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Asset management is concernedwith themanagement practices, technologies and tools

necessary to maximize the value delivered by physical engineering assets. IoT-generated

data are increasingly considered as an asset and the data asset value needs to

be maximized too. However, asset-generated data in practice are often collected in

non-actionable form. Collected data may comprise a wide number of parameters, over

long periods of time and be of significant scale. Yet they may fail to represent the

range of possible scenarios of asset operation or the causal relationships between

the monitored parameters, and so the size of the data collection, while adding to

the complexity of the problem, does not necessarily allow direct data asset value

exploitation. One way to handle data complexity is to introduce context information

modeling and management, wherein data and service delivery are determined upon

resolving the apparent context of a service or data request. The aim of the present paper

is, therefore, 2-fold: to analyse current approaches to addressing IoT context information

management, mapping how context-aware computing addresses key challenges and

supports the delivery of monitoring solutions; and to develop a maintenance context

ontology focused on failure analysis of mechanical components so as to drive monitoring

services adaptation. The approach is demonstrated by applying the ontology on an

industrially relevant physical gearbox test rig, designed to model complex misalignment

cases met in manufacturing and aerospace applications.

Keywords: internet of things, context information management, maintenance ontology, context sharing, physical

asset management

INTRODUCTION

Typical applications of internet of things (IoT) technologies amalgamate the ability to identify,
sense, compute, communicate and sometimes actuate, for the purpose of monitoring and remotely
controlling the environment (de Matos et al., 2020). According to a Statistica report. (2020), it is
predicted that the amount of devices with Internet connectivity will exceed 50 billion by 2030.
Such devices produce significant volumes of data which are communicated through networks, and
upon processing enable better informed decision making and actions. One method of handling
the high complexity of such volumes of data is by introducing context information management.
Context is a key aspect in the process of leveraging information concerning situations and enabling
applications to be adapted according to the perceived context (Pradeep andKrishnamoorthy, 2019).

Systems with context awareness are employed within IoT environments for the purpose of
sensing the operational environment and for delivering an appropriate response to both the user
and application (Perera et al., 2014). Such systems are capable of analyzing the data generated by
IoT devices, generating a high-level of semantic organization of data and then converting it into
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context information. This information is subsequently utilized in
determining an environment’s status so as to drive appropriate
responses. In general, the status of the environment is
determined by a combination of circumstances, including users,
applications, location, or devices (Abowd et al., 1999), which
constitute the context information. As IoT technologies become
more embedded in monitoring activities, there is a growing
necessity to manage their context information in industrial
environments. This entails gathering, modeling, reasoning, and
disseminating context in order to efficiently manage the data
generated by multiple devices and to ensure that they can
be effectively integrated into enterprise systems. Nonetheless,
data contributing to context information are often modeled
or processed within the narrow scope of isolated subsystems,
restricting interoperability. Moreover, even when similar systems
for collecting context are applied in distinct settings, information
is infrequently shared between them (Perera et al., 2014).

The ability to share context among different applications
is a critical necessity for the IoT, making data shared between
heterogeneous systems reusable in multiple applications
(Ramachandran and Krishnamachari, 2019). Context
information management has been recognized as a challenge
for relevant research and early on Bernardos et al. (2008)
developed a data fusion framework for context-awareness
systems that included the following stages: (i) Obtaining context,
(ii) processing context, (iii) reasoning and decision-making.
Perttunen et al. (2009) have surveyed popular context reasoning
and representation techniques and provided an overview of
the requirements for context representation, arguing that
such requirements were insufficiently covered in the literature
regarding the interplay between efficiency, expressiveness,
soundness, and completeness, with ontology-based approaches
achieved improved scalability and reuse compared to other
approaches. This finding is consistent with that of Bettini et al.
(2010), although scalability of on-line reasoning with a large
number of entities is raised as a significant challenge. This is the
case when dealing with data of significant complexity and scale,
as typically encountered in IoT applications (2020), making
it important that the semantics of IoT data are captured by
appropriate context modeling to gain valuable insights (Perera
et al., 2014).

Context information management has largely dealt with
the challenges of ubiquitous environments, as well as the
data heterogeneity and services scalability. Nonetheless, while
substantial research efforts have been devoted to context
information management in web-based, mobile and ubiquitous
computing, including IoT-enabled computing, little attention
has been given to translate these advances to tangible
progress in industrial monitoring services (Al-shdifat and
Emmanouilidis, 2018). Context modeling in the literature
is typically handled via ontologies. However, when dealing
with monitoring services in manufacturing environments,
developed approaches often lack expressiveness concerning the
representation of the domain knowledge. To address such needs,
this paper analyses requirements and produces a design for the
components required to develop effective context-aware systems
to enhance monitoring services in industrial environments. It

then presents the development of a context resolution service
focused on failure analysis of mechanical components so as to
drive monitoring services adaptation. The paper is structured
as follows. Section related work briefly discusses literature
related to context information sharing and ontologies in
maintenance and asset management. Section system framework
and methodology presents the system framework and the
ontology development process, based on established practice
and maintenance vocabulary standards. An instantiation of the
developed ontology is implemented for testing on an industrially
relevant test rig and is presented in section implementation on a
case study. Section results and discussion presents and discusses
the ontology design and its implementation, including examples
of context resolution results. The final section summarizes the
key contributions of the paper and suggests potential further
research pathways.

RELATED WORK

The following section presents a discussion on the basic concepts
in the field of context-aware systems including context, context-
awareness in IoT, the context information sharing, as well as the
ontologies in maintenance and asset management.

Context Information Management
The concept “context-aware” system was originally proposed
by Schilit and Theimer in 1994 stating that “A system is
context-aware, if it uses context to provide relevant information
and/or services to the user.” Other early works have defined
context as “any information that can be used to characterize
the situation of an entity, an entity is a person, place, or object
that is considered relevant to the interaction between a user
and an application” (Abowd et al., 1999). Abowd and Mynatt
(2000) specified the basic elements required for analyzing and
understanding context, namely the five Ws (what, who, where,
why, and when). According to Byun and Cheverst (2004), a
system is defined as being context aware if it is capable of
extracting, interpreting and using context information and its
functionality can be adapted to the prevailing context of use.
In the domain of asset and maintenance management, the early
definition of context by Abowd et al. (1999) can be adopted
and extended by specifying that context is relevant to the
asset and its hierarchy, the user, the production or service
business circumstances, as well as overall system and operating
environment aspects (Emmanouilidis et al., 2019). Despite the
generally acknowledged definitions of what is regarded as context
awareness, a standard format and representation of the concept
has not been established (Xu et al., 2014; Perera et al., 2015; de
Matos et al., 2017). Various researchers have determined different
typologies of context. Abowd et al. (1999) differentiated between
primary and secondary context, in addition to conceptual and
operational. Liu et al. (2011) stated that context can be classified
as user, physical or networking. Table 1 provides a summary of
the different approaches adopted for categorizing context.

According to Perera et al. (2015), the steps required for a
system to deliver context information are acquisition, modeling,
reasoning, and distribution which combined form the context
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TABLE 1 | Different context categorization schemes.

References Context categorization

Abowd et al. (1999) Who, Where, When What, and Why

Chen and Kotz (2000) User, Computing, Physical, and When

Henricksen (2003) Sensed, Static, Profiled, and Derived

van Bunningen et al. (2005) Operational and Conceptual

Chong et al. (2007) Computing, Physical, Historical, and Sensor

Rizou et al. (2010) Observable and Non-Observable

Liu et al. (2011) User, Physical, and Networking

Emmanouilidis et al. (2013) User, Environment, System, Social, Service

Valverde-Rebaza et al. (2018) Location and Social

lifecycle. In the acquisition step, the raw data are collected
from sensors, databases or the surrounding environment. In
the modeling stage, the data is brought into a particular
representation so it can be converted into input for the reasoning
stage. Various approaches have been described in the current
literature for the modeling process, including key-value pairs,
ontology, andmarkup schemes (Bettini et al., 2010; Snidaro et al.,
2015). The semantic processing stage in the context lifecycle
is the reasoning process, where different methods can be used
for inferring context, such as such as supervised/unsupervised
learning, rules, ontologies, probabilistic approaches, as well as
data aggregation and fusion mechanisms (Perera et al., 2015).
Hence, the context-awareness of a system is determined by its
ability to utilize the context acquired via the context lifecycle
to deliver beneficial information/services to users (Abowd et al.,
1999). Several context-aware systems utilize context purely for
decision support/making or direct distribution to the end user.
Nevertheless, certain systems allow context information to be
shared with other interested actors or subsystems. This is
defined as context information sharing and represents one of key
challenges in the field of context-awareness for IoT (Perera et al.,
2015; Boavida et al., 2016).

Industry 4.0 and Context Interoperability in
IoT
When considering IoT usage in industrial environments, the
term Industrial Internet of Things (IIoT), or simply Industrial
Internet, is employed, and is being considered as fundamentally
linked to Industrie 4.0 (I4.0) (Jeschke et al., 2017). Comprising
technologies such as IIoT, robotics/automation/control,
additive manufacturing, simulation, cloud-based computing
and platforms, industrial security, cognitive computing and
artificial intelligence, mobility and wearables, big data and
analytics, systems integration, augmented and virtual reality,
as well as smart and new materials, I4.0 gives rise to new
services and business models (Frank et al., 2019), driven by such
technologies. Product Lifecycle Management (PLM) systems
are particularly benefitting from such technologies to connect
physical assets and products, processes, data, people and business
systems (Keivanpour and Ait Kadi, 2019) exploiting product
embedded sensor and intelligence capabilities, including product

or process Condition Monitoring (CM) capabilities. Recent
developments in IoT technologies have led to a renewed interest
in context-aware computing. Context-awareness plays a central
role in defining what data needs to be collected and how to
be processed, as well as in determining what information and
services are required to be made available to a consumer of
data or services (Perera et al., 2014; Sezer et al., 2018). Context
management is considered to comprise context acquisition,
modeling, reasoning, and dissemination (Perera et al., 2014).
Table 2 summarizes surveys of IoT context-aware systems from
2010 to 2020.

Context information can be provided in various different
ways, including variations in format, length, type, and
representation of the data (de Matos et al., 2020). Hence,
there is a need to ensure that context sharing platforms
offer context interoperability. Context-relevant data can be
produced by IoT entities and context management needs
to be handled through a context management information
processing layer. This layer would be expected to handle context
data produced from multiple sources, including third-party
software. Therefore, context sharing functionality is facilitated
by a context sharing platform. The platform is capable of
creating semantic interconnections between domains via the
sharing of context information. As IoT environments can be
highly complex, context-sharing platforms must be capable
of dealing with a range of situations and implement service
adaptation mechanisms driven by context building blocks (de
Matos et al., 2020). These building blocks can be categorized as
Properties and Architectural Components. The former applies
to predominantly software aspects of context sharing platforms,
including Modeling, Reasoning, Dissemination, Processing,
Interoperability, Privacy, Scalability, and Availability, as shown
in Table 3.

Architectural considerations regarding enabling hardware
for the deployment of a context sharing platform, include
communication technologies, storage space, and processing
layers. Furthermore, some building blocks are strictly related to
the context sharing properties (e.g., Modeling, Reasoning, and
Dissemination), which are those that are specifically required
in industrial monitoring. There are a variety of different IoT
platforms, frameworks, services and middleware that are capable
of collecting, processing and analyzing sensor data. In this
regard, various researchers (Perera et al., 2015; Mineraud et al.,
2016; Sezer et al., 2018; Pradeep and Krishnamoorthy, 2019;
de Matos et al., 2020) have produced surveys of such IoT
platforms, frameworks, systems, prototypes, middleware, and
various different techniques and some representative examples
are listed in Table 4, showing also their context modeling,
reasoning, and dissemination features.

While all the approaches deal with some form of context
management, starting from acquisition and modeling, eventually
actionable context needs to be domain—specific. In the
application domain of asset and maintenance management,
context strongly depends on assets and their hierarchy. Unless
such context is captured, it is hard to convert IoT-generated data
from industrial systems to actions. Therefore, it is important to
create a representation that integrates qualitative and quantitative
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TABLE 2 | Summary of IoT context-aware system surveys.

Survey title Year Contribution References

A survey of context modeling and

reasoning techniques

2010 State-of-the-art in context modeling and reasoning in

pervasive computing.

Bettini et al., 2010

Context aware computing for the internet

of things: a survey

2014 Comprehensive survey and analysis of context awareness for

internet of things.

Perera et al., 2014

Engineering context-aware systems and

applications: a survey

2016 Context-aware systems and applications in engineering. Alegre et al., 2016

Internet of things: a review of surveys

based on context aware intelligent services

2016 A meta-survey of surveys on context awareness Gil et al., 2016

Context-aware computing, learning and

big data in internet of things: a survey

2018 Context awareness for IoT Sezer et al., 2018

The MOM of context-aware systems: a

survey

2019 Comparison of several context-aware systems Pradeep and

Krishnamoorthy, 2019

Context information sharing for the

internet of things: a survey

2020 Presented essential building blocks for the development of

context sharing platforms and reviewed the challenges and

open issues for such platforms.

de Matos et al., 2020

data, wherein data and service delivery is determined upon
resolving the apparent context of a service or data request. The
most common approaches to achieve this, as seen in Table 3,
is through ontology-based modeling. An ontology formally
represents knowledge through concepts and relationships that
exist in a specific domain and are a key construct of the semantic
web (Gayathri and Uma, 2018).

Ontologies in Predictive Maintenance and
Asset Management
As the manufacturing environment is becoming knowledge-
intensive and more dynamic, maintenance is becoming more
and more crucial in Asset Lifecycle Management. The use
of semantic technologies, particularly ontology-based modeling
for predictive maintenance, has become an important research
topic and thus many ontologies have been offered to promote
knowledge representation and reuse within the context of
predictive maintenance. Medina-Oliva et al. (2014) developed a
knowledgemodel for fleet predictivemaintenance to handle fleet-
wide contextual knowledge, arguing that fleet-wide Prognostics
and Health Management (PHM) requires a knowledge-based
system capable of handling contextual information. Thus,
decision-making processes for diagnosis and maintenance are
strengthened by semantic modeling, which deals the definition
of concepts and relationships between them. In another example,
an ontology was developed for the predictive maintenance in the
wind energy domain and used as a basis for the identification
and diagnosis of faults for monitoring the condition of wind
turbines (Papadopoulos and Cipcigan, 2010). The proposed
ontology model was used, by conducting ontology queries, to
detect potential failures and their specific locations in the gearbox
of the Wind Energy Converter (WEC).

When considering the manufacturing domain, it is of interest
to capture the functional impact of asset integrity level on the
actual manufacturing process. Castet et al. (2018) presented
an approach for capturing fault information in a modeling
environment using ontology of fault management and a set

of plugins designed to automatically extract two reliability
artifacts, the FMECA and fault tree. FMECA offers a sound
basis upon which to express the organizational and functional
association between a manufacturing asset hierarchy and its
linkage with the functional integrity of the production facility.
In the same year, Nuñez and Borsato (2018) conducted another
study proposing an ontological model called OntoProg, serving
as a widely agreed data and knowledge representation scheme
for diagnostic-oriented maintenance, capable of being used in
different types of industrial machines, and a set of SWRL
rules to improve the ontology’s expressiveness were suggested.
In another recent example of an ontology-based approach to
predictive maintenance, fuzzy clustering is employed to infer
the criticality of failures, while SWRL rules are employed for
predictive reasoning for the transition between states of different
criticality, without though applying context-specific modeling an
reasoning (Cao et al., 2019). Ontological approaches to support
maintenance management that employ industrial scenarios
have been developed for a range of assets, including urban
infrastructure (Wei et al., 2020), highway infrastructure (France-
Mensah and O’Brien, 2019), Building Information Management
(BIM) (Farghaly et al., 2019), transport infrastructure (Ren et al.,
2019; Li et al., 2020), and railway infrastructure (Dimitrova et al.,
2020). Table 5 summarizes of ontologies in maintenance and
asset management.

The review of the related research work reveals two
issues. Firstly, there is a missing link between knowledge
constructs and context-dependent operational reliability-based
services adaptation actions. Focusing on the asset context,
relevant domain knowledge can be modeled in many forms
but of particular interest are knowledge constructs relevant
to reliability analysis, such as Fault Modes, Effects (and
criticality) Analysis, FME(C)A. FMEA or FMECA models are
however often utilized as a design-stage engineering study.
Maintenance services, on the other hand, need to be invoked
during the operating time and, thus, relevant information
representations need to be enriched to enable dynamic context
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TABLE 3 | Context sharing concerns.

Context sharing properties Type Aim Implementation features References

Modeling (M) Properties Responsible for mapping context

into a predefined format.

Key-value, markup scheme,

graphical, object oriented,

logic-based, ontology-based,

and hybrid context modeling.

Chen and Kotz, 2000;

Perera et al., 2015

Reasoning (R) Properties Defined as the process to obtain

high-level information from less

enriched, or even raw data

Supervised and unsupervised

learning, rules, fuzzy logic,

ontology-based, probabilistic

reasoning.

Bettini et al., 2010;

Perera et al., 2015

Data Dissemination (D) Properties The context information is

shared to relevant entities

Static and dynamic. Perera et al., 2015

Privacy (P) Properties Data on the context includes

private data, such as User ID,

preferences, activities, and

location. Although these drive

context, privacy preservation

should apply.

Access control policies,

anonymization, cryptography.

Tiburski et al., 2015

Interoperability (I) Properties Heterogeneity of data requires

that different subsystems or

systems must be interoperable

Interoperability through format,

source, length, and

representation, and semantic

alignment

de Matos et al., 2020

Context Processing (CP) Properties It aims to obtain, produce, and

share context information to

service a data or service request

Searching, filtering, and

aggregation.

Lunardi et al. (2015)

Availability (AV) Properties The context must be always

available for possible sharing

Availability ensured via cloud

platforms or cached data

de Matos et al., 2020

Communication technologies (C) Architectural Components It refers to all equipment and

programs that are used to

process and communicate

information

Communication devices,

channels, and protocols for

external and internal networks

Doukas et al., 2015; de

Matos et al., 2020

History (Hi) Architectural Components Past data or inferred context

stored locally or over the cloud.

Locally or cloud—based de Matos et al., 2020

Architectural model Architectural Components Architecture can follow different

patterns to support context

sharing

Cloud-based, centralized-edge,

and decentralized-edge

de Matos et al., 2020

inference and the composition of contextually relevant services.
Secondly, existing predictive maintenance approaches in the
manufacturing domain are still limited to the deployment of
condition monitoring systems for identifying the failure mode
and effects analysis in mechanical components. Therefore, the
resolution of asset context is needed to analyse mechanical
systems and logically connect measurements, observed behavior
and intended function, with machinery operating condition
and faults. To this end, FMEA offers appropriate grounding
for the baseline of the knowledge mapping. According to
Keivanpour and Ait Kadi (2019), failure mode analysis based
on FME(C)A is recommended to ensure that maintenance
activities are consistent with established fundamental practice-
oriented knowledge. The following section presents an ontology-
based development to describe knowledge through concepts and
relationships that exist in a specific domain.

SYSTEM FRAMEWORK AND
METHODOLOGY

This section presents the design of a system framework
to develop a maintenance context ontology focused on

failure analysis of mechanical components so as to drive
monitoring services adaptation. The proposed ontology for the

context resolution mechanism is relevant to failure analysis of
mechanical components, and the terminology and relationships
between concepts are structured on the basis of relevant

standards with a reliability-oriented knowledge grounding. A
mechanism for reasoning is being utilized for the delivery
of context resolution and the obtained context can introduce
a metadata layer on data or events produced by either

automation or human-driven means. An example of 6health

management of rotating machinery is utilized to offer a basis

for the domain context, but the actual upper level ontology

expressiveness is such that can apply to a range of machines
by extending it through more specialized or application specific
detailed ontologies.

The ontology is being utilized for the storage of knowledge
relevant to fault diagnosis and reliability analysis through
monitoring techniques. Hence, it is possible to query which
type of approach for condition monitoring should be used
and in what manner. Thus, queries can be made about
what kind of condition monitoring technique that should be
used and how. Additionally, inferences can be drawn in the
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TABLE 4 | Comparison of context-awareness features of existing approaches.

Approach name Year Category Modeling Reasoning Dissemination References

Context Toolkit 2001 Toolkit Key-value (X) Provided but not mentioned Query Dey et al., 2001

Aura 2002 Middleware Markup Schemes Rules Publish Garlan et al., 2002

CoBrA 2004 Middleware Ontology-Based Rules, ontology-based Query Chen et al., 2004

CARS 2005 System Key-Value Un-Supervised (X) Provided but

not mentioned

Wilson et al., 2005

MoCA 2007 Middleware Markup Schemes,

Ontology-Based

Ontology-Based Publish, Query de Rocha and Endler,

2006

CoSM 2009 Model Ontology-Based Ontology-Based Dynamic Yamamoto et al., 2009

ConCon 2014 Middleware Key-Value Ontology-Based Static Madhukalya and

Kumar, 2014

RCOS 2016 Middleware Ontology-Based Ontology-Based Dynamic Dhallenne et al., 2016

PSW 2017 Model Ontology-Based Ontology-Based, Rules Dynamic Ruta et al., 2017

CoaaS 2018 Middleware (X) Provided but

not mentioned

Rules, Pro Dynamic Hassani et al., 2018

SCENTS 2019 Middleware (X) Provided but

not mentioned

Rules Dynamic Liu et al., 2019

TABLE 5 | Summary of ontologies in maintenance and asset management.

Survey Title Ontology

domain

Contribution References

A formal ontology for semantics in maintenance

platforms

Production system An ontology to produce new knowledge in the field of

industrial maintenance that supports decision-making in the

maintenance process.

Karray et al., 2012

Ontology-based implementation of an

advanced method for time treatment in asset

lifecycle management

Lathe machine Implemented a method for exploiting the characteristics of

time in maintenance asset lifecycle management (ALM)

systems.

Matsokis and Kiritsis,

2012

Ontology-based schema to support

maintenance knowledge representation with a

case study of a pneumatic valve

Pneumatic valve A methodology for knowledge representation using ontology

concepts is proposed to overcome the problems of

heterogeneity and inconsistency in maintenance records.

Ebrahimipour and

Yacout, 2015

A novel maintenance system for equipment

serviceability improvement

Manufacturing

machine

A maintenance system for real-time equipment that integrates

augmented reality (AR) for context-aware overlay of textual

and graphical maintenance instructions on the maintenance

scene.

Ong and Zhu, 2013

Context-aware recommendation for industrial

alarm system

A power

generation plant

An industrial alarm management system through semantic

web technology and machine learning techniques.

da Silva et al., 2018

Semantic data model for operation and

maintenance of the engineering asset

N/A Proposed a semantic data model for engineering asset

management, focusing on the operation and maintenance

phase of its life cycle.

Koukias et al., 2013

Context modeling with situation rules for

industrial maintenance

knowledge

gateway system

A knowledge modeling approach and a technical architecture

of a gateway system developed to support maintenance

personnel.

Aarnio et al., 2016

A research on intelligent fault diagnosis of wind

turbines based on ontology and FMECA

Wind turbine A method of intelligent wind turbine fault diagnosis based on

ontology and FMECA is proposed.

Zhou et al., 2015

Building an ontological knowledgebase for

bridge maintenance

Transport

infrastructure

“An ontology to achieve automatic rule checking and improve

the management and communication of knowledge related to

bridge maintenance.”

Ren et al., 2019

sense that it is possible to make a comparison between an
obtained value and specific thresholds based on relevant ISO
standards in order to determine whether the value can be
categorized as Good, Satisfactory, Alert or Alarm. Therefore,
if the recorded value is considered to be in the Alert
category, the system diagnoses that a failure could occur and
a maintenance notification is issued for the machine indicating

that intervention is required. Subsequent to the identification
of an alert notification, it is then necessary to connect it with
diagnostic information of the mechanical part being investigated,
which will allow the failure mode and the potential causes to
be determined.

Nonetheless, such simple threshold-based rules often fail
to apply in practice and in view of that the ontological
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approach does not seek to replace actual diagnostics techniques,
which may involve far more efficient and sophisticated data
processing. Instead it acts as a meta-layer of knowledge to drive
services adaptation, and as such could work in synergy with
other techniques of data processing and condition monitoring
approaches. The intended end result is that the proposed
maintenance intervention is more directed, and tailored to
the apparent context of a situation. The process was applied
as follows:

• A concept knowledge base is established and created on the
basis of the professional expertise of mechanical engineers.
The fundamental concept knowledge pertaining to the domain
of condition monitoring is founded on professional expertise,
associated studies and standard specifications. Extraction
and representation of the necessary signal functions is
then performed.

• The knowledge is then transformed into ontology and SWRL
rules. The ontology editor Protégé 5.5 along with its plugins
(e.g., SWRL editor) are utilized in this stage.

• Implicit knowledge is extracted from the knowledge base by
the ontology management system according to the SWRL
rule engine.

• Identification of the source of the vibration is performed
using the obtained signal as input and then conducting Pellet
reasoning. Figure 1 provides more details about the system.

Maintenance Ontology Development
The development of ontology can be based on one of the
numerous procedures described in the literature, including
Uschold and King, Grüninger and Fox, Methodology, Ontology
Development 101 (Noy and McGuinness, 2001) (OD1) and
KACTUS. The OD1 is utilized in this study as it is broadly
employed (Gong and Janssen, 2013; Lau et al., 2014; Nuñez
and Borsato, 2018; Ren et al., 2019), has been demonstrated
to be highly appropriate for maintenance modeling, and
has been extensively documented for application in the
Protégé environment.

The OD1 initial step is to determine the scope and domain. In
this phase, the focus of the maintenance ontology is on modeling
failure analysis of mechanical components to answer queries
regarding how faults manifest themselves and how they can be
prevented or addressed, so as to adapt relevant diagnostics or
maintenance actions in a Condition-Based Maintenance setting.
Therefore, the domain of the model is Maintenance.

The next OD1 steps are to consider reuse and enumerate
terms. In this regard, ontological models developed by other
researchers should be considered to determine their adaptability
to the current research proposal such as those proposed
in Nuñez and Borsato (2018), Sanislav and Miclea (2015).
Moreover, this phase involves the enumeration of all terms
pertinent to the area of the ontology being developed.
Therefore, the main terminology and the associated definitions
are based on consolidated academic literature and mostly
on established international standards, such as condition
monitoring, diagnostics and maintenance (ISO, 2012, 2017),
vibration analysis (ISO, 2018), failure analysis (IEC 6030

0–1, IEC 6030 0-3-1), monitoring parameters: (ISO, 2011),
asset management (ISO, 2014), and MIMOSA (www.mimosa.
org) standards.

In the next phase, all classes and sub-classes are classified
following a top-down approach. It starts with the most
general definition of a domain concept and then continues
with the more specialized concepts. In this context, the main
class is of the Maintenance Ontology includes the subclasses
Asset, FMEA_Technique and ConditionMonitoringParameters.
Every such class has its own subclasses for example, subclass
FMEA_Technique has subclasses: FailureEffect, FailureMode,
PotentialCause, and Symptom. An example of class hierarchy is
shown in Figure 2A.

The next steps in this process include the design of entities
and properties. Entities are all the subjects of the studied
domain; properties are verbs that clarify the relations between
subjects and objects, or between-subjects themselves. Subsequent
to defining the class hierarchy, it is important to determine
the class relationships. They need to be accompanied by three
distinct types of properties: object properties, data properties.
The object attribute explains the associations among distinct
classes. The data property explains the properties of certain
occurrences both quantitatively and quantitatively. Figures 2B,C
show the aforementioned object properties, data properties. The
final stage is to create specific individual class instances within
the class hierarchy, which involves: (1) selection of the class, (2)
creation of an individual occurrence of the class, and (3) filling
slot values. These instances are used in the representation of
particular elements. Figure 2D presents class individuals.

Along with identification of the procedure that has been
adopted, the development of ontology models requires tools that
can support all activities in the development process. Such tools
include TopBraid and OntoStudio, as well as open ones, such as
the popular OntoEdit, HOZO and Protégé. Specifically, Protégé is
the most dominant ontology publisher due to the fact that it is an
open platform that offers plug-in extensibility as well as XML (S),
OWL, RDF (S), and Excel support, along with graphic taxonomy,
queries in SPARQL, rules in SWRL language, and a reasoner
(Pellet). The combination of OWL/SWRL provides a more
flexible ontology language for modeling knowledge domains
with a greater degree of expressiveness than using OWL alone
(Lawan and Rakib, 2019). The SWRL is a W3C recommendation
that extends horn-clause rules to OWL. OWL has demonstrated
significant expressive powers over other ontology languages as
the recommended ontology language for the semantic web.
While OWL ontologies provide simple, reusable and easy to
understand domain knowledge models, they lack the declarative
expressiveness offered by rules developed in SWRL.

IMPLEMENTATION ON A CASE STUDY

The applicability of the developed ontology model is shown
by utilizing a real physical asset. Gearboxes have broad
utilization in numerous applications such as machine tools,
industrial devices, conveyors and essentially any form of
rotatory power transmission equipment in which the torque
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FIGURE 1 | Prototype framework.

FIGURE 2 | Ontology classes, object property, data property, and individuals. (A) Classes. (B) Object property. (C) Data property. (D) Individuals.

and speed requirements need to be changed. If such devices
fail, the results can often be catastrophic accidents with
serious consequences. Therefore, a proactive approach must
be adopted that enables such components to be monitored
in real-time utilizing predictive maintenance methods (Khan
et al., 2019). In the present study, the technique of vibration

analysis is approached. Techniques used for assessing the health
of components based on vibration are regarded as applicable
for numerous reciprocating and rotating machines (Giurgiutiu
et al., 2001; Bajrić et al., 2011). A laboratory-based test rig
was employed and data was collected from its operation, and
maintenance records. This has been designed for emulating
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FIGURE 3 | CAD rendering of drive system and bearing locations.

complex cases of misalignment, relevant to manufacturing and
aerospace engineering assets.

In order to capture the operational health of the machine, the
test rig must be analyzed, allowing for an understanding on how
to best capture the degradation effect on the test machine. As
stated in ISO/FDIS 17359:2002(E), which details the flowchart
for starting the condition monitoring process, the start is to
choose the machine components in the maintenance ontology.
Then, the necessary functionality of each of the components
is explained for the machine to operate correctly. Additionally,
all failure modes, effects, causes, symptoms and measurement
approaches pertaining to the machine components are inputted
utilizing the FMEA method. Subsequently, the implementation
of the FMEA method indicates the most suitable measurement
locations and their limits for the measurement of values by
employing the vibration analysis method for prediction, which
are based on ISO (2002), ISO (2016), and ISO (2009). The
most pertinent components along with the most appropriate
measurement methods are identified by utilizing the FMEA
classification, which assigns weights according to the highest
severity (SEV), occurrence (OCC), detectability (DET), and risk
priority number (RPN).

Failure Mode and Effect Analysis
Asset context must be resolved for the analysis of mechanical
systems and to establish logical connections between
measurements, perceived behavior and the desired functionality,
and the operating health and defects. In this regard, Fault Modes
and Effects Analysis (FMEA) provides a suitable basis for the
baseline of the knowledge mapping (IEC, 2018) due to various
reasons. First, the qualitive components renders it suitable for
the abstraction of maintenance knowledge focused on reliability.

Second, the quantitative component allows maintenance tasks
to be prioritized on the basis of measurements conducive to an
approach based on risk. Third, its bottom-up structure allows
failure to be assessed starting from the basic level of production
systems; in other words, data are analyzed from machinery
parts through to the overall system. The initial stage involves
the determination of the specific aspects of the machine that
have the potential to fail and then to comprehend the causes
and effects of such failures (FMEA). Based on the study, it
will become apparent where the data will be most accurate
in highlighting the degradation of the machine being tested.
Alongside the misalignment testing carried out on the machine,
the rig can test the effects of loading through the dynamometer
and the subsequent effects that loading will have on the system
(Figure 3). Based on the FMEA Table 6 (del Castillo et al., 2020),
the most frequent outcome of misalignment of the gearbox
will be vibration and power transfer loss through gearbox,
as revealed by the RPN values. Subsequently, the vibration is
spread across the machine and is most pronounced in specific
locations, namely the bearings, and it is possible to easily capture
the transfer loss by calculating the RPN difference between the
driving motor and the loading dynamometer. As determined by
the FMEA analysis, the two potential failures that are identified
as having the greatest level of severity if misalignment or
loading occur in the system are degradation of the gear teeth
in the gearbox (RPN 150) as well as the bearing degradation
(RPN 140).

Wearing of the teeth is generally caused by misaligned gears,
excessive loading and lastly, a lack of lubrication. Degradation
of the bearings is caused by wearing of the teeth in the gears
as well as the impact of gear vibration being transferred to the
shaft and then to the bearings. If the shaft of the gear is short
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TABLE 6 | FMEA of test rig.

Item (ID) Function

(requirements)

Failure

mode

Failure effects SEV Failure causes OCC Mitigation DET RPN

Bearing “To achieve a smooth,

low-friction rotary

motion or sliding action

between two surfaces”

Abrasive wear Reduce fatigue life and

misalignment in the

bearing

6 lubricant condition, grease

degradation, and improper

isolation

4 Lubricant inspection

and proper isolation,

Monitor Shaft

alignment

4 96

Bearing

seizure

Crack formation on

rings and balls or

rollers—Skidding

4 Inadequate heat removal

capability—Loss of

lubricant—High

temperature—Excessive

speed

3 3 36

Noisy bearing Surface fatigue—

Glazing—Microspalling

of stressed surfaces

4 Loss of lubricant—Housing

bore out of

round—Corrosive

agents—Distorted bearing

seals

3 2 24

Fatigue

(Spalling)

Bearing failure 3 Excessive loading (cyclic),

misalignment

5 1 15

Vibration Scuffing—Fretting—

Pitting of

surfaces

7 Misalignment—Housing

bore out of round—

Unbalanced/excessive

load

4 5 140

Gear “To transmit shaft

power on

predetermined or

designed angular

velocities”

Tooth wear Loss of rotation

transfer, eventual gear

vibration, noise

6 Contaminants in the gear

mesh area or lubrication

system

5 “Lubricant inspection,

Regular inspection

surface sanding”

5 150

Scuffing Wear and eventual

tooth failure

5 Lubrication breakdown 2 4 40

Tooth shear Fracture 6 Tooth failure 2 3 36

Spalling Mating surface

deterioration, welding,

galling, eventual tooth

failure

4 Fatigue 1 2 8

Root filet

cracking;

Tooth end

cracks

Surface contact fatigue

and tooth failure

5 Tooth bending fatigue 2 2 20

Pitting Tooth surface damage 6 Cyclic contact stress

transmitted through

lubrication film

2 2 24

The bold values refer to components of high significance (RPN) in failure analysis.

and hard, and the bearings are situated in close proximity to the
center where meshing of the gears occurs, this can be a source
of vibration, which can be measured by placing sensors at the
bearings as shown in Figure 3.

RESULTS AND DISCUSSION

The aim of ontology-based context modeling is to produce
a semantic organization of data so as to drive maintenance
services adaptation. When users interact with systems in this
regard, the proposed maintenance ontology can help them (e.g.,
maintenance engineers) to narrow down the list of options by
providing answers to questions such as:

• What are the common failures and diagnostic approaches for
a given machine type?

• Which physical parameters to measure/use?

• What is the recommended preventive or corrective action for
a specific failure mode of an asset?

An example of a typical utilization scenario is that during
condition monitoring queries could be raised to resolve the
monitoring service context. For instance, this could be related
to determining the failure modes of a part, the functional effect
of a defect on the operation of the test rig, the measurement
alternatives suitable for specific defects and parts, in addition
to the relevant measurement parameters. In the context of the
present study, SPARQL queries were designed for the resolution
of these queries. SPARQL additionally allows the federation of
queries across different sources of data. By applying the following
query, it is possible to determine “what are the main components
of the Test rig?”

Figure 4 shows the results of a query to identify the main
components of an asset type. These components are bearing,
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FIGURE 4 | Query result to identify the main components.

coupling, lubricant, rotor, seals, and shaft. Moreover, the present
implementation allows a query in the maintenance ontology
to resolve key analysis characteristics, such as components
function, failure modes, causes, and effects. This query can
be useful to a maintenance engineer in order to link faults
to functional impacts, and other information to ensure the
correct identification of the component being analyzed as shown
in Table 7.

Another query can be applied based on FMEA to answer
what are the common gearbox problems and diagnosis methods.
For example, problems that arise in relation to gearboxes are
misalignment, lubrication issues, bearing problems, gear teeth
defects, thermal instability, and torsional and lateral vibration.
Considering that the test rig under study was designed to
study complex cases of misalignment in industrial machinery,
the focus here will be on misalignment cases. Misalignment in
gearbox arrangements can cause gear and bearing pitting, which
eventually leads to complete failure. It may lead to vibrations
and excessive loads that harm functioning components of the
machine, such as bearings and oil seals. It is therefore important
to detect and fix such issues to avoid incurring any unnecessary
costs. As shown in Figure 5, this can take four forms: Axial
misalignment; Offset or Parallel misalignment, when the centers
of shafts are on different lines; Angular misalignment, when a
motor shaft is at an angle to a driven component shaft; and
Combination misalignment, when both angular misalignment
and parallel misalignment occur.

After identifying the common gearbox problems, then it
is important to identify parameters to be measured for fault
detection. The developed ontology links physical measurement
entities with appropriate measurement techniques. This allows
to associate common faults with the physical asset and to match
themwith parameters or techniques appropriate for detecting the
occurrence of such faults. For example, a component that has
high significance in failure analysis is the bearing (Table 8). A
critical failure mode is gear tooth wear and the typical failure
effects for this is partial tooth contact (Misalignment). Another
query can be applied to determine failure modes, failure causes,
failure effects, symptoms, and fault severity (SEV), but also to
determine the faults with highest diagnostic potential (DGN) or
faults which pose the highest impact risk. SEV and DGN scale
from 1 to 10, with the higher number representing the higher
seriousness or risk and an appropriate query can return the faults
with the highest DGN (Table 8) or risk. Therefore, parameters
such as SEV, DGN and DET from the FMEA technique can
be used within the ontology model to enable queries which
in turn can identify components or processes of priority for
maintenance actions.

Real data collection from the shop floor or simulated data
(with “hasCurrentValue” data property) can be used to infer
the component’s health status and trigger alerts for decision
making, such as the prognosis of a failure and the scheduling of
Condition Based Maintenance (CBM) actions. In this regard, the
SWRL language is being used in object properties to construct
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TABLE 7 | Function, failure mode, failure cause, and failure effect for test rig.

Component Function Failure

mode

Failure cause Failure effect

“Shaft” “It has the ability to

translate in its axial

direction, thereby

changing the gear”

Misalignment1 “Angular misalignment of shaft due to

mounting incorrect”

Abnormal temperature rise and

excessive loading

Corrosion “Bearings exposed to corrosive

environment”

Increased vibration and noise

“Lubricant” “Lubricating the teeth

and bearing / removing

heat generated from

operations”

Lubricant

Degradation1

“Loss of lubricant, contaminated lubricant,

aged lubricant, lubricant system failure,

blocked lubrication filters, leakage”

Components failure and

environmental pollution

“Bearing” “To achieve a smooth,

low-friction rotary

motion or sliding action

between two surfaces”

Fatigue “Fatigue in rolling bearing parts by housing

misalignment”

bearing failure

Wear_1 “Lubricant condition, grease degradation,

and improper isolation”

Sound_1

Vibration “misalignment” Crack propagation

“Motor” “Motors convert

electrical energy into

mechanical energy”

Overheating “Cooling system failure, Temperature

above limit, Temperature sensor failure.”

UnableOperateMachine_1

Shaft failure “Overloading, fatigue, misalignment” Halt generator operation and

Increased vibration

Bearing failure “Bearing fatigue, Improper lubrication,

lubricant contamination from dirt,

abnormal vibration.”

Increased vibration and noise

FIGURE 5 | Types of shaft misalignment adapted from Khan et al. (2019).

transitive rules (Nuñez and Borsato, 2018) and new connections
are applied to the classes that allow assertion inferences to
be improved. In this way the ontological approach becomes
scalable: specifically SWRL built-ins (SWRLb) allow further
extensions within a taxonomy. This greatly enhances the model
by allowing multiple arguments according to specific real-
world requirements, enabling greater expressiveness of OWL 2
languages. A transitive property is considered in cases such as:
if subclass Component Type (C1) has object property has Mode,
and subclass Failure Mode (FM) has object property has Cause

(CA) related to subclass Potential Cause (PC), then subclass
Component Type (C1) has the object property has Cause (CA)
related to subclass Potential Cause (PC). Then the SWRL rule is:
has Mode (?C1, ?FM1) Failure Mode (?FM1) Component (C1)
Potential Cause (?PC1) has Cause (?FM1, ?PC1)—> has Cause
(?C1, ?PC1). As part of the SWRL rules within the suggested
ontology, (ISO, 2009) is utilized for the evaluation of the data
gathered from the vibration measurements and analysis. The test
rig employed in the pilot example is regarded as a mid-level
asset in an asset hierarchy that includes a rolling-element bearing
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TABLE 8 | Query outcome for failure mode with highest DGN.

Component type Failure mode Failure effect Failure cause Symptom SEV DGN Technique

Rolling bearing Tooth wear Partial tooth

contact

(Misalignment)

Tooth failure Vibration 3 4 5 Vibration analysis

(lower level in asset hierarch) that includes an accelerometer
acting as a transducer in the data collection process. The resulting
assessed parameters can be for example the velocity of the
vibration in RMSmm/s, with themeasurement sites as defined by
standard MIMOSA VB-00, while the operating zone limits based
on the (ISO, 2009) standard. To determine the machine’s health
status and recommended actions, the followingmain SWRL rules
are set:

• Component Health (?CH1, ?E), equal(?E, “Good”),
Measurement Location(?M1) -> has Warning(?CH1,
“Collect new data in 1 month”).

• Component Health (?CH 1, ?F), Measurement
Location(?M1), equal(?F, “Satisfactory”) -> has
Warning(?CH1, “Collect new data in 2 weeks”).

• Component Health (?CH 1, ?H), Measurement
Location(?M1), equal(?H, “Alert”) -> has Warning(?CH1,
“Schedule Condition-based Maintenance”).

• ComponentHealth (?CH 1, ?I),Measurement Location(?M1),
equal(?I, “Alarm”) -> has Warning(?CH1, “Turn off

the machine”).
• Has Health (?CH1, ?E), equal(?E, “Good”), Measurement

Location(?M1) -> is Caused By (?CH1, “NoMisalignment ”).
• Has Health (?CH1, ?F), Measurement Location(?M1),

equal(?F, “Satisfactory”) -> is Caused By (?CH1, “Loss
of lubricant - Housing bore out of round - Corrosive

agents—Distorted bearing seals”).
• Has Health (?CH1, ?H), Measurement Location(?M1),

equal(?H, “Alert”) -> is Caused By (?CH1, “Excessive
loading (cyclic), misalignment ”).

• Has Health (?CH1, ?I), Measurement Location(?M1),
equal(?I, “Alarm”) -> is Caused By (?CH1, “Misalignment—

Housing bore out of round—Unbalanced/excessive load”).

Let’s assume that when the data for the rolling bearing part
exhibits an RMS mm/s value between zero and ≤2.3, then it
should display a “good” notification. When values that exceed 2.3
but are below 4.5 are detected, it should display a “satisfactory”
notification; a value between 4.5 and 7.1 should trigger an
“alert” notification, and values in excess of 7.1 should cause an
“alarm” notification that will instantly terminate the machine
operation. Given this, let’s assume that a value of 4.7 mm/s RMS
is recorded. This is fed through the ontology, activating the Pellet
plugin reasoner in the Protégé ontology editor. The outcome
will be that the component’s health will be inferred to be set as
“Alert,” producing a recommendation to “Schedule Condition-
based Maintenance. Moreover, once an ALERT warning has
been issued, it is then important to associate it with the
diagnostic information of the analyzed mechanical component,
associating the identified the failure mode with potential causes
(Figure 6). In this way, the maintenance intervention becomes

context-depended and is therefore more focused and relevant to
the identified context of the monitoring situation.

While simple single-parameter threshold-based rulesmight be
easy to interpret, they do not often hold in practice. Instead, more
complex multi-parameter rules are more likely to apply. The
reasoning process can replace simple rules with the activation of
more complex decision functions which may be produced as a
result of machine learning over monitoring historical data. The
value of the described process is that it sits at a higher level
of abstraction and can therefore work with different lower level
computational rules.

CONCLUSION AND FURTHER RESEARCH

This paper presented the development of a context resolution
service mechanism for industrial diagnostics, based on the
design of a maintenance ontology focused on modeling and
reasoning failure analysis of mechanical components. The
maintenance ontology has been developed employing established
methodologies and upon consulting a range of domain-
relevant international standards. The ontology development
was further applied on a physical mechanical transmission
test rig. Thus, queries could be raised in terms of the
resolution of the monitoring service context to determining
the failure mode and its potential causes of the test rig, in
addition to the relevant measurement parameters. Moreover,
SWRL reasoning rules were used based on (ISO, 2009)
for the evaluation of the data gathered, the prognosis of
failure is being performed, sending a maintenance message
for intervention in the machine. In this way, the maintenance
intervention is more directed, ceasing to be exploratory. This
highlighted the need for handling the whole context information
management lifecycle and ontologies in maintenance and asset
management to maximize the value delivered by physical
engineering assets.

The outcomes of the work can be used in other industrially
relevant application scenarios to drive maintenance service
adaptation. While the application focus is quite specific, the
ontology abstraction level is actually such that it could also
be implemented on other application cases, as it offers a
sound baseline for further customization or extensions. When
serving different application scenarios, the derived abstract
model developed with the process described in section system
framework and methodology still holds, as the employed
terms and relationships were developed employed established
standards. However, after going through a similar process
for deriving the application-specific part of the ontology as
described in section implementation on a case study and
the developed queries, as described in section results and
discussion, additional needs can be identified, which may require
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FIGURE 6 | SWRL rules for generating warning and potential causes.

the inclusion of additional entities, relationships, and queries
development. This will be determined by going through an
ontology assessment and evaluation cycle in the context of
the new application scenario, especially regarding the ontology
expressiveness and coverage. Nonetheless, this will affect largely
lower abstraction level terms, rather than upper hierarchy
classes and associated object or data properties. For example
asset types and their associated terms if need be may be
complemented by additional asset types. The higher level classes,
object properties, and data properties will retain the structure
of Figures 2A–C but the population of lower tier terms and
individuals for such class structures will need to be developed
for the additional asset types, as typically holds in managing
ontologies. However, the example reasoning rules presented in
Section results and discussion can be re-used but can be extended
with additional ones to cover the coverage and expressiveness of
the updated ontology.

Consequently, further research should be carried out to link
the current ontology implementation with a live condition
monitoring service, as well as to apply it to real industrial
environments as an enabler of more efficient IoT-enabled
monitoring services.
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