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ABSTRACT In the post-genome era, it is becomingmore complex to process high dimensional, low-instance
available, and nonlinear biological datasets. This paper aims to address these characteristics as they have
adverse effects on the performance of predictive models in bioinformatics. In this paper, an interval
type-2 Takagi Sugeno fuzzy predictive model is proposed in order to manage high-dimensionality and
nonlinearity of such datasets which is the common feature in bioinformatics. A new clustering framework
is proposed for this purpose to simplify antecedent operations for an interval type-2 fuzzy system. This
new clustering framework is based on overlapping regions between the clusters. The cluster analysis of
partitions and statistical information derived from them has identified the upper and lower membership
functions forming the premise part. This is further enhanced by adapting the regression version of support
vector machines in the consequent part. The proposed method is used in experiments to quantitatively
predict affinities of peptide bindings to biomolecules. This case study imposes a challenge in post-genome
studies and remains an open problem due to the complexity of the biological system, diversity of peptides,
and curse of dimensionality of amino acid index representation characterizing the peptides. Utilizing four
different peptide binding affinity datasets, the proposed method resulted in better generalization ability for
all of them yielding an improved prediction accuracy of up to 58.2% on unseen peptides in comparison
with the predictive methods presented in the literature. Source code of the algorithm is available at
https://github.com/sekerbigdatalab.

INDEX TERMS Interval type-2 fuzzy systems, support vector regression, overlapping clusters, peptide
binding affinity, clustering, high-dimensionality.

I. INTRODUCTION
Peptides, a small sequence of amino acids, often interacts
with proteins in cellular processes [1]. One of the impor-
tant peptide-protein interactions occur when a peptide binds
to a Major Histocompatibility Complex (MHC) forming a
peptide-MHC (pMHC) complex. pMHC is transported to the
cell membrane where it is recognized by a T-cell in order
to induce an immune response. Therefore, in pharmaceutical
studies, validation of a pMHC binding with the drug of
interest is crucial. However, this is a complicated process
and computational methods are constantly being developed to
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support traditional empirical research to identify most likely
candidates out of a library of thousands of peptides. More-
over, predictivemodels based on sequence-basedmethods are
needed to approximate the binding affinities.

In recent years, the problem of binding affinity predic-
tions became two-fold. Qualitative studies consider classi-
fying binding predictions as ‘binders’ and ‘non-binders’ [2]
or ‘weak’ and ‘strong’ binders [3]–[5] whereas quantita-
tive studies allow real-value binding predictions [6]. Lately,
regression-based approaches have become more prevalent
in sequence-based studies. A number of methods are used
as predictors such as the partial least squares [7], random
forests [8], support vector regression [9] and regularization
methods [10]. Nevertheless, the complexity of a biological
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system, diversity of peptides, and curse of dimensional-
ity of amino acid index representation that characterise
the peptides have adverse effects on the performance of
peptide-binding predictive models. Moreover, uncertainties
are prevalent in peptide binding affinity datasets due to impre-
cise or noisy measurements, and these datasets need to be
analysed appropriately [11]. There is still a lack of methods
accounting for this aspect of peptide-protein bindings [12].

In certain applications, where the data is complex and
non-linear, fuzzy systems are more tolerant of imprecise
information and capable of modelling linguistic and numer-
ical uncertainty. Moreover, they form a rule-based struc-
ture similar to human reasoning. Presently, type-2 fuzzy
systems [13] have a wider use in real-world applications than
ever before [14]. They, in certain applications, perform better
than type-1 fuzzy systems in terms of modelling and min-
imizing uncertainties [15]–[17]. Type-2 fuzzy systems are
preferred due to the consideration of membership functions
being imprecise and being able to cope with the uncertainties
associated with them.

In this paper, an overlapping clusters and support vector
machine based interval type-2 Takagi Sugeno fuzzy sys-
tem is proposed to address the aforementioned shortcomings
of the sequence-based predictive models. A novel cluster-
ing framework is proposed in order to simplify antecedent
operations for an interval type-2 fuzzy system. This clus-
tering framework is based on overlapping regions between
the clusters. The cluster analysis of partitions and statistical
information derived from them have identified the upper and
lower membership functions forming the premise part. This
is further enhanced by adapting the regression version of
support vector machines (SVR) in the consequent part [18].
The computational demand in the defuzzification process is
addressed by a method which has the closed-form repre-
sentation. In addition, feature selection is used in order to
reduce the high number of amino acid biochemical descrip-
tors, representing a peptide, which formed the input scheme
of the learning model. The prediction results indicate that the
proposed model not only minimized the effects of uncertain
continuous peptide binding affinities but also provided high
precision in unravelling the binding affinities of unobserved
peptides.

The remainder of the study starts with introducing the
materials and methods (Section II). This section describes the
identification of SVR based interval type-2 fuzzy systemwith
overlapping clusters concept. Section III shows the results of
the case study along with the discussion. Finally, concluding
remarks are given in Section IV.

II. MATERIALS AND METHODS
A. SUPPORT VECTOR-BASED INTERVAL
TYPE-2 FUZZY SYSTEM
Type-2 fuzzy sets, which are defined through membership
functions, are themselves fuzzy. However, the computations
of type-2 fuzzy sets are complex and in order to ease

these computations Interval Type-2 (IT2) fuzzy sets can be
used [19]. The Takagi Sugeno model is one of the widely
used fuzzy systems [20]. This model structure presents the
design of consequent parameters using a linear function. The
rule-base of the interval type-2 Takagi Sugeno fuzzy system
with r rules can be expressed as:

Ri : IF x1 is Ãi1 and x2 is Ã
i
2 . . . and xn is Ã

i
n

THEN yi = c0i + c1ix1 + . . .+ cnixn (1)

where, x1, x2,. . . , xn represent the input vector and c0, c1,
c2,. . . , cn are the regression coefficients; IT2 fuzzy set is
denoted by Ãin for the variable n and rule i; and yi is the rule
output.

FIGURE 1. An interval type-2 fuzzy set.

Type-2 fuzzy sets should be placed in the premise or
consequent part (or both) in order to define a type-2 fuzzy
system. IT2 fuzzy sets are characterized by the upper mem-
bership functions (UMFs) and lower membership func-
tions (LMFs). This is how the uncertainty is modeled for
the IT2 membership function. Bounded region between UMF
and LMF is the footprint of uncertainty (FOU). Each interval
type-2 fuzzy set within the footprint of uncertainty is unity.
Three-dimensional representation of an interval type-2 fuzzy
set is depicted in Fig. 1. The firing strengths of interval
type-2 fuzzy system are determined by using the t-norm
operator and can be calculated as:

fi =
n∏

k=1

µ(xk ) (2)

fi =
n∏

k=1

µ(xk ) (3)

where fi (fi) is the lower (upper) firing strength; µ(xk ) (µ(xk ))
is the lower (upper) membership degree for input variable xk ;
respectively, and

∏
denotes the product t-norm operation.

The output of an IT2 fuzzy system is obtained through
type-reduction and defuzzification. The Karnik-Mendel algo-
rithm is the widely used type-reduction method that can
compute the left and right end points required for the
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IT2 fuzzy set [21]. Then these end points are defuzzi-
fied to get the final output. Karnik-Mendel is an itera-
tive algorithm and suffers from time intense computations.
Therefore, alternate approaches have been presented in
the literature [22]–[24]. However, the proposed IT2 fuzzy
system implements Biglarbegian-Melek-Mendel (BMM)
method [25] which has the closed mathematical form as
described in (4)

YBMM = q

r∑
i=1

fi yi

r∑
i=1

fi

+ p

r∑
i=1

fi yi

r∑
i=1

fi

(4)

where q and p are the parameters used to design the upper and
lower weighted average of the rule consequents, respectively.

Recently, support vector machines are incorporated with
interval type-2 fuzzy systems to identify the parameters of
the consequent part [26], [27]. The regression coefficients
(Ew and b) that weighs the linear SVR are obtained by
the training samples. To incorporate SVR with the interval
type-2 fuzzy system, the input for each data item as in (5) is
transformed to (6). The coefficients of rule consequents (Ew)
and b are computed using the linear SVR. For this purpose,
a library for support vector machines was used [28]. Then,
the output of support vector-based interval type-2 fuzzy sys-
tem (y′′) is obtained from (7) and (8).

Ex = [x1, . . . , xn] (5)

Ex ′′ = [qf1 + pf1, qf1x11 + pf1x11, . . . , qfrxrn + pfrxrn] (6)

y′′i = w0 +

n∑
k=1

(wixi) (7)

y′′ = q

r∑
i=1

fi y′′i

r∑
i=1

fi

+ p

r∑
i=1

fi y′′i

r∑
i=1

fi

+ b (8)

B. IDENTIFICATION OF INTERVAL TYPE-2 FUZZY SETS
WITH OVERLAPPING CLUSTERING CONCEPT
This section will introduce a novel method based on the
overlapping clusters concept in order to initialise the interval
type-2 membership function parameters. The FOU of an
interval type-2 fuzzy set can be defined by varying either
the mean (see Fig. 3) or the standard deviation (see Fig. 4)
of the Gaussian membership function. As the overlapping
regions between the clusters applicable to the latter approach,
the footprint of uncertainty is formed with fixed mean and
blurred standard deviations. Once the interval [σ1, σ2] is
determined, upper and lower Gaussian membership functions
are obtained as follows:

µ(x) = exp
[
−
(x − c)2

2(σ2)2

]
(9)

µ(x) = exp
[
−
(x − c)2

2(σ1)2

]
(10)

FIGURE 2. Stages of the proposed interval type-2 fuzzy system for the
prediction of peptide binding affinity.

The issues that need to be considered during the system
identification for a fuzzy system using clustering can be
found in [29].We considered finding interval type-2member-
ship function parameters with clustering methods such as the
soft clustering (e.g., fuzzy c-means clustering [30]) and the
crisp clustering methods (e.g., hard c-means clustering [31],
hierarchical cluster analysis [32]). Statistical characteristics
of clusters are used to identify the membership functions. It is
assumed that statistical information that characterises a crisp
cluster will involve more knowledge to identify an interval
type-2 membership function than the arbitrary initialisation.

After the cluster analysis was performed we used left,
right end points and centre of each cluster to define its
triangular membership function. Algorithm 1 outlines the
steps for finding the end points and the centre of upper and
lower membership functions using the overlapping clusters
concept. The proposed overlapping clusters method derives
the lower membership function from the provided upper
membership function approach [33], [34]. Fig. 5 illustrates
how the interval type-2 fuzzy sets are formed based on the
overlapping clusters as a single input-single output scheme.
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FIGURE 3. Footprint of uncertainty of an interval type-2 fuzzy set when
the standard deviation is fixed and the center is blurred.

FIGURE 4. Footprint of uncertainty of an interval type-2 fuzzy set when
the center is fixed and the standard deviation (std) is blurred.

FIGURE 5. Illustration of overlapping clustering concept used to identify
the end points of the interval type-2 membership function. FOU: Footprint
of Uncertainty. UMF: Upper Membership Function. LMF: Lower
Membership Function.

Overlaps between clusters are projected into one-dimensional
data points. Neighbour clusters located on either side of
the cluster identify the lower left and right end points.
As a result, these end points along with the cluster centre
define the parameters of the lower membership function.

Algorithm 1 Finding the End Points of the Overlapping
Clusters.
Output: upper and lower end points of the overlapping

clusters
set the number of clusters;
apply the clustering method;
obtain statistics of each cluster;
foreach cluster do

set upper left point = min(cluster);
set upper center = mean(cluster);
set upper right point = max(cluster);
initialize lower left point;
set lower center = mean(cluster);
initialize lower right point;
foreach neighbour cluster do

set condition left = evaluate statistical values
(min, mean and max) of the neighbour cluster to
find whether any of them is in the upper interval
[left point, mean];
if condition left then

set lower left point = select statistics value
found which is closer to the upper left point;

end
set condition right = evaluate statistical values
(min, mean and max) of the neighbour cluster to
find whether any of them is in the upper interval
[mean, right point];
if condition right then

set lower right point = select statistics value
found which is closer to the upper right
point;

end
end

end

Then, we converted each triangular membership function
(centre, left point, right point) to a Gaussian membership
function (centre, standard deviation). The corresponding
membership function may not be uniform on each wing. For
a non-uniform case, even though mean remains the same
for a Gaussian membership function, two separate standard
deviations are required; one representing the left wing, and
the other representing the right wing.

C. PEPTIDE BINDING AFFINITY DATASETS
A peptide consists of an amino acid sequence with a size
of approximately 10 residues long [35]. Peptide fragments
form binding with MHC class proteins as a cellular event.
pMHC complexes are translocated to the membrane of the
host cell where theymeet T-cells.When receptors of the T-cell
recognize pMHC complexes, they elicit an immune activity to
happen. These immune activities range from cytotoxic killing
to phagocytosis of the infected cell. One main difficulty for
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experimental peptide studies is that the amount of possible
peptides that can bind for a particular MHC class molecule
is extraordinarily large (≥ 500 billion) [36]. However, under-
standing how peptide-MHC class molecule interactions work
and finding their binding affinities are crucial for health
studies.

The proposed approach has been tested using the
peptide datasets that have been obtained from various
papers [37]–[40]. Each peptide dataset has been considered
as a task and organized in training and test datasets [10].
For Tasks III and IV, two separate testing datasets were used
even though training dataset remained the same. Table 1
lists the characteristics of the peptide binding affinity tasks.
Tasks I, III and IV consist of nona-peptides whereas Task II
consists of octa-peptides. Table 2 depicts the statistics of
the peptide binding affinity tasks. Sequence logo (position
specific amino acid frequency) representations of peptide
datasets are shown in Fig. 6.

TABLE 1. Characteristics of the peptide binding affinity tasks.

TABLE 2. Statistics of the peptide binding affinity tasks.

Amino acid feature databases such as the AAindex [41]
and CISAPS [42], contain many physico-chemical and
bio-chemical attributes of amino acids. Each descriptor in the
amino acid feature database has twenty different numerical
values along with their descriptions that correspond to

FIGURE 6. Sequence logo plots of Tasks 1-4. Training (left) and test (right)
peptide datasets are represented in position specific amino acid
frequencies.

FIGURE 7. Encoding of a peptide sequence as amino acid descriptors.
A) octa-peptide amino acid composition B) nona-peptide amino acid
composition.

each amino acid. However, previous studies usually use
643 descriptors which are mostly selected from the amino
acid feature databases. To be consistent, we have encoded
each amino acid in a peptide with 643 descriptors as shown
in Fig. 7. The number of total descriptors becomes 5144
(643×8) and 5787 (643×9) when octa-peptide sequence and
nona-peptide sequence are encoded, respectively.

III. RESULTS AND DISCUSSION
This section presents the experimental results of overlapping
clusters and support vector based interval type-2 fuzzy system
that conducted on peptide binding datasets to predict the
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FIGURE 8. The correlation between measured and predicted peptide binding affinities; the training set is the former and the testing set is
the latter.

real value of affinities. The stages of the proposed interval
type-2 fuzzy model are illustrated in Fig. 2. In our imple-
mented fuzzy model structure, type-2 fuzzy sets are in the
premise and rule consequents are crisp numbers. Interval
type-2 fuzzy sets of the proposed approach are determined
using the overlapping clusters concept. During the system
identification process of the fuzzy rule base, membership
function parameter values are characterized using different
clustering methods. The statistics found at the end of the
cluster analysis generated the upper and lower membership
functions of the interval type-2 fuzzy model. Additionally,
support vector regression is used to learn the parameters of
rule consequents. SVR not only enhanced the learning capa-
bility of the proposed model but also decreased the effects
of overfitting. For the defuzzification process, Biglarbegian-
Melek-Mendel method, which has the closed-form represen-
tation was used. We used grid search in order to find the SVR
and Biglarbegian-Melek-Mendel method design parameters
for the proposed interval type-2 fuzzy system.

Blind validation experiments were implemented to reveal
the accuracy performance of the proposed method. Each
peptide in both training and testing peptide datasets are
encoded into physico-chemical and bio-chemical descriptor
vectors. Then, the descriptors were normalized using min-
max scaling so that every descriptor varied in the range
between 0 and 1. When there is a large number of fea-
tures available, feature selection is often required in bioin-
formatics to get rid of irrelevant features, avoid overfitting
and provide an improvement in model performance [43].

As the encoded feature set became large (≥ 5000), a fea-
ture selection method (multi-cluster feature selection) is
considered to be used in this work [44]. Multi-cluster fea-
ture selection is an unsupervised feature selection method
that does not require labeled data and already used in
many bioinformatics applications [45]–[47]. We decreased
the high-dimensionality from many thousands to a few
hundred. We found 161, 247, 172 and 141 descriptors are
adequate to preserve a model for Tasks I, II, III and IV,
respectively. It is also found that amino acid polarity appeared
in the selected features of Tasks I, II and III as being the most
discriminative descriptor.

To be consistent in comparisons with similar prediction
methods, the coefficient of determination (q2) [48] and the
Spearman rank correlation coefficient (ρ) [49] were used.
Percentage improvement of the proposed model as compared
to the models found in this research domain (I1%) and to our
previous work (I2%) were computed as in (11).

I% = |
Model1 −Model2

Model2
| × 100 (11)

Table 3 reports the training and testing prediction
performances of the proposed method when hard c-means
clustering (HCM), fuzzy c-means clustering (FCM), and
hierarchical cluster analysis (HCA) were used to initialize
the membership grades of the interval type-2 fuzzy sets.
For all tested models, the number of clusters varied in
the range between two and four. The best predictive accu-
racy performances are achieved with FCM (three tasks) and
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TABLE 3. The prediction scores of the proposed method based on different clustering methods.

TABLE 4. Comparison of the results of the proposed method with respect to those reported in this research domain.

HCA (one task). As can be seen underneath the best mod-
els, their SVR (C and ε) and Biglarbegian-Melek-Mendel
method design parameters (q and p) were given. For all
tasks, we trained SVR with a linear kernel to obtain the rule
consequent coefficients of the proposed interval type-2 fuzzy
system.

The correlation between measured and predicted real value
binding affinities are shown in Fig. 8. The best models of the

proposed method (overlapping clustering and support vector
based interval type-2 fuzzy system) achieved higher accuracy
and significant increase in prediction performance than the
previously published methods [7], [8], [10] on unseen pep-
tides as shown in Table 4. As compared to the best predictive
methods (0.691, 0.746, 0.232 and 0.586) presented in the
literature, the proposed method resulted in better generaliza-
tion ability for all of them yielding an improved prediction
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accuracy of 4.1%, 1.3%, 58.2% and 12.5% for Tasks I, II, III
and IV, respectively. Additionally, as compared to our pre-
vious work (support vector based type-1 fuzzy system) [12],
the proposed method achieved an accuracy improvement in
prediction performance of 3.3%, 1.8%, 18.4% and 2.5% for
Tasks I, II, III and IV, respectively.

Defining fuzzy sets and the number of rules are the main
concerns in structure identification of a fuzzy system. The
formation of rules can be automated with the help of the clus-
ter analysis where each partition maps to a fuzzy rule. In clus-
tering, the parameter to indicate the number of clusters should
be preset before the cluster analysis is performed. However,
determining the exact number of clusters is a considerable dif-
ficulty.We performed a grid search to observe (from two to up
to seven clusters) to see the tendency of groupings within the
peptide binding affinity datasets. We found that mostly three
clusters are the natural number of the grouping of peptide
binding affinities when incorporated with the proposed inter-
val type-2 fuzzy system. The number of clusters we found
for the peptide binding affinity datasets also agree with the
fact that the number of membership functions should be ≤ 7
in each input domain for the practical design of an interval
type-2 fuzzy logic system [50]. This magical number is based
on a study [51] stating that keeping in mind more than 7± 2
objects at the same time becomesmore confusing for a human
and beyond his/her processing information capacity.

The utilization of overlapping clusters aimed for over-
coming the difficulties of parameter identification process
in an interval type-2 fuzzy system. When required, interval
type-2 membership function parameters can be further opti-
mised using a learning algorithm [52]. As the initialisation of
membership functions depend also the parameter values of
learning algorithms, the proposed initialisation process will
eliminate this necessity and lead a learning algorithm to focus
its ultimate purpose.

Finally, in this study we used Gaussian membership func-
tions as they are relatively easy to implement and require less
parameters, therefore have less assumptions. However, any
type of membership functions could have been used and these
will be implemented in future work and tested to see if they
offer any improvements over our current method.

IV. CONCLUSION
This paper presents a robust hybrid system that incorpo-
rates an overlapping clustering concept and support vector
regression for the design of an interval-type-2 fuzzy sys-
tem. This is one of the first studies where a support-vector
based interval type-2 fuzzy system is applied to a real
bioinformatics problem. The performance and robustness of
the proposed hybrid predictive models were demonstrated
over one of the most challenging problems in molecular
biology - the prediction of peptide binding affinity. The
analyses on four different case studies in the prediction
of peptide binding affinity have yielded better generalisa-
tion ability and higher predictive accuracy than those pre-
sented in the literature. This study has both biological and

computational implications: the predictive model has yielded
a number of useful biological characteristics of the peptides
(e.g. amino acid polarity) which could help analysis of pep-
tides with more appropriate binding affinities. In addition to
the development of a robust predictive model with applica-
tions in high dimensional datasets (rare in fuzzy system-based
studies), the study presents a successful implementation of
the overlapping clustering framework in the design of an
interval type-2 fuzzy system. As this framework can also help
determine initial values of the interval type-2 fuzzy system,
it could be further incorporated with any type of clustering,
machine learning and optimisation methods to help further
improve its outcome. Further research will be carried out
towards this direction.
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