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Abstract

One of the main concerns in developing large wind turbines, especially offshore, is

their cost-effectiveness versus traditional power sources. Significant dynamic loads

are applied to the tower and the foundation of a multimegawatt wind turbine. Any

reduction in the loads can reduce the size of the structure and, consequently, the tur-

bine's cost. In this paper, a novel structural control application is proposed to mitigate

the transmitted vibrations to a multimegawatt turbine tower to decrease the tower

base shear forces and overturning moments. For this purpose, a hybrid passive/active

gyro stabilizer is designed and incorporated into the NREL baseline 5-MW wind tur-

bine. Furthermore, two controllers, including a proportional integral differential (PID),

as the baseline controller, and a nonlinear fuzzy logic controller (FLC) as the main and

nonlinear controllers, have been designed and implemented to the turbine model.

The structural control systems are implemented into the turbine model by

cosimulating ADAMS and Simulink. The results reveal that the application of the pro-

posed stabilizer can significantly reduce the overturning moment at the base of the

tower compared to the reference NREL 5-MW model.
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1 | INTRODUCTION

Global warming and air pollution due to fossil fuels encouraged governments to invest in renewable energy sources in recent years. Wind energy

has been the fastest growing renewable energy source globally in the past two decades.1–3 Many countries across the globe, from Asia to

America, have invested in wind energy. The US Department of Energy (DOE) has investigated a roadmap for 35% annual energy supply by wind

energy by 2050.4 Despite short- to medium-term challenges, wind energy will be a viable energy source in the 21st century.

The major drawback of wind energy relative to traditional energy sources is its relatively high cost per kilowatt hour. Wind resources are

abundant offshore where the wind is more robust and steadier than land-based wind farms. However, offshore wind farms' deployment, espe-

cially in deep waters, is considerably costlier due to the higher cost of foundation, installation, and the required infrastructure to transmit the

power to the network. The foundation cost is the most significant single component of the total cost for an offshore wind turbine. Additionally,

the foundation has its own installation cost. Any decrease in the foundation size and cost can have a considerable effect on the overall cost of a

wind turbine system.5 According to a US DOE study, the substructure and foundation cost comprises 29.5% of the total cost in a floating offshore

wind turbine.6
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The cost of a foundation for a turbine could be reduced by decreasing the overturning loads applied to the base of the tower. Large-scale

wind turbines are tall structures under various ambient and nonambient excitations ranging from the rotor trust force to seismic and wave loads

applied to the foundation. In these structures, the stability of the structure and the maximum deflection and overturning moments are primary

concerns that must be considered in the design phase.

Structural control systems can efficiently reduce the transmitted vibrations to tall structures such as wind turbines. Structural control systems

fall into three categories: passive, semi-active, and active control systems.

In the passive structural control systems, ranging from base-isolation to tuned-mass-damper (TMD) system, tuned liquid column damper

(TLDC), and pendulum systems, no external energy is injected into the system. These systems aim at reducing the transmitted energy to the struc-

ture by isolating the system from disturbance using a vibration-absorbing mechanism or merely dissipating the transmitted vibrations via a damper

(friction and viscous dampers). However, as the vibration absorbing systems' performance depends strongly on their tuning frequency, usually,

the structure's fundamental frequency, the mitigation of vibration of higher flexural modes is neglected. The performance of these systems is con-

fined to a very narrow frequency band.

On the other hand, in the semi-active structural control systems, the system's damping or stiffness are controlled parameters. The advantage

of semi-active suspension systems is their low energy consumption.

Finally, an active structural control system refers to modifying the structure's response via a controlled force or moment in a closed-loop con-

trol system. Among the mentioned systems, the active structural control systems are the most effective ones due to their wide range of operating

frequency and efficiency at attenuating the structure's transmitted vibrations. Nevertheless, these systems suffer from high cost and high energy

consumption, making them inappropriate for some applications.

The loads applied to a wind turbine structure, and its foundation, could be reduced by using structural control techniques. To this end, the

application of a few structural control systems for mitigating wind turbine vibration has been studied by some researchers. However, most of the

previous works have been focused on the passive and semi-active structural control systems.

Lackner and Rotea7 and Stewart and Lackner8 studied the effect of a one degree-of-freedom (DOF) passive TMD to decrease the vibration

on the NREL baseline 5 MW wind turbine. Fitzgerald et al9 investigated the effect of an active TMD to control the in-plane vibration of wind tur-

bine blades. They used the NREL 5-MW turbine to build a coupled model and reported that the active TMD effectively decreased the blade's

vibrations. In another effort, Dinh and Basu10 investigated the effect of passive single and multiple TMDs to control the vibration of a wind

turbine tower and Spar-type floating wind turbines. The TMDs were placed in the spar. They reported that TMD placement in the spar reduced

the vibration more effectively compared to a turbine with TMD in the nacelle. Gassempour et al11 developed an omnidirectional TMD to reduce

the vibration in a monopile offshore wind turbine. They showed that due to the structure's nonlinearity, the conventional approach of turning the

controller parameters based on the natural frequency of the platform might not be an accurate method to dissipate vibration under normal wind

turbine operating conditions. Jahangiri and Sun12 studied the possibility of using a 3-D pendulum TMD in enhancing the structural integrity of a

monopile offshore wind turbine. They also suggested harvesting electricity from the dissipated energy. Jie et al13 did an experimental study of a

ball vibration absorber placed on the top of a scaled wind turbine model in decreasing the vibration of the tower top and the loads applied to the

base of the tower. Si et al14 studied TMD's effect in decreasing a spar floating platform's vibration. They reported that TMD is more effective

when placed in the upper part of the spar platform. Zuo et al15 proposed using multiple TMDs to control a wind turbine tower's vibrations from

the fundamental and higher modes of offshore wind turbine towers under the combined wind, sea wave, and earthquake excitations. Their study's

main objective was to compare multiple TMDs versus using a single one in controlling the vibrations from various sources of excitation.

Sarkar and Fitzgerald16 investigated using a passive tuned mass-damper-inerter (TMDI) to control vibration in the tower of a spar-type float-

ing offshore wind turbine. They showed that the TMDI has considerable advantages over the classical TMD. They reported a substantial reduction

in the tower vibration in both fore-aft and side-to-side directions under normal and extreme wind and wave conditions. Hu et al17 proposed an

inerter-based structural control system, consisting of a parallel connection of a spring, a damper, and an inerter-based network to mitigate loads

in a barge-type floating offshore wind turbine induced by wind and wave. Ma et al18 introduced a tuned heave plate inerter (THPI) to control

heave vibrations in semi-submersible platforms which they showed would outperform a conventional THP This system can potentially be used in

offshore wind turbines.

Some efforts have been focused on developing TLCD. Colwell and Basu19 considered both wind and wave loads on an offshore wind turbine

and reported that TLCD could reduce vibration and improve fatigue life significantly. Karimi et al20 proposed placing a valve-controlled TLCD at

the top of a wind turbine tower to decrease its vibration. In more recent work, Buckley et al21 studied the effect of TLCD both analytically and

experimentally using a scaled wind turbine model. They found out that the soil–tower interaction has a considerable impact on the tower's natural

frequency and, consequently, the performance of a TLCD.

Other efforts have focused on semi-active algorithms to control the wind turbines. Dinh et al22 developed a semi-active algorithm using

tuned mass damper (TMD) for vibration control of the spar-type floating offshore wind turbine. They reported the semi-active TMD to be more

effective than the passive one. Sun23 used semi-active tuned mass damper (STMD) to mitigate the tower top dynamic response in a monopile off-

shore wind turbine. He showed that a STMD, retuned in real time, is more effective than a conventional TMD. Sarkar and Chakraborty24 demon-

strated an optimal design of magneto-rheological tuned liquid column dampers (MR-TLCD) for effective wind vibration control of large wind
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turbine tower. In other papers, they developed a semi-active strategy using multiple MR-TLCDs to reduce vibration in a multimegawatt wind tur-

bine.25 They used the NREL 5 MW to demonstrate the performance of their strategy. They concluded that MR-TLCD-based control strategy

offers a feasible solution for vibration control of large wind turbines. Hemmati et al26 proposed a combination of a TLCD with a TMD to minimize

vibration in a fixed bottom offshore wind turbine. They considered different loading conditions and concluded that TMDs are more efficient in

normal operating conditions, whereas TLCDs perform better in parked conditions.

Few works have been done on the active control of wind turbines' structure. Staino and Basu27 studied an active rotor speed controller's

effect in reducing the blades edgewise vibrations when grid fault occurs Murtagh et al28 examined the application of the TMD in a wind turbine

via simulation and showed that this system could decrease vibrations of the turbine top. Bossanyi29 studied the benefits of individual blade pitch

control versus collective pitch control and reported a significant reduction in the fatigue loads applied to the turbine structure when the blades

were controlled individually. Caterino30 investigated theoretically and experimentally on a scaled model the application of semi-active

magnetorheological dampers in decreasing load applied to a base of a wind turbine. Fitzgerald et al31 proposed incorporating an active TMD into

the tower of a wind turbine model. They used the NREL 5-MW turbine to demonstrate their controller's performance and reported a considerable

reduction, particularly for high wind speeds, in the tower top fore-aft displacements.

In this study, a methodological approach is proposed to mitigate the transmitted vibrations to the structure of large-scale wind turbines. In

this technique, a gyroscopic stabilizer is employed to counteract the transmitted moments to a multimegawatt wind turbine tower. Both passive

and active controllers are considered for this purpose. The land-based NREL 5-MW wind turbine is used to demonstrate the efficiency of the pro-

posed system.32 After describing the turbine and gyroscope models, the controllers' development is explained in the following sections. In the

result section, its performance is compared with the original turbine.

2 | MODELING

2.1 | Wind turbine structure

The baseline 5-MW wind turbine developed by the NREL is used in this study.32 The properties of this model are summarized in Table 1.

The NREL has developed FAST and ADAMS interfacing modules to study the horizontal axis wind turbines for offshore and onshore applica-

tions. Figure 1 demonstrates the layout and interconnection between these modules. Table 2 lists the first two natural frequencies of the tower

in the fore-aft and side-to-side directions obtained by FAST and ADAMS using the full model of the baseline NREL 5-MW wind turbine model.

TABLE 1 Properties of the NREL
baseline 5-MW wind turbine

Rated power, configuration 5 MW, 3-bladed upwind

Control Variable speed, collective pitch control

Rotor, hub diameter 126 and 3 m

Cut-in, rated, cut-out wind speed 3, 11.4, and 25 m/s

Rated rotor speed 12.1 rpm

Nacelle mass 240 t

Tower mass 347.46 t

F IGURE 1 Interfacing modules in FAST/ADAMS for analysis of offshore wind turbines33
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In this study, two levels of modeling are employed for the turbine structural model. In the first level, which is used for control design pur-

poses, the turbine tower is modeled as a Euler–Bernoulli beam with a concentrated mass on the tip representing the rotor and nacelle. The Euler–

Bernoulli's model is validated against the ADAMS model. The Gyrostabilizer is modeled separately, and its equations of motion are coupled to the

tower equation. This model, which is called the basic model, will be described below in more detail. A valid full model of the wind turbine devel-

oped in ADAMS is utilized to implement the controller at the second level.

The objective of the controller is to mitigate the vibration of the tower under wind loads. To design the controller, using MATLAB, we devel-

oped a basic linear beam model by considering three-dimensional Timoshenko beam elements with 12 DOFs. The stiffness and mass matrices (Ke

and Me), which are used, are included in the appendix.

The NREL baseline 5-MW turbine's tower structure is a tapering hollow cylinder with an outer diameter of 6 and 3.87 m at the base and top

of the tower. It is made of steel with a wall thickness of 27 mm at the base and 19 mm at the tower's top.

Similar to the NREL study,32 the density of 8,500 kg/m3 and the modulus of elasticity of 210 GPa are considered for the tower. A lumped

mass was added, as in Equation 1, to the end of the beam to account for the combined mass of the nacelle and rotor (M = 350 t) (Figure 2).

Tower Mass=

M 0 0 0 0 0

0 M 0 0 0 0

0 0 M 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775

ð1Þ

Table 3 compares the first two natural frequencies of the tower in fore-aft and side-to-side directions with 4 and 20 beam elements. The fre-

quencies converge fast and are relatively close to those obtained for the tower using a full model by FAST or ADAMS. Note that since the beam

model is symmetric, the first two natural frequencies in fore-aft and side-to-side directions are identical. However, the first two natural frequen-

cies are slightly different for the full model since the actual 3-bladed turbine is not entirely symmetrical (Table 3).

TABLE 2 First two natural
frequencies of the tower in fore-aft, side-
to-side directions32

Description ADAMS (Hz) FAST (Hz)

First tower fore-aft mode shape 0.3240 0.3195

First tower side-to-side mode shape 0.3120 0.3164

Second tower fore-aft mode shape 2.9003 2.8590

Second tower side-to-side mode shape 2.9361 2.9408

F IGURE 2 Schematic of the model used to tune the controller (M = MRotor + MNacelle)
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The above described linear model is used to design the control parameters. The loads in the fore-aft direction are more significant due to the

thrust load applied to the turbine's rotor. The stabilizer's objective is to mitigate the vibration in the fore-aft direction only; therefore, to deter-

mine the control parameters, all DOFs in side-to-side directions were suppressed.

After designing the controller, a coupled ADAMS–Simulink model of the NREL wind turbine is developed and used to study the controller's

effectiveness. Figure 3 illustrates the layout of the coupled model. FAST was used as a preprocessor to produce ADAMS datasets. Turbsim34 is

used to generate wind speed time series, and AeroDyn is used to calculate the aerodynamic loads applied to the turbine.35

2.2 | Gyroscopic stabilizer model

Figure 4 illustrates the basic model and the installed gyroscopic stabilizer schematically. This model, after linearization, is used for the design of

the baseline controller. The gyroscopic stabilizer has two DOFs, including the disc's rotation about the axis tangential to the tower at the attach-

ment point and the frame rotation about the axis perpendicular to the disc's rotation axis. In the passive mode, the frame can rotate freely, and

therefore, the whole system acts not only as a passive gyro stabilizer but also as a vibration absorber. However, in the active mode, an external

torque is applied to the rotating frame, and the frame rotation is controlled while the disc is spinning with a constant velocity.

The governing equations of motion for the passive mode are shown below.36

α1 + α2v
2 + α3v

4 + G5 + 0:5G5
3v2

� �2
Io cosθð Þ2 + Ip sinθð Þ2
h i� �

€v +

α2 + 2α3v
2 +G5

3 G5 + 0:5G5
3v2

� �
Io cosθð Þ2 + Ip sinθð Þ2
h in o

v _v2 +

α4 + α5v
2 + α6v

4
� �

v−c� _v + G5 + 0:5G5
3v2

� �
Ip− Ioð Þ _v G5 + 0:5G5

3v2
� �

_θsin2θ + IpΩ _θcosθg=0,
n

ð2Þ

TABLE 3 First two natural frequencies of the tower using the reduced model by MATLAB

Mode shape Description Natural frequency (four elements) Natural frequency (20 elements)

1 First tower fore-aft 0.2906 0.2957

2 First tower side-to-side 0.2906 0.2957

3 Second tower fore-aft 3.0395 3.0321

4 Secnd tower side-to-side 3.0395 3.0321

F IGURE 3 Coupled ADAMS–Simulink
simulation of a wind turbine
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Io€θ−
1
2

Ip− Ioð Þ G5 _v +0:5G5
3v2 _v

� �2
sin2θ− IpΩ G5 _v +0:5G5

3v2 _v
� �

cosθ + c _θ + kθ = TControl, ð3Þ

where v and _v are the displacement and velocity of the tip of the beam, respectively. The angle θ and _θ are the rotation angle and angular velocity

of the gyro frame, respectively. The tip inclination angle of the beam is indicated by φ, and Ω denotes the angular velocity of the gyro's disk. The

αi and Gi are constant coefficients which depend on the beam geometry and its physical characteristics as follows:

G1 =
ðl

0

ψ sð Þð Þ2ds; G2 =
ðl

0

ψ sð Þds; G3 =
ðl

0

ðs
0
ψ 0 zð Þð Þ2dz

� 	2

ds; G4 =
ð l
0
ψ 0 sð Þð Þ2ds

G5 =ψ
0 lð Þ; G6 =

ð l
0
ψ} sð Þ
 �2

ds; G7 =
ð l
0
ψ 0 sð Þψ} sð Þ
 �2

ds; G8 =
ð l
0
ψ 0 sð Þð Þ4 ψ} sð Þ
 �2

ds;

G9 =
ðl

0

ðs
0
ψ0 zð Þð Þ2dz

� 	2

ds,

where in the above equations ψ (s) is the first mode shape function of the tower with the length, l, defined in terms of position s as below

ψ sð Þ=1−cos
πs
2l

� �
:

The variables α1 to α5 are defined as the following:

α1 = ρAG1 +m+M+ ItG
2
5; α2 = ρAG3 + m+Mð ÞG2

4 + ItG
4
5

α3 =
1
4
ItG

6
5; α4 = EIG6−ρAgG9− m+Mð ÞgG4

α5 = 2EIG7; α6 =
3
4
EIG8

where A is the cross-section area of the tower and ρ, E, I are the density, modulus of elasticity, and the second moment of area of the tower,

respectively. The m, M, and It are the tower mass, tower top mass, and the moment of inertia of the top mass, respectively.

For the turbine model in this study, the Gs and αs are found in Table 4.

Equations 4 to 6 show the equations of motion in the state-space form.

_x1 = x2

_x2 = − α2 + 2α3x1
2 +G5

3 G5 + 0:5G5
3x1

2
� �

½Io cosx3ð Þ2 + Ip sinx3ð Þ2
n i

gx1x22− α4 + α5x1
2 + α6x1

4
� �

x1−c�x2
�

− G5 + 0:5G5
3x1

2
� �

Ip− Ioð Þx2 G5 + 0:5G5
3x1

2
� �

_θsin2x3 + IpΩ _θcosx3g
n �

=

ð4Þ

F IGURE 4 Schematic of the model used to
tune the controller (M = MRotor + MNacelle)
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α1 + α2x1
2 + α3x1

4 + G5 + 0:5G5
3x1

2
� �2

Io cosx3ð Þ2 + Ip sinx3ð Þ2
h i� �

ð5Þ

_x3 = x4 ð6Þ

_x4 = −0:5 ðIp− Iof Þ G5x2 + 0:5G5
3x1

2x2
� �2

sin2x3− IpΩ G5x2 + 0:5G5
3x1

2x2
� �

cosx3 + cx4 + kx3 + TControlg=Io ð7Þ

The system equations are linearized and rewritten in the linear state-space form as follows Equation 8:

The linear model's tip displacement response is compared with that of the nonlinear one for an identical excitation to examine the linear

model's accuracy.

Figure 5 compares the linear model's tower-top displacement excited by an Extreme Operating Gust (EOG), with that of the ADAMS

nonlinear one. Figure 6 compares the responses under random wind with extreme turbulence. As seen in the figures, the responses agree, imply-

ing the linear model's adequacy for tuning the controllers.

The linear model is derived to design the PID controller and is incorporated into the ADAMS/FAST model.

_X =AX +Bu

y =CX +Du
ð8Þ

A=

0 1 0 0

−
α4

G5
2Io + α1

−
c�

G5
2Io + α1

0 −
G5IpΩ

G5
2Io + α1

0 0 0 1

0
G5IpΩ
Io

−
k
Io

c
Io

2
666666664

3
777777775

B=

0

0

0

−
1

G5
2Io + α1

2
6666664

3
7777775
, C = 1000½ �, D=0:

Figure 7 illustrated the gyroscope model in ADAMS, and Table 5 summarizes the mechanical properties of the model, which was incorporated into

ADAMS.

TABLE 4 The coefficients in Equations 2 and 3

G1 (m) G2 (m) G3 (m
−1) G4 (m

−1) G5 (m
−1) G6 (m

−1) G7 (m
−5) G8 (m

−9) G9 (m
−1)

19.86 31.83 0.315 × 10−2 0.141 × 10−1 0.179 × 10−1 4.528 × 10−6 3.640 × 10−10 5.852 × 10−14 0.367

α1 (kg) α2 (kg/m
2) α3 (kg/m

4) α4 (N/m5) α5 (N/m3) α6 (N/m7)

505,099 97.08 8.908 × 10−6 1.768 × 106 295.98 0.0178

F IGURE 5 Linear versus ADAMS response of the tower under
extreme operating gust
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2.3 | Control design and implementation

The objective of the controller is to mitigate the wind-induced turbine's tip displacements. To achieve this goal, two controllers, including a linear

PID controller and a nonlinear FLC one, are proposed to be implemented in the turbine model to counteract the wind-induced vibrations via

applying a gyroscopic moment to the structure. Figure 8 depicts the schematic diagram for the controllers' implementation.

As it is seen in this figure, the wind load is applied to the primary ADAMS/FAST model as the system disturbance. The ADAMS model is then

exported to MATLAB/SIMULINK environment, and the controllers are implemented in the MATLAB model. The response feedback for the con-

trollers is provided by the ADAMS/FAST model via the cosimulation of MATLAB/ADAMS. The control input, in this case, is the frame's input tor-

que (Tcontrol) applied by a torque actuator. The PID controller's feedback signal is the turbine's tip displacement, and those for the fuzzy controller

are tip velocity and displacement. The feedback signals may be calculated by integrating an accelerometer sensor's online data in the turbine's tip.

This, of course, may lead to an error in measurement, in case the measured data are contaminated with noise.

The PID controller is designed and tuned based on the linear model but is implemented in the ADAMS model. The signals incorporated in the

control design as feedback are turbine's tip displacement and velocity. The practical sensor employed for measuring response variables is a linear

accelerometer assumed to be placed in the nacelle. The velocity and displacement feedback are calculated by integrating the acceleration data.

This approach for acquitring the required feedback data has some limitations, for example, contamination of the feedback data with the accumu-

lated noise as a result of integration.

F IGURE 7 The gyroscope disk
considered in this design

TABLE 5 Mechanical properties of
the gyroscopic model

Mass of the disk 13,459 kg

Outer radius 3 m

Inner radius 2.5 m

Outer ring thickness 17.7 cm

Inner disk thickness 1 cm

Disc mass moment of inertia 95,733 kg/m2

Material density 7,800 kg/m3

Spinning velocity 100 (rad/s)

Torsional spring stiffness 100 kN m/rad

Torsional spring damping 297 kN m s/rad

F IGURE 6 Linear versus ADAMS response of
the tower under random wind
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The only output parameter employed for the PID controller design is the turbine's tip displacement (x1(t)). For FLC design, as mentioned in

Section 2.3.2, two feedback variables, including turbine's tip displacement and velocity (x1(t), x2(t)). The controllers are described as follows.

2.3.1 | PID controller

The PID controller is designed based on the underlying linear model described in Section 2.1. It is worth mentioning that the designed linear PID

controller is not very suitable for controling the original nonlinear model. However, to evaluate the performance of the main controller (FLC), the

PID controller is considered a baseline for the comparative study. Thus, the PID controller is designed and tuned based on the linear model but is

implemented in the original model (Figure 8). The schematic diagram for the implementation of this controller is shown in Figure 9.

According to this figure, the wind load disturbance is applied to the basic turbine model. The tip displacement feedback is taken away from

the reference displacement (zero), and an error signal is generated. The feedback error is then fed to the PID controller, and the gyro's frame input

torque is calculated and applied to the model as the control input. Equation 9 depicts the transfer function for the PID controller.

F IGURE 8 Controllers' implementation schematic diagram

F IGURE 9 Controller schematic diagram
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u tð Þ=Kp:e tð Þ+Kd:
de tð Þ
dt

+Ki:

ð
e tð Þdt, ð9Þ

where Kp is the proportional coefficient, Ki is the differential coefficient, Kd is the integral coefficient, e(t) is the feedback error (tip displacement),

and u(t) is the control input (Tcontrol).

The PID controller is initially tuned based on Ziegler and Nichols's37 approach. However, to achieve the desired performance, the controller is

further tuned, and its gains are changed so that the desired overshoot and settling time are achieved. For this purpose, a sensitivity analysis is

carried out, and various options, including P, PI, PD, and PID controllers, are explored.38 Table 6 shows the characteristics for some of the

controllers considered for this purpose.

Figure 10 also illustrates the tip displacement response to a step input utilizing various controllers.

As seen in this figure, the PID controller's mistuning may result in a high overshoot that is not desirable for the current application. Finally,

based on maximum 20% overshoot and reseanable settling time criteria, the tuned PID controller is selected and implemented in the ADAMS

model.

2.3.2 | Fuzzy controller

The fuzzy logic controller (FLC) has many advantages,39 making it a proper match for the current application. First of all, it does not need a mathe-

matical model. This property is beneficial in complicated structural control systems like wind turbines, where the nonlinear ADAMS mathematical

models are unavailable, or there are uncertainties in the model parameters. Moreover, there is no limitation for the system nonlinearity. Second,

FLC is based on verbose statements, and it is possible to bring the designer's experience into the controller design. Finally, it has inherent

robustness, which is vital for uncertain systems.

The proposed FLC is a proportional differential (PD) FLC whose inputs are displacement and velocity of the turbine's tip. The output of the

controller is also the frame's input torque. Table 7 depicts the rule bass for the FLC where NB is negative big, NM is negative medium, NS is

negative small, and ZE is zero, PS is positive small, PM is positive medium, and PB is positive big.

The rule base has been derived based on engineering judgment and authentic justifications. Let us examine a rule,for example, where the

turbine's tip displacement and velocity are both negative big, implying a big deflection and a tendency toward a further displacement. In this case,

the controller takes a severe action to counteract the situation, that is, a positive big counteracting torque. Now, let us see another rule where the

velocity is negative small. Still, the velocity is positive big, implying a small displacement but a strong desire to return to the equilibrium position.

TABLE 6 Controllers' characteristics
and the correposnding linear model
responses

Controller Kp Ki Kd Overshoot (%) Settling time (s)

P 773,397 0 0 43 4.65

PD 773,397 0 201,075 45 5.15

PI 773,397 580,048 0 31 5.0

PID 773,397 1,160,096 201,075 18 6.1

F IGURE 10 Controller schematic diagram
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In this case, the controller decides to take no action, which means a minimum effort to compensate for the condition as the system behavior is

desirable. Figure 11A,B shows the membership functions for the inputs and the output, respectively. It is worth mentioning that the membership

functions have been distributed uniformly. Therefore, performance of FLC may be further improved by tuning the membership function according

to the disturbances.

3 | SIMULATION AND RESULTS

To compare the controller's effectiveness, we study the wind turbine model's behavior under wind loads. The NREL 5-MW model uses a

collective pitch control to regulate the power generated by the turbine. The rated wind speed for this model is 11.4 m/s. At this wind speed, the

average fore-aft moments become maximum. Above the rated wind speed, the pitch angle is adjusted collectively to reduce the lift loads applied

to the rotor, and as a result, the fore-aft bending moment at the base of the tower would decrease.

Based on the IEC61400 standard, the DLC 1.3 load case with an extreme turbulence model is considered to study the gyroscopic stabilizer's

performance.40,41 For the land-based wind turbine, this load case would dominate the design since, due to the high-frequency change in the wind

speed, the baseline pitch controller would not be able to react promptly, which would produce large ultimate loads in the turbine structure.33

F IGURE 11 (A) Input membership
functions and (B) output membership
functions

F IGURE 12 Comparison between ADAMS
and FAST using original NREL 5-MW turbine

TABLE 7 Rule base of fuzzy logic
controller (FLC)

Turbine tip's velocity

Turbine tip's displacement

NB NS ZE PS PB

NB PB PM PS ZE NS

NS PM PS ZE ZE NM

ZE PS ZE ZE ZE NS

PS ZE ZE ZE NS NB

PB ZE ZE NS NM NB

Abbreviations: NB, negative big; NM, negative medium; NS, negative small; PB, positive big; PM, positive

medium; PS, positive small; ZE, zero.
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Turbsim is used to generate wind time series,34 and ADAMS/SIMULINK cosimulation is used to obtain the response.42 To verify the model, we

first modeled the turbine using FAST and ADAMS. FAST is an open-source CAE tool developed by the NREL for simulating the coupled dynamic

response of wind turbines.43 Figure 12 compares the response of the reference NREL 5-MW turbine under wind load using ADAMS and FAST.

Overall, there is a good agreement between the results of FAST with those of ADAMS.

Figure 13 top compares the tower base overturning moment in the fore-aft direction between the NREL land-based original 5 MW, as a

reference, those of model with passive, active PID, and fuzzy gyroscopic stabilizer. The middle figure shows the wind excitation. The lower

Figure 13 makes a similar comparison for the tower-top displacement. The active gyroscopes are more effective in decreasing the overturning

moments when compared to the passive model. Additionally, the fuzzy controller outperforms the PID one.

Figure 14 shows the root mean square (RMS) and standard deviation (SD) of the fore-aft bending moment, for 10 min, at the base of the

tower for the reference model and compares it with those of the turbines equipped with the passive and active PID, fuzzy gyroscopic stabilizers.

A considerable reduction in the moment RMS is observed in the turbine with the active gyroscopes. While the passive gyroscope decreases the

SD of the moment, the active models' reduction is more substantial than the reference or passive model. Indeed, the fuzzy controller outperforms

the PID both in decreasing the RMS and the SD of the bending moment. This can considerably improve the fatigue life of the turbine structure.

F IGURE 13 Comparison of tower base fore-aft bending moment. Ref. model versus Passive, PID, and fuzzy

F IGURE 14 Comparison of tower base
fore-aft bending moment (RMS and SD)
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The second load case, which is considered, is the EOG according to IEC standards. In this load case, within 10.5 s, a maximum gust with a

speed of 9.16 m/s is added to the wind speed when the turbine is in operating condition at a wind speed 24 m/s. The transient occurs over

10.5 s, and the maximum total wind speed is 33.2 m/s. Figure 15 shows the fore-aft bending moment and the tower top displacement under the

EOG load.

As expected, the active gyroscopic stabilizers are more effective than passive ones in decreasing the loads and vibrations. As seen in

Figure 15, the fuzzy controller can dissipate the vibration faster than the PID model. However, the drawback of an active gyroscope, when

compared to their passive counterpart, is its higher energy consumption.

For the passive gyroscope, initial energy is required for the gyroscope to achieve its design speed (100 rad/s). After that, some energy will be

required to overcome the friction to maintain the disk's speed. A higher quality gyroscope would produce less friction, and less power would be

spent to maintain its kinetic energy.

For the active gyroscopes, in addition to the power needed to maintain the disk at its rated speed, active energy is required to rotate its frame

using a servo-actuator. Figure 16 demonstrates the torque required to control it under the wind load shown in Figure 12. The average power that

needs to be spent on the active gyroscopes was estimated to be 250 kW, approximately 5% of the turbine's generated power.

F IGURE 15 Comparison of tower top
displacement and its base bending moment in
fore-aft direction under extreme operating gust
(EOG)

F IGURE 16 Torque required to
control the cradle in the active gyroscope
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4 | CONCLUDING REMARKS

This study's objective was to investigate the feasibility of passive/active gyroscopic stabilizers in mitigating a multimegawatt turbine's vibration. It

was shown that a gyroscopic stabilizer has excellent potential in decreasing the overturning moment applied to the foundation of a turbine. Any

reduction in dynamic loads can lead to a lighter design, and a reduction in wind farm's cost would make wind energy more competitive. The active

gyroscope stabilizer was more effective in decreasing vibration when compared to the passive one. However, the active system would require

more power to operate.

One advantage of a gyroscopic stabilizer, when compared to TMDs, is its relatively lower static weight. In the study by Ghasempour et al,11

the recommended mass ratio for a TMD system is 5% of the turbine mass, approximately 35 t for the NREL 5-MW turbine. This mass is much

greater than the gyro disk's mass, approximately 14 t, considered in this study. Another advantage of a gyrostabilizer is that it can be repositioned

relatively easily, to dissipate vibration in other directions (e.g., side-to-side). It is also possible to stack-up gyroscopes to dissipate vibration in

different directions. Moreover, unlike TMD and TLCD, this system is not very sensitive to mistuning.

The gyroscopic stabilizer would provide a restraining moment to reduce the vibration of the tower. The moment vector is a free vector, that

is, theoretically, the stabilizer's location would not affect its performance. The NREL turbine tower is a tapering tube with 6 m diameter at the

base and 4 m diameter at the top. This study's single gyroscope would not fit in the tower; however, one can instead use a series of smaller

gyroscopes with equivalent restraining moments that could be fitted inside the tower, perhaps closer to the base of the tower. In this study,

similar to other studies cited in this paper,8,9 the nacelle was considered for the stabilizer position.

The authors believe that a gyroscopic stabilizer is a promising device to mitigate the vibration in large wind turbines. From the standpoint of

energy consumption, passive gyro would be a better choice. However, the active gyro is more effective in dissipating the vibration. We believe

that a sensible solution would be to utilize the passive gyro to reduce the fatigue loads and engage the active gyro actuators to mitigate severe

vibrations whenever needed. The light detection and ranging (LIDAR) technology or other wind forecasting tools make it possible to predict the

wind approaching a wind farm, sending a signal to trigger the active control.

More investigation is required to find an optimum gyroscopic stabilizer to find its best layout, minimize its mass, energy consumption, and

maximize its effectiveness. According to IEC standards, this must be done by considering different loading conditions, including fault conditions.

This, along with the extension of this model to offshore wind turbines, especially floating platforms, is the subject of future research.
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APPENDIX A.

Beam element considered to model the tower.44

In the stiffness matrix:

Iy and Iz are the second moments of inertia.

J denotes the polar moment of inertia about x axis.

E and G denote the moduli of Elasticity and rigidity.

A denotes the cross-sectional area of the element.

L is the length of the element
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In the mass matrix:

is the density.

J denotes the polar moment of inertia about x axis.

A denotes the cross-sectional area of the element.

L is the length of the element.
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