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Abstract

Fatigue damage is a concern in the engineering applications particularly for metal structures. The design phase of a structure 
considers factors that can prevent or delay the fatigue and fracture failures and increase its working life. This paper compiled 
some of the past efforts to share the modelling challenges. It provides an overview on the existing research complexities in 
the area of fatigue and fracture modelling. This paper reviews the previous research work under five prominent challenges: 
assessing fatigue damage accurately under the vibration-based loads, complications in fatigue and fracture life estimation, 
intricacy in fatigue crack propagation, quantification of cracks and stochastic response of structure under thermal environ-
ment. In the conclusion, the authors have suggested new directions of work that still require comprehensive research efforts 
to bridge the existing gap in the current academic domain due to the highlighted challenges.
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1 Introduction

In engineering world, crack occurrence and propagation in 
the material components and the structures are serious issues 
to address. Failure in early detection has consequences lead-
ing to catastrophic damage. The catastrophic failure is cost 
to bear as the machineries are expensive and not easily 
replaceable rather to be repaired. For this reason, academi-
cians have performed extensive research to find solutions 
and minimize the crack growth.

Engineering materials, especially metals, develop cracks 
and fracture during their service time. In most of the applica-
tions, such as automotive, aircrafts and power plant, operate 
under high temperatures. Such structures and components of 
the machine develop crack more prevalent under the com-
bined effect of thermal and mechanical loads and experi-
ence fatigue. Although the knowledge of the fracture and 
fatigue was confirmed in 1754 BC [1], the scientific society 
faced many challenges while considering the continuous 

changing needs of the people. A number of review articles 
published related to fatigue and fracture: thermal loadings 
fracture of shape memory alloys [2], multiaxial vibration of 
linear and nonlinear systems [3], variable amplitude fatigue 
[4], interpretive technical history of fracture mechanics [1], 
role of dynamic response parameters in damage prediction 
[5], cumulative fatigue damage mechanisms and quantifying 
parameters [6], stability and significance of residual stress 
during fatigue [7]. The existing reviews somehow managed 
to explain the details about the micromechanics of fatigue 
and fracture and the macroscopic behaviour of the struc-
ture distinctly separate. However, these details are unable 
to address a good number of modelling challenges which 
can come across if the mentioned mechanics and behaviour 
will be correlated.

These challenges are still unaddressed, especially when 
the loads are no more singular and quasi-static in nature. The 
couple loads dynamic in nature involve mechanical and ther-
mal external disturbances, and this duality in time domain 
creates complexity in analytical mathematics to solve the 
real phenomenon on structure with exactness.

This paper compiled some of the past efforts to share the 
aforesaid challenges. It provides an overview on the exist-
ing research complexities in the area of fatigue and fracture 
modelling. This paper reviews the previous research work 
under five prominent challenges: assessing fatigue damage 
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accurately under the vibration-based loads, complications in 
fatigue and fracture life estimation, intricacy in fatigue crack 
propagation, quantification of cracks and stochastic response 
of structure under thermal environment. In the conclusion, 
the authors have suggested new directions of work that still 
require comprehensive research efforts to bridge the existing 
gap in the current academic domain due to the highlighted 
challenges.

2  Challenge‑1: assessing fatigue damage 
accurately under the vibration‑based 
loads

Thermomechanical vibrations have been concerned for the 
engineering applications. In the growing advancement of 
technology, these applications exposed to the mechanical 
loads under thermal conditions and has tendered the sci-
entists and engineers to investigate the dynamic behaviour 
of structures and their components [8]. The vibration of 
the components influences the durability and reliability. 
Generally, vibration is analysed in four domains and each 
domain offers identifiable data on the operational condi-
tions and characteristics of the vibration [9]. Researchers 
apply different theories to study the characteristics of vibra-
tion: higher-order shear deformation theory [10–14], non-
local elastic theory [15, 16], modified couple stress theory 
[17], generalized differential quadrature method [18], Bub-
nov–Galerkin method [19], thermal-energy method [20], 
finite element analysis [21, 22] among many others. Most of 
these methods are, however, purely analysing the vibrational 
characteristic behaviour of the structure without concerning 
the fatigue damage. Assessment of fatigue damage under 
such condition is still a concern and challenge. Further the 
current investigations on thermomechanical vibration are 
more focused on different materials: materials like graphene 
sheet [23, 24], functional graded nano-plate [25], compos-
ite beams [26] and nano-composite plate [27]. Primarily, it 
is on application-based studies rather than emphasizing in 
accurate measurement of the fatigue.

Warminska et  al. [28] demonstrated that structural 
response is directed by the level of thermal loading and 
distribution. A large increase in temperature can shift the 
vibration centre and it affects the fundamental frequency. 
Yang and Shen [29] studied in similar way confirmed the 
vibration response as a result of thermal effect, material 
composition, boundary condition and loading mode. A free 
vibration analysis in cylindrical bodies highlighted the fre-
quency vibration depends on mode, thickness and curvature 
of structure [30]. Shen and Wang [31] and Ghayesh et al. 
[32] investigated on nonlinear vibration. They noticed the 
increase in temperature minimized the natural frequency 
but has marginal effect on nonlinear-to-linear frequency 

ratio. Julien et al. [33] and Kitipornchai et al. [34] exam-
ined probabilistic random vibration. They concluded that 
the linear frequency dispersion is an influence of change in 
temperature. Rezaee et al. [35] studied vibration analysis of 
nano-wires and Ubertini [36], and Bao et al. [37] studied 
vibrations of bridge structures. A few of the articles reported 
fatigue due to vibration [38–40] and predominantly based on 
applications. These suggest the assessment of fatigue dam-
age is on weak foundation due to lack of analytical relations 
and arguments, especially when the structures are operated 
under thermomechanical loads.

Modal analysis is a common method to predict the struc-
tural health based on experimentally measured vibrations 
[41]. This method is more often used for extracting defects 
and faults from structural applications, which are too com-
plex to model analytically and numerically, for example 
modal analysis of exhaust manifold in hot condition [42], 
the turbine blade at complex thermomechanical loads [43], 
high-speed machine-like servo-hydraulic [44], jet engine 
fan [45], extracting full-field dynamic strain subjected to 
arbitrary excitations on a wind turbine rotor [46], etc. Modal 
analysis can also determine the dynamic stress intensity 
factor [47]. Similarly, it is also utilized in different other 
approaches. Jezequel [48] used a hybrid method of modal 
synthesis using the vibration tests. The method approved to 
be helping in studying the structuring modification. Yam 
et al. [49] experimentally studied and suggested that modal 
strain analysis can be effectively utilized to study structural 
dynamic and fatigue life estimation. Haider and Nayfeh [50] 
investigated the modal interaction in the nonlinear forced 
vibrations of a heated plate. Lamb and Rouillard [51] 
stated that system fatigue characteristic can be obtained by 
monitoring its modal parameters. Braghin et al. [52] modal 
control technique is new to the mechanical and structural 
engineers due to it modal coordinate representations. Nev-
ertheless, modal analysis has limited over the applied bound-
ary conditions which compromises the real-case scenario.

Thermomechanical vibration examinations are important 
to establish failure possibilities and crack propagation before 
catastrophic failure. In the past, researches used the system 
dynamic response and predicted the possible faults, defect 
and their conceivable locations [8]. Mathan and Prased [53] 
studied the dynamic response of the piping system at various 
temperatures using finite element analysis. They performed 
FE simulation with the help of modal and harmonic analysis. 
Experiments and numerical simulations were also performed 
to study the dynamic and acoustic response of clamped rec-
tangular plate and of a composite structure [54, 55]. The 
flexural responses of a thermoelastic thin beam were also 
studied under thermal and mechanical load [56]. Shen et al. 
[57] studied Reissner–Mindlin plate resting elastic foun-
dations. Beside the mentioned, researchers evaluated the 
vibration modes using video measurements [58]. It is well 
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established that the academics studied vibration behaviour 
of structures of different sizes, thicknesses and layers, i.e. 
sandwich plates [59–61]. Furthermore, the study of vibra-
tion in the finite element method becomes familiar among 
the researchers due to cost-effective and ease of evaluating 
the data. Nevertheless, the data obtained from experiments 
are always far from an agreement with the simulation results 
due to practical compromises [62].

3  Challenge‑2: complications in fatigue 
and fracture life estimation

Fatigue is a failure phenomenon in materials that involves 
cyclic load with developing cracks [63, 64]. Fatigue nor-
mally occurs when a repeated or fluctuating load applied, 
which may either or both tensile, compressive or torsional. 
There are three stages in fatigue life [65]: crack initiation, 
crack propagation and failure stage. The crack initiates 
where there are discontinuities in the crystal structure of 
the material. The development of the discontinuity actually 
strengthens the structure through plastic deformation but lost 
its ability after reaching deformation limit and thereafter 
developed minute crack [62]. The slow and steadily growth 
of a crack threatens the structural integrity. The final stage 
of crack development is fatigue failure. The fatigue life is 
dependent upon the load history, residual stresses, properties 
of the material, manufacturing defects, grain size, design 
geometry, environmental conditions, etc. Studies on the ther-
momechanical fatigue [66–73] are limited to some applica-
tions and need comprehensive assessment, in particular, for 
fatigue life estimation. The following section discusses the 
fatigue life estimation methods to highlight the unaddressed 
challenges.

3.1  Life estimation methods

Knowing the life of the component before being used is 
the most important aspect to avoid fatigue or catastrophic 
failure. There are number of methods and techniques to 
predict the fatigue life. Approaches like frequency domain 
method [74, 75], modal approach [40, 47, 72], accumula-
tive approach [76], thermal fracture model [77], continuum 
mechanics model [78] and intrinsic dissipation model [79] 
are predominant. The foremost and well-known method was 
formulated by Paris and Erdogan [80] given in Eq. (1).

where ΔK the stress intensity range, C and m are the material 
constants. The fatigue life is then determined by integration 
as in Eq. (2).

(1)
da

dN
= CΔK

m

Damir et al. [81] proved that modal analysis is a great 
potential for fatigue evaluation and characterization of the 
mechanical components. This investigation determined the 
capability of experimental modal analysis as a non-destruc-
tive tool. Braceesi et al. [74] used the modal frequency 
domain approach to evaluate the virtual fatigue life in a non-
linear system. They considered the random loads to estimate 
the component life considering the dynamic behaviour and 
state of stress. The fatigue damage due to the stress time 
history was acquired by augmenting the Gaussian damage 
(D

g
) . However, in real situation damage is non-Gaussian. 

The use of corrective coefficient of non-Gaussianity, �
ng

 to 
estimate the non-Gaussian damage, D

ng
 is given by Eq. (3).

Using the Goodman symmetric law, the functional rela-
tion for the corrective coefficient is developed in the form 
of Eq. (4).

where m is the material constant of Wöhler’s curve, � is 
mean value, Sk is skewness and Ku is kurtosis. The Gauss-
ian damage curve in given Eq. (5) was used to analyse the 
fatigue damage.

In another papers of Braccesi [75, 82], a modal approach 
was used to evaluate the frequency domain stress recovery 
and fatigue damage of mechanical components. The stress 
tensor of the model was obtained from the power spectral 
density matrix. In Dirlik’s method, the fatigue damage D 
was calculated by the relation of Eq. (6).

where T is the duration of the random signal application, 
n
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 is the number of cycles per unit time, (Δ�)k probability 

density function of the stress range and f
�
(Δ�) is frequency 

domain criteria. The other method of calculating fatigue 
damage is Bands method given by the relation of Eq. (7).
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In non-local-based fatigue life estimation, the dispersal 
of stress/strain in the locality of the crack tip is estimated 
[83]. The non-local damage parameter is the integration 
of all local damage parameter in the material domain. The 
local parameters are however estimated from the classical 
mechanics without considering the material homogeneity. 
The non-local concept considered the complexity of the 
geometry structure by analysing the influence of inhomoge-
neity stress field [84]. This approach is termed as critical dis-
tance method. The local parameter is estimated by a point, a 
line, an area or volume. The local parameter is calculated by:

where t is the time, r is the unit vector and r
o
 is the reference 

point in the crack tip and A is the critical plane area. The 
weight function is presented in Eq. (10).

where r =
|
|r − r

o

|
| and l

c
 is the critical length.

In the point method, the fatigue failure occurs because of 
the presence of stress/strain to some critical distance from 
the crack tip. It is considered as non-local since the selected 
point is not from the crack-tip region. The fatigue life is cal-
culated by reducing the stress/strain into equivalent stress/
strain parameters. The critical distance is calculated [83] 
by Eq. (11).

where ΔK
I,th is a range of threshold value of stress intensity 

factor and Δ�af  is the range of fatigue limit.
The line method assumes that fatigue failure is due to the 

presence of stress over the line. The average of the stress is 
calculated as:

where D is the distance from the notch point and w(x) is the 
weight function.

The area method assumes that failure is due to the dam-
age parameter over some area. The average failure function 
is calculated by:

(8)𝜎eff

(

t, r
o

)

=
1

ŵ
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where R
�
 is the average failure function, �

n,

�
ns

 are normal 
and shear stresses on the physical plane, the critical distance 
d

0
 in area method is calculated by Eq. (14).

The volumetric method assumes that fatigue failure is 
due to the damage parameter over a critical volume. Sain-
tier et al. [85] proposed a non-local energy-based fatigue 
life calculation subjected to multiaxial variable amplitude 
loading. They anticipated two hypotheses of volumetric 
damage parameters. The volumetric damage parameters are 
expressed as:

where �
geq, dam

 is the non-local damage parameter, V∗ is the 

volume influencing fatigue crack initiation, C
i
 is the potential 

critical point and Wgeq,dam
 is damaging strain energy density. 

The final energy damage parameters S–N curve equation is 
given as:

where E is Young modulus, �∗ is threshold stress, N is num-
ber of cycles, C and � are material constant.

Another technique of evaluating fatigue damage is 
the accumulative approach. This technique is known as 
Palmgren–Miner rule which is a linear damage accumulation 
rule. It states that failure occurs when the fatigue damage D 
is equal to unity.

Palmgren–Miner rule is, however, not suitable for non-
linear damage. Proso et al. [38] proposed the damage accu-
mulation correction rule for structural nonlinearity. The cor-
rected damage accumulation is estimated by the following 
relation:

where R is the constant correction factor and n is the rate of 
nonlinearity which is obtained experimentally. The fatigue 
damage is calculated by Eq. (19).
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where t
i
 and T

i
 are, respectively, the time of excitation 

and fatigue lifetime. There are several factors, which are 
responsible for nonlinear damage mechanisms. The effects 
of overloading and geometrical discontinuities are pre-
dominately studied in the existing literature [86–88]. The 
nonlinear nature of fatigue damage due to overloading and 
under loading creates irregular local stress amplitude near 
the crack tip. However, damage evolution due to overload 
is also dependent on the nature of the microstructure which 
can be improved by the heat treatment processes [87]. The 
geometrical discontinuities affect the fatigue life due to 
stress concentration. These discontinuities are inevitable in 
the structures mainly due to design requirements. However, 
researchers do relate their influence with microstructural 
voids, corrosion pits, riveting joints, wear and tear [89–91]. 
Therefore, these discontinuities can lead a nonlinear damage 
progression.

There are other approaches to fatigue life estimation mod-
elling found in articles: thermal fracture modelling method 
for functionally grade plate [77], continuum mechanics 
modelling for fracture analysis [78] and intrinsic dissipation 
modelling for high-cycle fatigue life prediction [78]. Susmel 
and Taylor [92] attempted to use a critical distance method 
to estimate the finite life of notch components based on the 
modified Wöhler curve method under variable amplitude 
loading. In similar work of using a critical plane approach, 
Gates and Fatemi [93] studied the multiaxial amplitude 
fatigue life of un-notch specimens. The shortcoming of the 
critical distance method is averaging the local parameters 
which may theoretically not precisely measured. Other 
researchers studied the lifetime by the simulation method. 
Riedler et al. [94] simulated the lifetime of thermomechani-
cal loaded components which investigated the transfer-
ability of the simulation models to the real components. 
Khan et al. [94–96] studied the remaining life prediction 
method based on the natural frequency. High-cycle and low-
cycle fatigue life prediction model was also presented for 
Nickel-based single-crystal blade [97]. Researcher applied 
the thermal-fatigue life assessment on real applications 
[22, 39, 98–101]. Kamaya and Kawakubo [102] studied 
the effect of loading sequence on fatigue life. They found 
fatigue life is longer in the case of high-low loading than 
low–high loading sequences. Besides, their studied found 
crack mouth opening effect is the main cause in reducing 
fatigue life whereas stress intensification, damage interac-
tion and damage sequence effect demonstrated less impact 
on fatigue life. Several life extension techniques have been 
proposed in the literature. They have made a fair impact 
on the existing fatigue life estimation approaches. Ayatol-
lahi et al. [103] studied crack growth retardation technique 
by introducing a drilling hole along the crack flanks. Their 
numerical analysis results revealed that the presence of holes 
around the crack tip reduces the stress concentration and 

the stress intensity factor. In other papers of same authors 
[104, 105], crack growth retardation was applied with the 
help of a stop hole at the crack tip. These investigations 
demonstrated an extension in the overall fatigue life. All 
these studies specify despite numerous concept of fatigue 
life estimation, it is hypothetically demanding to locate the 
perfect explanation and amplification.

4  Challenge‑3: intricacy in fatigue crack 
propagation

A fatigue crack growth curve is a graphical representation 
of the stress intensity factor range and cracks growth rate 
[63, 64]. The region I describe the crack initiation which 
is termed as near-threshold zone below which the fatigue 
crack does not happen. Region II is the intermediary zone 
where there is linear and steady crack propagation occur 
appropriated for Paris and Walker models. The abnormal 
fatigue crack growth occurs in the region III due to the phe-
nomenon of plasticity that leads it to the catastrophic failure. 
The crack growth rate rises rapidly as the maximum stress 
intensity factor reaches the fracture toughness, as shown in 
Fig. 1. However, the crack growth rate may not be same for 
all the materials.

The simplest form of fatigue crack growth analysis is 
those which are subjected to constant amplitude loading 
because no loading history has to be considered [64]. The 
complexity of the crack growth evaluation arises due to 
the variable amplitude loading where the existing load-
ing interaction effects. Chowdhury et al. [64] proposed 
a framework to select the fatigue crack growth method 
for life cycle assessment. Their paper discussed the four 
fatigue crack models, their advantages and highlighted 
the model’s limitations. Zang et al. [106] explored the 

Fig. 1  Fatigue crack growth curve [64]
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judgement criterion of the dominant factor of creep-
fatigue. They considered the interaction of creep-fatigue 
at different intensity factor ranges at different temperatures 
with dwell time under various loading condition. Their 
studied highlighted that both time-dependent (creep-
fatigue) and cycle-dependent (fatigue) involves in the 
crack growth process as shown in Eq.  (20). The crack 

growth rates of fatigue, creep and creep-fatigue interac-
tion are presented in Fig. 2a–e. The crack growth rates 
were compared for 0-s with 90-s dwell time at tempera-
tures 650 °C, 670 °C, 690 °C, 710 °C and 750 °C. The 
graphs indicated that fatigue item dominated the crack 
growth rates at lower temperatures and creep item has lit-
tle influence in the whole stress intensity range. However, 

Fig. 2  Crack growth of creep-fatigue interaction for nickel-based superalloy at a a 650 °C, b 670 °C, c 690 °C, d 710 °C and e750 °C. with 90 s 
dwell time [106]
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the creep item dominates the crack growth at higher tem-
peratures as shown in Fig. 2e.

Crack growth tests are normally performed in iso-
thermal situations at a different temperature to illustrate 
the material behaviour [107]. Fatigue crack growth rate 
increases with the rise in temperature. Lu et  al. [108] 
studied the hold-time effect of elevated temperature crack 
growth behaviour of strengthening super alloys. This 
research applied the fracture mechanics parameters to 
correlate the crack behaviour at a different temperatures. 
The result showed that the time-dependent creep damage 
mechanisms control the cracking path. Narashimhachary 
et al. [109] found that there is a difference in the stress 
intensity solutions for a rectangular edge-cracked plate 
emphasizing the importance of using correct boundary 
conditions. Bouvard et al. [110] formulated a phenomeno-
logical model to predict the crack growth in crystal super 
alloys at elevated temperatures. Fatigue and creep-fatigue 
tests were taken out to inspect the consequences of time on 
crack growth rates. A different form of loading conditions 
was performed to examine the crack growth process for (a) 
without hold time (b) hold time, (c) and (d) at overloads 
as shown in Fig. 3.

It is remarkable that the two regimes in Fig. 4 are also 
viewed from the fracture surface from scanning electron 
micrographs as shown in Fig. 5. The four zones are the 
pre-crack, short crack regime, long crack regime and fail-
ure zone. Sankararaman et al. [111] presented a method to 
quantify the uncertainty in fatigue crack growth progno-
sis which are applied to structure with complex geometry 
and subjected to variable amplitude multiaxial loading. 
The model modified the Paris law to include the retar-
dation effects which is shown in Fig. 6. The sources of 
the uncertainty mentioned the physical variability like 
loading, initial flaw size and data uncertainty. They also 

(20)
da

dN
=

(

da

dN

)

cycle - dependent
+

(

da

dN

)

time - dependent

discussed model uncertainty parameters like crack growth 
law, calculation of stress intensity factor, etc.

Yao et al. [112] studied the effect of thermal-induced 
damage on the dynamic fracture toughness. The notch 

Fig. 3  Shape of analysed cycles a without hold time, b with a hold 
time, c and d in overloads test [110]

Fig. 4  Crack growth rate evolution as a function of crack length 
increases at a frequency of 5 Hz for AM1 single-crystal super alloy 
[110]

Fig. 5  Crack scanning electron micrographs of the fracture surface 
from the specimen tested at 5 Hz for AM1 single-crystal super alloy 
[110]

Fig. 6  Crack propagation analysis [111]
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specimen of two mortars were heat treated and tested 
with a split Hopkinson pressure bar (SHPB). X-ray com-
puter tomography (CT) was used to quantify the thermally 
induced micro-crack and changes in chemical in terms of CT 
value. They observed that there was a decrease in fracture 
toughness due to the heat treatment. They found fracture 
damage is a combined effect of micro-crack and deterio-
ration in binding property. Kidane and Shukla [113] also 
investigated the effect on a thermal and loading rate on the 
fracture toughness of Ti/TiB using a three-point bend speci-
men. Unlike Yao et al. [112], they used the modified SHPB 
apparatus with an induction coil as a heating system. The 
fracture toughness was found to be sensitive to temperature 
as shown in Fig. 7. Fracture initiation toughness was noticed 
to be strain rate sensitive and higher for dynamic loading as 
compared to the quasi-static conditions. Verlesen and Peirs 
[114] investigated the fracture behaviour of Ti6A114V under 
quasi-static and high strain rate conditions. The fracture 
behaviour was illustrated from Johnson–Cook damage ini-
tiation criterion combined with energy-based ductile damage 
law. The process of void nucleation and crack growth was 
unexpectedly culminated by strain localization. The strain 
rate effect was experienced caused by thermal softening 
which support the strain localization.

In past studies, fatigue crack growth was tested under 
the isothermal situation. Lansinger et al. [107] attempted 
to test the crack growth rate in the combined condition of 
thermal and mechanical loading. The tests used a tempera-
ture loading frequency of 1 Hz with cooling rates of 3 to 
5 °C/min. They discovered that the combined test was in 
good agreement with the isothermal crack propagation at the 
same loading frequency. Estimation of fatigue crack growth 
was also performed in complex loading conditions [76]. 
You and Lee [115] evaluated the crack behaviour of steel in 
mixed-mode I and mode II loadings. Their studies revealed 

the accelerated crack growth by the addition of cyclic mode 
II. The result of mixed-mode crack growth was affected by 
the collaboration of plastic deformation zone, load ratio and 
increase in contact area on the rough crack surface.

Fatigue crack growth rate at elevated temperature has 
studied extensively in recent past. These studies concluded 
that the crack propagation is caused by several factors like 
environmental, stress-assisted grain boundary, oxygen 
embrittlement [116], stress intensity factor with the effect 
of frequency, load ratio and temperature [117, 118]. Wen 
et al. [119] analysed the finite deformation under small creep 
condition. The crack growth rate was discovered to be more 
sensitive to the finite element size under cyclic loading than 
monotonic loading conditions. Tvergaard and Needleman 
[120] studied the brittle–ductile transition in dynamic crack 
growth by considering the thermal softening and ductile 
failure. They established the transition from cleavage crack 
at a lower temperature to ductile cracked growth at a higher 
temperature. Nishioka et al. [121] investigated the effect of 
specimen size on dynamic crack propagation of double can-
tilever beam. The propagating crack was observed through 
high-speed photography. The investigation reported the val-
ues of crack arrest toughness were larger for shorter speci-
men than a longer specimen. Thus, it can be concluded that 
the complexities in estimating crack growth are due to the 
inconsistent crack propagation pattern.

5  Challenge‑4: quantification of cracks

Quantification of cracks is the measurement of crack mag-
nitude. There is no such single equation which satisfies dif-
ferent crack problems and their concerning boundary condi-
tions. However, in most cases, the researcher attempted to 
quantify cracks by calculating the state of the stress/strain 
field, residual stress and the displacement data. In many situ-
ations, the stress intensity factor (SIF) is used to predict the 
stress state near the crack tip [122–125]. In dynamic load-
ing, SIF is reinstated by the dynamic stress intensity factor 
(DSIF) [126–133]. In thermal loading condition, several lit-
eratures [123, 134–148] used thermal stress intensity factor 
(TSIF) to determine the thermal stress state. Kim et al. [122] 
stated that the stress intensity factor due to the thermal loads 
is the function not only to immediate boundary conditions 
but also of the preceding history of the boundary tempera-
ture. Stress intensity factor is nonetheless dependent on the 
state of stress/strain, displacement and temperature fields 
which are the potential factors to quantify cracks. Hence-
forth, quantifying cracks are perplexed especially in complex 
geometrical structures. Consequently, the study of cracks 
includes classification of remote stress, orientations of the 
obtained cracks and respective material properties.

Fig. 7  Effect of temperature on the fracture initiation toughness of 
FGM graded in the crack direction under quasi-static and dynamic 
loading [113]
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Defining the stress intensity factor is vital to estimate 
accurate crack propagation. Different stress intensity fac-
tors are defined in the literature based on the boundary 
conditions. Tran et al. [149] conducted a modal analysis to 
compute stress intensity factor. Modal stress intensity fac-
tor was extracted from stationary crack and computed the 
dynamic stress intensity factor using the extended finite ele-
ment method. In similar work, Galenne et al. [150] offered a 
modal approach to linear fracture mechanics. Modal stress 
intensity factor is extracted from either the crack-tip dis-
placement method or by the energy method. The general 
equation for energy release rate G for the crack in dynamic 
loading was given as [149, 150].

where Wel is the elastic energy, Wkin is the kinetic energy, 
P is the external power forces, u is the displacement and 
u̇ is the time derivative. Ni and Zhang [151] defined the 
dynamic stress intensity factor under the ultrasonic loading. 
They claimed to have the equivalent with the effective stress 
intensity factor values as in traditional fatigue tests. Calcada 
et al. [63, 152] developed an efficient crack analysis using 
modal stress intensity factor and their research methodology 
flowchart is shown in Fig. 8. The total stress intensity factor 
for dynamic loading is given in Eq. (22):

where K
sta
(t) = C

n

√

�a.�
sta

The total value of K through time is expressed as

Kabayashi and Ramulu [131] evaluated DSIF for unsym-
metrical dynamic. Rokach and Łabędzki [128] proposed the 
method to determine the dynamic stress intensity factor for 
a four-point bend impact test. Wang et al. [129] established 
a dynamic stress intensity factor applying the interaction 
integral method. The integral method was executed with-
out crack tip enrichment for both homogeneous and non-
homogeneous material. The relationship between interaction 
integral and stress intensity factor is given in equation below 
[129, 153, 154]:

(21)G = −
d

dl

(

W
el(u) + W

kin(u̇) − P(u)
)

(22)Ktotal = Ksta + Kdyn

Kdyn(t) = C
n

√

�a.�dyn

(23)K
total(t) =

⎧
⎪⎨⎪⎩

K
sta

+
∑

j

Kj.Yj(t) ifK
sta

+
∑

j

Kj.Yj(t) ≥ 0

0 ifK
sta

+
∑

j

Kj.Yj(t) ≤ 0

(24)I =
2

E
∗

tip

(

KIK
aux
I

+ KIIK
aux
II

)

where E∗

tip
=

{

Etip for plane stress
Etip

1−v
2
tip

for plane strain

Moreover, Huang et al. [125, 153] used the domain-inde-
pendent interaction integral method to evaluate the DSIF for 
crack with nonhomogeneous materials. The relationship is 
given in Eq. (25).

Dynamic stress intensity factor is also derived through 
finite element and J-integral methods [130]. A formula was 
developed from the path-independent J-integral by taking 
the effect of inertia. Aloui et al. [127] studied the dynamic 
vibration behaviour of a cracked plate subjected to sinusoi-
dal loading and analysed the stress field and dynamic stress 
intensity factor. Rokach [132] numerical investigation on the 
accuracy in the determination of dynamic stress intensity. 
Wen et al. [155] studied the dynamic behaviour of station-
ary cracks using dual boundary methods and determined 
the dynamic stress intensity factor through crack opening 
displacement.

Evaluation of crack in the thermal environment is vastly 
studied. Han and wang [156] investigated the thermal shock 
resistance of multiple cracking in functional graded mate-
rial (FGM). Thermal shock resistance was determined based 
on the stress-based and fracture mechanics-based criteria. 
Zhang et al. [153] also examined the thermal shock resist-
ance of FGM in a mixed-mode crack. The modelled con-
sidered both strength and fracture theories pondering the 
failure criteria of maximum local tensile stress, maximum 
thermal stress intensity and maximum hoops stress criterion. 
The transient temperature field for finite element equation is 
expressed in Eq. (26).

where 
[

K
1

]

 is the heat conduction matrix, 
[

K
2

]

 is the con-
vection matrix and 

[

K
3

]

 is the heat capacity matrix. Petrova 
and Schmauder [148] developed a mathematical modelling 
and evaluated the TSIF of FGM for an interface crack. The 
parametric analysis showed the dependence of the TSIF at 
the crack tip location and its orientation. Stress intensity 
factor under thermal stress was analysed for the interfacial 
crack of bimaterial [42, 121, 135]. The transient SIFs are 
observed to be a greater value than in the transient state. 
Nemat and Noda [135] analysed TSIF for functionally gra-
dient material. They observed that TSIF decreased dramati-
cally for selected nonhomogeneous parameters. Transient 
thermal stress intensity factor was investigated for a hollow 
cylinder with a circumferential crack [141, 142]. Xue et al. 
[141] evaluated based on the heat conduction model. It was 

(25)I =
2

E
∗

tip
cosh2

(

� ∈tip
)

(

KIK
aux
I

+ KIIK
aux
II

)

(26)

[
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]

+
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K2

]

{T(x, y, t)} +
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]{
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Fig. 8  Flowchart for the 
application of the proposed 
methodology [63]
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found that the thermal stress at the crack tip was different for 
different parameter values. Zhang and Li [142] studied the 
generalized fractional heat conduction and found a striking 
difference in thermal stress intensity factor with the Fourier 
heat conduction model.

Different approaches were used for calculating the 
thermal stress intensity factor for a cracked cylinder [123, 
137, 143, 145, 146]. Zhong and Huang [134] observed that 
TSIF was not only dependent on applied thermal loading 
but also dependent on mechanical loading and physical 
properties of the crack interior. Tanigawa and Komat-
subara [140] evaluated the thermal stress of a rectangu-
lar plate. Fracture behaviour of the crack was examined 
with a non-uniform heat source. Their studied explained 
the variation in stress intensity depending on the kind of 
parameters like mechanical boundary conditions, thick-
ness of the plate, orientation of the crack, surface friction, 
etc. Lee et al. [138, 147] studied the TSIF for interface 
crack under uniform heat flow. The finding showed the 
stress intensity factor was strongly dependent on material 
properties. Analysis of thermal stress intensity factor was 
also studied using different methods and approaches [122, 
139, 157, 158]. Assessment of mixed-mode stress intensity 
factor under the thermal and mechanical loading [159].

Le and Gardin [160] used the analytical approach 
based on stress intensity factor and weight function to 
study the crack shape and kinetics of crack propagation 
under the thermal cyclic loadings. The result showed the 
crack decelerated at the deepest point and accelerated at 
the surface due to the compression state in the centre and 
tension near the surface. Sankraraman et al. [161] exam-
ined the influence of an initial flaw size of the crack. The 
stress intensity factor expressed in terms of the initial flaw 
size of crack and loadings. The size of the crack opening 
was, however, dependent on the geometry [162]. Another 
type of crack is a breathing-fatigue crack as discussed by 
Yan et al. [163]. The researcher proposed the procedure to 
identify the prevailing breathing crack and computed the 
crack quantitatively.

Crack is also analysed in different schemes. Huan Chen 
[164] considered partially insulated crack. Using the 
hyperbolic heat conduction theory as per Eq. (27), thermal 
stresses and thermal effect on the crack were examined.

They expressed that the conduction parameters, thermal 
conductivity and geometry size have a greater influence on 
the stress of the crack surface and temperature gradient.

where a is thermal diffusivity and ∇2 is Laplace differential 
operator. Ekhlakov et al. [165] presented thermoelastic crack 
analysis in FGM. They observed that the influence of the 

(27)a ⋅ ∇
2
T =

�T

�t
+ �

�
2
T

�t2

thermomechanical loading in DSIF was much lower than 
the material gradation. Moreover, DSIF is dependent on the 
crack angle and orientation with correspond to the material 
gradation. Lee et al. [166] and Zhang et al. [167] similarly 
analysed the exponential gradation of FGM to develop the 
thermomechanical stress and displacement.

Nicholas et al. [168] estimated the crack propagation as 
the function of the phase angle between load and tempera-
ture. Their research acknowledged the contribution of load 
position and time effects. John et al. [169] experimentally 
worked out TSIF generated by temperature gradient around 
the crack and hence confirmed the thermal load induces 
crack growth. Park et al. [170] in a similar way categorized 
the thermal fatigue of an underfill cracking by applying the 
thermal stress and calculated the TSIF using the crack length 
correlated to life cycles. Kim and Stone [171] studied the 
utility of integral parameters for crack propagation under 
thermomechanical loading. Their research reported that the 
parameters are path-independent for deformation. Chu et al. 
[172] examined the dynamic crack path in a brittle material. 
The aim of their studied was to evaluate the transient heat 
transfer, dynamic stress evolution under thermomechani-
cal couple load. Their experiment in disk specimen showed 
that the crack branching is within the large heating radius; 
however, it goes outside the heating area in case of smaller 
radius. Maletta et al. [173] analysed the crack-tip thermal 
and mechanical hysteresis. They tested shape memory alloys 
subjected to fatigue loads. Using infrared thermography, 
they reported a sudden rise in surface temperature at the 
initial stage. The SIF versus load curves appeared a nonlin-
ear hysteretic behaviour reflecting the complex stress–strain 
hysteretic behaviour of SMAs. Merhy et al. [174] studied 
the crack growth characterization of aluminium alloy. The 
contribution of parameters like temperature, frequency and 
SIF on crack growth was analysed. Crack growth increased 
at high temperature with a load ratio on decreasing frequen-
cies. Temperature effect on crack growth was found depend-
ent on the applied frequencies.

6  Challenge‑5: stochastic response 
of the structure under thermomechanical 
environment

A structure exposed to cyclic loads for a reasonable time 
may change its global temperature. The changes in tempera-
ture impact the amount of stress moderation which in turn 
alters the deformation of the structures. Khan et al. [175] 
studied the outcomes of heat generation in viscoelastic 
material under cyclic loading. The cyclic mechanical load-
ing was applied in a polymeric beam with or without heat 
conduction. They found that the higher stress point produces 
more heat which hastened the stress relaxation and triggered 
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thermal gradient in the polymer beam. In the case of the heat 
conduction, a uniform temperature preceded to the insta-
bility of the beam by diminishing the overall stiffness as 
shown in Fig. 9. El-Kafrawy [176] and Bovsunovsky and 
Surace [177] confirmed that the presence of a crack in beam 
or frame reduces the dynamic response. Hasbroucq et al. 
[178] studied the elastic–plastic response under the thermo-
mechanical loading where the elastic properties vary with 
the temperature. The result showed that the residual stress 
and strain fields were time-dependent. Kidane and Shukla 
[179] experimentally investigated the dynamic behaviour 
of Ti/TiB functionally graded material exposed to ther-
momechanical loading. The effect of the temperature on 
dynamic response was studied by infrared spot heaters. The 
stress–strain curve at a different temperature is illustrated in 
Fig. 10. At high temperature, the materials displayed thermal 
relaxing and caused a reduction in compressive strength and 
increase in failure strain.

Thermal effect on vibrating structure has been widely 
investigated [12, 18, 25, 32, 61, 180–186]. Cao et al. [181] 
investigated numerically the thermal vibration and thermal 
contraction of single-wall carbon nanotubes (CNT). They 
explained that the effect of thermal vibration is more distinct 
than quasi-static thermal expansion which causes the ther-
mal contraction in both the radial and axial directions when 
the temperature is well below 800 K. Zhang et al. [184] 
also investigated the thermal effect on the beam. Their work 
focuses on the high-frequency response in thermal expo-
sure using the energy flow analysis method. The study high-
lighted the increase in vibration response of the beam with 
the increase in temperature. In supplement, two temperature-
dependent material properties, elastic modulus and thermal 
expansion coefficient were considered to verify the thermal 
effect as shown in Fig. 11.

Ebrahimi et al. [185] analysed the thermal effect on vibra-
tion behaviour of functionally graded beams with porosities. 
The influence of porosity volume fraction, material profile, 
temperature and boundary condition on frequencies was 
examined. The increase in porosity fraction increased the 
dimensionless frequencies. But at elevated temperatures, the 
increase in gradient index value decreased the frequency. 
The natural frequencies decreased with an increase in tem-
perature and moving to zero at critical temperature. How-
ever, the frequencies increased afterward.

In another paper, Ebrahimi and Salari [186] studied 
the vibration behaviour of functional graded (FG) nano-
beams under the effects of in-plane thermal loading. The 
parametric study showed that change in temperature, mode 
shape and boundary conditions influenced the fundamental 
frequencies. Liu et al. [187] investigated on temperature-
dependent of material properties. They focused on ther-
mal shock fracture in the principle of non-Fourier heat 

Fig. 9  Temperature increase at point 1 of the simply supported at 
1.0  MPa with/without heat conduction at different frequencies of 
HDPE polymer [175]

Fig. 10  True stress–strain curve as a function of time of Ti/TiB FGM 
[179]

Fig. 11  Temperature-dependent material properties for aluminium 
alloy [184]
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conduction. The thermal stress intensity factor was found 
to be vastly receptive to the temperature-dependent mate-
rial properties.

The variations of TSIF with shock time are presented 
in Fig. 12. Cui and Hu [180] studied on Euler–Bernoulli 
beam under uniform heating. They observed that there 
is a small influence of temperature-dependent material 
properties on the natural frequency at low temperature 
but developed greater influence at high temperature. Faz-
zolari [188] also analysed the modal characteristic of 
FG with temperature-dependent materials under thermal 
loading. They analysed the use of the higher-order equiva-
lent single-plate theories to study the two-volume frac-
tions: power-law function (P-FGM) and sigmoid function 
(S-FGM). The declining rate of dimensionless frequency 
of temperature-dependent FGM was found to be more than 
temperature-independent FGM at elevated temperatures. 
Silva et al. [189] performed the modal analysis at elevated 
temperatures. They studied the effect of non-uniform 
temperature distribution heated rectangular plate. The 
resonant frequency and displacement data were extracted 
by the pulse laser-digital image correlation method. The 
resonant frequencies were noticed to be higher in trans-
verse heating while longitudinal heating did not have much 
effect. Finite element analysis suggested the results were 
an after-effect of the disparity in the curvature of the plate 
at elevated temperature in a steady state. In related stud-
ies, Kawamura et al. [190] performed numerical studies 
on nonhomogeneous material properties of a rectangular 
plate subjected to a varying temperature at one surface 
and other at zero temperature change. They observed the 
amplitude of deflection decreased with the decrease in 
young modulus.

7  Conclusion

This review emphasizes the existing research complexities 
in the area of fatigue and fracture modelling. Assessing 
fatigue damage accurately under vibration-based loads 
is still a challenge. Most of the available researches on 
thermomechanical vibrations are more or less focused 
on application-based studies. Researchers apply differ-
ent theories to evaluate the characteristic of the com-
plex geometry. However, modelling of thermomechani-
cal vibrations become multifaceted when the geometry 
is complicated. Thus, the available research data for the 
fatigue damage assessment are still lacking of analytical 
reasoning and proper explanations concerning accurate 
fatigue measurement.

Complications in fatigue and fracture life estimation 
are another challenging obligation. The difficulties of 
fatigue life estimation are due to the inhibiting variables. 
Fatigue life is dependent on the loading histories, loading 
sequences, loading amplitude and frequency, operation 
environment, physical properties, etc. Different materials 
correspond to different fatigue life patterns allowing exist-
ing life estimation methods inadequate. A number of meth-
ods and techniques are available to predict the fatigue life. 
Nevertheless, the challenges are the precise measurement 
considering those variables which change independently 
according to the working conditions.

Crack propagation is not a new topic but still requires 
a comprehensive research to describe its governing math-
ematics with experimental justifications. Crack growth 
behaves in a pseudo-manner, especially in thermal con-
dition. Many investigations have been complied about 
the nature of crack growth but fail to conclude with valid 
explanations. Some references, presented in this paper, 
were crack growth rate for supper alloys increases with the 
increase in temperature. Yet, there is no convincing reason 
why and how the crack will behave for different working 
conditions. It is learnt that fracture mechanics parameters 
correlated the crack behaviour at different temperature. In 
theory, crack growth and fracture behaviour at elevated 
temperature is still to address.

The thermal effect on dynamic response of structure 
has great concern in engineering applications. Structure 
expose to reasonable high temperatures can modify the 
material properties and increase crack propagation. This 
modification influences the overall deformation of the 
structure. The changes in temperature impact the amount 
of stress concentration thereby diminishing the global 
stiffness. Several studies were presented for structural 
vibration in above review. Moreover, thermomechanical 
vibration of structure relating to crack propagation and 
modal properties are still inadequate. It is well known that 

Fig. 12  TSIF for the surface crack of depth d/l = 1 [187]
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the presence of crack reduces the dynamics response of 
structure. The existing studies are yet to input sufficient 
explanations about the dynamic behaviour of structure 
under distributed temperature across the structure. The 
structural stiffness can be influenced by material micro-
structure, temperature distribution and time of exposure. 
Different temperature can cause significant variations 
in the material properties. Existing studies are limited 
with respect to temperature change and compel exten-
sive investigation in crack and uncrack conditions. The 
impact of thermal properties on structural response under 
varying temperatures needs to be investigated. Tempera-
ture-dependent properties like elastic modulus, thermal 
expansion and thermal conductivity changes with respect 
to temperature. The relationship of temperature-dependent 
properties with structural response in crack and uncrack 
conditions has not been established yet. There could be 
considerable changes in structural response due to vary in 
temperature-dependent properties. Dissimilar temperature 
distributions across the structure may also have diverse 
dynamic response trend. Subsequently, the modal prop-
erties will change corresponding to the changes in the 
temperature.

Nevertheless, a focus on developing accurate fatigue 
models, especially for complex geometries, is required in 
future. There are many factors still to be considered in mod-
elling like overloading and geometrical discontinuities. The 
existing theories of fatigue and fracture also address with-
out a proper consideration of temperature effect on struc-
tural dynamics. The change in temperature has impacted 
the mechanical properties which can relate to uncertain 
dynamics responses. Therefore, fatigue and fracture model-
ling under those criteria will be a good contribution in the 
existing academic literature.
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