important consequences for where and how to target 

455 conservation interventions.   

456

457 Degradation was pervasive in the study area, meaning that a focus on deforesation would 

458 severely underestimate significant losses of carbon and declines in forest quality. Indeed, the 

459 ‘Global Forest Watch’ data (GFW), which are commonly used in national forest inventories 

460 and conservation assessements, and which measure complete canopy loss at a 28 m spatial 

461 resolution, did not routinely detect even high levels of cutting associated with severe impacts 

462 on the ground in terms of loss of natural vegetation and carbon. This echoes findings from other 

463 studies which show that small-scale deforestation tends to be underestiamted by GFW, 

464 particularly in areas with low and/or seasonally dry woody cover (Bos et al, 2019; McNicol et 

465 al., 2018) where time-series analyses (Verbesselt et al. 2010; 2012) may perform better (Bos 

466 et al., 2019); but also in moist forest in Tanzania (Hamunyela et al., 2020) and elsewhere (Bos 

467 et al., 2018; Milodowski et al., 2017). This is not a critique of the data generated by GFW, but 

468 it serves as a reminder that in areas where smaller scale deforestation and degradation are a 

469 significant cause of carbon emission and biodiversity loss, such as southern and east Africa 

470 (Baccini et al., 2017; McNicol et al., 2018; Pearson et al., 2017; Sedano et al., 2020), it is 

471 necessary to go beyond easily accessible deforestation data and to use a combination of 

472 approaches to detect these changes.

473
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474 Whilst radar data correlated well with disturbance on the ground they cannot detect activities 

475 that have little impact on vegetative biomass - such as low levels of harvesting, collection of 

476 non-timber products, hunting, or the introduction of invasive alien species (McNicol et al., 

477 2018; Ryan et al., 2012). Using remotely-sensed data it is also very challenging to distinguish 

478 types of disturbances; plantations versus natural forests; and primary vegetation versus the 

479 rapid secondary growth following logging (Asner et al., 2004). Here we counted degradation 

480 as ‘detected’ even if only one pixel in or around a transect, i.e. an area of up to ~20 ha, was 

481 classed as degraded or deforested. It is entirely possible that the removed tree(s) was not 

482 detected, and that the reported biomass loss was due to an unrelated co-incidental process or 

483 noise. Finally, given that almost all transects used in this study contained tree stumps it was 

484 not possible to robustly establish the specificity (=false positive rate) of the radar dataset with 

485 our data. In summary, whilst radar data give increasingly accurate wall-to-wall quantifications 

486 of degradation, there is still an important role for field data in aiding their interpretation, and 

487 providing an ‘even earlier’ warning signal in terms of subtle changes that can be detected before 

488 there is any notable impact on canopy or biomass. Similarly, early warning signals can also be 

489 provided by ground-based sensing, e.g. hemispherical photography and terrestrial LiDAR 

490 (Decuyper et al., 2018; Fournier and Hall, 2017). 

491

492 Capturing the spatial patterns and types of degrading activities, particularly when they are 

493 illegal, requires surveying relatively large areas. Field-based inventories and monitoring are 

494 however frequently restricted to a small sub-sample of areas of interest (O'Connell, 2018). The 

495 framework presented here can be used for quick assessments of large areas without professional 

496 training, thereby also allowing for community participation (Danielsen et al., 2011; DeVries et 

497 al., 2016). Details can be adapted to the target system and question (but should of course be 

498 standardised to ensure comparability; for a recommended set of core measurements see the 

499 Supporting Field Protocol). In particular, we would recommend using a higher size class 

500 resolution than used here and/or detailed dbh measurements. Our models for tree cutting 

501 performed less well than those for pole cutting and charcoal burning, which is likely due to tree 

502 harvesting >15 cm dbh serving a multitude of purposes ranging from high-grade export timber 

503 to local construction and partly also charcoal production. Differentiating three to five size 

504 classes can still be done rapidly by eye, and even detailed dbh measurements are not too time 

505 consuming. Particularly if combined with the identification of main timber species, this would 

506 provide more information on likely markets and scale of operation. Such higher resolution data 

507 would also enable estimation of likely levels of sustainability of the resource extraction, 
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508 whereby a decline in high-value species and/or larger trees are often indicators of 

509 unsustainability (Ahrends et al., 2010). In addition, more details, particularly on stem sizes, 

510 would also improve estimates of aboveground carbon (loss), which could only be crudely 

511 estimated using the simple counts. Another useful potential addition is collaborative work with 

512 socio-economists in order to capture local knowledge, and to understand whether the resource 

513 extraction leads to win-lose or lose-lose scenarios locally (Smith et al., 2019). The transects 

514 can be done as a stand-alone activity or in addition to more detailed assessments in long-term 

515 vegetation plots (PPP team, please add reference to SEOSAW partnership paper in this issue), 

516 opportunistic botanical sampling or other types of surveys. Rapid transects cannot replace the 

517 depth of assessment possible in permanent plots, and large plots are also necessary for the 

518 calibration of radar (McNicol et al., 2018) as using narrow transects to relate radar to biomass 

519 is very challenging (Réjou-Méchain et al., 2014; Smith, 2018). 

520

521 A key benefit of field data is that they can provide information on the type of biomass loss (e.g. 

522 charcoal, poles, planks, or agricultural clearing) and sometimes on the type and sophistication 

523 of equipment that was used, allowing insights into the likely drivers and tailoring interventions 

524 appropriately (Doggart et al., 2020). Here we showed that while pole cutting may partly be 

525 driven by local demand, activities such as tree cutting and charcoal production correlated 

526 almost entirely with distances to major cities such as Dar es Salaam. Degradation thus appears 

527 to be mainly driven by energy and timber demand emanating from larger cities and 

528 international markets, as opposed to mainly local demand (Ahrends et al., 2010) – a pattern 

529 that has been observed throughout southern Africa (McNicol et al., 2018; Sedano et al., 2020). 

530 Deforestation on the other hand is mainly driven by agriculture, highlighting the need for 

531 coordinated policy responses (Doggart et al., 2020; Hamunyela et al., 2020). It should also be 

532 noted that whilst the clear spatial patterns meant that degradation was to some extent 

533 predictable, dynamics in markets, human behaviour and policies can lead to rapid changes on 

534 the ground - such as the introduction of sesame farming in Tanzania (Brockington, 2019; 

535 Gross-Camp et al., 2019; Müller et al., 2014). Thus, although models can to some extent be 

536 used to extrapolate patterns in space and time, there is a clear need for regularly updated data 

537 (Sloan and Pelletier, 2012).      

538

539 Protection on the ground has had some success in halting degradation but the type of 

540 management was less important in explaining patterns of forest condition than demand and 

541 accessibility. This suggests that any form of protection can be better than none, and putting 
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542 land under the tenure and management of local communities might be a mutually beneficial 

543 way to reserve some of the 170,000 km2 of forest on general land in Tanzania (Mbwambo et 

544 al., 2012), excluding rural populations from the resources their livelihoods rely upon. Tree 

545 cutting in village-owned reserves only slightly exceeded levels in protective forests and nature 

546 reserves but this was to be expected as village land forest reserves often allow sustainable 

547 extraction. The effectiveness of village participation in forest management (co-management) 

548 could not be robustly assessed because much of the data were collected when joint forest 

549 management agreements were in very early stages (Mbwambo et al., 2012). 

550

551 The early warning provided by both radar and field data compared to GFW is a key advantage, 

552 because severe degradation and deforestation often follow the early stages of degradation (FAO, 

553 2011) – a sequence we also observed here. However, in terms of (temporal) data availability, 

554 a significant advantage of GFW is that the readily processed data are freely available on an 

555 annual basis with global coverage, explaining their widespread use. This is not yet true for 

556 radar-based maps; while raw data are now freely available costs arise in the form of trained 

557 technician(s). Field surveys, if done by local surveyors, could in theory also be done at least 

558 annually. Costs associated with training local surveyors and establishing reporting processes 

559 mean that rapid field surveys will incur the greatest costs at the start (to give an example, in 

560 2016 we spent around £30k for the survey of 10 Tanzanian forests) but subsequent investments 

561 will be considerably lower. Depending on the vegetation and the desired level of species 

562 identification the transects can almost be done at walking pace, meaning it is generally possible 

563 for a team to do at least one transect a day, and that costs arise in the form of c. 10 days’ worth 

564 of salary for the surveyor team, transport, and costs for data entry. In practice, a combination 

565 of at least annual (radar-based) remote sensing, combined with rapid field surveys in at least 

566 1-3 year intervals to better understand the drivers, may prove to be a good compromise.     

567

568 Strictly speaking, the method presented here only quantifies woody resource extraction and not 

569 necessarily degradation. The latter is challenging to establish – particularly in systems where 

570 little is known about regeneration and growth rates. However, whilst systems adapted to 

571 frequent natural disturbance may be resilient to some resource extraction, the selective 

572 extraction of larger trees  in old-growth forest can negatively impact ecosystem function and 

573 biodiversity (Jew et al., 2015; Tripathi et al., 2019; Yguel et al., 2019). In addition, whilst there 

574 is controversy over the role of wood products in carbon storage, the damage to the surrounding 

575 vegetation in denser forests, as well as the associated transportation and processing of the 
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576 timber, tend to be associated with substantial emissions (Ingerson, 2009; Pearson et al., 2014). 

577 Resource extraction in old-growth forests thus requires careful regulation. The vast majority of 

578 extraction recorded here took place in protective (as opposed to productive) reserves, and was 

579 consequently mostly unregulated and illegal with no concomitant legal revenue benefits for 

580 Tanzania as a state (Milledge et al., 2007). 

581

582 In conclusion, the consideration of degradation in global forest reporting is important - 

583 particularly in southern Africa where the area affected by degradation is likely to be double the 

584 size of the area that is deforested, and overall carbon emissions from forest degradation are 

585 likely to exceed those from deforestation (McNicol et al., 2018). We recommend to routinely 

586 use radar-based monitoring combined with, wherever possible, rapid field assessments to better 

587 understand the quality of forests and the reasons for their decline, to provide an early warning, 

588 and to allow for informed and timely policy interventions.    

589
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Tables

N transects with ≥1 pixel recording tree cover loss 

between 2000-2005 according to GFW

Trees >15 cm dbh 

recently cut (2000-2005)

N 

transects

100 m buffer 50 m buffer 28 m buffer

>0% 88 31 (35%) 23 (26%) 18 (20%)

≥1% 55 20 (36%) 15 (27%) 11 (20%)

≥5% 18 12 (67%) 9 (50%) 5 (28%)

≥10% 9 7 (78%) 5 (56%) 2 (22%)

≥25% 2 2 (100%) 1 (50%) 1 (50%)

≥50% 1 1 (100%) 1 (100%) 1 (100%)

Table 1. Comparison of on-the-ground losses and tree cover losses recorded by Hansen et al. 

(2013; GFW) between 2000 and 2005 (with a spatial resolution of ~28 m). 

N transects ≥1 pixel 

deforestation/degradation 2007-2010 

(MN18)

Trees >15 

cm dbh 

recently 

cut (2007-

2010)

N 

transects 

N transects 

≥1 pixel tree 

cover loss 

2007-2010 

(GFW)

N 

transects 
Defores-

tation

Degradation Deforestation 

or degradation

>0% 52 15 (29%) 42 6 (14%) 33 (79%) 34 (81%)

≥1% 30 7 (23%) 23 4 (17%) 21 (91%) 21 (91%)

≥5% 6 1 (17%) 3 1 (33%) 3 (100%) 3 (100%)

≥10% 3 1 (33%) 1 1 (100%) 1 (100%) 1 (100%)

≥25% 1 1 (100%) 0 Na Na Na

Table 2. Comparison of on-the-ground losses, tree cover losses recorded by Hansen et al. (2013; 

GFW) and deforestation and degradation recorded by McNicol et al. (2018; MN118) for 2007-

2010 within a 100 m buffer around transects. The numbers of transects differ because of gaps 

in the data generated by MN18. 
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Figure 1. Transects and field data. Panel (a) shows the location of the disturbance 
transects and percent tree cover according to Hansen et al. (2013). Note that this 
includes tree crops, e.g. cashew nut, explaining the large areas of tree cover outside 
reserves (denoted by black lines). Panels b-d show kernel density maps of different 
forest condition measures: percentage of poles cut (≥5-15 cm dbh) (b), larger trees cut 
(>15 cm dbh) (c), and the density of charcoal kilns (d). The bold black line indicate the 
area to which models were extrapolated (see overview map; in panels a-d only partly 
visible).
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Pugu Forest Reserve
(a) Transects (see legend) and 
tree cover loss recorded by 
GFW for 2000-2005 (purple)

(b) Example pictures of the 
situation on the ground in 2005

(c) Tree cover loss recorded 
by GFW for 2000-2005 
(purple) and 2006-2018 (red)

Ruvu South Forest Reserve
(d) [as in a] (e) [as in b] (f) [as in b] (g) [as in c]

Vikindu Forest Reserve
(h) [as in a] (i) [as in b] (j) [as in b] (k) [as in c]

Transects recording recent 
cuts

No recent cuts
>0 – 1% 
>1 – 5%
>5 – 10%
>10%

(l) Vikindu in 2016 (m)
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Figure 2. Comparison of ground data collected in 2004 and maps generated by Hansen et al. (2013; 
GFW) for three coastal reserves: Pugu (a-c), Ruvu South (d-g), and Vikindu (h-l). Left panels a, d and 
h show the location of transects (colours reflect rates of new cutting). The dark green background is 
tree cover ≥50% in 2000 reported by GFW. Black lines are reserve outlines. Purple areas have 
experienced tree cover loss between 2000-2005 according to GFW. Much of the degradation recorded 
on the ground (for examples see pictures b, e, f, i, j taken in 2004) is not reflected in the remotely 
sensed deforestation maps. The GFW maps register larger tree cover losses in subsequent years (2006-
2018; right panels c, g and k), confirming the early warning signal set by the ground data. Picture l 
shows Vikindu in 2016.  
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Figure 3. Comparison of tree cover losses according to Hansen et al. (2013; GFW) and 
modelled prediction of tree cutting by 2020. Note that the legends are not direclty comparible. 
Panel (a) shows the percent area (in forest reserves) affected by tree cover losses between 2000 
and 2018 according to GFW. Panel (b) shows the mean predicted percent of trees (≥15 cm dbh) 
cut. The model achieved a ten-fold cross-validation correlation between actual and fitted values 
of 0.68 (± 0.04 SE); for details on model parameteristion and performance see Tables S4-5 and 
Figure S2. The general patterns between modelled and actual tree (cover) losses appear similar. 
Circled areas in (a) contain reserves managed as plantations, where tree cover losses are larger 
than the model would suggest. Circled areas in (b) experienced less detectable tree cover losses 
than the model suggests but are highly degraded according to local reports.    
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